
Panduan Pengembang untuk SDK v2

AWS SDK untuk JavaScript

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

AWS SDK untuk JavaScript: Panduan Pengembang untuk SDK v2

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Merek dagang dan tampilan dagang Amazon tidak boleh digunakan sehubungan dengan
produk atau layanan apa pun yang bukan milik Amazon, dengan cara apa pun yang dapat
menyebabkan kebingungan di antara pelanggan, atau dengan cara apa pun yang merendahkan atau
mendiskreditkan Amazon. Semua merek dagang lain yang tidak dimiliki oleh Amazon merupakan hak
milik masing-masing pemiliknya, yang mungkin atau mungkin tidak terafiliasi, terkait dengan, atau
disponsori oleh Amazon.

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Table of Contents
.. ix
Apa itu AWS SDK untuk JavaScript? .. 1

Pemeliharaan dan dukungan untuk versi utama SDK .. 1
Menggunakan SDK dengan Node.js ... 2
Menggunakan SDK dengan AWS Amplify .. 2
Menggunakan SDK dengan Browser Web ... 2

Kasus Penggunaan Umum ... 2
Tentang Contoh .. 3

Memulai ... 4
Memulai Skrip Browser ... 4

Skenario .. 4
Langkah 1: Buat Kolam Identitas Amazon Cognito ... 5
Langkah 2: Tambahkan Kebijakan ke Peran IAM yang Dibuat ... 6
Langkah 3: Buat Halaman HTML ... 7
Langkah 4: Tulis Script Browser .. 8
Langkah 5: Jalankan Sampel ... 9
Sampel lengkap .. 10
Kemungkinan Peningkatan ... 11

Memulai di Node.js .. 12
Skenario .. 12
Tugas Prasyarat .. 12
Langkah 1: Instal SDK dan Dependensi .. 13
Langkah 2: Konfigurasikan Kredensial Anda ... 13
Langkah 3: Buat Package JSON untuk Proyek ... 14
Langkah 4: Tulis Kode Node.js .. 15
Langkah 5: Jalankan Sampel ... 16

Menyiapkan SDK untuk JavaScript .. 17
Prasyarat .. 17

Menyiapkan Lingkungan AWS Node.js .. 17
Web Browser Didukung .. 18

Menginstal SDK ... 19
Instalasi Menggunakan Bower .. 20

Memuat SDK ... 20
Upgrade Dari Versi 1 .. 21

iii

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Konversi Otomatis Jenis Base64 dan Timestamp pada Input/Output 21
Dipindahkan response.data. RequestId untuk response.Requestid ... 22
Elemen Pembungkus Terpapar .. 23
Properti Klien Jatuh .. 28

Mengkonfigurasi SDK untuk JavaScript ... 29
Menggunakan Objek Konfigurasi Global ... 29

Pengaturan Konfigurasi Global ... 30
Pengaturan Konfigurasi Per Layanan .. 32
Data Konfigurasi yang Tidak Dapat Diubah ... 32

Mengatur AWS Wilayah .. 33
Dalam Konstruktor Kelas Klien ... 33
Menggunakan Objek Konfigurasi Global .. 33
Menggunakan Variabel Lingkungan ... 33
Menggunakan File Config Bersama ... 33
Urutan Prioritas untuk Mengatur Wilayah .. 34

Menentukan Titik Akhir Kustom .. 35
Format String Titik Akhir ... 35
Titik akhir untuk Wilayah ap-northeast-3 .. 35
Endpoint untuk MediaConvert .. 35

Otentikasi SDK dengan AWS .. 36
Memulai sesi portal AWS akses .. 37
Informasi otentikasi lebih lanjut .. 38

Mengatur Kredensial .. 38
Praktik Terbaik untuk Kredensial .. 39
Mengatur Kredensial di Node.js ... 40
Menyetel Kredensial di Browser Web .. 45

Mengunci Versi API ... 55
Mendapatkan Versi API .. 55

Pertimbangan Node.js ... 55
Menggunakan Modul Node.js Built-In .. 56
Menggunakan Paket NPM .. 56
Mengkonfigurasi MaxSockets di Node.js ... 57
Menggunakan Kembali Koneksi dengan Keep-Alive di Node.js .. 58
Mengkonfigurasi Proxy untuk Node.js .. 59
Mendaftarkan Bundel Sertifikat di Node.js ... 60

Pertimbangan Skrip Browser ... 60

iv

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Membangun SDK untuk Browser ... 61
Berbagi Sumber Daya Lintas Orisinil (CORS) ... 64

Bundling dengan Webpack ... 68
Menginstal Webpack ... 68
Mengkonfigurasi Webpack .. 69
Menjalankan Webpack .. 70
Menggunakan Webpack Bundle ... 71
Mengimpor Layanan Individu ... 71
Bundling untuk Node.js ... 72

Bekerja dengan Layanan ... 74
Membuat dan Memanggil Objek Layanan .. 75

Membutuhkan Layanan Individu ... 76
Membuat Objek Layanan ... 77
Mengunci Versi API dari Objek Layanan ... 78
Menentukan Parameter Objek Layanan ... 78

AWS SDK untuk JavaScript Panggilan Pencatatan .. 79
Menggunakan Logger Pihak Ketiga ... 79

Layanan Panggilan Secara Asinkron .. 80
Mengelola Panggilan Asinkron ... 80
Menggunakan Fungsi Callback .. 81
Menggunakan Request Object Event Listener ... 83
Menggunakan async/await ... 88
Menggunakan Janji ... 89

Menggunakan Response Object ... 91
Mengakses Data yang Dikembalikan di Objek Response ... 92
Paging Melalui Data yang Dikembalikan .. 93
Mengakses Informasi Kesalahan dari Objek Respons .. 93
Mengakses Objek Permintaan Asal ... 94

Bekerja dengan JSON ... 94
JSON sebagai Parameter Objek Layanan ... 95
Mengembalikan Data sebagai JSON ... 96

Percobaan ulang .. 96
Perilaku coba lagi berbasis backoff eksponensial .. 97

SDK untuk Contoh JavaScript Kode .. 100
CloudWatch Contoh Amazon ... 100

Membuat Alarm di Amazon CloudWatch ... 101

v

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Menggunakan Alarm Actions di Amazon CloudWatch ... 105
Mendapatkan Metrik dari Amazon CloudWatch ... 110
Mengirim Acara ke CloudWatch Acara Amazon .. 113
Menggunakan Filter Berlangganan di CloudWatch Log Amazon ... 118

Contoh Amazon DynamoDB ... 123
Membuat dan Menggunakan Tabel di DynamoDB .. 123
Membaca dan Menulis Satu Item di DynamoDB ... 128
Membaca dan Menulis Item dalam Batch di DynamoDB ... 132
Meminta dan Memindai Tabel DynamoDB .. 135
Menggunakan Klien Dokumen DynamoDB .. 139

EC2 Contoh Amazon ... 145
Membuat EC2 Instans Amazon .. 146
Mengelola EC2 Instans Amazon .. 148
Bekerja dengan Amazon EC2 Key Pairs ... 154
Menggunakan Wilayah dan Availability Zone dengan Amazon EC2 158
Bekerja dengan Grup Keamanan di Amazon EC2 .. 160
Menggunakan Alamat IP Elastis di Amazon EC2 .. 165

MediaConvert Contoh .. 169
Menciptakan dan Mengelola Pekerjaan ... 169
Menggunakan Job Template .. 176

AWS Contoh IAM .. 185
Mengelola Pengguna IAM .. 186
Bekerja dengan Kebijakan IAM .. 191
Mengelola Kunci Akses IAM ... 197
Bekerja dengan Sertifikat Server IAM .. 202
Mengelola Alias Akun IAM ... 206

Contoh Kinesis Amazon .. 209
Menangkap Kemajuan Gulir Halaman Web dengan Amazon Kinesis 210

Contoh-contoh Amazon S3 ... 217
Contoh Browser Amazon S3 .. 218
Amazon S3 Node.js Contoh ... 247

Contoh Amazon SES .. 267
Mengelola Identitas ... 268
Bekerja dengan Template Email .. 273
Mengirim Email Menggunakan Amazon SES .. 280
Menggunakan Filter Alamat IP ... 286

vi

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Menggunakan Aturan Tanda Terima .. 290
Contoh Amazon SNS .. 296

Mengelola Topik .. 297
Menerbitkan Pesan ke Topik .. 302
Mengelola Langganan .. 304
Mengirim Pesan SMS ... 310

Amazon SQS Contoh .. 317
Menggunakan Antrian di Amazon SQS ... 317
Mengirim dan Menerima Pesan di Amazon SQS .. 322
Mengelola Batas Waktu Visibilitas di Amazon SQS .. 325
Mengaktifkan Polling Panjang di Amazon SQS ... 328
Menggunakan Antrian Surat Mati di Amazon SQS .. 332

Tutorial .. 335
Tutorial: Menyiapkan Node.js pada EC2 Instans Amazon .. 335

Prasyarat ... 335
Prosedur .. 335
Membuat Gambar Mesin Amazon .. 337
Sumber Daya Terkait .. 337

Referensi API dan Changelog ... 338
SDK Changelog aktif GitHub ... 338

Migrasi ke v3 .. 339
Keamanan ... 340

Perlindungan data .. 340
Identity and Access Management ... 342

Audiens ... 342
Mengautentikasi dengan identitas .. 343
Mengelola akses menggunakan kebijakan ... 344
Bagaimana Layanan AWS bekerja dengan IAM .. 346
Memecahkan masalah AWS identitas dan akses .. 346

Validasi Kepatuhan .. 348
Ketahanan .. 349
Keamanan Infrastruktur ... 349
Menegakkan versi minimum TLS .. 350

Verifikasi dan terapkan TLS di Node.js .. 350
Verifikasi dan terapkan TLS dalam skrip browser .. 353

Sumber Daya Tambahan ... 356

vii

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

AWS SDKs dan Panduan Referensi Alat ... 356
JavaScript Forum SDK .. 356
JavaScript SDK dan Panduan Pengembang di GitHub .. 356
JavaScript SDK di Gitter ... 356

Riwayat Dokumen .. 357
Riwayat Dokumen .. 357
Pembaruan Sebelumnya ... 358

viii

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

AWS SDK untuk JavaScript V2 telah mencapai end-of-support. Kami menyarankan Anda bermigrasi
ke AWS SDK untuk JavaScript v3. Untuk detail dan informasi tambahan tentang cara bermigrasi,
silakan lihat pengumuman ini.

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan
dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

ix

https://docs.aws.amazon.com//sdk-for-javascript/v3/developer-guide/
https://aws.amazon.com/blogs//developer/announcing-end-of-support-for-aws-sdk-for-javascript-v2/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Apa itu AWS SDK untuk JavaScript?

AWS SDK untuk JavaScriptMenyediakan JavaScript API untuk AWS layanan. Anda dapat
menggunakan JavaScript API untuk membangun pustaka atau aplikasi untuk Node.js atau browser.

Tidak semua layanan segera tersedia di SDK. Untuk mengetahui layanan mana yang saat ini
didukung oleh AWS SDK untuk JavaScript, lihat https://github.com/aws/aws-sdk-js/blob/master/
SERVICES.md. Untuk informasi tentang SDK for JavaScript on GitHub, lihatSumber Daya
Tambahan.

Pemeliharaan dan dukungan untuk versi utama SDK

Untuk informasi tentang pemeliharaan dan dukungan untuk versi utama SDK dan dependensi yang
mendasarinya, lihat berikut ini di Panduan Referensi Alat AWS SDKs dan Alat berikut:

• AWS SDKs dan kebijakan pemeliharaan alat

• AWS SDKs dan matriks dukungan versi alat

Pemeliharaan dan dukungan untuk versi utama SDK 1

https://nodejs.org/en/
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://docs.aws.amazon.com/sdkref/latest/guide/overview.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/version-support-matrix.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Menggunakan SDK dengan Node.js
Node.js adalah runtime lintas platform untuk menjalankan aplikasi sisi server JavaScript . Anda
dapat mengatur Node.js pada EC2 instance Amazon untuk dijalankan di server. Anda juga dapat
menggunakan Node.js untuk menulis AWS Lambda fungsi sesuai permintaan.

Menggunakan SDK untuk Node.js berbeda dari cara Anda menggunakannya JavaScript di browser
web. Perbedaannya berasal dari cara Anda memuat SDK dan bagaimana Anda mendapatkan
kredensil yang diperlukan untuk mengakses layanan web tertentu. Ketika penggunaan tertentu APIs
berbeda antara Node.js dan browser, perbedaan tersebut akan dipanggil keluar.

Menggunakan SDK dengan AWS Amplify
Untuk aplikasi web, seluler, dan hybrid berbasis browser, Anda juga dapat menggunakan AWS
Amplify Library on GitHub, yang memperluas SDK untuk JavaScript, menyediakan antarmuka
deklaratif.

Note

Kerangka kerja seperti AWS Amplify mungkin tidak menawarkan dukungan browser yang
sama dengan SDK untuk. JavaScript Periksa dokumentasi kerangka kerja untuk detailnya.

Menggunakan SDK dengan Browser Web
Semua browser web utama mendukung eksekusi JavaScript. JavaScriptKode yang berjalan di
browser web sering disebut client-side JavaScript.

Menggunakan SDK for JavaScript di browser web berbeda dari cara Anda menggunakannya untuk
Node.js. Perbedaannya berasal dari cara Anda memuat SDK dan bagaimana Anda mendapatkan
kredensil yang diperlukan untuk mengakses layanan web tertentu. Ketika penggunaan tertentu APIs
berbeda antara Node.js dan browser, perbedaan tersebut akan dipanggil keluar.

Untuk daftar browser yang didukung oleh AWS SDK untuk JavaScript, lihatWeb Browser Didukung.

Kasus Penggunaan Umum

Menggunakan SDK untuk JavaScript skrip browser memungkinkan untuk mewujudkan sejumlah
kasus penggunaan yang menarik. Berikut adalah beberapa ide untuk hal-hal yang dapat Anda

Menggunakan SDK dengan Node.js 2

https://github.com/aws/aws-amplify
https://github.com/aws/aws-amplify

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

bangun dalam aplikasi browser dengan menggunakan SDK JavaScript untuk mengakses berbagai
layanan web.

• Buat konsol khusus untuk AWS layanan tempat Anda mengakses dan menggabungkan fitur di
seluruh Wilayah dan layanan untuk memenuhi kebutuhan organisasi atau proyek Anda dengan
sebaik-baiknya.

• Gunakan Identitas Amazon Cognito untuk mengaktifkan akses pengguna yang diautentikasi ke
aplikasi dan situs web browser Anda, termasuk penggunaan otentikasi pihak ketiga dari Facebook
dan lainnya.

• Gunakan Amazon Kinesis untuk memproses aliran klik atau data pemasaran lainnya secara real
time.

• Gunakan Amazon DynamoDB untuk persistensi data tanpa server seperti preferensi pengguna
individu untuk pengunjung situs web atau pengguna aplikasi.

• Gunakan AWS Lambda untuk merangkum logika kepemilikan yang dapat Anda panggil dari skrip
browser tanpa mengunduh dan mengungkapkan kekayaan intelektual Anda kepada pengguna.

Tentang Contoh

Anda dapat menelusuri SDK untuk JavaScript contoh di AWS Code Example Library.

Tentang Contoh 3

https://docs.aws.amazon.com/code-library/latest/ug/javascript_2_code_examples.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Memulai dengan AWS SDK untuk JavaScript

AWS SDK untuk JavaScript Ini menyediakan akses ke layanan web baik dalam skrip browser atau
Node.js. Bagian ini memiliki dua latihan memulai yang menunjukkan cara bekerja dengan SDK
JavaScript di setiap JavaScript lingkungan ini.

Topik

• Memulai Skrip Browser

• Memulai di Node.js

Memulai Skrip Browser

Contoh skrip browser ini menunjukkan kepada Anda:

• Cara mengakses AWS layanan dari skrip browser menggunakan Amazon Cognito Identity.

• Cara mengubah teks menjadi ucapan yang disintesis menggunakan Amazon Polly.

• Cara menggunakan objek presigner untuk membuat URL presigned.

Skenario

Amazon Polly adalah layanan cloud yang mengubah teks menjadi ucapan yang hidup. Anda dapat
menggunakan Amazon Polly untuk mengembangkan aplikasi yang meningkatkan keterlibatan dan
aksesibilitas. Amazon Polly mendukung berbagai bahasa dan mencakup berbagai suara yang hidup.
Untuk informasi selengkapnya tentang Amazon Polly, lihat Panduan Pengembang Amazon Polly.

Contoh menunjukkan cara mengatur dan menjalankan skrip browser sederhana yang mengambil
teks yang Anda masukkan, mengirim teks itu ke Amazon Polly, dan kemudian mengembalikan URL
audio teks yang disintesis untuk Anda mainkan. Skrip browser menggunakan Identitas Amazon
Cognito untuk memberikan kredensyal yang diperlukan untuk mengakses layanan. AWS Anda akan
melihat pola dasar untuk memuat dan menggunakan SDK untuk JavaScript skrip browser.

Memulai Skrip Browser 4

https://docs.aws.amazon.com/polly/latest/dg/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Note

Pemutaran pidato yang disintesis dalam contoh ini tergantung pada berjalan di browser yang
mendukung audio HTML 5.

Skrip browser menggunakan SDK for JavaScript untuk mensintesis teks dengan menggunakan ini:
APIs

• AWS.CognitoIdentityCredentialskonstruktor

• AWS.Polly.Presignerkonstruktor

• getSynthesizeSpeechUrl

Langkah 1: Buat Kolam Identitas Amazon Cognito

Dalam latihan ini, Anda membuat dan menggunakan kumpulan identitas Amazon Cognito untuk
menyediakan akses tidak terautentikasi ke skrip browser Anda untuk layanan Amazon Polly.
Membuat kumpulan identitas juga menciptakan dua peran IAM, satu untuk mendukung pengguna
yang diautentikasi oleh penyedia identitas dan yang lainnya untuk mendukung pengguna tamu yang
tidak diautentikasi.

Dalam latihan ini, kami hanya akan bekerja dengan peran pengguna yang tidak diautentikasi untuk
menjaga tugas tetap fokus. Anda dapat mengintegrasikan dukungan untuk penyedia identitas dan
pengguna yang diautentikasi nanti. Untuk informasi selengkapnya tentang menambahkan kumpulan
identitas Amazon Cognito, lihat Tutorial: Membuat kumpulan identitas di Panduan Pengembang
Amazon Cognito.

Langkah 1: Buat Kolam Identitas Amazon Cognito 5

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CognitoIdentityCredentials.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Polly/Presigner.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Polly/Presigner.html#getSynthesizeSpeechUrl-property
https://docs.aws.amazon.com/cognito/latest/developerguide/tutorial-create-identity-pool.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Untuk membuat kumpulan identitas Amazon Cognito

1. Masuk ke Konsol Manajemen AWS dan buka konsol Amazon Cognito di. https://
console.aws.amazon.com/cognito/

2. Di panel navigasi kiri, pilih Identity pool.

3. Pilih Buat kumpulan identitas.

4. Di Konfigurasikan kepercayaan kumpulan identitas, pilih Akses tamu untuk otentikasi pengguna.

5. Di Konfigurasi izin, pilih Buat peran IAM baru dan masukkan nama (misalnya, getStartedRole) di
nama peran IAM.

6. Di Konfigurasi properti, masukkan nama (misalnya, getStartedPool) di nama kumpulan Identitas.

7. Di Tinjau dan buat, konfirmasikan pilihan yang Anda buat untuk kumpulan identitas baru Anda.
Pilih Edit untuk kembali ke wizard dan mengubah pengaturan apa pun. Setelah selesai, pilih Buat
kumpulan identitas.

8. Perhatikan ID kumpulan Identitas dan Wilayah kumpulan identitas Amazon Cognito yang baru
dibuat. Anda membutuhkan nilai-nilai ini untuk menggantikan IDENTITY_POOL_ID dan REGION
masukLangkah 4: Tulis Script Browser.

Setelah membuat kumpulan identitas Amazon Cognito, Anda siap menambahkan izin untuk Amazon
Polly yang diperlukan oleh skrip browser Anda.

Langkah 2: Tambahkan Kebijakan ke Peran IAM yang Dibuat

Untuk mengaktifkan akses skrip browser ke Amazon Polly untuk sintesis ucapan, gunakan peran
IAM yang tidak diautentikasi yang dibuat untuk kumpulan identitas Amazon Cognito Anda. Ini
mengharuskan Anda untuk menambahkan kebijakan IAM ke peran tersebut. Untuk informasi
selengkapnya tentang memodifikasi peran IAM, lihat Memodifikasi kebijakan izin peran di Panduan
Pengguna IAM.

Untuk menambahkan kebijakan Amazon Polly ke peran IAM yang terkait dengan pengguna yang
tidak diautentikasi

1. Masuk ke Konsol Manajemen AWS dan buka konsol IAM di https://console.aws.amazon.com/
iam/.

2. Di panel navigasi sebelah kiri, pilih Peran.

3. Pilih nama peran yang ingin Anda ubah (misalnya, getStartedRole), lalu pilih tab Izin.

4. Pilih Tambahkan izin, lalu pilih Lampirkan kebijakan.

Langkah 2: Tambahkan Kebijakan ke Peran IAM yang Dibuat 6

https://console.aws.amazon.com/cognito/
https://console.aws.amazon.com/cognito/
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

5. Di halaman Tambahkan izin untuk peran ini, temukan lalu pilih kotak centang untuk
AmazonPollyReadOnly.

Note

Anda dapat menggunakan proses ini untuk mengaktifkan akses ke AWS layanan apa
pun.

6. Pilih Tambahkan izin.

Setelah Anda membuat kumpulan identitas Amazon Cognito dan menambahkan izin untuk Amazon
Polly ke peran IAM Anda untuk pengguna yang tidak diautentikasi, Anda siap untuk membuat
halaman web dan skrip browser.

Langkah 3: Buat Halaman HTML

Aplikasi sampel terdiri dari satu halaman HTML yang berisi antarmuka pengguna dan skrip browser.
Untuk memulai, buat dokumen HTML dan salin konten berikut ke dalamnya. Halaman ini mencakup
bidang input dan tombol, <audio> elemen untuk memainkan pidato yang disintesis, dan <p> elemen
untuk menampilkan pesan. (Perhatikan bahwa contoh lengkap ditampilkan di bagian bawah halaman
ini.)

Untuk informasi lebih lanjut tentang <audio> elemen, lihat audio.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>AWS SDK for JavaScript - Browser Getting Started Application</title>
 </head>

 <body>
 <div id="textToSynth">
 <input autofocus size="23" type="text" id="textEntry" value="It's very good to
 meet you."/>
 <button class="btn default" onClick="speakText()">Synthesize</button>
 <p id="result">Enter text above then click Synthesize</p>
 </div>
 <audio id="audioPlayback" controls>
 <source id="audioSource" type="audio/mp3" src="">
 </audio>

Langkah 3: Buat Halaman HTML 7

https://www.w3schools.com/tags/tag_audio.asp

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 <!-- (script elements go here) -->
 </body>
</html>

Simpan file HTML, beri namapolly.html. Setelah Anda membuat antarmuka pengguna untuk
aplikasi, Anda siap untuk menambahkan kode skrip browser yang menjalankan aplikasi.

Langkah 4: Tulis Script Browser

Hal pertama yang harus dilakukan saat membuat skrip browser adalah memasukkan SDK untuk
JavaScript dengan menambahkan <script> elemen setelah <audio> elemen di halaman. Untuk
menemukan SDK_VERSION_NUMBER saat ini, lihat Referensi API untuk SDK untuk Panduan
Referensi API. JavaScript AWS SDK untuk JavaScript

<script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.min.js"></script>

Kemudian tambahkan <script type="text/javascript"> elemen baru setelah entri SDK.
Anda akan menambahkan skrip browser ke elemen ini. Tetapkan AWS Region dan kredensialnya
untuk SDK. Selanjutnya, buat fungsi bernama speakText() yang akan dipanggil sebagai event
handler oleh tombol.

Untuk mensintesis ucapan dengan Amazon Polly, Anda harus menyediakan berbagai parameter
termasuk format suara output, laju pengambilan sampel, ID suara yang akan digunakan, dan teks
untuk diputar ulang. Saat Anda awalnya membuat parameter, atur Text: parameter ke string
kosong; Text: parameter akan diatur ke nilai yang Anda ambil dari <input> elemen di halaman
web. Ganti IDENTITY_POOL_ID dan REGION dalam kode berikut dengan nilai yang tercantum
dalamLangkah 1: Buat Kolam Identitas Amazon Cognito.

 <script type="text/javascript">

 // Initialize the Amazon Cognito credentials provider
 AWS.config.region = 'REGION';
 AWS.config.credentials = new AWS.CognitoIdentityCredentials({IdentityPoolId:
 'IDENTITY_POOL_ID'});

 // Function invoked by button click
 function speakText() {
 // Create the JSON parameters for getSynthesizeSpeechUrl
 var speechParams = {
 OutputFormat: "mp3",
 SampleRate: "16000",

Langkah 4: Tulis Script Browser 8

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 Text: "",
 TextType: "text",
 VoiceId: "Matthew"
 };
 speechParams.Text = document.getElementById("textEntry").value;

Amazon Polly mengembalikan ucapan yang disintesis sebagai aliran audio. Cara termudah untuk
memutar audio itu di browser adalah dengan meminta Amazon Polly membuat audio tersedia di URL
yang telah ditentukan sebelumnya yang kemudian dapat Anda atur sebagai src atribut <audio>
elemen di halaman web.

Buat objek AWS.Polly layanan baru. Kemudian buat AWS.Polly.Presigner objek yang akan
Anda gunakan untuk membuat URL presigned dari mana audio ucapan yang disintesis dapat diambil.
Anda harus meneruskan parameter ucapan yang Anda tentukan serta objek AWS.Polly layanan
yang Anda buat ke AWS.Polly.Presigner konstruktor.

Setelah Anda membuat objek presigner, panggil getSynthesizeSpeechUrl metode objek itu,
melewati parameter ucapan. Jika berhasil, metode ini mengembalikan URL pidato yang disintesis,
yang kemudian Anda tetapkan ke <audio> elemen untuk pemutaran.

 // Create the Polly service object and presigner object
 var polly = new AWS.Polly({apiVersion: '2016-06-10'});
 var signer = new AWS.Polly.Presigner(speechParams, polly)

 // Create presigned URL of synthesized speech file
 signer.getSynthesizeSpeechUrl(speechParams, function(error, url) {
 if (error) {
 document.getElementById('result').innerHTML = error;
 } else {
 document.getElementById('audioSource').src = url;
 document.getElementById('audioPlayback').load();
 document.getElementById('result').innerHTML = "Speech ready to play.";
 }
 });
 }
 </script>

Langkah 5: Jalankan Sampel

Untuk menjalankan aplikasi sampel, muat polly.html ke browser web. Inilah yang harus
menyerupai presentasi browser.

Langkah 5: Jalankan Sampel 9

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Masukkan frasa yang ingin diubah menjadi ucapan di kotak input, lalu pilih Sintesis. Saat audio siap
diputar, sebuah pesan muncul. Gunakan kontrol pemutar audio untuk mendengar ucapan yang
disintesis.

Sampel lengkap

Berikut adalah halaman HTML lengkap dengan skrip browser. Ini juga tersedia di sini GitHub.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>AWS SDK for JavaScript - Browser Getting Started Application</title>
 </head>

 <body>
 <div id="textToSynth">
 <input autofocus size="23" type="text" id="textEntry" value="It's very good to
 meet you."/>
 <button class="btn default" onClick="speakText()">Synthesize</button>
 <p id="result">Enter text above then click Synthesize</p>
 </div>
 <audio id="audioPlayback" controls>
 <source id="audioSource" type="audio/mp3" src="">
 </audio>
 <script src="https://sdk.amazonaws.com/js/aws-sdk-2.410.0.min.js"></script>
 <script type="text/javascript">

 // Initialize the Amazon Cognito credentials provider
 AWS.config.region = 'REGION';
 AWS.config.credentials = new AWS.CognitoIdentityCredentials({IdentityPoolId:
 'IDENTITY_POOL_ID'});

 // Function invoked by button click
 function speakText() {

Sampel lengkap 10

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code//browserstart/polly.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 // Create the JSON parameters for getSynthesizeSpeechUrl
 var speechParams = {
 OutputFormat: "mp3",
 SampleRate: "16000",
 Text: "",
 TextType: "text",
 VoiceId: "Matthew"
 };
 speechParams.Text = document.getElementById("textEntry").value;

 // Create the Polly service object and presigner object
 var polly = new AWS.Polly({apiVersion: '2016-06-10'});
 var signer = new AWS.Polly.Presigner(speechParams, polly)

 // Create presigned URL of synthesized speech file
 signer.getSynthesizeSpeechUrl(speechParams, function(error, url) {
 if (error) {
 document.getElementById('result').innerHTML = error;
 } else {
 document.getElementById('audioSource').src = url;
 document.getElementById('audioPlayback').load();
 document.getElementById('result').innerHTML = "Speech ready to play.";
 }
 });
 }
 </script>
 </body>
</html>

Kemungkinan Peningkatan

Berikut adalah variasi pada aplikasi ini yang dapat Anda gunakan untuk mengeksplorasi lebih lanjut
menggunakan SDK untuk JavaScript dalam skrip browser.

• Bereksperimenlah dengan format output suara lainnya.

• Tambahkan opsi untuk memilih salah satu dari berbagai suara yang disediakan oleh Amazon Polly.

• Integrasikan penyedia identitas seperti Facebook atau Amazon untuk digunakan dengan peran
IAM yang diautentikasi.

Kemungkinan Peningkatan 11

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Memulai di Node.js

Contoh kode Node.js ini menunjukkan:

• Cara membuat package.json manifes untuk proyek Anda.

• Cara menginstal dan menyertakan modul yang digunakan proyek Anda.

• Cara membuat objek layanan Amazon Simple Storage Service (Amazon S3) dari AWS.S3 kelas
klien.

• Cara membuat bucket Amazon S3 dan mengunggah objek ke bucket itu.

Skenario

Contoh menunjukkan cara mengatur dan menjalankan modul Node.js sederhana yang membuat
bucket Amazon S3, lalu menambahkan objek teks ke dalamnya.

Karena nama bucket di Amazon S3 harus unik secara global, contoh ini menyertakan modul Node.js
pihak ketiga yang menghasilkan nilai ID unik yang dapat Anda masukkan ke dalam nama bucket.
Modul tambahan ini diberi namauuid.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Buat direktori kerja untuk mengembangkan modul Node.js Anda. Beri nama direktori
iniawsnodesample. Perhatikan bahwa direktori harus dibuat di lokasi yang dapat diperbarui oleh
aplikasi. Misalnya, di Windows, jangan buat direktori di bawah "C:\Program Files”.

• Instal Node.js. Untuk informasi selengkapnya, lihat situs web Node.js. Anda dapat menemukan
unduhan versi Node.js saat ini dan LTS untuk berbagai sistem operasi di https://nodejs. org/en/
download/current/.

Daftar Isi

Memulai di Node.js 12

https://nodejs.org
https://nodejs.org/en/download/current/
https://nodejs.org/en/download/current/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Langkah 1: Instal SDK dan Dependensi

• Langkah 2: Konfigurasikan Kredensial Anda

• Langkah 3: Buat Package JSON untuk Proyek

• Langkah 4: Tulis Kode Node.js

• Langkah 5: Jalankan Sampel

Langkah 1: Instal SDK dan Dependensi

Anda menginstal SDK untuk JavaScript paket menggunakan npm (manajer paket Node.js).

Dari awsnodesample direktori dalam paket, ketik berikut ini di baris perintah.

npm install aws-sdk

Perintah ini menginstal SDK untuk JavaScript proyek Anda, dan memperbarui package.json untuk
mencantumkan SDK sebagai dependensi proyek. Anda dapat menemukan informasi tentang paket
ini dengan mencari “aws-sdk” di situs web npm.

Selanjutnya, instal uuid modul ke proyek dengan mengetikkan yang berikut ini di baris perintah,
yang menginstal modul dan pembaruanpackage.json. Untuk informasi selengkapnyauuid, lihat
halaman modul di https://www.npmjs.com/package/uuid.

npm install uuid

Paket-paket ini dan kode terkaitnya dipasang di node_modules subdirektori proyek Anda.

Untuk informasi selengkapnya tentang menginstal paket Node.js, lihat Mengunduh dan menginstal
paket secara lokal dan Membuat Modul Node.js di situs web npm (Node.js package manager). Untuk
informasi tentang mengunduh dan menginstal AWS SDK untuk JavaScript, lihatMenginstal SDK
untuk JavaScript.

Langkah 2: Konfigurasikan Kredensial Anda

Anda perlu memberikan kredensyal AWS agar hanya akun Anda dan sumber dayanya yang diakses
oleh SDK. Untuk informasi selengkapnya tentang mendapatkan kredensyal akun Anda, lihat.
Otentikasi SDK dengan AWS

Langkah 1: Instal SDK dan Dependensi 13

https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com/package/uuid
https://docs.npmjs.com/getting-started/installing-npm-packages-locally
https://docs.npmjs.com/getting-started/installing-npm-packages-locally
https://docs.npmjs.com/getting-started/creating-node-modules
https://www.npmjs.com

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Untuk menyimpan informasi ini, kami sarankan Anda membuat file kredensyal bersama. Untuk
mempelajari caranya, lihat Memuat Kredensial di Node.js dari File Kredensial Bersama. File
kredensial Anda harus menyerupai contoh berikut.

[default]
aws_access_key_id = YOUR_ACCESS_KEY_ID
aws_secret_access_key = YOUR_SECRET_ACCESS_KEY

Anda dapat menentukan apakah Anda telah menyetel kredensialnya dengan benar dengan
mengeksekusi kode berikut dengan Node.js:

var AWS = require("aws-sdk");

AWS.config.getCredentials(function(err) {
 if (err) console.log(err.stack);
 // credentials not loaded
 else {
 console.log("Access key:", AWS.config.credentials.accessKeyId);
 }
});

Demikian pula, jika Anda telah mengatur wilayah Anda dengan benar di config file Anda, Anda
dapat menampilkan nilai itu dengan menyetel variabel AWS_SDK_LOAD_CONFIG lingkungan ke nilai
apa pun dan menggunakan kode berikut:

var AWS = require("aws-sdk");

console.log("Region: ", AWS.config.region);

Langkah 3: Buat Package JSON untuk Proyek

Setelah Anda membuat direktori awsnodesample proyek, Anda membuat dan menambahkan
package.json file untuk menyimpan metadata untuk proyek Node.js Anda. Untuk detail tentang
penggunaan package.json dalam proyek Node.js, lihat Membuat file package.json.

Di direktori proyek, buat file baru bernamapackage.json. Kemudian tambahkan JSON ini ke file.

{
 "dependencies": {},
 "name": "aws-nodejs-sample",

Langkah 3: Buat Package JSON untuk Proyek 14

https://docs.npmjs.com/creating-a-package-json-file

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 "description": "A simple Node.js application illustrating usage of the SDK for
 JavaScript.",
 "version": "1.0.1",
 "main": "sample.js",
 "devDependencies": {},
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "NAME",
 "license": "ISC"
}

Simpan file tersebut. Saat Anda menginstal modul yang Anda butuhkan, dependencies bagian file
akan selesai. Anda dapat menemukan file JSON yang menunjukkan contoh dependensi ini di sini.
GitHub

Langkah 4: Tulis Kode Node.js

Buat file baru bernama sample.js berisi kode contoh. Mulailah dengan menambahkan panggilan
require fungsi untuk menyertakan SDK for JavaScript dan uuid modul sehingga tersedia untuk
Anda gunakan.

Buat nama bucket unik yang digunakan untuk membuat bucket Amazon S3 dengan menambahkan
nilai ID unik ke awalan yang dapat dikenali, dalam hal ini. 'node-sdk-sample-' Anda
menghasilkan ID unik dengan memanggil uuid modul. Kemudian buat nama untuk Key parameter
yang digunakan untuk mengunggah objek ke bucket.

Buat promise objek untuk memanggil createBucket metode objek AWS.S3 layanan. Pada
respons yang berhasil, buat parameter yang diperlukan untuk mengunggah teks ke bucket yang baru
dibuat. Menggunakan janji lain, panggil putObject metode untuk mengunggah objek teks ke ember.

// Load the SDK and UUID
var AWS = require("aws-sdk");
var uuid = require("uuid");

// Create unique bucket name
var bucketName = "node-sdk-sample-" + uuid.v4();
// Create name for uploaded object key
var keyName = "hello_world.txt";

// Create a promise on S3 service object

Langkah 4: Tulis Kode Node.js 15

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/nodegetstarted/example_package.json
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/nodegetstarted/example_package.json

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var bucketPromise = new AWS.S3({ apiVersion: "2006-03-01" })
 .createBucket({ Bucket: bucketName })
 .promise();

// Handle promise fulfilled/rejected states
bucketPromise
 .then(function (data) {
 // Create params for putObject call
 var objectParams = {
 Bucket: bucketName,
 Key: keyName,
 Body: "Hello World!",
 };
 // Create object upload promise
 var uploadPromise = new AWS.S3({ apiVersion: "2006-03-01" })
 .putObject(objectParams)
 .promise();
 uploadPromise.then(function (data) {
 console.log(
 "Successfully uploaded data to " + bucketName + "/" + keyName
);
 });
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Kode contoh ini dapat ditemukan di sini GitHub.

Langkah 5: Jalankan Sampel

Ketik perintah berikut untuk menjalankan sampel.

node sample.js

Jika unggahan berhasil, Anda akan melihat pesan konfirmasi di baris perintah. Anda juga dapat
menemukan bucket dan objek teks yang diunggah di konsol Amazon S3.

Langkah 5: Jalankan Sampel 16

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/nodegetstarted/sample.js
https://console.aws.amazon.com/s3/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Menyiapkan SDK untuk JavaScript
Topik di bagian ini menjelaskan cara menginstal SDK JavaScript untuk digunakan di browser web
dan dengan Node.js. Ini juga menunjukkan cara memuat SDK sehingga Anda dapat mengakses
layanan web yang didukung oleh SDK.

Note

Pengembang React Native harus menggunakan AWS Amplify untuk membuat proyek baru di
AWS. Lihat aws-sdk-react-nativearsip untuk detailnya.

Topik

• Prasyarat

• Menginstal SDK untuk JavaScript

• Memuat SDK untuk JavaScript

• Memutakhirkan SDK untuk JavaScript dari Versi 1

Prasyarat

Sebelum Anda menggunakan AWS SDK untuk JavaScript, tentukan apakah kode Anda perlu
dijalankan di Node.js atau browser web. Setelah itu, lakukan hal berikut:

• Untuk Node.js, instal Node.js di server Anda jika belum diinstal.

• Untuk browser web, identifikasi versi browser yang perlu Anda dukung.

Topik

• Menyiapkan Lingkungan AWS Node.js

• Web Browser Didukung

Menyiapkan Lingkungan AWS Node.js

Untuk menyiapkan lingkungan AWS Node.js di mana Anda dapat menjalankan aplikasi Anda,
gunakan salah satu metode berikut:

Prasyarat 17

https://github.com/amazon-archives/aws-sdk-react-native

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Pilih Amazon Machine Image (AMI) dengan Node.js yang sudah diinstal sebelumnya dan buat EC2
instance Amazon menggunakan AMI tersebut. Saat membuat EC2 instans Amazon Anda, pilih AMI
Anda dari AWS Marketplace. AWS Marketplace Cari Node.js dan pilih opsi AMI yang menyertakan
versi Node.js (32-bit atau 64-bit) yang sudah diinstal sebelumnya.

• Buat EC2 instance Amazon dan instal Node.js di atasnya. Untuk informasi selengkapnya tentang
cara menginstal Node.js pada instance Amazon Linux, lihatTutorial: Menyiapkan Node.js pada EC2
Instans Amazon.

• Buat lingkungan tanpa server menggunakan AWS Lambda untuk menjalankan Node.js sebagai
fungsi Lambda. Untuk informasi selengkapnya tentang penggunaan Node.js dalam fungsi Lambda,
lihat Model Pemrograman (Node.js) di Panduan AWS Lambda Pengembang.

• Terapkan aplikasi Node.js Anda ke AWS Elastic Beanstalk. Untuk informasi selengkapnya tentang
penggunaan Node.js dengan Elastic Beanstalk, lihat Menerapkan Aplikasi Node.js AWS Elastic
Beanstalk ke dalam Panduan Pengembang.AWS Elastic Beanstalk

Web Browser Didukung

SDK untuk JavaScript mendukung semua browser web modern, termasuk versi minimum ini:

Peramban Versi

Google Chrome 28.0+

Mozilla Firefox 26.0+

Opera 17.0+

Microsoft Edge 25.10+

Windows Internet Explorer N/A

Apple Safari 5+

Peramban Android 4.3+

Web Browser Didukung 18

https://docs.aws.amazon.com/lambda/latest/dg/programming-model.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_nodejs.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_nodejs.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Note

Kerangka kerja seperti AWS Amplify mungkin tidak menawarkan dukungan browser yang
sama dengan SDK untuk. JavaScript Periksa dokumentasi kerangka kerja untuk detailnya.

Menginstal SDK untuk JavaScript

Apakah dan bagaimana Anda menginstal AWS SDK untuk JavaScript tergantung apakah kode
dijalankan dalam modul Node.js atau skrip browser.

Tidak semua layanan segera tersedia di SDK. Untuk mengetahui layanan mana yang saat ini
didukung oleh AWS SDK untuk JavaScript, lihat https://github.com/aws/aws-sdk-js/blob/master/
SERVICES.md

Node

Cara yang lebih disukai untuk menginstal AWS SDK untuk JavaScript untuk Node.js adalah
dengan menggunakan npm, manajer paket Node.js. Untuk melakukannya, ketik ini di baris
perintah.

npm install aws-sdk

Jika Anda melihat pesan galat ini:

npm WARN deprecated node-uuid@1.4.8: Use uuid module instead

Ketik perintah ini di baris perintah:

npm uninstall --save node-uuid
npm install --save uuid

Browser

Anda tidak perlu menginstal SDK untuk menggunakannya dalam skrip browser. Anda dapat
memuat paket SDK yang dihosting langsung dari Amazon Web Services dengan skrip di halaman
HTML Anda. Paket SDK yang dihosting mendukung subset AWS layanan yang menerapkan
berbagi sumber daya lintas asal (CORS). Untuk informasi selengkapnya, lihat Memuat SDK untuk
JavaScript.

Menginstal SDK 19

https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://www.npmjs.com/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Anda dapat membuat pembuatan kustom SDK tempat Anda memilih layanan web dan versi
tertentu yang ingin Anda gunakan. Anda kemudian mengunduh paket SDK khusus Anda untuk
pengembangan lokal dan menghostingnya untuk digunakan aplikasi Anda. Untuk informasi
selengkapnya tentang membuat custom build SDK, lihatMembangun SDK untuk Browser.

Anda dapat mengunduh versi yang dapat didistribusikan yang diperkecil dan tidak diperkecil dari
saat ini dari di: AWS SDK untuk JavaScript GitHub

https://github.com/aws/aws-sdk-js/tree/master/dist

Instalasi Menggunakan Bower

Bower adalah manajer paket untuk web. Setelah Anda menginstal Bower, Anda dapat
menggunakannya untuk menginstal SDK. Untuk menginstal SDK menggunakan Bower, ketik berikut
ini ke jendela terminal:

bower install aws-sdk-js

Memuat SDK untuk JavaScript

Cara Anda memuat SDK JavaScript tergantung pada apakah Anda memuatnya untuk dijalankan di
browser web atau di Node.js.

Tidak semua layanan segera tersedia di SDK. Untuk mengetahui layanan mana yang saat ini
didukung oleh AWS SDK untuk JavaScript, lihat https://github.com/aws/aws-sdk-js/blob/master/
SERVICES.md

Node.js

Setelah Anda menginstal SDK, Anda dapat memuat AWS paket dalam aplikasi node Anda
menggunakanrequire.

var AWS = require('aws-sdk');

React Native

Untuk menggunakan SDK dalam proyek React Native, instal SDK terlebih dahulu menggunakan
npm:

Instalasi Menggunakan Bower 20

https://github.com/aws/aws-sdk-js/tree/master/dist
https://bower.io
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

npm install aws-sdk

Dalam aplikasi Anda, rujuk versi SDK yang kompatibel dengan React Native dengan kode berikut:

var AWS = require('aws-sdk/dist/aws-sdk-react-native');

Browser

Cara tercepat untuk memulai SDK adalah memuat paket SDK yang dihosting langsung dari
Amazon Web Services. Untuk melakukan ini, tambahkan <script> elemen ke halaman HTML
Anda dalam bentuk berikut:

<script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.min.js"></
script>

Untuk menemukan SDK_VERSION_NUMBER saat ini, lihat Referensi API untuk SDK untuk
Panduan Referensi API. JavaScript AWS SDK untuk JavaScript

Setelah SDK dimuat di halaman Anda, SDK tersedia dari variabel global AWS (atauwindow.AWS).

Jika Anda menggabungkan kode dan dependensi modul menggunakan browserify, Anda memuat
SDK menggunakanrequire, seperti yang Anda lakukan di Node.js.

Memutakhirkan SDK untuk JavaScript dari Versi 1

Catatan berikut membantu Anda meningkatkan SDK JavaScript dari versi 1 ke versi 2.

Konversi Otomatis Jenis Base64 dan Timestamp pada Input/Output

SDK sekarang secara otomatis mengkodekan dan mendekode nilai yang dikodekan base64, serta
nilai stempel waktu, atas nama pengguna. Perubahan ini memengaruhi operasi apa pun di mana
nilai base64 atau stempel waktu dikirim oleh permintaan atau dikembalikan dalam respons yang
memungkinkan nilai yang dikodekan base64.

Kode pengguna yang sebelumnya dikonversi base64 tidak lagi diperlukan. Nilai yang dikodekan
sebagai base64 sekarang dikembalikan sebagai objek buffer dari respons server dan juga dapat
diteruskan sebagai input buffer. Misalnya, SQS.sendMessage parameter versi 1 berikut:

var params = {

Upgrade Dari Versi 1 21

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/
http://browserify.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 MessageBody: 'Some Message',
 MessageAttributes: {
 attrName: {
 DataType: 'Binary',
 BinaryValue: new Buffer('example text').toString('base64')
 }
 }
};

Dapat ditulis ulang sebagai berikut.

var params = {
 MessageBody: 'Some Message',
 MessageAttributes: {
 attrName: {
 DataType: 'Binary',
 BinaryValue: 'example text'
 }
 }
};

Berikut adalah bagaimana pesan dibaca.

sqs.receiveMessage(params, function(err, data) {
 // buf is <Buffer 65 78 61 6d 70 6c 65 20 74 65 78 74>
 var buf = data.Messages[0].MessageAttributes.attrName.BinaryValue;
 console.log(buf.toString()); // "example text"
});

Dipindahkan response.data. RequestId untuk response.Requestid

SDK sekarang menyimpan permintaan IDs untuk semua layanan di tempat yang konsisten
pada response objek, bukan di dalam response.data properti. Ini meningkatkan konsistensi
di seluruh layanan yang mengekspos permintaan dengan IDs cara yang berbeda. Ini juga
merupakan perubahan besar yang mengganti nama response.data.RequestId properti menjadi
response.requestId (this.requestIddi dalam fungsi panggilan balik).

Dalam kode Anda, ubah yang berikut ini:

svc.operation(params, function (err, data) {
 console.log('Request ID:', data.RequestId);

Dipindahkan response.data. RequestId untuk response.Requestid 22

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

});

Ke hal berikut:

svc.operation(params, function () {
 console.log('Request ID:', this.requestId);
});

Elemen Pembungkus Terpapar

Jika Anda menggunakanAWS.ElastiCache,AWS.RDS, atauAWS.Redshift, Anda harus
mengakses respons melalui properti output tingkat atas dalam respons untuk beberapa operasi.

Misalnya, RDS.describeEngineDefaultParameters metode yang digunakan untuk
mengembalikan yang berikut ini.

{ Parameters: [...] }

Sekarang mengembalikan yang berikut ini.

{ EngineDefaults: { Parameters: [...] } }

Daftar operasi yang terpengaruh untuk setiap layanan ditunjukkan pada tabel berikut.

Kelas Klien Operasi

AWS.ElastiCache authorizeCacheSecurityGroup
Ingress

createCacheCluster

createCacheParameterGroup

createCacheSecurityGroup

createCacheSubnetGroup

createReplicationGroup

deleteCacheCluster

Elemen Pembungkus Terpapar 23

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Kelas Klien Operasi

deleteReplicationGroup

describeEngineDefaultParameters

modifyCacheCluster

modifyCacheSubnetGroup

modifyReplicationGroup

purchaseReservedCacheNodesO
ffering

rebootCacheCluster

revokeCacheSecurityGroupIngress

Elemen Pembungkus Terpapar 24

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Kelas Klien Operasi

AWS.RDS addSourceIdentifierToSubscr
iption

authorizeDBSecurityGroupIngress

copyDBSnapshot createDBInstance

createDBInstanceReadReplica

createDBParameterGroup

createDBSecurityGroup

createDBSnapshot

createDBSubnetGroup

createEventSubscription

createOptionGroup

deleteDBInstance

deleteDBSnapshot

deleteEventSubscription

describeEngineDefaultParameters

modifyDBInstance

modifyDBSubnetGroup

modifyEventSubscription

modifyOptionGroup

promoteReadReplica

purchaseReservedDBInstances
Offering

Elemen Pembungkus Terpapar 25

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Kelas Klien Operasi

rebootDBInstance

removeSourceIdentifierFromS
ubscription

restoreDBInstanceFromDBSnapshot

restoreDBInstanceToPointInTime

revokeDBSecurityGroupIngress

Elemen Pembungkus Terpapar 26

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Kelas Klien Operasi

AWS.Redshift authorizeClusterSecurityGro
upIngress

authorizeSnapshotAccess

copyClusterSnapshot

createCluster

createClusterParameterGroup

createClusterSecurityGroup

createClusterSnapshot

createClusterSubnetGroup

createEventSubscription

createHsmClientCertificate

createHsmConfiguration

deleteCluster

deleteClusterSnapshot

describeDefaultClusterParameters

disableSnapshotCopy

enableSnapshotCopy

modifyCluster

modifyClusterSubnetGroup

modifyEventSubscription

modifySnapshotCopyRetention
Period

Elemen Pembungkus Terpapar 27

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Kelas Klien Operasi

purchaseReservedNodeOffering

rebootCluster

restoreFromClusterSnapshot

revokeClusterSecurityGroupI
ngress

revokeSnapshotAccess

rotateEncryptionKey

Properti Klien Jatuh

.clientProperti .Client dan telah dihapus dari objek layanan. Jika Anda menggunakan .Client
properti pada kelas layanan atau .client properti pada instance objek layanan, hapus properti ini
dari kode Anda.

Kode berikut yang digunakan dengan SDK versi 1 untuk JavaScript:

var sts = new AWS.STS.Client();
// or
var sts = new AWS.STS();

sts.client.operation(...);

Harus diubah ke kode berikut.

var sts = new AWS.STS();
sts.operation(...)

Properti Klien Jatuh 28

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Mengkonfigurasi SDK untuk JavaScript
Sebelum Anda menggunakan SDK for JavaScript untuk memanggil layanan web menggunakan API,
Anda harus mengonfigurasi SDK. Minimal, Anda harus mengonfigurasi pengaturan ini:

• Wilayah di mana Anda akan meminta layanan.

• Kredensil yang mengotorisasi akses Anda ke sumber daya SDK.

Selain pengaturan ini, Anda mungkin juga harus mengonfigurasi izin untuk AWS sumber daya
Anda. Misalnya, Anda dapat membatasi akses ke bucket Amazon S3 atau membatasi tabel Amazon
DynamoDB untuk akses hanya-baca.

Panduan Referensi AWS SDKs and Tools juga berisi pengaturan, fitur, dan konsep dasar lainnya
yang umum di antara banyak. AWS SDKs

Topik di bagian ini menjelaskan berbagai cara untuk mengkonfigurasi SDK JavaScript untuk Node.js
dan JavaScript berjalan di browser web.

Topik

• Menggunakan Objek Konfigurasi Global

• Mengatur AWS Wilayah

• Menentukan Titik Akhir Kustom

• Otentikasi SDK dengan AWS

• Mengatur Kredensial

• Mengunci Versi API

• Pertimbangan Node.js

• Pertimbangan Skrip Browser

• Bundling Aplikasi dengan Webpack

Menggunakan Objek Konfigurasi Global

Ada dua cara untuk mengkonfigurasi SDK:

• Atur konfigurasi global menggunakanAWS.Config.

• Teruskan informasi konfigurasi tambahan ke objek layanan.

Menggunakan Objek Konfigurasi Global 29

https://docs.aws.amazon.com/sdkref/latest/guide/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Menyetel konfigurasi global dengan AWS.Config seringkali lebih mudah untuk memulai, tetapi
konfigurasi tingkat layanan dapat memberikan kontrol lebih besar atas layanan individual. Konfigurasi
global yang ditentukan oleh AWS.Config menyediakan pengaturan default untuk objek layanan yang
Anda buat selanjutnya, menyederhanakan konfigurasi mereka. Namun, Anda dapat memperbarui
konfigurasi objek layanan individual ketika kebutuhan Anda bervariasi dari konfigurasi global.

Pengaturan Konfigurasi Global

Setelah Anda memuat aws-sdk paket dalam kode Anda, Anda dapat menggunakan variabel AWS
global untuk mengakses kelas SDK dan berinteraksi dengan layanan individual. SDK menyertakan
objek konfigurasi globalAWS.Config, yang dapat Anda gunakan untuk menentukan setelan
konfigurasi SDK yang diperlukan oleh aplikasi Anda.

Konfigurasikan SDK dengan menyetel AWS.Config properti sesuai dengan kebutuhan aplikasi
Anda. Tabel berikut merangkum AWS.Config properti yang biasa digunakan untuk mengatur
konfigurasi SDK.

Opsi konfigurasi Deskripsi

credentials Diperlukan. Menentukan kredensil yang
digunakan untuk menentukan akses ke layanan
dan sumber daya.

region Diperlukan. Menentukan Wilayah di mana
permintaan untuk layanan dibuat.

maxRetries Tidak wajib. Menentukan jumlah maksimum kali
permintaan yang diberikan dicoba ulang.

logger Tidak wajib. Menentukan objek logger yang
informasi debugging ditulis.

update Tidak wajib. Memperbarui konfigurasi saat ini
dengan nilai baru.

Untuk informasi selengkapnya tentang objek konfigurasi, lihat Class: AWS.Configdi Referensi
API.

Pengaturan Konfigurasi Global 30

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Config.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Contoh Konfigurasi Global

Anda harus mengatur Wilayah dan kredensialnya. AWS.Config Anda dapat mengatur properti ini
sebagai bagian dari AWS.Config konstruktor, seperti yang ditunjukkan dalam contoh skrip browser
berikut:

var myCredentials = new
 AWS.CognitoIdentityCredentials({IdentityPoolId:'IDENTITY_POOL_ID'});
var myConfig = new AWS.Config({
 credentials: myCredentials, region: 'us-west-2'
});

Anda juga dapat mengatur properti ini setelah membuat AWS.Config menggunakan update
metode, seperti yang ditunjukkan dalam contoh berikut yang memperbarui Wilayah:

myConfig = new AWS.Config();
myConfig.update({region: 'us-east-1'});

Anda bisa mendapatkan kredensi default dengan memanggil getCredentials metode statis:
AWS.config

var AWS = require("aws-sdk");

AWS.config.getCredentials(function(err) {
 if (err) console.log(err.stack);
 // credentials not loaded
 else {
 console.log("Access key:", AWS.config.credentials.accessKeyId);
 }
});

Demikian pula, jika Anda telah mengatur wilayah Anda dengan benar di config file Anda, Anda
mendapatkan nilai itu dengan menyetel variabel AWS_SDK_LOAD_CONFIG lingkungan disetel ke nilai
apa pun dan memanggil region properti statis dariAWS.config:

var AWS = require("aws-sdk");

console.log("Region: ", AWS.config.region);

Pengaturan Konfigurasi Global 31

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Pengaturan Konfigurasi Per Layanan

Setiap layanan yang Anda gunakan dalam SDK untuk JavaScript diakses melalui objek layanan yang
merupakan bagian dari API untuk layanan tersebut. Misalnya, untuk mengakses layanan Amazon
S3 Anda membuat objek layanan Amazon S3. Anda dapat menentukan pengaturan konfigurasi yang
spesifik untuk layanan sebagai bagian dari konstruktor untuk objek layanan tersebut. Ketika Anda
menetapkan nilai konfigurasi pada objek layanan, konstruktor mengambil semua nilai konfigurasi
yang digunakan olehAWS.Config, termasuk kredensil.

Misalnya, jika Anda perlu mengakses EC2 objek Amazon di beberapa Wilayah, buat objek EC2
layanan Amazon untuk setiap Wilayah, lalu atur konfigurasi Wilayah dari setiap objek layanan yang
sesuai.

var ec2_regionA = new AWS.EC2({region: 'ap-southeast-2', maxRetries: 15, apiVersion:
 '2014-10-01'});
var ec2_regionB = new AWS.EC2({region: 'us-east-1', maxRetries: 15, apiVersion:
 '2014-10-01'});

Anda juga dapat mengatur nilai konfigurasi khusus untuk layanan saat mengonfigurasi SDK dengan.
AWS.Config Objek konfigurasi global mendukung banyak opsi konfigurasi khusus layanan. Untuk
informasi selengkapnya tentang konfigurasi khusus layanan, lihat Class: AWS.Configdi Referensi
AWS SDK untuk JavaScript API.

Data Konfigurasi yang Tidak Dapat Diubah

Perubahan konfigurasi global berlaku untuk permintaan semua objek layanan yang baru dibuat.
Objek layanan yang baru dibuat dikonfigurasi dengan data konfigurasi global saat ini terlebih dahulu
dan kemudian opsi konfigurasi lokal apa pun. Pembaruan yang Anda buat ke AWS.config objek
global tidak berlaku untuk objek layanan yang dibuat sebelumnya.

Objek layanan yang ada harus diperbarui secara manual dengan data konfigurasi baru atau Anda
harus membuat dan menggunakan objek layanan baru yang memiliki data konfigurasi baru. Contoh
berikut membuat objek layanan Amazon S3 baru dengan data konfigurasi baru:

s3 = new AWS.S3(s3.config);

Pengaturan Konfigurasi Per Layanan 32

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Config.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Mengatur AWS Wilayah

Wilayah adalah kumpulan AWS sumber daya bernama di wilayah geografis yang sama. Contoh
dari sebuah Wilayah adalahus-east-1, yang merupakan Wilayah AS Timur (Virginia N.). Anda
menentukan Wilayah saat mengonfigurasi SDK JavaScript agar SDK mengakses sumber daya di
Wilayah tersebut. Beberapa layanan hanya tersedia di Wilayah tertentu.

SDK for JavaScript tidak memilih Region secara default. Namun, Anda dapat mengatur Wilayah
menggunakan variabel lingkungan, config file bersama, atau objek konfigurasi global.

Dalam Konstruktor Kelas Klien

Ketika Anda membuat instance objek layanan, Anda dapat menentukan Region untuk sumber daya
tersebut sebagai bagian dari konstruktor kelas klien, seperti yang ditunjukkan di sini.

var s3 = new AWS.S3({apiVersion: '2006-03-01', region: 'us-east-1'});

Menggunakan Objek Konfigurasi Global

Untuk mengatur Wilayah dalam JavaScript kode Anda, perbarui objek konfigurasi AWS.Config
global seperti yang ditunjukkan di sini.

AWS.config.update({region: 'us-east-1'});

Untuk informasi selengkapnya tentang Wilayah saat ini dan layanan yang tersedia di setiap Wilayah,
lihat AWS Wilayah dan Titik Akhir di Referensi Umum AWS.

Menggunakan Variabel Lingkungan

Anda dapat mengatur Wilayah menggunakan variabel AWS_REGION lingkungan. Jika Anda
mendefinisikan variabel ini, SDK untuk JavaScript membacanya dan menggunakannya.

Menggunakan File Config Bersama

Sama seperti file kredensial bersama yang memungkinkan Anda menyimpan kredensil untuk
digunakan oleh SDK, Anda dapat menyimpan Region dan pengaturan konfigurasi lainnya dalam
file bersama bernama config yang digunakan oleh. SDKs Jika variabel AWS_SDK_LOAD_CONFIG

Mengatur AWS Wilayah 33

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

lingkungan telah disetel ke nilai apa pun, SDK untuk JavaScript secara otomatis mencari config file
saat dimuat. Di mana Anda menyimpan config file tergantung pada sistem operasi Anda:

• Pengguna Linux, macOS, atau Unix: ~/.aws/config

• Pengguna Windows: C:\Users\USER_NAME\.aws\config

Jika Anda belum memiliki config file bersama, Anda dapat membuatnya di direktori yang ditunjuk.
Dalam contoh berikut, config file menetapkan Region dan format output.

[default]
 region=us-east-1
 output=json

Untuk informasi selengkapnya tentang penggunaan file konfigurasi dan kredensial bersama, lihat
Memuat Kredensial di Node.js dari File Kredensial Bersama atau File Konfigurasi dan Kredensi di
Panduan Pengguna.AWS Command Line Interface

Urutan Prioritas untuk Mengatur Wilayah

Urutan prioritas untuk pengaturan Wilayah adalah sebagai berikut:

• Jika Region diteruskan ke konstruktor kelas klien, Region itu digunakan. Jika tidak, maka...

• Jika Region diatur pada objek konfigurasi global, Region tersebut akan digunakan. Jika tidak,
maka...

• Jika variabel AWS_REGION lingkungan adalah nilai yang benar, Wilayah itu digunakan. Jika tidak,
maka...

• Jika variabel AMAZON_REGION lingkungan adalah nilai yang benar, Wilayah itu digunakan. Jika
tidak, maka...

• Jika variabel AWS_SDK_LOAD_CONFIG lingkungan disetel ke nilai apa pun dan
file kredensial bersama (~/.aws/credentialsatau jalur yang ditunjukkan
olehAWS_SHARED_CREDENTIALS_FILE) berisi Wilayah untuk profil yang dikonfigurasi, Wilayah
tersebut akan digunakan. Jika tidak, maka...

• Jika variabel AWS_SDK_LOAD_CONFIG lingkungan disetel ke nilai apa pun dan file konfigurasi
(~/.aws/configatau jalur yang ditunjukkan olehAWS_CONFIG_FILE) berisi Wilayah untuk profil
yang dikonfigurasi, Wilayah tersebut akan digunakan.

Urutan Prioritas untuk Mengatur Wilayah 34

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://developer.mozilla.org/en-US/docs/Glossary/Truthy

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Menentukan Titik Akhir Kustom

Panggilan ke metode API di SDK for JavaScript dilakukan ke titik akhir URIs layanan. Secara default,
titik akhir ini dibangun dari Wilayah yang telah Anda konfigurasikan untuk kode Anda. Namun, ada
situasi di mana Anda perlu menentukan titik akhir kustom untuk panggilan API Anda.

Format String Titik Akhir

Nilai titik akhir harus berupa string dalam format:

https://{service}.{region}.amazonaws.com

Titik akhir untuk Wilayah ap-northeast-3

ap-northeast-3Wilayah di Jepang tidak dikembalikan oleh APIs enumerasi Wilayah, seperti.
EC2.describeRegions Untuk menentukan titik akhir untuk Wilayah ini, ikuti format yang dijelaskan
sebelumnya. Jadi EC2 titik akhir Amazon untuk Wilayah ini adalah

ec2.ap-northeast-3.amazonaws.com

Endpoint untuk MediaConvert

Anda perlu membuat titik akhir khusus untuk digunakan. MediaConvert Setiap akun pelanggan diberi
titik akhirnya sendiri, yang harus Anda gunakan. Berikut adalah contoh cara menggunakan endpoint
khusus dengan MediaConvert.

// Create MediaConvert service object using custom endpoint
var mcClient = new AWS.MediaConvert({endpoint: 'https://abcd1234.mediaconvert.us-
west-1.amazonaws.com'});

var getJobParams = {Id: 'job_ID'};

mcClient.getJob(getJobParams, function(err, data)) {
 if (err) console.log(err, err.stack); // an error occurred
 else console.log(data); // successful response
};

Untuk mendapatkan titik akhir API akun Anda, lihat MediaConvert.describeEndpointsdi
Referensi API.

Menentukan Titik Akhir Kustom 35

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeRegions-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#describeEndpoints-property

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Pastikan Anda menentukan Region yang sama dalam kode Anda sebagai Region di URI endpoint
kustom. Ketidakcocokan antara setelan Wilayah dan URI titik akhir kustom dapat menyebabkan
panggilan API gagal.

Untuk informasi selengkapnya MediaConvert, lihat AWS.MediaConvertkelas di Referensi API atau
Panduan AWS Elemental MediaConvert Pengguna.

Otentikasi SDK dengan AWS

Anda harus menetapkan bagaimana kode Anda mengautentikasi AWS saat mengembangkan
dengan Layanan AWS. Anda dapat mengonfigurasi akses terprogram ke AWS sumber daya dengan
cara yang berbeda tergantung pada lingkungan dan AWS akses yang tersedia untuk Anda.

Untuk memilih metode otentikasi dan mengonfigurasinya untuk SDK, lihat Autentikasi dan akses di
Panduan Referensi Alat AWS SDKs dan Alat.

Kami menyarankan agar pengguna baru yang berkembang secara lokal dan tidak diberi metode
otentikasi oleh majikan mereka harus disiapkan. AWS IAM Identity Center Metode ini termasuk
menginstal AWS CLI untuk kemudahan konfigurasi dan untuk masuk secara teratur ke portal AWS
akses. Jika Anda memilih metode ini, lingkungan Anda harus berisi elemen-elemen berikut setelah
Anda menyelesaikan prosedur untuk autentikasi IAM Identity Center di AWS SDKs dan Panduan
Referensi Alat:

• Itu AWS CLI, yang Anda gunakan untuk memulai sesi portal AWS akses sebelum Anda
menjalankan aplikasi Anda.

• AWSconfigFile bersama yang memiliki [default] profil dengan serangkaian nilai konfigurasi
yang dapat direferensikan dari SDK. Untuk menemukan lokasi file ini, lihat Lokasi file bersama di
Panduan Referensi Alat AWS SDKs dan.

• configFile bersama menetapkan regionpengaturan. Ini menetapkan default Wilayah AWS yang
digunakan SDK untuk AWS permintaan. Wilayah ini digunakan untuk permintaan layanan SDK
yang tidak ditentukan dengan Wilayah yang akan digunakan.

• SDK menggunakan konfigurasi penyedia token SSO profil untuk memperoleh kredensional
sebelum mengirim permintaan ke. AWSsso_role_nameNilai, yang merupakan peran IAM yang
terhubung ke set izin Pusat Identitas IAM, memungkinkan akses ke yang Layanan AWS digunakan
dalam aplikasi Anda.

Otentikasi SDK dengan AWS 36

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/
https://docs.aws.amazon.com/sdkref/latest/guide/access.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-region.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-sso-credentials.html#feature-sso-credentials-profile

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

configFile contoh berikut menunjukkan profil default yang diatur dengan konfigurasi penyedia
token SSO. sso_sessionPengaturan profil mengacu pada sso-sessionbagian bernama. sso-
sessionBagian ini berisi pengaturan untuk memulai sesi portal AWS akses.

[default]
sso_session = my-sso
sso_account_id = 111122223333
sso_role_name = SampleRole
region = us-east-1
output = json

[sso-session my-sso]
sso_region = us-east-1
sso_start_url = https://provided-domain.awsapps.com/start
sso_registration_scopes = sso:account:access

SDK for JavaScript tidak memerlukan paket tambahan (seperti SSO danSSOOIDC) untuk ditambahkan
ke aplikasi Anda untuk menggunakan autentikasi IAM Identity Center.

Memulai sesi portal AWS akses

Sebelum menjalankan aplikasi yang mengakses Layanan AWS, Anda memerlukan sesi portal
AWS akses aktif agar SDK menggunakan autentikasi IAM Identity Center untuk menyelesaikan
kredensialnya. Bergantung pada panjang sesi yang dikonfigurasi, akses Anda pada akhirnya akan
kedaluwarsa dan SDK akan mengalami kesalahan otentikasi. Untuk masuk ke portal AWS akses,
jalankan perintah berikut di AWS CLI.

aws sso login

Jika Anda mengikuti panduan dan memiliki pengaturan profil default, Anda tidak perlu memanggil
perintah dengan --profile opsi. Jika konfigurasi penyedia token SSO Anda menggunakan profil
bernama, perintahnya adalahaws sso login --profile named-profile.

Untuk menguji secara opsional apakah Anda sudah memiliki sesi aktif, jalankan AWS CLI perintah
berikut.

aws sts get-caller-identity

Memulai sesi portal AWS akses 37

https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html#section-session

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Jika sesi Anda aktif, respons terhadap perintah ini melaporkan akun Pusat Identitas IAM dan set izin
yang dikonfigurasi dalam config file bersama.

Note

Jika Anda sudah memiliki sesi portal AWS akses aktif dan menjalankanaws sso login,
Anda tidak akan diminta untuk memberikan kredensi.
Proses masuk mungkin meminta Anda untuk mengizinkan AWS CLI akses ke data Anda.
Karena AWS CLI dibangun di atas SDK untuk Python, pesan izin mungkin berisi variasi
nama. botocore

Informasi otentikasi lebih lanjut

Pengguna manusia, juga dikenal sebagai identitas manusia, adalah orang, administrator,
pengembang, operator, dan konsumen aplikasi Anda. Mereka harus memiliki identitas untuk
mengakses AWS lingkungan dan aplikasi Anda. Pengguna manusia yang merupakan anggota
organisasi Anda - itu berarti Anda, pengembang - dikenal sebagai identitas tenaga kerja.

Gunakan kredensi sementara saat mengakses. AWS Anda dapat menggunakan penyedia identitas
bagi pengguna manusia Anda untuk menyediakan akses gabungan ke AWS akun dengan mengambil
peran, yang menyediakan kredensi sementara. Untuk manajemen akses terpusat, kami sarankan
Anda menggunakan AWS IAM Identity Center (IAM Identity Center) untuk mengelola akses ke akun
Anda dan izin dalam akun tersebut. Untuk alternatif lainnya, lihat yang berikut ini:

• Untuk mempelajari lebih lanjut tentang praktik terbaik, lihat Praktik terbaik keamanan di IAM di
Panduan Pengguna IAM.

• Untuk membuat AWS kredensi jangka pendek, lihat Kredenal Keamanan Sementara di Panduan
Pengguna IAM.

• Untuk mempelajari SDK lain untuk penyedia kredensi, lihat Penyedia JavaScript kredensi standar
di Panduan Referensi Alat dan SDK lainnya.AWS SDKs

Mengatur Kredensial

AWS menggunakan kredensi untuk mengidentifikasi siapa yang memanggil layanan dan apakah
akses ke sumber daya yang diminta diizinkan.

Informasi otentikasi lebih lanjut 38

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/sdkref/latest/guide/standardized-credentials.html
https://docs.aws.amazon.com/sdkref/latest/guide/standardized-credentials.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Baik berjalan di browser web atau di server Node.js, JavaScript kode Anda harus mendapatkan
kredensi yang valid sebelum dapat mengakses layanan melalui API. Kredensial dapat diatur secara
global pada objek konfigurasi, menggunakanAWS.Config, atau per layanan, dengan meneruskan
kredensi langsung ke objek layanan.

Ada beberapa cara untuk mengatur kredensil yang berbeda antara Node.js dan JavaScript di browser
web. Topik di bagian ini menjelaskan cara mengatur kredensional di Node.js atau browser web.
Dalam setiap kasus, opsi disajikan dalam urutan yang disarankan.

Praktik Terbaik untuk Kredensial

Menetapkan kredensil dengan benar memastikan bahwa aplikasi atau skrip browser Anda dapat
mengakses layanan dan sumber daya yang diperlukan sambil meminimalkan paparan terhadap
masalah keamanan yang dapat memengaruhi aplikasi penting misi atau membahayakan data
sensitif.

Prinsip penting untuk diterapkan saat menetapkan kredensional adalah selalu memberikan hak
istimewa paling sedikit yang diperlukan untuk tugas Anda. Lebih aman untuk memberikan izin
minimal pada sumber daya Anda dan menambahkan izin lebih lanjut sesuai kebutuhan, daripada
memberikan izin yang melebihi hak istimewa paling sedikit dan, sebagai hasilnya, diminta untuk
memperbaiki masalah keamanan yang mungkin Anda temukan nanti. Misalnya, kecuali Anda
perlu membaca dan menulis sumber daya individual, seperti objek di bucket Amazon S3 atau tabel
DynamoDB, setel izin tersebut hanya untuk dibaca.

Untuk informasi selengkapnya tentang pemberian hak istimewa paling sedikit, lihat bagian Hibah Hak
Istimewa Paling Sedikit dari topik Praktik Terbaik di Panduan Pengguna IAM.

Warning

Meskipun dimungkinkan untuk melakukannya, kami menyarankan Anda untuk tidak
menggunakan kredensi kode keras di dalam aplikasi atau skrip browser. Kredensi hard
coding menimbulkan risiko mengekspos informasi sensitif.

Untuk informasi selengkapnya tentang cara mengelola kunci akses, lihat Praktik Terbaik untuk
Mengelola Kunci AWS Akses di Referensi Umum AWS.

Topik

• Mengatur Kredensial di Node.js

Praktik Terbaik untuk Kredensial 39

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Menyetel Kredensial di Browser Web

Mengatur Kredensial di Node.js

Ada beberapa cara di Node.js untuk memasok kredensialmu ke SDK. Beberapa di antaranya lebih
aman dan yang lain memberikan kenyamanan yang lebih besar saat mengembangkan aplikasi. Saat
mendapatkan kredensi di Node.js, berhati-hatilah untuk mengandalkan lebih dari satu sumber seperti
variabel lingkungan dan file JSON yang Anda muat. Anda dapat mengubah izin di mana kode Anda
berjalan tanpa menyadari perubahan telah terjadi.

Berikut adalah cara-cara Anda dapat memberikan kredensi Anda dalam urutan rekomendasi:

1. Dimuat dari peran AWS Identity and Access Management (IAM) untuk Amazon EC2

2. Dimuat dari file kredensial bersama () ~/.aws/credentials

3. Dimuat dari variabel lingkungan

4. Dimuat dari file JSON pada disk

5. Kelas penyedia kredensial-lainnya yang disediakan oleh SDK JavaScript

Jika lebih dari satu sumber kredensi tersedia untuk SDK, prioritas default pemilihan adalah sebagai
berikut:

1. Kredensional yang ditetapkan secara eksplisit melalui konstruktor layanan-klien

2. Variabel-variabel lingkungan

3. Berkas kredensial bersama

4. Kredensi dimuat dari penyedia kredensi ECS (jika ada)

5. Kredensial yang diperoleh dengan menggunakan proses kredensi yang ditentukan dalam file AWS
konfigurasi bersama atau file kredensial bersama. Untuk informasi selengkapnya, lihat the section
called “Kredensial menggunakan Proses Kredenal yang Dikonfigurasi”.

6. Kredenal dimuat dari AWS IAM menggunakan penyedia kredensional EC2 instans Amazon (jika
dikonfigurasi dalam metadata instans)

Untuk informasi selengkapnya, lihat Class: AWS.Credentialsdan Class:
AWS.CredentialProviderChaindi referensi API.

Mengatur Kredensial di Node.js 40

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Credentials.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CredentialProviderChain.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CredentialProviderChain.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Warning

Meskipun dimungkinkan untuk melakukannya, kami tidak menyarankan hard-coding
AWS kredensional Anda dalam aplikasi Anda. Kredensi hard-coding menimbulkan risiko
mengekspos ID kunci akses dan kunci akses rahasia Anda.

Topik di bagian ini menjelaskan cara memuat kredensi ke dalam Node.js.

Topik

• Memuat Kredensi di Node.js dari peran IAM untuk Amazon EC2

• Memuat Kredensi untuk Fungsi Lambda Node.js

• Memuat Kredensial di Node.js dari File Kredensial Bersama

• Memuat Kredensi di Node.js dari Variabel Lingkungan

• Memuat Kredensial di Node.js dari File JSON

• Memuat Kredensial di Node.js menggunakan Proses Kredenal yang Dikonfigurasi

Memuat Kredensi di Node.js dari peran IAM untuk Amazon EC2

Jika Anda menjalankan aplikasi Node.js di EC2 instans Amazon, Anda dapat memanfaatkan
peran IAM untuk Amazon EC2 agar secara otomatis memberikan kredensi ke instans. Jika Anda
mengonfigurasi instans Anda untuk menggunakan peran IAM, SDK secara otomatis memilih kredenal
IAM untuk aplikasi Anda, sehingga tidak perlu menyediakan kredenal secara manual.

Untuk informasi selengkapnya tentang menambahkan peran IAM ke EC2 instans Amazon, lihat
Menggunakan peran IAM untuk EC2 instans Amazon di Panduan Referensi Alat AWS SDKs dan
Alat.

Memuat Kredensi untuk Fungsi Lambda Node.js

Saat Anda membuat AWS Lambda fungsi, Anda harus membuat peran IAM khusus yang memiliki
izin untuk menjalankan fungsi tersebut. Peran ini disebut peran eksekusi. Saat menyiapkan fungsi
Lambda, Anda harus menentukan peran IAM yang Anda buat sebagai peran eksekusi yang sesuai.

Peran eksekusi menyediakan fungsi Lambda dengan kredenal yang dibutuhkan untuk menjalankan
dan memanggil layanan web lainnya. Akibatnya, Anda tidak perlu memberikan kredensi ke kode
Node.js yang Anda tulis dalam fungsi Lambda.

Mengatur Kredensial di Node.js 41

https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-roles-for-ec2.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Untuk informasi selengkapnya tentang membuat peran eksekusi Lambda, lihat Mengelola Izin:
Menggunakan Peran IAM (Peran Eksekusi) di Panduan Pengembang.AWS Lambda

Memuat Kredensial di Node.js dari File Kredensial Bersama

Anda dapat menyimpan data AWS kredensional Anda dalam file bersama yang digunakan oleh
SDKs dan antarmuka baris perintah. Saat SDK JavaScript dimuat, SDK secara otomatis mencari file
kredensial bersama, yang diberi nama “kredensial”. Tempat Anda menyimpan file kredensi bersama
tergantung pada sistem operasi Anda:

• File kredensial bersama di Linux, Unix, dan macOS: ~/.aws/credentials

• File kredensial bersama di Windows: C:\Users\USER_NAME\.aws\credentials

Jika Anda belum memiliki file kredensial bersama, lihat. Otentikasi SDK dengan AWS Setelah Anda
mengikuti instruksi tersebut, Anda akan melihat teks yang mirip dengan yang berikut di file kredensial,
di mana <YOUR_ACCESS_KEY_ID> ID kunci akses Anda dan <YOUR_SECRET_ACCESS_KEY>
merupakan kunci akses rahasia Anda:

[default]
aws_access_key_id = <YOUR_ACCESS_KEY_ID>
aws_secret_access_key = <YOUR_SECRET_ACCESS_KEY>

Untuk contoh yang menunjukkan file ini sedang digunakan, lihatMemulai di Node.js.

Judul [default] bagian menentukan profil default dan nilai-nilai terkait untuk kredensional. Anda
dapat membuat profil tambahan dalam file konfigurasi bersama yang sama, masing-masing dengan
informasi kredensialnya sendiri. Contoh berikut menunjukkan file konfigurasi dengan profil default dan
dua profil tambahan:

[default] ; default profile
aws_access_key_id = <DEFAULT_ACCESS_KEY_ID>
aws_secret_access_key = <DEFAULT_SECRET_ACCESS_KEY>

[personal-account] ; personal account profile
aws_access_key_id = <PERSONAL_ACCESS_KEY_ID>
aws_secret_access_key = <PERSONAL_SECRET_ACCESS_KEY>

[work-account] ; work account profile
aws_access_key_id = <WORK_ACCESS_KEY_ID>

Mengatur Kredensial di Node.js 42

https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html#lambda-intro-execution-role

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

aws_secret_access_key = <WORK_SECRET_ACCESS_KEY>

Secara default, SDK memeriksa variabel AWS_PROFILE lingkungan untuk menentukan profil mana
yang akan digunakan. Jika AWS_PROFILE variabel tidak disetel di lingkungan Anda, SDK akan
menggunakan kredensional untuk profil tersebut. [default] Untuk menggunakan salah satu
profil alternatif, atur atau ubah nilai variabel AWS_PROFILE lingkungan. Misalnya, mengingat file
konfigurasi yang ditunjukkan di atas, untuk menggunakan kredensi dari akun kerja, atur variabel
AWS_PROFILE lingkungan ke work-account (yang sesuai untuk sistem operasi Anda).

Note

Saat mengatur variabel lingkungan, pastikan untuk mengambil tindakan yang tepat
setelahnya (sesuai dengan kebutuhan sistem operasi Anda) untuk membuat variabel tersedia
di shell atau lingkungan perintah.

Setelah menyetel variabel lingkungan (jika diperlukan), Anda dapat menjalankan JavaScript file yang
menggunakan SDK, seperti misalnya, file bernamascript.js.

$ node script.js

Anda juga dapat secara eksplisit memilih profil yang digunakan oleh SDK, baik dengan menyetel
process.env.AWS_PROFILE sebelum memuat SDK, atau dengan memilih penyedia kredensi
seperti yang ditunjukkan pada contoh berikut:

var credentials = new AWS.SharedIniFileCredentials({profile: 'work-account'});
AWS.config.credentials = credentials;

Memuat Kredensi di Node.js dari Variabel Lingkungan

SDK secara otomatis mendeteksi AWS kredensial yang ditetapkan sebagai variabel di lingkungan
Anda dan menggunakannya untuk permintaan SDK, sehingga menghilangkan kebutuhan untuk
mengelola kredensi dalam aplikasi Anda. Variabel lingkungan yang Anda tetapkan untuk memberikan
kredensialnya adalah:

• AWS_ACCESS_KEY_ID

• AWS_SECRET_ACCESS_KEY

• AWS_SESSION_TOKEN

Mengatur Kredensial di Node.js 43

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Untuk detail selengkapnya tentang pengaturan variabel lingkungan, lihat Dukungan variabel
lingkungan di Panduan Referensi Alat AWS SDKs dan Alat.

Memuat Kredensial di Node.js dari File JSON

Anda dapat memuat konfigurasi dan kredensional dari dokumen JSON pada disk menggunakan.
AWS.config.loadFromPath Jalur yang ditentukan relatif terhadap direktori kerja saat ini dari
proses Anda. Misalnya, untuk memuat kredensi dari 'config.json' file dengan konten berikut:

{ "accessKeyId": <YOUR_ACCESS_KEY_ID>, "secretAccessKey": <YOUR_SECRET_ACCESS_KEY>,
 "region": "us-east-1" }

Kemudian gunakan kode berikut:

var AWS = require("aws-sdk");
AWS.config.loadFromPath('./config.json');

Note

Memuat data konfigurasi dari dokumen JSON akan me-reset semua data konfigurasi yang
ada. Tambahkan data konfigurasi tambahan setelah menggunakan teknik ini. Memuat
kredensi dari dokumen JSON tidak didukung dalam skrip browser.

Memuat Kredensial di Node.js menggunakan Proses Kredenal yang Dikonfigurasi

Anda dapat mencari kredensi dengan menggunakan metode yang tidak dibangun ke dalam SDK.
Untuk melakukannya, tentukan proses kredensi dalam file AWS config bersama atau file kredensial
bersama. Jika variabel AWS_SDK_LOAD_CONFIG lingkungan disetel ke nilai apa pun, SDK akan lebih
memilih proses yang ditentukan dalam file konfigurasi daripada proses yang ditentukan dalam file
kredensial (jika ada).

Untuk detail tentang menentukan proses kredensi dalam file AWS konfigurasi bersama atau file
kredensial bersama, lihat Referensi AWS CLI Perintah, khususnya informasi tentang Sumber
Kredensial Dari Proses Eksternal.

Untuk informasi tentang penggunaan variabel AWS_SDK_LOAD_CONFIG lingkungan, lihat the section
called “Menggunakan File Config Bersama” di dokumen ini.

Mengatur Kredensial di Node.js 44

https://docs.aws.amazon.com/sdkref/latest/guide/environment-variables.html
https://docs.aws.amazon.com/sdkref/latest/guide/environment-variables.html
https://docs.aws.amazon.com/cli/latest/topic/config-vars.html#sourcing-credentials-from-external-processes

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Menyetel Kredensial di Browser Web

Ada beberapa cara untuk memasok kredensional Anda ke SDK dari skrip browser. Beberapa
di antaranya lebih aman dan yang lain memberikan kenyamanan yang lebih besar saat
mengembangkan skrip. Berikut adalah cara-cara Anda dapat memberikan kredensi Anda dalam
urutan rekomendasi:

1. Menggunakan Identitas Amazon Cognito untuk mengautentikasi pengguna dan menyediakan
kredensional

2. Menggunakan identitas federasi web

3. Hard code dalam script

Warning

Kami tidak menyarankan hard coding AWS kredensional Anda dalam skrip Anda. Kredensi
pengkodean keras menimbulkan risiko mengekspos ID kunci akses dan kunci akses rahasia
Anda.

Topik

• Menggunakan Identitas Amazon Cognito untuk Mengautentikasi Pengguna

• Menggunakan Identitas Federasi Web untuk Mengautentikasi Pengguna

• Contoh Identitas Federasi Web

Menggunakan Identitas Amazon Cognito untuk Mengautentikasi Pengguna

Cara yang disarankan untuk mendapatkan AWS kredensi untuk skrip browser Anda adalah dengan
menggunakan objek kredensi Identitas Amazon Cognito,. AWS.CognitoIdentityCredentials
Amazon Cognito memungkinkan otentikasi pengguna melalui penyedia identitas pihak ketiga.

Untuk menggunakan Identitas Amazon Cognito, Anda harus terlebih dahulu membuat kumpulan
identitas di konsol Amazon Cognito. Kumpulan identitas mewakili grup identitas yang disediakan
aplikasi Anda kepada pengguna Anda. Identitas yang diberikan kepada pengguna secara unik
mengidentifikasi setiap akun pengguna. Identitas Amazon Cognito identitas bukan kredensial. Mereka
ditukar dengan kredensi menggunakan dukungan federasi identitas web di AWS Security Token
Service ().AWS STS

Menyetel Kredensial di Browser Web 45

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Amazon Cognito membantu Anda mengelola abstraksi identitas di beberapa penyedia identitas
dengan objek. AWS.CognitoIdentityCredentials Identitas yang dimuat kemudian ditukar
dengan kredensi di. AWS STS

Mengonfigurasi Objek Kredensial Identitas Amazon Cognito

Jika Anda belum membuatnya, buat kumpulan identitas untuk digunakan dengan skrip browser Anda
di konsol Amazon Cognito sebelum Anda mengonfigurasi. AWS.CognitoIdentityCredentials
Buat dan kaitkan peran IAM yang diautentikasi dan tidak diautentikasi untuk kumpulan identitas Anda.

Pengguna yang tidak diautentikasi tidak meminta agar identitas mereka diverifikasi, sehingga
peran ini sesuai untuk pengguna tamu aplikasi Anda atau jika pengguna meminta agar identitas
mereka diverifikasi dan itu tidak dipermasalahkan. Pengguna yang diautentikasi masuk ke aplikasi
Anda melalui penyedia identitas pihak ketiga yang memverifikasi identitas mereka. Pastikan Anda
menjangkau izin sumber daya dengan tepat sehingga Anda tidak memberikan akses kepada mereka
dari pengguna yang tidak terautentikasi.

Setelah mengonfigurasi kumpulan identitas dengan penyedia identitas yang dilampirkan, Anda
dapat menggunakannya AWS.CognitoIdentityCredentials untuk mengautentikasi
pengguna. Untuk mengkonfigurasi kredensial aplikasi Anda agar dapat menggunakan
AWS.CognitoIdentityCredentials, atur properti credentials baik AWS.Config atau
konfigurasi per layanan. Contoh berikut menggunakan AWS.Config:

AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'us-east-1:1699ebc0-7900-4099-b910-2df94f52a030',
 Logins: { // optional tokens, used for authenticated login
 'graph.facebook.com': 'FBTOKEN',
 'www.amazon.com': 'AMAZONTOKEN',
 'accounts.google.com': 'GOOGLETOKEN'
 }
});

Properti opsional Logins adalah peta nama penyedia identitas untuk token identitas bagi penyedia
tersebut. Bagaimana Anda bisa mendapatkan token dari penyedia identitas Anda tergantung pada
penyedia yang Anda gunakan. Misalnya, jika Facebook adalah salah satu penyedia identitas Anda,
Anda dapat menggunakan fungsi FB.login dari SDK Facebook untuk mendapatkan token penyedia
identitas:

FB.login(function (response) {

Menyetel Kredensial di Browser Web 46

https://console.aws.amazon.com/cognito
https://developers.facebook.com/docs/facebook-login/web

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 if (response.authResponse) { // logged in
 AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'us-east-1:1699ebc0-7900-4099-b910-2df94f52a030',
 Logins: {
 'graph.facebook.com': response.authResponse.accessToken
 }
 });

 s3 = new AWS.S3; // we can now create our service object

 console.log('You are now logged in.');
 } else {
 console.log('There was a problem logging you in.');
 }
});

Mengalihkan Pengguna yang Tidak Diautentikasi ke Pengguna yang Diautentikasi

Amazon Cognito mendukung pengguna yang diautentikasi dan tidak diautentikasi. Pengguna yang
tidak diautentikasi menerima akses ke sumber daya Anda meskipun mereka tidak masuk dengan
penyedia identitas Anda. Tingkat akses ini berguna untuk menampilkan konten kepada pengguna
sebelum masuk. Setiap pengguna yang tidak diautentikasi memiliki identitas unik di Amazon Cognito
meskipun mereka belum masuk dan diautentikasi secara individual.

Pengguna Awalnya Tidak Diautentikasi

Pengguna biasanya memulai dengan peran yang tidak diautentikasi, di mana Anda menetapkan
properti kredensial objek konfigurasi Anda tanpa properti. Logins Dalam kasus ini, konfigurasi
default Anda mungkin terlihat seperti berikut ini:

// set the default config object
var creds = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: 'us-east-1:1699ebc0-7900-4099-b910-2df94f52a030'
});
AWS.config.credentials = creds;

Beralih ke Pengguna Terautentikasi

Ketika pengguna yang tidak diautentikasi masuk ke penyedia identitas dan Anda memiliki token,
Anda dapat mengalihkan pengguna dari yang tidak diautentikasi ke otentikasi dengan memanggil
fungsi kustom yang memperbarui objek kredensi dan menambahkan token: Logins

Menyetel Kredensial di Browser Web 47

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Called when an identity provider has a token for a logged in user
function userLoggedIn(providerName, token) {
 creds.params.Logins = creds.params.Logins || {};
 creds.params.Logins[providerName] = token;

 // Expire credentials to refresh them on the next request
 creds.expired = true;
}

Anda juga dapat membuat CognitoIdentityCredentials objek. Jika ya, Anda harus mengatur
ulang properti kredensial dari objek layanan yang ada yang Anda buat. Objek layanan dibaca dari
konfigurasi global hanya pada inisialisasi objek.

Untuk informasi selengkapnya tentang CognitoIdentityCredentials objek, lihat
AWS.CognitoIdentityCredentialsdi Referensi AWS SDK untuk JavaScript API.

Menggunakan Identitas Federasi Web untuk Mengautentikasi Pengguna

Anda dapat langsung mengkonfigurasi penyedia identitas individu untuk mengakses AWS
sumber daya menggunakan federasi identitas web. AWS saat ini mendukung otentikasi pengguna
menggunakan federasi identitas web melalui beberapa penyedia identitas:

• Login with Amazon

• Login Facebook

• Masuk Google

Anda harus terlebih dahulu mendaftarkan aplikasi Anda ke penyedia yang didukung aplikasi Anda.
Selanjutnya, buat peran IAM dan atur izin untuk itu. Peran IAM yang Anda buat kemudian digunakan
untuk memberikan izin yang Anda konfigurasikan untuk itu melalui penyedia identitas masing-masing.
Misalnya, Anda dapat mengatur peran yang memungkinkan pengguna yang masuk melalui Facebook
memiliki akses baca ke bucket Amazon S3 tertentu yang Anda kontrol.

Setelah Anda memiliki peran IAM dengan hak istimewa yang dikonfigurasi dan aplikasi yang terdaftar
dengan penyedia identitas pilihan Anda, Anda dapat mengatur SDK untuk mendapatkan kredensi
untuk peran IAM menggunakan kode pembantu, sebagai berikut:

AWS.config.credentials = new AWS.WebIdentityCredentials({
 RoleArn: 'arn:aws:iam::<AWS_ACCOUNT_ID>/:role/<WEB_IDENTITY_ROLE_NAME>',
 ProviderId: 'graph.facebook.com|www.amazon.com', // this is null for Google

Menyetel Kredensial di Browser Web 48

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CognitoIdentityCredentials.html
https://login.amazon.com
https://www.facebook.com/about/login
https://developers.google.com/identity/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 WebIdentityToken: ACCESS_TOKEN
});

Nilai dalam ProviderId parameter tergantung pada penyedia identitas yang ditentukan. Nilai dalam
WebIdentityToken parameter adalah token akses yang diambil dari login yang berhasil dengan
penyedia identitas. Untuk informasi selengkapnya tentang cara mengonfigurasi dan mengambil token
akses untuk setiap penyedia identitas, lihat dokumentasi untuk penyedia identitas.

Langkah 1: Mendaftar dengan Penyedia Identitas

Untuk memulai, daftarkan aplikasi dengan penyedia identitas yang Anda pilih untuk didukung.
Anda akan diminta untuk memberikan informasi yang mengidentifikasi aplikasi Anda dan mungkin
penulisnya. Ini memastikan bahwa penyedia identitas tahu siapa yang menerima informasi pengguna
mereka. Dalam setiap kasus, penyedia identitas akan mengeluarkan ID aplikasi yang Anda gunakan
untuk mengonfigurasi peran pengguna.

Langkah 2: Membuat Peran IAM untuk Penyedia Identitas

Setelah Anda mendapatkan ID aplikasi dari penyedia identitas, buka konsol IAM di https://
console.aws.amazon.com/iam/untuk membuat peran IAM baru.

Untuk membuat peran IAM untuk penyedia identitas

1. Buka bagian Peran konsol dan kemudian pilih Buat Peran Baru.

2. Ketik nama untuk peran baru yang membantu Anda melacak penggunaannya,
sepertifacebookIdentity, lalu pilih Langkah Berikutnya.

3. Di Pilih Jenis Peran, pilih Peran untuk Akses Penyedia Identitas.

4. Untuk memberikan akses ke penyedia identitas web, pilih Pilih.

5. Dari daftar Penyedia Identitas, pilih penyedia identitas yang ingin Anda gunakan untuk peran IAM
ini.

6. Ketik ID aplikasi yang disediakan oleh penyedia identitas di ID Aplikasi dan kemudian pilih
Langkah Berikutnya.

Menyetel Kredensial di Browser Web 49

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

7. Konfigurasikan izin untuk sumber daya yang ingin Anda paparkan, yang memungkinkan akses
ke operasi tertentu pada sumber daya tertentu. Untuk informasi selengkapnya tentang izin IAM,
lihat Ringkasan Izin AWS IAM di Panduan Pengguna IAM. Tinjau dan, jika perlu, sesuaikan
hubungan kepercayaan peran, lalu pilih Langkah Berikutnya.

8. Lampirkan kebijakan tambahan yang Anda butuhkan dan kemudian pilih Langkah Berikutnya.
Untuk informasi lebih lanjut tentang kebijakan IAM, lihat Gambaran umum Kebijakan IAM dalam
Panduan Pengguna IAM.

9. Tinjau peran baru dan kemudian pilih Buat Peran.

Anda dapat memberikan batasan lain untuk peran tersebut, seperti melingkupinya ke pengguna
tertentu. IDs Jika peran memberikan izin menulis ke sumber daya Anda, pastikan Anda mencakupkan
peran dengan benar kepada pengguna dengan hak istimewa yang benar, jika tidak, setiap pengguna
dengan identitas Amazon, Facebook, atau Google akan dapat memodifikasi sumber daya dalam
aplikasi Anda.

Untuk informasi selengkapnya tentang penggunaan federasi identitas web di IAM, lihat Tentang
Federasi Identitas Web di Panduan Pengguna IAM.

Langkah 3: Mendapatkan Token Akses Penyedia Setelah Login

Siapkan tindakan login untuk aplikasi Anda dengan menggunakan SDK penyedia identitas. Anda
dapat mengunduh dan menginstal JavaScript SDK dari penyedia identitas yang memungkinkan login
pengguna, menggunakan salah satu OAuth atau OpenID. Untuk informasi tentang cara mengunduh
dan menyiapkan kode SDK di aplikasi Anda, lihat dokumentasi SDK untuk penyedia identitas Anda:

• Login with Amazon

• Login Facebook

• Masuk Google

Langkah 4: Memperoleh Kredensi Sementara

Setelah aplikasi, peran, dan izin sumber daya dikonfigurasi, tambahkan kode ke aplikasi Anda untuk
mendapatkan kredensi sementara. Kredensi ini disediakan melalui federasi identitas web yang AWS
Security Token Service menggunakan. Pengguna masuk ke penyedia identitas, yang mengembalikan
token akses. Siapkan AWS.WebIdentityCredentials objek menggunakan ARN untuk peran IAM
yang Anda buat untuk penyedia identitas ini:

Menyetel Kredensial di Browser Web 50

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_oidc.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_oidc.html
https://login.amazon.com/website
https://developers.facebook.com/docs/javascript
https://developers.google.com/identity/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

AWS.config.credentials = new AWS.WebIdentityCredentials({
 RoleArn: 'arn:aws:iam::<AWS_ACCOUNT_ID>:role/<WEB_IDENTITY_ROLE_NAME>',
 ProviderId: 'graph.facebook.com|www.amazon.com', // Omit this for Google
 WebIdentityToken: ACCESS_TOKEN // Access token from identity provider
});

Objek layanan yang dibuat selanjutnya akan memiliki kredensional yang tepat. Objek yang dibuat
sebelum menyetel AWS.config.credentials properti tidak akan memiliki kredensi saat ini.

Anda juga dapat membuat AWS.WebIdentityCredentials sebelum mengambil token
akses. Ini memungkinkan Anda untuk membuat objek layanan yang bergantung pada kredensi
sebelum memuat token akses. Untuk melakukan ini, buat objek kredensial tanpa parameter:
WebIdentityToken

AWS.config.credentials = new AWS.WebIdentityCredentials({
 RoleArn: 'arn:aws:iam::<AWS_ACCOUNT_ID>:role/<WEB_IDENTITY_ROLE_NAME>',
 ProviderId: 'graph.facebook.com|www.amazon.com' // Omit this for Google
});

// Create a service object
var s3 = new AWS.S3;

Kemudian atur WebIdentityToken callback dari SDK penyedia identitas yang berisi token akses:

AWS.config.credentials.params.WebIdentityToken = accessToken;

Contoh Identitas Federasi Web

Berikut adalah beberapa contoh menggunakan identitas federasi web untuk mendapatkan kredensi
di browser. JavaScript Contoh-contoh ini harus dijalankan dari skema host http://atau https://untuk
memastikan penyedia identitas dapat mengarahkan ulang ke aplikasi Anda.

Login with Amazon Contoh

Kode berikut menunjukkan cara menggunakan Login with Amazon sebagai penyedia identitas.

 <img border="0" alt="Login with Amazon"
 src="https://images-na.ssl-images-amazon.com/images/G/01/lwa/
btnLWA_gold_156x32.png"

Menyetel Kredensial di Browser Web 51

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 width="156" height="32" />

<div id="amazon-root"></div>
<script type="text/javascript">
 var s3 = null;
 var clientId = 'amzn1.application-oa2-client.1234567890abcdef'; // client ID
 var roleArn = 'arn:aws:iam::<AWS_ACCOUNT_ID>:role/<WEB_IDENTITY_ROLE_NAME>';

 window.onAmazonLoginReady = function() {
 amazon.Login.setClientId(clientId); // set client ID

 document.getElementById('login').onclick = function() {
 amazon.Login.authorize({scope: 'profile'}, function(response) {
 if (!response.error) { // logged in
 AWS.config.credentials = new AWS.WebIdentityCredentials({
 RoleArn: roleArn,
 ProviderId: 'www.amazon.com',
 WebIdentityToken: response.access_token
 });

 s3 = new AWS.S3();

 console.log('You are now logged in.');
 } else {
 console.log('There was a problem logging you in.');
 }
 });
 };
 };

 (function(d) {
 var a = d.createElement('script'); a.type = 'text/javascript';
 a.async = true; a.id = 'amazon-login-sdk';
 a.src = 'https://api-cdn.amazon.com/sdk/login1.js';
 d.getElementById('amazon-root').appendChild(a);
 })(document);
</script>

Contoh Login Facebook

Kode berikut menunjukkan cara menggunakan Facebook Login sebagai penyedia identitas:

<button id="login">Login</button>
<div id="fb-root"></div>

Menyetel Kredensial di Browser Web 52

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

<script type="text/javascript">
var s3 = null;
var appId = '1234567890'; // Facebook app ID
var roleArn = 'arn:aws:iam::<AWS_ACCOUNT_ID>:role/<WEB_IDENTITY_ROLE_NAME>';

window.fbAsyncInit = function() {
 // init the FB JS SDK
 FB.init({appId: appId});

 document.getElementById('login').onclick = function() {
 FB.login(function (response) {
 if (response.authResponse) { // logged in
 AWS.config.credentials = new AWS.WebIdentityCredentials({
 RoleArn: roleArn,
 ProviderId: 'graph.facebook.com',
 WebIdentityToken: response.authResponse.accessToken
 });

 s3 = new AWS.S3;

 console.log('You are now logged in.');
 } else {
 console.log('There was a problem logging you in.');
 }
 });
 };
};

// Load the FB JS SDK asynchronously
(function(d, s, id){
 var js, fjs = d.getElementsByTagName(s)[0];
 if (d.getElementById(id)) {return;}
 js = d.createElement(s); js.id = id;
 js.src = "//connect.facebook.net/en_US/all.js";
 fjs.parentNode.insertBefore(js, fjs);
 }(document, 'script', 'facebook-jssdk'));
</script>

Contoh Masuk Google+

Kode berikut menunjukkan cara menggunakan Google+ Sign-in sebagai penyedia identitas. Token
akses yang digunakan untuk federasi identitas web dari Google disimpan response.id_token
bukan access_token seperti penyedia identitas lainnya.

Menyetel Kredensial di Browser Web 53

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

<span
 id="login"
 class="g-signin"
 data-height="short"
 data-callback="loginToGoogle"
 data-cookiepolicy="single_host_origin"
 data-requestvisibleactions="http://schemas.google.com/AddActivity"
 data-scope="https://www.googleapis.com/auth/plus.login">

<script type="text/javascript">
 var s3 = null;
 var clientID = '1234567890.apps.googleusercontent.com'; // Google client ID
 var roleArn = 'arn:aws:iam::<AWS_ACCOUNT_ID>:role/<WEB_IDENTITY_ROLE_NAME>';

 document.getElementById('login').setAttribute('data-clientid', clientID);
 function loginToGoogle(response) {
 if (!response.error) {
 AWS.config.credentials = new AWS.WebIdentityCredentials({
 RoleArn: roleArn, WebIdentityToken: response.id_token
 });

 s3 = new AWS.S3();

 console.log('You are now logged in.');
 } else {
 console.log('There was a problem logging you in.');
 }
 }

 (function() {
 var po = document.createElement('script'); po.type = 'text/javascript'; po.async =
 true;
 po.src = 'https://apis.google.com/js/client:plusone.js';
 var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po,
 s);
 })();
 </script>

Menyetel Kredensial di Browser Web 54

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Mengunci Versi API
AWS layanan memiliki nomor versi API untuk melacak kompatibilitas API. Versi API dalam AWS
layanan diidentifikasi oleh string tanggal yang YYYY-mm-dd diformat. Misalnya, versi API saat ini
untuk Amazon S3 adalah. 2006-03-01

Kami merekomendasikan untuk mengunci versi API untuk layanan jika Anda mengandalkannya
dalam kode produksi. Ini dapat mengisolasi aplikasi Anda dari perubahan layanan yang dihasilkan
dari pembaruan ke SDK. Jika Anda tidak menentukan versi API saat membuat objek layanan,
SDK menggunakan versi API terbaru secara default. Hal ini dapat menyebabkan aplikasi Anda
mereferensikan API yang diperbarui dengan perubahan yang berdampak negatif pada aplikasi Anda.

Untuk mengunci versi API yang Anda gunakan untuk layanan, teruskan apiVersion parameter
saat membuat objek layanan. Dalam contoh berikut, objek AWS.DynamoDB layanan yang baru dibuat
dikunci ke versi 2011-12-05 API:

var dynamodb = new AWS.DynamoDB({apiVersion: '2011-12-05'});

Anda dapat mengonfigurasi serangkaian versi API layanan secara global dengan menentukan
apiVersions parameter diAWS.Config. Misalnya, untuk menyetel versi tertentu dari DynamoDB
dan EC2 APIs Amazon bersama dengan Amazon Redshift API saat ini, tetapkan sebagai berikut:
apiVersions

AWS.config.apiVersions = {
 dynamodb: '2011-12-05',
 ec2: '2013-02-01',
 redshift: 'latest'
};

Mendapatkan Versi API

Untuk mendapatkan versi API untuk layanan, lihat bagian Mengunci Versi API di halaman referensi
layanan, seperti https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html untuk
Amazon S3.

Pertimbangan Node.js
Meskipun kode Node.js adalah JavaScript, menggunakan AWS SDK untuk JavaScript dalam Node.js
dapat berbeda dari menggunakan SDK dalam skrip browser. Beberapa metode API bekerja di

Mengunci Versi API 55

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Node.js tetapi tidak dalam skrip browser, serta sebaliknya. Dan berhasil menggunakan beberapa
APIs tergantung pada keakraban Anda dengan pola pengkodean Node.js umum, seperti mengimpor
dan menggunakan modul Node.js lainnya seperti modul. File System (fs)

Menggunakan Modul Node.js Built-In

Node.js menyediakan koleksi modul bawaan yang dapat Anda gunakan tanpa menginstalnya. Untuk
menggunakan modul ini, buat objek dengan require metode untuk menentukan nama modul.
Misalnya, untuk menyertakan modul HTTP bawaan, gunakan yang berikut ini.

var http = require('http');

Memanggil metode modul seolah-olah mereka adalah metode dari objek itu. Misalnya, berikut adalah
kode yang membaca file HTML.

// include File System module
var fs = require('fs');
// Invoke readFile method
fs.readFile('index.html', function(err, data) {
 if (err) {
 throw err;
 } else {
 // Successful file read
 }
});

Untuk daftar lengkap semua modul bawaan yang disediakan Node.js, lihat Dokumentasi Node.js
v6.11.1 di situs web Node.js.

Menggunakan Paket NPM

Selain modul bawaan, Anda juga dapat menyertakan dan menggabungkan kode pihak ketiga dari
npm, manajer paket Node.js. Ini adalah repositori paket Node.js open source dan antarmuka baris
perintah untuk menginstal paket-paket tersebut. Untuk informasi selengkapnya tentang npm dan
daftar paket yang tersedia saat ini, lihat https://www.npmjs.com. Anda juga dapat mempelajari
tentang paket Node.js tambahan yang dapat Anda gunakan di sini GitHub.

Salah satu contoh paket npm yang dapat Anda gunakan AWS SDK untuk JavaScript
adalahbrowserify. Lihat perinciannya di Membangun SDK sebagai Dependensi dengan
Browserify. Contoh lain adalahwebpack. Lihat perinciannya di Bundling Aplikasi dengan Webpack.

Menggunakan Modul Node.js Built-In 56

https://nodejs.org/api/modules.html
https://nodejs.org/api/modules.html
https://www.npmjs.com
https://github.com/sindresorhus/awesome-nodejs

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Topik

• Mengkonfigurasi MaxSockets di Node.js

• Menggunakan Kembali Koneksi dengan Keep-Alive di Node.js

• Mengkonfigurasi Proxy untuk Node.js

• Mendaftarkan Bundel Sertifikat di Node.js

Mengkonfigurasi MaxSockets di Node.js

Di Node.js, Anda dapat mengatur jumlah maksimum koneksi per asal. Jika maxSockets diatur,
klien HTTP tingkat rendah mengantri permintaan dan menetapkannya ke soket saat tersedia.

Ini memungkinkan Anda menetapkan batas atas pada jumlah permintaan bersamaan ke asal tertentu
pada suatu waktu. Menurunkan nilai ini dapat mengurangi jumlah kesalahan pelambatan atau batas
waktu yang diterima. Namun, itu juga dapat meningkatkan penggunaan memori karena permintaan
antri sampai soket tersedia.

Contoh berikut menunjukkan cara mengatur maxSockets untuk semua objek layanan yang Anda
buat. Contoh ini memungkinkan hingga 25 koneksi bersamaan ke setiap titik akhir layanan.

var AWS = require('aws-sdk');
var https = require('https');
var agent = new https.Agent({
 maxSockets: 25
});

AWS.config.update({
 httpOptions:{
 agent: agent
 }
});

Hal yang sama dapat dilakukan per layanan.

var AWS = require('aws-sdk');
var https = require('https');
var agent = new https.Agent({
 maxSockets: 25
});

Mengkonfigurasi MaxSockets di Node.js 57

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var dynamodb = new AWS.DynamoDB({
 apiVersion: '2012-08-10'
 httpOptions:{
 agent: agent
 }
});

Saat menggunakan defaulthttps, SDK mengambil maxSockets nilai dari. globalAgent Jika
maxSockets nilai tidak didefinisikan atau tidakInfinity, SDK mengasumsikan maxSockets nilai
50.

Untuk informasi selengkapnya tentang pengaturan maxSockets di Node.js, lihat dokumentasi online
Node.js.

Menggunakan Kembali Koneksi dengan Keep-Alive di Node.js

Secara default, HTTP/HTTPS agen Node.js default membuat koneksi TCP baru untuk setiap
permintaan baru. Untuk menghindari biaya membuat koneksi baru, Anda dapat menggunakan
kembali koneksi yang ada.

Untuk operasi jangka pendek, seperti query DynamoDB, overhead latensi pengaturan koneksi TCP
mungkin lebih besar daripada operasi itu sendiri. Selain itu, karena enkripsi DynamoDB saat istirahat
terintegrasi AWS dengan KMS, Anda mungkin mengalami latensi dari database yang harus membuat
kembali AWS KMS entri cache baru untuk setiap operasi.

Cara termudah untuk mengonfigurasi SDK JavaScript agar dapat menggunakan kembali koneksi
TCP adalah dengan mengatur variabel AWS_NODEJS_CONNECTION_REUSE_ENABLED lingkungan
ke. 1 Fitur ini ditambahkan dalam rilis 2.463.0.

Atau, Anda dapat mengatur keepAlive properti agen HTTP atau HTTPS yang disetel ketrue,
seperti yang ditunjukkan pada contoh berikut.

const AWS = require('aws-sdk');
// http or https
const http = require('http');
const agent = new http.Agent({
 keepAlive: true,
// Infinity is read as 50 sockets
 maxSockets: Infinity
});

Menggunakan Kembali Koneksi dengan Keep-Alive di Node.js 58

https://nodejs.org/dist/latest-v4.x/docs/api/http.html#http_agent_maxsockets
https://nodejs.org/dist/latest-v4.x/docs/api/http.html#http_agent_maxsockets
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/encryption.howitworks.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/encryption.howitworks.html
https://github.com/aws/aws-sdk-js/blob/master/CHANGELOG.md#24630

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

AWS.config.update({
 httpOptions: {
 agent
 }
});

Contoh berikut menunjukkan bagaimana mengatur hanya keepAlive untuk klien DynamoDB:

const AWS = require('aws-sdk')
// http or https
const https = require('https');
const agent = new https.Agent({
 keepAlive: true
});

const dynamodb = new AWS.DynamoDB({
 httpOptions: {
 agent
 }
});

Jika keepAlive diaktifkan, Anda juga dapat mengatur penundaan awal untuk paket TCP Keep-
AlivekeepAliveMsecs, yang secara default adalah 1000ms. Lihat dokumentasi Node.js untuk
detailnya.

Mengkonfigurasi Proxy untuk Node.js

Jika Anda tidak dapat terhubung langsung ke internet, SDK untuk JavaScript mendukung
penggunaan proxy HTTP atau HTTPS melalui agen HTTP pihak ketiga, seperti agen proxy. Untuk
menginstal proxy-agent, ketik berikut ini di baris perintah.

npm install proxy-agent --save

Jika Anda memutuskan untuk menggunakan proxy yang berbeda, pertama-tama ikuti instruksi
instalasi dan konfigurasi untuk proxy tersebut. Untuk menggunakan ini atau proxy pihak ketiga
lainnya dalam aplikasi Anda, Anda harus mengatur httpOptions properti AWS.Config untuk
menentukan proxy yang Anda pilih. Contoh ini menunjukkan proxy-agent.

var AWS = require("aws-sdk");

Mengkonfigurasi Proxy untuk Node.js 59

https://nodejs.org/api/http.html
https://github.com/TooTallNate/proxy-agents/tree/main/packages/proxy-agent
https://github.com/TooTallNate/proxy-agents/tree/main/packages/proxy-agent

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var ProxyAgent = require('proxy-agent').ProxyAgent;
AWS.config.update({
 httpOptions: { agent: new ProxyAgent('http://internal.proxy.com') }
});

Untuk informasi selengkapnya tentang pustaka proxy lainnya, lihat npm, pengelola paket Node.js.

Mendaftarkan Bundel Sertifikat di Node.js

Penyimpanan kepercayaan default untuk Node.js menyertakan sertifikat yang diperlukan untuk
mengakses AWS layanan. Dalam beberapa kasus, mungkin lebih baik untuk menyertakan hanya
satu set sertifikat tertentu.

Dalam contoh ini, sertifikat khusus pada disk digunakan untuk membuat https.Agent yang
menolak koneksi kecuali sertifikat yang ditunjuk disediakan. Yang baru https.Agent dibuat
kemudian digunakan untuk memperbarui konfigurasi SDK.

var fs = require('fs');
var https = require('https');
var certs = [
 fs.readFileSync('/path/to/cert.pem')
];

AWS.config.update({
 httpOptions: {
 agent: new https.Agent({
 rejectUnauthorized: true,
 ca: certs
 })
 }
});

Pertimbangan Skrip Browser

Topik berikut menjelaskan pertimbangan khusus untuk menggunakan skrip AWS SDK untuk
JavaScript di browser.

Topik

• Membangun SDK untuk Browser

Mendaftarkan Bundel Sertifikat di Node.js 60

https://www.npmjs.com/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Berbagi Sumber Daya Lintas Orisinil (CORS)

Membangun SDK untuk Browser

SDK untuk JavaScript disediakan sebagai JavaScript file dengan dukungan yang disertakan untuk
set layanan default. File ini biasanya dimuat ke skrip browser menggunakan <script> tag yang
mereferensikan paket SDK yang dihosting. Namun, Anda mungkin memerlukan dukungan untuk
layanan selain set default atau perlu menyesuaikan SDK.

Jika Anda bekerja dengan SDK di luar lingkungan yang memberlakukan CORS di browser Anda
dan jika Anda ingin akses ke semua layanan yang disediakan oleh SDK for JavaScript, Anda dapat
membuat salinan khusus SDK secara lokal dengan mengkloning repositori dan menjalankan alat
build yang sama yang membangun versi default SDK yang dihosting. Bagian berikut menjelaskan
langkah-langkah untuk membangun SDK dengan layanan tambahan dan versi API.

Topik

• Menggunakan SDK Builder untuk Membangun SDK JavaScript

• Menggunakan CLI untuk Membangun SDK untuk JavaScript

• Membangun Layanan Tertentu dan Versi API

• Membangun SDK sebagai Dependensi dengan Browserify

Menggunakan SDK Builder untuk Membangun SDK JavaScript

Cara termudah untuk membuat build Anda sendiri AWS SDK untuk JavaScript adalah dengan
menggunakan aplikasi web pembuat SDK di https://sdk.amazonaws.com/builder/js. Gunakan
pembuat SDK untuk menentukan layanan, dan versi API-nya, untuk disertakan dalam build Anda.

Pilih Pilih semua layanan atau pilih Pilih layanan default sebagai titik awal dari mana Anda dapat
menambah atau menghapus layanan. Pilih Pengembangan untuk kode yang lebih mudah dibaca
atau pilih Diperkecil untuk membuat build yang diperkecil untuk diterapkan. Setelah memilih layanan
dan versi yang akan disertakan, pilih Build to build dan download SDK kustom Anda.

Menggunakan CLI untuk Membangun SDK untuk JavaScript

Untuk membangun SDK untuk JavaScript menggunakan AWS CLI, Anda harus terlebih dahulu
mengkloning repositori Git yang berisi sumber SDK. Anda harus menginstal Git dan Node.js di
komputer Anda.

Membangun SDK untuk Browser 61

https://sdk.amazonaws.com/builder/js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Pertama, kloning repositori dari GitHub dan ubah direktori ke direktori:

git clone https://github.com/aws/aws-sdk-js.git
cd aws-sdk-js

Setelah Anda mengkloning repositori, unduh modul dependensi untuk SDK dan alat build:

npm install

Anda sekarang dapat membuat versi paket SDK.

Membangun dari Command Line

Alat pembangun ada didist-tools/browser-builder.js. Jalankan skrip ini dengan mengetik:

node dist-tools/browser-builder.js > aws-sdk.js

Perintah ini membangun file aws-sdk.js. File ini tidak terkompresi. Secara default paket ini hanya
mencakup serangkaian layanan standar.

Meminimalkan Output Build

Untuk mengurangi jumlah data pada jaringan, JavaScript file dapat dikompresi melalui proses yang
disebut minifikasi. Minifikasi menghapus komentar, spasi yang tidak perlu, dan karakter lain yang
membantu keterbacaan manusia tetapi itu tidak memengaruhi eksekusi kode. Alat pembangun dapat
menghasilkan output yang tidak terkompresi atau diperkecil. Untuk memperkecil keluaran build Anda,
setel variabel MINIFY lingkungan:

MINIFY=1 node dist-tools/browser-builder.js > aws-sdk.js

Membangun Layanan Tertentu dan Versi API

Anda dapat memilih layanan mana yang akan dibangun ke dalam SDK. Untuk memilih layanan,
tentukan nama layanan, dibatasi oleh koma, sebagai parameter. Misalnya, untuk hanya membangun
Amazon S3 dan Amazon EC2, gunakan perintah berikut:

node dist-tools/browser-builder.js s3,ec2 > aws-sdk-s3-ec2.js

Membangun SDK untuk Browser 62

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Anda juga dapat memilih versi API tertentu dari build layanan dengan menambahkan nama versi
setelah nama layanan. Misalnya, untuk membangun kedua versi API Amazon DynamoDB, gunakan
perintah berikut:

node dist-tools/browser-builder.js dynamodb-2011-12-05,dynamodb-2012-08-10

Pengidentifikasi layanan dan versi API tersedia dalam file konfigurasi khusus layanan di/. https://
github.com/aws/ aws-sdk-js tree/master/apis

Membangun Semua Layanan

Anda dapat membangun semua layanan dan versi API dengan menyertakan all parameter:

node dist-tools/browser-builder.js all > aws-sdk-full.js

Membangun Layanan Khusus

Untuk menyesuaikan kumpulan layanan yang dipilih yang disertakan dalam build, teruskan variabel
AWS_SERVICES lingkungan ke perintah Browserify yang berisi daftar layanan yang Anda inginkan.
Contoh berikut membangun layanan Amazon EC2, Amazon S3, dan DynamoDB.

$ AWS_SERVICES=ec2,s3,dynamodb browserify index.js > browser-app.js

Membangun SDK sebagai Dependensi dengan Browserify

Node.js memiliki mekanisme berbasis modul untuk memasukkan kode dan fungsionalitas dari
pengembang pihak ketiga. Pendekatan modular ini tidak didukung secara native dengan JavaScript
berjalan di browser web. Namun, dengan alat yang disebut Browserify, Anda dapat menggunakan
pendekatan modul Node.js dan menggunakan modul yang ditulis untuk Node.js di browser.
Browserify membangun dependensi modul untuk skrip browser menjadi satu JavaScript file mandiri
yang dapat Anda gunakan di browser.

Anda dapat membangun SDK sebagai dependensi pustaka untuk skrip browser apa pun dengan
menggunakan Browserify. Misalnya, kode Node.js berikut memerlukan SDK:

var AWS = require('aws-sdk');
var s3 = new AWS.S3();
s3.listBuckets(function(err, data) { console.log(err, data); });

Membangun SDK untuk Browser 63

https://github.com/aws/aws-sdk-js/tree/master/apis
https://github.com/aws/aws-sdk-js/tree/master/apis

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Contoh kode ini dapat dikompilasi ke dalam versi yang kompatibel dengan browser menggunakan
Browserify:

$ browserify index.js > browser-app.js

Aplikasi, termasuk dependensi SDK-nya, kemudian tersedia di browser melalui. browser-app.js

Untuk informasi selengkapnya tentang Browserify, lihat situs web Browserify.

Berbagi Sumber Daya Lintas Orisinil (CORS)

Berbagi sumber daya lintas asal, atau CORS, adalah fitur keamanan browser web modern. Ini
memungkinkan browser web untuk menegosiasikan domain mana yang dapat membuat permintaan
situs web atau layanan eksternal. CORS adalah pertimbangan penting ketika mengembangkan
aplikasi browser dengan AWS SDK untuk JavaScript karena sebagian besar permintaan ke sumber
daya dikirim ke domain eksternal, seperti titik akhir untuk layanan web. Jika JavaScript lingkungan
Anda memberlakukan keamanan CORS, Anda harus mengonfigurasi CORS dengan layanan.

CORS menentukan apakah akan mengizinkan pembagian sumber daya dalam permintaan lintas asal
berdasarkan:

• Domain spesifik yang membuat permintaan

• Jenis permintaan HTTP yang dibuat (GET, PUT, POST, DELETE dan sebagainya)

Bagaimana CORS Bekerja

Dalam kasus yang paling sederhana, skrip browser Anda membuat permintaan GET untuk sumber
daya dari server di domain lain. Bergantung pada konfigurasi CORS server tersebut, jika permintaan
berasal dari domain yang berwenang untuk mengirimkan permintaan GET, server lintas asal
merespons dengan mengembalikan sumber daya yang diminta.

Jika domain yang meminta atau jenis permintaan HTTP tidak diotorisasi, permintaan ditolak. Namun,
CORS memungkinkan untuk melakukan pra-penerbangan permintaan sebelum benar-benar
mengirimkannya. Dalam hal ini, permintaan preflight dibuat di mana operasi permintaan OPTIONS
akses dikirim. Jika konfigurasi CORS server lintas asal memberikan akses ke domain yang meminta,
server mengirimkan kembali respons preflight yang mencantumkan semua jenis permintaan HTTP
yang dapat dibuat oleh domain permintaan pada sumber daya yang diminta.

Berbagi Sumber Daya Lintas Orisinil (CORS) 64

http://browserify.org/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Apakah Konfigurasi CORS Diperlukan

Bucket Amazon S3 memerlukan konfigurasi CORS sebelum Anda dapat melakukan operasi pada
mereka. Di beberapa JavaScript lingkungan CORS mungkin tidak diberlakukan dan oleh karena itu
mengonfigurasi CORS tidak diperlukan. Misalnya, jika Anda meng-host aplikasi dari bucket Amazon
S3 dan mengakses sumber daya dari *.s3.amazonaws.com atau titik akhir tertentu lainnya,
permintaan Anda tidak akan mengakses domain eksternal. Oleh karena itu, konfigurasi ini tidak
memerlukan CORS. Dalam hal ini, CORS masih digunakan untuk layanan selain Amazon S3.

Mengonfigurasi CORS untuk Bucket Amazon S3

Anda dapat mengonfigurasi bucket Amazon S3 untuk menggunakan CORS di konsol Amazon S3.

1. Di konsol Amazon S3, pilih bucket yang ingin Anda edit.

2. Pilih tab Izin, dan tekan ke panel Cross-Origin Resource Sharing (CORS).

Berbagi Sumber Daya Lintas Orisinil (CORS) 65

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

3. Pilih Edit, dan ketik konfigurasi CORS Anda di CORS Configuration Editor, lalu pilih Simpan.

Konfigurasi CORS adalah file XMLyang berisi serangkaian aturan dalam file. <CORSRule>
Konfigurasi dapat memiliki hingga 100 aturan. Aturan didefinisikan oleh salah satu tag berikut:

• <AllowedOrigin>, yang menentukan asal domain yang Anda izinkan untuk membuat
permintaan lintas domain.

• <AllowedMethod>, yang menentukan jenis permintaan yang Anda izinkan (GET, PUT, POST,
DELETE, HEAD) dalam permintaan lintas domain.

• <AllowedHeader>, yang menentukan header yang diizinkan dalam permintaan preflight.

Untuk contoh konfigurasi, lihat Bagaimana Cara Mengonfigurasi CORS di Bucket Saya? di Panduan
Pengguna Layanan Penyimpanan Sederhana Amazon.

Contoh Konfigurasi CORS

Contoh konfigurasi CORS berikut memungkinkan pengguna untuk melihat, menambah, menghapus,
atau memperbarui objek di dalam bucket dari domainexample.org, meskipun Anda disarankan
untuk memasukkan <AllowedOrigin> ke domain situs web Anda. Anda dapat menentukan "*"
untuk mengizinkan asal apa pun.

Important

Pada konsol S3 baru, konfigurasi CORS harus JSON.

Berbagi Sumber Daya Lintas Orisinil (CORS) 66

https://docs.aws.amazon.com/AmazonS3/latest/userguide/cors.html#how-do-i-enable-cors

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

XML

<?xml version="1.0" encoding="UTF-8"?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <CORSRule>
 <AllowedOrigin>https://example.org</AllowedOrigin>
 <AllowedMethod>HEAD</AllowedMethod>
 <AllowedMethod>GET</AllowedMethod>
 <AllowedMethod>PUT</AllowedMethod>
 <AllowedMethod>POST</AllowedMethod>
 <AllowedMethod>DELETE</AllowedMethod>
 <AllowedHeader>*</AllowedHeader>
 <ExposeHeader>ETag</ExposeHeader>
 <ExposeHeader>x-amz-meta-custom-header</ExposeHeader>
 </CORSRule>
</CORSConfiguration>

JSON

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "HEAD",
 "GET",
 "PUT",
 "POST",
 "DELETE"
],
 "AllowedOrigins": [
 "https://www.example.org"
],
 "ExposeHeaders": [
 "ETag",
 "x-amz-meta-custom-header"]
 }
]

Berbagi Sumber Daya Lintas Orisinil (CORS) 67

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Konfigurasi ini tidak mengizinkan pengguna untuk melakukan tindakan pada bucket. Ini
memungkinkan model keamanan browser untuk memungkinkan permintaan ke Amazon S3. Izin
harus dikonfigurasi melalui izin bucket atau izin peran IAM.

Anda dapat menggunakan ExposeHeader untuk membiarkan SDK membaca header respons yang
dikembalikan dari Amazon S3. Misalnya, jika Anda ingin membaca ETag header dari unggahan PUT
atau multipart, Anda perlu menyertakan ExposeHeader tag dalam konfigurasi Anda, seperti yang
ditunjukkan pada contoh sebelumnya. SDK hanya dapat mengakses header yang diekspos melalui
konfigurasi CORS. Jika Anda mengatur metadata pada objek, nilai dikembalikan sebagai header
dengan awalanx-amz-meta-, sepertix-amz-meta-my-custom-header, dan juga harus diekspos
dengan cara yang sama.

Bundling Aplikasi dengan Webpack

Aplikasi web dalam skrip browser atau penggunaan modul kode Node.js menciptakan dependensi.
Modul kode ini dapat memiliki dependensi sendiri, menghasilkan kumpulan modul yang saling
berhubungan yang dibutuhkan aplikasi Anda untuk berfungsi. Untuk mengelola dependensi, Anda
dapat menggunakan bundler modul seperti webpack.

Bundler modul webpack mengurai kode aplikasi Anda, mencari import atau require pernyataan,
untuk membuat bundel yang berisi semua aset yang dibutuhkan aplikasi Anda sehingga aset dapat
dengan mudah dilayani melalui halaman web. SDK for JavaScript dapat disertakan dalam webpack
sebagai salah satu dependensi untuk disertakan dalam bundel keluaran.

Untuk informasi selengkapnya tentang webpack, lihat bundler modul webpack aktif. GitHub

Menginstal Webpack

Untuk menginstal bundler modul webpack, Anda harus menginstal npm, manajer paket Node.js
terlebih dahulu. Ketik perintah berikut untuk menginstal CLI JavaScript dan modul webpack.

npm install webpack

Anda mungkin juga perlu menginstal plugin webpack yang memungkinkannya memuat file JSON.
Ketik perintah berikut untuk menginstal plugin pemuat JSON.

npm install json-loader

Bundling dengan Webpack 68

https://webpack.github.io/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Mengkonfigurasi Webpack

Secara default, webpack mencari JavaScript file bernama webpack.config.js di direktori
root proyek Anda. File ini menentukan opsi konfigurasi Anda. Berikut adalah contoh file
webpack.config.js konfigurasi.

// Import path for resolving file paths
var path = require('path');
module.exports = {
 // Specify the entry point for our app.
 entry: [
 path.join(__dirname, 'browser.js')
],
 // Specify the output file containing our bundled code
 output: {
 path: __dirname,
 filename: 'bundle.js'
 },
 module: {
 /**
 * Tell webpack how to load 'json' files.
 * When webpack encounters a 'require()' statement
 * where a 'json' file is being imported, it will use
 * the json-loader.
 */
 loaders: [
 {
 test: /\.json$/,
 loaders: ['json']
 }
]
 }
}

Dalam contoh ini, browser.js ditentukan sebagai titik masuk. Titik masuknya adalah file yang
digunakan webpack untuk mulai mencari modul yang diimpor. Nama file output ditentukan
sebagaibundle.js. File output ini akan berisi semua aplikasi JavaScript yang perlu dijalankan.
Jika kode yang ditentukan di titik masuk mengimpor atau memerlukan modul lain, seperti SDK for
JavaScript, kode tersebut dibundel tanpa perlu menentukannya dalam konfigurasi.

Konfigurasi di json-loader plugin yang diinstal sebelumnya menentukan untuk webpack cara
mengimpor file JSON. Secara default, webpack hanya mendukung JavaScript tetapi menggunakan

Mengkonfigurasi Webpack 69

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

loader untuk menambahkan dukungan untuk mengimpor jenis file lain. Karena SDK untuk JavaScript
menggunakan file JSON secara ekstensif, webpack menimbulkan kesalahan saat membuat bundel
jika json-loader tidak disertakan.

Menjalankan Webpack

Untuk membangun aplikasi untuk menggunakan webpack, tambahkan berikut ini ke scripts objek
dalam package.json file Anda.

"build": "webpack"

Berikut adalah contoh package.json yang menunjukkan penambahan webpack.

{
 "name": "aws-webpack",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1",
 "build": "webpack"
 },
 "author": "",
 "license": "ISC",
 "dependencies": {
 "aws-sdk": "^2.6.1"
 },
 "devDependencies": {
 "json-loader": "^0.5.4",
 "webpack": "^1.13.2"
 }
}

Untuk membangun aplikasi Anda, ketik perintah berikut.

npm run build

Bundler modul webpack kemudian menghasilkan JavaScript file yang Anda tentukan di direktori root
proyek Anda.

Menjalankan Webpack 70

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Menggunakan Webpack Bundle

Untuk menggunakan bundel dalam skrip browser, Anda dapat menggabungkan bundel
menggunakan <script> tag seperti yang ditunjukkan pada contoh berikut.

<!DOCTYPE html>
<html>
 <head>
 <title>AWS SDK with webpack</title>
 </head>
 <body>
 <div id="list"></div>
 <script src="bundle.js"></script>
 </body>
</html>

Mengimpor Layanan Individu

Salah satu manfaat webpack adalah mem-parsing dependensi dalam kode Anda dan hanya
menggabungkan kode yang dibutuhkan aplikasi Anda. Jika Anda menggunakan SDK untuk
JavaScript, menggabungkan hanya bagian SDK yang benar-benar digunakan oleh aplikasi Anda
dapat mengurangi ukuran output webpack secara signifikan.

Perhatikan contoh kode berikut yang digunakan untuk membuat objek layanan Amazon S3.

// Import the AWS SDK
var AWS = require('aws-sdk');

// Set credentials and Region
// This can also be done directly on the service client
AWS.config.update({region: 'us-west-1', credentials: {YOUR_CREDENTIALS}});

var s3 = new AWS.S3({apiVersion: '2006-03-01'});

require()Fungsi menentukan seluruh SDK. Bundel webpack yang dihasilkan dengan kode ini akan
menyertakan SDK lengkap tetapi SDK lengkap tidak diperlukan jika hanya kelas klien Amazon S3
yang digunakan. Ukuran bundel akan jauh lebih kecil jika hanya bagian SDK yang Anda perlukan
untuk layanan Amazon S3 yang disertakan. Bahkan menyetel konfigurasi tidak memerlukan SDK
lengkap karena Anda dapat mengatur data konfigurasi pada objek layanan Amazon S3.

Inilah yang terlihat seperti kode yang sama ketika hanya menyertakan bagian Amazon S3 dari SDK.

Menggunakan Webpack Bundle 71

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Import the Amazon S3 service client
var S3 = require('aws-sdk/clients/s3');

// Set credentials and Region
var s3 = new S3({
 apiVersion: '2006-03-01',
 region: 'us-west-1',
 credentials: {YOUR_CREDENTIALS}
 });

Bundling untuk Node.js

Anda dapat menggunakan webpack untuk menghasilkan bundel yang berjalan di Node.js dengan
menentukannya sebagai target dalam konfigurasi.

target: "node"

Ini berguna saat menjalankan aplikasi Node.js di lingkungan di mana ruang disk terbatas. Berikut
adalah contoh webpack.config.js konfigurasi dengan Node.js ditentukan sebagai target output.

// Import path for resolving file paths
var path = require('path');
module.exports = {
 // Specify the entry point for our app
 entry: [
 path.join(__dirname, 'node.js')
],
 // Specify the output file containing our bundled code
 output: {
 path: __dirname,
 filename: 'bundle.js'
 },
 // Let webpack know to generate a Node.js bundle
 target: "node",
 module: {
 /**
 * Tell webpack how to load JSON files.
 * When webpack encounters a 'require()' statement
 * where a JSON file is being imported, it will use
 * the json-loader
 */

Bundling untuk Node.js 72

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 loaders: [
 {
 test: /\.json$/,
 loaders: ['json']
 }
]
 }
}

Bundling untuk Node.js 73

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Bekerja dengan Layanan di SDK untuk JavaScript
AWS SDK untuk JavaScript Menyediakan akses ke layanan yang didukungnya melalui kumpulan
kelas klien. Dari kelas klien ini, Anda membuat objek antarmuka layanan, yang biasa disebut objek
layanan. Setiap AWS layanan yang didukung memiliki satu atau lebih kelas klien yang menawarkan
tingkat rendah APIs untuk menggunakan fitur dan sumber daya layanan. Misalnya, Amazon APIs
DynamoDB tersedia melalui kelas. AWS.DynamoDB

Layanan yang diekspos melalui SDK untuk JavaScript mengikuti pola permintaan-respons untuk
bertukar pesan dengan aplikasi panggilan. Dalam pola ini, kode yang menjalankan layanan
mengirimkan permintaan HTTP/HTTPS ke titik akhir untuk layanan. Permintaan berisi parameter
yang diperlukan untuk berhasil memanggil fitur tertentu yang dipanggil. Layanan yang dipanggil
menghasilkan respons yang dikirim kembali ke pemohon. Respons berisi data jika operasi berhasil
atau informasi kesalahan jika operasi tidak berhasil.

Memanggil AWS layanan mencakup siklus hidup permintaan dan respons penuh dari operasi pada
objek layanan, termasuk percobaan ulang apa pun yang dicoba. Permintaan dienkapsulasi dalam
SDK oleh objek. AWS.Request Respons dienkapsulasi dalam SDK oleh AWS.Response objek, yang
diberikan kepada pemohon melalui salah satu dari beberapa teknik, seperti fungsi panggilan balik
atau janji. JavaScript

74

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Topik

• Membuat dan Memanggil Objek Layanan

• AWS SDK untuk JavaScript Panggilan Pencatatan

• Layanan Panggilan Secara Asinkron

• Menggunakan Response Object

• Bekerja dengan JSON

• Coba lagi strategi di v2 AWS SDK untuk JavaScript

Membuat dan Memanggil Objek Layanan

JavaScript API mendukung sebagian besar AWS layanan yang tersedia. Setiap kelas layanan di
JavaScript API menyediakan akses ke setiap panggilan API dalam layanannya. Untuk informasi
selengkapnya tentang kelas layanan, operasi, dan parameter di JavaScript API, lihat referensi API.

Saat menggunakan SDK di Node.js, Anda menambahkan paket SDK ke aplikasi Anda
menggunakanrequire, yang menyediakan dukungan untuk semua layanan saat ini.

var AWS = require('aws-sdk');

Saat menggunakan SDK dengan browser JavaScript, Anda memuat paket SDK ke skrip browser
menggunakan paket SDK yang dihosting AWS. Untuk memuat paket SDK, tambahkan <script>
elemen berikut:

<script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.min.js"></script>

Untuk menemukan SDK_VERSION_NUMBER saat ini, lihat Referensi API untuk SDK untuk Panduan
Referensi API. JavaScript AWS SDK untuk JavaScript

Paket SDK yang di-host default menyediakan dukungan untuk subset dari layanan yang tersedia
AWS . Untuk daftar layanan default dalam paket SDK yang dihosting untuk browser, lihat Layanan
yang Didukung di Referensi API. Anda dapat menggunakan SDK dengan layanan lain jika
pemeriksaan keamanan CORS dinonaktifkan. Dalam hal ini, Anda dapat membuat versi kustom SDK
untuk menyertakan layanan tambahan yang Anda butuhkan. Untuk informasi selengkapnya tentang
membuat versi kustom SDK, lihatMembangun SDK untuk Browser.

Membuat dan Memanggil Objek Layanan 75

https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/index.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/#Supported_Services
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/#Supported_Services

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Membutuhkan Layanan Individu

Memerlukan SDK untuk JavaScript seperti yang ditunjukkan sebelumnya menyertakan seluruh SDK
ke dalam kode Anda. Sebagai alternatif, Anda dapat memilih untuk hanya meminta layanan individual
yang digunakan oleh kode Anda. Pertimbangkan kode berikut yang digunakan untuk membuat objek
layanan Amazon S3.

// Import the AWS SDK
var AWS = require('aws-sdk');

// Set credentials and Region
// This can also be done directly on the service client
AWS.config.update({region: 'us-west-1', credentials: {YOUR_CREDENTIALS}});

var s3 = new AWS.S3({apiVersion: '2006-03-01'});

Pada contoh sebelumnya, require fungsi menentukan seluruh SDK. Jumlah kode untuk diangkut
melalui jaringan serta overhead memori kode Anda akan jauh lebih kecil jika hanya bagian SDK yang
Anda butuhkan untuk layanan Amazon S3 yang disertakan. Untuk memerlukan layanan individual,
panggil require fungsi seperti yang ditunjukkan, termasuk konstruktor layanan dalam semua huruf
kecil.

require('aws-sdk/clients/SERVICE');

Berikut adalah kode untuk membuat objek layanan Amazon S3 sebelumnya ketika hanya
menyertakan bagian Amazon S3 dari SDK.

// Import the Amazon S3 service client
var S3 = require('aws-sdk/clients/s3');

// Set credentials and Region
var s3 = new S3({
 apiVersion: '2006-03-01',
 region: 'us-west-1',
 credentials: {YOUR_CREDENTIALS}
 });

Anda masih dapat mengakses AWS namespace global tanpa setiap layanan yang melekat padanya.

require('aws-sdk/global');

Membutuhkan Layanan Individu 76

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Ini adalah teknik yang berguna ketika menerapkan konfigurasi yang sama di beberapa layanan
individual, misalnya untuk memberikan kredensyal yang sama untuk semua layanan. Membutuhkan
layanan individual harus mengurangi waktu pemuatan dan konsumsi memori di Node.js. Ketika
dilakukan bersama dengan alat bundling seperti Browserify atau webpack, memerlukan layanan
individual menghasilkan SDK menjadi sebagian kecil dari ukuran penuh. Ini membantu dengan
memori atau lingkungan terbatas ruang disk seperti perangkat IoT atau dalam fungsi Lambda.

Membuat Objek Layanan

Untuk mengakses fitur layanan melalui JavaScript API, pertama-tama Anda membuat objek
layanan yang digunakan untuk mengakses serangkaian fitur yang disediakan oleh kelas klien yang
mendasarinya. Umumnya ada satu kelas klien yang disediakan untuk setiap layanan; Namun,
beberapa layanan membagi akses ke fitur mereka di antara beberapa kelas klien.

Untuk menggunakan fitur, Anda harus membuat instance dari kelas yang menyediakan akses ke fitur
itu. Contoh berikut menunjukkan membuat objek layanan untuk DynamoDB dari AWS.DynamoDB
kelas klien.

var dynamodb = new AWS.DynamoDB({apiVersion: '2012-08-10'});

Secara default, objek layanan dikonfigurasi dengan pengaturan global yang juga digunakan untuk
mengkonfigurasi SDK. Namun, Anda dapat mengonfigurasi objek layanan dengan data konfigurasi
runtime yang spesifik untuk objek layanan tersebut. Data konfigurasi khusus layanan diterapkan
setelah menerapkan pengaturan konfigurasi global.

Dalam contoh berikut, objek EC2 layanan Amazon dibuat dengan konfigurasi untuk Wilayah tertentu
tetapi sebaliknya menggunakan konfigurasi global.

var ec2 = new AWS.EC2({region: 'us-west-2', apiVersion: '2014-10-01'});

Selain mendukung konfigurasi khusus layanan yang diterapkan ke objek layanan individual, Anda
juga dapat menerapkan konfigurasi khusus layanan ke semua objek layanan yang baru dibuat dari
kelas tertentu. Misalnya, untuk mengonfigurasi semua objek layanan yang dibuat dari EC2 kelas
Amazon untuk menggunakan Wilayah AS Barat (Oregonus-west-2) (), tambahkan berikut ini ke
objek konfigurasi AWS.config global.

AWS.config.ec2 = {region: 'us-west-2', apiVersion: '2016-04-01'};

Membuat Objek Layanan 77

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Mengunci Versi API dari Objek Layanan

Anda dapat mengunci objek layanan ke versi API tertentu dari layanan dengan menentukan
apiVersion opsi saat membuat objek. Dalam contoh berikut, objek layanan DynamoDB dibuat yang
dikunci ke versi API tertentu.

var dynamodb = new AWS.DynamoDB({apiVersion: '2011-12-05'});

Untuk informasi selengkapnya tentang mengunci versi API dari objek layanan, lihatMengunci Versi
API.

Menentukan Parameter Objek Layanan

Saat memanggil metode objek layanan, berikan parameter di JSON seperti yang dipersyaratkan oleh
API. Misalnya, di Amazon S3, untuk mendapatkan objek untuk bucket dan kunci tertentu, teruskan
parameter berikut ke metode. getObject Untuk informasi selengkapnya tentang meneruskan
parameter JSON, lihatBekerja dengan JSON.

s3.getObject({Bucket: 'bucketName', Key: 'keyName'});

Untuk informasi selengkapnya tentang parameter Amazon S3, lihat Class: AWS.S3di referensi API.

Selain itu, Anda dapat mengikat nilai ke parameter individual saat membuat objek layanan
menggunakan params parameter. Nilai params parameter objek layanan adalah peta yang
menentukan satu atau lebih nilai parameter yang ditentukan oleh objek layanan. Contoh berikut
menunjukkan Bucket parameter objek layanan Amazon S3 yang terikat ke bucket bernama. amzn-
s3-demo-bucket

var s3bucket = new AWS.S3({params: {Bucket: 'amzn-s3-demo-bucket'}, apiVersion:
 '2006-03-01' });

Dengan mengikat objek layanan ke bucket, objek s3bucket layanan memperlakukan nilai amzn-
s3-demo-bucket parameter sebagai nilai default yang tidak lagi perlu ditentukan untuk operasi
selanjutnya. Setiap nilai parameter terikat diabaikan saat menggunakan objek untuk operasi di mana
nilai parameter tidak berlaku. Anda dapat mengganti parameter terikat ini saat melakukan panggilan
pada objek layanan dengan menentukan nilai baru.

var s3bucket = new AWS.S3({ params: {Bucket: 'amzn-s3-demo-bucket'}, apiVersion:
 '2006-03-01' });

Mengunci Versi API dari Objek Layanan 78

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

s3bucket.getObject({Key: 'keyName'});
// ...
s3bucket.getObject({Bucket: 'amzn-s3-demo-bucket3', Key: 'keyOtherName'});

Detail tentang parameter yang tersedia untuk setiap metode dapat ditemukan di referensi API.

AWS SDK untuk JavaScript Panggilan Pencatatan

AWS SDK untuk JavaScript Ini diinstrumentasi dengan logger bawaan sehingga Anda dapat
mencatat panggilan API yang Anda buat dengan SDK untuk. JavaScript

Untuk mengaktifkan logger dan mencetak entri log di konsol, tambahkan pernyataan berikut ke kode
Anda.

AWS.config.logger = console;

Berikut adalah contoh dari output log.

[AWS s3 200 0.185s 0 retries] createMultipartUpload({ Bucket: 'amzn-s3-demo-logging-
bucket', Key: 'issues_1704' })

Menggunakan Logger Pihak Ketiga

Anda juga dapat menggunakan logger pihak ketiga, asalkan memiliki log() atau write() operasi
untuk menulis ke file log atau server. Anda harus menginstal dan mengatur logger kustom Anda
seperti yang diinstruksikan sebelum Anda dapat menggunakannya dengan SDK for. JavaScript

Salah satu logger yang dapat Anda gunakan di skrip browser atau di Node.js adalah logplease. Di
Node.js, Anda dapat mengkonfigurasi logplease untuk menulis entri log ke file log. Anda juga dapat
menggunakannya dengan webpack.

Saat menggunakan logger pihak ketiga, setel semua opsi sebelum menetapkan logger ke.
AWS.Config.logger Misalnya, berikut ini menentukan file log eksternal dan menetapkan tingkat
log untuk logplease

// Require AWS Node.js SDK
const AWS = require('aws-sdk')
// Require logplease
const logplease = require('logplease');
// Set external log file option

AWS SDK untuk JavaScript Panggilan Pencatatan 79

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

logplease.setLogfile('debug.log');
// Set log level
logplease.setLogLevel('DEBUG');
// Create logger
const logger = logplease.create('logger name');
// Assign logger to SDK
AWS.config.logger = logger;

Untuk informasi lebih lanjut tentang logplease, lihat logplease Simple JavaScript Logger on. GitHub

Layanan Panggilan Secara Asinkron

Semua permintaan yang dibuat melalui SDK bersifat asinkron. Ini penting untuk diingat saat menulis
skrip browser. JavaScript berjalan di browser web biasanya hanya memiliki satu thread eksekusi.
Setelah melakukan panggilan asinkron ke AWS layanan, skrip browser terus berjalan dan dalam
proses dapat mencoba mengeksekusi kode yang bergantung pada hasil asinkron sebelum kembali.

Membuat panggilan asinkron ke AWS layanan termasuk mengelola panggilan tersebut sehingga
kode Anda tidak mencoba menggunakan data sebelum data tersedia. Topik di bagian ini
menjelaskan perlunya mengelola panggilan asinkron dan merinci berbagai teknik yang dapat Anda
gunakan untuk mengelolanya.

Topik

• Mengelola Panggilan Asinkron

• Menggunakan Fungsi Callback Anonim

• Menggunakan Request Object Event Listener

• Menggunakan async/await

• Menggunakan JavaScript Janji

Mengelola Panggilan Asinkron

Misalnya, halaman beranda situs web e-commerce memungkinkan pelanggan yang kembali masuk.
Bagian dari manfaat bagi pelanggan yang masuk adalah bahwa, setelah masuk, situs kemudian
menyesuaikan diri dengan preferensi khusus mereka. Untuk membuat ini terjadi:

1. Pelanggan harus masuk dan divalidasi dengan kredensi masuk mereka.

2. Preferensi pelanggan diminta dari database pelanggan.

Layanan Panggilan Secara Asinkron 80

https://github.com/haadcode/logplease

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

3. Basis data menyediakan preferensi pelanggan yang digunakan untuk menyesuaikan situs sebelum
halaman dimuat.

Jika tugas-tugas ini dijalankan secara serempak, maka masing-masing harus selesai sebelum
tugas berikutnya dapat dimulai. Halaman web tidak akan dapat menyelesaikan pemuatan sampai
preferensi pelanggan kembali dari database. Namun, setelah kueri database dikirim ke server,
penerimaan data pelanggan dapat ditunda atau bahkan gagal karena kemacetan jaringan, lalu lintas
basis data yang sangat tinggi, atau koneksi perangkat seluler yang buruk.

Agar situs web tidak membeku dalam kondisi tersebut, hubungi database secara tidak sinkron.
Setelah panggilan database dijalankan, mengirimkan permintaan asinkron Anda, kode Anda terus
dijalankan seperti yang diharapkan. Jika Anda tidak mengelola respons panggilan asinkron dengan
benar, kode Anda dapat mencoba menggunakan informasi yang diharapkan kembali dari database
ketika data tersebut belum tersedia.

Menggunakan Fungsi Callback Anonim

Setiap metode objek layanan yang membuat AWS.Request objek dapat menerima fungsi callback
anonim sebagai parameter terakhir. Tanda tangan dari fungsi callback ini adalah:

function(error, data) {

Menggunakan Fungsi Callback 81

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 // callback handling code
}

Fungsi callback ini dijalankan ketika respon berhasil atau data kesalahan kembali. Jika pemanggilan
metode berhasil, isi respons tersedia untuk fungsi callback dalam parameter. data Jika panggilan
tidak berhasil, detail tentang kegagalan disediakan dalam error parameter.

Biasanya kode di dalam fungsi callback menguji kesalahan, yang diproses jika dikembalikan. Jika
kesalahan tidak dikembalikan, kode kemudian mengambil data dalam respons dari data parameter.
Bentuk dasar dari fungsi callback terlihat seperti contoh ini.

function(error, data) {
 if (error) {
 // error handling code
 console.log(error);
 } else {
 // data handling code
 console.log(data);
 }
}

Pada contoh sebelumnya, detail kesalahan atau data yang dikembalikan dicatat ke konsol. Berikut
adalah contoh yang menunjukkan fungsi callback diteruskan sebagai bagian dari memanggil metode
pada objek layanan.

new AWS.EC2({apiVersion: '2014-10-01'}).describeInstances(function(error, data) {
 if (error) {
 console.log(error); // an error occurred
 } else {
 console.log(data); // request succeeded
 }
});

Mengakses Objek Permintaan dan Respons

Dalam fungsi callback, JavaScript kata kunci this mengacu pada AWS.Response objek yang
mendasari untuk sebagian besar layanan. Dalam contoh berikut, httpResponse properti
AWS.Response objek digunakan dalam fungsi callback untuk mencatat data respons mentah dan
header untuk membantu debugging.

new AWS.EC2({apiVersion: '2014-10-01'}).describeInstances(function(error, data) {

Menggunakan Fungsi Callback 82

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 if (error) {
 console.log(error); // an error occurred
 // Using this keyword to access AWS.Response object and properties
 console.log("Response data and headers: " + JSON.stringify(this.httpResponse));
 } else {
 console.log(data); // request succeeded
 }
});

Selain itu, karena AWS.Response objek memiliki Request properti yang berisi AWS.Request yang
dikirim oleh panggilan metode asli, Anda juga dapat mengakses detail permintaan yang dibuat.

Menggunakan Request Object Event Listener

Jika Anda tidak membuat dan meneruskan fungsi callback anonim sebagai parameter saat Anda
memanggil metode objek layanan, panggilan metode menghasilkan AWS.Request objek yang harus
dikirim secara manual menggunakan send metodenya.

Untuk memproses respons, Anda harus membuat event listener untuk AWS.Request objek untuk
mendaftarkan fungsi callback untuk pemanggilan metode. Contoh berikut menunjukkan cara
membuat AWS.Request objek untuk memanggil metode objek layanan dan pendengar acara untuk
pengembalian yang berhasil.

// create the AWS.Request object
var request = new AWS.EC2({apiVersion: '2014-10-01'}).describeInstances();

// register a callback event handler
request.on('success', function(response) {
 // log the successful data response
 console.log(response.data);
});

// send the request
request.send();

Setelah send metode pada AWS.Request objek dipanggil, event handler mengeksekusi ketika objek
layanan menerima objekAWS.Response.

Untuk informasi selengkapnya tentang AWS.Request objek, lihat Class: AWS.Requestdi
Referensi API. Untuk informasi selengkapnya tentang AWS.Response objek, lihat Menggunakan
Response Object atau Class: AWS.Responsedi Referensi API.

Menggunakan Request Object Event Listener 83

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Request.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Response.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Merantai Beberapa Panggilan Balik

Anda dapat mendaftarkan beberapa callback pada objek permintaan apa pun. Beberapa panggilan
balik dapat didaftarkan untuk acara yang berbeda atau acara yang sama. Selain itu, Anda dapat
menghubungkan callback seperti yang ditunjukkan pada contoh berikut.

request.
 on('success', function(response) {
 console.log("Success!");
 }).
 on('error', function(response) {
 console.log("Error!");
 }).
 on('complete', function() {
 console.log("Always!");
 }).
 send();

Permintaan Acara Penyelesaian Objek

AWS.RequestObjek memunculkan peristiwa penyelesaian ini berdasarkan respons dari setiap
metode operasi layanan:

• success

• error

• complete

Anda dapat mendaftarkan fungsi callback dalam menanggapi salah satu peristiwa ini. Untuk daftar
lengkap semua peristiwa objek permintaan, lihat Class: AWS.Requestdi Referensi API.

Acara Sukses

successAcara ini diangkat setelah respons yang berhasil diterima dari objek layanan. Berikut adalah
cara Anda mendaftarkan fungsi callback untuk acara ini.

request.on('success', function(response) {
 // event handler code
});

Menggunakan Request Object Event Listener 84

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Request.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Respons menyediakan data properti yang berisi data respons serial dari layanan. Misalnya,
panggilan berikut ke listBuckets metode objek layanan Amazon S3

s3.listBuckets.on('success', function(response) {
 console.log(response.data);
}).send();

mengembalikan respon dan kemudian mencetak konten data properti berikut ke konsol.

{ Owner: { ID: '...', DisplayName: '...' },
 Buckets:
 [{ Name: 'someBucketName', CreationDate: someCreationDate },
 { Name: 'otherBucketName', CreationDate: otherCreationDate }],
 RequestId: '...' }

Peristiwa kesalahan

errorAcara ini muncul pada respons kesalahan yang diterima dari objek layanan. Berikut adalah
cara Anda mendaftarkan fungsi callback untuk acara ini.

request.on('error', function(error, response) {
 // event handling code
});

Ketika error acara dinaikkan, nilai data properti respon adalah null dan error properti berisi
data kesalahan. errorObjek terkait diteruskan sebagai parameter pertama ke fungsi callback
terdaftar. Misalnya, kode berikut:

s3.config.credentials.accessKeyId = 'invalid';
s3.listBuckets().on('error', function(error, response) {
 console.log(error);
}).send();

mengembalikan kesalahan dan kemudian mencetak data kesalahan berikut ke konsol.

{ code: 'Forbidden', message: null }

Menggunakan Request Object Event Listener 85

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Acara Lengkap

completeAcara dimunculkan ketika panggilan objek layanan telah selesai, terlepas dari apakah
panggilan tersebut menghasilkan keberhasilan atau kesalahan. Berikut adalah cara Anda
mendaftarkan fungsi callback untuk acara ini.

request.on('complete', function(response) {
 // event handler code
});

Gunakan callback complete acara untuk menangani pembersihan permintaan apa pun yang harus
dijalankan terlepas dari keberhasilan atau kesalahan. Jika Anda menggunakan data respons di dalam
callback untuk complete acara tersebut, periksa dulu response.error properti response.data
atau sebelum mencoba mengakses salah satunya, seperti yang ditunjukkan pada contoh berikut.

request.on('complete', function(response) {
 if (response.error) {
 // an error occurred, handle it
 } else {
 // we can use response.data here
 }
}).send();

Permintaan Objek Acara HTTP

AWS.RequestObjek memunculkan peristiwa HTTP ini berdasarkan respons dari setiap metode
operasi layanan:

• httpHeaders

• httpData

• httpUploadProgress

• httpDownloadProgress

• httpError

• httpDone

Anda dapat mendaftarkan fungsi callback dalam menanggapi salah satu peristiwa ini. Untuk daftar
lengkap semua peristiwa objek permintaan, lihat Class: AWS.Requestdi Referensi API.

Menggunakan Request Object Event Listener 86

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Request.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Acara HttpHeaders

httpHeadersAcara ini dinaikkan ketika header dikirim oleh server jarak jauh. Berikut adalah cara
Anda mendaftarkan fungsi callback untuk acara ini.

request.on('httpHeaders', function(statusCode, headers, response) {
 // event handling code
});

statusCodeParameter untuk fungsi callback adalah kode status HTTP. headersParameter berisi
header respons.

Acara HttpData

httpDataAcara ini dinaikkan untuk mengalirkan paket data respons dari layanan. Berikut adalah
cara Anda mendaftarkan fungsi callback untuk acara ini.

request.on('httpData', function(chunk, response) {
 // event handling code
});

Acara ini biasanya digunakan untuk menerima respons besar dalam potongan saat memuat seluruh
respons ke dalam memori tidak praktis. Acara ini memiliki chunk parameter tambahan yang berisi
sebagian data aktual dari server.

Jika Anda mendaftarkan callback untuk httpData acara tersebut, data properti respons berisi
seluruh keluaran serial untuk permintaan tersebut. Anda harus menghapus httpData pendengar
default jika Anda tidak memiliki parsing tambahan dan overhead memori untuk penangan bawaan.

httpUploadProgress dan httpDownloadProgress Peristiwa

httpUploadProgressAcara ini muncul ketika permintaan HTTP telah mengunggah lebih banyak
data. Demikian pula, httpDownloadProgress acara dinaikkan ketika permintaan HTTP telah
mengunduh lebih banyak data. Berikut adalah cara Anda mendaftarkan fungsi callback untuk acara
ini.

request.on('httpUploadProgress', function(progress, response) {
 // event handling code
})

Menggunakan Request Object Event Listener 87

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

.on('httpDownloadProgress', function(progress, response) {
 // event handling code
});

progressParameter ke fungsi callback berisi objek dengan byte yang dimuat dan total permintaan.

Acara HttpError

httpErrorAcara dimunculkan ketika permintaan HTTP gagal. Berikut adalah cara Anda
mendaftarkan fungsi callback untuk acara ini.

request.on('httpError', function(error, response) {
 // event handling code
});

errorParameter ke fungsi callback berisi kesalahan yang dilemparkan.

Acara HttpDone

httpDoneAcara ini dinaikkan ketika server selesai mengirim data. Berikut adalah cara Anda
mendaftarkan fungsi callback untuk acara ini.

request.on('httpDone', function(response) {
 // event handling code
});

Menggunakan async/await

Anda dapat menggunakan async/await pola dalam panggilan Anda ke file AWS SDK untuk
JavaScript. Sebagian besar fungsi yang mengambil panggilan balik tidak mengembalikan janji.
Karena Anda hanya menggunakan await fungsi yang mengembalikan janji, untuk menggunakan
async/await pola Anda perlu menghubungkan .promise() metode ke akhir panggilan Anda, dan
menghapus panggilan balik.

Contoh berikut menggunakan async/await untuk mencantumkan semua tabel Amazon DynamoDB
Anda. us-west-2

var AWS = require("aws-sdk");
//Create an Amazon DynamoDB client service object.

Menggunakan async/await 88

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

dbClient = new AWS.DynamoDB({ region: "us-west-2" });
// Call DynamoDB to list existing tables
const run = async () => {
 try {
 const results = await dbClient.listTables({}).promise();
 console.log(results.TableNames.join("\n"));
 } catch (err) {
 console.error(err);
 }
};
run();

Note

Tidak semua browser mendukung async/await. Lihat Fungsi async untuk daftar browser
dengan dukungan async/await.

Menggunakan JavaScript Janji

AWS.Request.promiseMetode ini menyediakan cara untuk memanggil operasi layanan dan
mengelola aliran asinkron alih-alih menggunakan callback. Dalam Node.js dan skrip browser,
AWS.Request objek dikembalikan ketika operasi layanan dipanggil tanpa fungsi callback. Anda
dapat memanggil send metode permintaan untuk melakukan panggilan layanan.

Namun, AWS.Request.promise segera mulai panggilan layanan dan mengembalikan janji yang
dipenuhi dengan data properti respons atau ditolak dengan error properti respons.

var request = new AWS.EC2({apiVersion: '2014-10-01'}).describeInstances();

// create the promise object
var promise = request.promise();

// handle promise's fulfilled/rejected states
promise.then(
 function(data) {
 /* process the data */
 },
 function(error) {
 /* handle the error */
 }

Menggunakan Janji 89

https://caniuse.com/#feat=async-functions

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

);

Contoh berikutnya mengembalikan janji yang dipenuhi dengan data objek, atau ditolak dengan
error objek. Menggunakan janji, satu panggilan balik tidak bertanggung jawab untuk mendeteksi
kesalahan. Sebaliknya, callback yang benar dipanggil berdasarkan keberhasilan atau kegagalan
permintaan.

var s3 = new AWS.S3({apiVersion: '2006-03-01', region: 'us-west-2'});
var params = {
 Bucket: 'bucket',
 Key: 'example2.txt',
 Body: 'Uploaded text using the promise-based method!'
};
var putObjectPromise = s3.putObject(params).promise();
putObjectPromise.then(function(data) {
 console.log('Success');
}).catch(function(err) {
 console.log(err);
});

Koordinasi Beberapa Janji

Dalam beberapa situasi, kode Anda harus membuat beberapa panggilan asinkron yang memerlukan
tindakan hanya jika semuanya berhasil dikembalikan. Jika Anda mengelola panggilan metode
asinkron individual tersebut dengan janji, Anda dapat membuat janji tambahan yang menggunakan
metode ini. all Metode ini memenuhi janji payung ini jika dan ketika berbagai janji yang Anda
berikan ke metode terpenuhi. Fungsi callback dilewatkan sebuah array dari nilai-nilai dari janji-janji
yang diteruskan ke all metode.

Dalam contoh berikut, AWS Lambda fungsi harus membuat tiga panggilan asinkron ke Amazon
DynamoDB tetapi hanya dapat diselesaikan setelah janji untuk setiap panggilan terpenuhi.

Promise.all([firstPromise, secondPromise, thirdPromise]).then(function(values) {

 console.log("Value 0 is " + values[0].toString);
 console.log("Value 1 is " + values[1].toString);
 console.log("Value 2 is " + values[2].toString);

 // return the result to the caller of the Lambda function
 callback(null, values);
});

Menggunakan Janji 90

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Browser dan Node.js Support for Promises

Support for native JavaScript promises (ECMAScript 2015) tergantung pada JavaScript mesin dan
versi di mana kode Anda dijalankan. Untuk membantu menentukan dukungan untuk JavaScript janji
di setiap lingkungan tempat kode Anda perlu dijalankan, lihat Tabel ECMAScript Kompatibilitas di.
GitHub

Menggunakan Implementasi Janji Lainnya

Selain implementasi janji asli pada tahun ECMAScript 2015, Anda juga dapat menggunakan pustaka
janji pihak ketiga, termasuk:

• burung biru

• RSVP

• Q

Pustaka janji opsional ini dapat berguna jika Anda memerlukan kode Anda untuk berjalan di
lingkungan yang tidak mendukung implementasi janji asli di ECMAScript 5 dan ECMAScript 2015.

Untuk menggunakan pustaka janji pihak ketiga, tetapkan dependensi janji pada SDK dengan
memanggil setPromisesDependency metode objek konfigurasi global. Dalam skrip browser,
pastikan untuk memuat pustaka janji pihak ketiga sebelum memuat SDK. Dalam contoh berikut, SDK
dikonfigurasi untuk menggunakan implementasi di pustaka janji bluebird.

AWS.config.setPromisesDependency(require('bluebird'));

Untuk kembali menggunakan implementasi janji asli JavaScript mesin, panggil
setPromisesDependency lagi, berikan nama null alih-alih perpustakaan.

Menggunakan Response Object

Setelah metode objek layanan dipanggil, ia mengembalikan AWS.Response objek dengan
meneruskannya ke fungsi callback Anda. Anda mengakses konten respons melalui properti
AWS.Response objek. Ada dua properti AWS.Response objek yang Anda gunakan untuk
mengakses isi respons:

• dataproperti

Menggunakan Response Object 91

https://compat-table.github.io/compat-table/es6/
http://bluebirdjs.com
https://github.com/tildeio/rsvp.js/
https://github.com/kriskowal/q

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• errorproperti

Saat menggunakan mekanisme callback standar, kedua properti ini disediakan sebagai parameter
pada fungsi callback anonim seperti yang ditunjukkan pada contoh berikut.

function(error, data) {
 if (error) {
 // error handling code
 console.log(error);
 } else {
 // data handling code
 console.log(data);
 }
}

Mengakses Data yang Dikembalikan di Objek Response

dataProperti AWS.Response objek berisi data serial yang dikembalikan oleh permintaan layanan.
Ketika permintaan berhasil, data properti berisi objek yang berisi peta ke data yang dikembalikan.
dataProperti bisa null jika terjadi kesalahan.

Berikut adalah contoh memanggil getItem metode tabel DynamoDB untuk mengambil nama file file
gambar untuk digunakan sebagai bagian dari permainan.

// Initialize parameters needed to call DynamoDB
var slotParams = {
 Key : {'slotPosition' : {N: '0'}},
 TableName : 'slotWheels',
 ProjectionExpression: 'imageFile'
};

// prepare request object for call to DynamoDB
var request = new AWS.DynamoDB({region: 'us-west-2', apiVersion:
 '2012-08-10'}).getItem(slotParams);
// log the name of the image file to load in the slot machine
request.on('success', function(response) {
 // logs a value like "cherries.jpg" returned from DynamoDB
 console.log(response.data.Item.imageFile.S);
});
// submit DynamoDB request
request.send();

Mengakses Data yang Dikembalikan di Objek Response 92

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Untuk contoh ini, tabel DynamoDB adalah pencarian gambar yang menunjukkan hasil tarikan mesin
slot seperti yang ditentukan oleh parameter di. slotParams

Setelah pemanggilan getItem metode berhasil, data properti AWS.Response objek berisi
Item objek yang dikembalikan oleh DynamoDB. Data yang dikembalikan diakses sesuai dengan
ProjectionExpression parameter permintaan, yang dalam hal ini berarti imageFile anggota
Item objek. Karena imageFile anggota memegang nilai string, Anda mengakses nama file dari
gambar itu sendiri melalui nilai anggota S anak dariimageFile.

Paging Melalui Data yang Dikembalikan

Terkadang konten data properti yang dikembalikan oleh permintaan layanan menjangkau
beberapa halaman. Anda dapat mengakses halaman data berikutnya dengan memanggil
response.nextPage metode. Metode ini mengirimkan permintaan baru. Respons dari permintaan
dapat ditangkap baik dengan callback atau dengan sukses dan pendengar kesalahan.

Anda dapat memeriksa untuk melihat apakah data yang dikembalikan oleh permintaan layanan
memiliki halaman data tambahan dengan memanggil response.hasNextPage metode. Metode
ini mengembalikan boolean untuk menunjukkan apakah panggilan response.nextPage
mengembalikan data tambahan.

s3.listObjects({Bucket: 'bucket'}).on('success', function handlePage(response) {
 // do something with response.data
 if (response.hasNextPage()) {
 response.nextPage().on('success', handlePage).send();
 }
}).send();

Mengakses Informasi Kesalahan dari Objek Respons

errorProperti AWS.Response objek berisi data kesalahan yang tersedia jika terjadi kesalahan
layanan atau kesalahan transfer. Kesalahan yang dikembalikan mengambil formulir berikut.

{ code: 'SHORT_UNIQUE_ERROR_CODE', message: 'a descriptive error message' }

Dalam kasus kesalahan, nilai data properti adalahnull. Jika Anda menangani peristiwa yang
dapat berada dalam status kegagalan, selalu periksa apakah error properti telah disetel sebelum
mencoba mengakses nilai data properti.

Paging Melalui Data yang Dikembalikan 93

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Mengakses Objek Permintaan Asal

requestProperti menyediakan akses ke AWS.Request objek asal. Hal ini dapat berguna untuk
merujuk ke AWS.Request objek asli untuk mengakses parameter asli yang dikirim. Dalam contoh
berikut, request properti digunakan untuk mengakses Key parameter permintaan layanan asli.

s3.getObject({Bucket: 'bucket', Key: 'key'}).on('success', function(response) {
 console.log("Key was", response.request.params.Key);
}).send();

Bekerja dengan JSON
JSON adalah format untuk pertukaran data yang dapat dibaca manusia dan mesin. Sementara nama
JSON adalah akronim dari JavaScript Object Notation, format JSON tidak tergantung pada bahasa
pemrograman apa pun.

SDK untuk JavaScript menggunakan JSON untuk mengirim data ke objek layanan saat membuat
permintaan dan menerima data dari objek layanan sebagai JSON. Untuk informasi lebih lanjut
tentang JSON, lihat json.org.

JSON mewakili data dalam dua cara:

• Objek, yang merupakan kumpulan pasangan nilai nama yang tidak dipesan. Sebuah objek
didefinisikan dalam kurung kurung kiri ({) dan kanan (}). Setiap pasangan nilai dimulai dengan
nama, diikuti dengan titik dua, diikuti dengan nilai. Pasangan nama-nilai dipisahkan koma.

• Sebuah rangkaian, yang merupakan kumpulan nilai yang dipesan. Array didefinisikan dalam tanda
kurung kiri ([) dan kanan (]). Item dalam array dipisahkan koma.

Berikut adalah contoh objek JSON yang berisi array objek di mana objek mewakili kartu dalam
permainan kartu. Setiap kartu didefinisikan oleh dua pasangan nama-nilai, satu yang menentukan

Mengakses Objek Permintaan Asal 94

https://json.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

nilai unik untuk mengidentifikasi kartu itu dan satu lagi yang menentukan URL yang menunjuk ke
gambar kartu yang sesuai.

var cards = [{"CardID":"defaultname", "Image":"defaulturl"},
 {"CardID":"defaultname", "Image":"defaulturl"},
 {"CardID":"defaultname", "Image":"defaulturl"},
 {"CardID":"defaultname", "Image":"defaulturl"},
 {"CardID":"defaultname", "Image":"defaulturl"}];

JSON sebagai Parameter Objek Layanan

Berikut adalah contoh JSON sederhana yang digunakan untuk menentukan parameter panggilan ke
objek layanan Lambda.

var pullParams = {
 FunctionName : 'slotPull',
 InvocationType : 'RequestResponse',
 LogType : 'None'
};

pullParamsObjek didefinisikan oleh tiga pasangan nama-nilai, dipisahkan oleh koma di dalam
kurung kiri dan kanan. Saat memberikan parameter ke panggilan metode objek layanan, nama
ditentukan oleh nama parameter untuk metode objek layanan yang Anda rencanakan untuk
dipanggil. Saat menjalankan fungsi LambdaFunctionName,,InvocationType, LogType dan
merupakan parameter yang digunakan untuk memanggil metode invoke pada objek layanan
Lambda.

Saat meneruskan parameter ke panggilan metode objek layanan, berikan objek JSON ke panggilan
metode, seperti yang ditunjukkan pada contoh berikut untuk menjalankan fungsi Lambda.

lambda = new AWS.Lambda({region: 'us-west-2', apiVersion: '2015-03-31'});
// create JSON object for service call parameters
var pullParams = {
 FunctionName : 'slotPull',
 InvocationType : 'RequestResponse',
 LogType : 'None'
};
// invoke Lambda function, passing JSON object
lambda.invoke(pullParams, function(err, data) {
 if (err) {
 console.log(err);

JSON sebagai Parameter Objek Layanan 95

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 } else {
 console.log(data);
 }
});

Mengembalikan Data sebagai JSON

JSON menyediakan cara standar untuk meneruskan data antara bagian-bagian dari aplikasi
yang perlu mengirim beberapa nilai pada saat yang sama. Metode kelas klien di API biasanya
mengembalikan JSON dalam data parameter yang diteruskan ke fungsi callback mereka. Misalnya,
berikut adalah panggilan ke getBucketCors metode kelas klien Amazon S3.

// call S3 to retrieve CORS configuration for selected bucket
s3.getBucketCors(bucketParams, function(err, data) {
 if (err) {
 console.log(err);
 } else if (data) {
 console.log(JSON.stringify(data));
 }
});

Nilai data adalah objek JSON, dalam contoh ini JSON yang menjelaskan konfigurasi CORS saat ini
untuk bucket Amazon S3 yang ditentukan.

{
 "CORSRules": [
 {
 "AllowedHeaders":["*"],
 "AllowedMethods":["POST","GET","PUT","DELETE","HEAD"],
 "AllowedOrigins":["*"],
 "ExposeHeaders":[],
 "MaxAgeSeconds":3000
 }
]
}

Coba lagi strategi di v2 AWS SDK untuk JavaScript

Banyak komponen di jaringan, seperti server DNS, sakelar, penyeimbang beban, dan lainnya dapat
menghasilkan kesalahan di mana pun selama permintaan tertentu. Teknik biasa untuk menangani

Mengembalikan Data sebagai JSON 96

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

respons kesalahan ini dalam lingkungan jaringan adalah dengan menerapkan percobaan ulang
dalam aplikasi klien. Teknik ini meningkatkan keandalan aplikasi dan mengurangi biaya operasional
bagi pengembang. AWS SDKs menerapkan logika coba ulang otomatis untuk AWS permintaan
Anda.

Perilaku coba lagi berbasis backoff eksponensial

AWS SDK untuk JavaScript v2 mengimplementasikan logika coba lagi menggunakan backoff
eksponensial dengan jitter penuh untuk kontrol aliran yang lebih baik. Ide di balik backoff
eksponensial adalah menggunakan waktu tunggu yang semakin lama antara percobaan ulang untuk
respons kesalahan yang berurutan. Jitter (penundaan acak) digunakan untuk mencegah tabrakan
berturut-turut.

Menguji coba lagi penundaan di v2

Untuk menguji penundaan coba lagi di v2, kode di node_ modules/aws-sdk/lib/event _listeners.js
diperbarui ke console.log nilai yang ada dalam penundaan variabel sebagai berikut:

// delay < 0 is a signal from customBackoff to skip retries
if (willRetry && delay >= 0) {
 resp.error = null;
 console.log('retry delay: ' + delay);
 setTimeout(done, delay);
} else {
 done();
}

Coba lagi penundaan dengan konfigurasi default

Anda dapat menguji penundaan untuk operasi apa pun pada klien AWS SDK. Kami memanggil
listTables operasi pada klien DynamoDB menggunakan kode berikut:

import AWS from "aws-sdk";

const region = "us-east-1";
const client = new AWS.DynamoDB({ region });
await client.listTables({}).promise();

Untuk menguji percobaan ulang, kami mensimulasikan NetworkingError dengan memutuskan
koneksi internet dari perangkat yang menjalankan kode pengujian. Anda juga dapat mengatur proxy
untuk mengembalikan Kesalahan kustom.

Perilaku coba lagi berbasis backoff eksponensial 97

https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/#Jitter
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/#Jitter
https://github.com/aws/aws-sdk-js/blob/master/lib/event_listeners.js#L588

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Saat menjalankan kode, Anda dapat melihat bahwa coba lagi penundaan menggunakan backoff
eksponensial dengan jitter sebagai berikut:

retry delay: 7.39361151766359
retry delay: 9.0672860785882
retry delay: 134.89340825668168
retry delay: 398.53559817403965
retry delay: 523.8076165896343
retry delay: 1323.8789643058465

Karena coba lagi menggunakan jitter, Anda akan mendapatkan nilai yang berbeda dalam
menjalankan kode contoh.

Coba lagi penundaan dengan basis kustom

AWS SDK untuk JavaScript V2 memungkinkan melewatkan jumlah basis khusus milidetik untuk
digunakan dalam backoff eksponensial untuk percobaan ulang operasi. Defaultnya 100 ms untuk
semua layanan kecuali DynamoDB, di mana defaultnya 50 ms.

Kami menguji coba ulang dengan basis khusus 1000 ms sebagai berikut:

...
const client = new AWS.DynamoDB({ region, retryDelayOptions: { base: 1000 } });
...

Kami mensimulasikan NetworkingError dengan memutuskan koneksi internet dari perangkat
yang menjalankan kode pengujian. Anda dapat melihat bahwa nilai untuk penundaan coba lagi lebih
tinggi dibandingkan dengan proses sebelumnya di mana defaultnya adalah 50 atau 100 ms.

retry delay: 356.2841549924913
retry delay: 1183.5216495444615
retry delay: 2266.997988094194
retry delay: 1244.6948354966453
retry delay: 4200.323030066383

Karena coba lagi menggunakan jitter, Anda akan mendapatkan nilai yang berbeda dalam
menjalankan kode contoh.

Perilaku coba lagi berbasis backoff eksponensial 98

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Coba lagi penundaan dengan algoritma backoff khusus

AWS SDK untuk JavaScript V2 juga memungkinkan meneruskan fungsi backoff khusus yang
menerima hitungan coba lagi dan kesalahan dan mengembalikan jumlah waktu untuk menunda
dalam milidetik. Jika hasilnya adalah nilai negatif bukan nol, tidak ada upaya coba lagi yang akan
dilakukan.

Kami menguji fungsi backoff khusus yang menggunakan backoff linier dengan nilai dasar 200 ms
sebagai berikut:

...
const client = new AWS.DynamoDB({
 region,
 retryDelayOptions: { customBackoff: (count, error) => (count + 1) * 200 },
});
...

Kami mensimulasikan NetworkingError dengan memutuskan koneksi internet dari perangkat
yang menjalankan kode pengujian. Anda dapat melihat bahwa nilai untuk penundaan coba lagi
adalah kelipatan 200.

retry delay: 200
retry delay: 400
retry delay: 600
retry delay: 800
retry delay: 1000

Perilaku coba lagi berbasis backoff eksponensial 99

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

SDK untuk Contoh JavaScript Kode

Topik di bagian ini berisi contoh bagaimana menggunakan AWS SDK untuk JavaScript dengan APIs
berbagai layanan untuk melaksanakan tugas-tugas umum.

Temukan kode sumber untuk contoh-contoh ini dan lainnya dalam repositori contoh kode AWS
dokumentasi di. GitHub Untuk mengusulkan contoh kode baru agar tim AWS dokumentasi
mempertimbangkan untuk memproduksi, buat permintaan baru. Tim ingin menghasilkan contoh
kode yang mencakup skenario dan kasus penggunaan yang lebih luas, dibandingkan cuplikan
kode sederhana yang hanya mencakup panggilan API individual. Untuk petunjuknya, lihat bagian
Penulisan kode di Pedoman kontribusi.

Topik

• CloudWatch Contoh Amazon

• Contoh Amazon DynamoDB

• EC2 Contoh Amazon

• AWS Elemental MediaConvert Contoh

• AWS Contoh IAM

• Contoh Kinesis Amazon

• Contoh-contoh Amazon S3

• Contoh Layanan Email Sederhana Amazon

• Contoh Layanan Pemberitahuan Sederhana Amazon

• Amazon SQS Contoh

CloudWatch Contoh Amazon

Amazon CloudWatch (CloudWatch) adalah layanan web yang memantau sumber daya Amazon
Web Services dan aplikasi yang Anda jalankan AWS secara real time. Anda dapat menggunakan
CloudWatch untuk mengumpulkan dan melacak metrik, yang merupakan variabel yang dapat Anda
ukur untuk sumber daya dan aplikasi Anda. CloudWatch alarm mengirim pemberitahuan atau secara
otomatis membuat perubahan pada sumber daya yang Anda pantau berdasarkan aturan yang Anda
tetapkan.

CloudWatch Contoh Amazon 100

https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/CONTRIBUTING.md#authoring-code

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

JavaScript API untuk CloudWatch diekspos melalui kelas
AWS.CloudWatchAWS.CloudWatchEvents,, dan AWS.CloudWatchLogs klien. Untuk informasi
selengkapnya tentang penggunaan class CloudWatch klien Class: AWS.CloudWatch, lihat
Class: AWS.CloudWatchEvents, dan Class: AWS.CloudWatchLogsdi referensi API.

Topik

• Membuat Alarm di Amazon CloudWatch

• Menggunakan Alarm Actions di Amazon CloudWatch

• Mendapatkan Metrik dari Amazon CloudWatch

• Mengirim Acara ke CloudWatch Acara Amazon

• Menggunakan Filter Berlangganan di CloudWatch Log Amazon

Membuat Alarm di Amazon CloudWatch

Contoh kode Node.js ini menunjukkan:

• Cara mengambil informasi dasar tentang CloudWatch alarm Anda.

• Cara membuat dan menghapus CloudWatch alarm.

Membuat Alarm di Amazon CloudWatch 101

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchEvents.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchLogs.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Skenario

Alarm mengawasi satu metrik selama jangka waktu yang Anda tentukan, dan melakukan satu atau
beberapa tindakan berdasarkan nilai metrik relatif terhadap ambang batas tertentu selama jangka
waktu tertentu.

Dalam contoh ini, serangkaian modul Node.js digunakan untuk membuat alarm di CloudWatch.
Modul Node.js menggunakan SDK JavaScript untuk membuat alarm menggunakan metode kelas
AWS.CloudWatch klien berikut:

• describeAlarms

• putMetricAlarm

• deleteAlarms

Untuk informasi selengkapnya tentang CloudWatch alarm, lihat Membuat CloudWatch Alarm Amazon
di CloudWatch Panduan Pengguna Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Menggambarkan Alarm

Buat modul Node.js dengan nama filecw_describealarms.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses CloudWatch, buat objek
AWS.CloudWatch layanan. Buat objek JSON untuk menahan parameter untuk mengambil deskripsi
alarm, membatasi alarm yang dikembalikan ke alarm dengan status. INSUFFICIENT_DATA
Kemudian panggil describeAlarms metode objek AWS.CloudWatch layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region

Membuat Alarm di Amazon CloudWatch 102

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#describeAlarms-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#putMetricAlarm-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#deleteAlarms-property
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

AWS.config.update({ region: "REGION" });

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

cw.describeAlarms({ StateValue: "INSUFFICIENT_DATA" }, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 // List the names of all current alarms in the console
 data.MetricAlarms.forEach(function (item, index, array) {
 console.log(item.AlarmName);
 });
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node cw_describealarms.js

Kode contoh ini dapat ditemukan di sini GitHub.

Membuat Alarm untuk CloudWatch Metrik

Buat modul Node.js dengan nama filecw_putmetricalarm.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses CloudWatch, buat objek
AWS.CloudWatch layanan. Buat objek JSON untuk parameter yang diperlukan untuk membuat
alarm berdasarkan metrik, dalam hal ini pemanfaatan CPU dari instance Amazon EC2 . Parameter
yang tersisa diatur sehingga alarm terpicu ketika metrik melebihi ambang 70 persen. Kemudian
panggil describeAlarms metode objek AWS.CloudWatch layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

var params = {
 AlarmName: "Web_Server_CPU_Utilization",
 ComparisonOperator: "GreaterThanThreshold",

Membuat Alarm di Amazon CloudWatch 103

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_describealarms.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 EvaluationPeriods: 1,
 MetricName: "CPUUtilization",
 Namespace: "AWS/EC2",
 Period: 60,
 Statistic: "Average",
 Threshold: 70.0,
 ActionsEnabled: false,
 AlarmDescription: "Alarm when server CPU exceeds 70%",
 Dimensions: [
 {
 Name: "InstanceId",
 Value: "INSTANCE_ID",
 },
],
 Unit: "Percent",
};

cw.putMetricAlarm(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node cw_putmetricalarm.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Alarm

Buat modul Node.js dengan nama filecw_deletealarms.js. Pastikan untuk mengkonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Untuk mengakses CloudWatch, buat objek AWS.CloudWatch
layanan. Buat objek JSON untuk menyimpan nama alarm yang ingin Anda hapus. Kemudian panggil
deleteAlarms metode objek AWS.CloudWatch layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

Membuat Alarm di Amazon CloudWatch 104

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_putmetricalarm.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

var params = {
 AlarmNames: ["Web_Server_CPU_Utilization"],
};

cw.deleteAlarms(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node cw_deletealarms.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menggunakan Alarm Actions di Amazon CloudWatch

Contoh kode Node.js ini menunjukkan:

• Cara mengubah status EC2 instans Amazon Anda secara otomatis berdasarkan CloudWatch
alarm.

Skenario

Dengan menggunakan tindakan alarm, Anda dapat membuat alarm yang secara otomatis
menghentikan, menghentikan, me-reboot, atau memulihkan instans Amazon EC2 Anda. Anda dapat
menggunakan tindakan berhenti atau menghentikan saat Anda tidak lagi membutuhkan instance
untuk dijalankan. Anda dapat menggunakan tindakan reboot dan memulihkan untuk secara otomatis
me-reboot instance tersebut.

Menggunakan Alarm Actions di Amazon CloudWatch 105

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_deletealarms.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Dalam contoh ini, serangkaian modul Node.js digunakan untuk menentukan tindakan alarm
CloudWatch yang memicu reboot EC2 instance Amazon. Modul Node.js menggunakan SDK for
JavaScript untuk mengelola EC2 instans Amazon menggunakan metode kelas CloudWatch klien
berikut:

• enableAlarmActions

• disableAlarmActions

Untuk informasi selengkapnya tentang tindakan CloudWatch alarm, lihat Membuat Alarm untuk
Berhenti, Menghentikan, Memulai Ulang, atau Memulihkan Instance di CloudWatch Panduan
Pengguna Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Buat peran IAM yang kebijakannya memberikan izin untuk mendeskripsikan, mem-boot ulang,
menghentikan, atau menghentikan instans Amazon. EC2 Untuk informasi selengkapnya tentang
membuat peran IAM, lihat Membuat Peran untuk Mendelegasikan Izin ke AWS Layanan di
Panduan Pengguna IAM.

Gunakan kebijakan peran berikut saat membuat peran IAM.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:Describe*",
 "ec2:Describe*",

Menggunakan Alarm Actions di Amazon CloudWatch 106

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#enableAlarmActions-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#disableAlarmActions-property
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingAlarmActions.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingAlarmActions.html
http://nodejs.org
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 "ec2:RebootInstances",
 "ec2:StopInstances*",
 "ec2:TerminateInstances"
],
 "Resource": [
 "*"
]
 }
]
}

Konfigurasikan SDK untuk JavaScript dengan membuat objek konfigurasi global lalu setel Wilayah
untuk kode Anda. Dalam contoh ini, Region diatur keus-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');
// Set the Region
AWS.config.update({region: 'us-west-2'});

Membuat dan Mengaktifkan Tindakan pada Alarm

Buat modul Node.js dengan nama filecw_enablealarmactions.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses CloudWatch, buat
objek AWS.CloudWatch layanan.

Buat objek JSON untuk menahan parameter untuk membuat alarm, menentukan ActionsEnabled
sebagai true dan array ARNs untuk tindakan alarm akan memicu. Panggil putMetricAlarm
metode objek AWS.CloudWatch layanan, yang membuat alarm jika tidak ada atau memperbaruinya
jika alarm memang ada.

Dalam fungsi callback untukputMetricAlarm, setelah berhasil menyelesaikan membuat objek
JSON yang berisi nama alarm. CloudWatch Panggil enableAlarmActions metode untuk
mengaktifkan tindakan alarm.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

Menggunakan Alarm Actions di Amazon CloudWatch 107

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

var params = {
 AlarmName: "Web_Server_CPU_Utilization",
 ComparisonOperator: "GreaterThanThreshold",
 EvaluationPeriods: 1,
 MetricName: "CPUUtilization",
 Namespace: "AWS/EC2",
 Period: 60,
 Statistic: "Average",
 Threshold: 70.0,
 ActionsEnabled: true,
 AlarmActions: ["ACTION_ARN"],
 AlarmDescription: "Alarm when server CPU exceeds 70%",
 Dimensions: [
 {
 Name: "InstanceId",
 Value: "INSTANCE_ID",
 },
],
 Unit: "Percent",
};

cw.putMetricAlarm(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Alarm action added", data);
 var paramsEnableAlarmAction = {
 AlarmNames: [params.AlarmName],
 };
 cw.enableAlarmActions(paramsEnableAlarmAction, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Alarm action enabled", data);
 }
 });
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

Menggunakan Alarm Actions di Amazon CloudWatch 108

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

node cw_enablealarmactions.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menonaktifkan Tindakan pada Alarm

Buat modul Node.js dengan nama filecw_disablealarmactions.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses CloudWatch, buat
objek AWS.CloudWatch layanan. Buat objek JSON yang berisi nama CloudWatch alarm. Panggil
disableAlarmActions metode untuk menonaktifkan tindakan untuk alarm ini.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

cw.disableAlarmActions(
 { AlarmNames: ["Web_Server_CPU_Utilization"] },
 function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
 }
);

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node cw_disablealarmactions.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menggunakan Alarm Actions di Amazon CloudWatch 109

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_enablealarmactions.js
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_disablealarmactions.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Mendapatkan Metrik dari Amazon CloudWatch

Contoh kode Node.js ini menunjukkan:

• Cara mengambil daftar CloudWatch metrik yang diterbitkan.

• Cara mempublikasikan titik data ke CloudWatch metrik.

Skenario

Metrik adalah data tentang performa sistem Anda. Anda dapat mengaktifkan pemantauan terperinci
dari beberapa sumber daya, seperti EC2 instans Amazon Anda, atau metrik aplikasi Anda sendiri.

Dalam contoh ini, serangkaian modul Node.js digunakan untuk mendapatkan metrik dari CloudWatch
dan mengirim peristiwa ke Amazon CloudWatch Events. Modul Node.js menggunakan SDK
JavaScript untuk mendapatkan metrik dari CloudWatch menggunakan metode kelas CloudWatch
klien berikut:

• listMetrics

• putMetricData

Untuk informasi selengkapnya tentang CloudWatch metrik, lihat Menggunakan CloudWatch Metrik
Amazon di CloudWatch Panduan Pengguna Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Mendapatkan Metrik dari Amazon CloudWatch 110

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#listMetrics-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#putMetricData-property
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Metrik Daftar

Buat modul Node.js dengan nama filecw_listmetrics.js. Pastikan untuk mengkonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Untuk mengakses CloudWatch, buat objek AWS.CloudWatch
layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk membuat daftar
metrik dalam namespace. AWS/Logs Panggil listMetrics metode untuk membuat daftar
IncomingLogEvents metrik.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

var params = {
 Dimensions: [
 {
 Name: "LogGroupName" /* required */,
 },
],
 MetricName: "IncomingLogEvents",
 Namespace: "AWS/Logs",
};

cw.listMetrics(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Metrics", JSON.stringify(data.Metrics));
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node cw_listmetrics.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mendapatkan Metrik dari Amazon CloudWatch 111

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_listmetrics.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Mengirimkan Metrik Kustom

Buat modul Node.js dengan nama filecw_putmetricdata.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses CloudWatch, buat objek
AWS.CloudWatch layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk
mengirimkan titik data untuk metrik PAGES_VISITED kustom. Panggil metode putMetricData.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatch service object
var cw = new AWS.CloudWatch({ apiVersion: "2010-08-01" });

// Create parameters JSON for putMetricData
var params = {
 MetricData: [
 {
 MetricName: "PAGES_VISITED",
 Dimensions: [
 {
 Name: "UNIQUE_PAGES",
 Value: "URLS",
 },
],
 Unit: "None",
 Value: 1.0,
 },
],
 Namespace: "SITE/TRAFFIC",
};

cw.putMetricData(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", JSON.stringify(data));
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

Mendapatkan Metrik dari Amazon CloudWatch 112

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

node cw_putmetricdata.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengirim Acara ke CloudWatch Acara Amazon

Contoh kode Node.js ini menunjukkan:

• Cara membuat dan memperbarui aturan yang digunakan untuk memicu peristiwa.

• Bagaimana mendefinisikan satu atau lebih target untuk menanggapi suatu peristiwa.

• Cara mengirim peristiwa yang dicocokkan dengan target untuk ditangani.

Skenario

CloudWatch Acara memberikan aliran peristiwa sistem yang mendekati real-time yang menjelaskan
perubahan sumber daya Amazon Web Services ke salah satu dari berbagai target. Dengan
menggunakan aturan sederhana, Anda dapat mencocokkan acara dan meruteknya ke satu atau
beberapa fungsi atau aliran target.

Dalam contoh ini, serangkaian modul Node.js digunakan untuk mengirim peristiwa ke CloudWatch
Acara. Modul Node.js menggunakan SDK JavaScript untuk mengelola instance menggunakan
metode kelas CloudWatchEvents klien berikut:

• putRule

• putTargets

• putEvents

Untuk informasi selengkapnya tentang CloudWatch Acara, lihat Menambahkan Acara dengan
PutEvents di Panduan Pengguna CloudWatch Acara Amazon.

Mengirim Acara ke CloudWatch Acara Amazon 113

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/cloudwatch/cw_putmetricdata.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchEvents.html#putRule-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchEvents.html#putTargets-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchEvents.html#putEvents-property
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/AddEventsPutEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/AddEventsPutEvents.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Buat fungsi Lambda menggunakan cetak biru hello-world untuk dijadikan target acara. Untuk
mempelajari caranya, lihat Langkah 1: Membuat AWS Lambda fungsi di Panduan Pengguna
CloudWatch Acara Amazon.

• Buat peran IAM yang kebijakannya memberikan izin untuk CloudWatch Acara dan yang termasuk
events.amazonaws.com sebagai entitas tepercaya. Untuk informasi selengkapnya tentang
membuat peran IAM, lihat Membuat Peran untuk Mendelegasikan Izin ke AWS Layanan di
Panduan Pengguna IAM.

Gunakan kebijakan peran berikut saat membuat peran IAM.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Sid": "CloudWatchEventsFullAccess",
 "Effect": "Allow",
 "Action": "events:*",
 "Resource": "*"
 },
 {
 "Sid": "IAMPassRoleForCloudWatchEvents",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::*:role/AWS_Events_Invoke_Targets"
 }
]
}

Mengirim Acara ke CloudWatch Acara Amazon 114

https://nodejs.org
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/LogEC2InstanceState.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Gunakan hubungan kepercayaan berikut saat membuat peran IAM.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Membuat Aturan Terjadwal

Buat modul Node.js dengan nama filecwe_putrule.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses CloudWatch Acara, buat objek
AWS.CloudWatchEvents layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk
menentukan aturan terjadwal baru, yang meliputi:

• Nama untuk aturan

• ARN dari peran IAM yang Anda buat sebelumnya

• Ekspresi untuk menjadwalkan pemicu aturan setiap lima menit

Panggil putRule metode untuk membuat aturan. Callback mengembalikan ARN dari aturan baru
atau yang diperbarui.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatchEvents service object
var cwevents = new AWS.CloudWatchEvents({ apiVersion: "2015-10-07" });

Mengirim Acara ke CloudWatch Acara Amazon 115

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var params = {
 Name: "DEMO_EVENT",
 RoleArn: "IAM_ROLE_ARN",
 ScheduleExpression: "rate(5 minutes)",
 State: "ENABLED",
};

cwevents.putRule(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.RuleArn);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node cwe_putrule.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menambahkan Target AWS Lambda Fungsi

Buat modul Node.js dengan nama filecwe_puttargets.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses CloudWatch Acara, buat objek
AWS.CloudWatchEvents layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk
menentukan aturan yang ingin Anda lampirkan target, termasuk ARN dari fungsi Lambda yang Anda
buat. Panggil putTargets metode objek AWS.CloudWatchEvents layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatchEvents service object
var cwevents = new AWS.CloudWatchEvents({ apiVersion: "2015-10-07" });

var params = {
 Rule: "DEMO_EVENT",
 Targets: [
 {
 Arn: "LAMBDA_FUNCTION_ARN",

Mengirim Acara ke CloudWatch Acara Amazon 116

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-events/cwe_putrule.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 Id: "myCloudWatchEventsTarget",
 },
],
};

cwevents.putTargets(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node cwe_puttargets.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengirim Acara

Buat modul Node.js dengan nama filecwe_putevents.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses CloudWatch Acara, buat objek
AWS.CloudWatchEvents layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk
mengirim acara. Untuk setiap acara, sertakan sumber acara, sumber daya apa pun yang terpengaruh
oleh acara tersebut, dan detail untuk acara tersebut. ARNs Panggil putEvents metode objek
AWS.CloudWatchEvents layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create CloudWatchEvents service object
var cwevents = new AWS.CloudWatchEvents({ apiVersion: "2015-10-07" });

var params = {
 Entries: [
 {
 Detail: '{ "key1": "value1", "key2": "value2" }',
 DetailType: "appRequestSubmitted",
 Resources: ["RESOURCE_ARN"],

Mengirim Acara ke CloudWatch Acara Amazon 117

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-events/cwe_puttargets.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 Source: "com.company.app",
 },
],
};

cwevents.putEvents(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.Entries);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node cwe_putevents.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menggunakan Filter Berlangganan di CloudWatch Log Amazon

Contoh kode Node.js ini menunjukkan:

• Cara membuat dan menghapus filter untuk peristiwa log di CloudWatch Log.

Skenario

Langganan menyediakan akses ke umpan real-time peristiwa CloudWatch log dari Log dan
mengirimkan umpan tersebut ke layanan lain, seperti aliran Amazon Kinesis AWS Lambda atau,
untuk pemrosesan, analisis, atau pemuatan kustom ke sistem lain. Filter langganan menentukan
pola yang akan digunakan untuk memfilter peristiwa log mana yang dikirimkan ke sumber daya Anda
AWS .

Dalam contoh ini, serangkaian modul Node.js digunakan untuk membuat daftar, membuat, dan
menghapus filter langganan di CloudWatch Log. Tujuan untuk peristiwa log adalah fungsi Lambda.

Menggunakan Filter Berlangganan di CloudWatch Log Amazon 118

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-events/cwe_putevents.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Modul Node.js menggunakan SDK JavaScript untuk mengelola filter langganan menggunakan
metode kelas CloudWatchLogs klien berikut:

• putSubscriptionFilters

• describeSubscriptionFilters

• deleteSubscriptionFilter

Untuk informasi selengkapnya tentang langganan CloudWatch Log, lihat Pemrosesan Data Log
secara real-time dengan Langganan di Panduan Pengguna CloudWatch Log Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Buat fungsi Lambda sebagai tujuan untuk peristiwa log. Anda harus menggunakan ARN dari fungsi
ini. Untuk informasi selengkapnya tentang menyiapkan fungsi Lambda, lihat Filter Langganan
dengan AWS Lambda di Panduan Pengguna CloudWatch Log Amazon.

• Buat peran IAM yang kebijakannya memberikan izin untuk menjalankan fungsi Lambda yang Anda
buat dan memberikan akses penuh ke CloudWatch Log atau menerapkan kebijakan berikut ke
peran eksekusi yang Anda buat untuk fungsi Lambda. Untuk informasi selengkapnya tentang
membuat peran IAM, lihat Membuat Peran untuk Mendelegasikan Izin ke AWS Layanan di
Panduan Pengguna IAM.

Gunakan kebijakan peran berikut saat membuat peran IAM.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {

Menggunakan Filter Berlangganan di CloudWatch Log Amazon 119

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchLogs.html#putSubscriptionFilters-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchLogs.html#describeSubscriptionFilters-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatchLogs.html#deleteSubscriptionFilter-property
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Subscriptions.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Subscriptions.html
https://nodejs.org
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SubscriptionFilters.html#LambdaFunctionExample
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/SubscriptionFilters.html#LambdaFunctionExample
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:*:*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "*"
]
 }
]
}

Menjelaskan Filter Langganan yang Ada

Buat modul Node.js dengan nama filecwl_describesubscriptionfilters.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses CloudWatch Log,
buat objek AWS.CloudWatchLogs layanan. Buat objek JSON yang berisi parameter yang diperlukan
untuk mendeskripsikan filter yang ada, termasuk nama grup log dan jumlah maksimum filter yang
ingin Anda jelaskan. Panggil metode describeSubscriptionFilters.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the CloudWatchLogs service object
var cwl = new AWS.CloudWatchLogs({ apiVersion: "2014-03-28" });

var params = {
 logGroupName: "GROUP_NAME",
 limit: 5,
};

cwl.describeSubscriptionFilters(params, function (err, data) {

Menggunakan Filter Berlangganan di CloudWatch Log Amazon 120

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.subscriptionFilters);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node cwl_describesubscriptionfilters.js

Kode contoh ini dapat ditemukan di sini GitHub.

Membuat Filter Langganan

Buat modul Node.js dengan nama filecwl_putsubscriptionfilter.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses CloudWatch Log,
buat objek AWS.CloudWatchLogs layanan. Buat objek JSON yang berisi parameter yang diperlukan
untuk membuat filter, termasuk ARN dari fungsi Lambda tujuan, nama filter, pola string untuk
pemfilteran, dan nama grup log. Panggil metode putSubscriptionFilters.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the CloudWatchLogs service object
var cwl = new AWS.CloudWatchLogs({ apiVersion: "2014-03-28" });

var params = {
 destinationArn: "LAMBDA_FUNCTION_ARN",
 filterName: "FILTER_NAME",
 filterPattern: "ERROR",
 logGroupName: "LOG_GROUP",
};

cwl.putSubscriptionFilter(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }

Menggunakan Filter Berlangganan di CloudWatch Log Amazon 121

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-logs/cwl_describesubscriptionfilters.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node cwl_putsubscriptionfilter.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Filter Langganan

Buat modul Node.js dengan nama filecwl_deletesubscriptionfilters.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses CloudWatch
Log, buat objek AWS.CloudWatchLogs layanan. Buat objek JSON yang berisi parameter
yang diperlukan untuk menghapus filter, termasuk nama filter dan grup log. Panggil metode
deleteSubscriptionFilters.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the CloudWatchLogs service object
var cwl = new AWS.CloudWatchLogs({ apiVersion: "2014-03-28" });

var params = {
 filterName: "FILTER",
 logGroupName: "LOG_GROUP",
};

cwl.deleteSubscriptionFilter(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node cwl_deletesubscriptionfilter.js

Menggunakan Filter Berlangganan di CloudWatch Log Amazon 122

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-logs/cwl_putsubscriptionfilter.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Kode contoh ini dapat ditemukan di sini GitHub.

Contoh Amazon DynamoDB
Amazon DynamoDB adalah database cloud NoSQL yang dikelola sepenuhnya yang mendukung
model penyimpanan dokumen dan nilai kunci. Anda membuat tabel tanpa skema untuk data tanpa
perlu menyediakan atau memelihara server database khusus.

JavaScript API untuk DynamoDB diekspos melalui kelasAWS.DynamoDBStreams,, AWS.DynamoDB
AWS.DynamoDB.DocumentClient dan klien. Untuk informasi selengkapnya tentang penggunaan
kelas klien DynamoDB, Class: AWS.DynamoDBlihat Class: AWS.DynamoDBStreams, Class:
AWS.DynamoDB.DocumentClientdan di referensi API.

Topik

• Membuat dan Menggunakan Tabel di DynamoDB

• Membaca dan Menulis Satu Item di DynamoDB

• Membaca dan Menulis Item dalam Batch di DynamoDB

• Meminta dan Memindai Tabel DynamoDB

• Menggunakan Klien Dokumen DynamoDB

Membuat dan Menggunakan Tabel di DynamoDB

Contoh kode Node.js ini menunjukkan:

Contoh Amazon DynamoDB 123

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/cloudwatch-logs/cwl_deletesubscriptionfilter.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDBStreams.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Cara membuat dan mengelola tabel yang digunakan untuk menyimpan dan mengambil data dari
DynamoDB.

Skenario

Mirip dengan sistem basis data lainnya, DynamoDB menyimpan data dalam tabel. Tabel DynamoDB
adalah kumpulan data yang disusun ke dalam item yang analog dengan baris. Untuk menyimpan
atau mengakses data di DynamoDB, Anda membuat dan bekerja dengan tabel.

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk melakukan operasi dasar
dengan tabel DynamoDB. Kode menggunakan SDK for JavaScript untuk membuat dan bekerja
dengan tabel dengan menggunakan metode kelas AWS.DynamoDB klien berikut:

• CreateTable

• ListTables

• DescribeTable

• Deletable

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, pertama-tama selesaikan tugas-tugas ini:

• Instal Node.js. Untuk informasi selengkapnya, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Membuat Tabel

Buat modul Node.js dengan nama fileddb_createtable.js. Pastikan untuk mengkonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat AWS.DynamoDB objek
layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk membuat tabel, yang dalam
contoh ini mencakup nama dan tipe data untuk setiap atribut, skema kunci, nama tabel, dan unit
throughput untuk penyediaan. Panggil createTable metode objek layanan DynamoDB.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");

Membuat dan Menggunakan Tabel di DynamoDB 124

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#createTable-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#listTables-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#describeTable-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#deleteTable-property
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 AttributeDefinitions: [
 {
 AttributeName: "CUSTOMER_ID",
 AttributeType: "N",
 },
 {
 AttributeName: "CUSTOMER_NAME",
 AttributeType: "S",
 },
],
 KeySchema: [
 {
 AttributeName: "CUSTOMER_ID",
 KeyType: "HASH",
 },
 {
 AttributeName: "CUSTOMER_NAME",
 KeyType: "RANGE",
 },
],
 ProvisionedThroughput: {
 ReadCapacityUnits: 1,
 WriteCapacityUnits: 1,
 },
 TableName: "CUSTOMER_LIST",
 StreamSpecification: {
 StreamEnabled: false,
 },
};

// Call DynamoDB to create the table
ddb.createTable(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Table Created", data);
 }

Membuat dan Menggunakan Tabel di DynamoDB 125

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddb_createtable.js

Kode contoh ini dapat ditemukan di sini GitHub.

Daftar Tabel Anda

Buat modul Node.js dengan nama fileddb_listtables.js. Pastikan untuk mengkonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat AWS.DynamoDB objek
layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk daftar tabel Anda, yang
dalam contoh ini membatasi jumlah tabel yang terdaftar ke 10. Panggil listTables metode objek
layanan DynamoDB.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

// Call DynamoDB to retrieve the list of tables
ddb.listTables({ Limit: 10 }, function (err, data) {
 if (err) {
 console.log("Error", err.code);
 } else {
 console.log("Table names are ", data.TableNames);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddb_listtables.js

Kode contoh ini dapat ditemukan di sini GitHub.

Membuat dan Menggunakan Tabel di DynamoDB 126

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_createtable.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_listtables.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Menjelaskan Tabel

Buat modul Node.js dengan nama fileddb_describetable.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat AWS.DynamoDB
objek layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk menggambarkan tabel,
yang dalam contoh ini mencakup nama tabel yang disediakan sebagai parameter baris perintah.
Panggil describeTable metode objek layanan DynamoDB.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 TableName: process.argv[2],
};

// Call DynamoDB to retrieve the selected table descriptions
ddb.describeTable(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.Table.KeySchema);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddb_describetable.js TABLE_NAME

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Tabel

Buat modul Node.js dengan nama fileddb_deletetable.js. Pastikan untuk mengkonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat AWS.DynamoDB objek
layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk menghapus tabel, yang

Membuat dan Menggunakan Tabel di DynamoDB 127

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_describetable.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

dalam contoh ini mencakup nama tabel yang disediakan sebagai parameter baris perintah. Panggil
deleteTable metode objek layanan DynamoDB.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 TableName: process.argv[2],
};

// Call DynamoDB to delete the specified table
ddb.deleteTable(params, function (err, data) {
 if (err && err.code === "ResourceNotFoundException") {
 console.log("Error: Table not found");
 } else if (err && err.code === "ResourceInUseException") {
 console.log("Error: Table in use");
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddb_deletetable.js TABLE_NAME

Kode contoh ini dapat ditemukan di sini GitHub.

Membaca dan Menulis Satu Item di DynamoDB

Contoh kode Node.js ini menunjukkan:

• Cara menambahkan item dalam tabel DynamoDB.

Membaca dan Menulis Satu Item di DynamoDB 128

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_deletetable.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Cara mengambil item dalam tabel DynamoDB.

• Cara menghapus item dalam tabel DynamoDB.

Skenario

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk membaca dan menulis satu
item dalam tabel DynamoDB dengan menggunakan metode kelas klien ini: AWS.DynamoDB

• putItem

• GetItem

• DeleteItem

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, pertama-tama selesaikan tugas-tugas ini:

• Instal Node.js. Untuk informasi selengkapnya, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Buat tabel DynamoDB yang itemnya dapat Anda akses. Untuk informasi selengkapnya tentang
membuat tabel DynamoDB, lihat. Membuat dan Menggunakan Tabel di DynamoDB

Menulis Item

Buat modul Node.js dengan nama fileddb_putitem.js. Pastikan untuk mengkonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat AWS.DynamoDB objek
layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk menambahkan item, yang
dalam contoh ini mencakup nama tabel dan peta yang mendefinisikan atribut yang akan ditetapkan
dan nilai untuk setiap atribut. Panggil putItem metode objek layanan DynamoDB.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object

Membaca dan Menulis Satu Item di DynamoDB 129

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#putItem-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#getItem-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#deleteItem-property
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 TableName: "CUSTOMER_LIST",
 Item: {
 CUSTOMER_ID: { N: "001" },
 CUSTOMER_NAME: { S: "Richard Roe" },
 },
};

// Call DynamoDB to add the item to the table
ddb.putItem(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddb_putitem.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mendapatkan Item

Buat modul Node.js dengan nama fileddb_getitem.js. Pastikan untuk mengkonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat AWS.DynamoDB objek
layanan. Untuk mengidentifikasi item yang akan didapat, Anda harus memberikan nilai kunci utama
untuk item tersebut dalam tabel. Secara default, getItem metode mengembalikan semua nilai
atribut didefinisikan untuk item. Untuk mendapatkan hanya subset dari semua nilai atribut yang
mungkin, tentukan ekspresi proyeksi.

Buat objek JSON yang berisi parameter yang diperlukan untuk mendapatkan item, yang dalam
contoh ini mencakup nama tabel, nama dan nilai kunci untuk item yang Anda dapatkan, dan ekspresi
proyeksi yang mengidentifikasi atribut item yang ingin Anda ambil. Panggil getItem metode objek
layanan DynamoDB.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region

Membaca dan Menulis Satu Item di DynamoDB 130

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_putitem.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 TableName: "TABLE",
 Key: {
 KEY_NAME: { N: "001" },
 },
 ProjectionExpression: "ATTRIBUTE_NAME",
};

// Call DynamoDB to read the item from the table
ddb.getItem(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.Item);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddb_getitem.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Item

Buat modul Node.js dengan nama fileddb_deleteitem.js. Pastikan untuk mengkonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat AWS.DynamoDB objek
layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk menghapus item, yang
dalam contoh ini mencakup nama tabel dan nama kunci dan nilai untuk item yang Anda hapus.
Panggil deleteItem metode objek layanan DynamoDB.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the DynamoDB service object

Membaca dan Menulis Satu Item di DynamoDB 131

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_getitem.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 TableName: "TABLE",
 Key: {
 KEY_NAME: { N: "VALUE" },
 },
};

// Call DynamoDB to delete the item from the table
ddb.deleteItem(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddb_deleteitem.js

Kode contoh ini dapat ditemukan di sini GitHub.

Membaca dan Menulis Item dalam Batch di DynamoDB

Contoh kode Node.js ini menunjukkan:

• Cara membaca dan menulis batch item dalam tabel DynamoDB.

Skenario

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk menempatkan sekumpulan
item dalam tabel DynamoDB serta membaca sekumpulan item. Kode menggunakan SDK for
JavaScript untuk melakukan operasi baca dan tulis batch menggunakan metode kelas klien
DynamoDB berikut:

Membaca dan Menulis Item dalam Batch di DynamoDB 132

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_deleteitem.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• batchGetItem

• batchWriteItem

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, pertama-tama selesaikan tugas-tugas ini:

• Instal Node.js. Untuk informasi selengkapnya, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Buat tabel DynamoDB yang itemnya dapat Anda akses. Untuk informasi selengkapnya tentang
membuat tabel DynamoDB, lihat. Membuat dan Menggunakan Tabel di DynamoDB

Membaca Item dalam Batch

Buat modul Node.js dengan nama fileddb_batchgetitem.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat AWS.DynamoDB
objek layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk mendapatkan
sekumpulan item, yang dalam contoh ini mencakup nama satu atau lebih tabel dari mana untuk
membaca, nilai-nilai kunci untuk dibaca di setiap tabel, dan ekspresi proyeksi yang menentukan
atribut untuk kembali. Panggil batchGetItem metode objek layanan DynamoDB.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 RequestItems: {
 TABLE_NAME: {
 Keys: [
 { KEY_NAME: { N: "KEY_VALUE_1" } },
 { KEY_NAME: { N: "KEY_VALUE_2" } },
 { KEY_NAME: { N: "KEY_VALUE_3" } },
],

Membaca dan Menulis Item dalam Batch di DynamoDB 133

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#batchGetItem-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#batchWriteItem-property
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 ProjectionExpression: "KEY_NAME, ATTRIBUTE",
 },
 },
};

ddb.batchGetItem(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 data.Responses.TABLE_NAME.forEach(function (element, index, array) {
 console.log(element);
 });
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddb_batchgetitem.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menulis Item dalam Batch

Buat modul Node.js dengan nama fileddb_batchwriteitem.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat AWS.DynamoDB
objek layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk mendapatkan
sekumpulan item, yang dalam contoh ini mencakup tabel tempat Anda ingin menulis item, kunci yang
ingin Anda tulis untuk setiap item, dan atribut beserta nilainya. Panggil batchWriteItem metode
objek layanan DynamoDB.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 RequestItems: {
 TABLE_NAME: [

Membaca dan Menulis Item dalam Batch di DynamoDB 134

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_batchgetitem.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 {
 PutRequest: {
 Item: {
 KEY: { N: "KEY_VALUE" },
 ATTRIBUTE_1: { S: "ATTRIBUTE_1_VALUE" },
 ATTRIBUTE_2: { N: "ATTRIBUTE_2_VALUE" },
 },
 },
 },
 {
 PutRequest: {
 Item: {
 KEY: { N: "KEY_VALUE" },
 ATTRIBUTE_1: { S: "ATTRIBUTE_1_VALUE" },
 ATTRIBUTE_2: { N: "ATTRIBUTE_2_VALUE" },
 },
 },
 },
],
 },
};

ddb.batchWriteItem(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddb_batchwriteitem.js

Kode contoh ini dapat ditemukan di sini GitHub.

Meminta dan Memindai Tabel DynamoDB

Meminta dan Memindai Tabel DynamoDB 135

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_batchwriteitem.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Contoh kode Node.js ini menunjukkan:

• Cara menanyakan dan memindai tabel DynamoDB untuk item.

Skenario

Query menemukan item dalam tabel atau indeks sekunder hanya menggunakan nilai atribut kunci
primer. Anda harus memberikan nama kunci partisi dan nilai yang harus dicari. Anda juga dapat
memberikan nama dan nilai kunci pengurutan, dan menggunakan operator perbandingan untuk
menyempurnakan hasil pencarian. Pemindaian menemukan item dengan memeriksa setiap item
dalam tabel yang ditentukan.

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk mengidentifikasi satu atau
beberapa item yang ingin Anda ambil dari tabel DynamoDB. Kode menggunakan SDK for JavaScript
untuk melakukan kueri dan memindai tabel menggunakan metode kelas klien DynamoDB berikut:

• query

• memindai

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, pertama-tama selesaikan tugas-tugas ini:

• Instal Node.js. Untuk informasi selengkapnya, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Buat tabel DynamoDB yang itemnya dapat Anda akses. Untuk informasi selengkapnya tentang
membuat tabel DynamoDB, lihat. Membuat dan Menggunakan Tabel di DynamoDB

Melakukan Kueri Tabel

Contoh ini menanyakan tabel yang berisi informasi episode tentang seri video, mengembalikan judul
episode dan subtitle episode musim kedua melewati episode 9 yang berisi frasa tertentu dalam
subtitle mereka.

Buat modul Node.js dengan nama fileddb_query.js. Pastikan untuk mengkonfigurasi SDK seperti
yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat AWS.DynamoDB objek layanan.

Meminta dan Memindai Tabel DynamoDB 136

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#query-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html#scan-property
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Buat objek JSON yang berisi parameter yang diperlukan untuk menanyakan tabel, yang dalam
contoh ini mencakup nama tabel, yang ExpressionAttributeValues dibutuhkan oleh kueri, a
KeyConditionExpression yang menggunakan nilai-nilai tersebut untuk menentukan item mana
yang dikembalikan kueri, dan nama nilai atribut yang akan dikembalikan untuk setiap item. Panggil
query metode objek layanan DynamoDB.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB service object
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

var params = {
 ExpressionAttributeValues: {
 ":s": { N: "2" },
 ":e": { N: "09" },
 ":topic": { S: "PHRASE" },
 },
 KeyConditionExpression: "Season = :s and Episode > :e",
 ProjectionExpression: "Episode, Title, Subtitle",
 FilterExpression: "contains (Subtitle, :topic)",
 TableName: "EPISODES_TABLE",
};

ddb.query(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 //console.log("Success", data.Items);
 data.Items.forEach(function (element, index, array) {
 console.log(element.Title.S + " (" + element.Subtitle.S + ")");
 });
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddb_query.js

Kode contoh ini dapat ditemukan di sini GitHub.

Meminta dan Memindai Tabel DynamoDB 137

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_query.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Memindai Tabel

Buat modul Node.js dengan nama fileddb_scan.js. Pastikan untuk mengkonfigurasi SDK seperti
yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat AWS.DynamoDB objek layanan.
Buat objek JSON yang berisi parameter yang diperlukan untuk memindai tabel untuk item, yang
dalam contoh ini mencakup nama tabel, daftar nilai atribut yang akan dikembalikan untuk setiap item
yang cocok, dan ekspresi untuk memfilter set hasil untuk menemukan item yang berisi frasa tertentu.
Panggil scan metode objek layanan DynamoDB.

// Load the AWS SDK for Node.js.
var AWS = require("aws-sdk");
// Set the AWS Region.
AWS.config.update({ region: "REGION" });

// Create DynamoDB service object.
var ddb = new AWS.DynamoDB({ apiVersion: "2012-08-10" });

const params = {
 // Specify which items in the results are returned.
 FilterExpression: "Subtitle = :topic AND Season = :s AND Episode = :e",
 // Define the expression attribute value, which are substitutes for the values you
 want to compare.
 ExpressionAttributeValues: {
 ":topic": { S: "SubTitle2" },
 ":s": { N: 1 },
 ":e": { N: 2 },
 },
 // Set the projection expression, which are the attributes that you want.
 ProjectionExpression: "Season, Episode, Title, Subtitle",
 TableName: "EPISODES_TABLE",
};

ddb.scan(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 data.Items.forEach(function (element, index, array) {
 console.log(
 "printing",
 element.Title.S + " (" + element.Subtitle.S + ")"
);
 });

Meminta dan Memindai Tabel DynamoDB 138

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddb_scan.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menggunakan Klien Dokumen DynamoDB

Contoh kode Node.js ini menunjukkan:

• Cara mengakses tabel DynamoDB menggunakan klien dokumen.

Skenario

Klien dokumen DynamoDB menyederhanakan bekerja dengan item dengan mengabstraksi gagasan
nilai atribut. Abstraksi ini menganotasi JavaScript tipe asli yang disediakan sebagai parameter input,
serta mengonversi data respons beranotasi ke tipe asli. JavaScript

Untuk informasi selengkapnya tentang class DynamoDB Document Client,
AWS.DynamoDB.DocumentClientlihat di Referensi API. Untuk informasi selengkapnya tentang
pemrograman dengan Amazon DynamoDB, lihat Pemrograman dengan DynamoDB di Panduan
Pengembang Amazon DynamoDB.

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk melakukan operasi dasar
pada tabel DynamoDB menggunakan klien dokumen. Kode menggunakan SDK for JavaScript untuk
query dan scan tabel menggunakan metode kelas DynamoDB Document Client ini:

• mendapatkan

• menempatkan

• perbarui

• query

Menggunakan Klien Dokumen DynamoDB 139

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddb_scan.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#get-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#put-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#update-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#query-property

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• menghapus

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, pertama-tama selesaikan tugas-tugas ini:

• Instal Node.js. Untuk informasi selengkapnya, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Buat tabel DynamoDB yang itemnya dapat Anda akses. Untuk informasi selengkapnya tentang
membuat tabel DynamoDB menggunakan SDK JavaScript for, lihat. Membuat dan Menggunakan
Tabel di DynamoDB Anda juga dapat menggunakan konsol DynamoDB untuk membuat tabel.

Mendapatkan Item dari Tabel

Buat modul Node.js dengan nama fileddbdoc_get.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat objek.
AWS.DynamoDB.DocumentClient Buat objek JSON yang berisi parameter yang dibutuhkan
dapatkan item dari tabel, yang dalam contoh ini mencakup nama tabel, nama kunci hash dalam tabel
itu, dan nilai kunci hash untuk item yang ingin Anda dapatkan. Panggil get metode klien dokumen
DynamoDB.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = {
 TableName: "EPISODES_TABLE",
 Key: { KEY_NAME: VALUE },
};

docClient.get(params, function (err, data) {
 if (err) {
 console.log("Error", err);

Menggunakan Klien Dokumen DynamoDB 140

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#delete-property
https://nodejs.org
https://console.aws.amazon.com/dynamodb/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 } else {
 console.log("Success", data.Item);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddbdoc_get.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menempatkan Item di Tabel

Buat modul Node.js dengan nama fileddbdoc_put.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat objek.
AWS.DynamoDB.DocumentClient Buat objek JSON yang berisi parameter yang diperlukan
untuk menulis item ke tabel, yang dalam contoh ini mencakup nama tabel dan deskripsi item untuk
ditambahkan atau diperbarui yang mencakup hashkey dan nilai serta nama dan nilai untuk atribut
untuk diatur pada item. Panggil put metode klien dokumen DynamoDB.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = {
 TableName: "TABLE",
 Item: {
 HASHKEY: VALUE,
 ATTRIBUTE_1: "STRING_VALUE",
 ATTRIBUTE_2: VALUE_2,
 },
};

docClient.put(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);

Menggunakan Klien Dokumen DynamoDB 141

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddbdoc_get.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddbdoc_put.js

Kode contoh ini dapat ditemukan di sini GitHub.

Memperbarui Item dalam Tabel

Buat modul Node.js dengan nama fileddbdoc_update.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat objek.
AWS.DynamoDB.DocumentClient Buat objek JSON yang berisi parameter yang diperlukan untuk
menulis item ke tabel, yang dalam contoh ini mencakup nama tabel, kunci item yang akan diperbarui,
satu set UpdateExpressions yang menentukan atribut item yang akan diperbarui dengan token
yang Anda tetapkan nilai dalam parameter. ExpressionAttributeValues Panggil update
metode klien dokumen DynamoDB.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

// Create variables to hold numeric key values
var season = SEASON_NUMBER;
var episode = EPISODES_NUMBER;

var params = {
 TableName: "EPISODES_TABLE",
 Key: {
 Season: season,
 Episode: episode,
 },
 UpdateExpression: "set Title = :t, Subtitle = :s",
 ExpressionAttributeValues: {
 ":t": "NEW_TITLE",
 ":s": "NEW_SUBTITLE",
 },

Menggunakan Klien Dokumen DynamoDB 142

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddbdoc_put.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

};

docClient.update(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddbdoc_update.js

Kode contoh ini dapat ditemukan di sini GitHub.

Melakukan Kueri Tabel

Contoh ini menanyakan tabel yang berisi informasi episode tentang seri video, mengembalikan judul
episode dan subtitle episode musim kedua melewati episode 9 yang berisi frasa tertentu dalam
subtitle mereka.

Buat modul Node.js dengan nama fileddbdoc_query.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat objek.
AWS.DynamoDB.DocumentClient Buat objek JSON yang berisi parameter yang
diperlukan untuk menanyakan tabel, yang dalam contoh ini mencakup nama tabel, yang
ExpressionAttributeValues dibutuhkan oleh kueri, dan KeyConditionExpression yang
menggunakan nilai-nilai tersebut untuk menentukan item mana yang dikembalikan kueri. Panggil
query metode klien dokumen DynamoDB.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = {
 ExpressionAttributeValues: {
 ":s": 2,

Menggunakan Klien Dokumen DynamoDB 143

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddbdoc_update.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 ":e": 9,
 ":topic": "PHRASE",
 },
 KeyConditionExpression: "Season = :s and Episode > :e",
 FilterExpression: "contains (Subtitle, :topic)",
 TableName: "EPISODES_TABLE",
};

docClient.query(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.Items);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddbdoc_query.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Item dari Tabel

Buat modul Node.js dengan nama fileddbdoc_delete.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses DynamoDB, buat objek.
AWS.DynamoDB.DocumentClient Buat objek JSON yang berisi parameter yang diperlukan untuk
menghapus item dalam tabel, yang dalam contoh ini mencakup nama tabel serta nama dan nilai
hashkey item yang ingin Anda hapus. Panggil delete metode klien dokumen DynamoDB.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create DynamoDB document client
var docClient = new AWS.DynamoDB.DocumentClient({ apiVersion: "2012-08-10" });

var params = {
 Key: {
 HASH_KEY: VALUE,
 },

Menggunakan Klien Dokumen DynamoDB 144

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddbdoc_query.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 TableName: "TABLE",
};

docClient.delete(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ddbdoc_delete.js

Kode contoh ini dapat ditemukan di sini GitHub.

EC2 Contoh Amazon
Amazon Elastic Compute Cloud (Amazon EC2) adalah layanan web yang menyediakan hosting
server virtual di cloud. Ini dirancang untuk membuat komputasi awan skala web lebih mudah bagi
pengembang dengan menyediakan kapasitas komputasi yang dapat diubah ukurannya.

JavaScript API untuk Amazon EC2 diekspos melalui kelas AWS.EC2 klien. Untuk informasi
selengkapnya tentang menggunakan kelas EC2 klien Amazon, lihat Class: AWS.EC2di referensi
API.

Topik

• Membuat EC2 Instans Amazon

• Mengelola EC2 Instans Amazon

EC2 Contoh Amazon 145

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/dynamodb/ddbdoc_delete.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Bekerja dengan Amazon EC2 Key Pairs

• Menggunakan Wilayah dan Availability Zone dengan Amazon EC2

• Bekerja dengan Grup Keamanan di Amazon EC2

• Menggunakan Alamat IP Elastis di Amazon EC2

Membuat EC2 Instans Amazon

Contoh kode Node.js ini menunjukkan:

• Cara membuat EC2 instance Amazon dari Amazon Machine Image (AMI) publik.

• Cara membuat dan menetapkan tag ke EC2 instance Amazon baru.

Tentang Contoh

Dalam contoh ini, Anda menggunakan modul Node.js untuk membuat EC2 instance Amazon dan
menetapkan key pair dan tag ke dalamnya. Kode menggunakan SDK for JavaScript untuk membuat
dan menandai instance dengan menggunakan metode kelas EC2 klien Amazon berikut:

• runInstances

• createTags

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, pertama-tama selesaikan tugas-tugas ini.

• Instal Node.js. Untuk informasi selengkapnya, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Membuat key pair. Untuk detailnya, lihat Bekerja dengan Amazon EC2 Key Pairs. Anda
menggunakan nama key pair dalam contoh ini.

Membuat EC2 Instans Amazon 146

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#runInstances-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#createTags-property
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Membuat dan Menandai Instance

Buat modul Node.js dengan nama fileec2_createinstances.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya.

Buat objek untuk meneruskan parameter untuk runInstances metode AWS. EC2 class client,
termasuk nama key pair yang akan ditetapkan dan ID AMI yang akan dijalankan. Untuk memanggil
runInstances metode ini, buat janji untuk memanggil objek EC2 layanan Amazon, melewati
parameter. Kemudian tangani respons dalam panggilan balik janji.

Kode selanjutnya menambahkan Name tag ke instance baru, yang dikenali dan ditampilkan oleh EC2
konsol Amazon di bidang Nama daftar instance. Anda dapat menambahkan hingga 50 tag ke sebuah
instance, yang semuanya dapat ditambahkan dalam satu panggilan ke createTags metode.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Load credentials and set region from JSON file
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

// AMI is amzn-ami-2011.09.1.x86_64-ebs
var instanceParams = {
 ImageId: "AMI_ID",
 InstanceType: "t2.micro",
 KeyName: "KEY_PAIR_NAME",
 MinCount: 1,
 MaxCount: 1,
};

// Create a promise on an EC2 service object
var instancePromise = new AWS.EC2({ apiVersion: "2016-11-15" })
 .runInstances(instanceParams)
 .promise();

// Handle promise's fulfilled/rejected states
instancePromise
 .then(function (data) {
 console.log(data);
 var instanceId = data.Instances[0].InstanceId;
 console.log("Created instance", instanceId);
 // Add tags to the instance

Membuat EC2 Instans Amazon 147

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 tagParams = {
 Resources: [instanceId],
 Tags: [
 {
 Key: "Name",
 Value: "SDK Sample",
 },
],
 };
 // Create a promise on an EC2 service object
 var tagPromise = new AWS.EC2({ apiVersion: "2016-11-15" })
 .createTags(tagParams)
 .promise();
 // Handle promise's fulfilled/rejected states
 tagPromise
 .then(function (data) {
 console.log("Instance tagged");
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ec2_createinstances.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengelola EC2 Instans Amazon

Contoh kode Node.js ini menunjukkan:

• Cara mengambil informasi dasar tentang EC2 instans Amazon Anda.

Mengelola EC2 Instans Amazon 148

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_createinstances.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Cara memulai dan menghentikan pemantauan terperinci dari EC2 instans Amazon.

• Cara memulai dan menghentikan EC2 instance Amazon.

• Cara me-reboot EC2 instance Amazon.

Skenario

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk melakukan beberapa
operasi manajemen instance dasar. Modul Node.js menggunakan SDK for JavaScript untuk
mengelola instance dengan menggunakan metode kelas EC2 klien Amazon ini:

• describeInstances

• monitorInstances

• unmonitorInstances

• startInstances

• stopInstances

• rebootInstances

Untuk informasi selengkapnya tentang siklus hidup EC2 instans Amazon, lihat Siklus Hidup Instance
di Panduan Pengguna Amazon. EC2

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, pertama-tama selesaikan tugas-tugas ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Buat EC2 instance Amazon. Untuk informasi selengkapnya tentang membuat EC2 instans
Amazon, lihat EC2 Instans Amazon di Panduan EC2 Pengguna Amazon atau EC2 Instans
Amazon di Panduan Pengguna Amazon EC2 .

Menjelaskan Instance Anda

Buat modul Node.js dengan nama fileec2_describeinstances.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon EC2, buat

Mengelola EC2 Instans Amazon 149

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeInstances-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#monitorInstances-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#unmonitorInstances-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#startInstances-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#stopInstances-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#rebootInstances-property
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-lifecycle.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-lifecycle.html
https://nodejs.org
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Instances.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Instances.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Instances.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

objek AWS.EC2 layanan. Panggil describeInstances metode objek EC2 layanan Amazon untuk
mengambil deskripsi rinci tentang instance Anda.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {
 DryRun: false,
};

// Call EC2 to retrieve policy for selected bucket
ec2.describeInstances(params, function (err, data) {
 if (err) {
 console.log("Error", err.stack);
 } else {
 console.log("Success", JSON.stringify(data));
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ec2_describeinstances.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengelola Pemantauan Instance

Buat modul Node.js dengan nama fileec2_monitorinstances.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon EC2, buat
objek AWS.EC2 layanan. Tambahkan instance instance IDs yang ingin Anda kontrol pemantauan.

Berdasarkan nilai argumen baris perintah (ONatauOFF), panggil salah satu monitorInstances
metode objek EC2 layanan Amazon untuk memulai pemantauan terperinci dari instance yang
ditentukan atau memanggil metode. unmonitorInstances Gunakan DryRun parameter untuk
menguji apakah Anda memiliki izin untuk mengubah pemantauan instans sebelum Anda mencoba
mengubah pemantauan instance ini.

Mengelola EC2 Instans Amazon 150

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_describeinstances.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {
 InstanceIds: ["INSTANCE_ID"],
 DryRun: true,
};

if (process.argv[2].toUpperCase() === "ON") {
 // Call EC2 to start monitoring the selected instances
 ec2.monitorInstances(params, function (err, data) {
 if (err && err.code === "DryRunOperation") {
 params.DryRun = false;
 ec2.monitorInstances(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else if (data) {
 console.log("Success", data.InstanceMonitorings);
 }
 });
 } else {
 console.log("You don't have permission to change instance monitoring.");
 }
 });
} else if (process.argv[2].toUpperCase() === "OFF") {
 // Call EC2 to stop monitoring the selected instances
 ec2.unmonitorInstances(params, function (err, data) {
 if (err && err.code === "DryRunOperation") {
 params.DryRun = false;
 ec2.unmonitorInstances(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else if (data) {
 console.log("Success", data.InstanceMonitorings);
 }
 });
 } else {
 console.log("You don't have permission to change instance monitoring.");

Mengelola EC2 Instans Amazon 151

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 }
 });
}

Untuk menjalankan contoh, ketik berikut ini di baris perintah, tentukan ON untuk memulai pemantauan
terperinci atau OFF untuk menghentikan pemantauan.

node ec2_monitorinstances.js ON

Kode contoh ini dapat ditemukan di sini GitHub.

Memulai dan Menghentikan Instans

Buat modul Node.js dengan nama fileec2_startstopinstances.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon EC2, buat
objek AWS.EC2 layanan. Tambahkan instance IDs dari instance yang ingin Anda mulai atau hentikan.

Berdasarkan nilai argumen baris perintah (STARTatauSTOP), panggil startInstances metode
objek EC2 layanan Amazon untuk memulai instance yang ditentukan, atau stopInstances metode
untuk menghentikannya. Gunakan DryRun parameter untuk menguji apakah Anda memiliki izin
sebelum benar-benar mencoba memulai atau menghentikan instance yang dipilih.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {
 InstanceIds: [process.argv[3]],
 DryRun: true,
};

if (process.argv[2].toUpperCase() === "START") {
 // Call EC2 to start the selected instances
 ec2.startInstances(params, function (err, data) {
 if (err && err.code === "DryRunOperation") {
 params.DryRun = false;
 ec2.startInstances(params, function (err, data) {
 if (err) {

Mengelola EC2 Instans Amazon 152

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_monitorinstances.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 console.log("Error", err);
 } else if (data) {
 console.log("Success", data.StartingInstances);
 }
 });
 } else {
 console.log("You don't have permission to start instances.");
 }
 });
} else if (process.argv[2].toUpperCase() === "STOP") {
 // Call EC2 to stop the selected instances
 ec2.stopInstances(params, function (err, data) {
 if (err && err.code === "DryRunOperation") {
 params.DryRun = false;
 ec2.stopInstances(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else if (data) {
 console.log("Success", data.StoppingInstances);
 }
 });
 } else {
 console.log("You don't have permission to stop instances");
 }
 });
}

Untuk menjalankan contoh, ketik berikut ini di baris perintah yang menentukan START untuk memulai
instance atau STOP menghentikannya.

node ec2_startstopinstances.js START INSTANCE_ID

Kode contoh ini dapat ditemukan di sini GitHub.

Mem-boot Ulang Instans

Buat modul Node.js dengan nama fileec2_rebootinstances.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon EC2, buat objek EC2 layanan
Amazon. Tambahkan instance instance IDs yang ingin Anda reboot. Panggil rebootInstances
metode objek AWS.EC2 layanan untuk me-reboot instance yang ditentukan. Gunakan DryRun
parameter untuk menguji apakah Anda memiliki izin untuk me-reboot instance ini sebelum benar-
benar mencoba untuk me-reboot mereka.

Mengelola EC2 Instans Amazon 153

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_startstopinstances.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {
 InstanceIds: ["INSTANCE_ID"],
 DryRun: true,
};

// Call EC2 to reboot instances
ec2.rebootInstances(params, function (err, data) {
 if (err && err.code === "DryRunOperation") {
 params.DryRun = false;
 ec2.rebootInstances(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else if (data) {
 console.log("Success", data);
 }
 });
 } else {
 console.log("You don't have permission to reboot instances.");
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ec2_rebootinstances.js

Kode contoh ini dapat ditemukan di sini GitHub.

Bekerja dengan Amazon EC2 Key Pairs

Bekerja dengan Amazon EC2 Key Pairs 154

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_rebootinstances.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Contoh kode Node.js ini menunjukkan:

• Cara mengambil informasi tentang pasangan kunci Anda.

• Cara membuat key pair untuk mengakses EC2 instance Amazon.

• Cara menghapus key pair yang ada.

Skenario

Amazon EC2 menggunakan kriptografi kunci publik untuk mengenkripsi dan mendekripsi informasi
login. Kriptografi kunci publik menggunakan kunci publik untuk mengenkripsi data, kemudian
penerima menggunakan kunci pribadi untuk mendekripsi data. Kunci publik dan privat dikenal
sebagai pasangan kunci.

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk melakukan beberapa
operasi manajemen EC2 key pair Amazon. Modul Node.js menggunakan SDK for JavaScript untuk
mengelola instance dengan menggunakan metode kelas EC2 klien Amazon berikut:

• createKeyPair

• deleteKeyPair

• describeKeyPairs

Untuk informasi selengkapnya tentang pasangan EC2 kunci Amazon, lihat Pasangan EC2 Kunci
Amazon di Panduan EC2 Pengguna Amazon atau Pasangan EC2 Kunci Amazon dan Instans
Windows di Panduan EC2 Pengguna Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, pertama-tama selesaikan tugas-tugas ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Bekerja dengan Amazon EC2 Key Pairs 155

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#createKeyPair-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#deleteKeyPair-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeKeyPairs-property
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-key-pairs.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Menggambarkan Pasangan Kunci Anda

Buat modul Node.js dengan nama fileec2_describekeypairs.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon EC2, buat
objek AWS.EC2 layanan. Buat objek JSON kosong untuk menahan parameter yang dibutuhkan oleh
describeKeyPairs metode untuk mengembalikan deskripsi untuk semua pasangan kunci Anda.
Anda juga dapat memberikan array nama pasangan kunci di KeyName bagian parameter dalam file
JSON ke describeKeyPairs metode.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

// Retrieve key pair descriptions; no params needed
ec2.describeKeyPairs(function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", JSON.stringify(data.KeyPairs));
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ec2_describekeypairs.js

Kode contoh ini dapat ditemukan di sini GitHub.

Membuat Pasangan Kunci

Setiap key pair membutuhkan nama. Amazon EC2 mengaitkan kunci publik dengan nama yang Anda
tentukan sebagai nama kunci. Buat modul Node.js dengan nama fileec2_createkeypair.js.
Pastikan untuk mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses
Amazon EC2, buat objek AWS.EC2 layanan. Buat parameter JSON untuk menentukan nama key
pair, lalu berikan mereka untuk memanggil createKeyPair metode.

// Load the AWS SDK for Node.js

Bekerja dengan Amazon EC2 Key Pairs 156

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_describekeypairs.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {
 KeyName: "KEY_PAIR_NAME",
};

// Create the key pair
ec2.createKeyPair(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log(JSON.stringify(data));
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ec2_createkeypair.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Pasangan Kunci

Buat modul Node.js dengan nama fileec2_deletekeypair.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon EC2, buat objek AWS.EC2
layanan. Buat parameter JSON untuk menentukan nama key pair yang ingin Anda hapus. Kemudian
panggil deleteKeyPair metodenya.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {

Bekerja dengan Amazon EC2 Key Pairs 157

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_createkeypair.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 KeyName: "KEY_PAIR_NAME",
};

// Delete the key pair
ec2.deleteKeyPair(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Key Pair Deleted");
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ec2_deletekeypair.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menggunakan Wilayah dan Availability Zone dengan Amazon EC2

Contoh kode Node.js ini menunjukkan:

• Cara mengambil deskripsi untuk Wilayah dan Zona Ketersediaan.

Skenario

Amazon EC2 di-host di beberapa lokasi di seluruh dunia. Lokasi ini terdiri dari Wilayah dan Zona
Ketersediaan . Setiap Wilayah adalah wilayah geografis yang terpisah. Setiap Wilayah memiliki
beberapa lokasi terisolasi yang dikenal sebagai Zona Ketersediaan. Amazon EC2 menyediakan
kemampuan untuk menempatkan instance dan data di beberapa lokasi.

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk mengambil detail tentang
Regions dan Availability Zones. Modul Node.js menggunakan SDK for JavaScript untuk mengelola
instance dengan menggunakan metode berikut dari kelas EC2 klien Amazon:

• describeAvailabilityZones

Menggunakan Wilayah dan Availability Zone dengan Amazon EC2 158

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_deletekeypair.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeAvailabilityZones-property

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• describeRegions

Untuk informasi selengkapnya tentang Wilayah dan Zona Ketersediaan, lihat Wilayah dan Zona
Ketersediaan di Panduan EC2 Pengguna Amazon atau Wilayah dan Zona Ketersediaan di Panduan
EC2 Pengguna Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Menjelaskan Wilayah dan Availability Zone

Buat modul Node.js dengan nama fileec2_describeregionsandzones.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon EC2,
buat objek AWS.EC2 layanan. Buat objek JSON kosong untuk diteruskan sebagai parameter,
yang mengembalikan semua deskripsi yang tersedia. Kemudian panggil describeRegions dan
describeAvailabilityZones metode.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {};

// Retrieves all regions/endpoints that work with EC2
ec2.describeRegions(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {

Menggunakan Wilayah dan Availability Zone dengan Amazon EC2 159

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeRegions-property
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-regions-availability-zones.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 console.log("Regions: ", data.Regions);
 }
});

// Retrieves availability zones only for region of the ec2 service object
ec2.describeAvailabilityZones(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Availability Zones: ", data.AvailabilityZones);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ec2_describeregionsandzones.js

Kode contoh ini dapat ditemukan di sini GitHub.

Bekerja dengan Grup Keamanan di Amazon EC2

Contoh kode Node.js ini menunjukkan:

• Cara mengambil informasi tentang grup keamanan Anda.

• Cara membuat grup keamanan untuk mengakses EC2 instans Amazon.

• Cara menghapus grup keamanan yang ada.

Skenario

Grup EC2 keamanan Amazon bertindak sebagai firewall virtual yang mengontrol lalu lintas untuk
satu atau lebih contoh. Anda menambahkan aturan ke setiap grup keamanan untuk mengizinkan lalu
lintas ke atau dari instans terkait. Anda dapat mengubah aturan untuk grup keamanan kapan saja;
aturan baru diterapkan secara otomatis ke semua instance yang terkait dengan grup keamanan.

Bekerja dengan Grup Keamanan di Amazon EC2 160

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_describeregionsandzones.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk melakukan beberapa EC2
operasi Amazon yang melibatkan grup keamanan. Modul Node.js menggunakan SDK for JavaScript
untuk mengelola instance dengan menggunakan metode berikut dari kelas EC2 klien Amazon:

• describeSecurityGroups

• authorizeSecurityGroupIngress

• createSecurityGroup

• describeVpcs

• deleteSecurityGroup

Untuk informasi selengkapnya tentang grup EC2 keamanan Amazon, lihat Grup Keamanan EC2
Amazon Amazon untuk Instans Linux di Panduan EC2 Pengguna Amazon atau Grup EC2 Keamanan
Amazon untuk Instans Windows di Panduan EC2 Pengguna Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, pertama-tama selesaikan tugas-tugas ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Menggambarkan Grup Keamanan Anda

Buat modul Node.js dengan nama fileec2_describesecuritygroups.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon EC2, buat
objek AWS.EC2 layanan. Buat objek JSON untuk diteruskan sebagai parameter, termasuk grup IDs
untuk grup keamanan yang ingin Anda jelaskan. Kemudian panggil describeSecurityGroups
metode objek EC2 layanan Amazon.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

Bekerja dengan Grup Keamanan di Amazon EC2 161

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeSecurityGroups-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#authorizeSecurityGroupIngress-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#createSecurityGroup-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeVpcs-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#deleteSecurityGroup-property
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-network-security.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-network-security.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var params = {
 GroupIds: ["SECURITY_GROUP_ID"],
};

// Retrieve security group descriptions
ec2.describeSecurityGroups(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", JSON.stringify(data.SecurityGroups));
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ec2_describesecuritygroups.js

Kode contoh ini dapat ditemukan di sini GitHub.

Membuat Grup Keamanan dan Aturan

Buat modul Node.js dengan nama fileec2_createsecuritygroup.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon EC2, buat
objek AWS.EC2 layanan. Buat objek JSON untuk parameter yang menentukan nama grup keamanan,
deskripsi, dan ID untuk VPC. Lewati parameter ke createSecurityGroup metode.

Setelah berhasil membuat grup keamanan, Anda dapat menentukan aturan untuk mengizinkan
lalu lintas masuk. Buat objek JSON untuk parameter yang menentukan protokol IP dan
port masuk tempat EC2 instance Amazon akan menerima lalu lintas. Lewati parameter ke
authorizeSecurityGroupIngress metode.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Load credentials and set region from JSON file
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

// Variable to hold a ID of a VPC
var vpc = null;

Bekerja dengan Grup Keamanan di Amazon EC2 162

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_describesecuritygroups.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Retrieve the ID of a VPC
ec2.describeVpcs(function (err, data) {
 if (err) {
 console.log("Cannot retrieve a VPC", err);
 } else {
 vpc = data.Vpcs[0].VpcId;
 var paramsSecurityGroup = {
 Description: "DESCRIPTION",
 GroupName: "SECURITY_GROUP_NAME",
 VpcId: vpc,
 };
 // Create the instance
 ec2.createSecurityGroup(paramsSecurityGroup, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 var SecurityGroupId = data.GroupId;
 console.log("Success", SecurityGroupId);
 var paramsIngress = {
 GroupId: "SECURITY_GROUP_ID",
 IpPermissions: [
 {
 IpProtocol: "tcp",
 FromPort: 80,
 ToPort: 80,
 IpRanges: [{ CidrIp: "0.0.0.0/0" }],
 },
 {
 IpProtocol: "tcp",
 FromPort: 22,
 ToPort: 22,
 IpRanges: [{ CidrIp: "0.0.0.0/0" }],
 },
],
 };
 ec2.authorizeSecurityGroupIngress(paramsIngress, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Ingress Successfully Set", data);
 }
 });
 }

Bekerja dengan Grup Keamanan di Amazon EC2 163

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 });
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ec2_createsecuritygroup.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Grup Keamanan

Buat modul Node.js dengan nama fileec2_deletesecuritygroup.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon EC2, buat
objek AWS.EC2 layanan. Buat parameter JSON untuk menentukan nama grup keamanan yang akan
dihapus. Kemudian panggil deleteSecurityGroup metodenya.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {
 GroupId: "SECURITY_GROUP_ID",
};

// Delete the security group
ec2.deleteSecurityGroup(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Security Group Deleted");
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ec2_deletesecuritygroup.js

Bekerja dengan Grup Keamanan di Amazon EC2 164

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_createsecuritygroup.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Kode contoh ini dapat ditemukan di sini GitHub.

Menggunakan Alamat IP Elastis di Amazon EC2

Contoh kode Node.js ini menunjukkan:

• Cara mengambil deskripsi alamat IP Elastis Anda.

• Cara mengalokasikan dan melepaskan alamat IP elastis.

• Cara mengaitkan alamat IP Elastis dengan EC2 instans Amazon.

Skenario

Alamat IP Elastis adalah alamat IP statis yang dirancang untuk komputasi awan dinamis. Alamat IP
Elastis dikaitkan dengan AWS akun Anda. Ini adalah alamat IP publik, yang dapat dijangkau dari
Internet. Jika instans Anda tidak memiliki alamat IP publik, Anda dapat mengaitkan alamat IP Elastis
dengan instans Anda untuk mengaktifkan komunikasi dengan Internet.

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk melakukan beberapa EC2
operasi Amazon yang melibatkan alamat IP Elastis. Modul Node.js menggunakan SDK for JavaScript
untuk mengelola alamat IP Elastic dengan menggunakan metode kelas EC2 klien Amazon berikut:

• describeAddresses

• allocateAddress

• associateAddress

• releaseAddress

Untuk informasi selengkapnya tentang alamat IP Elastis di Amazon EC2, lihat Alamat IP Elastis di
Panduan EC2 Pengguna Amazon atau Alamat IP Elastis di Panduan EC2 Pengguna Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, pertama-tama selesaikan tugas-tugas ini:

Menggunakan Alamat IP Elastis di Amazon EC2 165

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_deletesecuritygroup.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeAddresses-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#allocateAddress-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#associateAddress-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#releaseAddress-property
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/elastic-ip-addresses-eip.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Buat EC2 instance Amazon. Untuk informasi selengkapnya tentang membuat EC2 instans
Amazon, lihat EC2 Instans Amazon di Panduan EC2 Pengguna Amazon atau EC2 Instans
Amazon di Panduan Pengguna Amazon EC2 .

Menjelaskan Alamat IP Elastis

Buat modul Node.js dengan nama fileec2_describeaddresses.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon EC2, buat
objek AWS.EC2 layanan. Buat objek JSON untuk diteruskan sebagai parameter, memfilter alamat
yang dikembalikan oleh yang ada di VPC Anda. Untuk mengambil deskripsi semua alamat IP Elastis
Anda, hilangkan filter dari parameter JSON. Kemudian panggil describeAddresses metode objek
EC2 layanan Amazon.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var params = {
 Filters: [{ Name: "domain", Values: ["vpc"] }],
};

// Retrieve Elastic IP address descriptions
ec2.describeAddresses(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", JSON.stringify(data.Addresses));
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

Menggunakan Alamat IP Elastis di Amazon EC2 166

https://nodejs.org
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Instances.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Instances.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/Instances.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

node ec2_describeaddresses.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengalokasikan dan Mengaitkan Alamat IP Elastis dengan Instans Amazon EC2

Buat modul Node.js dengan nama fileec2_allocateaddress.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon EC2, buat objek AWS.EC2
layanan. Buat objek JSON untuk parameter yang digunakan untuk mengalokasikan alamat IP Elastis,
yang dalam hal ini menentukan Domain adalah VPC. Panggil allocateAddress metode objek EC2
layanan Amazon.

Jika panggilan berhasil, data parameter ke fungsi callback memiliki AllocationId properti yang
mengidentifikasi alamat IP Elastis yang dialokasikan.

Buat objek JSON untuk parameter yang digunakan untuk mengaitkan alamat IP Elastis ke EC2
instans Amazon, termasuk AllocationId dari alamat yang baru dialokasikan dan instance Amazon
EC2 . InstanceId Kemudian panggil associateAddresses metode objek EC2 layanan Amazon.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var paramsAllocateAddress = {
 Domain: "vpc",
};

// Allocate the Elastic IP address
ec2.allocateAddress(paramsAllocateAddress, function (err, data) {
 if (err) {
 console.log("Address Not Allocated", err);
 } else {
 console.log("Address allocated:", data.AllocationId);
 var paramsAssociateAddress = {
 AllocationId: data.AllocationId,
 InstanceId: "INSTANCE_ID",
 };

Menggunakan Alamat IP Elastis di Amazon EC2 167

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_describeaddresses.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 // Associate the new Elastic IP address with an EC2 instance
 ec2.associateAddress(paramsAssociateAddress, function (err, data) {
 if (err) {
 console.log("Address Not Associated", err);
 } else {
 console.log("Address associated:", data.AssociationId);
 }
 });
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ec2_allocateaddress.js

Kode contoh ini dapat ditemukan di sini GitHub.

Melepaskan Alamat IP Elastis

Buat modul Node.js dengan nama fileec2_releaseaddress.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon EC2, buat objek AWS.EC2
layanan. Buat objek JSON untuk parameter yang digunakan untuk melepaskan alamat IP Elastis,
yang dalam hal ini menentukan AllocationId untuk alamat IP Elastis. Melepaskan alamat IP
Elastis juga memisahkannya dari instans Amazon apa pun. EC2 Panggil releaseAddress metode
objek EC2 layanan Amazon.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create EC2 service object
var ec2 = new AWS.EC2({ apiVersion: "2016-11-15" });

var paramsReleaseAddress = {
 AllocationId: "ALLOCATION_ID",
};

// Disassociate the Elastic IP address from EC2 instance
ec2.releaseAddress(paramsReleaseAddress, function (err, data) {
 if (err) {
 console.log("Error", err);

Menggunakan Alamat IP Elastis di Amazon EC2 168

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_allocateaddress.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 } else {
 console.log("Address released");
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ec2_releaseaddress.js

Kode contoh ini dapat ditemukan di sini GitHub.

AWS Elemental MediaConvert Contoh

AWS Elemental MediaConvert adalah layanan transcoding video berbasis file dengan fitur tingkat
siaran. Anda dapat menggunakannya untuk membuat aset untuk siaran dan untuk pengiriman video-
on-demand (VOD) di internet. Untuk informasi selengkapnya, silakan lihat Panduan Pengguna AWS
Elemental MediaConvert .

JavaScript API untuk MediaConvert diekspos melalui kelas AWS.MediaConvert klien. Untuk
informasi selengkapnya, lihat Class: AWS.MediaConvertdi referensi API.

Topik

• Membuat dan Mengelola Pekerjaan Transcoding di MediaConvert

• Menggunakan Job Template di MediaConvert

Membuat dan Mengelola Pekerjaan Transcoding di MediaConvert

Contoh kode Node.js ini menunjukkan:

• Cara membuat pekerjaan transcoding di MediaConvert.

• Cara membatalkan pekerjaan transcoding.

• Cara mengambil JSON untuk pekerjaan transcoding yang selesai.

• Cara mengambil array JSON hingga 20 pekerjaan yang paling baru dibuat.

MediaConvert Contoh 169

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ec2/ec2_releaseaddress.js
https://docs.aws.amazon.com/mediaconvert/latest/ug/
https://docs.aws.amazon.com/mediaconvert/latest/ug/
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Skenario

Dalam contoh ini, Anda menggunakan modul Node.js untuk memanggil MediaConvert untuk
membuat dan mengelola pekerjaan transcoding. Kode menggunakan SDK JavaScript untuk
melakukan ini dengan menggunakan metode kelas MediaConvert klien berikut:

• createJob

• cancelJob

• getJob

• listJobs

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, pertama-tama selesaikan tugas-tugas ini:

• Instal Node.js. Untuk informasi selengkapnya, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Buat dan konfigurasikan bucket Amazon S3 yang menyediakan penyimpanan untuk file input
pekerjaan dan file output. Untuk detailnya, lihat Membuat Penyimpanan untuk File di Panduan
AWS Elemental MediaConvert Pengguna.

• Unggah video input ke bucket Amazon S3 yang Anda sediakan untuk penyimpanan input. Untuk
daftar codec dan container video input yang didukung, lihat Codec dan Container Input yang
Didukung di Panduan Pengguna.AWS Elemental MediaConvert

• Buat peran IAM yang memberikan MediaConvert akses ke file input Anda dan bucket Amazon
S3 tempat file output Anda disimpan. Untuk detailnya, lihat Mengatur Izin IAM di AWS Elemental
MediaConvert Panduan Pengguna.

Mendefinisikan Job Transcoding Sederhana

Buat modul Node.js dengan nama fileemc_createjob.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Buat JSON yang mendefinisikan parameter pekerjaan
transcode.

Menciptakan dan Mengelola Pekerjaan 170

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#createJob-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#cancelJob-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#getJob-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#listJobs-property
https://nodejs.org
https://docs.aws.amazon.com/mediaconvert/latest/ug/set-up-file-locations.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/reference-codecs-containers-input.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/reference-codecs-containers-input.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/iam-role.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Parameter ini cukup rinci. Anda dapat menggunakan AWS Elemental MediaConvert konsol untuk
menghasilkan parameter pekerjaan JSON dengan memilih pengaturan pekerjaan di konsol, lalu
memilih Tampilkan pekerjaan JSON di bagian bawah bagian Job. Contoh ini menunjukkan JSON
untuk pekerjaan sederhana.

var params = {
 Queue: "JOB_QUEUE_ARN",
 UserMetadata: {
 Customer: "Amazon",
 },
 Role: "IAM_ROLE_ARN",
 Settings: {
 OutputGroups: [
 {
 Name: "File Group",
 OutputGroupSettings: {
 Type: "FILE_GROUP_SETTINGS",
 FileGroupSettings: {
 Destination: "s3://OUTPUT_BUCKET_NAME/",
 },
 },
 Outputs: [
 {
 VideoDescription: {
 ScalingBehavior: "DEFAULT",
 TimecodeInsertion: "DISABLED",
 AntiAlias: "ENABLED",
 Sharpness: 50,
 CodecSettings: {
 Codec: "H_264",
 H264Settings: {
 InterlaceMode: "PROGRESSIVE",
 NumberReferenceFrames: 3,
 Syntax: "DEFAULT",
 Softness: 0,
 GopClosedCadence: 1,
 GopSize: 90,
 Slices: 1,
 GopBReference: "DISABLED",
 SlowPal: "DISABLED",
 SpatialAdaptiveQuantization: "ENABLED",
 TemporalAdaptiveQuantization: "ENABLED",
 FlickerAdaptiveQuantization: "DISABLED",

Menciptakan dan Mengelola Pekerjaan 171

https://console.aws.amazon.com/mediaconvert/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 EntropyEncoding: "CABAC",
 Bitrate: 5000000,
 FramerateControl: "SPECIFIED",
 RateControlMode: "CBR",
 CodecProfile: "MAIN",
 Telecine: "NONE",
 MinIInterval: 0,
 AdaptiveQuantization: "HIGH",
 CodecLevel: "AUTO",
 FieldEncoding: "PAFF",
 SceneChangeDetect: "ENABLED",
 QualityTuningLevel: "SINGLE_PASS",
 FramerateConversionAlgorithm: "DUPLICATE_DROP",
 UnregisteredSeiTimecode: "DISABLED",
 GopSizeUnits: "FRAMES",
 ParControl: "SPECIFIED",
 NumberBFramesBetweenReferenceFrames: 2,
 RepeatPps: "DISABLED",
 FramerateNumerator: 30,
 FramerateDenominator: 1,
 ParNumerator: 1,
 ParDenominator: 1,
 },
 },
 AfdSignaling: "NONE",
 DropFrameTimecode: "ENABLED",
 RespondToAfd: "NONE",
 ColorMetadata: "INSERT",
 },
 AudioDescriptions: [
 {
 AudioTypeControl: "FOLLOW_INPUT",
 CodecSettings: {
 Codec: "AAC",
 AacSettings: {
 AudioDescriptionBroadcasterMix: "NORMAL",
 RateControlMode: "CBR",
 CodecProfile: "LC",
 CodingMode: "CODING_MODE_2_0",
 RawFormat: "NONE",
 SampleRate: 48000,
 Specification: "MPEG4",
 Bitrate: 64000,
 },

Menciptakan dan Mengelola Pekerjaan 172

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 },
 LanguageCodeControl: "FOLLOW_INPUT",
 AudioSourceName: "Audio Selector 1",
 },
],
 ContainerSettings: {
 Container: "MP4",
 Mp4Settings: {
 CslgAtom: "INCLUDE",
 FreeSpaceBox: "EXCLUDE",
 MoovPlacement: "PROGRESSIVE_DOWNLOAD",
 },
 },
 NameModifier: "_1",
 },
],
 },
],
 AdAvailOffset: 0,
 Inputs: [
 {
 AudioSelectors: {
 "Audio Selector 1": {
 Offset: 0,
 DefaultSelection: "NOT_DEFAULT",
 ProgramSelection: 1,
 SelectorType: "TRACK",
 Tracks: [1],
 },
 },
 VideoSelector: {
 ColorSpace: "FOLLOW",
 },
 FilterEnable: "AUTO",
 PsiControl: "USE_PSI",
 FilterStrength: 0,
 DeblockFilter: "DISABLED",
 DenoiseFilter: "DISABLED",
 TimecodeSource: "EMBEDDED",
 FileInput: "s3://INPUT_BUCKET_AND_FILE_NAME",
 },
],
 TimecodeConfig: {
 Source: "EMBEDDED",

Menciptakan dan Mengelola Pekerjaan 173

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 },
 },
};

Membuat Job Transcoding

Setelah membuat parameter pekerjaan JSON, panggil createJob metode dengan membuat janji
untuk memanggil objek AWS.MediaConvert layanan, melewati parameter. Kemudian tangani
respons dalam panggilan balik janji. ID pekerjaan yang dibuat dikembalikan dalam responsdata.

// Create a promise on a MediaConvert object
var endpointPromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" })
 .createJob(params)
 .promise();

// Handle promise's fulfilled/rejected status
endpointPromise.then(
 function (data) {
 console.log("Job created! ", data);
 },
 function (err) {
 console.log("Error", err);
 }
);

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node emc_createjob.js

Kode contoh ini dapat ditemukan di sini GitHub.

Membatalkan Job Transcoding

Buat modul Node.js dengan nama fileemc_canceljob.js. Pastikan untuk mengkonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Buat JSON yang menyertakan ID pekerjaan yang akan
dibatalkan. Kemudian panggil cancelJob metode dengan membuat janji untuk memanggil objek
AWS.MediaConvert layanan, melewati parameter. Menangani respon dalam callback janji.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the Region

Menciptakan dan Mengelola Pekerjaan 174

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_createjob.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

AWS.config.update({ region: "us-west-2" });
// Set MediaConvert to customer endpoint
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = {
 Id: "JOB_ID" /* required */,
};

// Create a promise on a MediaConvert object
var endpointPromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" })
 .cancelJob(params)
 .promise();

// Handle promise's fulfilled/rejected status
endpointPromise.then(
 function (data) {
 console.log("Job " + params.Id + " is canceled");
 },
 function (err) {
 console.log("Error", err);
 }
);

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ec2_canceljob.js

Kode contoh ini dapat ditemukan di sini GitHub.

Listing Lowongan Transcoding Terbaru

Buat modul Node.js dengan nama fileemc_listjobs.js. Pastikan untuk mengkonfigurasi SDK
seperti yang ditunjukkan sebelumnya.

Buat parameter JSON, termasuk nilai untuk menentukan apakah akan mengurutkan daftar
dalamASCENDING, atau DESCENDING urutan, ARN antrian pekerjaan yang akan diperiksa, dan
status pekerjaan yang akan disertakan. Kemudian panggil listJobs metode dengan membuat
janji untuk memanggil objek AWS.MediaConvert layanan, melewati parameter. Menangani respon
dalam callback janji.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");

Menciptakan dan Mengelola Pekerjaan 175

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_canceljob.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Set the Region
AWS.config.update({ region: "us-west-2" });
// Set the customer endpoint
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = {
 MaxResults: 10,
 Order: "ASCENDING",
 Queue: "QUEUE_ARN",
 Status: "SUBMITTED",
};

// Create a promise on a MediaConvert object
var endpointPromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" })
 .listJobs(params)
 .promise();

// Handle promise's fulfilled/rejected status
endpointPromise.then(
 function (data) {
 console.log("Jobs: ", data);
 },
 function (err) {
 console.log("Error", err);
 }
);

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node emc_listjobs.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menggunakan Job Template di MediaConvert

Contoh kode Node.js ini menunjukkan:

• Cara membuat template MediaConvert pekerjaan.

Menggunakan Job Template 176

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_listjobs.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Cara menggunakan template pekerjaan untuk membuat pekerjaan transcoding.

• Cara membuat daftar semua templat pekerjaan Anda.

• Cara menghapus template pekerjaan.

Skenario

JSON yang diperlukan untuk membuat pekerjaan transcoding MediaConvert secara rinci, berisi
sejumlah besar pengaturan. Anda dapat sangat menyederhanakan penciptaan lapangan kerja
dengan menyimpan pengaturan yang diketahui baik dalam templat pekerjaan yang dapat Anda
gunakan untuk membuat pekerjaan berikutnya. Dalam contoh ini, Anda menggunakan modul Node.js
untuk memanggil MediaConvert untuk membuat, menggunakan, dan mengelola template pekerjaan.
Kode menggunakan SDK JavaScript untuk melakukan ini dengan menggunakan metode kelas
MediaConvert klien berikut:

• createJobTemplate

• createJob

• deleteJobTemplate

• listJobTemplates

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, pertama-tama selesaikan tugas-tugas ini:

• Instal Node.js. Untuk informasi selengkapnya, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Buat peran IAM yang memberikan MediaConvert akses ke file input Anda dan bucket Amazon
S3 tempat file output Anda disimpan. Untuk detailnya, lihat Mengatur Izin IAM di AWS Elemental
MediaConvert Panduan Pengguna.

Membuat Template Job

Buat modul Node.js dengan nama fileemc_create_jobtemplate.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya.

Menggunakan Job Template 177

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#createJobTemplate-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#createJob-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#deleteJobTemplate-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#listJobTemplates-property
https://nodejs.org
https://docs.aws.amazon.com/mediaconvert/latest/ug/iam-role.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Tentukan parameter JSON untuk pembuatan template. Anda dapat menggunakan sebagian besar
parameter JSON dari pekerjaan sebelumnya yang berhasil untuk menentukan Settings nilai dalam
template. Contoh ini menggunakan pengaturan pekerjaan dariMembuat dan Mengelola Pekerjaan
Transcoding di MediaConvert.

Panggil createJobTemplate metode dengan membuat janji untuk memanggil objek
AWS.MediaConvert layanan, melewati parameter. Kemudian tangani respons dalam panggilan
balik janji.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the Region
AWS.config.update({ region: "us-west-2" });
// Set the custom endpoint for your account
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = {
 Category: "YouTube Jobs",
 Description: "Final production transcode",
 Name: "DemoTemplate",
 Queue: "JOB_QUEUE_ARN",
 Settings: {
 OutputGroups: [
 {
 Name: "File Group",
 OutputGroupSettings: {
 Type: "FILE_GROUP_SETTINGS",
 FileGroupSettings: {
 Destination: "s3://BUCKET_NAME/",
 },
 },
 Outputs: [
 {
 VideoDescription: {
 ScalingBehavior: "DEFAULT",
 TimecodeInsertion: "DISABLED",
 AntiAlias: "ENABLED",
 Sharpness: 50,
 CodecSettings: {
 Codec: "H_264",
 H264Settings: {
 InterlaceMode: "PROGRESSIVE",
 NumberReferenceFrames: 3,

Menggunakan Job Template 178

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 Syntax: "DEFAULT",
 Softness: 0,
 GopClosedCadence: 1,
 GopSize: 90,
 Slices: 1,
 GopBReference: "DISABLED",
 SlowPal: "DISABLED",
 SpatialAdaptiveQuantization: "ENABLED",
 TemporalAdaptiveQuantization: "ENABLED",
 FlickerAdaptiveQuantization: "DISABLED",
 EntropyEncoding: "CABAC",
 Bitrate: 5000000,
 FramerateControl: "SPECIFIED",
 RateControlMode: "CBR",
 CodecProfile: "MAIN",
 Telecine: "NONE",
 MinIInterval: 0,
 AdaptiveQuantization: "HIGH",
 CodecLevel: "AUTO",
 FieldEncoding: "PAFF",
 SceneChangeDetect: "ENABLED",
 QualityTuningLevel: "SINGLE_PASS",
 FramerateConversionAlgorithm: "DUPLICATE_DROP",
 UnregisteredSeiTimecode: "DISABLED",
 GopSizeUnits: "FRAMES",
 ParControl: "SPECIFIED",
 NumberBFramesBetweenReferenceFrames: 2,
 RepeatPps: "DISABLED",
 FramerateNumerator: 30,
 FramerateDenominator: 1,
 ParNumerator: 1,
 ParDenominator: 1,
 },
 },
 AfdSignaling: "NONE",
 DropFrameTimecode: "ENABLED",
 RespondToAfd: "NONE",
 ColorMetadata: "INSERT",
 },
 AudioDescriptions: [
 {
 AudioTypeControl: "FOLLOW_INPUT",
 CodecSettings: {
 Codec: "AAC",

Menggunakan Job Template 179

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 AacSettings: {
 AudioDescriptionBroadcasterMix: "NORMAL",
 RateControlMode: "CBR",
 CodecProfile: "LC",
 CodingMode: "CODING_MODE_2_0",
 RawFormat: "NONE",
 SampleRate: 48000,
 Specification: "MPEG4",
 Bitrate: 64000,
 },
 },
 LanguageCodeControl: "FOLLOW_INPUT",
 AudioSourceName: "Audio Selector 1",
 },
],
 ContainerSettings: {
 Container: "MP4",
 Mp4Settings: {
 CslgAtom: "INCLUDE",
 FreeSpaceBox: "EXCLUDE",
 MoovPlacement: "PROGRESSIVE_DOWNLOAD",
 },
 },
 NameModifier: "_1",
 },
],
 },
],
 AdAvailOffset: 0,
 Inputs: [
 {
 AudioSelectors: {
 "Audio Selector 1": {
 Offset: 0,
 DefaultSelection: "NOT_DEFAULT",
 ProgramSelection: 1,
 SelectorType: "TRACK",
 Tracks: [1],
 },
 },
 VideoSelector: {
 ColorSpace: "FOLLOW",
 },
 FilterEnable: "AUTO",

Menggunakan Job Template 180

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 PsiControl: "USE_PSI",
 FilterStrength: 0,
 DeblockFilter: "DISABLED",
 DenoiseFilter: "DISABLED",
 TimecodeSource: "EMBEDDED",
 },
],
 TimecodeConfig: {
 Source: "EMBEDDED",
 },
 },
};

// Create a promise on a MediaConvert object
var templatePromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" })
 .createJobTemplate(params)
 .promise();

// Handle promise's fulfilled/rejected status
templatePromise.then(
 function (data) {
 console.log("Success!", data);
 },
 function (err) {
 console.log("Error", err);
 }
);

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node emc_create_jobtemplate.js

Kode contoh ini dapat ditemukan di sini GitHub.

Membuat Transcoding Job dari Job Template

Buat modul Node.js dengan nama fileemc_template_createjob.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya.

Buat parameter pembuatan pekerjaan JSON, termasuk nama template pekerjaan yang akan
digunakan, dan penggunaan yang khusus untuk pekerjaan yang Anda buat. Settings Kemudian

Menggunakan Job Template 181

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_create_jobtemplate.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

panggil createJobs metode dengan membuat janji untuk memanggil objek AWS.MediaConvert
layanan, melewati parameter. Menangani respon dalam callback janji.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the Region
AWS.config.update({ region: "us-west-2" });
// Set the custom endpoint for your account
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = {
 Queue: "QUEUE_ARN",
 JobTemplate: "TEMPLATE_NAME",
 Role: "ROLE_ARN",
 Settings: {
 Inputs: [
 {
 AudioSelectors: {
 "Audio Selector 1": {
 Offset: 0,
 DefaultSelection: "NOT_DEFAULT",
 ProgramSelection: 1,
 SelectorType: "TRACK",
 Tracks: [1],
 },
 },
 VideoSelector: {
 ColorSpace: "FOLLOW",
 },
 FilterEnable: "AUTO",
 PsiControl: "USE_PSI",
 FilterStrength: 0,
 DeblockFilter: "DISABLED",
 DenoiseFilter: "DISABLED",
 TimecodeSource: "EMBEDDED",
 FileInput: "s3://BUCKET_NAME/FILE_NAME",
 },
],
 },
};

// Create a promise on a MediaConvert object
var templateJobPromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" })

Menggunakan Job Template 182

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 .createJob(params)
 .promise();

// Handle promise's fulfilled/rejected status
templateJobPromise.then(
 function (data) {
 console.log("Success! ", data);
 },
 function (err) {
 console.log("Error", err);
 }
);

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node emc_template_createjob.js

Kode contoh ini dapat ditemukan di sini GitHub.

Daftar Template Job Anda

Buat modul Node.js dengan nama fileemc_listtemplates.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya.

Buat objek untuk melewati parameter permintaan untuk listTemplates metode kelas
AWS.MediaConvert klien. Sertakan nilai untuk menentukan templat apa yang akan dicantumkan
(NAME,CREATION DATE,SYSTEM), berapa banyak yang akan dicantumkan, dan urutan urutannya.
Untuk memanggil listTemplates metode, buat janji untuk memanggil objek MediaConvert
layanan, melewati parameter. Kemudian tangani respons dalam panggilan balik janji.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the Region
AWS.config.update({ region: "us-west-2" });
// Set the customer endpoint
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = {
 ListBy: "NAME",
 MaxResults: 10,
 Order: "ASCENDING",
};

Menggunakan Job Template 183

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_template_createjob.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Create a promise on a MediaConvert object
var listTemplatesPromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" })
 .listJobTemplates(params)
 .promise();

// Handle promise's fulfilled/rejected status
listTemplatesPromise.then(
 function (data) {
 console.log("Success ", data);
 },
 function (err) {
 console.log("Error", err);
 }
);

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node emc_listtemplates.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Template Job

Buat modul Node.js dengan nama fileemc_deletetemplate.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya.

Buat objek untuk meneruskan nama template pekerjaan yang ingin Anda hapus sebagai parameter
untuk deleteJobTemplate metode kelas AWS.MediaConvert klien. Untuk memanggil
deleteJobTemplate metode, buat janji untuk memanggil objek MediaConvert layanan, melewati
parameter. Menangani respon dalam callback janji.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the Region
AWS.config.update({ region: "us-west-2" });
// Set the customer endpoint
AWS.config.mediaconvert = { endpoint: "ACCOUNT_ENDPOINT" };

var params = {
 Name: "TEMPLATE_NAME",
};

Menggunakan Job Template 184

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_template_createjob.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Create a promise on a MediaConvert object
var deleteTemplatePromise = new AWS.MediaConvert({ apiVersion: "2017-08-29" })
 .deleteJobTemplate(params)
 .promise();

// Handle promise's fulfilled/rejected status
deleteTemplatePromise.then(
 function (data) {
 console.log("Success ", data);
 },
 function (err) {
 console.log("Error", err);
 }
);

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node emc_deletetemplate.js

Kode contoh ini dapat ditemukan di sini GitHub.

AWS Contoh IAM

AWS Identity and Access Management (IAM) adalah layanan web yang memungkinkan pelanggan
Amazon Web Services untuk mengelola pengguna dan izin pengguna di. AWS Layanan ini
ditargetkan pada organisasi dengan banyak pengguna atau sistem di cloud yang menggunakan
AWS produk. Dengan IAM, Anda dapat mengelola pengguna secara terpusat, kredensyal keamanan
seperti kunci akses, dan izin yang mengontrol sumber daya mana AWS yang dapat diakses
pengguna.

AWS Contoh IAM 185

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/mediaconvert/emc_deletetemplate.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

JavaScript API untuk IAM diekspos melalui kelas AWS.IAM klien. Untuk informasi selengkapnya
tentang penggunaan kelas klien IAM, lihat Class: AWS.IAMdi referensi API.

Topik

• Mengelola Pengguna IAM

• Bekerja dengan Kebijakan IAM

• Mengelola Kunci Akses IAM

• Bekerja dengan Sertifikat Server IAM

• Mengelola Alias Akun IAM

Mengelola Pengguna IAM

Contoh kode Node.js ini menunjukkan:

• Cara mengambil daftar pengguna IAM.

• Cara membuat dan menghapus pengguna.

• Cara memperbarui nama pengguna.

Skenario

Dalam contoh ini, serangkaian modul Node.js digunakan untuk membuat dan mengelola pengguna di
IAM. Modul Node.js menggunakan SDK JavaScript untuk membuat, menghapus, dan memperbarui
pengguna menggunakan metode kelas AWS.IAM klien berikut:

• createUser

• listUsers

• updateUser

• getUser

• deleteUser

Mengelola Pengguna IAM 186

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#createUser-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#listUsers-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#updateUser-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#getUser-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#deleteUser-property

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Untuk informasi selengkapnya tentang pengguna IAM, lihat Pengguna IAM di Panduan Pengguna
IAM.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Membuat Pengguna

Buat modul Node.js dengan nama fileiam_createuser.js. Pastikan untuk mengkonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek AWS.IAM layanan. Buat
objek JSON yang berisi parameter yang diperlukan, yang terdiri dari nama pengguna yang ingin
Anda gunakan untuk pengguna baru sebagai parameter baris perintah.

Panggil getUser metode objek AWS.IAM layanan untuk melihat apakah nama pengguna sudah ada.
Jika nama pengguna saat ini tidak ada, panggil createUser metode untuk membuatnya. Jika nama
sudah ada, tulis pesan untuk efek itu ke konsol.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 UserName: process.argv[2],
};

iam.getUser(params, function (err, data) {
 if (err && err.code === "NoSuchEntity") {
 iam.createUser(params, function (err, data) {
 if (err) {

Mengelola Pengguna IAM 187

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
 });
 } else {
 console.log(
 "User " + process.argv[2] + " already exists",
 data.User.UserId
);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_createuser.js USER_NAME

Kode contoh ini dapat ditemukan di sini GitHub.

Daftar Pengguna di Akun Anda

Buat modul Node.js dengan nama fileiam_listusers.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek AWS.IAM layanan.
Buat objek JSON yang berisi parameter yang diperlukan untuk mencantumkan pengguna Anda,
membatasi jumlah yang dikembalikan dengan menyetel MaxItems parameter ke 10. Panggil
listUsers metode objek AWS.IAM layanan. Tulis nama pengguna pertama dan tanggal pembuatan
ke konsol.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 MaxItems: 10,
};

iam.listUsers(params, function (err, data) {
 if (err) {

Mengelola Pengguna IAM 188

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_createuser.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 console.log("Error", err);
 } else {
 var users = data.Users || [];
 users.forEach(function (user) {
 console.log("User " + user.UserName + " created", user.CreateDate);
 });
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_listusers.js

Kode contoh ini dapat ditemukan di sini GitHub.

Memperbarui Nama Pengguna

Buat modul Node.js dengan nama fileiam_updateuser.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek AWS.IAM layanan.
Buat objek JSON yang berisi parameter yang diperlukan untuk mencantumkan pengguna Anda,
dengan menentukan nama pengguna saat ini dan baru sebagai parameter baris perintah. Panggil
updateUser metode objek AWS.IAM layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 UserName: process.argv[2],
 NewUserName: process.argv[3],
};

iam.updateUser(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }

Mengelola Pengguna IAM 189

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_listusers.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

});

Untuk menjalankan contoh, ketik berikut ini di baris perintah, tentukan nama pengguna saat ini diikuti
dengan nama pengguna baru.

node iam_updateuser.js ORIGINAL_USERNAME NEW_USERNAME

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Pengguna

Buat modul Node.js dengan nama fileiam_deleteuser.js. Pastikan untuk mengkonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek AWS.IAM layanan. Buat
objek JSON yang berisi parameter yang diperlukan, yang terdiri dari nama pengguna yang ingin
Anda hapus sebagai parameter baris perintah.

Panggil getUser metode objek AWS.IAM layanan untuk melihat apakah nama pengguna sudah
ada. Jika nama pengguna saat ini tidak ada, tulis pesan untuk efek itu ke konsol. Jika pengguna ada,
panggil deleteUser metode untuk menghapusnya.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 UserName: process.argv[2],
};

iam.getUser(params, function (err, data) {
 if (err && err.code === "NoSuchEntity") {
 console.log("User " + process.argv[2] + " does not exist.");
 } else {
 iam.deleteUser(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }

Mengelola Pengguna IAM 190

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_updateuser.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 });
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_deleteuser.js USER_NAME

Kode contoh ini dapat ditemukan di sini GitHub.

Bekerja dengan Kebijakan IAM

Contoh kode Node.js ini menunjukkan:

• Cara membuat dan menghapus kebijakan IAM.

• Cara melampirkan dan melepaskan kebijakan IAM dari peran.

Skenario

Anda memberikan izin kepada pengguna dengan membuat kebijakan, yaitu dokumen yang
mencantumkan tindakan yang dapat dilakukan pengguna dan sumber daya yang dapat memengaruhi
tindakan tersebut. Setiap tindakan atau sumber daya yang tidak diizinkan secara eksplisit ditolak
secara default. Kebijakan dapat dibuat dan dilampirkan ke pengguna, grup pengguna, peran yang
diambil oleh pengguna, dan sumber daya.

Dalam contoh ini, serangkaian modul Node.js digunakan untuk mengelola kebijakan di IAM. Modul
Node.js menggunakan SDK JavaScript untuk membuat dan menghapus kebijakan serta melampirkan
dan melepaskan kebijakan peran menggunakan metode kelas klien berikutAWS.IAM:

• createPolicy

• getPolicy

• listAttachedRolePolicies

• attachRolePolicy

• detachRolePolicy

Bekerja dengan Kebijakan IAM 191

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_deleteuser.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#createPolicy-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#getPolicy-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#listAttachedRolePolicies-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#attachRolePolicy-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#detachRolePolicy-property

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Untuk informasi selengkapnya tentang pengguna IAM, lihat Ringkasan Manajemen Akses: Izin dan
Kebijakan di Panduan Pengguna IAM.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Buat peran IAM yang dapat Anda lampirkan kebijakan. Untuk informasi selengkapnya tentang
membuat peran, lihat Membuat Peran IAM di Panduan Pengguna IAM.

Membuat Kebijakan IAM

Buat modul Node.js dengan nama fileiam_createpolicy.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek AWS.IAM layanan.
Buat dua objek JSON, satu berisi dokumen kebijakan yang ingin Anda buat dan yang lainnya berisi
parameter yang diperlukan untuk membuat kebijakan, yang mencakup JSON kebijakan dan nama
yang ingin Anda berikan kebijakan. Pastikan untuk melakukan stringifikasi objek JSON kebijakan
dalam parameter. Panggil createPolicy metode objek AWS.IAM layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var myManagedPolicy = {
 Version: "2012-10-17",
 Statement: [
 {
 Effect: "Allow",
 Action: "logs:CreateLogGroup",
 Resource: "RESOURCE_ARN",
 },

Bekerja dengan Kebijakan IAM 192

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://nodejs.org
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 {
 Effect: "Allow",
 Action: [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Scan",
 "dynamodb:UpdateItem",
],
 Resource: "RESOURCE_ARN",
 },
],
};

var params = {
 PolicyDocument: JSON.stringify(myManagedPolicy),
 PolicyName: "myDynamoDBPolicy",
};

iam.createPolicy(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_createpolicy.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mendapatkan Kebijakan IAM

Buat modul Node.js dengan nama fileiam_getpolicy.js. Pastikan untuk mengkonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek AWS.IAM layanan. Buat
objek JSON yang berisi parameter yang diperlukan untuk mengambil kebijakan, yang merupakan
ARN dari kebijakan yang ingin Anda dapatkan. Panggil getPolicy metode objek AWS.IAM layanan.
Tulis deskripsi kebijakan ke konsol.

// Load the AWS SDK for Node.js

Bekerja dengan Kebijakan IAM 193

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_createpolicy.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 PolicyArn: "arn:aws:iam::aws:policy/AWSLambdaExecute",
};

iam.getPolicy(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.Policy.Description);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_getpolicy.js

Kode contoh ini dapat ditemukan di sini GitHub.

Melampirkan Kebijakan Peran Terkelola

Buat modul Node.js dengan nama fileiam_attachrolepolicy.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek
AWS.IAM layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk mendapatkan
daftar kebijakan IAM terkelola yang dilampirkan ke peran, yang terdiri dari nama peran. Berikan nama
peran sebagai parameter baris perintah. Panggil listAttachedRolePolicies metode objek
AWS.IAM layanan, yang mengembalikan array kebijakan terkelola ke fungsi callback.

Periksa anggota array untuk melihat apakah kebijakan yang ingin Anda lampirkan ke peran
sudah dilampirkan. Jika kebijakan tidak dilampirkan, panggil attachRolePolicy metode untuk
melampirkannya.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

Bekerja dengan Kebijakan IAM 194

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_getpolicy.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var paramsRoleList = {
 RoleName: process.argv[2],
};

iam.listAttachedRolePolicies(paramsRoleList, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 var myRolePolicies = data.AttachedPolicies;
 myRolePolicies.forEach(function (val, index, array) {
 if (myRolePolicies[index].PolicyName === "AmazonDynamoDBFullAccess") {
 console.log(
 "AmazonDynamoDBFullAccess is already attached to this role."
);
 process.exit();
 }
 });
 var params = {
 PolicyArn: "arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess",
 RoleName: process.argv[2],
 };
 iam.attachRolePolicy(params, function (err, data) {
 if (err) {
 console.log("Unable to attach policy to role", err);
 } else {
 console.log("Role attached successfully");
 }
 });
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_attachrolepolicy.js IAM_ROLE_NAME

Melepaskan Kebijakan Peran Terkelola

Buat modul Node.js dengan nama fileiam_detachrolepolicy.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek

Bekerja dengan Kebijakan IAM 195

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

AWS.IAM layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk mendapatkan
daftar kebijakan IAM terkelola yang dilampirkan ke peran, yang terdiri dari nama peran. Berikan nama
peran sebagai parameter baris perintah. Panggil listAttachedRolePolicies metode objek
AWS.IAM layanan, yang mengembalikan array kebijakan terkelola dalam fungsi callback.

Periksa anggota array untuk melihat apakah kebijakan yang ingin Anda lepaskan dari peran
terlampir. Jika kebijakan dilampirkan, panggil detachRolePolicy metode untuk melepaskannya.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var paramsRoleList = {
 RoleName: process.argv[2],
};

iam.listAttachedRolePolicies(paramsRoleList, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 var myRolePolicies = data.AttachedPolicies;
 myRolePolicies.forEach(function (val, index, array) {
 if (myRolePolicies[index].PolicyName === "AmazonDynamoDBFullAccess") {
 var params = {
 PolicyArn: "arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess",
 RoleName: process.argv[2],
 };
 iam.detachRolePolicy(params, function (err, data) {
 if (err) {
 console.log("Unable to detach policy from role", err);
 } else {
 console.log("Policy detached from role successfully");
 process.exit();
 }
 });
 }
 });
 }

Bekerja dengan Kebijakan IAM 196

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_detachrolepolicy.js IAM_ROLE_NAME

Mengelola Kunci Akses IAM

Contoh kode Node.js ini menunjukkan:

• Cara mengelola kunci akses pengguna Anda.

Skenario

Pengguna memerlukan kunci akses mereka sendiri untuk melakukan panggilan terprogram AWS dari
SDK untuk. JavaScript Untuk memenuhi kebutuhan ini, Anda dapat membuat, memodifikasi, melihat,
atau memutar kunci akses (kunci akses IDs dan kunci akses rahasia) untuk pengguna IAM. Secara
default, saat Anda membuat kunci akses, statusnya adalahActive, yang berarti pengguna dapat
menggunakan kunci akses untuk panggilan API.

Dalam contoh ini, serangkaian modul Node.js digunakan mengelola kunci akses di IAM. Modul
Node.js menggunakan SDK JavaScript untuk mengelola kunci akses IAM menggunakan metode
kelas AWS.IAM klien berikut:

• createAccessKey

• listAccessKeys

• getAccessKeyLastUsed

• updateAccessKey

• deleteAccessKey

Untuk informasi selengkapnya tentang kunci akses IAM, lihat Kunci Akses di Panduan Pengguna
IAM.

Mengelola Kunci Akses IAM 197

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#createAccessKey-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#listAccessKeys-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#getAccessKeyLastUsed-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#updateAccessKey-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#deleteAccessKey-property
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Membuat Kunci Akses untuk Pengguna

Buat modul Node.js dengan nama fileiam_createaccesskeys.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek
AWS.IAM layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk membuat kunci
akses baru, yang mencakup nama pengguna IAM. Panggil createAccessKey metode objek
AWS.IAM layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.createAccessKey({ UserName: "IAM_USER_NAME" }, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.AccessKey);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Pastikan untuk menyalurkan data yang
dikembalikan ke file teks agar tidak kehilangan kunci rahasia, yang hanya dapat diberikan sekali.

node iam_createaccesskeys.js > newuserkeys.txt

Kode contoh ini dapat ditemukan di sini GitHub.

Mengelola Kunci Akses IAM 198

https://nodejs.org
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_createaccesskeys.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Daftar Kunci Akses Pengguna

Buat modul Node.js dengan nama fileiam_listaccesskeys.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek AWS.IAM layanan.
Buat objek JSON yang berisi parameter yang diperlukan untuk mengambil kunci akses pengguna,
yang mencakup nama pengguna IAM dan opsional jumlah maksimum pasangan kunci akses yang
ingin Anda cantumkan. Panggil listAccessKeys metode objek AWS.IAM layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 MaxItems: 5,
 UserName: "IAM_USER_NAME",
};

iam.listAccessKeys(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_listaccesskeys.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mendapatkan Penggunaan Terakhir untuk Kunci Akses

Buat modul Node.js dengan nama fileiam_accesskeylastused.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek
AWS.IAM layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk membuat kunci

Mengelola Kunci Akses IAM 199

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_listaccesskeys.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

akses baru, yang merupakan ID kunci akses yang Anda inginkan informasi penggunaan terakhir.
Panggil getAccessKeyLastUsed metode objek AWS.IAM layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.getAccessKeyLastUsed(
 { AccessKeyId: "ACCESS_KEY_ID" },
 function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.AccessKeyLastUsed);
 }
 }
);

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_accesskeylastused.js

Kode contoh ini dapat ditemukan di sini GitHub.

Memperbarui Status Kunci Akses

Buat modul Node.js dengan nama fileiam_updateaccesskey.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek AWS.IAM layanan.
Buat objek JSON yang berisi parameter yang diperlukan untuk memperbarui status kunci akses,
yang mencakup ID kunci akses dan status yang diperbarui. Statusnya bisa Active atauInactive.
Panggil updateAccessKey metode objek AWS.IAM layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

Mengelola Kunci Akses IAM 200

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_accesskeylastused.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 AccessKeyId: "ACCESS_KEY_ID",
 Status: "Active",
 UserName: "USER_NAME",
};

iam.updateAccessKey(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_updateaccesskey.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Kunci Akses

Buat modul Node.js dengan nama fileiam_deleteaccesskey.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek AWS.IAM layanan.
Buat objek JSON yang berisi parameter yang diperlukan untuk menghapus kunci akses, yang
mencakup ID kunci akses dan nama pengguna. Panggil deleteAccessKey metode objek AWS.IAM
layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 AccessKeyId: "ACCESS_KEY_ID",

Mengelola Kunci Akses IAM 201

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_updateaccesskey.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 UserName: "USER_NAME",
};

iam.deleteAccessKey(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_deleteaccesskey.js

Kode contoh ini dapat ditemukan di sini GitHub.

Bekerja dengan Sertifikat Server IAM

Contoh kode Node.js ini menunjukkan:

• Bagaimana melakukan tugas-tugas dasar dalam mengelola sertifikat server untuk koneksi HTTPS.

Skenario

Untuk mengaktifkan koneksi HTTPS ke situs web atau aplikasi Anda AWS, Anda memerlukan
sertifikat server SSL/TLS. Untuk menggunakan sertifikat yang Anda peroleh dari penyedia eksternal
dengan situs web atau aplikasi Anda AWS, Anda harus mengunggah sertifikat ke IAM atau
mengimpornya ke AWS Certificate Manager.

Dalam contoh ini, serangkaian modul Node.js digunakan untuk menangani sertifikat server di IAM.
Modul Node.js menggunakan SDK JavaScript untuk mengelola sertifikat server menggunakan
metode kelas AWS.IAM klien berikut:

• listServerCertificates

• getServerCertificate

Bekerja dengan Sertifikat Server IAM 202

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_deleteaccesskey.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#listServerCertificates-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#getServerCertificate-property

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• updateServerCertificate

• deleteServerCertificate

Untuk informasi selengkapnya tentang sertifikat server, lihat Bekerja dengan Sertifikat Server di
Panduan Pengguna IAM.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensyal bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Cantumkan Sertifikat Server Anda

Buat modul Node.js dengan nama fileiam_listservercerts.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek AWS.IAM layanan.
Panggil listServerCertificates metode objek AWS.IAM layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.listServerCertificates({}, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

Bekerja dengan Sertifikat Server IAM 203

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#updateServerCertificate-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#deleteServerCertificate-property
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

node iam_listservercerts.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mendapatkan Sertifikat Server

Buat modul Node.js dengan nama fileiam_getservercert.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek AWS.IAM layanan.
Buat objek JSON yang berisi parameter yang diperlukan dapatkan sertifikat, yang terdiri dari nama
sertifikat server yang Anda inginkan. Panggil getServerCertificates metode objek AWS.IAM
layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.getServerCertificate(
 { ServerCertificateName: "CERTIFICATE_NAME" },
 function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
 }
);

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_getservercert.js

Kode contoh ini dapat ditemukan di sini GitHub.

Memperbarui Sertifikat Server

Buat modul Node.js dengan nama fileiam_updateservercert.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek

Bekerja dengan Sertifikat Server IAM 204

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_listservercerts.js
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_getservercert.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

AWS.IAM layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk memperbarui
sertifikat, yang terdiri dari nama sertifikat server yang ada serta nama sertifikat baru. Panggil
updateServerCertificate metode objek AWS.IAM layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

var params = {
 ServerCertificateName: "CERTIFICATE_NAME",
 NewServerCertificateName: "NEW_CERTIFICATE_NAME",
};

iam.updateServerCertificate(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_updateservercert.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Sertifikat Server

Buat modul Node.js dengan nama fileiam_deleteservercert.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat
objek AWS.IAM layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk
menghapus sertifikat server, yang terdiri dari nama sertifikat yang ingin Anda hapus. Panggil
deleteServerCertificates metode objek AWS.IAM layanan.

// Load the AWS SDK for Node.js

Bekerja dengan Sertifikat Server IAM 205

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_updateservercert.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.deleteServerCertificate(
 { ServerCertificateName: "CERTIFICATE_NAME" },
 function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
 }
);

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_deleteservercert.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengelola Alias Akun IAM

Contoh kode Node.js ini menunjukkan:

• Cara mengelola alias untuk ID AWS akun Anda.

Skenario

Jika Anda ingin URL untuk halaman masuk berisi nama perusahaan atau pengenal ramah lainnya,
bukan ID AWS akun Anda, Anda dapat membuat alias untuk ID akun Anda AWS . Jika Anda
membuat alias AWS akun, URL halaman masuk Anda berubah untuk memasukkan alias.

Mengelola Alias Akun IAM 206

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_deleteservercert.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Dalam contoh ini, serangkaian modul Node.js digunakan untuk membuat dan mengelola alias akun
IAM. Modul Node.js menggunakan SDK JavaScript untuk mengelola alias menggunakan metode
kelas AWS.IAM klien berikut:

• createAccountAlias

• listAccountAliases

• deleteAccountAlias

Untuk informasi selengkapnya tentang alias akun IAM, lihat ID AWS Akun Anda dan Aliasnya di
Panduan Pengguna IAM.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensyal bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Membuat Akun Alias

Buat modul Node.js dengan nama fileiam_createaccountalias.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek
AWS.IAM layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk membuat alias
akun, yang mencakup alias yang ingin Anda buat. Panggil createAccountAlias metode objek
AWS.IAM layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.createAccountAlias({ AccountAlias: process.argv[2] }, function (err, data) {

Mengelola Alias Akun IAM 207

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#createAccountAlias-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#listAccountAliases-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/IAM.html#deleteAccountAlias-property
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_createaccountalias.js ALIAS

Kode contoh ini dapat ditemukan di sini GitHub.

Daftar Alias Akun

Buat modul Node.js dengan nama fileiam_listaccountaliases.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek
AWS.IAM layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk daftar alias akun,
yang mencakup jumlah maksimum item yang akan dikembalikan. Panggil listAccountAliases
metode objek AWS.IAM layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.listAccountAliases({ MaxItems: 10 }, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_listaccountaliases.js

Mengelola Alias Akun IAM 208

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_createaccountalias.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Alias Akun

Buat modul Node.js dengan nama fileiam_deleteaccountalias.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses IAM, buat objek
AWS.IAM layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk menghapus alias
akun, yang mencakup alias yang ingin Anda hapus. Panggil deleteAccountAlias metode objek
AWS.IAM layanan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the IAM service object
var iam = new AWS.IAM({ apiVersion: "2010-05-08" });

iam.deleteAccountAlias({ AccountAlias: process.argv[2] }, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node iam_deleteaccountalias.js ALIAS

Kode contoh ini dapat ditemukan di sini GitHub.

Contoh Kinesis Amazon

Amazon Kinesis adalah platform untuk streaming data AWS, menawarkan layanan canggih untuk
memuat dan menganalisis data streaming, dan juga menyediakan kemampuan bagi Anda untuk
membangun aplikasi data streaming khusus untuk kebutuhan khusus.

Contoh Kinesis Amazon 209

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_listaccountaliases.js
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/iam/iam_deleteaccountalias.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

JavaScript API untuk Kinesis diekspos melalui kelas AWS.Kinesis klien. Untuk informasi
selengkapnya tentang penggunaan kelas klien Kinesis, lihat Class: AWS.Kinesisdi referensi API.

Topik

• Menangkap Kemajuan Gulir Halaman Web dengan Amazon Kinesis

Menangkap Kemajuan Gulir Halaman Web dengan Amazon Kinesis

Contoh skrip browser ini menunjukkan:

• Cara menangkap progres gulir di halaman web dengan Amazon Kinesis sebagai contoh metrik
penggunaan halaman streaming untuk analisis selanjutnya.

Skenario

Dalam contoh ini, halaman HTML sederhana mensimulasikan konten halaman blog. Saat pembaca
menggulir posting blog yang disimulasikan, skrip browser menggunakan SDK untuk merekam jarak
gulir JavaScript ke bawah halaman dan mengirim data tersebut ke Kinesis menggunakan metode
putRecordskelas klien Kinesis. Data streaming yang diambil oleh Amazon Kinesis Data Streams
kemudian dapat diproses oleh instans EC2 Amazon dan disimpan di salah satu dari beberapa
penyimpanan data termasuk Amazon DynamoDB dan Amazon Redshift.

Menangkap Kemajuan Gulir Halaman Web dengan Amazon Kinesis 210

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Kinesis.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Kinesis.html#putRecords-property

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Buat aliran Kinesis. Anda perlu menyertakan ARN sumber daya aliran dalam skrip browser. Untuk
informasi selengkapnya tentang membuat Amazon Kinesis Data Streams, lihat Mengelola Aliran
Kinesis di Panduan Pengembang Amazon Kinesis Data Streams.

• Buat kumpulan identitas Amazon Cognito dengan akses diaktifkan untuk identitas yang tidak
diautentikasi. Anda perlu menyertakan ID kumpulan identitas dalam kode untuk mendapatkan
kredensional untuk skrip browser. Untuk informasi selengkapnya tentang kumpulan identitas
Amazon Cognito, lihat Kumpulan Identitas di Panduan Pengembang Amazon Cognito.

• Buat peran IAM yang kebijakannya memberikan izin untuk mengirimkan data ke aliran Kinesis.
Untuk informasi selengkapnya tentang membuat peran IAM, lihat Membuat Peran untuk
Mendelegasikan Izin ke AWS Layanan di Panduan Pengguna IAM.

Gunakan kebijakan peran berikut saat membuat peran IAM.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "mobileanalytics:PutEvents",
 "cognito-sync:*"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:Put*"
],
 "Resource": [

Menangkap Kemajuan Gulir Halaman Web dengan Amazon Kinesis 211

https://docs.aws.amazon.com/streams/latest/dev/working-with-streams.html
https://docs.aws.amazon.com/streams/latest/dev/working-with-streams.html
https://docs.aws.amazon.com/cognito/latest/developerguide/identity-pools.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 "arn:aws:kinesis:us-east-1:111122223333:stream/stream-name"
]
 }
]
}

Halaman Blog

HTML untuk halaman blog terutama terdiri dari serangkaian paragraf yang terkandung dalam suatu
<div> elemen. Ketinggian yang dapat digulir <div> ini digunakan untuk membantu menghitung
seberapa jauh pembaca telah menggulir konten saat mereka membaca. HTML juga berisi sepasang
<script> elemen. Salah satu elemen ini menambahkan SDK untuk JavaScript ke halaman dan
yang lainnya menambahkan skrip browser yang menangkap kemajuan gulir pada halaman dan
melaporkannya ke Kinesis.

<!DOCTYPE html>
<html>
 <head>
 <title>AWS SDK for JavaScript - Amazon Kinesis Application</title>
 </head>
 <body>
 <div id="BlogContent" style="width: 60%; height: 800px; overflow: auto;margin:
 auto; text-align: center;">
 <div>
 <p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
 vitae nulla eget nisl bibendum feugiat. Fusce rhoncus felis at ultricies luctus.
 Vivamus fermentum cursus sem at interdum. Proin vel lobortis nulla. Aenean rutrum
 odio in tellus semper rhoncus. Nam eu felis ac augue dapibus laoreet vel in erat.
 Vivamus vitae mollis turpis. Integer sagittis dictum odio. Duis nec sapien diam.
 In imperdiet sem nec ante laoreet, vehicula facilisis sem placerat. Duis ut metus
 egestas, ullamcorper neque et, accumsan quam. Class aptent taciti sociosqu ad litora
 torquent per conubia nostra, per inceptos himenaeos.
 </p>
 <!-- Additional paragraphs in the blog page appear here -->
 </div>
 </div>
 <script src="https://sdk.amazonaws.com/js/aws-sdk-2.283.1.min.js"></script>
 <script src="kinesis-example.js"></script>
 </body>
</html>

Menangkap Kemajuan Gulir Halaman Web dengan Amazon Kinesis 212

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Mengkonfigurasi SDK

Dapatkan kredensional yang diperlukan untuk mengonfigurasi SDK dengan memanggil
CognitoIdentityCredentials metode, dengan menyediakan ID kumpulan identitas Amazon
Cognito. Setelah berhasil, buat objek layanan Kinesis dalam fungsi callback.

Cuplikan kode berikut menunjukkan langkah ini. (Lihat Menangkap Kode Kemajuan Gulir Halaman
Web contoh lengkapnya.)

// Configure Credentials to use Cognito
AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: "IDENTITY_POOL_ID",
});

AWS.config.region = "REGION";
// We're going to partition Amazon Kinesis records based on an identity.
// We need to get credentials first, then attach our event listeners.
AWS.config.credentials.get(function (err) {
 // attach event listener
 if (err) {
 alert("Error retrieving credentials.");
 console.error(err);
 return;
 }
 // create Amazon Kinesis service object
 var kinesis = new AWS.Kinesis({
 apiVersion: "2013-12-02",
 });

Membuat Catatan Gulir

Progres gulir dihitung menggunakan scrollHeight dan scrollTop properti yang <div> berisi
konten posting blog. Setiap catatan gulir dibuat dalam fungsi pendengar acara untuk scroll acara
tersebut dan kemudian ditambahkan ke array catatan untuk pengiriman berkala ke Kinesis.

Cuplikan kode berikut menunjukkan langkah ini. (Lihat Menangkap Kode Kemajuan Gulir Halaman
Web contoh lengkapnya.)

 // Get the ID of the Web page element.
 var blogContent = document.getElementById("BlogContent");

 // Get Scrollable height

Menangkap Kemajuan Gulir Halaman Web dengan Amazon Kinesis 213

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 var scrollableHeight = blogContent.clientHeight;

 var recordData = [];
 var TID = null;
 blogContent.addEventListener("scroll", function (event) {
 clearTimeout(TID);
 // Prevent creating a record while a user is actively scrolling
 TID = setTimeout(function () {
 // calculate percentage
 var scrollableElement = event.target;
 var scrollHeight = scrollableElement.scrollHeight;
 var scrollTop = scrollableElement.scrollTop;

 var scrollTopPercentage = Math.round((scrollTop / scrollHeight) * 100);
 var scrollBottomPercentage = Math.round(
 ((scrollTop + scrollableHeight) / scrollHeight) * 100
);

 // Create the Amazon Kinesis record
 var record = {
 Data: JSON.stringify({
 blog: window.location.href,
 scrollTopPercentage: scrollTopPercentage,
 scrollBottomPercentage: scrollBottomPercentage,
 time: new Date(),
 }),
 PartitionKey: "partition-" + AWS.config.credentials.identityId,
 };
 recordData.push(record);
 }, 100);
 });

Mengirimkan Catatan ke Kinesis

Sekali setiap detik, jika ada catatan dalam array, catatan yang tertunda dikirim ke Kinesis.

Cuplikan kode berikut menunjukkan langkah ini. (Lihat Menangkap Kode Kemajuan Gulir Halaman
Web contoh lengkapnya.)

 // upload data to Amazon Kinesis every second if data exists
 setInterval(function () {
 if (!recordData.length) {
 return;

Menangkap Kemajuan Gulir Halaman Web dengan Amazon Kinesis 214

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 }
 // upload data to Amazon Kinesis
 kinesis.putRecords(
 {
 Records: recordData,
 StreamName: "NAME_OF_STREAM",
 },
 function (err, data) {
 if (err) {
 console.error(err);
 }
 }
);
 // clear record data
 recordData = [];
 }, 1000);
});

Menangkap Kode Kemajuan Gulir Halaman Web

Berikut adalah kode skrip browser untuk contoh kemajuan gulir halaman web Kinesis yang
menangkap.

// Configure Credentials to use Cognito
AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: "IDENTITY_POOL_ID",
});

AWS.config.region = "REGION";
// We're going to partition Amazon Kinesis records based on an identity.
// We need to get credentials first, then attach our event listeners.
AWS.config.credentials.get(function (err) {
 // attach event listener
 if (err) {
 alert("Error retrieving credentials.");
 console.error(err);
 return;
 }
 // create Amazon Kinesis service object
 var kinesis = new AWS.Kinesis({
 apiVersion: "2013-12-02",
 });

Menangkap Kemajuan Gulir Halaman Web dengan Amazon Kinesis 215

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 // Get the ID of the Web page element.
 var blogContent = document.getElementById("BlogContent");

 // Get Scrollable height
 var scrollableHeight = blogContent.clientHeight;

 var recordData = [];
 var TID = null;
 blogContent.addEventListener("scroll", function (event) {
 clearTimeout(TID);
 // Prevent creating a record while a user is actively scrolling
 TID = setTimeout(function () {
 // calculate percentage
 var scrollableElement = event.target;
 var scrollHeight = scrollableElement.scrollHeight;
 var scrollTop = scrollableElement.scrollTop;

 var scrollTopPercentage = Math.round((scrollTop / scrollHeight) * 100);
 var scrollBottomPercentage = Math.round(
 ((scrollTop + scrollableHeight) / scrollHeight) * 100
);

 // Create the Amazon Kinesis record
 var record = {
 Data: JSON.stringify({
 blog: window.location.href,
 scrollTopPercentage: scrollTopPercentage,
 scrollBottomPercentage: scrollBottomPercentage,
 time: new Date(),
 }),
 PartitionKey: "partition-" + AWS.config.credentials.identityId,
 };
 recordData.push(record);
 }, 100);
 });

 // upload data to Amazon Kinesis every second if data exists
 setInterval(function () {
 if (!recordData.length) {
 return;
 }
 // upload data to Amazon Kinesis
 kinesis.putRecords(
 {

Menangkap Kemajuan Gulir Halaman Web dengan Amazon Kinesis 216

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 Records: recordData,
 StreamName: "NAME_OF_STREAM",
 },
 function (err, data) {
 if (err) {
 console.error(err);
 }
 }
);
 // clear record data
 recordData = [];
 }, 1000);
});

Contoh-contoh Amazon S3

Amazon Simple Storage Service (Amazon S3) adalah layanan web yang menyediakan penyimpanan
cloud yang sangat skalabel. Amazon S3 menyediakan penyimpanan objek yang mudah digunakan,
dengan antarmuka layanan web sederhana untuk menyimpan dan mengambil sejumlah data dari
mana saja di web.

JavaScript API untuk Amazon S3 diekspos melalui kelas AWS.S3 klien. Untuk informasi
selengkapnya tentang menggunakan kelas klien Amazon S3, lihat Class: AWS.S3di referensi API.

Topik

• Contoh Browser Amazon S3

• Amazon S3 Node.js Contoh

Contoh-contoh Amazon S3 217

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Contoh Browser Amazon S3

Topik berikut menunjukkan dua contoh bagaimana AWS SDK untuk JavaScript dapat digunakan di
browser untuk berinteraksi dengan bucket Amazon S3.

• Yang pertama menunjukkan skenario sederhana di mana foto yang ada di bucket Amazon S3
dapat dilihat oleh pengguna mana pun (tidak diautentikasi).

• Yang kedua menunjukkan skenario yang lebih kompleks di mana pengguna diizinkan untuk
melakukan operasi pada foto di ember seperti mengunggah, menghapus, dll.

Topik

• Melihat Foto di Bucket Amazon S3 dari Browser

• Mengunggah Foto ke Amazon S3 dari Browser

Melihat Foto di Bucket Amazon S3 dari Browser

Contoh kode skrip browser ini menunjukkan:

• Cara membuat album foto di bucket Amazon Simple Storage Service (Amazon S3) dan
memungkinkan pengguna yang tidak diautentikasi untuk melihat foto.

Skenario

Dalam contoh ini, halaman HTML sederhana menyediakan aplikasi berbasis browser untuk melihat
foto di album foto. Album foto ada dalam ember Amazon S3 tempat foto diunggah.

Contoh Browser Amazon S3 218

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Skrip browser menggunakan SDK JavaScript untuk berinteraksi dengan bucket Amazon S3. Skrip
menggunakan listObjectsmetode kelas klien Amazon S3 untuk memungkinkan Anda melihat
album foto.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, pertama-tama selesaikan tugas-tugas ini.

Note

Dalam contoh ini, Anda harus menggunakan AWS Wilayah yang sama untuk bucket Amazon
S3 dan kumpulan identitas Amazon Cognito.

Buat Bucket

Di konsol Amazon S3, buat bucket Amazon S3 tempat Anda dapat menyimpan album dan foto. Untuk
informasi selengkapnya tentang menggunakan konsol untuk membuat bucket S3, lihat Membuat
Bucket di Panduan Pengguna Layanan Penyimpanan Sederhana Amazon.

Saat Anda membuat bucket S3, pastikan untuk melakukan hal berikut:

• Catat nama bucket sehingga Anda dapat menggunakannya dalam tugas prasyarat berikutnya,
Mengonfigurasi Izin Peran.

• Pilih AWS Region untuk membuat bucket. Ini harus Wilayah yang sama yang akan Anda gunakan
untuk membuat kumpulan identitas Amazon Cognito dalam tugas prasyarat berikutnya, Buat
Kumpulan Identitas.

• Konfigurasikan izin bucket dengan mengikuti Pengaturan izin untuk akses situs web di Panduan
Pengguna Layanan Penyimpanan Sederhana Amazon.

Buat Kolam Identitas

Di konsol Amazon Cognito, buat kumpulan identitas Amazon Cognito, seperti yang dijelaskan the
section called “Langkah 1: Buat Kolam Identitas Amazon Cognito” dalam topik Memulai dalam Skrip
Browser.

Saat Anda membuat kumpulan identitas, catat nama kumpulan identitas, serta nama peran untuk
identitas yang tidak diautentikasi.

Contoh Browser Amazon S3 219

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#listObjects-property
https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteAccessPermissionsReqd.html
https://console.aws.amazon.com/cognito/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Konfigurasikan Izin Peran

Untuk memungkinkan melihat album dan foto, Anda harus menambahkan izin ke peran IAM dari
kumpulan identitas yang baru saja Anda buat. Mulailah dengan membuat kebijakan sebagai berikut.

1. Buka konsol IAM.

2. Di panel navigasi di sebelah kiri, pilih Kebijakan, lalu pilih tombol Buat kebijakan.

3. Pada tab JSON, masukkan definisi JSON berikut, tetapi ganti BUCKET_NAME dengan nama
bucket.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::BUCKET_NAME"
]
 }
]
}

4. Pilih tombol Tinjau kebijakan, beri nama kebijakan dan berikan deskripsi (jika Anda mau), lalu
pilih tombol Buat kebijakan.

Pastikan untuk mencatat nama sehingga Anda dapat menemukannya dan melampirkannya ke
peran IAM nanti.

Setelah kebijakan dibuat, navigasikan kembali ke konsol IAM. Temukan peran IAM untuk identitas
tidak terautentikasi yang dibuat Amazon Cognito di tugas prasyarat sebelumnya, Buat Kumpulan
Identitas. Anda menggunakan kebijakan yang baru saja dibuat untuk menambahkan izin ke identitas
ini.

Contoh Browser Amazon S3 220

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Meskipun alur kerja untuk tugas ini umumnya sama the section called “Langkah 2: Tambahkan
Kebijakan ke Peran IAM yang Dibuat” dengan topik Memulai dalam Skrip Browser, ada beberapa
perbedaan yang perlu diperhatikan:

• Gunakan kebijakan baru yang baru saja Anda buat, bukan kebijakan untuk Amazon Polly.

• Pada halaman Lampirkan Izin, untuk menemukan kebijakan baru dengan cepat, buka daftar Filter
kebijakan dan pilih Pelanggan yang dikelola.

Untuk informasi tambahan tentang membuat peran IAM, lihat Membuat Peran untuk Mendelegasikan
Izin ke AWS Layanan di Panduan Pengguna IAM.

Konfigurasikan CORS

Sebelum skrip browser dapat mengakses bucket Amazon S3, Anda harus mengatur konfigurasi
CORS-nya sebagai berikut.

Important

Pada konsol S3 baru, konfigurasi CORS harus JSON.

JSON

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "HEAD",
 "GET"
],
 "AllowedOrigins": [
 "*"
]
 }
]

Contoh Browser Amazon S3 221

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

XML

<?xml version="1.0" encoding="UTF-8"?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <CORSRule>
 <AllowedOrigin>*</AllowedOrigin>
 <AllowedMethod>GET</AllowedMethod>
 <AllowedMethod>HEAD</AllowedMethod>
 <AllowedHeader>*</AllowedHeader>
 </CORSRule>
</CORSConfiguration>

Buat Album dan Unggah Foto

Karena contoh ini hanya memungkinkan pengguna untuk melihat foto yang sudah ada di ember,
Anda perlu membuat beberapa album di ember dan mengunggah foto ke mereka.

Note

Untuk contoh ini, nama file file foto harus dimulai dengan satu garis bawah (“_”). Karakter ini
penting nanti untuk penyaringan. Selain itu, pastikan untuk menghormati hak cipta pemilik
foto.

1. Di konsol Amazon S3, buka bucket yang Anda buat sebelumnya.

2. Pada tab Ikhtisar, pilih tombol Buat folder untuk membuat folder. Untuk contoh ini, beri nama folder
“album1", “album2", dan “album3".

3. Untuk album1 dan kemudian album2, pilih folder dan kemudian unggah foto ke dalamnya sebagai
berikut:

a. Pilih tombol Unggah.

b. Seret atau pilih file foto yang ingin Anda gunakan, lalu pilih Berikutnya.

c. Di bawah Kelola izin publik, pilih Berikan akses baca publik ke objek ini.

d. Pilih tombol Upload (di pojok kiri bawah).

4. Biarkan album3 kosong.

Contoh Browser Amazon S3 222

https://console.aws.amazon.com/s3/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Mendefinisikan Halaman Web

HTML untuk aplikasi melihat foto terdiri dari <div> elemen di mana skrip browser membuat
antarmuka tampilan. <script>Elemen pertama menambahkan SDK ke skrip browser.
<script>Elemen kedua menambahkan JavaScript file eksternal yang memegang kode skrip
browser.

Untuk contoh ini, file tersebut diberi namaPhotoViewer.js, dan terletak di folder yang sama
dengan file HTML. Untuk menemukan SDK_VERSION_NUMBER saat ini, lihat Referensi API untuk
SDK untuk Panduan Referensi API. JavaScript AWS SDK untuk JavaScript

<!DOCTYPE html>
<html>
 <head>
 <!-- **DO THIS**: -->
 <!-- Replace SDK_VERSION_NUMBER with the current SDK version number -->
 <script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.js"></script>
 <script src="./PhotoViewer.js"></script>
 <script>listAlbums();</script>
 </head>
 <body>
 <h1>Photo Album Viewer</h1>
 <div id="viewer" />
 </body>
</html>

Mengkonfigurasi SDK

Dapatkan kredensional yang Anda perlukan untuk mengonfigurasi SDK dengan memanggil metode.
CognitoIdentityCredentials Anda harus memberikan ID kumpulan identitas Amazon Cognito.
Kemudian buat objek AWS.S3 layanan.

// **DO THIS**:
// Replace BUCKET_NAME with the bucket name.
//
var albumBucketName = "BUCKET_NAME";

// **DO THIS**:
// Replace this block of code with the sample code located at:
// Cognito -- Manage Identity Pools -- [identity_pool_name] -- Sample Code --
 JavaScript

Contoh Browser Amazon S3 223

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

//
// Initialize the Amazon Cognito credentials provider
AWS.config.region = "REGION"; // Region
AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: "IDENTITY_POOL_ID",
});

// Create a new service object
var s3 = new AWS.S3({
 apiVersion: "2006-03-01",
 params: { Bucket: albumBucketName },
});

// A utility function to create HTML.
function getHtml(template) {
 return template.join("\n");
}

Sisa kode dalam contoh ini mendefinisikan fungsi-fungsi berikut untuk mengumpulkan dan
menyajikan informasi tentang album dan foto dalam ember.

• listAlbums

• viewAlbum

Daftar Album di Bucket

Untuk mencantumkan semua album yang ada di bucket, listAlbums fungsi aplikasi memanggil
listObjects metode objek AWS.S3 layanan. Fungsi ini menggunakan CommonPrefixes properti
sehingga panggilan hanya mengembalikan objek yang digunakan sebagai album (yaitu, folder).

Sisa fungsi mengambil daftar album dari bucket Amazon S3 dan menghasilkan HTML yang
diperlukan untuk menampilkan daftar album di halaman web.

// List the photo albums that exist in the bucket.
function listAlbums() {
 s3.listObjects({ Delimiter: "/" }, function (err, data) {
 if (err) {
 return alert("There was an error listing your albums: " + err.message);
 } else {
 var albums = data.CommonPrefixes.map(function (commonPrefix) {
 var prefix = commonPrefix.Prefix;
 var albumName = decodeURIComponent(prefix.replace("/", ""));

Contoh Browser Amazon S3 224

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 return getHtml([
 "",
 '<button style="margin:5px;" onclick="viewAlbum(\'' +
 albumName +
 "')\">",
 albumName,
 "</button>",
 "",
]);
 });
 var message = albums.length
 ? getHtml(["<p>Click on an album name to view it.</p>"])
 : "<p>You do not have any albums. Please Create album.";
 var htmlTemplate = [
 "<h2>Albums</h2>",
 message,
 "",
 getHtml(albums),
 "",
];
 document.getElementById("viewer").innerHTML = getHtml(htmlTemplate);
 }
 });
}

Melihat Album

Untuk menampilkan konten album di bucket Amazon S3, viewAlbum fungsi aplikasi mengambil
nama album dan membuat kunci Amazon S3 untuk album itu. Fungsi kemudian memanggil
listObjects metode objek AWS.S3 layanan untuk mendapatkan daftar semua objek (foto) dalam
album.

Sisa fungsi mengambil daftar objek yang ada di album dan menghasilkan HTML yang diperlukan
untuk menampilkan foto di halaman web.

// Show the photos that exist in an album.
function viewAlbum(albumName) {
 var albumPhotosKey = encodeURIComponent(albumName) + "/";
 s3.listObjects({ Prefix: albumPhotosKey }, function (err, data) {
 if (err) {
 return alert("There was an error viewing your album: " + err.message);
 }
 // 'this' references the AWS.Request instance that represents the response

Contoh Browser Amazon S3 225

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 var href = this.request.httpRequest.endpoint.href;
 var bucketUrl = href + albumBucketName + "/";

 var photos = data.Contents.map(function (photo) {
 var photoKey = photo.Key;
 var photoUrl = bucketUrl + encodeURIComponent(photoKey);
 return getHtml([
 "",
 "<div>",
 "
",
 '',
 "</div>",
 "<div>",
 "",
 photoKey.replace(albumPhotosKey, ""),
 "",
 "</div>",
 "",
]);
 });
 var message = photos.length
 ? "<p>The following photos are present.</p>"
 : "<p>There are no photos in this album.</p>";
 var htmlTemplate = [
 "<div>",
 '<button onclick="listAlbums()">',
 "Back To Albums",
 "</button>",
 "</div>",
 "<h2>",
 "Album: " + albumName,
 "</h2>",
 message,
 "<div>",
 getHtml(photos),
 "</div>",
 "<h2>",
 "End of Album: " + albumName,
 "</h2>",
 "<div>",
 '<button onclick="listAlbums()">',
 "Back To Albums",
 "</button>",
 "</div>",

Contoh Browser Amazon S3 226

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

];
 document.getElementById("viewer").innerHTML = getHtml(htmlTemplate);
 document
 .getElementsByTagName("img")[0]
 .setAttribute("style", "display:none;");
 });
}

Melihat Foto di Bucket Amazon S3: Kode Lengkap

Bagian ini berisi HTML lengkap dan JavaScript kode untuk contoh di mana foto dalam ember Amazon
S3 dapat dilihat. Lihat bagian induk untuk detail dan prasyarat.

HTML untuk contoh:

<!DOCTYPE html>
<html>
 <head>
 <!-- **DO THIS**: -->
 <!-- Replace SDK_VERSION_NUMBER with the current SDK version number -->
 <script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.js"></script>
 <script src="./PhotoViewer.js"></script>
 <script>listAlbums();</script>
 </head>
 <body>
 <h1>Photo Album Viewer</h1>
 <div id="viewer" />
 </body>
</html>

Kode contoh ini dapat ditemukan di sini GitHub.

Kode skrip browser untuk contoh:

//
// Data constructs and initialization.
//

// **DO THIS**:
// Replace BUCKET_NAME with the bucket name.
//
var albumBucketName = "BUCKET_NAME";

Contoh Browser Amazon S3 227

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_PhotoViewer.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// **DO THIS**:
// Replace this block of code with the sample code located at:
// Cognito -- Manage Identity Pools -- [identity_pool_name] -- Sample Code --
 JavaScript
//
// Initialize the Amazon Cognito credentials provider
AWS.config.region = "REGION"; // Region
AWS.config.credentials = new AWS.CognitoIdentityCredentials({
 IdentityPoolId: "IDENTITY_POOL_ID",
});

// Create a new service object
var s3 = new AWS.S3({
 apiVersion: "2006-03-01",
 params: { Bucket: albumBucketName },
});

// A utility function to create HTML.
function getHtml(template) {
 return template.join("\n");
}

//
// Functions
//

// List the photo albums that exist in the bucket.
function listAlbums() {
 s3.listObjects({ Delimiter: "/" }, function (err, data) {
 if (err) {
 return alert("There was an error listing your albums: " + err.message);
 } else {
 var albums = data.CommonPrefixes.map(function (commonPrefix) {
 var prefix = commonPrefix.Prefix;
 var albumName = decodeURIComponent(prefix.replace("/", ""));
 return getHtml([
 "",
 '<button style="margin:5px;" onclick="viewAlbum(\'' +
 albumName +
 "')\">",
 albumName,
 "</button>",
 "",
]);

Contoh Browser Amazon S3 228

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 });
 var message = albums.length
 ? getHtml(["<p>Click on an album name to view it.</p>"])
 : "<p>You do not have any albums. Please Create album.";
 var htmlTemplate = [
 "<h2>Albums</h2>",
 message,
 "",
 getHtml(albums),
 "",
];
 document.getElementById("viewer").innerHTML = getHtml(htmlTemplate);
 }
 });
}

// Show the photos that exist in an album.
function viewAlbum(albumName) {
 var albumPhotosKey = encodeURIComponent(albumName) + "/";
 s3.listObjects({ Prefix: albumPhotosKey }, function (err, data) {
 if (err) {
 return alert("There was an error viewing your album: " + err.message);
 }
 // 'this' references the AWS.Request instance that represents the response
 var href = this.request.httpRequest.endpoint.href;
 var bucketUrl = href + albumBucketName + "/";

 var photos = data.Contents.map(function (photo) {
 var photoKey = photo.Key;
 var photoUrl = bucketUrl + encodeURIComponent(photoKey);
 return getHtml([
 "",
 "<div>",
 "
",
 '',
 "</div>",
 "<div>",
 "",
 photoKey.replace(albumPhotosKey, ""),
 "",
 "</div>",
 "",
]);
 });

Contoh Browser Amazon S3 229

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 var message = photos.length
 ? "<p>The following photos are present.</p>"
 : "<p>There are no photos in this album.</p>";
 var htmlTemplate = [
 "<div>",
 '<button onclick="listAlbums()">',
 "Back To Albums",
 "</button>",
 "</div>",
 "<h2>",
 "Album: " + albumName,
 "</h2>",
 message,
 "<div>",
 getHtml(photos),
 "</div>",
 "<h2>",
 "End of Album: " + albumName,
 "</h2>",
 "<div>",
 '<button onclick="listAlbums()">',
 "Back To Albums",
 "</button>",
 "</div>",
];
 document.getElementById("viewer").innerHTML = getHtml(htmlTemplate);
 document
 .getElementsByTagName("img")[0]
 .setAttribute("style", "display:none;");
 });
}

Kode contoh ini dapat ditemukan di sini GitHub.

Mengunggah Foto ke Amazon S3 dari Browser

Contoh kode skrip browser ini menunjukkan:

Contoh Browser Amazon S3 230

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_PhotoViewer.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Cara membuat aplikasi browser yang memungkinkan pengguna membuat album foto di bucket
Amazon S3 dan mengunggah foto ke dalam album.

Skenario

Dalam contoh ini, halaman HTML sederhana menyediakan aplikasi berbasis browser untuk membuat
album foto di ember Amazon S3 tempat Anda dapat mengunggah foto. Aplikasi ini memungkinkan
Anda menghapus foto dan album yang Anda tambahkan.

Skrip browser menggunakan SDK JavaScript untuk berinteraksi dengan bucket Amazon S3.
Gunakan metode berikut dari kelas klien Amazon S3 untuk mengaktifkan aplikasi album foto:

• listObjects

• headObject

• putObject

• upload

• deleteObject

• deleteObjects

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Di konsol Amazon S3, buat bucket Amazon S3 yang akan Anda gunakan untuk menyimpan foto di
album. Untuk informasi selengkapnya tentang membuat bucket di konsol, lihat Membuat Bucket di
Panduan Pengguna Layanan Penyimpanan Sederhana Amazon. Pastikan Anda memiliki izin Baca
dan Tulis pada Objek. Untuk informasi selengkapnya tentang menyetel izin bucket, lihat Menyetel
izin untuk akses situs web.

Contoh Browser Amazon S3 231

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#listObjects-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#headObject-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putObject-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#upload-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#deleteObject-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#deleteObjects-property
https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteAccessPermissionsReqd.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteAccessPermissionsReqd.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Di konsol Amazon Cognito, buat kumpulan identitas Amazon Cognito menggunakan Identitas
Federasi dengan akses diaktifkan untuk pengguna yang tidak diautentikasi di Wilayah yang sama
dengan bucket Amazon S3. Anda perlu menyertakan ID kumpulan identitas dalam kode untuk
mendapatkan kredensil untuk skrip browser. Untuk informasi selengkapnya tentang Identitas
Federasi Amazon Cognito, lihat Kumpulan Identitas Amazon Cognito (Identitas Federasi) di
Panduan Pengembang Amazon Cognito.

• Di konsol IAM, temukan peran IAM yang dibuat oleh Amazon Cognito untuk pengguna yang
tidak diautentikasi. Tambahkan kebijakan berikut untuk memberikan izin baca dan tulis ke bucket
Amazon S3. Untuk informasi selengkapnya tentang membuat peran IAM, lihat Membuat Peran
untuk Mendelegasikan Izin ke AWS Layanan di Panduan Pengguna IAM.

Gunakan kebijakan peran ini untuk peran IAM yang dibuat oleh Amazon Cognito untuk pengguna
yang tidak diautentikasi.

Warning

Jika Anda mengaktifkan akses untuk pengguna yang tidak diautentikasi, Anda akan
memberikan akses tulis ke bucket, dan semua objek di bucket, kepada siapa pun di dunia.
Postur keamanan ini berguna dalam contoh ini untuk membuatnya tetap fokus pada tujuan
utama contoh. Namun, dalam banyak situasi langsung, keamanan yang lebih ketat, seperti
menggunakan pengguna yang diautentikasi dan kepemilikan objek, sangat disarankan.

JSON

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:DeleteObject",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::BUCKET_NAME",

Contoh Browser Amazon S3 232

https://console.aws.amazon.com/cognito/
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-identity.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 "arn:aws:s3:::BUCKET_NAME/*"
]
 }
]
}

Mengonfigurasi CORS

Sebelum skrip browser dapat mengakses bucket Amazon S3, Anda harus terlebih dahulu mengatur
konfigurasi CORS-nya sebagai berikut.

Important

Pada konsol S3 baru, konfigurasi CORS harus JSON.

JSON

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "HEAD",
 "GET",
 "PUT",
 "POST",
 "DELETE"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": [
 "ETag"
]
 }
]

Contoh Browser Amazon S3 233

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

XML

<?xml version="1.0" encoding="UTF-8"?>
<CORSConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
 <CORSRule>
 <AllowedOrigin>*</AllowedOrigin>
 <AllowedMethod>POST</AllowedMethod>
 <AllowedMethod>GET</AllowedMethod>
 <AllowedMethod>PUT</AllowedMethod>
 <AllowedMethod>DELETE</AllowedMethod>
 <AllowedMethod>HEAD</AllowedMethod>
 <AllowedHeader>*</AllowedHeader>
 <ExposeHeader>ETag</ExposeHeader>
 </CORSRule>
</CORSConfiguration>

Halaman Web

HTML untuk aplikasi unggah foto terdiri dari <div>elemen di mana skrip browser membuat antarmuka
pengguna unggah. <script>Elemen pertama menambahkan SDK ke skrip browser. <script>Elemen
kedua menambahkan JavaScript file eksternal yang memegang kode skrip browser.

<!DOCTYPE html>
<html>
 <head>
 <!-- **DO THIS**: -->
 <!-- Replace SDK_VERSION_NUMBER with the current SDK version number -->
 <script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.js"></script>
 <script src="./s3_photoExample.js"></script>
 <script>
 function getHtml(template) {
 return template.join('\n');
 }
 listAlbums();
 </script>
 </head>
 <body>
 <h1>My Photo Albums App</h1>
 <div id="app"></div>
 </body>
</html>

Contoh Browser Amazon S3 234

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Mengkonfigurasi SDK

Dapatkan kredensional yang diperlukan untuk mengonfigurasi SDK dengan memanggil
CognitoIdentityCredentials metode, dengan menyediakan ID kumpulan identitas Amazon
Cognito. Selanjutnya, buat objek AWS.S3 layanan.

var albumBucketName = "BUCKET_NAME";
var bucketRegion = "REGION";
var IdentityPoolId = "IDENTITY_POOL_ID";

AWS.config.update({
 region: bucketRegion,
 credentials: new AWS.CognitoIdentityCredentials({
 IdentityPoolId: IdentityPoolId,
 }),
});

var s3 = new AWS.S3({
 apiVersion: "2006-03-01",
 params: { Bucket: albumBucketName },
});

Hampir semua kode lainnya dalam contoh ini diatur ke dalam serangkaian fungsi yang
mengumpulkan dan menyajikan informasi tentang album di ember, mengunggah dan menampilkan
foto yang diunggah ke album, dan menghapus foto dan album. Fungsi-fungsi tersebut adalah:

• listAlbums

• createAlbum

• viewAlbum

• addPhoto

• deleteAlbum

• deletePhoto

Daftar Album di Bucket

Aplikasi ini membuat album di bucket Amazon S3 sebagai objek yang kuncinya dimulai dengan
karakter garis miring, yang menunjukkan fungsi objek sebagai folder. Untuk mencantumkan semua
album yang ada di bucket, listAlbums fungsi aplikasi memanggil listObjects metode objek

Contoh Browser Amazon S3 235

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

AWS.S3 layanan saat menggunakan commonPrefix sehingga panggilan hanya mengembalikan
objek yang digunakan sebagai album.

Sisa fungsi mengambil daftar album dari bucket Amazon S3 dan menghasilkan HTML yang
diperlukan untuk menampilkan daftar album di halaman web. Ini juga memungkinkan menghapus dan
membuka album individu.

function listAlbums() {
 s3.listObjects({ Delimiter: "/" }, function (err, data) {
 if (err) {
 return alert("There was an error listing your albums: " + err.message);
 } else {
 var albums = data.CommonPrefixes.map(function (commonPrefix) {
 var prefix = commonPrefix.Prefix;
 var albumName = decodeURIComponent(prefix.replace("/", ""));
 return getHtml([
 "",
 "X",
 "",
 albumName,
 "",
 "",
]);
 });
 var message = albums.length
 ? getHtml([
 "<p>Click on an album name to view it.</p>",
 "<p>Click on the X to delete the album.</p>",
])
 : "<p>You do not have any albums. Please Create album.";
 var htmlTemplate = [
 "<h2>Albums</h2>",
 message,
 "",
 getHtml(albums),
 "",
 "<button onclick=\"createAlbum(prompt('Enter Album Name:'))\">",
 "Create New Album",
 "</button>",
];
 document.getElementById("app").innerHTML = getHtml(htmlTemplate);
 }
 });

Contoh Browser Amazon S3 236

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

}

Membuat Album di Bucket

Untuk membuat album di bucket Amazon S3, createAlbum fungsi aplikasi pertama-tama
memvalidasi nama yang diberikan untuk album baru untuk memastikannya berisi karakter yang
sesuai. Fungsi tersebut kemudian membentuk kunci objek Amazon S3, meneruskannya ke
headObject metode objek layanan Amazon S3. Metode ini mengembalikan metadata untuk kunci
tertentu, jadi jika mengembalikan data, maka objek dengan kunci itu sudah ada.

Jika album belum ada, fungsi memanggil putObject metode objek AWS.S3 layanan untuk membuat
album. Kemudian memanggil viewAlbum fungsi untuk menampilkan album kosong baru.

function createAlbum(albumName) {
 albumName = albumName.trim();
 if (!albumName) {
 return alert("Album names must contain at least one non-space character.");
 }
 if (albumName.indexOf("/") !== -1) {
 return alert("Album names cannot contain slashes.");
 }
 var albumKey = encodeURIComponent(albumName);
 s3.headObject({ Key: albumKey }, function (err, data) {
 if (!err) {
 return alert("Album already exists.");
 }
 if (err.code !== "NotFound") {
 return alert("There was an error creating your album: " + err.message);
 }
 s3.putObject({ Key: albumKey }, function (err, data) {
 if (err) {
 return alert("There was an error creating your album: " + err.message);
 }
 alert("Successfully created album.");
 viewAlbum(albumName);
 });
 });
}

Contoh Browser Amazon S3 237

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Melihat Album

Untuk menampilkan konten album di bucket Amazon S3, viewAlbum fungsi aplikasi mengambil
nama album dan membuat kunci Amazon S3 untuk album itu. Fungsi kemudian memanggil
listObjects metode objek AWS.S3 layanan untuk mendapatkan daftar semua objek (foto) dalam
album.

Sisa fungsi mengambil daftar objek (foto) dari album dan menghasilkan HTML yang diperlukan untuk
menampilkan foto di halaman web. Ini juga memungkinkan menghapus foto individu dan menavigasi
kembali ke daftar album.

function viewAlbum(albumName) {
 var albumPhotosKey = encodeURIComponent(albumName) + "/";
 s3.listObjects({ Prefix: albumPhotosKey }, function (err, data) {
 if (err) {
 return alert("There was an error viewing your album: " + err.message);
 }
 // 'this' references the AWS.Response instance that represents the response
 var href = this.request.httpRequest.endpoint.href;
 var bucketUrl = href + albumBucketName + "/";

 var photos = data.Contents.map(function (photo) {
 var photoKey = photo.Key;
 var photoUrl = bucketUrl + encodeURIComponent(photoKey);
 return getHtml([
 "",
 "<div>",
 '',
 "</div>",
 "<div>",
 "<span onclick=\"deletePhoto('" +
 albumName +
 "','" +
 photoKey +
 "')\">",
 "X",
 "",
 "",
 photoKey.replace(albumPhotosKey, ""),
 "",
 "</div>",
 "",
]);

Contoh Browser Amazon S3 238

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 });
 var message = photos.length
 ? "<p>Click on the X to delete the photo</p>"
 : "<p>You do not have any photos in this album. Please add photos.</p>";
 var htmlTemplate = [
 "<h2>",
 "Album: " + albumName,
 "</h2>",
 message,
 "<div>",
 getHtml(photos),
 "</div>",
 '<input id="photoupload" type="file" accept="image/*">',
 '<button id="addphoto" onclick="addPhoto(\'' + albumName + "')\">",
 "Add Photo",
 "</button>",
 '<button onclick="listAlbums()">',
 "Back To Albums",
 "</button>",
];
 document.getElementById("app").innerHTML = getHtml(htmlTemplate);
 });
}

Menambahkan Foto ke Album

Untuk mengunggah foto ke album di bucket Amazon S3, addPhoto fungsi aplikasi menggunakan
elemen pemilih file di halaman web untuk mengidentifikasi file yang akan diunggah. Kemudian
membentuk kunci untuk foto untuk mengunggah dari nama album saat ini dan nama file.

Fungsi ini memanggil upload metode objek layanan Amazon S3 untuk mengunggah foto. Setelah
mengunggah foto, fungsi menampilkan ulang album sehingga foto yang diunggah muncul.

function addPhoto(albumName) {
 var files = document.getElementById("photoupload").files;
 if (!files.length) {
 return alert("Please choose a file to upload first.");
 }
 var file = files[0];
 var fileName = file.name;
 var albumPhotosKey = encodeURIComponent(albumName) + "/";

 var photoKey = albumPhotosKey + fileName;

Contoh Browser Amazon S3 239

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 // Use S3 ManagedUpload class as it supports multipart uploads
 var upload = new AWS.S3.ManagedUpload({
 params: {
 Bucket: albumBucketName,
 Key: photoKey,
 Body: file,
 },
 });

 var promise = upload.promise();

 promise.then(
 function (data) {
 alert("Successfully uploaded photo.");
 viewAlbum(albumName);
 },
 function (err) {
 return alert("There was an error uploading your photo: ", err.message);
 }
);
}

Menghapus Foto

Untuk menghapus foto dari album di bucket Amazon S3, deletePhoto fungsi aplikasi memanggil
deleteObject metode objek layanan Amazon S3. Ini menghapus foto yang ditentukan oleh
photoKey nilai yang diteruskan ke fungsi.

function deletePhoto(albumName, photoKey) {
 s3.deleteObject({ Key: photoKey }, function (err, data) {
 if (err) {
 return alert("There was an error deleting your photo: ", err.message);
 }
 alert("Successfully deleted photo.");
 viewAlbum(albumName);
 });
}

Menghapus Album

Untuk menghapus album di bucket Amazon S3, deleteAlbum fungsi aplikasi memanggil
deleteObjects metode objek layanan Amazon S3.

Contoh Browser Amazon S3 240

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

function deleteAlbum(albumName) {
 var albumKey = encodeURIComponent(albumName) + "/";
 s3.listObjects({ Prefix: albumKey }, function (err, data) {
 if (err) {
 return alert("There was an error deleting your album: ", err.message);
 }
 var objects = data.Contents.map(function (object) {
 return { Key: object.Key };
 });
 s3.deleteObjects(
 {
 Delete: { Objects: objects, Quiet: true },
 },
 function (err, data) {
 if (err) {
 return alert("There was an error deleting your album: ", err.message);
 }
 alert("Successfully deleted album.");
 listAlbums();
 }
);
 });
}

Mengunggah Foto ke Amazon S3: Kode Lengkap

Bagian ini berisi HTML lengkap dan JavaScript kode untuk contoh di mana foto diunggah ke album
foto Amazon S3. Lihat bagian induk untuk detail dan prasyarat.

HTML untuk contoh:

<!DOCTYPE html>
<html>
 <head>
 <!-- **DO THIS**: -->
 <!-- Replace SDK_VERSION_NUMBER with the current SDK version number -->
 <script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.js"></script>
 <script src="./s3_photoExample.js"></script>
 <script>
 function getHtml(template) {
 return template.join('\n');
 }
 listAlbums();

Contoh Browser Amazon S3 241

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 </script>
 </head>
 <body>
 <h1>My Photo Albums App</h1>
 <div id="app"></div>
 </body>
</html>

Kode contoh ini dapat ditemukan di sini GitHub.

Kode skrip browser untuk contoh:

var albumBucketName = "BUCKET_NAME";
var bucketRegion = "REGION";
var IdentityPoolId = "IDENTITY_POOL_ID";

AWS.config.update({
 region: bucketRegion,
 credentials: new AWS.CognitoIdentityCredentials({
 IdentityPoolId: IdentityPoolId,
 }),
});

var s3 = new AWS.S3({
 apiVersion: "2006-03-01",
 params: { Bucket: albumBucketName },
});

function listAlbums() {
 s3.listObjects({ Delimiter: "/" }, function (err, data) {
 if (err) {
 return alert("There was an error listing your albums: " + err.message);
 } else {
 var albums = data.CommonPrefixes.map(function (commonPrefix) {
 var prefix = commonPrefix.Prefix;
 var albumName = decodeURIComponent(prefix.replace("/", ""));
 return getHtml([
 "",
 "X",
 "",
 albumName,
 "",
 "",
]);

Contoh Browser Amazon S3 242

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_photoExample.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 });
 var message = albums.length
 ? getHtml([
 "<p>Click on an album name to view it.</p>",
 "<p>Click on the X to delete the album.</p>",
])
 : "<p>You do not have any albums. Please Create album.";
 var htmlTemplate = [
 "<h2>Albums</h2>",
 message,
 "",
 getHtml(albums),
 "",
 "<button onclick=\"createAlbum(prompt('Enter Album Name:'))\">",
 "Create New Album",
 "</button>",
];
 document.getElementById("app").innerHTML = getHtml(htmlTemplate);
 }
 });
}

function createAlbum(albumName) {
 albumName = albumName.trim();
 if (!albumName) {
 return alert("Album names must contain at least one non-space character.");
 }
 if (albumName.indexOf("/") !== -1) {
 return alert("Album names cannot contain slashes.");
 }
 var albumKey = encodeURIComponent(albumName);
 s3.headObject({ Key: albumKey }, function (err, data) {
 if (!err) {
 return alert("Album already exists.");
 }
 if (err.code !== "NotFound") {
 return alert("There was an error creating your album: " + err.message);
 }
 s3.putObject({ Key: albumKey }, function (err, data) {
 if (err) {
 return alert("There was an error creating your album: " + err.message);
 }
 alert("Successfully created album.");
 viewAlbum(albumName);

Contoh Browser Amazon S3 243

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 });
 });
}

function viewAlbum(albumName) {
 var albumPhotosKey = encodeURIComponent(albumName) + "/";
 s3.listObjects({ Prefix: albumPhotosKey }, function (err, data) {
 if (err) {
 return alert("There was an error viewing your album: " + err.message);
 }
 // 'this' references the AWS.Response instance that represents the response
 var href = this.request.httpRequest.endpoint.href;
 var bucketUrl = href + albumBucketName + "/";

 var photos = data.Contents.map(function (photo) {
 var photoKey = photo.Key;
 var photoUrl = bucketUrl + encodeURIComponent(photoKey);
 return getHtml([
 "",
 "<div>",
 '',
 "</div>",
 "<div>",
 "<span onclick=\"deletePhoto('" +
 albumName +
 "','" +
 photoKey +
 "')\">",
 "X",
 "",
 "",
 photoKey.replace(albumPhotosKey, ""),
 "",
 "</div>",
 "",
]);
 });
 var message = photos.length
 ? "<p>Click on the X to delete the photo</p>"
 : "<p>You do not have any photos in this album. Please add photos.</p>";
 var htmlTemplate = [
 "<h2>",
 "Album: " + albumName,
 "</h2>",

Contoh Browser Amazon S3 244

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 message,
 "<div>",
 getHtml(photos),
 "</div>",
 '<input id="photoupload" type="file" accept="image/*">',
 '<button id="addphoto" onclick="addPhoto(\'' + albumName + "')\">",
 "Add Photo",
 "</button>",
 '<button onclick="listAlbums()">',
 "Back To Albums",
 "</button>",
];
 document.getElementById("app").innerHTML = getHtml(htmlTemplate);
 });
}

function addPhoto(albumName) {
 var files = document.getElementById("photoupload").files;
 if (!files.length) {
 return alert("Please choose a file to upload first.");
 }
 var file = files[0];
 var fileName = file.name;
 var albumPhotosKey = encodeURIComponent(albumName) + "/";

 var photoKey = albumPhotosKey + fileName;

 // Use S3 ManagedUpload class as it supports multipart uploads
 var upload = new AWS.S3.ManagedUpload({
 params: {
 Bucket: albumBucketName,
 Key: photoKey,
 Body: file,
 },
 });

 var promise = upload.promise();

 promise.then(
 function (data) {
 alert("Successfully uploaded photo.");
 viewAlbum(albumName);
 },
 function (err) {

Contoh Browser Amazon S3 245

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 return alert("There was an error uploading your photo: ", err.message);
 }
);
}

function deletePhoto(albumName, photoKey) {
 s3.deleteObject({ Key: photoKey }, function (err, data) {
 if (err) {
 return alert("There was an error deleting your photo: ", err.message);
 }
 alert("Successfully deleted photo.");
 viewAlbum(albumName);
 });
}

function deleteAlbum(albumName) {
 var albumKey = encodeURIComponent(albumName) + "/";
 s3.listObjects({ Prefix: albumKey }, function (err, data) {
 if (err) {
 return alert("There was an error deleting your album: ", err.message);
 }
 var objects = data.Contents.map(function (object) {
 return { Key: object.Key };
 });
 s3.deleteObjects(
 {
 Delete: { Objects: objects, Quiet: true },
 },
 function (err, data) {
 if (err) {
 return alert("There was an error deleting your album: ", err.message);
 }
 alert("Successfully deleted album.");
 listAlbums();
 }
);
 });
}

Kode contoh ini dapat ditemukan di sini GitHub.

Contoh Browser Amazon S3 246

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_photoExample.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Amazon S3 Node.js Contoh

Topik berikut menunjukkan contoh bagaimana AWS SDK untuk JavaScript dapat digunakan untuk
berinteraksi dengan bucket Amazon S3 menggunakan Node.js.

Topik

• Membuat dan Menggunakan Bucket Amazon S3

• Mengkonfigurasi Bucket Amazon S3

• Mengelola Izin Akses Bucket Amazon S3

• Bekerja dengan Kebijakan Bucket Amazon S3

• Menggunakan Bucket Amazon S3 sebagai Host Web Statis

Membuat dan Menggunakan Bucket Amazon S3

Contoh kode Node.js ini menunjukkan:

• Cara mendapatkan dan menampilkan daftar bucket Amazon S3 di akun Anda.

• Cara membuat bucket Amazon S3.

• Cara mengunggah objek ke ember tertentu.

Skenario

Dalam contoh ini, serangkaian modul Node.js digunakan untuk mendapatkan daftar bucket
Amazon S3 yang ada, membuat bucket, dan mengunggah file ke bucket tertentu. Modul Node.js ini
menggunakan SDK JavaScript untuk mendapatkan informasi dari dan mengunggah file ke bucket
Amazon S3 menggunakan metode kelas klien Amazon S3 berikut:

• listBuckets

• createBucket

• listObjects

• upload

Amazon S3 Node.js Contoh 247

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#listBuckets-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#createBucket-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#listObjects-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#upload-property

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• deleteBucket

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Mengkonfigurasi SDK

Konfigurasikan SDK untuk JavaScript dengan membuat objek konfigurasi global lalu menyetel
Wilayah untuk kode Anda. Dalam contoh ini, Region diatur keus-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');
// Set the Region
AWS.config.update({region: 'us-west-2'});

Menampilkan Daftar Bucket Amazon S3

Buat modul Node.js dengan nama files3_listbuckets.js. Pastikan untuk mengonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon Simple Storage Service, buat objek
AWS.S3 layanan. Panggil listBuckets metode objek layanan Amazon S3 untuk mengambil daftar
bucket Anda. dataParameter fungsi callback memiliki Buckets properti yang berisi array peta untuk
mewakili bucket. Tampilkan daftar ember dengan masuk ke konsol.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Call S3 to list the buckets
s3.listBuckets(function (err, data) {

Amazon S3 Node.js Contoh 248

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#deleteBucket-property
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.Buckets);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node s3_listbuckets.js

Kode contoh ini dapat ditemukan di sini GitHub.

Membuat sebuah Bucket Amazon S3

Buat modul Node.js dengan nama files3_createbucket.js. Pastikan untuk mengonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Buat objek AWS.S3 layanan. Modul akan mengambil satu
argumen baris perintah untuk menentukan nama bucket baru.

Tambahkan variabel untuk menahan parameter yang digunakan untuk memanggil createBucket
metode objek layanan Amazon S3, termasuk nama untuk bucket yang baru dibuat. Fungsi callback
mencatat lokasi bucket baru ke konsol setelah Amazon S3 berhasil membuatnya.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Create the parameters for calling createBucket
var bucketParams = {
 Bucket: process.argv[2],
};

// call S3 to create the bucket
s3.createBucket(bucketParams, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.Location);

Amazon S3 Node.js Contoh 249

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_listbuckets.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node s3_createbucket.js BUCKET_NAME

Kode contoh ini dapat ditemukan di sini GitHub.

Mengunggah File ke Bucket Amazon S3

Buat modul Node.js dengan nama files3_upload.js. Pastikan untuk mengonfigurasi SDK seperti
yang ditunjukkan sebelumnya. Buat objek AWS.S3 layanan. Modul akan mengambil dua argumen
baris perintah, yang pertama untuk menentukan bucket tujuan dan yang kedua untuk menentukan file
yang akan diunggah.

Buat variabel dengan parameter yang diperlukan untuk memanggil upload metode objek layanan
Amazon S3. Berikan nama bucket target dalam Bucket parameter. KeyParameter diatur ke nama
file yang dipilih, yang dapat Anda peroleh menggunakan path modul Node.js. BodyParameter diatur
ke isi file, yang dapat Anda peroleh menggunakan createReadStream dari fs modul Node.js.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
var s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// call S3 to retrieve upload file to specified bucket
var uploadParams = { Bucket: process.argv[2], Key: "", Body: "" };
var file = process.argv[3];

// Configure the file stream and obtain the upload parameters
var fs = require("fs");
var fileStream = fs.createReadStream(file);
fileStream.on("error", function (err) {
 console.log("File Error", err);
});
uploadParams.Body = fileStream;
var path = require("path");
uploadParams.Key = path.basename(file);

Amazon S3 Node.js Contoh 250

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_createbucket.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// call S3 to retrieve upload file to specified bucket
s3.upload(uploadParams, function (err, data) {
 if (err) {
 console.log("Error", err);
 }
 if (data) {
 console.log("Upload Success", data.Location);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node s3_upload.js BUCKET_NAME FILE_NAME

Kode contoh ini dapat ditemukan di sini GitHub.

Daftar Objek di Bucket Amazon S3

Buat modul Node.js dengan nama files3_listobjects.js. Pastikan untuk mengonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Buat objek AWS.S3 layanan.

Tambahkan variabel untuk menahan parameter yang digunakan untuk memanggil listObjects
metode objek layanan Amazon S3, termasuk nama bucket yang akan dibaca. Fungsi callback
mencatat daftar objek (file) atau pesan kegagalan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Create the parameters for calling listObjects
var bucketParams = {
 Bucket: "BUCKET_NAME",
};

// Call S3 to obtain a list of the objects in the bucket
s3.listObjects(bucketParams, function (err, data) {
 if (err) {

Amazon S3 Node.js Contoh 251

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_upload.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node s3_listobjects.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Bucket Amazon S3

Buat modul Node.js dengan nama files3_deletebucket.js. Pastikan untuk mengonfigurasi SDK
seperti yang ditunjukkan sebelumnya. Buat objek AWS.S3 layanan.

Tambahkan variabel untuk menahan parameter yang digunakan untuk memanggil createBucket
metode objek layanan Amazon S3, termasuk nama bucket yang akan dihapus. Ember harus kosong
untuk menghapusnya. Fungsi callback mencatat pesan sukses atau kegagalan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Create params for S3.deleteBucket
var bucketParams = {
 Bucket: "BUCKET_NAME",
};

// Call S3 to delete the bucket
s3.deleteBucket(bucketParams, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Amazon S3 Node.js Contoh 252

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_listobjects.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node s3_deletebucket.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengkonfigurasi Bucket Amazon S3

Contoh kode Node.js ini menunjukkan:

• Cara mengonfigurasi izin berbagi sumber daya lintas asal (CORS) untuk bucket.

Skenario

Dalam contoh ini, serangkaian modul Node.js digunakan untuk mencantumkan bucket Amazon S3
Anda dan untuk mengonfigurasi CORS dan pencatatan bucket. Modul Node.js menggunakan SDK
JavaScript untuk mengonfigurasi bucket Amazon S3 yang dipilih menggunakan metode kelas klien
Amazon S3 berikut:

• getBucketCors

• putBucketCors

Untuk informasi selengkapnya tentang penggunaan konfigurasi CORS dengan bucket Amazon
S3, lihat Cross-Origin Resource Sharing (CORS) di Panduan Pengguna Layanan Penyimpanan
Sederhana Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Amazon S3 Node.js Contoh 253

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_deletebucket.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#getBucketCors-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketCors-property
https://docs.aws.amazon.com/AmazonS3/latest/userguide/cors.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Mengkonfigurasi SDK

Konfigurasikan SDK untuk JavaScript dengan membuat objek konfigurasi global lalu menyetel
Wilayah untuk kode Anda. Dalam contoh ini, Region diatur keus-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');
// Set the Region
AWS.config.update({region: 'us-west-2'});

Mengambil Konfigurasi Bucket CORS

Buat modul Node.js dengan nama files3_getcors.js. Modul akan mengambil satu argumen
baris perintah untuk menentukan bucket yang konfigurasi CORS-nya Anda inginkan. Pastikan untuk
mengonfigurasi SDK seperti yang ditunjukkan sebelumnya. Buat objek AWS.S3 layanan.

Satu-satunya parameter yang perlu Anda lewati adalah nama bucket yang dipilih saat memanggil
getBucketCors metode. Jika bucket saat ini memiliki konfigurasi CORS, konfigurasi tersebut
dikembalikan oleh Amazon S3 sebagai properti parameter CORSRules yang diteruskan ke fungsi
callback. data

Jika bucket yang dipilih tidak memiliki konfigurasi CORS, informasi tersebut dikembalikan ke fungsi
callback dalam parameter. error

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Set the parameters for S3.getBucketCors
var bucketParams = { Bucket: process.argv[2] };

// call S3 to retrieve CORS configuration for selected bucket
s3.getBucketCors(bucketParams, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else if (data) {
 console.log("Success", JSON.stringify(data.CORSRules));
 }

Amazon S3 Node.js Contoh 254

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node s3_getcors.js BUCKET_NAME

Kode contoh ini dapat ditemukan di sini GitHub.

Menyetel Konfigurasi Bucket CORS

Buat modul Node.js dengan nama files3_setcors.js. Modul ini mengambil beberapa argumen
baris perintah, yang pertama menentukan bucket yang konfigurasi CORS yang ingin Anda atur.
Argumen tambahan menyebutkan metode HTTP (POST, GET, PUT, PATCH, DELETE, POST) yang
ingin Anda izinkan untuk bucket. Konfigurasikan SDK seperti yang ditunjukkan sebelumnya.

Buat objek AWS.S3 layanan. Selanjutnya buat objek JSON untuk menahan nilai untuk konfigurasi
CORS seperti yang dipersyaratkan oleh putBucketCors metode objek AWS.S3 layanan.
"Authorization"Tentukan AllowedHeaders nilai dan "*" AllowedOrigins nilainya. Tetapkan
nilai AllowedMethods sebagai array kosong pada awalnya.

Tentukan metode yang diizinkan sebagai parameter baris perintah ke modul Node.js, tambahkan
masing-masing metode yang cocok dengan salah satu parameter. Tambahkan konfigurasi CORS
yang dihasilkan ke array konfigurasi yang terdapat dalam parameter. CORSRules Tentukan bucket
yang ingin Anda konfigurasikan untuk CORS dalam Bucket parameter.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Create initial parameters JSON for putBucketCors
var thisConfig = {
 AllowedHeaders: ["Authorization"],
 AllowedMethods: [],
 AllowedOrigins: ["*"],
 ExposeHeaders: [],
 MaxAgeSeconds: 3000,
};

Amazon S3 Node.js Contoh 255

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_getcors.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Assemble the list of allowed methods based on command line parameters
var allowedMethods = [];
process.argv.forEach(function (val, index, array) {
 if (val.toUpperCase() === "POST") {
 allowedMethods.push("POST");
 }
 if (val.toUpperCase() === "GET") {
 allowedMethods.push("GET");
 }
 if (val.toUpperCase() === "PUT") {
 allowedMethods.push("PUT");
 }
 if (val.toUpperCase() === "PATCH") {
 allowedMethods.push("PATCH");
 }
 if (val.toUpperCase() === "DELETE") {
 allowedMethods.push("DELETE");
 }
 if (val.toUpperCase() === "HEAD") {
 allowedMethods.push("HEAD");
 }
});

// Copy the array of allowed methods into the config object
thisConfig.AllowedMethods = allowedMethods;
// Create array of configs then add the config object to it
var corsRules = new Array(thisConfig);

// Create CORS params
var corsParams = {
 Bucket: process.argv[2],
 CORSConfiguration: { CORSRules: corsRules },
};

// set the new CORS configuration on the selected bucket
s3.putBucketCors(corsParams, function (err, data) {
 if (err) {
 // display error message
 console.log("Error", err);
 } else {
 // update the displayed CORS config for the selected bucket
 console.log("Success", data);
 }

Amazon S3 Node.js Contoh 256

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

});

Untuk menjalankan contoh, ketik berikut ini di baris perintah termasuk satu atau lebih metode HTTP
seperti yang ditunjukkan.

node s3_setcors.js BUCKET_NAME get put

Kode contoh ini dapat ditemukan di sini GitHub.

Mengelola Izin Akses Bucket Amazon S3

Contoh kode Node.js ini menunjukkan:

• Cara mengambil atau mengatur daftar kontrol akses untuk bucket Amazon S3.

Skenario

Dalam contoh ini, modul Node.js digunakan untuk menampilkan daftar kontrol akses bucket
(ACL) untuk bucket yang dipilih dan menerapkan perubahan pada ACL untuk bucket yang dipilih.
Modul Node.js menggunakan SDK for JavaScript untuk mengelola izin akses bucket Amazon S3
menggunakan metode kelas klien Amazon S3 berikut:

• getBucketAcl

• putBucketAcl

Untuk informasi selengkapnya tentang daftar kontrol akses untuk bucket Amazon S3, lihat Mengelola
Akses dengan ACLs di Panduan Pengguna Layanan Penyimpanan Sederhana Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

Amazon S3 Node.js Contoh 257

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_setcors.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#getBucketAcl-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketAcl-property
https://docs.aws.amazon.com/AmazonS3/latest/userguide/S3_ACLs_UsingACLs.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/S3_ACLs_UsingACLs.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Mengkonfigurasi SDK

Konfigurasikan SDK untuk JavaScript dengan membuat objek konfigurasi global lalu menyetel
Wilayah untuk kode Anda. Dalam contoh ini, Region diatur keus-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');
// Set the Region
AWS.config.update({region: 'us-west-2'});

Mengambil Daftar Kontrol Akses Bucket Saat Ini

Buat modul Node.js dengan nama files3_getbucketacl.js. Modul akan mengambil satu argumen
baris perintah untuk menentukan bucket yang konfigurasi ACL yang Anda inginkan. Pastikan untuk
mengonfigurasi SDK seperti yang ditunjukkan sebelumnya.

Buat objek AWS.S3 layanan. Satu-satunya parameter yang perlu Anda lewati adalah nama bucket
yang dipilih saat memanggil getBucketAcl metode. Konfigurasi daftar kontrol akses saat ini
dikembalikan oleh Amazon S3 dalam data parameter yang diteruskan ke fungsi callback.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var bucketParams = { Bucket: process.argv[2] };
// call S3 to retrieve policy for selected bucket
s3.getBucketAcl(bucketParams, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else if (data) {
 console.log("Success", data.Grants);
 }
});

Amazon S3 Node.js Contoh 258

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node s3_getbucketacl.js BUCKET_NAME

Kode contoh ini dapat ditemukan di sini GitHub.

Bekerja dengan Kebijakan Bucket Amazon S3

Contoh kode Node.js ini menunjukkan:

• Cara mengambil kebijakan bucket bucket Amazon S3.

• Cara menambahkan atau memperbarui kebijakan bucket bucket Amazon S3.

• Cara menghapus kebijakan bucket bucket Amazon S3.

Skenario

Dalam contoh ini, serangkaian modul Node.js digunakan untuk mengambil, menetapkan, atau
menghapus kebijakan bucket di bucket Amazon S3. Modul Node.js menggunakan SDK for JavaScript
untuk mengonfigurasi kebijakan bucket Amazon S3 yang dipilih menggunakan metode kelas klien
Amazon S3 berikut:

• getBucketPolicy

• putBucketPolicy

• deleteBucketPolicy

Untuk informasi selengkapnya tentang kebijakan bucket untuk bucket Amazon S3, lihat
Menggunakan Kebijakan Bucket dan Kebijakan Pengguna di Panduan Pengguna Layanan
Penyimpanan Sederhana Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

Amazon S3 Node.js Contoh 259

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_getbucketacl.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#getBucketPolicy-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketPolicy-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#deleteBucketPolicy-property
https://docs.aws.amazon.com/AmazonS3/latest/userguide/using-iam-policies.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Mengkonfigurasi SDK

Konfigurasikan SDK untuk JavaScript dengan membuat objek konfigurasi global lalu menyetel
Wilayah untuk kode Anda. Dalam contoh ini, Region diatur keus-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');
// Set the Region
AWS.config.update({region: 'us-west-2'});

Mengambil Kebijakan Bucket Saat Ini

Buat modul Node.js dengan nama files3_getbucketpolicy.js. Modul ini mengambil satu
argumen baris perintah yang menentukan bucket yang kebijakannya Anda inginkan. Pastikan untuk
mengonfigurasi SDK seperti yang ditunjukkan sebelumnya.

Buat objek AWS.S3 layanan. Satu-satunya parameter yang perlu Anda lewati adalah nama bucket
yang dipilih saat memanggil getBucketPolicy metode. Jika bucket saat ini memiliki kebijakan,
kebijakan tersebut dikembalikan oleh Amazon S3 dalam data parameter yang diteruskan ke fungsi
callback.

Jika bucket yang dipilih tidak memiliki kebijakan, informasi tersebut dikembalikan ke fungsi callback
dalam error parameter.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var bucketParams = { Bucket: process.argv[2] };
// call S3 to retrieve policy for selected bucket
s3.getBucketPolicy(bucketParams, function (err, data) {

Amazon S3 Node.js Contoh 260

https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 if (err) {
 console.log("Error", err);
 } else if (data) {
 console.log("Success", data.Policy);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node s3_getbucketpolicy.js BUCKET_NAME

Kode contoh ini dapat ditemukan di sini GitHub.

Menyetel Kebijakan Bucket Sederhana

Buat modul Node.js dengan nama files3_setbucketpolicy.js. Modul ini mengambil satu
argumen baris perintah yang menentukan bucket yang kebijakannya ingin Anda terapkan.
Konfigurasikan SDK seperti yang ditunjukkan sebelumnya.

Buat objek AWS.S3 layanan. Kebijakan bucket ditentukan di JSON. Pertama, buat objek JSON yang
berisi semua nilai untuk menentukan kebijakan kecuali Resource nilai yang mengidentifikasi bucket.

Format Resource string yang diperlukan oleh kebijakan, dengan memasukkan nama bucket yang
dipilih. Masukkan string itu ke objek JSON. Siapkan parameter untuk putBucketPolicy metode,
termasuk nama bucket dan kebijakan JSON yang dikonversi ke nilai string.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var readOnlyAnonUserPolicy = {
 Version: "2012-10-17",
 Statement: [
 {
 Sid: "AddPerm",
 Effect: "Allow",
 Principal: "*",

Amazon S3 Node.js Contoh 261

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_getbucketpolicy.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 Action: ["s3:GetObject"],
 Resource: [""],
 },
],
};

// create selected bucket resource string for bucket policy
var bucketResource = "arn:aws:s3:::" + process.argv[2] + "/*";
readOnlyAnonUserPolicy.Statement[0].Resource[0] = bucketResource;

// convert policy JSON into string and assign into params
var bucketPolicyParams = {
 Bucket: process.argv[2],
 Policy: JSON.stringify(readOnlyAnonUserPolicy),
};

// set the new policy on the selected bucket
s3.putBucketPolicy(bucketPolicyParams, function (err, data) {
 if (err) {
 // display error message
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node s3_setbucketpolicy.js BUCKET_NAME

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Kebijakan Bucket

Buat modul Node.js dengan nama files3_deletebucketpolicy.js. Modul ini mengambil
satu argumen baris perintah yang menentukan bucket yang kebijakannya ingin Anda hapus.
Konfigurasikan SDK seperti yang ditunjukkan sebelumnya.

Buat objek AWS.S3 layanan. Satu-satunya parameter yang perlu Anda lewati saat memanggil
deleteBucketPolicy metode adalah nama bucket yang dipilih.

// Load the AWS SDK for Node.js

Amazon S3 Node.js Contoh 262

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_setbucketpolicy.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var bucketParams = { Bucket: process.argv[2] };
// call S3 to delete policy for selected bucket
s3.deleteBucketPolicy(bucketParams, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else if (data) {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node s3_deletebucketpolicy.js BUCKET_NAME

Kode contoh ini dapat ditemukan di sini GitHub.

Menggunakan Bucket Amazon S3 sebagai Host Web Statis

Contoh kode Node.js ini menunjukkan:

• Cara mengatur bucket Amazon S3 sebagai host web statis.

Skenario

Dalam contoh ini, serangkaian modul Node.js digunakan untuk mengonfigurasi bucket Anda
untuk bertindak sebagai host web statis. Modul Node.js menggunakan SDK JavaScript untuk
mengonfigurasi bucket Amazon S3 yang dipilih menggunakan metode kelas klien Amazon S3 berikut:

• getBucketWebsite

Amazon S3 Node.js Contoh 263

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_deletebucketpolicy.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#getBucketWebsite-property

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• putBucketWebsite

• deleteBucketWebsite

Untuk informasi selengkapnya tentang menggunakan bucket Amazon S3 sebagai host web
statis, lihat Hosting Situs Web Statis di Amazon S3 di Panduan Pengguna Layanan Penyimpanan
Sederhana Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Mengkonfigurasi SDK

Konfigurasikan SDK untuk JavaScript dengan membuat objek konfigurasi global lalu menyetel
Wilayah untuk kode Anda. Dalam contoh ini, Region diatur keus-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');
// Set the Region
AWS.config.update({region: 'us-west-2'});

Mengambil Konfigurasi Situs Web Bucket Saat Ini

Buat modul Node.js dengan nama files3_getbucketwebsite.js. Modul ini mengambil satu
argumen baris perintah yang menentukan bucket yang konfigurasi situs webnya Anda inginkan.
Konfigurasikan SDK seperti yang ditunjukkan sebelumnya.

Buat objek AWS.S3 layanan. Buat fungsi yang mengambil konfigurasi situs web bucket saat ini untuk
bucket yang dipilih dalam daftar keranjang. Satu-satunya parameter yang perlu Anda lewati adalah
nama bucket yang dipilih saat memanggil getBucketWebsite metode. Jika bucket saat ini memiliki
konfigurasi situs web, konfigurasi tersebut dikembalikan oleh Amazon S3 dalam data parameter
yang diteruskan ke fungsi callback.

Amazon S3 Node.js Contoh 264

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#putBucketWebsite-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/S3.html#deleteBucketWebsite-property
https://docs.aws.amazon.com/AmazonS3/latest/userguide/WebsiteHosting.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Jika bucket yang dipilih tidak memiliki konfigurasi situs web, informasi tersebut dikembalikan ke fungsi
callback dalam err parameter.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var bucketParams = { Bucket: process.argv[2] };

// call S3 to retrieve the website configuration for selected bucket
s3.getBucketWebsite(bucketParams, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else if (data) {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node s3_getbucketwebsite.js BUCKET_NAME

Kode contoh ini dapat ditemukan di sini GitHub.

Menyetel Konfigurasi Situs Web Bucket

Buat modul Node.js dengan nama files3_setbucketwebsite.js. Pastikan untuk mengonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Buat objek AWS.S3 layanan.

Buat fungsi yang menerapkan konfigurasi situs web bucket. Konfigurasi memungkinkan bucket yang
dipilih berfungsi sebagai host web statis. Konfigurasi situs web ditentukan dalam JSON. Pertama,
buat objek JSON yang berisi semua nilai untuk menentukan konfigurasi situs web, kecuali untuk Key
nilai yang mengidentifikasi dokumen kesalahan, dan Suffix nilai yang mengidentifikasi dokumen
indeks.

Masukkan nilai elemen input teks ke dalam objek JSON. Siapkan parameter untuk
putBucketWebsite metode ini, termasuk nama bucket dan konfigurasi situs web JSON.

Amazon S3 Node.js Contoh 265

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_getbucketwebsite.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

// Create JSON for putBucketWebsite parameters
var staticHostParams = {
 Bucket: "",
 WebsiteConfiguration: {
 ErrorDocument: {
 Key: "",
 },
 IndexDocument: {
 Suffix: "",
 },
 },
};

// Insert specified bucket name and index and error documents into params JSON
// from command line arguments
staticHostParams.Bucket = process.argv[2];
staticHostParams.WebsiteConfiguration.IndexDocument.Suffix = process.argv[3];
staticHostParams.WebsiteConfiguration.ErrorDocument.Key = process.argv[4];

// set the new website configuration on the selected bucket
s3.putBucketWebsite(staticHostParams, function (err, data) {
 if (err) {
 // display error message
 console.log("Error", err);
 } else {
 // update the displayed website configuration for the selected bucket
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node s3_setbucketwebsite.js BUCKET_NAME INDEX_PAGE ERROR_PAGE

Amazon S3 Node.js Contoh 266

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Konfigurasi Situs Web Bucket

Buat modul Node.js dengan nama files3_deletebucketwebsite.js. Pastikan untuk
mengonfigurasi SDK seperti yang ditunjukkan sebelumnya. Buat objek AWS.S3 layanan.

Buat fungsi yang menghapus konfigurasi situs web untuk bucket yang dipilih. Satu-satunya parameter
yang perlu Anda lewati saat memanggil deleteBucketWebsite metode adalah nama bucket yang
dipilih.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create S3 service object
s3 = new AWS.S3({ apiVersion: "2006-03-01" });

var bucketParams = { Bucket: process.argv[2] };

// call S3 to delete website configuration for selected bucket
s3.deleteBucketWebsite(bucketParams, function (error, data) {
 if (error) {
 console.log("Error", err);
 } else if (data) {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node s3_deletebucketwebsite.js BUCKET_NAME

Kode contoh ini dapat ditemukan di sini GitHub.

Contoh Layanan Email Sederhana Amazon

Amazon Simple Email Service (Amazon SES) adalah layanan pengiriman email berbasis cloud yang
dirancang untuk membantu pemasar digital dan pengembang aplikasi mengirim email pemasaran,

Contoh Amazon SES 267

https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_setbucketwebsite.js
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/javascript/example_code/s3/s3_deletebucketwebsite.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

pemberitahuan, dan transaksional. Ini adalah layanan yang andal dan hemat biaya untuk bisnis dari
semua ukuran yang menggunakan email untuk tetap berhubungan dengan pelanggan mereka.

JavaScript API untuk Amazon SES diekspos melalui kelas AWS.SES klien. Untuk informasi
selengkapnya tentang menggunakan kelas klien Amazon SES, lihat Class: AWS.SESdi referensi
API.

Topik

• Mengelola Identitas Amazon SES

• Bekerja dengan Template Email di Amazon SES

• Mengirim Email Menggunakan Amazon SES

• Menggunakan Filter Alamat IP untuk Tanda Terima Email di Amazon SES

• Menggunakan Aturan Tanda Terima di Amazon SES

Mengelola Identitas Amazon SES

Contoh kode Node.js ini menunjukkan:

• Cara memverifikasi alamat email dan domain yang digunakan dengan Amazon SES.

• Cara menetapkan kebijakan IAM ke identitas Amazon SES Anda.

• Cara membuat daftar semua identitas Amazon SES untuk AWS akun Anda.

• Cara menghapus identitas yang digunakan dengan Amazon SES.

Mengelola Identitas 268

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Identitas Amazon SES adalah alamat email atau domain yang digunakan Amazon SES untuk
mengirim email. Amazon SES mengharuskan Anda untuk memverifikasi identitas email Anda,
mengonfirmasi bahwa Anda memilikinya dan mencegah orang lain menggunakannya.

Untuk detail tentang cara memverifikasi alamat email dan domain di Amazon SES, lihat Memverifikasi
Alamat Email dan Domain di Amazon SES di Panduan Pengembang Layanan Email Sederhana
Amazon. Untuk informasi tentang mengirim otorisasi di Amazon SES, lihat Ikhtisar Otorisasi
Pengiriman Amazon SES.

Skenario

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk memverifikasi dan
mengelola identitas Amazon SES. Modul Node.js menggunakan SDK JavaScript untuk memverifikasi
alamat email dan domain, menggunakan metode kelas AWS.SES klien berikut:

• listIdentities

• deleteIdentity

• verifyEmailIdentity

• verifyDomainIdentity

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file JSON kredensial, lihat. Memuat Kredensial di Node.js dari File Kredensial
Bersama

Mengkonfigurasi SDK

Konfigurasikan SDK untuk JavaScript dengan membuat objek konfigurasi global lalu setel Wilayah
untuk kode Anda. Dalam contoh ini, Region diatur keus-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');

Mengelola Identitas 269

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-addresses-and-domains.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-addresses-and-domains.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidesending-authorization-overview.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidesending-authorization-overview.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#listIdentities-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#deleteIdentity-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#verifyEmailIdentity-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#verifyDomainIdentity-property
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Set the Region
AWS.config.update({region: 'us-west-2'});

Daftar Identitas Anda

Dalam contoh ini, gunakan modul Node.js untuk mencantumkan alamat email dan domain yang akan
digunakan dengan Amazon SES. Buat modul Node.js dengan nama fileses_listidentities.js.
Konfigurasikan SDK seperti yang ditunjukkan sebelumnya.

Buat objek untuk melewati IdentityType dan parameter lainnya untuk listIdentities metode
kelas AWS.SES klien. Untuk memanggil listIdentities metode, buat janji untuk menjalankan
objek layanan Amazon SES, melewati objek parameter.

Kemudian tangani callback response in the promise. Yang data dikembalikan oleh janji berisi array
identitas domain seperti yang ditentukan oleh IdentityType parameter.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create listIdentities params
var params = {
 IdentityType: "Domain",
 MaxItems: 10,
};

// Create the promise and SES service object
var listIDsPromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .listIdentities(params)
 .promise();

// Handle promise's fulfilled/rejected states
listIDsPromise
 .then(function (data) {
 console.log(data.Identities);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

Mengelola Identitas 270

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

node ses_listidentities.js

Kode contoh ini dapat ditemukan di sini GitHub.

Memverifikasi Identitas Alamat Email

Dalam contoh ini, gunakan modul Node.js untuk memverifikasi pengirim email yang akan digunakan
dengan Amazon SES. Buat modul Node.js dengan nama fileses_verifyemailidentity.js.
Konfigurasikan SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon SES, buat
objek AWS.SES layanan.

Buat objek untuk melewati EmailAddress parameter untuk verifyEmailIdentity metode kelas
AWS.SES klien. Untuk memanggil verifyEmailIdentity metode ini, buat janji untuk menjalankan
objek layanan Amazon SES, melewati parameter. Kemudian tangani callback response in the
promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SES service object
var verifyEmailPromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .verifyEmailIdentity({ EmailAddress: "ADDRESS@DOMAIN.EXT" })
 .promise();

// Handle promise's fulfilled/rejected states
verifyEmailPromise
 .then(function (data) {
 console.log("Email verification initiated");
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Domain ditambahkan ke Amazon SES
untuk diverifikasi.

node ses_verifyemailidentity.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengelola Identitas 271

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_listidentities.js
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_verifyemailidentity.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Memverifikasi Identitas Domain

Dalam contoh ini, gunakan modul Node.js untuk memverifikasi domain email yang akan digunakan
dengan Amazon SES. Buat modul Node.js dengan nama fileses_verifydomainidentity.js.
Konfigurasikan SDK seperti yang ditunjukkan sebelumnya.

Buat objek untuk melewati Domain parameter untuk verifyDomainIdentity metode kelas
AWS.SES klien. Untuk memanggil verifyDomainIdentity metode, buat janji untuk menjalankan
objek layanan Amazon SES, melewati objek parameter. Kemudian tangani callback response in the
promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object
var verifyDomainPromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .verifyDomainIdentity({ Domain: "DOMAIN_NAME" })
 .promise();

// Handle promise's fulfilled/rejected states
verifyDomainPromise
 .then(function (data) {
 console.log("Verification Token: " + data.VerificationToken);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Domain ditambahkan ke Amazon SES
untuk diverifikasi.

node ses_verifydomainidentity.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengelola Identitas 272

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_verifydomainidentity.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Menghapus Identitas

Dalam contoh ini, gunakan modul Node.js untuk menghapus alamat email atau domain yang
digunakan dengan Amazon SES. Buat modul Node.js dengan nama fileses_deleteidentity.js.
Konfigurasikan SDK seperti yang ditunjukkan sebelumnya.

Buat objek untuk melewati Identity parameter untuk deleteIdentity metode kelas AWS.SES
klien. Untuk memanggil deleteIdentity metode, buat request untuk memanggil objek layanan
Amazon SES, melewati parameter. Kemudian tangani callback response in the promise..

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object
var deletePromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .deleteIdentity({ Identity: "DOMAIN_NAME" })
 .promise();

// Handle promise's fulfilled/rejected states
deletePromise
 .then(function (data) {
 console.log("Identity Deleted");
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node ses_deleteidentity.js

Kode contoh ini dapat ditemukan di sini GitHub.

Bekerja dengan Template Email di Amazon SES

Bekerja dengan Template Email 273

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_deleteidentity.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Contoh kode Node.js ini menunjukkan:

• Dapatkan daftar semua template email Anda.

• Mengambil dan memperbarui template email.

• Buat dan hapus template email.

Amazon SES memungkinkan Anda mengirim pesan email yang dipersonalisasi menggunakan
templat email. Untuk detail tentang cara membuat dan menggunakan templat email di Amazon
Simple Email Service, lihat Mengirim Email yang Dipersonalisasi Menggunakan Amazon SES API di
Panduan Pengembang Layanan Email Sederhana Amazon.

Skenario

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk bekerja dengan template
email. Modul Node.js menggunakan SDK JavaScript untuk membuat dan menggunakan templat
email menggunakan metode kelas AWS.SES klien berikut:

• listTemplates

• createTemplate

• getTemplate

• deleteTemplate

• updateTemplate

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang membuat file kredensial, lihat. Memuat Kredensial di Node.js dari File Kredensial Bersama

Bekerja dengan Template Email 274

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-personalized-email-api.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#listTemplates-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#createTemplate-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#getTemplate-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#deleteTemplate-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#updateTemplate-property
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Daftar Template Email Anda

Dalam contoh ini, gunakan modul Node.js untuk membuat template email untuk digunakan dengan
Amazon SES. Buat modul Node.js dengan nama fileses_listtemplates.js. Konfigurasikan SDK
seperti yang ditunjukkan sebelumnya.

Buat objek untuk melewati parameter untuk listTemplates metode kelas AWS.SES klien. Untuk
memanggil listTemplates metode ini, buat janji untuk menjalankan objek layanan Amazon SES,
melewati parameter. Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object
var templatePromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .listTemplates({ MaxItems: ITEMS_COUNT })
 .promise();

// Handle promise's fulfilled/rejected states
templatePromise
 .then(function (data) {
 console.log(data);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Amazon SES mengembalikan daftar
templat.

node ses_listtemplates.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mendapatkan Template Email

Dalam contoh ini, gunakan modul Node.js untuk mendapatkan template email untuk digunakan
dengan Amazon SES. Buat modul Node.js dengan nama fileses_gettemplate.js. Konfigurasikan
SDK seperti yang ditunjukkan sebelumnya.

Bekerja dengan Template Email 275

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_listtemplates.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Buat objek untuk melewati TemplateName parameter untuk getTemplate metode kelas AWS.SES
klien. Untuk memanggil getTemplate metode ini, buat janji untuk menjalankan objek layanan
Amazon SES, melewati parameter. Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js.
var AWS = require("aws-sdk");
// Set the AWS Region.
AWS.config.update({ region: "REGION" });

// Create the promise and Amazon Simple Email Service (Amazon SES) service object.
var templatePromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .getTemplate({ TemplateName: "TEMPLATE_NAME" })
 .promise();

// Handle promise's fulfilled/rejected states
templatePromise
 .then(function (data) {
 console.log(data.Template.SubjectPart);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Amazon SES mengembalikan detail
template.

node ses_gettemplate.js

Kode contoh ini dapat ditemukan di sini GitHub.

Membuat Template Email

Dalam contoh ini, gunakan modul Node.js untuk membuat template email untuk digunakan dengan
Amazon SES. Buat modul Node.js dengan nama fileses_createtemplate.js. Konfigurasikan
SDK seperti yang ditunjukkan sebelumnya.

Buat objek untuk melewati parameter untuk createTemplate metode kelas AWS.SES klien,
termasuk,TemplateName, HtmlPartSubjectPart, danTextPart. Untuk memanggil
createTemplate metode ini, buat janji untuk menjalankan objek layanan Amazon SES, melewati
parameter. Kemudian tangani callback response in the promise.

Bekerja dengan Template Email 276

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_gettemplate.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create createTemplate params
var params = {
 Template: {
 TemplateName: "TEMPLATE_NAME" /* required */,
 HtmlPart: "HTML_CONTENT",
 SubjectPart: "SUBJECT_LINE",
 TextPart: "TEXT_CONTENT",
 },
};

// Create the promise and SES service object
var templatePromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .createTemplate(params)
 .promise();

// Handle promise's fulfilled/rejected states
templatePromise
 .then(function (data) {
 console.log(data);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Template ditambahkan ke Amazon SES.

node ses_createtemplate.js

Kode contoh ini dapat ditemukan di sini GitHub.

Memperbarui Template Email

Dalam contoh ini, gunakan modul Node.js untuk membuat template email untuk digunakan dengan
Amazon SES. Buat modul Node.js dengan nama fileses_updatetemplate.js. Konfigurasikan
SDK seperti yang ditunjukkan sebelumnya.

Bekerja dengan Template Email 277

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_createtemplate.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Buat objek untuk meneruskan nilai Template parameter yang ingin Anda perbarui di template,
dengan TemplateName parameter yang diperlukan diteruskan ke updateTemplate metode kelas
AWS.SES klien. Untuk memanggil updateTemplate metode ini, buat janji untuk menjalankan objek
layanan Amazon SES, melewati parameter. Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create updateTemplate parameters
var params = {
 Template: {
 TemplateName: "TEMPLATE_NAME" /* required */,
 HtmlPart: "HTML_CONTENT",
 SubjectPart: "SUBJECT_LINE",
 TextPart: "TEXT_CONTENT",
 },
};

// Create the promise and SES service object
var templatePromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .updateTemplate(params)
 .promise();

// Handle promise's fulfilled/rejected states
templatePromise
 .then(function (data) {
 console.log("Template Updated");
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Amazon SES mengembalikan detail
template.

node ses_updatetemplate.js

Kode contoh ini dapat ditemukan di sini GitHub.

Bekerja dengan Template Email 278

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_updatetemplate.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Menghapus Template Email

Dalam contoh ini, gunakan modul Node.js untuk membuat template email untuk digunakan dengan
Amazon SES. Buat modul Node.js dengan nama fileses_deletetemplate.js. Konfigurasikan
SDK seperti yang ditunjukkan sebelumnya.

Buat objek untuk meneruskan TemplateName parameter yang diperlukan ke deleteTemplate
metode kelas AWS.SES klien. Untuk memanggil deleteTemplate metode ini, buat janji untuk
menjalankan objek layanan Amazon SES, melewati parameter. Kemudian tangani callback
response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object
var templatePromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .deleteTemplate({ TemplateName: "TEMPLATE_NAME" })
 .promise();

// Handle promise's fulfilled/rejected states
templatePromise
 .then(function (data) {
 console.log("Template Deleted");
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Amazon SES mengembalikan detail
template.

node ses_deletetemplate.js

Kode contoh ini dapat ditemukan di sini GitHub.

Bekerja dengan Template Email 279

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_deletetemplate.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Mengirim Email Menggunakan Amazon SES

Contoh kode Node.js ini menunjukkan:

• Kirim teks atau email HTML.

• Kirim email berdasarkan template email.

• Kirim email massal berdasarkan template email.

Amazon SES API menyediakan dua cara berbeda bagi Anda untuk mengirim email, tergantung pada
seberapa banyak kontrol yang Anda inginkan atas komposisi pesan email: diformat dan mentah.
Untuk detailnya, lihat Mengirim Email Berformat Menggunakan Amazon SES API dan Mengirim Email
Mentah Menggunakan Amazon SES API.

Skenario

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk mengirim email dengan
berbagai cara. Modul Node.js menggunakan SDK JavaScript untuk membuat dan menggunakan
templat email menggunakan metode kelas AWS.SES klien berikut:

• sendEmail

• sendTemplatedEmail

• sendBulkTemplatedEmail

Tugas Prasyarat

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file JSON kredensial, lihat. Memuat Kredensial di Node.js dari File Kredensial
Bersama

Mengirim Email Menggunakan Amazon SES 280

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-email-formatted.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-email-raw.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/send-email-raw.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#sendEmail-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#sendTemplatedEmail-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#sendBulkTemplatedEmail-property
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Persyaratan Pengiriman Pesan Email

Amazon SES membuat pesan email dan segera mengantri untuk dikirim. Untuk mengirim email
menggunakan SES.sendEmail metode ini, pesan Anda harus memenuhi persyaratan berikut:

• Anda harus mengirim pesan dari alamat email atau domain yang diverifikasi. Jika Anda mencoba
mengirim email menggunakan alamat atau domain yang tidak diverifikasi, operasi akan
menghasilkan "Email address not verified" kesalahan.

• Jika akun Anda masih dalam kotak pasir Amazon SES, Anda hanya dapat mengirim ke alamat
atau domain terverifikasi, atau ke alamat email yang terkait dengan Simulator Kotak Surat Amazon
SES. Untuk informasi selengkapnya, lihat Memverifikasi Alamat Email dan Domain di Panduan
Pengembang Layanan Email Sederhana Amazon.

• Ukuran total pesan, termasuk lampiran, harus lebih kecil dari 10 MB.

• Pesan harus menyertakan setidaknya satu alamat email penerima. Alamat penerima dapat berupa
alamat Kepada:, alamat CC:, atau alamat BCC:. Jika alamat email penerima tidak valid (artinya,
tidak dalam formatUserName@[SubDomain.]Domain.TopLevelDomain), seluruh pesan
ditolak, bahkan jika pesan berisi penerima lain yang valid.

• Pesan tidak dapat menyertakan lebih dari 50 penerima, di bidang Kepada:, CC: dan BCC:. Jika
Anda perlu mengirim pesan email ke audiens yang lebih besar, Anda dapat membagi daftar
penerima Anda menjadi grup 50 atau kurang, dan kemudian memanggil sendEmail metode
beberapa kali untuk mengirim pesan ke setiap grup.

Mengirim Email

Dalam contoh ini, gunakan modul Node.js untuk mengirim email dengan Amazon SES. Buat modul
Node.js dengan nama fileses_sendemail.js. Konfigurasikan SDK seperti yang ditunjukkan
sebelumnya.

Buat objek untuk meneruskan nilai parameter yang menentukan email yang akan dikirim, termasuk
alamat pengirim dan penerima, subjek, badan email dalam format teks biasa dan HTML, ke
sendEmail metode kelas AWS.SES klien. Untuk memanggil sendEmail metode ini, buat janji
untuk menjalankan objek layanan Amazon SES, melewati parameter. Kemudian tangani callback
response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region

Mengirim Email Menggunakan Amazon SES 281

https://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-addresses-and-domains.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

AWS.config.update({ region: "REGION" });

// Create sendEmail params
var params = {
 Destination: {
 /* required */
 CcAddresses: [
 "EMAIL_ADDRESS",
 /* more items */
],
 ToAddresses: [
 "EMAIL_ADDRESS",
 /* more items */
],
 },
 Message: {
 /* required */
 Body: {
 /* required */
 Html: {
 Charset: "UTF-8",
 Data: "HTML_FORMAT_BODY",
 },
 Text: {
 Charset: "UTF-8",
 Data: "TEXT_FORMAT_BODY",
 },
 },
 Subject: {
 Charset: "UTF-8",
 Data: "Test email",
 },
 },
 Source: "SENDER_EMAIL_ADDRESS" /* required */,
 ReplyToAddresses: [
 "EMAIL_ADDRESS",
 /* more items */
],
};

// Create the promise and SES service object
var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .sendEmail(params)
 .promise();

Mengirim Email Menggunakan Amazon SES 282

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Handle promise's fulfilled/rejected states
sendPromise
 .then(function (data) {
 console.log(data.MessageId);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Email diantrian untuk dikirim oleh
Amazon SES.

node ses_sendemail.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengirim Email Menggunakan Template

Dalam contoh ini, gunakan modul Node.js untuk mengirim email dengan Amazon SES. Buat modul
Node.js dengan nama fileses_sendtemplatedemail.js. Konfigurasikan SDK seperti yang
ditunjukkan sebelumnya.

Buat objek untuk meneruskan nilai parameter yang menentukan email yang akan dikirim, termasuk
alamat pengirim dan penerima, subjek, badan email dalam format teks biasa dan HTML, ke
sendTemplatedEmail metode kelas AWS.SES klien. Untuk memanggil sendTemplatedEmail
metode ini, buat janji untuk menjalankan objek layanan Amazon SES, melewati parameter. Kemudian
tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create sendTemplatedEmail params
var params = {
 Destination: {
 /* required */
 CcAddresses: [
 "EMAIL_ADDRESS",
 /* more CC email addresses */

Mengirim Email Menggunakan Amazon SES 283

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_sendemail.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

],
 ToAddresses: [
 "EMAIL_ADDRESS",
 /* more To email addresses */
],
 },
 Source: "EMAIL_ADDRESS" /* required */,
 Template: "TEMPLATE_NAME" /* required */,
 TemplateData: '{ "REPLACEMENT_TAG_NAME":"REPLACEMENT_VALUE" }' /* required */,
 ReplyToAddresses: ["EMAIL_ADDRESS"],
};

// Create the promise and SES service object
var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .sendTemplatedEmail(params)
 .promise();

// Handle promise's fulfilled/rejected states
sendPromise
 .then(function (data) {
 console.log(data);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Email diantrian untuk dikirim oleh
Amazon SES.

node ses_sendtemplatedemail.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengirim Email Massal Menggunakan Template

Dalam contoh ini, gunakan modul Node.js untuk mengirim email dengan Amazon SES. Buat modul
Node.js dengan nama fileses_sendbulktemplatedemail.js. Konfigurasikan SDK seperti yang
ditunjukkan sebelumnya.

Buat objek untuk meneruskan nilai parameter yang menentukan email yang akan dikirim,
termasuk alamat pengirim dan penerima, subjek, badan email dalam format teks biasa dan
HTML, ke sendBulkTemplatedEmail metode kelas AWS.SES klien. Untuk memanggil

Mengirim Email Menggunakan Amazon SES 284

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_sendtemplatedemail.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

sendBulkTemplatedEmail metode ini, buat janji untuk menjalankan objek layanan Amazon SES,
melewati parameter. Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create sendBulkTemplatedEmail params
var params = {
 Destinations: [
 /* required */
 {
 Destination: {
 /* required */
 CcAddresses: [
 "EMAIL_ADDRESS",
 /* more items */
],
 ToAddresses: [
 "EMAIL_ADDRESS",
 "EMAIL_ADDRESS",
 /* more items */
],
 },
 ReplacementTemplateData: '{ "REPLACEMENT_TAG_NAME":"REPLACEMENT_VALUE" }',
 },
],
 Source: "EMAIL_ADDRESS" /* required */,
 Template: "TEMPLATE_NAME" /* required */,
 DefaultTemplateData: '{ "REPLACEMENT_TAG_NAME":"REPLACEMENT_VALUE" }',
 ReplyToAddresses: ["EMAIL_ADDRESS"],
};

// Create the promise and SES service object
var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .sendBulkTemplatedEmail(params)
 .promise();

// Handle promise's fulfilled/rejected states
sendPromise
 .then(function (data) {
 console.log(data);

Mengirim Email Menggunakan Amazon SES 285

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 })
 .catch(function (err) {
 console.log(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Email diantrian untuk dikirim oleh
Amazon SES.

node ses_sendbulktemplatedemail.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menggunakan Filter Alamat IP untuk Tanda Terima Email di Amazon SES

Contoh kode Node.js ini menunjukkan:

• Buat filter alamat IP untuk menerima atau menolak email yang berasal dari alamat IP atau rentang
alamat IP.

• Buat daftar filter alamat IP Anda saat ini.

• Hapus filter alamat IP.

Di Amazon SES, filter adalah struktur data yang terdiri dari nama, rentang alamat IP, dan apakah
akan mengizinkan atau memblokir email darinya. Alamat IP yang ingin Anda blokir atau izinkan
ditentukan sebagai alamat IP tunggal atau rentang alamat IP dalam notasi Classless Inter-Domain
Routing (CIDR). Untuk detail tentang cara Amazon SES menerima email, lihat Konsep Penerimaan
Email Amazon SES di Panduan Pengembang Layanan Email Sederhana Amazon.

Skenario

Dalam contoh ini, serangkaian modul Node.js digunakan untuk mengirim email dalam berbagai cara.
Modul Node.js menggunakan SDK JavaScript untuk membuat dan menggunakan templat email
menggunakan metode kelas AWS.SES klien berikut:

• createReceiptFilter

Menggunakan Filter Alamat IP 286

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_sendbulktemplatedemail.js
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-concepts.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/receiving-email-concepts.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#createReceiptFilter-property

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• listReceiptFilters

• deleteReceiptFilter

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Mengkonfigurasi SDK

Konfigurasikan SDK untuk JavaScript dengan membuat objek konfigurasi global lalu setel Wilayah
untuk kode Anda. Dalam contoh ini, Region diatur keus-west-2.

// Load the SDK for JavaScript
var AWS = require('aws-sdk');
// Set the Region
AWS.config.update({region: 'us-west-2'});

Membuat Filter Alamat IP

Dalam contoh ini, gunakan modul Node.js untuk mengirim email dengan Amazon SES. Buat modul
Node.js dengan nama fileses_createreceiptfilter.js. Konfigurasikan SDK seperti yang
ditunjukkan sebelumnya.

Buat objek untuk meneruskan nilai parameter yang menentukan filter IP, termasuk nama filter,
alamat IP atau rentang alamat untuk difilter, dan apakah akan mengizinkan atau memblokir lalu lintas
email dari alamat yang difilter. Untuk memanggil createReceiptFilter metode ini, buat janji
untuk menjalankan objek layanan Amazon SES, melewati parameter. Kemudian tangani callback
response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region

Menggunakan Filter Alamat IP 287

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#listReceiptFilters-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#deleteReceiptFilter-property
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

AWS.config.update({ region: "REGION" });

// Create createReceiptFilter params
var params = {
 Filter: {
 IpFilter: {
 Cidr: "IP_ADDRESS_OR_RANGE",
 Policy: "Allow" | "Block",
 },
 Name: "NAME",
 },
};

// Create the promise and SES service object
var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .createReceiptFilter(params)
 .promise();

// Handle promise's fulfilled/rejected states
sendPromise
 .then(function (data) {
 console.log(data);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Filter dibuat di Amazon SES.

node ses_createreceiptfilter.js

Kode contoh ini dapat ditemukan di sini GitHub.

Cantumkan Filter Alamat IP Anda

Dalam contoh ini, gunakan modul Node.js untuk mengirim email dengan Amazon SES. Buat modul
Node.js dengan nama fileses_listreceiptfilters.js. Konfigurasikan SDK seperti yang
ditunjukkan sebelumnya.

Buat objek parameter kosong. Untuk memanggil listReceiptFilters metode ini, buat janji
untuk menjalankan objek layanan Amazon SES, melewati parameter. Kemudian tangani callback
response in the promise.

Menggunakan Filter Alamat IP 288

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_createreceiptfilter.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object
var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .listReceiptFilters({})
 .promise();

// Handle promise's fulfilled/rejected states
sendPromise
 .then(function (data) {
 console.log(data.Filters);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Amazon SES mengembalikan daftar
filter.

node ses_listreceiptfilters.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Filter Alamat IP

Dalam contoh ini, gunakan modul Node.js untuk mengirim email dengan Amazon SES. Buat modul
Node.js dengan nama fileses_deletereceiptfilter.js. Konfigurasikan SDK seperti yang
ditunjukkan sebelumnya.

Buat objek untuk meneruskan nama filter IP untuk dihapus. Untuk memanggil
deleteReceiptFilter metode ini, buat janji untuk menjalankan objek layanan Amazon SES,
melewati parameter. Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object

Menggunakan Filter Alamat IP 289

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_listreceiptfilters.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var sendPromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .deleteReceiptFilter({ FilterName: "NAME" })
 .promise();

// Handle promise's fulfilled/rejected states
sendPromise
 .then(function (data) {
 console.log("IP Filter deleted");
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Filter dihapus dari Amazon SES.

node ses_deletereceiptfilter.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menggunakan Aturan Tanda Terima di Amazon SES

Contoh kode Node.js ini menunjukkan:

• Buat dan hapus aturan tanda terima.

• Atur aturan tanda terima ke dalam set aturan penerimaan.

Aturan tanda terima di Amazon SES menentukan apa yang harus dilakukan dengan email yang
diterima untuk alamat email atau domain yang Anda miliki. Aturan tanda terima berisi kondisi dan
daftar tindakan yang diurutkan. Jika penerima email masuk cocok dengan penerima yang ditentukan
dalam kondisi aturan tanda terima, Amazon SES akan melakukan tindakan yang ditentukan oleh
aturan tanda terima.

Untuk menggunakan Amazon SES sebagai penerima email Anda, Anda harus memiliki setidaknya
satu aturan tanda terima aktif yang ditetapkan. Kumpulan aturan tanda terima adalah kumpulan
aturan tanda terima yang diurutkan yang menentukan apa yang harus dilakukan Amazon SES

Menggunakan Aturan Tanda Terima 290

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_deletereceiptfilter.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

dengan email yang diterimanya di seluruh domain terverifikasi Anda. Untuk informasi selengkapnya,
lihat Membuat Aturan Tanda Terima untuk Menerima Email Amazon SES dan Membuat Aturan
Tanda Terima yang Ditetapkan untuk Penerimaan Email Amazon SES di Panduan Pengembang
Layanan Email Sederhana Amazon.

Skenario

Dalam contoh ini, serangkaian modul Node.js digunakan untuk mengirim email dalam berbagai cara.
Modul Node.js menggunakan SDK JavaScript untuk membuat dan menggunakan templat email
menggunakan metode kelas AWS.SES klien berikut:

• createReceiptRule

• deleteReceiptRule

• createReceiptRuleSet

• deleteReceiptRuleSet

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file JSON kredensial, lihat. Memuat Kredensial di Node.js dari File Kredensial
Bersama

Membuat Aturan Tanda Terima Amazon S3

Setiap aturan tanda terima untuk Amazon SES berisi daftar tindakan yang diurutkan. Contoh ini
membuat aturan tanda terima dengan tindakan Amazon S3, yang mengirimkan pesan email ke
bucket Amazon S3. Untuk detail tentang tindakan aturan penerimaan, lihat Opsi Tindakan di Panduan
Pengembang Layanan Email Sederhana Amazon.

Agar Amazon SES dapat menulis email ke bucket Amazon S3, buat kebijakan bucket yang
memberikan PutObject izin ke Amazon SES. Untuk informasi tentang cara membuat kebijakan
bucket ini, lihat Berikan Izin Amazon SES untuk Menulis ke Bucket Amazon S3 Anda di Panduan
Pengembang Layanan Email Sederhana Amazon.

Menggunakan Aturan Tanda Terima 291

Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-receipt-rules.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-receipt-rule-set.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-receipt-rule-set.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#createReceiptRule-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#deleteReceiptRule-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#createReceiptRuleSet-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SES.html#deleteReceiptRuleSet-property
https://nodejs.org
Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-action.html
Amazon%20Simple%20Email%20Service%20Developer%20Guidereceiving-email-permissions.html%23receiving-email-permissions-s3.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Dalam contoh ini, gunakan modul Node.js untuk membuat aturan tanda terima di Amazon SES
untuk menyimpan pesan yang diterima di bucket Amazon S3. Buat modul Node.js dengan nama
fileses_createreceiptrule.js. Konfigurasikan SDK seperti yang ditunjukkan sebelumnya.

Buat objek parameter untuk meneruskan nilai yang diperlukan untuk membuat set aturan
penerimaan. Untuk memanggil createReceiptRuleSet metode ini, buat janji untuk menjalankan
objek layanan Amazon SES, melewati parameter. Kemudian tangani callback response in the
promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create createReceiptRule params
var params = {
 Rule: {
 Actions: [
 {
 S3Action: {
 BucketName: "S3_BUCKET_NAME",
 ObjectKeyPrefix: "email",
 },
 },
],
 Recipients: [
 "DOMAIN | EMAIL_ADDRESS",
 /* more items */
],
 Enabled: true | false,
 Name: "RULE_NAME",
 ScanEnabled: true | false,
 TlsPolicy: "Optional",
 },
 RuleSetName: "RULE_SET_NAME",
};

// Create the promise and SES service object
var newRulePromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .createReceiptRule(params)
 .promise();

// Handle promise's fulfilled/rejected states

Menggunakan Aturan Tanda Terima 292

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

newRulePromise
 .then(function (data) {
 console.log("Rule created");
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Amazon SES membuat aturan tanda
terima.

node ses_createreceiptrule.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Aturan Tanda Terima

Dalam contoh ini, gunakan modul Node.js untuk mengirim email dengan Amazon SES. Buat modul
Node.js dengan nama fileses_deletereceiptrule.js. Konfigurasikan SDK seperti yang
ditunjukkan sebelumnya.

Buat objek parameter untuk meneruskan nama untuk menghapus aturan tanda terima. Untuk
memanggil deleteReceiptRule metode ini, buat janji untuk menjalankan objek layanan Amazon
SES, melewati parameter. Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create deleteReceiptRule params
var params = {
 RuleName: "RULE_NAME" /* required */,
 RuleSetName: "RULE_SET_NAME" /* required */,
};

// Create the promise and SES service object
var newRulePromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .deleteReceiptRule(params)
 .promise();

Menggunakan Aturan Tanda Terima 293

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_createreceiptrule.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Handle promise's fulfilled/rejected states
newRulePromise
 .then(function (data) {
 console.log("Receipt Rule Deleted");
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Amazon SES membuat daftar set aturan
tanda terima.

node ses_deletereceiptrule.js

Kode contoh ini dapat ditemukan di sini GitHub.

Membuat Set Aturan Tanda Terima

Dalam contoh ini, gunakan modul Node.js untuk mengirim email dengan Amazon SES. Buat modul
Node.js dengan nama fileses_createreceiptruleset.js. Konfigurasikan SDK seperti yang
ditunjukkan sebelumnya.

Buat objek parameter untuk meneruskan nama untuk set aturan penerimaan baru. Untuk memanggil
createReceiptRuleSet metode ini, buat janji untuk menjalankan objek layanan Amazon SES,
melewati parameter. Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object
var newRulePromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .createReceiptRuleSet({ RuleSetName: "NAME" })
 .promise();

// Handle promise's fulfilled/rejected states
newRulePromise
 .then(function (data) {
 console.log(data);
 })
 .catch(function (err) {

Menggunakan Aturan Tanda Terima 294

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_deletereceiptrule.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Amazon SES membuat daftar set aturan
tanda terima.

node ses_createreceiptruleset.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Set Aturan Tanda Terima

Dalam contoh ini, gunakan modul Node.js untuk mengirim email dengan Amazon SES. Buat modul
Node.js dengan nama fileses_deletereceiptruleset.js. Konfigurasikan SDK seperti yang
ditunjukkan sebelumnya.

Buat objek untuk meneruskan nama untuk aturan tanda terima yang ditetapkan untuk dihapus.
Untuk memanggil deleeReceiptRuleSet metode ini, buat janji untuk menjalankan objek layanan
Amazon SES, melewati parameter. Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the promise and SES service object
var newRulePromise = new AWS.SES({ apiVersion: "2010-12-01" })
 .deleteReceiptRuleSet({ RuleSetName: "NAME" })
 .promise();

// Handle promise's fulfilled/rejected states
newRulePromise
 .then(function (data) {
 console.log(data);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah. Amazon SES membuat daftar set aturan
tanda terima.

Menggunakan Aturan Tanda Terima 295

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_createreceiptruleset.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

node ses_deletereceiptruleset.js

Kode contoh ini dapat ditemukan di sini GitHub.

Contoh Layanan Pemberitahuan Sederhana Amazon

Amazon Simple Notification Service (Amazon SNS) adalah layanan web yang mengoordinasikan dan
mengelola pengiriman atau pengiriman pesan untuk berlangganan titik akhir atau klien.

Di Amazon SNS, ada dua jenis klien—penerbit dan pelanggan—juga disebut sebagai produsen dan
konsumen.

Penerbit berkomunikasi secara asinkron dengan pelanggan dengan memproduksi dan mengirim
pesan ke suatu topik, yang merupakan jalur akses logis dan saluran komunikasi. Pelanggan (server
web, alamat email, antrian Amazon SQS, fungsi Lambda) mengkonsumsi atau menerima pesan atau
pemberitahuan melalui salah satu protokol yang didukung (Amazon SQS, HTTP/S, email, SMS,)
ketika mereka berlangganan topik. AWS Lambda

JavaScript API untuk Amazon SNS diekspos melalui file. Class: AWS.SNS

Topik

• Mengelola Topik di Amazon SNS

• Menerbitkan Pesan di Amazon SNS

• Mengelola Langganan di Amazon SNS

• Mengirim Pesan SMS dengan Amazon SNS

Contoh Amazon SNS 296

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/ses/ses_deletereceiptruleset.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Mengelola Topik di Amazon SNS

Contoh kode Node.js ini menunjukkan:

• Cara membuat topik di Amazon SNS tempat Anda dapat mempublikasikan notifikasi.

• Cara menghapus topik yang dibuat di Amazon SNS.

• Cara mendapatkan daftar topik yang tersedia.

• Cara mendapatkan dan mengatur atribut topik.

Skenario

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk membuat, membuat daftar,
dan menghapus topik Amazon SNS, dan untuk menangani atribut topik. Modul Node.js menggunakan
SDK JavaScript untuk mengelola topik menggunakan metode kelas AWS.SNS klien berikut:

• createTopic

• listTopics

• deleteTopic

• getTopicAttributes

• setTopicAttributes

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file JSON kredensial, lihat. Memuat Kredensial di Node.js dari File Kredensial
Bersama

Mengelola Topik 297

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#createTopic-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#listTopics-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#deleteTopic-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#getTopicAttributes-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#setTopicAttributes-property
http://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Membuat Topik

Dalam contoh ini, gunakan modul Node.js untuk membuat topik Amazon SNS. Buat modul Node.js
dengan nama filesns_createtopic.js. Konfigurasikan SDK seperti yang ditunjukkan sebelumnya.

Buat objek untuk meneruskan topik baru ke createTopic metode kelas AWS.SNS klien. Name
Untuk memanggil createTopic metode ini, buat janji untuk memanggil objek layanan Amazon
SNS, melewati objek parameter. Kemudian tangani callback response in the promise. Yang data
dikembalikan oleh janji berisi ARN dari topik tersebut.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SNS service object
var createTopicPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .createTopic({ Name: "TOPIC_NAME" })
 .promise();

// Handle promise's fulfilled/rejected states
createTopicPromise
 .then(function (data) {
 console.log("Topic ARN is " + data.TopicArn);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_createtopic.js

Kode contoh ini dapat ditemukan di sini GitHub.

Daftar Topik Anda

Dalam contoh ini, gunakan modul Node.js untuk mencantumkan semua topik Amazon SNS.
Buat modul Node.js dengan nama filesns_listtopics.js. Konfigurasikan SDK seperti yang
ditunjukkan sebelumnya.

Mengelola Topik 298

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_createtopic.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Buat objek kosong untuk diteruskan ke listTopics metode kelas AWS.SNS klien. Untuk memanggil
listTopics metode ini, buat janji untuk memanggil objek layanan Amazon SNS, melewati objek
parameter. Kemudian tangani callback response in the promise. Yang data dikembalikan oleh janji
berisi berbagai topik Anda ARNs.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SNS service object
var listTopicsPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .listTopics({})
 .promise();

// Handle promise's fulfilled/rejected states
listTopicsPromise
 .then(function (data) {
 console.log(data.Topics);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_listtopics.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Topik

Dalam contoh ini, gunakan modul Node.js untuk menghapus topik Amazon SNS. Buat modul Node.js
dengan nama filesns_deletetopic.js. Konfigurasikan SDK seperti yang ditunjukkan sebelumnya.

Buat objek yang TopicArn berisi topik yang akan dihapus untuk diteruskan ke deleteTopic
metode kelas AWS.SNS klien. Untuk memanggil deleteTopic metode ini, buat janji untuk
memanggil objek layanan Amazon SNS, melewati objek parameter. Kemudian tangani callback
response in the promise.

// Load the AWS SDK for Node.js

Mengelola Topik 299

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_listtopics.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SNS service object
var deleteTopicPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .deleteTopic({ TopicArn: "TOPIC_ARN" })
 .promise();

// Handle promise's fulfilled/rejected states
deleteTopicPromise
 .then(function (data) {
 console.log("Topic Deleted");
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_deletetopic.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mendapatkan Atribut Topik

Dalam contoh ini, gunakan modul Node.js untuk mengambil atribut topik Amazon SNS. Buat modul
Node.js dengan nama filesns_gettopicattributes.js. Konfigurasikan SDK seperti yang
ditunjukkan sebelumnya.

Buat objek yang TopicArn berisi topik yang akan dihapus untuk diteruskan ke
getTopicAttributes metode kelas AWS.SNS klien. Untuk memanggil getTopicAttributes
metode ini, buat janji untuk memanggil objek layanan Amazon SNS, melewati objek parameter.
Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SNS service object

Mengelola Topik 300

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_deletetopic.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var getTopicAttribsPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .getTopicAttributes({ TopicArn: "TOPIC_ARN" })
 .promise();

// Handle promise's fulfilled/rejected states
getTopicAttribsPromise
 .then(function (data) {
 console.log(data);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_gettopicattributes.js

Kode contoh ini dapat ditemukan di sini GitHub.

Pengaturan Atribut Topik

Dalam contoh ini, gunakan modul Node.js untuk menyetel atribut yang dapat berubah dari
topik Amazon SNS. Buat modul Node.js dengan nama filesns_settopicattributes.js.
Konfigurasikan SDK seperti yang ditunjukkan sebelumnya.

Buat objek yang berisi parameter untuk pembaruan atribut, termasuk topik yang atributnya ingin Anda
tetapkan, nama atribut yang akan ditetapkan, dan nilai baru untuk atribut tersebut. TopicArn Anda
hanya dapat mengaturPolicy,DisplayName, dan DeliveryPolicy atribut. Lewati parameter ke
setTopicAttributes metode kelas AWS.SNS klien. Untuk memanggil setTopicAttributes
metode ini, buat janji untuk memanggil objek layanan Amazon SNS, melewati objek parameter.
Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create setTopicAttributes parameters
var params = {
 AttributeName: "ATTRIBUTE_NAME" /* required */,
 TopicArn: "TOPIC_ARN" /* required */,

Mengelola Topik 301

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_gettopicattributes.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 AttributeValue: "NEW_ATTRIBUTE_VALUE",
};

// Create promise and SNS service object
var setTopicAttribsPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .setTopicAttributes(params)
 .promise();

// Handle promise's fulfilled/rejected states
setTopicAttribsPromise
 .then(function (data) {
 console.log(data);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_settopicattributes.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menerbitkan Pesan di Amazon SNS

Contoh kode Node.js ini menunjukkan:

• Cara mempublikasikan pesan ke topik Amazon SNS.

Skenario

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk mempublikasikan pesan
dari Amazon SNS ke titik akhir topik, email, atau nomor telepon. Modul Node.js menggunakan SDK
JavaScript untuk mengirim pesan menggunakan metode kelas AWS.SNS klien ini:

• publish

Menerbitkan Pesan ke Topik 302

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_settopicattributes.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#publish-property

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file JSON kredensial, lihat. Memuat Kredensial di Node.js dari File Kredensial
Bersama

Menerbitkan Pesan ke Topik Amazon SNS

Dalam contoh ini, gunakan modul Node.js untuk mempublikasikan pesan ke topik Amazon SNS.
Buat modul Node.js dengan nama filesns_publishtotopic.js. Konfigurasikan SDK seperti yang
ditunjukkan sebelumnya.

Buat objek yang berisi parameter untuk menerbitkan pesan, termasuk teks pesan dan ARN dari topik
Amazon SNS. Untuk detail tentang atribut SMS yang tersedia, lihat Mengatur SMSAttributes.

Lewati parameter ke publish metode kelas AWS.SNS klien. Buat janji untuk memanggil objek
layanan Amazon SNS, melewati objek parameter. Kemudian tangani respons dalam panggilan balik
janji.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create publish parameters
var params = {
 Message: "MESSAGE_TEXT" /* required */,
 TopicArn: "TOPIC_ARN",
};

// Create promise and SNS service object
var publishTextPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .publish(params)
 .promise();

// Handle promise's fulfilled/rejected states
publishTextPromise

Menerbitkan Pesan ke Topik 303

http://nodejs.org
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#setSMSAttributes-property

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 .then(function (data) {
 console.log(
 `Message ${params.Message} sent to the topic ${params.TopicArn}`
);
 console.log("MessageID is " + data.MessageId);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_publishtotopic.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengelola Langganan di Amazon SNS

Contoh kode Node.js ini menunjukkan:

• Cara membuat daftar semua langganan ke topik Amazon SNS.

• Cara berlangganan alamat email, titik akhir aplikasi, atau AWS Lambda fungsi ke topik Amazon
SNS.

• Cara berhenti berlangganan dari topik Amazon SNS.

Skenario

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk mempublikasikan pesan
notifikasi ke topik Amazon SNS. Modul Node.js menggunakan SDK JavaScript untuk mengelola topik
menggunakan metode kelas AWS.SNS klien berikut:

• subscribe

• confirmSubscription

• listSubscriptionsByTopic

Mengelola Langganan 304

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_publishtotopic.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#subscribe-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#confirmSubscription-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#listSubscriptionsByTopic-property

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• unsubscribe

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file JSON kredensial, lihat. Memuat Kredensial di Node.js dari File Kredensial
Bersama

Daftar Langganan ke Topik

Dalam contoh ini, gunakan modul Node.js untuk mencantumkan semua langganan ke topik Amazon
SNS. Buat modul Node.js dengan nama filesns_listsubscriptions.js. Konfigurasikan SDK
seperti yang ditunjukkan sebelumnya.

Buat objek yang berisi TopicArn parameter untuk topik yang langganannya ingin Anda daftarkan.
Lewati parameter ke listSubscriptionsByTopic metode kelas AWS.SNS klien. Untuk
memanggil listSubscriptionsByTopic metode ini, buat janji untuk memanggil objek layanan
Amazon SNS, melewati objek parameter. Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

const params = {
 TopicArn: "TOPIC_ARN",
};

// Create promise and SNS service object
var subslistPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .listSubscriptionsByTopic(params)
 .promise();

// Handle promise's fulfilled/rejected states
subslistPromise
 .then(function (data) {

Mengelola Langganan 305

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#unsubscribe-property
http://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 console.log(data);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_listsubscriptions.js

Kode contoh ini dapat ditemukan di sini GitHub.

Berlangganan Alamat Email ke Topik

Dalam contoh ini, gunakan modul Node.js untuk berlangganan alamat email sehingga
menerima pesan email SMTP dari topik Amazon SNS. Buat modul Node.js dengan nama
filesns_subscribeemail.js. Konfigurasikan SDK seperti yang ditunjukkan sebelumnya.

Buat objek yang berisi Protocol parameter untuk menentukan email protokol, topik TopicArn
untuk berlangganan, dan alamat email sebagai pesanEndpoint. Lewati parameter ke subscribe
metode kelas AWS.SNS klien. Anda dapat menggunakan subscribe metode ini untuk berlangganan
beberapa titik akhir yang berbeda ke topik Amazon SNS, tergantung pada nilai yang digunakan untuk
parameter yang diteruskan, seperti contoh lain dalam topik ini akan ditampilkan.

Untuk memanggil subscribe metode ini, buat janji untuk memanggil objek layanan Amazon SNS,
melewati objek parameter. Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create subscribe/email parameters
var params = {
 Protocol: "EMAIL" /* required */,
 TopicArn: "TOPIC_ARN" /* required */,
 Endpoint: "EMAIL_ADDRESS",
};

// Create promise and SNS service object
var subscribePromise = new AWS.SNS({ apiVersion: "2010-03-31" })

Mengelola Langganan 306

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_listsubscriptions.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 .subscribe(params)
 .promise();

// Handle promise's fulfilled/rejected states
subscribePromise
 .then(function (data) {
 console.log("Subscription ARN is " + data.SubscriptionArn);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_subscribeemail.js

Kode contoh ini dapat ditemukan di sini GitHub.

Berlangganan Endpoint Aplikasi ke Topik

Dalam contoh ini, gunakan modul Node.js untuk berlangganan titik akhir aplikasi seluler
sehingga menerima pemberitahuan dari topik Amazon SNS. Buat modul Node.js dengan nama
filesns_subscribeapp.js. Konfigurasikan SDK seperti yang ditunjukkan sebelumnya.

Buat objek yang berisi Protocol parameter untuk menentukan application protokol, topik
TopicArn untuk berlangganan, dan ARN dari titik akhir aplikasi seluler untuk parameter tersebut.
Endpoint Lewati parameter ke subscribe metode kelas AWS.SNS klien.

Untuk memanggil subscribe metode ini, buat janji untuk memanggil objek layanan Amazon SNS,
melewati objek parameter. Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create subscribe/email parameters
var params = {
 Protocol: "application" /* required */,
 TopicArn: "TOPIC_ARN" /* required */,
 Endpoint: "MOBILE_ENDPOINT_ARN",
};

Mengelola Langganan 307

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_subscribeemail.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Create promise and SNS service object
var subscribePromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .subscribe(params)
 .promise();

// Handle promise's fulfilled/rejected states
subscribePromise
 .then(function (data) {
 console.log("Subscription ARN is " + data.SubscriptionArn);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_subscribeapp.js

Kode contoh ini dapat ditemukan di sini GitHub.

Berlangganan Fungsi Lambda ke Topik

Dalam contoh ini, gunakan modul Node.js untuk berlangganan suatu AWS Lambda fungsi
sehingga menerima pemberitahuan dari topik Amazon SNS. Buat modul Node.js dengan nama
filesns_subscribelambda.js. Konfigurasikan SDK seperti yang ditunjukkan sebelumnya.

Buat objek yang berisi Protocol parameter, tentukan lambda protokol, topik TopicArn untuk
berlangganan, dan ARN fungsi AWS Lambda sebagai Endpoint parameter. Lewati parameter ke
subscribe metode kelas AWS.SNS klien.

Untuk memanggil subscribe metode ini, buat janji untuk memanggil objek layanan Amazon SNS,
melewati objek parameter. Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create subscribe/email parameters
var params = {
 Protocol: "lambda" /* required */,

Mengelola Langganan 308

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_subscribeapp.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 TopicArn: "TOPIC_ARN" /* required */,
 Endpoint: "LAMBDA_FUNCTION_ARN",
};

// Create promise and SNS service object
var subscribePromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .subscribe(params)
 .promise();

// Handle promise's fulfilled/rejected states
subscribePromise
 .then(function (data) {
 console.log("Subscription ARN is " + data.SubscriptionArn);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_subscribelambda.js

Kode contoh ini dapat ditemukan di sini GitHub.

Berhenti berlangganan dari topik

Dalam contoh ini, gunakan modul Node.js untuk berhenti berlangganan langganan topik Amazon
SNS. Buat modul Node.js dengan nama filesns_unsubscribe.js. Konfigurasikan SDK seperti
yang ditunjukkan sebelumnya.

Buat objek yang berisi SubscriptionArn parameter, tentukan ARN langganan untuk berhenti
berlangganan. Lewati parameter ke unsubscribe metode kelas AWS.SNS klien.

Untuk memanggil unsubscribe metode ini, buat janji untuk memanggil objek layanan Amazon SNS,
melewati objek parameter. Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SNS service object

Mengelola Langganan 309

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_subscribelambda.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var subscribePromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .unsubscribe({ SubscriptionArn: TOPIC_SUBSCRIPTION_ARN })
 .promise();

// Handle promise's fulfilled/rejected states
subscribePromise
 .then(function (data) {
 console.log(data);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_unsubscribe.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengirim Pesan SMS dengan Amazon SNS

Contoh kode Node.js ini menunjukkan:

• Cara mendapatkan dan mengatur preferensi pesan SMS untuk Amazon SNS.

• Cara memeriksa nomor telepon untuk melihat apakah telah memilih untuk tidak menerima pesan
SMS.

• Cara mendapatkan daftar nomor telepon yang telah memilih untuk tidak menerima pesan SMS.

• Cara mengirim pesan SMS.

Skenario

Anda dapat menggunakan Amazon SNS untuk mengirim pesan teks, atau pesan SMS, ke perangkat
yang mendukung SMS. Anda dapat mengirim pesan langsung ke sebuah nomor telepon, atau Anda
dapat mengirim pesan ke beberapa nomor telepon sekaligus dengan berlangganan topik untuk
nomor telepon tersebut dan mengirim pesan Anda ke topik tersebut.

Mengirim Pesan SMS 310

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_unsubscribe.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Dalam contoh ini, Anda menggunakan serangkaian modul Node.js untuk mempublikasikan pesan
teks SMS dari Amazon SNS ke perangkat berkemampuan SMS. Modul Node.js menggunakan SDK
JavaScript untuk mempublikasikan pesan SMS menggunakan metode kelas AWS.SNS klien berikut:

• getSMSAttributes

• setSMSAttributes

• checkIfPhoneNumberIsOptedOut

• listPhoneNumbersOptedOut

• publish

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file JSON kredensial, lihat. Memuat Kredensial di Node.js dari File Kredensial
Bersama

Mendapatkan Atribut SMS

Gunakan Amazon SNS untuk menentukan preferensi untuk pesan SMS, seperti bagaimana
pengiriman Anda dioptimalkan (untuk biaya atau untuk pengiriman yang andal), batas pengeluaran
bulanan Anda, cara pengiriman pesan dicatat, dan apakah akan berlangganan laporan penggunaan
SMS harian. Preferensi ini diambil dan ditetapkan sebagai atribut SMS untuk Amazon SNS.

Dalam contoh ini, gunakan modul Node.js untuk mendapatkan atribut SMS saat ini di Amazon
SNS. Buat modul Node.js dengan nama filesns_getsmstype.js. Konfigurasikan SDK seperti
yang ditunjukkan sebelumnya. Buat objek yang berisi parameter untuk mendapatkan atribut SMS,
termasuk nama-nama atribut individual yang akan didapat. Untuk detail tentang atribut SMS yang
tersedia, lihat Mengatur SMSAttributes Referensi API Layanan Pemberitahuan Sederhana Amazon.

Contoh ini mendapatkan DefaultSMSType atribut, yang mengontrol apakah pesan SMS dikirim
sebagaiPromotional, yang mengoptimalkan pengiriman pesan untuk menimbulkan biaya terendah,
atau asTransactional, yang mengoptimalkan pengiriman pesan untuk mencapai keandalan
tertinggi. Lewati parameter ke setTopicAttributes metode kelas AWS.SNS klien. Untuk

Mengirim Pesan SMS 311

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#getSMSAttributes-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#setSMSAttributes-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#checkIfPhoneNumberIsOptedOut-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#listPhoneNumbersOptedOut-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SNS.html#publish-property
http://nodejs.org
https://docs.aws.amazon.com/sns/latest/api/API_SetSMSAttributes.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

memanggil getSMSAttributes metode ini, buat janji untuk memanggil objek layanan Amazon
SNS, melewati objek parameter. Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create SMS Attribute parameter you want to get
var params = {
 attributes: [
 "DefaultSMSType",
 "ATTRIBUTE_NAME",
 /* more items */
],
};

// Create promise and SNS service object
var getSMSTypePromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .getSMSAttributes(params)
 .promise();

// Handle promise's fulfilled/rejected states
getSMSTypePromise
 .then(function (data) {
 console.log(data);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_getsmstype.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengatur Atribut SMS

Dalam contoh ini, gunakan modul Node.js untuk mendapatkan atribut SMS saat ini di Amazon SNS.
Buat modul Node.js dengan nama filesns_setsmstype.js. Konfigurasikan SDK seperti yang
ditunjukkan sebelumnya. Buat objek yang berisi parameter untuk mengatur atribut SMS, termasuk

Mengirim Pesan SMS 312

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_getsmstype.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

nama atribut individual yang akan ditetapkan dan nilai yang akan ditetapkan untuk masing-masing.
Untuk detail tentang atribut SMS yang tersedia, lihat Mengatur SMSAttributes Referensi API Layanan
Pemberitahuan Sederhana Amazon.

Contoh ini menetapkan DefaultSMSType atribut keTransactional, yang mengoptimalkan
pengiriman pesan untuk mencapai keandalan tertinggi. Lewati parameter ke setTopicAttributes
metode kelas AWS.SNS klien. Untuk memanggil getSMSAttributes metode ini, buat janji untuk
memanggil objek layanan Amazon SNS, melewati objek parameter. Kemudian tangani callback
response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create SMS Attribute parameters
var params = {
 attributes: {
 /* required */
 DefaultSMSType: "Transactional" /* highest reliability */,
 //'DefaultSMSType': 'Promotional' /* lowest cost */
 },
};

// Create promise and SNS service object
var setSMSTypePromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .setSMSAttributes(params)
 .promise();

// Handle promise's fulfilled/rejected states
setSMSTypePromise
 .then(function (data) {
 console.log(data);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_setsmstype.js

Mengirim Pesan SMS 313

https://docs.aws.amazon.com/sns/latest/api/API_SetSMSAttributes.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Kode contoh ini dapat ditemukan di sini GitHub.

Memeriksa Apakah Nomor Telepon Telah Memilih Keluar

Dalam contoh ini, gunakan modul Node.js untuk memeriksa nomor telepon untuk melihat
apakah telah memilih keluar dari menerima pesan SMS. Buat modul Node.js dengan nama
filesns_checkphoneoptout.js. Konfigurasikan SDK seperti yang ditunjukkan sebelumnya. Buat
objek yang berisi nomor telepon untuk diperiksa sebagai parameter.

Contoh ini menetapkan PhoneNumber parameter untuk menentukan nomor telepon yang akan
diperiksa. Lewati objek ke checkIfPhoneNumberIsOptedOut metode kelas AWS.SNS klien. Untuk
memanggil checkIfPhoneNumberIsOptedOut metode ini, buat janji untuk memanggil objek
layanan Amazon SNS, melewati objek parameter. Kemudian tangani callback response in the
promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SNS service object
var phonenumPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .checkIfPhoneNumberIsOptedOut({ phoneNumber: "PHONE_NUMBER" })
 .promise();

// Handle promise's fulfilled/rejected states
phonenumPromise
 .then(function (data) {
 console.log("Phone Opt Out is " + data.isOptedOut);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_checkphoneoptout.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengirim Pesan SMS 314

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_setsmstype.js
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_checkphoneoptout.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Daftar Nomor Telepon yang Dipilih Keluar

Dalam contoh ini, gunakan modul Node.js untuk mendapatkan daftar nomor telepon
yang telah memilih keluar dari menerima pesan SMS. Buat modul Node.js dengan nama
filesns_listnumbersoptedout.js. Konfigurasikan SDK seperti yang ditunjukkan sebelumnya.
Buat objek kosong sebagai parameter.

Lewati objek ke listPhoneNumbersOptedOut metode kelas AWS.SNS klien. Untuk memanggil
listPhoneNumbersOptedOut metode ini, buat janji untuk memanggil objek layanan Amazon SNS,
melewati objek parameter. Kemudian tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create promise and SNS service object
var phonelistPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .listPhoneNumbersOptedOut({})
 .promise();

// Handle promise's fulfilled/rejected states
phonelistPromise
 .then(function (data) {
 console.log(data);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_listnumbersoptedout.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menerbitkan Pesan SMS

Dalam contoh ini, gunakan modul Node.js untuk mengirim pesan SMS ke nomor telepon. Buat modul
Node.js dengan nama filesns_publishsms.js. Konfigurasikan SDK seperti yang ditunjukkan
sebelumnya. Buat objek yang berisi PhoneNumber parameter Message dan.

Mengirim Pesan SMS 315

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_listnumbersoptedout.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Saat Anda mengirim pesan SMS, tentukan nomor telepon menggunakan format E.164. E.164 adalah
standar untuk struktur nomor telepon yang digunakan untuk telekomunikasi internasional. Nomor
telepon yang mengikuti format ini dapat memiliki maksimum 15 digit, dan diawali dengan karakter
plus (+) dan kode negara. Misalnya, nomor telepon AS dalam format E.164 akan muncul sebagai
XXX555 +1001 0100.

Contoh ini menetapkan PhoneNumber parameter untuk menentukan nomor telepon untuk mengirim
pesan. Lewati objek ke publish metode kelas AWS.SNS klien. Untuk memanggil publish metode
ini, buat janji untuk memanggil objek layanan Amazon SNS, melewati objek parameter. Kemudian
tangani callback response in the promise.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set region
AWS.config.update({ region: "REGION" });

// Create publish parameters
var params = {
 Message: "TEXT_MESSAGE" /* required */,
 PhoneNumber: "E.164_PHONE_NUMBER",
};

// Create promise and SNS service object
var publishTextPromise = new AWS.SNS({ apiVersion: "2010-03-31" })
 .publish(params)
 .promise();

// Handle promise's fulfilled/rejected states
publishTextPromise
 .then(function (data) {
 console.log("MessageID is " + data.MessageId);
 })
 .catch(function (err) {
 console.error(err, err.stack);
 });

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sns_publishsms.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengirim Pesan SMS 316

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sns/sns_publishsms.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Amazon SQS Contoh

Amazon Simple Queue Service (Amazon SQS) adalah layanan antrian pesan yang cepat, andal,
dapat diskalakan, dan dikelola sepenuhnya. Amazon SQS memungkinkan Anda memisahkan
komponen aplikasi cloud. Amazon SQS mencakup antrian standar dengan throughput dan at-least-
once pemrosesan tinggi, dan antrian FIFO yang menyediakan pengiriman FIFO (first-in, first-out) dan
pemrosesan tepat sekali.

JavaScript API untuk Amazon SQS diekspos melalui kelas AWS.SQS klien. Untuk informasi
selengkapnya tentang menggunakan kelas klien Amazon SQS, lihat Class: AWS.SQSdi referensi
API.

Topik

• Menggunakan Antrian di Amazon SQS

• Mengirim dan Menerima Pesan di Amazon SQS

• Mengelola Batas Waktu Visibilitas di Amazon SQS

• Mengaktifkan Polling Panjang di Amazon SQS

• Menggunakan Antrian Surat Mati di Amazon SQS

Menggunakan Antrian di Amazon SQS

Contoh kode Node.js ini menunjukkan:

Amazon SQS Contoh 317

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Cara mendapatkan daftar semua antrian pesan Anda

• Cara mendapatkan URL untuk antrian tertentu

• Cara membuat dan menghapus antrian

Tentang Contoh

Dalam contoh ini, serangkaian modul Node.js digunakan untuk bekerja dengan antrian. Modul
Node.js menggunakan SDK JavaScript untuk mengaktifkan antrian untuk memanggil metode berikut
dari kelas klien: AWS.SQS

• listQueues

• createQueue

• getQueueUrl

• deleteQueue

Untuk informasi selengkapnya tentang pesan Amazon SQS, lihat Cara Kerja Antrian di Panduan
Pengembang Layanan Antrian Sederhana Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Daftar Antrian Anda

Buat modul Node.js dengan nama filesqs_listqueues.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon SQS, buat objek AWS.SQS
layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk daftar antrian Anda, yang
secara default adalah objek kosong. Panggil listQueues metode untuk mengambil daftar antrian.
Callback mengembalikan semua antrian. URLs

Menggunakan Antrian di Amazon SQS 318

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#listQueues-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#createQueue-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#getQueueUrl-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#deleteQueue-property
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {};

sqs.listQueues(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.QueueUrls);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sqs_listqueues.js

Kode contoh ini dapat ditemukan di sini GitHub.

Membuat Antrian

Buat modul Node.js dengan nama filesqs_createqueue.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon SQS, buat objek AWS.SQS
layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk membuat daftar antrian
Anda, yang harus menyertakan nama untuk antrian yang dibuat. Parameter juga dapat berisi atribut
untuk antrian, seperti jumlah detik pengiriman pesan tertunda atau jumlah detik untuk menyimpan
pesan yang diterima. Panggil metode createQueue. Callback mengembalikan URL antrian yang
dibuat.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

Menggunakan Antrian di Amazon SQS 319

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_listqueues.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var params = {
 QueueName: "SQS_QUEUE_NAME",
 Attributes: {
 DelaySeconds: "60",
 MessageRetentionPeriod: "86400",
 },
};

sqs.createQueue(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.QueueUrl);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sqs_createqueue.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mendapatkan URL untuk Antrian

Buat modul Node.js dengan nama filesqs_getqueueurl.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon SQS, buat objek AWS.SQS
layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk membuat daftar antrian
Anda, yang harus menyertakan nama antrian yang URL-nya Anda inginkan. Panggil metode
getQueueUrl. Callback mengembalikan URL antrian yang ditentukan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
 QueueName: "SQS_QUEUE_NAME",
};

Menggunakan Antrian di Amazon SQS 320

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_createqueue.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

sqs.getQueueUrl(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.QueueUrl);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sqs_getqueueurl.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menghapus Antrian

Buat modul Node.js dengan nama filesqs_deletequeue.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon SQS, buat objek AWS.SQS
layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk menghapus antrian, yang
terdiri dari URL antrian yang ingin Anda hapus. Panggil metode deleteQueue.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
 QueueUrl: "SQS_QUEUE_URL",
};

sqs.deleteQueue(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Menggunakan Antrian di Amazon SQS 321

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_getqueueurl.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sqs_deletequeue.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengirim dan Menerima Pesan di Amazon SQS

Contoh kode Node.js ini menunjukkan:

• Cara mengirim pesan dalam antrian.

• Cara menerima pesan dalam antrian.

• Cara menghapus pesan dalam antrian.

Skenario

Dalam contoh ini, serangkaian modul Node.js digunakan untuk mengirim dan menerima pesan.
Modul Node.js menggunakan SDK for JavaScript untuk mengirim dan menerima pesan dengan
menggunakan metode kelas AWS.SQS klien berikut:

• sendMessage

• receiveMessage

• deleteMessage

Untuk informasi selengkapnya tentang pesan Amazon SQS, lihat Mengirim Pesan ke Antrian Amazon
SQS dan Menerima serta Menghapus Pesan dari Antrian Amazon SQS di Panduan Pengembang
Layanan Antrian Sederhana Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

Mengirim dan Menerima Pesan di Amazon SQS 322

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_deletequeue.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#sendMessage-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#receiveMessage-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#deleteMessage-property
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-send-message.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-send-message.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-receive-delete-message.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-receive-delete-message.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Membuat antrean Amazon SQS. Untuk contoh membuat antrian, lihatMenggunakan Antrian di
Amazon SQS.

Mengirim Pesan ke Antrian

Buat modul Node.js dengan nama filesqs_sendmessage.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon SQS, buat objek AWS.SQS
layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk pesan Anda, termasuk URL
antrian yang ingin Anda kirimi pesan ini. Dalam contoh ini, pesan memberikan rincian tentang buku
pada daftar buku fiksi terlaris termasuk judul, penulis, dan jumlah minggu dalam daftar.

Panggil metode sendMessage. Callback mengembalikan ID unik pesan.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
 // Remove DelaySeconds parameter and value for FIFO queues
 DelaySeconds: 10,
 MessageAttributes: {
 Title: {
 DataType: "String",
 StringValue: "The Whistler",
 },
 Author: {
 DataType: "String",
 StringValue: "John Grisham",
 },
 WeeksOn: {
 DataType: "Number",
 StringValue: "6",
 },
 },

Mengirim dan Menerima Pesan di Amazon SQS 323

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 MessageBody:
 "Information about current NY Times fiction bestseller for week of 12/11/2016.",
 // MessageDeduplicationId: "TheWhistler", // Required for FIFO queues
 // MessageGroupId: "Group1", // Required for FIFO queues
 QueueUrl: "SQS_QUEUE_URL",
};

sqs.sendMessage(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data.MessageId);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sqs_sendmessage.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menerima dan Menghapus Pesan dari Antrian

Buat modul Node.js dengan nama filesqs_receivemessage.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon SQS, buat objek AWS.SQS
layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk pesan Anda, termasuk URL
antrian dari mana Anda ingin menerima pesan. Dalam contoh ini, parameter menentukan penerimaan
semua atribut pesan, serta penerimaan tidak lebih dari 10 pesan.

Panggil metode receiveMessage. Callback mengembalikan array Message objek dari
mana Anda dapat mengambil ReceiptHandle untuk setiap pesan yang Anda gunakan untuk
kemudian menghapus pesan itu. Buat objek JSON lain yang berisi parameter yang diperlukan
untuk menghapus pesan, yang merupakan URL antrian dan nilainya. ReceiptHandle Panggil
deleteMessage metode untuk menghapus pesan yang Anda terima.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create an SQS service object

Mengirim dan Menerima Pesan di Amazon SQS 324

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_sendmessage.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var queueURL = "SQS_QUEUE_URL";

var params = {
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 10,
 MessageAttributeNames: ["All"],
 QueueUrl: queueURL,
 VisibilityTimeout: 20,
 WaitTimeSeconds: 0,
};

sqs.receiveMessage(params, function (err, data) {
 if (err) {
 console.log("Receive Error", err);
 } else if (data.Messages) {
 var deleteParams = {
 QueueUrl: queueURL,
 ReceiptHandle: data.Messages[0].ReceiptHandle,
 };
 sqs.deleteMessage(deleteParams, function (err, data) {
 if (err) {
 console.log("Delete Error", err);
 } else {
 console.log("Message Deleted", data);
 }
 });
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sqs_receivemessage.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengelola Batas Waktu Visibilitas di Amazon SQS

Mengelola Batas Waktu Visibilitas di Amazon SQS 325

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_receivemessage.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Contoh kode Node.js ini menunjukkan:

• Cara menentukan interval waktu di mana pesan yang diterima oleh antrian tidak terlihat.

Skenario

Dalam contoh ini, modul Node.js digunakan untuk mengelola batas waktu visibilitas. Modul Node.js
menggunakan SDK for JavaScript untuk mengelola batas waktu visibilitas dengan menggunakan
metode kelas klien ini: AWS.SQS

• changeMessageVisibility

Untuk informasi selengkapnya tentang batas waktu visibilitas Amazon SQS, lihat Batas Waktu
Visibilitas di Panduan Pengembang Layanan Antrian Sederhana Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Membuat antrean Amazon SQS. Untuk contoh membuat antrian, lihatMenggunakan Antrian di
Amazon SQS.

• Kirim pesan ke antrian. Untuk contoh pengiriman pesan ke antrian, lihatMengirim dan Menerima
Pesan di Amazon SQS.

Mengubah Batas Waktu Visibilitas

Buat modul Node.js dengan nama filesqs_changingvisibility.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon Simple
Queue Service, buat objek AWS.SQS layanan. Menerima pesan dari antrean.

Setelah menerima pesan dari antrian, buat objek JSON yang berisi parameter yang diperlukan
untuk mengatur batas waktu, termasuk URL antrian yang berisi pesan, yang ReceiptHandle

Mengelola Batas Waktu Visibilitas di Amazon SQS 326

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#changeMessageVisibility-property
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-visibility-timeout.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

dikembalikan saat pesan diterima, dan batas waktu baru dalam hitungan detik. Panggil metode
changeMessageVisibility.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region to us-west-2
AWS.config.update({ region: "us-west-2" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var queueURL = "https://sqs.REGION.amazonaws.com/ACCOUNT-ID/QUEUE-NAME";

var params = {
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 1,
 MessageAttributeNames: ["All"],
 QueueUrl: queueURL,
};

sqs.receiveMessage(params, function (err, data) {
 if (err) {
 console.log("Receive Error", err);
 } else {
 // Make sure we have a message
 if (data.Messages != null) {
 var visibilityParams = {
 QueueUrl: queueURL,
 ReceiptHandle: data.Messages[0].ReceiptHandle,
 VisibilityTimeout: 20, // 20 second timeout
 };
 sqs.changeMessageVisibility(visibilityParams, function (err, data) {
 if (err) {
 console.log("Delete Error", err);
 } else {
 console.log("Timeout Changed", data);
 }
 });
 } else {
 console.log("No messages to change");
 }
 }
});

Mengelola Batas Waktu Visibilitas di Amazon SQS 327

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sqs_changingvisibility.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengaktifkan Polling Panjang di Amazon SQS

Contoh kode Node.js ini menunjukkan:

• Cara mengaktifkan polling panjang untuk antrian yang baru dibuat

• Cara mengaktifkan polling panjang untuk antrian yang ada

• Cara mengaktifkan polling panjang setelah menerima pesan

Skenario

Polling panjang mengurangi jumlah respons kosong dengan mengizinkan Amazon SQS
menunggu waktu tertentu agar pesan tersedia dalam antrian sebelum mengirim respons.
Selain itu, polling panjang menghilangkan respons kosong palsu dengan menanyakan semua
server alih-alih pengambilan sampel server. Untuk mengaktifkan polling panjang, Anda harus
menentukan waktu tunggu bukan nol untuk pesan yang diterima. Anda dapat melakukan ini dengan
mengatur ReceiveMessageWaitTimeSeconds parameter antrian atau dengan mengatur
WaitTimeSeconds parameter pada pesan saat diterima.

Dalam contoh ini, serangkaian modul Node.js digunakan untuk mengaktifkan polling panjang. Modul
Node.js menggunakan SDK JavaScript untuk mengaktifkan polling panjang menggunakan metode
kelas AWS.SQS klien berikut:

• setQueueAttributes

• receiveMessage

• createQueue

Mengaktifkan Polling Panjang di Amazon SQS 328

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_changingvisibility.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#setQueueAttributes-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#receiveMessage-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#createQueue-property

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Untuk informasi selengkapnya tentang polling panjang Amazon SQS, lihat Polling Panjang di
Panduan Pengembang Layanan Antrian Sederhana Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

Mengaktifkan Polling Panjang Saat Membuat Antrian

Buat modul Node.js dengan nama filesqs_longpolling_createqueue.js. Pastikan untuk
mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon SQS, buat
objek AWS.SQS layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk membuat
antrian, termasuk nilai bukan nol untuk parameter. ReceiveMessageWaitTimeSeconds Panggil
metode createQueue. Polling panjang kemudian diaktifkan untuk antrian.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
 QueueName: "SQS_QUEUE_NAME",
 Attributes: {
 ReceiveMessageWaitTimeSeconds: "20",
 },
};

sqs.createQueue(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {

Mengaktifkan Polling Panjang di Amazon SQS 329

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 console.log("Success", data.QueueUrl);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sqs_longpolling_createqueue.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengaktifkan Polling Panjang pada Antrian yang Ada

Buat modul Node.js dengan nama filesqs_longpolling_existingqueue.js. Pastikan
untuk mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses
Amazon Simple Queue Service, buat objek AWS.SQS layanan. Buat objek JSON yang
berisi parameter yang diperlukan untuk mengatur atribut antrian, termasuk nilai bukan nol
untuk ReceiveMessageWaitTimeSeconds parameter dan URL antrian. Panggil metode
setQueueAttributes. Polling panjang kemudian diaktifkan untuk antrian.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
 Attributes: {
 ReceiveMessageWaitTimeSeconds: "20",
 },
 QueueUrl: "SQS_QUEUE_URL",
};

sqs.setQueueAttributes(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Mengaktifkan Polling Panjang di Amazon SQS 330

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_longpolling_createqueue.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sqs_longpolling_existingqueue.js

Kode contoh ini dapat ditemukan di sini GitHub.

Mengaktifkan Polling Panjang pada Tanda Terima Pesan

Buat modul Node.js dengan nama filesqs_longpolling_receivemessage.js. Pastikan
untuk mengkonfigurasi SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon
Simple Queue Service, buat objek AWS.SQS layanan. Buat objek JSON yang berisi parameter yang
diperlukan untuk menerima pesan, termasuk nilai bukan nol untuk WaitTimeSeconds parameter
dan URL antrian. Panggil metode receiveMessage.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var queueURL = "SQS_QUEUE_URL";

var params = {
 AttributeNames: ["SentTimestamp"],
 MaxNumberOfMessages: 1,
 MessageAttributeNames: ["All"],
 QueueUrl: queueURL,
 WaitTimeSeconds: 20,
};

sqs.receiveMessage(params, function (err, data) {
 if (err) {
 console.log("Error", err);
 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

Mengaktifkan Polling Panjang di Amazon SQS 331

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_longpolling_existingqueue.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

node sqs_longpolling_receivemessage.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menggunakan Antrian Surat Mati di Amazon SQS

Contoh kode Node.js ini menunjukkan:

• Cara menggunakan antrian untuk menerima dan menahan pesan dari antrian lain yang tidak dapat
diproses antrian.

Skenario

Antrian surat mati adalah antrian yang dapat ditargetkan oleh antrian (sumber) lain untuk pesan yang
tidak dapat diproses dengan sukses. Anda dapat menyisihkan dan mengisolasi pesan-pesan ini
dalam antrian surat mati untuk menentukan mengapa pemrosesan mereka tidak berhasil. Anda harus
mengkonfigurasi secara individual setiap antrian sumber yang mengirim pesan ke antrian huruf mati.
Beberapa antrian dapat menargetkan antrian huruf mati tunggal.

Dalam contoh ini, modul Node.js digunakan untuk merutekan pesan ke antrian huruf mati. Modul
Node.js menggunakan SDK JavaScript untuk menggunakan antrian huruf mati menggunakan metode
kelas klien ini: AWS.SQS

• setQueueAttributes

Untuk informasi selengkapnya tentang antrian surat mati Amazon SQS, lihat Menggunakan Antrian
Surat Mati Amazon SQS di Panduan Pengembang Layanan Antrian Sederhana Amazon.

Tugas Prasyarat

Untuk mengatur dan menjalankan contoh ini, Anda harus terlebih dahulu menyelesaikan tugas-tugas
ini:

• Instal Node.js. Untuk informasi selengkapnya tentang menginstal Node.js, lihat situs web Node.js.

Menggunakan Antrian Surat Mati di Amazon SQS 332

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_longpolling_receivemessage.js
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SQS.html#setQueueAttributes-property
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://nodejs.org

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Buat file konfigurasi bersama dengan kredensi pengguna Anda. Untuk informasi selengkapnya
tentang menyediakan file kredensial bersama, lihat. Memuat Kredensial di Node.js dari File
Kredensial Bersama

• Buat antrian Amazon SQS untuk berfungsi sebagai antrian surat mati. Untuk contoh membuat
antrian, lihatMenggunakan Antrian di Amazon SQS.

Mengkonfigurasi Antrian Sumber

Setelah Anda membuat antrian untuk bertindak sebagai antrian huruf mati, Anda harus
mengonfigurasi antrian lain yang merutekan pesan yang belum diproses ke antrian huruf mati.
Untuk melakukan ini, tentukan kebijakan redrive yang mengidentifikasi antrian yang akan digunakan
sebagai antrian huruf mati dan jumlah maksimum yang diterima oleh masing-masing pesan sebelum
dialihkan ke antrian huruf mati.

Buat modul Node.js dengan nama filesqs_deadletterqueue.js. Pastikan untuk mengkonfigurasi
SDK seperti yang ditunjukkan sebelumnya. Untuk mengakses Amazon SQS, buat objek AWS.SQS
layanan. Buat objek JSON yang berisi parameter yang diperlukan untuk memperbarui atribut antrian,
termasuk RedrivePolicy parameter yang menentukan ARN dari antrian huruf mati, serta nilai.
maxReceiveCount Juga tentukan antrian sumber URL yang ingin Anda konfigurasikan. Panggil
metode setQueueAttributes.

// Load the AWS SDK for Node.js
var AWS = require("aws-sdk");
// Set the region
AWS.config.update({ region: "REGION" });

// Create the SQS service object
var sqs = new AWS.SQS({ apiVersion: "2012-11-05" });

var params = {
 Attributes: {
 RedrivePolicy:
 '{"deadLetterTargetArn":"DEAD_LETTER_QUEUE_ARN","maxReceiveCount":"10"}',
 },
 QueueUrl: "SOURCE_QUEUE_URL",
};

sqs.setQueueAttributes(params, function (err, data) {
 if (err) {
 console.log("Error", err);

Menggunakan Antrian Surat Mati di Amazon SQS 333

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 } else {
 console.log("Success", data);
 }
});

Untuk menjalankan contoh, ketik berikut ini di baris perintah.

node sqs_deadletterqueue.js

Kode contoh ini dapat ditemukan di sini GitHub.

Menggunakan Antrian Surat Mati di Amazon SQS 334

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript/example_code/sqs/sqs_deadletterqueue.js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Tutorial

Tutorial berikut menunjukkan kepada Anda bagaimana melakukan berbagai tugas yang terkait
dengan penggunaan AWS SDK untuk JavaScript.

Topik

• Tutorial: Menyiapkan Node.js pada EC2 Instans Amazon

Tutorial: Menyiapkan Node.js pada EC2 Instans Amazon

Skenario umum untuk menggunakan Node.js dengan SDK for JavaScript adalah menyiapkan dan
menjalankan aplikasi web Node.js pada instance Amazon Elastic Compute Cloud EC2 (Amazon).
Dalam tutorial ini, Anda akan membuat instance Linux, menghubungkannya menggunakan SSH, dan
kemudian menginstal Node.js untuk menjalankan instance itu.

Prasyarat

Tutorial ini mengasumsikan bahwa Anda telah meluncurkan instance Linux dengan nama DNS publik
yang dapat dijangkau dari Internet dan yang dapat Anda sambungkan menggunakan SSH. Untuk
informasi selengkapnya, lihat Langkah 1: Meluncurkan Instance di Panduan EC2 Pengguna Amazon.

Important

Gunakan Amazon Linux 2023 Amazon Machine Image (AMI) saat meluncurkan EC2 instans
Amazon baru.

Anda juga harus mengonfigurasi grup keamanan Anda untuk mengizinkan koneksi SSH (port 22),
HTTP (port 80), dan HTTPS (port 443). Untuk informasi selengkapnya tentang prasyarat ini, lihat
Menyiapkan dengan Amazon Amazon di Panduan Pengguna EC2 Amazon. EC2

Prosedur

Prosedur berikut membantu Anda menginstal Node.js pada instance Amazon Linux. Anda dapat
menggunakan server ini untuk meng-host aplikasi web Node.js.

Tutorial: Menyiapkan Node.js pada EC2 Instans Amazon 335

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html#ec2-launch-instance
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Untuk mengatur Node.js pada instance Linux Anda

1. Connect ke instance Linux Anda seperti ec2-user menggunakan SSH.

2. Instal node version manager (nvm) dengan mengetikkan berikut ini di baris perintah.

Warning

AWS tidak mengontrol kode berikut. Sebelum Anda menjalankannya, pastikan untuk
memverifikasi keaslian dan integritasnya. Informasi lebih lanjut tentang kode ini dapat
ditemukan di repositori nvm GitHub .

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash

Kami akan menggunakan nvm untuk menginstal Node.js karena nvm dapat menginstal beberapa
versi Node.js dan memungkinkan Anda untuk beralih di antara mereka.

3. Muat nvm dengan mengetikkan berikut ini di baris perintah.

source ~/.bashrc

4. Gunakan nvm untuk menginstal versi LTS terbaru dari Node.js dengan mengetikkan berikut ini di
baris perintah.

nvm install --lts

Menginstal Node.js juga menginstal Node Package Manager (npm), sehingga Anda dapat
menginstal modul tambahan sesuai kebutuhan.

5. Uji bahwa Node.js diinstal dan berjalan dengan benar dengan mengetikkan berikut ini di baris
perintah.

node -e "console.log('Running Node.js ' + process.version)"

Ini menampilkan pesan berikut yang menunjukkan versi Node.js yang sedang berjalan.

Running Node.js VERSION

Prosedur 336

https://github.com/nvm-sh/nvm/blob/master/README.md

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Note

Instalasi node hanya berlaku untuk EC2 sesi Amazon saat ini. Jika Anda memulai ulang sesi
CLI Anda, Anda perlu menggunakan nvm untuk mengaktifkan versi node yang diinstal. Jika
instance dihentikan, Anda perlu menginstal node lagi. Alternatifnya adalah membuat Amazon
Machine Image (AMI) dari EC2 instance Amazon setelah Anda memiliki konfigurasi yang
ingin Anda simpan, seperti yang dijelaskan dalam topik berikut.

Membuat Gambar Mesin Amazon

Setelah menginstal Node.js pada EC2 instance Amazon, Anda dapat membuat Amazon Machine
Image (AMI) dari instance tersebut. Membuat AMI memudahkan penyediaan beberapa EC2 instans
Amazon dengan instalasi Node.js yang sama. Untuk informasi selengkapnya tentang membuat
AMI dari instans yang ada, lihat Membuat AMI Linux yang didukung Amazon EBS di EC2 Panduan
Pengguna Amazon.

Sumber Daya Terkait

Untuk informasi selengkapnya tentang perintah dan perangkat lunak yang digunakan dalam topik ini,
lihat halaman web berikut:

• manajer versi node (nvm): lihat repo nvm aktif. GitHub

• manajer paket node (npm): lihat situs web npm.

Membuat Gambar Mesin Amazon 337

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/creating-an-ami-ebs.html
https://github.com/creationix/nvm
https://www.npmjs.com

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

JavaScript Referensi API
Topik Referensi API untuk versi terbaru SDK untuk dapat JavaScript ditemukan di:

AWS SDK untuk JavaScript Panduan Referensi API.

SDK Changelog aktif GitHub

Changelog untuk rilis dari versi 2.4.8 dan yang lebih baru ditemukan di:

Ubah log.

SDK Changelog aktif GitHub 338

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/
https://github.com/aws/aws-sdk-js/blob/master/CHANGELOG.md

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Migrasi ke v3 dari AWS SDK untuk JavaScript
AWS SDK untuk JavaScript Versi 3 adalah penulisan ulang utama versi 2. Untuk informasi
selengkapnya tentang migrasi ke versi 3, lihat Memigrasi dari versi 2.x ke 3.x AWS SDK untuk
JavaScript di Panduan Pengembang v3.AWS SDK untuk JavaScript

339

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/migrating.html
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/migrating.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Keamanan untuk AWS Produk atau Layanan ini
Keamanan cloud di Amazon Web Services (AWS) merupakan prioritas tertinggi. Sebagai seorang
pelanggan AWS , Anda mendapatkan manfaat dari pusat data dan arsitektur jaringan yang dibangun
untuk memenuhi persyaratan dari organisasi yang paling sensitif terhadap keamanan. Keamanan
adalah tanggung jawab bersama antara Anda AWS dan Anda. Model Tanggung Jawab Bersama
menggambarkan ini sebagai Keamanan dari Cloud dan Keamanan dalam Cloud.

Security of the Cloud - AWS bertanggung jawab untuk melindungi infrastruktur yang menjalankan
semua layanan yang ditawarkan di AWS Cloud dan memberi Anda layanan yang dapat Anda
gunakan dengan aman. Tanggung jawab keamanan kami adalah prioritas tertinggi di AWS, dan
efektivitas keamanan kami secara teratur diuji dan diverifikasi oleh auditor pihak ketiga sebagai
bagian dari Program AWS Kepatuhan.

Keamanan di Cloud — Tanggung jawab Anda ditentukan oleh AWS layanan yang Anda gunakan,
dan faktor-faktor lain termasuk sensitivitas data Anda, persyaratan organisasi Anda, serta undang-
undang dan peraturan yang berlaku.

AWS Produk atau layanan ini mengikuti model tanggung jawab bersama melalui layanan Amazon
Web Services (AWS) tertentu yang didukungnya. Untuk informasi keamanan AWS layanan, lihat
halaman dokumentasi keamanan AWS layanan dan AWS layanan yang berada dalam lingkup upaya
AWS kepatuhan oleh program kepatuhan.

Topik

• Perlindungan data dalam AWS produk atau layanan ini

• Identity and Access Management

• Validasi Kepatuhan untuk AWS Produk atau Layanan ini

• Ketahanan untuk AWS Produk atau Layanan ini

• Keamanan Infrastruktur untuk AWS Produk atau Layanan ini

• Menegakkan versi minimum TLS

Perlindungan data dalam AWS produk atau layanan ini

Model tanggung jawab AWS bersama model berlaku untuk perlindungan data dalam AWS
produk atau layanan ini. Seperti yang dijelaskan dalam model AWS ini, bertanggung jawab untuk

Perlindungan data 340

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

melindungi infrastruktur global yang menjalankan semua AWS Cloud. Anda bertanggung jawab untuk
mempertahankan kendali atas konten yang di-host pada infrastruktur ini. Anda juga bertanggung
jawab atas tugas-tugas konfigurasi dan manajemen keamanan untuk Layanan AWS yang Anda
gunakan. Lihat informasi yang lebih lengkap tentang privasi data dalam Pertanyaan Umum Privasi
Data. Lihat informasi tentang perlindungan data di Eropa di pos blog Model Tanggung Jawab
Bersama dan GDPR AWS di Blog Keamanan AWS .

Untuk tujuan perlindungan data, kami menyarankan Anda melindungi Akun AWS kredensyal dan
mengatur pengguna individu dengan AWS IAM Identity Center atau AWS Identity and Access
Management (IAM). Dengan cara itu, setiap pengguna hanya diberi izin yang diperlukan untuk
memenuhi tanggung jawab tugasnya. Kami juga menyarankan supaya Anda mengamankan data
dengan cara-cara berikut:

• Gunakan autentikasi multi-faktor (MFA) pada setiap akun.

• Gunakan SSL/TLS untuk berkomunikasi dengan AWS sumber daya. Kami mensyaratkan TLS 1.2
dan menganjurkan TLS 1.3.

• Siapkan API dan logging aktivitas pengguna dengan AWS CloudTrail. Untuk informasi tentang
penggunaan CloudTrail jejak untuk menangkap AWS aktivitas, lihat Bekerja dengan CloudTrail
jejak di AWS CloudTrail Panduan Pengguna.

• Gunakan solusi AWS enkripsi, bersama dengan semua kontrol keamanan default di dalamnya
Layanan AWS.

• Gunakan layanan keamanan terkelola tingkat lanjut seperti Amazon Macie, yang membantu
menemukan dan mengamankan data sensitif yang disimpan di Amazon S3.

• Jika Anda memerlukan modul kriptografi tervalidasi FIPS 140-3 saat mengakses AWS melalui
antarmuka baris perintah atau API, gunakan titik akhir FIPS. Lihat informasi selengkapnya tentang
titik akhir FIPS yang tersedia di Standar Pemrosesan Informasi Federal (FIPS) 140-3.

Kami sangat merekomendasikan agar Anda tidak pernah memasukkan informasi identifikasi yang
sensitif, seperti nomor rekening pelanggan Anda, ke dalam tanda atau bidang isian bebas seperti
bidang Nama. Ini termasuk ketika Anda bekerja dengan AWS produk atau layanan ini atau lainnya
Layanan AWS menggunakan konsol, API AWS CLI, atau AWS SDKs. Data apa pun yang Anda
masukkan ke dalam tanda atau bidang isian bebas yang digunakan untuk nama dapat digunakan
untuk log penagihan atau log diagnostik. Saat Anda memberikan URL ke server eksternal, kami
sangat menganjurkan supaya Anda tidak menyertakan informasi kredensial di dalam URL untuk
memvalidasi permintaan Anda ke server itu.

Perlindungan data 341

https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Identity and Access Management

AWS Identity and Access Management (IAM) adalah Layanan AWS yang membantu administrator
mengontrol akses ke AWS sumber daya dengan aman. Administrator IAM mengontrol siapa yang
dapat diautentikasi (masuk) dan diberi wewenang (memiliki izin) untuk menggunakan sumber daya.
AWS IAM adalah Layanan AWS yang dapat Anda gunakan tanpa biaya tambahan.

Topik

• Audiens

• Mengautentikasi dengan identitas

• Mengelola akses menggunakan kebijakan

• Bagaimana Layanan AWS bekerja dengan IAM

• Memecahkan masalah AWS identitas dan akses

Audiens

Cara Anda menggunakan AWS Identity and Access Management (IAM) berbeda, tergantung pada
pekerjaan yang Anda lakukan. AWS

Pengguna layanan — Jika Anda menggunakan Layanan AWS untuk melakukan pekerjaan Anda,
maka administrator Anda memberi Anda kredensyal dan izin yang Anda butuhkan. Saat Anda
menggunakan lebih banyak AWS fitur untuk melakukan pekerjaan Anda, Anda mungkin memerlukan
izin tambahan. Memahami cara akses dikelola dapat membantu Anda meminta izin yang tepat dari
administrator Anda. Jika Anda tidak dapat mengakses fitur AWS, lihat Memecahkan masalah AWS
identitas dan akses atau panduan pengguna yang Layanan AWS Anda gunakan.

Administrator layanan — Jika Anda bertanggung jawab atas AWS sumber daya di perusahaan
Anda, Anda mungkin memiliki akses penuh ke AWS. Tugas Anda adalah menentukan AWS fitur
dan sumber daya mana yang harus diakses pengguna layanan Anda. Kemudian, Anda harus
mengirimkan permintaan kepada administrator IAM untuk mengubah izin pengguna layanan Anda.
Tinjau informasi di halaman ini untuk memahami konsep dasar IAM. Untuk mempelajari lebih lanjut
tentang bagaimana perusahaan Anda dapat menggunakan IAM AWS, lihat panduan pengguna yang
Layanan AWS Anda gunakan.

Administrator IAM – Jika Anda adalah administrator IAM, Anda sebaiknya mempelajari detail tentang
cara menulis kebijakan untuk mengelola akses ke AWS. Untuk melihat contoh kebijakan AWS

Identity and Access Management 342

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

berbasis identitas yang dapat Anda gunakan di IAM, lihat panduan pengguna yang Anda gunakan.
Layanan AWS

Mengautentikasi dengan identitas

Otentikasi adalah cara Anda masuk AWS menggunakan kredensyal identitas Anda. Anda harus
diautentikasi sebagai Pengguna root akun AWS, pengguna IAM, atau dengan mengasumsikan peran
IAM.

Anda dapat masuk sebagai identitas federasi menggunakan kredensyal dari sumber identitas seperti
AWS IAM Identity Center (Pusat Identitas IAM), autentikasi masuk tunggal, atau kredensyal. Google/
Facebook Untuk informasi selengkapnya tentang cara masuk, lihat Cara masuk ke Akun AWS Anda
dalam Panduan Pengguna AWS Sign-In .

Untuk akses terprogram, AWS sediakan SDK dan CLI untuk menandatangani permintaan secara
kriptografis. Untuk informasi selengkapnya, lihat AWS Signature Version 4 untuk permintaan API
dalam Panduan Pengguna IAM.

Akun AWS pengguna root

Saat Anda membuat Akun AWS, Anda mulai dengan satu identitas masuk yang disebut pengguna
Akun AWS root yang memiliki akses lengkap ke semua Layanan AWS dan sumber daya. Kami
sangat menyarankan agar Anda tidak menggunakan pengguna root untuk tugas sehari-hari. Untuk
tugas yang memerlukan kredensial pengguna root, lihat Tugas yang memerlukan kredensial
pengguna root dalam Panduan Pengguna IAM.

Identitas terfederasi

Sebagai praktik terbaik, mewajibkan pengguna manusia untuk menggunakan federasi dengan
penyedia identitas untuk mengakses Layanan AWS menggunakan kredensyal sementara.

Identitas federasi adalah pengguna dari direktori perusahaan Anda, penyedia identitas web, atau
Directory Service yang mengakses Layanan AWS menggunakan kredensyal dari sumber identitas.
Identitas terfederasi mengambil peran yang memberikan kredensial sementara.

Untuk manajemen akses terpusat, kami menyarankan AWS IAM Identity Center. Untuk informasi
selengkapnya, lihat Apa itu Pusat Identitas IAM? dalam Panduan Pengguna AWS IAM Identity Center
.

Mengautentikasi dengan identitas 343

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Pengguna dan grup IAM

Pengguna IAM adalah identitas dengan izin khusus untuk satu orang atau aplikasi. Sebaiknya
gunakan kredensial sementara alih-alih pengguna IAM dengan kredensial jangka panjang. Untuk
informasi selengkapnya, lihat Mewajibkan pengguna manusia untuk menggunakan federasi dengan
penyedia identitas untuk mengakses AWS menggunakan kredensyal sementara di Panduan
Pengguna IAM.

Grup IAM menentukan kumpulan pengguna IAM dan mempermudah pengelolaan izin untuk
pengguna dalam jumlah besar. Untuk mempelajari selengkapnya, lihat Kasus penggunaan untuk
pengguna IAM dalam Panduan Pengguna IAM.

Peran IAM

Peran IAM adalah identitas dengan izin khusus yang menyediakan kredensial sementara. Anda
dapat mengambil peran dengan beralih dari pengguna ke peran IAM (konsol) atau dengan
memanggil operasi AWS CLI atau AWS API. Untuk informasi selengkapnya, lihat Metode untuk
mengambil peran dalam Panduan Pengguna IAM.

Peran IAM berguna untuk akses pengguna gabungan, izin pengguna IAM sementara, akses
lintas akun, akses lintas layanan, dan aplikasi yang berjalan di Amazon. EC2 Untuk informasi
selengkapnya, lihat Akses sumber daya lintas akun di IAM dalam Panduan Pengguna IAM.

Mengelola akses menggunakan kebijakan

Anda mengontrol akses AWS dengan membuat kebijakan dan melampirkannya ke AWS identitas
atau sumber daya. Kebijakan menentukan izin saat dikaitkan dengan identitas atau sumber daya.
AWS mengevaluasi kebijakan ini ketika kepala sekolah membuat permintaan. Sebagian besar
kebijakan disimpan AWS sebagai dokumen JSON. Untuk informasi selengkapnya tentang dokumen
kebijakan JSON, lihat Gambaran umum kebijakan JSON dalam Panduan Pengguna IAM.

Menggunakan kebijakan, administrator menentukan siapa yang memiliki akses ke apa dengan
mendefinisikan principal mana yang dapat melakukan tindakan pada sumber daya apa, dan dalam
kondisi apa.

Secara default, pengguna dan peran tidak memiliki izin. Administrator IAM membuat kebijakan IAM
dan menambahkannya ke peran, yang kemudian dapat diambil oleh pengguna. Kebijakan IAM
mendefinisikan izin terlepas dari metode yang Anda gunakan untuk melakukan operasinya.

Mengelola akses menggunakan kebijakan 344

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Kebijakan berbasis identitas

Kebijakan berbasis identitas adalah dokumen kebijakan izin JSON yang Anda lampirkan ke identitas
(pengguna, grup, atau peran). Kebijakan ini mengontrol tindakan apa yang bisa dilakukan oleh
identitas tersebut, terhadap sumber daya yang mana, dan dalam kondisi apa. Untuk mempelajari
cara membuat kebijakan berbasis identitas, lihat Tentukan izin IAM kustom dengan kebijakan yang
dikelola pelanggan dalam Panduan Pengguna IAM.

Kebijakan berbasis identitas dapat berupa kebijakan inline (disematkan langsung ke dalam satu
identitas) atau kebijakan terkelola (kebijakan mandiri yang dilampirkan pada banyak identitas). Untuk
mempelajari cara memilih antara kebijakan terkelola dan kebijakan inline, lihat Pilih antara kebijakan
terkelola dan kebijakan inline dalam Panduan Pengguna IAM.

Kebijakan berbasis sumber daya

Kebijakan berbasis sumber daya adalah dokumen kebijakan JSON yang Anda lampirkan ke sumber
daya. Contohnya termasuk kebijakan kepercayaan peran IAM dan kebijakan bucket Amazon S3.
Dalam layanan yang mendukung kebijakan berbasis sumber daya, administrator layanan dapat
menggunakannya untuk mengontrol akses ke sumber daya tertentu. Anda harus menentukan
principal dalam kebijakan berbasis sumber daya.

Kebijakan berbasis sumber daya merupakan kebijakan inline yang terletak di layanan tersebut. Anda
tidak dapat menggunakan kebijakan AWS terkelola dari IAM dalam kebijakan berbasis sumber daya.

Daftar kontrol akses (ACLs)

Access control lists (ACLs) mengontrol prinsipal mana (anggota akun, pengguna, atau peran) yang
memiliki izin untuk mengakses sumber daya. ACLs mirip dengan kebijakan berbasis sumber daya,
meskipun mereka tidak menggunakan format dokumen kebijakan JSON.

Amazon S3, AWS WAF, dan Amazon VPC adalah contoh layanan yang mendukung. ACLs
Untuk mempelajari selengkapnya ACLs, lihat Ringkasan daftar kontrol akses (ACL) di Panduan
Pengembang Layanan Penyimpanan Sederhana Amazon.

Jenis-jenis kebijakan lain

AWS mendukung jenis kebijakan tambahan yang dapat menetapkan izin maksimum yang diberikan
oleh jenis kebijakan yang lebih umum:

Mengelola akses menggunakan kebijakan 345

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Batasan izin – Menetapkan izin maksimum yang dapat diberikan oleh kebijakan berbasis identitas
kepada entitas IAM. Untuk informasi selengkapnya, lihat Batasan izin untuk entitas IAM dalam
Panduan Pengguna IAM.

• Kebijakan kontrol layanan (SCPs) — Tentukan izin maksimum untuk organisasi atau unit
organisasi di AWS Organizations. Untuk informasi selengkapnya, lihat Kebijakan kontrol layanan
dalam Panduan Pengguna AWS Organizations .

• Kebijakan kontrol sumber daya (RCPs) — Tetapkan izin maksimum yang tersedia untuk sumber
daya di akun Anda. Untuk informasi selengkapnya, lihat Kebijakan kontrol sumber daya (RCPs) di
Panduan AWS Organizations Pengguna.

• Kebijakan sesi – Kebijakan lanjutan yang diteruskan sebagai parameter saat membuat sesi
sementara untuk peran atau pengguna terfederasi. Untuk informasi selengkapnya, lihat Kebijakan
sesi dalam Panduan Pengguna IAM.

Berbagai jenis kebijakan

Ketika beberapa jenis kebijakan berlaku pada suatu permintaan, izin yang dihasilkan lebih rumit
untuk dipahami. Untuk mempelajari cara AWS menentukan apakah akan mengizinkan permintaan
saat beberapa jenis kebijakan terlibat, lihat Logika evaluasi kebijakan di Panduan Pengguna IAM.

Bagaimana Layanan AWS bekerja dengan IAM

Untuk mendapatkan tampilan tingkat tinggi tentang cara Layanan AWS bekerja dengan sebagian
besar fitur IAM, lihat AWS layanan yang bekerja dengan IAM di Panduan Pengguna IAM.

Untuk mempelajari cara menggunakan yang spesifik Layanan AWS dengan IAM, lihat bagian
keamanan dari Panduan Pengguna layanan yang relevan.

Memecahkan masalah AWS identitas dan akses

Gunakan informasi berikut untuk membantu Anda mendiagnosis dan memperbaiki masalah umum
yang mungkin Anda temui saat bekerja dengan AWS dan IAM.

Topik

• Saya tidak berwenang untuk melakukan tindakan di AWS

• Saya tidak berwenang untuk melakukan iam: PassRole

• Saya ingin mengizinkan orang di luar saya Akun AWS untuk mengakses AWS sumber daya saya

Bagaimana Layanan AWS bekerja dengan IAM 346

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Saya tidak berwenang untuk melakukan tindakan di AWS

Jika Anda menerima pesan kesalahan bahwa Anda tidak memiliki otorisasi untuk melakukan
tindakan, kebijakan Anda harus diperbarui agar Anda dapat melakukan tindakan tersebut.

Contoh kesalahan berikut terjadi ketika pengguna IAM mateojackson mencoba menggunakan
konsol untuk melihat detail tentang suatu sumber daya my-example-widget rekaan, tetapi tidak
memiliki izin awes:GetWidget rekaan.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 awes:GetWidget on resource: my-example-widget

Dalam hal ini, kebijakan untuk pengguna mateojackson harus diperbarui untuk mengizinkan akses
ke sumber daya my-example-widget dengan menggunakan tindakan awes:GetWidget.

Jika Anda memerlukan bantuan, hubungi AWS administrator Anda. Administrator Anda adalah orang
yang memberi Anda kredensial masuk.

Saya tidak berwenang untuk melakukan iam: PassRole

Jika Anda menerima kesalahan yang tidak diizinkan untuk melakukan iam:PassRole tindakan,
kebijakan Anda harus diperbarui agar Anda dapat meneruskan peran AWS.

Beberapa Layanan AWS memungkinkan Anda untuk meneruskan peran yang ada ke layanan
tersebut alih-alih membuat peran layanan baru atau peran terkait layanan. Untuk melakukannya,
Anda harus memiliki izin untuk meneruskan peran ke layanan.

Contoh kesalahan berikut terjadi ketika pengguna IAM bernama marymajor mencoba menggunakan
konsol tersebut untuk melakukan tindakan di AWS. Namun, tindakan tersebut memerlukan
layanan untuk mendapatkan izin yang diberikan oleh peran layanan. Mary tidak memiliki izin untuk
meneruskan peran tersebut pada layanan.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

Dalam kasus ini, kebijakan Mary harus diperbarui agar dia mendapatkan izin untuk melakukan
tindakan iam:PassRole tersebut.

Jika Anda memerlukan bantuan, hubungi AWS administrator Anda. Administrator Anda adalah orang
yang memberi Anda kredensial masuk.

Memecahkan masalah AWS identitas dan akses 347

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Saya ingin mengizinkan orang di luar saya Akun AWS untuk mengakses AWS sumber
daya saya

Anda dapat membuat peran yang dapat digunakan pengguna di akun lain atau orang-orang di luar
organisasi Anda untuk mengakses sumber daya Anda. Anda dapat menentukan siapa saja yang
dipercaya untuk mengambil peran tersebut. Untuk layanan yang mendukung kebijakan berbasis
sumber daya atau daftar kontrol akses (ACLs), Anda dapat menggunakan kebijakan tersebut untuk
memberi orang akses ke sumber daya Anda.

Untuk mempelajari selengkapnya, periksa referensi berikut:

• Untuk mempelajari apakah AWS mendukung fitur ini, lihatBagaimana Layanan AWS bekerja
dengan IAM.

• Untuk mempelajari cara menyediakan akses ke sumber daya Anda di seluruh sumber daya Akun
AWS yang Anda miliki, lihat Menyediakan akses ke pengguna IAM di pengguna lain Akun AWS
yang Anda miliki di Panduan Pengguna IAM.

• Untuk mempelajari cara menyediakan akses ke sumber daya Anda kepada pihak ketiga Akun
AWS, lihat Menyediakan akses yang Akun AWS dimiliki oleh pihak ketiga dalam Panduan
Pengguna IAM.

• Untuk mempelajari cara memberikan akses melalui federasi identitas, lihat Menyediakan akses ke
pengguna terautentikasi eksternal (federasi identitas) dalam Panduan Pengguna IAM.

• Untuk mempelajari perbedaan antara menggunakan peran dan kebijakan berbasis sumber daya
untuk akses lintas akun, lihat Akses sumber daya lintas akun di IAM di Panduan Pengguna IAM.

Validasi Kepatuhan untuk AWS Produk atau Layanan ini

Untuk mempelajari apakah an Layanan AWS berada dalam lingkup program kepatuhan tertentu, lihat
Layanan AWS di Lingkup oleh Program Kepatuhan Layanan AWS dan pilih program kepatuhan yang
Anda minati. Untuk informasi umum, lihat Program AWS Kepatuhan Program AWS .

Anda dapat mengunduh laporan audit pihak ketiga menggunakan AWS Artifact. Untuk informasi
selengkapnya, lihat Mengunduh Laporan di AWS Artifact .

Tanggung jawab kepatuhan Anda saat menggunakan Layanan AWS ditentukan oleh sensitivitas data
Anda, tujuan kepatuhan perusahaan Anda, dan hukum dan peraturan yang berlaku. Untuk informasi
selengkapnya tentang tanggung jawab kepatuhan Anda saat menggunakan Layanan AWS, lihat
Dokumentasi AWS Keamanan.

Validasi Kepatuhan 348

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/security/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

AWS Produk atau layanan ini mengikuti model tanggung jawab bersama melalui layanan Amazon
Web Services (AWS) tertentu yang didukungnya. Untuk informasi keamanan AWS layanan, lihat
halaman dokumentasi keamanan AWS layanan dan AWS layanan yang berada dalam lingkup upaya
AWS kepatuhan oleh program kepatuhan.

Ketahanan untuk AWS Produk atau Layanan ini

Infrastruktur AWS global dibangun di sekitar Wilayah AWS dan Availability Zones.

Wilayah AWS menyediakan beberapa Availability Zone yang terpisah secara fisik dan terisolasi, yang
terhubung dengan latensi rendah, throughput tinggi, dan jaringan yang sangat redundan.

Dengan Zona Ketersediaan, Anda dapat merancang serta mengoperasikan aplikasi dan basis
data yang secara otomatis melakukan fail over di antara zona tanpa gangguan. Zona Ketersediaan
memiliki ketersediaan dan toleransi kesalahan yang lebih baik, dan dapat diskalakan dibandingkan
infrastruktur pusat data tunggal atau multi tradisional.

Untuk informasi selengkapnya tentang AWS Wilayah dan Availability Zone, lihat Infrastruktur AWS
Global.

AWS Produk atau layanan ini mengikuti model tanggung jawab bersama melalui layanan Amazon
Web Services (AWS) tertentu yang didukungnya. Untuk informasi keamanan AWS layanan, lihat
halaman dokumentasi keamanan AWS layanan dan AWS layanan yang berada dalam lingkup upaya
AWS kepatuhan oleh program kepatuhan.

Keamanan Infrastruktur untuk AWS Produk atau Layanan ini

AWS Produk atau layanan ini menggunakan layanan terkelola, dan karenanya dilindungi oleh
keamanan jaringan AWS global. Untuk informasi tentang layanan AWS keamanan dan cara AWS
melindungi infrastruktur, lihat Keamanan AWS Cloud. Untuk mendesain AWS lingkungan Anda
menggunakan praktik terbaik untuk keamanan infrastruktur, lihat Perlindungan Infrastruktur dalam
Kerangka Kerja yang AWS Diarsiteksikan dengan Baik Pilar Keamanan.

Anda menggunakan panggilan API yang AWS dipublikasikan untuk mengakses AWS Produk atau
Layanan ini melalui jaringan. Klien harus mendukung hal-hal berikut:

• Keamanan Lapisan Pengangkutan (TLS). Kami mensyaratkan TLS 1.2 dan menganjurkan TLS 1.3.

Ketahanan 349

https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

• Sandi cocok dengan sistem kerahasiaan maju sempurna (perfect forward secrecy, PFS) seperti
DHE (Ephemeral Diffie-Hellman) atau ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Sebagian
besar sistem modern seperti Java 7 dan versi lebih baru mendukung mode-mode ini.

Selain itu, permintaan harus ditandatangani menggunakan ID kunci akses dan kunci akses
rahasia yang terkait dengan principal IAM. Atau Anda dapat menggunakan AWS Security Token
Service (AWS STS) untuk menghasilkan kredensial keamanan sementara untuk menandatangani
permintaan.

AWS Produk atau layanan ini mengikuti model tanggung jawab bersama melalui layanan Amazon
Web Services (AWS) tertentu yang didukungnya. Untuk informasi keamanan AWS layanan, lihat
halaman dokumentasi keamanan AWS layanan dan AWS layanan yang berada dalam lingkup upaya
AWS kepatuhan oleh program kepatuhan.

Menegakkan versi minimum TLS

Untuk menambahkan peningkatan keamanan saat berkomunikasi dengan AWS layanan,
konfigurasikan AWS SDK untuk JavaScript untuk menggunakan TLS 1.2 atau yang lebih baru.

Transport Layer Security (TLS) adalah protokol yang digunakan oleh browser web dan aplikasi lain
untuk memastikan privasi dan integritas data yang dipertukarkan melalui jaringan.

Important

Mulai 10 Juni 2024, kami mengumumkan bahwa TLS 1.3 tersedia di titik akhir API AWS
layanan di setiap Wilayah. AWS AWS SDK untuk JavaScript V2 tidak menegosiasikan versi
TLS itu sendiri. Sebagai gantinya, ia menggunakan versi TLS yang ditentukan oleh Node.js,
yang dapat dikonfigurasi melalui. https.Agent AWS merekomendasikan menggunakan
versi Active LTS Node.js saat ini.

Verifikasi dan terapkan TLS di Node.js

Saat Anda menggunakan AWS SDK untuk JavaScript with Node.js, layer keamanan Node.js yang
mendasarinya digunakan untuk mengatur versi TLS.

Menegakkan versi minimum TLS 350

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/blogs//security/faster-aws-cloud-connections-with-tls-1-3/

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Node.js 12.0.0 dan yang lebih baru menggunakan versi minimum OpenSSL 1.1.1b, yang mendukung
TLS 1.3. Default AWS SDK untuk JavaScript v2 menggunakan TLS 1.3 bila tersedia, tetapi default ke
versi yang lebih rendah jika diperlukan.

Verifikasi versi OpenSSL dan TLS

Untuk mendapatkan versi OpenSSL yang digunakan oleh Node.js di komputer Anda, jalankan
perintah berikut.

node -p process.versions

Versi OpenSSL dalam daftar adalah versi yang digunakan oleh Node.js, seperti yang ditunjukkan
pada contoh berikut.

openssl: '1.1.1b'

Untuk mendapatkan versi TLS yang digunakan oleh Node.js di komputer Anda, jalankan shell Node
dan jalankan perintah berikut, secara berurutan.

> var tls = require("tls");
> var tlsSocket = new tls.TLSSocket();
> tlsSocket.getProtocol();

Perintah terakhir menampilkan versi TLS, seperti yang ditunjukkan pada contoh berikut.

'TLSv1.3'

Node.js default untuk menggunakan versi TLS ini, dan mencoba menegosiasikan versi TLS lain jika
panggilan tidak berhasil.

Memeriksa Versi TLS Minimum dan Maksimum yang Didukung

Pengembang dapat memeriksa versi TLS minimum dan maksimum yang didukung di Node.js
menggunakan skrip berikut:

var tls = require("tls");
console.log("Supported TLS versions:", tls.DEFAULT_MIN_VERSION + " to " +
 tls.DEFAULT_MAX_VERSION);

Verifikasi dan terapkan TLS di Node.js 351

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Perintah terakhir menampilkan versi TLS minimum dan maksimum default, seperti yang ditunjukkan
pada contoh berikut.

Supported TLS versions: TLSv1.2 to TLSv1.3

Menerapkan versi minimum TLS

Node.js menegosiasikan versi TLS saat panggilan gagal. Anda dapat menerapkan versi TLS
minimum yang diizinkan selama negosiasi ini, baik saat menjalankan skrip dari baris perintah atau
per permintaan dalam kode Anda. JavaScript

Untuk menentukan versi TLS minimum dari baris perintah, Anda harus menggunakan Node.js
versi 11.4.0 atau yang lebih baru. Untuk menginstal versi Node.js tertentu, pertama instal Node
Version Manager (nvm) menggunakan langkah-langkah yang ditemukan di Node Version Manager
Installation and Update. Kemudian jalankan perintah berikut untuk menginstal dan menggunakan
versi tertentu dari Node.js.

nvm install 11
nvm use 11

Enforcing TLS 1.2

Untuk menegakkan bahwa TLS 1.2 adalah versi minimum yang diizinkan, tentukan --tls-min-
v1.2 argumen saat menjalankan skrip Anda, seperti yang ditunjukkan pada contoh berikut.

node --tls-min-v1.2 yourScript.js

Untuk menentukan versi TLS minimum yang diizinkan untuk permintaan tertentu dalam JavaScript
kode Anda, gunakan httpOptions parameter untuk menentukan protokol, seperti yang
ditunjukkan pada contoh berikut.

const https = require("https");
const {NodeHttpHandler} = require("@aws-sdk/node-http-handler");
const {DynamoDBClient} = require("@aws-sdk/client-dynamodb");

const client = new DynamoDBClient({
 region: "us-west-2",
 requestHandler: new NodeHttpHandler({
 httpsAgent: new https.Agent(

Verifikasi dan terapkan TLS di Node.js 352

https://github.com/nvm-sh/nvm#installing-and-updating
https://github.com/nvm-sh/nvm#installing-and-updating

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

 {
 secureProtocol: 'TLSv1_2_method'
 }
)
 })
});

Enforcing TLS 1.3

Untuk menegakkan bahwa TLS 1.3 adalah versi minimum yang diizinkan, tentukan --tls-min-
v1.3 argumen saat menjalankan skrip Anda, seperti yang ditunjukkan pada contoh berikut.

node --tls-min-v1.3 yourScript.js

Untuk menentukan versi TLS minimum yang diizinkan untuk permintaan tertentu dalam JavaScript
kode Anda, gunakan httpOptions parameter untuk menentukan protokol, seperti yang
ditunjukkan pada contoh berikut.

const https = require("https");
const {NodeHttpHandler} = require("@aws-sdk/node-http-handler");
const {DynamoDBClient} = require("@aws-sdk/client-dynamodb");

const client = new DynamoDBClient({
 region: "us-west-2",
 requestHandler: new NodeHttpHandler({
 httpsAgent: new https.Agent(
 {
 secureProtocol: 'TLSv1_3_method'
 }
)
 })
});

Verifikasi dan terapkan TLS dalam skrip browser

Saat Anda menggunakan SDK for JavaScript dalam skrip browser, pengaturan browser mengontrol
versi TLS yang digunakan. Versi TLS yang digunakan oleh browser tidak dapat ditemukan atau diatur
oleh skrip dan harus dikonfigurasi oleh pengguna. Untuk memverifikasi dan menerapkan versi TLS
yang digunakan dalam skrip browser, lihat instruksi untuk browser spesifik Anda.

Verifikasi dan terapkan TLS dalam skrip browser 353

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Microsoft Internet Explorer

1. Buka Internet Explorer.

2. Dari bilah menu, pilih Tools - Internet Options - Advanced tab.

3. Gulir ke bawah ke kategori Keamanan, centang kotak opsi secara manual untuk Gunakan
TLS 1.2.

4. Klik OK.

5. Tutup browser Anda dan mulai ulang Internet Explorer.

Microsoft Edge

1. Di kotak pencarian menu Windows, ketikInternet options.

2. Di bawah Best match, klik Internet Options.

3. Di jendela Internet Properties, pada tab Advanced, gulir ke bawah ke bagian Keamanan.

4. Centang kotak centang User TLS 1.2.

5. Klik OK.

Google Chrome

1. Buka Google Chrome.

2. Klik Alt F dan pilih Pengaturan.

3. Gulir ke bawah dan pilih Tampilkan pengaturan lanjutan... .

4. Gulir ke bawah ke bagian Sistem dan klik Buka pengaturan proxy... .

5. Pilih tab Advanced.

6. Gulir ke bawah ke kategori Keamanan, centang kotak opsi secara manual untuk Gunakan
TLS 1.2.

7. Klik OK.

8. Tutup browser Anda dan mulai ulang Google Chrome.

Mozilla Firefox

1. Buka Firefox.

2. Di bilah alamat, ketik about:config dan tekan Enter.

Verifikasi dan terapkan TLS dalam skrip browser 354

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

3. Di bidang Pencarian, masukkan tls. Temukan dan klik dua kali entri untuk
security.tls.version.min.

4. Atur nilai integer ke 3 untuk memaksa protokol TLS 1.2 menjadi default.

5. Klik OK.

6. Tutup browser Anda dan mulai ulang Mozilla Firefox.

Apple Safari

Tidak ada opsi untuk mengaktifkan protokol SSL. Jika Anda menggunakan Safari versi 7 atau
lebih tinggi, TLS 1.2 diaktifkan secara otomatis.

Verifikasi dan terapkan TLS dalam skrip browser 355

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Sumber Daya Tambahan
Tautan berikut menyediakan sumber daya tambahan yang dapat Anda gunakan dengan AWS SDK
untuk JavaScript.

AWS SDKs dan Panduan Referensi Alat

Panduan Referensi AWS SDKs and Tools juga berisi pengaturan, fitur, dan konsep dasar lainnya
yang umum di antara banyak. AWS SDKs

JavaScript Forum SDK

Anda dapat menemukan pertanyaan dan diskusi tentang hal-hal yang menarik bagi pengguna SDK
untuk JavaScript di Forum JavaScript SDK.

JavaScript SDK dan Panduan Pengembang di GitHub

Ada beberapa repositori untuk SDK GitHub untuk. JavaScript

• SDK saat ini JavaScript tersedia di repo SDK.

• SDK for JavaScript Developer Guide (dokumen ini) tersedia dalam format penurunan harga dalam
repo dokumentasinya sendiri.

• Beberapa kode contoh yang disertakan dalam panduan ini tersedia di repo kode sampel SDK.

JavaScript SDK di Gitter

Anda juga dapat menemukan pertanyaan dan diskusi tentang SDK untuk JavaScript di komunitas
JavaScript SDK di Gitter.

AWS SDKs dan Panduan Referensi Alat 356

https://docs.aws.amazon.com/sdkref/latest/guide/
https://forums.aws.amazon.com/forum.jspa?forumID=148
https://github.com/aws/aws-sdk-js
https://github.com/awsdocs/aws-javascript-developer-guide-v2
https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/javascript
https://gitter.im/aws/aws-sdk-js
https://gitter.im/aws/aws-sdk-js

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Riwayat Dokumen untuk AWS SDK untuk JavaScript
• Versi SDK: Lihat JavaScript Referensi API

• Pembaruan dokumentasi utama terbaru: 31 Maret 2022

Riwayat Dokumen

Tabel berikut menjelaskan perubahan penting dalam setiap rilis AWS SDK untuk JavaScript setelah
Mei 2018. Untuk notifikasi tentang pembaruan dokumentasi ini, Anda dapat berlangganan ke umpan
RSS.

Perubahan Deskripsi Tanggal

TLS 1.3 sekarang didukung
di semua titik akhir API AWS
layanan di semua Wilayah

Diperbarui versi dan metode
TLS yang didukung untuk
mencatat versi TLS.

April 10, 2025

Menegakkan versi minimum
TLS

Menambahkan informasi
tentang TLS 1.3.

31 Maret 2022

Melihat Foto di Bucket
Amazon S3 dari Browser

Menambahkan contoh untuk
hanya melihat foto di album
foto yang ada.

13 Mei 2019

Menyetel Kredensyal di
Node.js, pilihan pemuatan
kredensyal baru

Menambahkan informasi
tentang kredenal yang dimuat
dari penyedia kredensi ECS
atau proses kredensi yang
dikonfigurasi.

25 April 2019

Kredensyal menggunakan
Proses Kredensyal yang
Dikonfigurasi

Menambahkan informasi
tentang kredensyal yang
dimuat dari proses kredensyal
yang dikonfigurasi.

25 April 2019

Baru Memulai di Skrip Browser Memulai dalam Skrip Browser
telah ditulis ulang untuk

Juli 14, 2018

Riwayat Dokumen 357

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/amazon-sdk-javascript-guide-doc-history.rss
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/amazon-sdk-javascript-guide-doc-history.rss
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials-node.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials-node.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials-node.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/loading-node-credentials-configured-credential-process.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/loading-node-credentials-configured-credential-process.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/loading-node-credentials-configured-credential-process.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-browser.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

menyederhanakan contoh dan
untuk mengakses layanan
Amazon Polly untuk mengirim
teks dan mengembalikan
ucapan yang disintesis yang
dapat Anda mainkan di
browser. Lihat Memulai di
Skrip Browser untuk konten
baru.

Sampel Kode Amazon SNS
Baru

Empat contoh kode Node.js
baru untuk bekerja dengan
Amazon SNS telah ditambahk
an. Lihat Contoh Amazon SNS
untuk kode sampel.

29 Juni 2018

Baru Memulai di Node.js Memulai di Node.js telah
ditulis ulang untuk menggunak
an kode sampel yang
diperbarui dan untuk
memberikan detail yang lebih
besar dalam cara membuat
package.json file serta
kode Node.js itu sendiri. Lihat
Memulai di Node.js untuk
konten baru.

4 Juni 2018

Pembaruan Sebelumnya
Tabel berikut menjelaskan perubahan penting dalam setiap rilis AWS SDK untuk JavaScript sebelum
Juni 2018.

Perubahan Deskripsi Tanggal

Sampel AWS Elemental
MediaConvert kode baru

Tiga contoh kode Node.js
baru untuk bekerja dengan
AWS Elemental MediaConv

21 Mei 2018

Pembaruan Sebelumnya 358

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-browser.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-browser.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sns-examples.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sns-examples.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/sns-examples.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-nodejs.html
https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/getting-started-nodejs.html

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Perubahan Deskripsi Tanggal

ert telah ditambahkan. Lihat
AWS Elemental MediaConvert
Contoh kode sampel.

Edit Baru pada GitHub Tombol Header setiap topik sekarang
menyediakan tombol yang
membawa Anda ke versi
penurunan harga dari topik
yang sama GitHub sehingga
Anda dapat memberikan
pengeditan untuk meningkat
kan akurasi dan kelengkapan
panduan.

21 Februari 2018

Topik Baru pada Titik Akhir
Kustom

Informasi telah ditambahkan
pada format dan penggunaa
n titik akhir khusus untuk
melakukan panggilan API.
Lihat Menentukan Titik Akhir
Kustom.

20 Februari 2018

SDK untuk Panduan
JavaScript Pengembang di
GitHub

SDK for JavaScript Developer
Guide tersedia dalam format
penurunan harga dalam repo
dokumentasinya sendiri.
Anda dapat memposting
masalah yang Anda ingin
panduan untuk mengatasi
atau mengirimkan permintaa
n tarik untuk mengirimkan
perubahan yang diusulkan.

16 Februari 2018

Pembaruan Sebelumnya 359

https://github.com/awsdocs/aws-javascript-developer-guide-v2

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Perubahan Deskripsi Tanggal

Contoh kode Amazon
DynamoDB baru

Contoh kode Node.js baru
untuk memperbarui tabel
DynamoDB menggunak
an Document Client
telah ditambahkan. Lihat
Menggunakan Klien Dokumen
DynamoDB kode sampel.

14 Februari 2018

Topik Baru tentang SDK
Logging

Topik yang menjelaskan
cara mencatat panggilan API
yang dibuat dengan SDK for
JavaScript telah ditambahkan,
termasuk informasi tentang
penggunaan logger pihak
ketiga. Lihat AWS SDK
untuk JavaScript Panggilan
Pencatatan.

5 Februari 2018

Topik yang Diperbarui tentang
Pengaturan Wilayah

Topik yang menjelaskan
cara menyetel Wilayah
yang digunakan dengan
SDK telah diperbarui dan
diperluas, termasuk informasi
tentang urutan prioritas untuk
menyetel Wilayah. Lihat
Mengatur AWS Wilayah.

12 Desember 2017

Contoh Kode Amazon SES
Baru

Bagian dengan contoh kode
SDK telah diperbarui untuk
menyertakan lima contoh
baru untuk bekerja dengan
Amazon SES. Untuk informasi
selengkapnya tentang contoh
kode ini, lihatContoh Layanan
Email Sederhana Amazon.

9 November 2017

Pembaruan Sebelumnya 360

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Perubahan Deskripsi Tanggal

Peningkatan Kegunaan Berdasarkan pengujian
kegunaan baru-baru ini,
sejumlah perubahan telah
dilakukan untuk meningkatkan
kegunaan dokumentasi.

• Sampel kode lebih jelas
diidentifikasi sebagai target
baik untuk browser atau
eksekusi Node.js.

• Tautan TOC tidak lagi
langsung melompat ke
konten web lain, termasuk
Referensi API.

• Termasuk lebih banyak
penautan di bagian Memulai
ke detail tentang mendapatk
an AWS kredensyal.

• Memberikan informasi
selengkapnya tentang
fitur Node.js umum
yang diperlukan untuk
menggunakan SDK. Untuk
informasi selengkapnya,
lihat Pertimbangan Node.js.

Agustus 9, 2017

Pembaruan Sebelumnya 361

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Perubahan Deskripsi Tanggal

Contoh Kode DynamoDB Baru Bagian dengan contoh kode
SDK telah diperbarui untuk
menulis ulang dua contoh
sebelumnya serta menambahk
an tiga contoh baru untuk
bekerja dengan DynamoDB.
Untuk informasi selengkap
nya tentang contoh kode
ini, lihatContoh Amazon
DynamoDB.

21 Juni 2017

Contoh Kode IAM Baru Bagian dengan contoh kode
SDK telah diperbarui untuk
menyertakan lima contoh baru
untuk bekerja dengan IAM.
Untuk informasi selengkap
nya tentang contoh kode ini,
lihatAWS Contoh IAM.

Desember 23, 2016

Contoh Kode SQS Baru
CloudWatch dan Amazon

Bagian dengan contoh
kode SDK telah diperbarui
untuk menyertakan contoh
baru untuk bekerja dengan
CloudWatch dan dengan
Amazon SQS. Untuk informasi
lebih lanjut tentang contoh
kode ini, lihat CloudWatch
Contoh Amazon danAmazon
SQS Contoh.

20 Desember 2016

Pembaruan Sebelumnya 362

AWS SDK untuk JavaScript Panduan Pengembang untuk SDK v2

Perubahan Deskripsi Tanggal

Contoh EC2 Kode Amazon
Baru

Bagian dengan contoh kode
SDK telah diperbarui untuk
menyertakan lima contoh
baru untuk bekerja dengan
Amazon EC2. Untuk informasi
selengkapnya tentang contoh
kode ini, lihat EC2 Contoh
Amazon.

15 Desember 2016

Daftar browser yang didukung
dibuat lebih terlihat

Daftar browser yang didukung
oleh SDK for JavaScript,
yang sebelumnya ditemukan
dalam topik Prasyarat, telah
diberikan topiknya sendiri
untuk membuatnya lebih
terlihat dalam daftar isi.

16 Nopember 2016

Publikasi awal Panduan
Pengembang baru

Panduan Pengembang
sebelumnya sekarang tidak
digunakan lagi. Panduan
Pengembang baru telah
ditata ulang untuk membuat
informasi lebih mudah
ditemukan. Ketika JavaScript
skenario Node.js atau browser
menyajikan pertimbangan
khusus, itu diidentifikasi
sebagaimana mestinya.
Panduan ini juga memberika
n contoh kode tambahan
yang lebih terorganisir untuk
membuatnya lebih mudah dan
lebih cepat ditemukan.

Oktober 28, 2016

Pembaruan Sebelumnya 363

	AWS SDK untuk JavaScript
	Table of Contents
	
	Apa itu AWS SDK untuk JavaScript?
	Pemeliharaan dan dukungan untuk versi utama SDK
	Menggunakan SDK dengan Node.js
	Menggunakan SDK dengan AWS Amplify
	Menggunakan SDK dengan Browser Web
	Kasus Penggunaan Umum
	Tentang Contoh

	Memulai dengan AWS SDK untuk JavaScript
	Memulai Skrip Browser
	Skenario
	Langkah 1: Buat Kolam Identitas Amazon Cognito
	Langkah 2: Tambahkan Kebijakan ke Peran IAM yang Dibuat
	Langkah 3: Buat Halaman HTML
	Langkah 4: Tulis Script Browser
	Langkah 5: Jalankan Sampel
	Sampel lengkap
	Kemungkinan Peningkatan

	Memulai di Node.js
	Skenario
	Tugas Prasyarat
	Langkah 1: Instal SDK dan Dependensi
	Langkah 2: Konfigurasikan Kredensial Anda
	Langkah 3: Buat Package JSON untuk Proyek
	Langkah 4: Tulis Kode Node.js
	Langkah 5: Jalankan Sampel

	Menyiapkan SDK untuk JavaScript
	Prasyarat
	Menyiapkan Lingkungan AWS Node.js
	Web Browser Didukung

	Menginstal SDK untuk JavaScript
	Instalasi Menggunakan Bower

	Memuat SDK untuk JavaScript
	Memutakhirkan SDK untuk JavaScript dari Versi 1
	Konversi Otomatis Jenis Base64 dan Timestamp pada Input/Output
	Dipindahkan response.data. RequestId untuk response.Requestid
	Elemen Pembungkus Terpapar
	Properti Klien Jatuh

	Mengkonfigurasi SDK untuk JavaScript
	Menggunakan Objek Konfigurasi Global
	Pengaturan Konfigurasi Global
	Contoh Konfigurasi Global

	Pengaturan Konfigurasi Per Layanan
	Data Konfigurasi yang Tidak Dapat Diubah

	Mengatur AWS Wilayah
	Dalam Konstruktor Kelas Klien
	Menggunakan Objek Konfigurasi Global
	Menggunakan Variabel Lingkungan
	Menggunakan File Config Bersama
	Urutan Prioritas untuk Mengatur Wilayah

	Menentukan Titik Akhir Kustom
	Format String Titik Akhir
	Titik akhir untuk Wilayah ap-northeast-3
	Endpoint untuk MediaConvert

	Otentikasi SDK dengan AWS
	Memulai sesi portal AWS akses
	Informasi otentikasi lebih lanjut

	Mengatur Kredensial
	Praktik Terbaik untuk Kredensial
	Mengatur Kredensial di Node.js
	Memuat Kredensi di Node.js dari peran IAM untuk Amazon EC2
	Memuat Kredensi untuk Fungsi Lambda Node.js
	Memuat Kredensial di Node.js dari File Kredensial Bersama
	Memuat Kredensi di Node.js dari Variabel Lingkungan
	Memuat Kredensial di Node.js dari File JSON
	Memuat Kredensial di Node.js menggunakan Proses Kredenal yang Dikonfigurasi

	Menyetel Kredensial di Browser Web
	Menggunakan Identitas Amazon Cognito untuk Mengautentikasi Pengguna
	Mengonfigurasi Objek Kredensial Identitas Amazon Cognito
	Mengalihkan Pengguna yang Tidak Diautentikasi ke Pengguna yang Diautentikasi
	Pengguna Awalnya Tidak Diautentikasi
	Beralih ke Pengguna Terautentikasi

	Menggunakan Identitas Federasi Web untuk Mengautentikasi Pengguna
	Langkah 1: Mendaftar dengan Penyedia Identitas
	Langkah 2: Membuat Peran IAM untuk Penyedia Identitas
	Langkah 3: Mendapatkan Token Akses Penyedia Setelah Login
	Langkah 4: Memperoleh Kredensi Sementara

	Contoh Identitas Federasi Web
	Login with Amazon Contoh
	Contoh Login Facebook
	Contoh Masuk Google+

	Mengunci Versi API
	Mendapatkan Versi API

	Pertimbangan Node.js
	Menggunakan Modul Node.js Built-In
	Menggunakan Paket NPM
	Mengkonfigurasi MaxSockets di Node.js
	Menggunakan Kembali Koneksi dengan Keep-Alive di Node.js
	Mengkonfigurasi Proxy untuk Node.js
	Mendaftarkan Bundel Sertifikat di Node.js

	Pertimbangan Skrip Browser
	Membangun SDK untuk Browser
	Menggunakan SDK Builder untuk Membangun SDK JavaScript
	Menggunakan CLI untuk Membangun SDK untuk JavaScript
	Membangun dari Command Line
	Meminimalkan Output Build

	Membangun Layanan Tertentu dan Versi API
	Membangun Semua Layanan
	Membangun Layanan Khusus

	Membangun SDK sebagai Dependensi dengan Browserify

	Berbagi Sumber Daya Lintas Orisinil (CORS)
	Bagaimana CORS Bekerja
	Apakah Konfigurasi CORS Diperlukan
	Mengonfigurasi CORS untuk Bucket Amazon S3
	Contoh Konfigurasi CORS

	Bundling Aplikasi dengan Webpack
	Menginstal Webpack
	Mengkonfigurasi Webpack
	Menjalankan Webpack
	Menggunakan Webpack Bundle
	Mengimpor Layanan Individu
	Bundling untuk Node.js

	Bekerja dengan Layanan di SDK untuk JavaScript
	Membuat dan Memanggil Objek Layanan
	Membutuhkan Layanan Individu
	Membuat Objek Layanan
	Mengunci Versi API dari Objek Layanan
	Menentukan Parameter Objek Layanan

	AWS SDK untuk JavaScript Panggilan Pencatatan
	Menggunakan Logger Pihak Ketiga

	Layanan Panggilan Secara Asinkron
	Mengelola Panggilan Asinkron
	Menggunakan Fungsi Callback Anonim
	Mengakses Objek Permintaan dan Respons

	Menggunakan Request Object Event Listener
	Merantai Beberapa Panggilan Balik
	Permintaan Acara Penyelesaian Objek
	Acara Sukses
	Peristiwa kesalahan
	Acara Lengkap

	Permintaan Objek Acara HTTP
	Acara HttpHeaders
	Acara HttpData
	httpUploadProgress dan httpDownloadProgress Peristiwa
	Acara HttpError
	Acara HttpDone

	Menggunakan async/await
	Menggunakan JavaScript Janji
	Koordinasi Beberapa Janji
	Browser dan Node.js Support for Promises
	Menggunakan Implementasi Janji Lainnya

	Menggunakan Response Object
	Mengakses Data yang Dikembalikan di Objek Response
	Paging Melalui Data yang Dikembalikan
	Mengakses Informasi Kesalahan dari Objek Respons
	Mengakses Objek Permintaan Asal

	Bekerja dengan JSON
	JSON sebagai Parameter Objek Layanan
	Mengembalikan Data sebagai JSON

	Coba lagi strategi di v2 AWS SDK untuk JavaScript
	Perilaku coba lagi berbasis backoff eksponensial
	Menguji coba lagi penundaan di v2
	Coba lagi penundaan dengan konfigurasi default
	Coba lagi penundaan dengan basis kustom
	Coba lagi penundaan dengan algoritma backoff khusus

	SDK untuk Contoh JavaScript Kode
	CloudWatch Contoh Amazon
	Membuat Alarm di Amazon CloudWatch
	Skenario
	Tugas Prasyarat
	Menggambarkan Alarm
	Membuat Alarm untuk CloudWatch Metrik
	Menghapus Alarm

	Menggunakan Alarm Actions di Amazon CloudWatch
	Skenario
	Tugas Prasyarat
	
	Membuat dan Mengaktifkan Tindakan pada Alarm
	Menonaktifkan Tindakan pada Alarm

	Mendapatkan Metrik dari Amazon CloudWatch
	Skenario
	Tugas Prasyarat
	Metrik Daftar
	Mengirimkan Metrik Kustom

	Mengirim Acara ke CloudWatch Acara Amazon
	Skenario
	Tugas Prasyarat
	Membuat Aturan Terjadwal
	Menambahkan Target AWS Lambda Fungsi
	Mengirim Acara

	Menggunakan Filter Berlangganan di CloudWatch Log Amazon
	Skenario
	Tugas Prasyarat
	Menjelaskan Filter Langganan yang Ada
	Membuat Filter Langganan
	Menghapus Filter Langganan

	Contoh Amazon DynamoDB
	Membuat dan Menggunakan Tabel di DynamoDB
	Skenario
	Tugas Prasyarat
	Membuat Tabel
	Daftar Tabel Anda
	Menjelaskan Tabel
	Menghapus Tabel

	Membaca dan Menulis Satu Item di DynamoDB
	Skenario
	Tugas Prasyarat
	Menulis Item
	Mendapatkan Item
	Menghapus Item

	Membaca dan Menulis Item dalam Batch di DynamoDB
	Skenario
	Tugas Prasyarat
	Membaca Item dalam Batch
	Menulis Item dalam Batch

	Meminta dan Memindai Tabel DynamoDB
	Skenario
	Tugas Prasyarat
	Melakukan Kueri Tabel
	Memindai Tabel

	Menggunakan Klien Dokumen DynamoDB
	Skenario
	Tugas Prasyarat
	Mendapatkan Item dari Tabel
	Menempatkan Item di Tabel
	Memperbarui Item dalam Tabel
	Melakukan Kueri Tabel
	Menghapus Item dari Tabel

	EC2 Contoh Amazon
	Membuat EC2 Instans Amazon
	Tentang Contoh
	Tugas Prasyarat
	Membuat dan Menandai Instance

	Mengelola EC2 Instans Amazon
	Skenario
	Tugas Prasyarat
	Menjelaskan Instance Anda
	Mengelola Pemantauan Instance
	Memulai dan Menghentikan Instans
	Mem-boot Ulang Instans

	Bekerja dengan Amazon EC2 Key Pairs
	Skenario
	Tugas Prasyarat
	Menggambarkan Pasangan Kunci Anda
	Membuat Pasangan Kunci
	Menghapus Pasangan Kunci

	Menggunakan Wilayah dan Availability Zone dengan Amazon EC2
	Skenario
	Tugas Prasyarat
	Menjelaskan Wilayah dan Availability Zone

	Bekerja dengan Grup Keamanan di Amazon EC2
	Skenario
	Tugas Prasyarat
	Menggambarkan Grup Keamanan Anda
	Membuat Grup Keamanan dan Aturan
	Menghapus Grup Keamanan

	Menggunakan Alamat IP Elastis di Amazon EC2
	Skenario
	Tugas Prasyarat
	Menjelaskan Alamat IP Elastis
	Mengalokasikan dan Mengaitkan Alamat IP Elastis dengan Instans Amazon EC2
	Melepaskan Alamat IP Elastis

	AWS Elemental MediaConvert Contoh
	Membuat dan Mengelola Pekerjaan Transcoding di MediaConvert
	Skenario
	Tugas Prasyarat
	Mendefinisikan Job Transcoding Sederhana
	Membuat Job Transcoding
	Membatalkan Job Transcoding
	Listing Lowongan Transcoding Terbaru

	Menggunakan Job Template di MediaConvert
	Skenario
	Tugas Prasyarat
	Membuat Template Job
	Membuat Transcoding Job dari Job Template
	Daftar Template Job Anda
	Menghapus Template Job

	AWS Contoh IAM
	Mengelola Pengguna IAM
	Skenario
	Tugas Prasyarat
	Membuat Pengguna
	Daftar Pengguna di Akun Anda
	Memperbarui Nama Pengguna
	Menghapus Pengguna

	Bekerja dengan Kebijakan IAM
	Skenario
	Tugas Prasyarat
	Membuat Kebijakan IAM
	Mendapatkan Kebijakan IAM
	Melampirkan Kebijakan Peran Terkelola
	Melepaskan Kebijakan Peran Terkelola

	Mengelola Kunci Akses IAM
	Skenario
	Tugas Prasyarat
	Membuat Kunci Akses untuk Pengguna
	Daftar Kunci Akses Pengguna
	Mendapatkan Penggunaan Terakhir untuk Kunci Akses
	Memperbarui Status Kunci Akses
	Menghapus Kunci Akses

	Bekerja dengan Sertifikat Server IAM
	Skenario
	Tugas Prasyarat
	Cantumkan Sertifikat Server Anda
	Mendapatkan Sertifikat Server
	Memperbarui Sertifikat Server
	Menghapus Sertifikat Server

	Mengelola Alias Akun IAM
	Skenario
	Tugas Prasyarat
	Membuat Akun Alias
	Daftar Alias Akun
	Menghapus Alias Akun

	Contoh Kinesis Amazon
	Menangkap Kemajuan Gulir Halaman Web dengan Amazon Kinesis
	Skenario
	Tugas Prasyarat
	Halaman Blog
	Mengkonfigurasi SDK
	Membuat Catatan Gulir
	Mengirimkan Catatan ke Kinesis
	Menangkap Kode Kemajuan Gulir Halaman Web

	Contoh-contoh Amazon S3
	Contoh Browser Amazon S3
	Melihat Foto di Bucket Amazon S3 dari Browser
	Skenario
	Tugas Prasyarat
	Buat Bucket
	Buat Kolam Identitas
	Konfigurasikan Izin Peran
	Konfigurasikan CORS
	Buat Album dan Unggah Foto

	Mendefinisikan Halaman Web
	Mengkonfigurasi SDK
	Daftar Album di Bucket
	Melihat Album
	Melihat Foto di Bucket Amazon S3: Kode Lengkap

	Mengunggah Foto ke Amazon S3 dari Browser
	Skenario
	Tugas Prasyarat
	Mengonfigurasi CORS
	Halaman Web
	Mengkonfigurasi SDK
	Daftar Album di Bucket
	Membuat Album di Bucket
	Melihat Album
	Menambahkan Foto ke Album
	Menghapus Foto
	Menghapus Album
	Mengunggah Foto ke Amazon S3: Kode Lengkap

	Amazon S3 Node.js Contoh
	Membuat dan Menggunakan Bucket Amazon S3
	Skenario
	Tugas Prasyarat
	Mengkonfigurasi SDK
	Menampilkan Daftar Bucket Amazon S3
	Membuat sebuah Bucket Amazon S3
	Mengunggah File ke Bucket Amazon S3
	Daftar Objek di Bucket Amazon S3
	Menghapus Bucket Amazon S3

	Mengkonfigurasi Bucket Amazon S3
	Skenario
	Tugas Prasyarat
	Mengkonfigurasi SDK
	Mengambil Konfigurasi Bucket CORS
	Menyetel Konfigurasi Bucket CORS

	Mengelola Izin Akses Bucket Amazon S3
	Skenario
	Tugas Prasyarat
	Mengkonfigurasi SDK
	Mengambil Daftar Kontrol Akses Bucket Saat Ini

	Bekerja dengan Kebijakan Bucket Amazon S3
	Skenario
	Tugas Prasyarat
	Mengkonfigurasi SDK
	Mengambil Kebijakan Bucket Saat Ini
	Menyetel Kebijakan Bucket Sederhana
	Menghapus Kebijakan Bucket

	Menggunakan Bucket Amazon S3 sebagai Host Web Statis
	Skenario
	Tugas Prasyarat
	Mengkonfigurasi SDK
	Mengambil Konfigurasi Situs Web Bucket Saat Ini
	Menyetel Konfigurasi Situs Web Bucket
	Menghapus Konfigurasi Situs Web Bucket

	Contoh Layanan Email Sederhana Amazon
	Mengelola Identitas Amazon SES
	Skenario
	Tugas Prasyarat
	Mengkonfigurasi SDK
	Daftar Identitas Anda
	Memverifikasi Identitas Alamat Email
	Memverifikasi Identitas Domain
	Menghapus Identitas

	Bekerja dengan Template Email di Amazon SES
	Skenario
	Tugas Prasyarat
	Daftar Template Email Anda
	Mendapatkan Template Email
	Membuat Template Email
	Memperbarui Template Email
	Menghapus Template Email

	Mengirim Email Menggunakan Amazon SES
	Skenario
	Tugas Prasyarat
	Persyaratan Pengiriman Pesan Email
	Mengirim Email
	Mengirim Email Menggunakan Template
	Mengirim Email Massal Menggunakan Template

	Menggunakan Filter Alamat IP untuk Tanda Terima Email di Amazon SES
	Skenario
	Tugas Prasyarat
	Mengkonfigurasi SDK
	Membuat Filter Alamat IP
	Cantumkan Filter Alamat IP Anda
	Menghapus Filter Alamat IP

	Menggunakan Aturan Tanda Terima di Amazon SES
	Skenario
	Tugas Prasyarat
	Membuat Aturan Tanda Terima Amazon S3
	Menghapus Aturan Tanda Terima
	Membuat Set Aturan Tanda Terima
	Menghapus Set Aturan Tanda Terima

	Contoh Layanan Pemberitahuan Sederhana Amazon
	Mengelola Topik di Amazon SNS
	Skenario
	Tugas Prasyarat
	Membuat Topik
	Daftar Topik Anda
	Menghapus Topik
	Mendapatkan Atribut Topik
	Pengaturan Atribut Topik

	Menerbitkan Pesan di Amazon SNS
	Skenario
	Tugas Prasyarat
	Menerbitkan Pesan ke Topik Amazon SNS

	Mengelola Langganan di Amazon SNS
	Skenario
	Tugas Prasyarat
	Daftar Langganan ke Topik
	Berlangganan Alamat Email ke Topik
	Berlangganan Endpoint Aplikasi ke Topik
	Berlangganan Fungsi Lambda ke Topik
	Berhenti berlangganan dari topik

	Mengirim Pesan SMS dengan Amazon SNS
	Skenario
	Tugas Prasyarat
	Mendapatkan Atribut SMS
	Mengatur Atribut SMS
	Memeriksa Apakah Nomor Telepon Telah Memilih Keluar
	Daftar Nomor Telepon yang Dipilih Keluar
	Menerbitkan Pesan SMS

	Amazon SQS Contoh
	Menggunakan Antrian di Amazon SQS
	Tentang Contoh
	Tugas Prasyarat
	Daftar Antrian Anda
	Membuat Antrian
	Mendapatkan URL untuk Antrian
	Menghapus Antrian

	Mengirim dan Menerima Pesan di Amazon SQS
	Skenario
	Tugas Prasyarat
	Mengirim Pesan ke Antrian
	Menerima dan Menghapus Pesan dari Antrian

	Mengelola Batas Waktu Visibilitas di Amazon SQS
	Skenario
	Tugas Prasyarat
	Mengubah Batas Waktu Visibilitas

	Mengaktifkan Polling Panjang di Amazon SQS
	Skenario
	Tugas Prasyarat
	Mengaktifkan Polling Panjang Saat Membuat Antrian
	Mengaktifkan Polling Panjang pada Antrian yang Ada
	Mengaktifkan Polling Panjang pada Tanda Terima Pesan

	Menggunakan Antrian Surat Mati di Amazon SQS
	Skenario
	Tugas Prasyarat
	Mengkonfigurasi Antrian Sumber

	Tutorial
	Tutorial: Menyiapkan Node.js pada EC2 Instans Amazon
	Prasyarat
	Prosedur
	Membuat Gambar Mesin Amazon
	Sumber Daya Terkait

	JavaScript Referensi API
	SDK Changelog aktif GitHub

	Migrasi ke v3 dari AWS SDK untuk JavaScript
	Keamanan untuk AWS Produk atau Layanan ini
	Perlindungan data dalam AWS produk atau layanan ini
	Identity and Access Management
	Audiens
	Mengautentikasi dengan identitas
	Akun AWS pengguna root
	Identitas terfederasi
	Pengguna dan grup IAM
	Peran IAM

	Mengelola akses menggunakan kebijakan
	Kebijakan berbasis identitas
	Kebijakan berbasis sumber daya
	Daftar kontrol akses (ACLs)
	Jenis-jenis kebijakan lain
	Berbagai jenis kebijakan

	Bagaimana Layanan AWS bekerja dengan IAM
	Memecahkan masalah AWS identitas dan akses
	Saya tidak berwenang untuk melakukan tindakan di AWS
	Saya tidak berwenang untuk melakukan iam: PassRole
	Saya ingin mengizinkan orang di luar saya Akun AWS untuk mengakses AWS sumber daya saya

	Validasi Kepatuhan untuk AWS Produk atau Layanan ini
	Ketahanan untuk AWS Produk atau Layanan ini
	Keamanan Infrastruktur untuk AWS Produk atau Layanan ini
	Menegakkan versi minimum TLS
	Verifikasi dan terapkan TLS di Node.js
	Verifikasi versi OpenSSL dan TLS
	Memeriksa Versi TLS Minimum dan Maksimum yang Didukung
	Menerapkan versi minimum TLS

	Verifikasi dan terapkan TLS dalam skrip browser

	Sumber Daya Tambahan
	AWS SDKs dan Panduan Referensi Alat
	JavaScript Forum SDK
	JavaScript SDK dan Panduan Pengembang di GitHub
	JavaScript SDK di Gitter

	Riwayat Dokumen untuk AWS SDK untuk JavaScript
	Riwayat Dokumen
	Pembaruan Sebelumnya

