Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.
penting
catatan
Prasyarat
Untuk informasi selengkapnya, lihat
-
-
import os import datetime import tensorflow as tf -
mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 def create_model(): return tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(512, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) -
LOG_DIR = os.path.join(os.getcwd(), "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) -
model = create_model() model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=LOG_DIR, histogram_freq=1) model.fit(x=x_train, y=y_train, epochs=5, validation_data=(x_test, y_test), callbacks=[tensorboard_callback]) -
EFS_PATH_LOG_DIR = "/".join(LOG_DIR.strip("/").split('/')[1:-1]) print (EFS_PATH_LOG_DIR)Ambil
EFS_PATH_LOG_DIR.
-
https://<YOUR_URL>.studio.region.sagemaker.aws/jupyter/default/proxy/6006/ -