Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.
-
-
from sagemaker import clarify clarify_processor = clarify.SageMakerClarifyProcessor( role=role, instance_count=1, instance_type='ml.c4.xlarge', sagemaker_session=session, ) -
-
run_pre_training_bias -
run_post_training_bias -
run_bias -
run_explainability -
run_bias_and_explainability
-
Target,Age,Gender,Income,Occupation 0,25,0,2850,2 1,36,0,6585,0 1,22,1,1759,1 0,48,0,3446,1 ...
data_config = clarify.DataConfig( s3_data_input_path=dataset_s3_uri, dataset_type='text/csv', headers=['Target', 'Age', 'Gender', 'Income', 'Occupation'], label='Target', s3_output_path=clarify_job_output_s3_uri, )
bias_config = clarify.BiasConfig( label_values_or_threshold=[1], facet_name='Gender', facet_values_or_threshold=[0], )
clarify_processor.run_pre_training_bias( data_config=data_config, data_bias_config=bias_config, methods="all", )
0,0.028986845165491 1,0.825382471084594 ...
model_config = clarify.ModelConfig( model_name=your_model, instance_type='ml.m4.xlarge', instance_count=1, )
predicted_label_config = clarify.ModelPredictedLabelConfig( label=0, )
clarify_processor.run_post_training_bias( data_config=data_config, data_bias_config=bias_config, model_config=model_config, model_predicted_label_config=predicted_label_config, methods="all", )
clarify_processor.run_bias( data_config=data_config, bias_config=bias_config, model_config=model_config, model_predicted_label_config=predicted_label_config, pre_training_methods="all", post_training_methods="all", )
probability_config = clarify.ModelPredictedLabelConfig( probability=1, )
shap_config = clarify.SHAPConfig( num_clusters=1, )
clarify_processor.run_explainability( data_config=data_config, model_config=model_config, model_scores=probability_config, explainability_config=shap_config, )
pdp_config = clarify.PDPConfig( features=["Income"], grid_resolution=10, )
clarify_processor.run_explainability( data_config=data_config, model_config=model_config, model_scores=probability_config, explainability_config=pdp_config, )
shap_pdp_config = clarify.PDPConfig( top_k_features=2, grid_resolution=10, )
clarify_processor.run_explainability( data_config=data_config, model_config=model_config, model_scores=probability_config, explainability_config=[shap_config, shap_pdp_config], )
Untuk informasi selengkapnya, lihat Format permintaan JSONLINES.
{"Features":[25,0,2850,2],"Label":0} {"Features":[36,0,6585,0],"Label":1} {"Features":[22,1,1759,1],"Label":1} {"Features":[48,0,3446,1],"Label":0} ...
data_config = clarify.DataConfig( s3_data_input_path=jsonl_dataset_s3_uri, dataset_type='application/jsonlines', headers=['Age', 'Gender', 'Income', 'Occupation', 'Target'], label='Label', features='Features', s3_output_path=clarify_job_output_s3_uri, )
{"predicted_label":0,"probability":0.028986845165491} {"predicted_label":1,"probability":0.825382471084594} ...
model_config = clarify.ModelConfig( model_name=your_model, instance_type='ml.m4.xlarge', instance_count=1, content_template='{"Features":$features}', )
predicted_label_config = clarify.ModelPredictedLabelConfig( label='predicted_label', )
probability_config = clarify.ModelPredictedLabelConfig( probability='probability', )
0,2,"Flavor needs work" 1,3,"They taste good" 1,5,"The best" 0,1,"Taste is awful" ...
nlp_data_config = clarify.DataConfig( s3_data_input_path=nlp_dataset_s3_uri, dataset_type='text/csv', headers=['Target', 'Rating', 'Comments'], label='Target', s3_output_path=clarify_job_output_s3_uri, )
0.491656005382537 0.569582343101501 ...
nlp_model_config = clarify.ModelConfig( model_name=your_nlp_model_name, instance_type='ml.g4dn.xlarge', instance_count=1, )
probability_config = clarify.ModelPredictedLabelConfig( probability=0, )
text_config = clarify.TextConfig( language='english', granularity='token', ) nlp_shap_config = clarify.SHAPConfig( baseline=[[4, '[MASK]']], num_samples=100, text_config=text_config, )
4, '[MASK]'
2,"[MASK] needs work" 4,"Flavor [MASK] work" 4,"Flavor needs [MASK]"
clarify_processor.run_explainability( data_config=nlp_data_config, model_config=nlp_model_config, model_scores=probability_config, explainability_config=nlp_shap_config, )
cv_data_config = clarify.DataConfig( s3_data_input_path=cv_dataset_s3_uri, dataset_type="application/x-image", s3_output_path=clarify_job_output_s3_uri, )
Untuk informasi selengkapnya, lihat Klasifikasi Gambar - MXNet.
ic_model_config = clarify.ModelConfig( model_name=your_cv_ic_model, instance_type="ml.p2.xlarge", instance_count=1, content_type="image/jpeg", accept_type="application/json", )
ic_prediction_config = clarify.ModelPredictedLabelConfig( label_headers=['bird', 'cat', 'dog'], )
ic_image_config = clarify.ImageConfig( model_type="IMAGE_CLASSIFICATION", num_segments=20, segment_compactness=5, ) ic_shap_config = clarify.SHAPConfig( num_samples=100, image_config=ic_image_config, )
clarify_processor.run_explainability( data_config=cv_data_config, model_config=ic_model_config, model_scores=ic_prediction_config, explainability_config=ic_shap_config, )
-
clarify.ModelPredictedLabelConfig( label_headers=object_categories, ) -
-
od_model_config = clarify.ModelConfig( model_name=your_cv_ic_model, instance_type="ml.p2.xlarge", instance_count=1, content_type="image/jpeg", accept_type="application/json", )
ic_prediction_config = clarify.ModelPredictedLabelConfig( label_headers=['bird', 'cat', 'dog'], )
od_image_config = clarify.ImageConfig( model_type="OBJECT_DETECTION", num_segments=20, segment_compactness=5, max_objects=5, iou_threshold=0.5, context=1.0, ) od_shap_config = clarify.SHAPConfig( num_samples=100, image_config=image_config, )
clarify_processor.run_explainability( data_config=cv_data_config, model_config=od_model_config, model_scores=od_prediction_config, explainability_config=od_shap_config, )
[ { "item_id": "item1", "timestamp": "2019-09-11", "target_value": 47650.3, "dynamic_feature_1": 0.4576, "dynamic_feature_2": 0.2164, "dynamic_feature_3": 0.1906, "static_feature_1": 3, "static_feature_2": 4 }, { "item_id": "item1", "timestamp": "2019-09-12", "target_value": 47380.3, "dynamic_feature_1": 0.4839, "dynamic_feature_2": 0.2274, "dynamic_feature_3": 0.1889, "static_feature_1": 3, "static_feature_2": 4 }, { "item_id": "item2", "timestamp": "2020-04-23", "target_value": 35601.4, "dynamic_feature_1": 0.5264, "dynamic_feature_2": 0.3838, "dynamic_feature_3": 0.4604, "static_feature_1": 1, "static_feature_2": 2 }, ]
time_series_data_config = clarify.TimeSeriesDataConfig( target_time_series='[].target_value', item_id='[].item_id', timestamp='[].timestamp', related_time_series=['[].dynamic_feature_1', '[].dynamic_feature_2', '[].dynamic_feature_3'], static_covariates=['[].static_feature_1', '[].static_feature_2'], dataset_format='timestamp_records', )
asymmetric_shapley_value_config = AsymmetricShapleyValueConfig( direction="chronological", granularity="fine-grained", num_samples=10, baseline={ "related_time_series": "zero", "static_covariates": { "item1": [0, 0], "item2": [0, 0] }, "target_time_series": "zero" }, )
model_config = clarify.ModelConfig( model_name=your_model, instance_type='ml.m4.xlarge', instance_count=1, record_template='{"start": $start_time, "target": $target_time_series, "dynamic_feat": $related_time_series, "cat": $static_covariates}', content_template='{"instances": $records}',, time_series_model_config=TimeSeriesModelConfig( forecast={'forecast': 'predictions[*].mean[:2]'} ) )
{ "predictions": [ {"mean": [13.4, 3.6, 1.0]}, {"mean": [23.0, 4.7, 3.0]}, {"mean": [3.4, 5.6, 2.0]} ] }
[[13.4, 3.6], [23.0, 4.7], [3.4, 5.6]]
from sagemaker import clarify spark_clarify_processor = clarify.SageMakerClarifyProcessor( role=role, instance_count=5, instance_type='ml.c5.xlarge', )