
Panduan Developerr

AWS Encryption SDK

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Encryption SDK Panduan Developerr

AWS Encryption SDK: Panduan Developerr

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Merek dagang dan tampilan dagang Amazon tidak boleh digunakan sehubungan dengan
produk atau layanan apa pun yang bukan milik Amazon, dengan cara apa pun yang dapat
menyebabkan kebingungan di antara pelanggan, atau dengan cara apa pun yang merendahkan atau
mendiskreditkan Amazon. Semua merek dagang lain yang tidak dimiliki oleh Amazon merupakan hak
milik masing-masing pemiliknya, yang mungkin atau mungkin tidak terafiliasi, terkait dengan, atau
disponsori oleh Amazon.

AWS Encryption SDK Panduan Developerr

Table of Contents
Apa itu AWS Encryption SDK? .. 1

Dikembangkan dalam repositori sumber terbuka .. 2
Kompatibilitas dengan pustaka dan layanan enkripsi ... 3
Support dan pemeliharaan .. 4
Belajar lebih ... 4
Mengirim umpan balik ... 5
Konsep ... 6

Enkripsi amplop .. 7
Kunci data ... 8
Kunci pembungkus ... 9
Gantungan kunci dan penyedia kunci utama ... 10
Konteks enkripsi .. 11
Pesan terenkripsi .. 13
Suite algoritma .. 13
Manajer materi kriptografi ... 14
Enkripsi simetris dan asimetris ... 14
Komitmen utama ... 15
Kebijakan komitmen .. 17
Tanda tangan digital ... 18

Cara kerja SDK ... 19
Bagaimana AWS Encryption SDK mengenkripsi data ... 19
Bagaimana AWS Encryption SDK mendekripsi pesan terenkripsi ... 20

Suite algoritma yang didukung .. 21
Direkomendasikan: AES-GCM dengan derivasi kunci, penandatanganan, dan komitmen
utama .. 21
Suite algoritma lain yang didukung .. 22

Berinteraksi dengan AWS KMS ... 24
Praktik terbaik ... 26
Mengkonfigurasi SDK ... 31

Memilih bahasa pemrograman .. 31
Memilih tombol pembungkus ... 32
Menggunakan Multi-region AWS KMS keys ... 33
Memilih rangkaian algoritme ... 55
Membatasi kunci data terenkripsi .. 66

iii

AWS Encryption SDK Panduan Developerr

Membuat filter penemuan .. 73
Membutuhkan konteks enkripsi ... 76
Menetapkan kebijakan komitmen .. 83
Bekerja dengan data streaming .. 83
Menyembunyikan kunci data ... 84

Toko-toko utama ... 85
Terminologi dan konsep toko kunci .. 85
Menerapkan izin yang paling tidak diistimewakan .. 86
Buat toko kunci .. 87
Konfigurasikan tindakan penyimpanan kunci .. 88

Konfigurasikan tindakan penyimpanan kunci Anda .. 89
Buat kunci cabang ... 94
Putar kunci cabang aktif Anda .. 98

Gantungan kunci .. 100
Cara kerja gantungan kunci .. 100
Kompatibilitas keyring .. 102

Memvariasikan persyaratan untuk gantungan kunci enkripsi ... 103
Gantungan Kunci yang Kompatibel dan Penyedia Kunci Utama ... 103

AWS KMS gantungan kunci .. 105
Izin yang diperlukan untuk keyrings AWS KMS ... 107
Mengidentifikasi AWS KMS keys dalam AWS KMS keyring .. 107
Membuat AWS KMS keyring .. 108
Menggunakan AWS KMS keyring penemuan .. 123
Menggunakan AWS KMS keyring penemuan regional .. 130

AWS KMS Gantungan kunci hierarkis .. 139
Cara kerjanya .. 141
Prasyarat ... 143
Izin yang diperlukan .. 143
Pilih cache ... 144
Buat keyring Hierarkis .. 157

AWS KMS Gantungan kunci ECDH .. 165
Izin yang diperlukan untuk gantungan kunci AWS KMS ECDH ... 166
Membuat keyring AWS KMS ECDH .. 166
Membuat keyring AWS KMS penemuan ECDH .. 174

Gantungan kunci AES mentah .. 179
Gantungan kunci RSA mentah .. 187

iv

AWS Encryption SDK Panduan Developerr

Gantungan kunci ECDH mentah ... 196
Membuat keyring ECDH mentah .. 197

Multi-kunci .. 215
Bahasa pemrograman .. 225

C ... 225
Menginstal ... 226
Menggunakan C SDK ... 227
Contoh ... 232

.NET ... 239
Instal dan bangun ... 241
Debugging ... 242
Contoh ... 242

Go ... 250
Prasyarat ... 251
Penginstalan .. 252

Java .. 252
Prasyarat ... 252
Penginstalan .. 254
Contoh ... 255

JavaScript .. 268
Kompatibilitas .. 269
Penginstalan .. 271
Modul ... 272
Contoh ... 275

Python .. 284
Prasyarat ... 284
Penginstalan .. 285
Contoh ... 286

Karat ... 293
Prasyarat ... 294
Penginstalan .. 294
Contoh ... 295

Antarmuka baris perintah .. 297
Menginstal CLI .. 299
Cara menggunakan CLI ... 302
Contoh ... 316

v

AWS Encryption SDK Panduan Developerr

Referensi sintaks dan parameter ... 340
Versi .. 354

Caching kunci data ... 358
Cara menggunakan caching kunci data .. 359

Menggunakan caching kunci data: Step-by-step ... 360
Contoh caching kunci data: Enkripsi string .. 367

Mengatur ambang keamanan cache ... 384
Detail caching kunci data .. 385

Cara kerja caching kunci data .. 386
Membuat cache bahan kriptografi .. 389
Membuat manajer materi kriptografi caching ... 390
Apa yang ada dalam entri cache kunci data? .. 391
Konteks enkripsi: Cara memilih entri cache ... 392
Apakah aplikasi saya menggunakan kunci data cache? .. 392

Contoh caching kunci data .. 393
Hasil cache lokal ... 394
Contoh kode .. 395
CloudFormation Template .. 407

Versi dari AWS Encryption SDK .. 422
C ... 422
C #/.NET .. 423
Antarmuka baris perintah (CLI) ... 424
Java .. 426
Go ... 429
JavaScript .. 430
Python .. 431
Karat ... 433
Detail versi ... 433

Versi lebih awal dari 1.7. x ... 433
Versi 1.7. x .. 434
Versi 2.0. x .. 437
Versi 2.2. x .. 438
Versi 2.3. x .. 439

Migrasi Anda AWS Encryption SDK .. 440
Cara bermigrasi dan menyebarkan ... 442

Tahap 1: Perbarui aplikasi Anda ke yang terbaru 1. versi x .. 442

vi

AWS Encryption SDK Panduan Developerr

Tahap 2: Perbarui aplikasi Anda ke versi terbaru .. 443
Memperbarui penyedia kunci AWS KMS utama ... 444

Migrasi ke mode ketat .. 445
Migrasi ke mode penemuan ... 449

Memperbarui AWS KMS keyrings ... 452
Menetapkan kebijakan komitmen Anda .. 455

Cara menetapkan kebijakan komitmen Anda ... 456
Memecahkan masalah migrasi ke versi terbaru ... 467

Objek yang tidak digunakan lagi atau dihapus .. 468
Konflik konfigurasi: Kebijakan komitmen dan rangkaian algoritme .. 469
Konflik konfigurasi: Kebijakan komitmen dan ciphertext .. 470
Validasi komitmen utama gagal ... 470
Kegagalan enkripsi lainnya ... 471
Kegagalan dekripsi lainnya ... 471
Pertimbangan rollback .. 471

Pertanyaan umum .. 473
Bagaimana AWS Encryption SDK bedanya dengan AWS SDKs? ... 473
Apa AWS Encryption SDK bedanya dengan klien enkripsi Amazon S3? 474
Algoritma kriptografi mana yang didukung oleh AWS Encryption SDK, dan mana yang
merupakan default? ... 474
Bagaimana vektor inisialisasi (IV) dihasilkan dan di mana disimpan? .. 475
Bagaimana setiap kunci data dihasilkan, dienkripsi, dan didekripsi? ... 475
Bagaimana cara melacak kunci data yang digunakan untuk mengenkripsi data saya? 476
Bagaimana cara AWS Encryption SDK menyimpan kunci data terenkripsi dengan data
terenkripsi mereka? ... 476
Berapa banyak overhead yang ditambahkan format AWS Encryption SDK pesan ke data
terenkripsi saya? .. 476
Bisakah saya menggunakan penyedia kunci master saya sendiri? .. 477
Dapatkah saya mengenkripsi data di bawah lebih dari satu kunci pembungkus? 477
Tipe data apa yang dapat saya enkripsi dengan? AWS Encryption SDK 478
Bagaimana cara AWS Encryption SDK mengenkripsi dan mendekripsi input/output (I/O)
mengalir? ... 478

Referensi ... 479
Referensi format pesan ... 479

Struktur header ... 480
Struktur tubuh ... 488

vii

AWS Encryption SDK Panduan Developerr

Struktur footer ... 493
Contoh format pesan ... 494

Data berbingkai (format pesan versi 1) .. 494
Data berbingkai (format pesan versi 2) .. 498
Data yang tidak dibingkai (format pesan versi 1) ... 500

Referensi tubuh AAD ... 504
Referensi algoritma .. 506
Referensi vektor inisialisasi ... 510
AWS KMS Rincian teknis keyring hierarkis .. 511

Riwayat dokumen ... 513
Pembaruan terkini .. 513
Pembaruan lebih awal ... 516

.. dxviii

viii

AWS Encryption SDK Panduan Developerr

Apa itu AWS Encryption SDK?

AWS Encryption SDK Ini adalah pustaka enkripsi sisi klien yang dirancang untuk memudahkan
semua orang mengenkripsi dan mendekripsi data menggunakan standar industri dan praktik terbaik.
Ini memungkinkan Anda untuk fokus pada fungsionalitas inti aplikasi Anda, bukan pada cara terbaik
mengenkripsi dan mendekripsi data Anda. AWS Encryption SDK Ini disediakan secara gratis di
bawah lisensi Apache 2.0.

AWS Encryption SDK Jawaban pertanyaan-pertanyaan seperti berikut untuk Anda:

• Algoritma enkripsi mana yang harus saya gunakan?

• Bagaimana, atau dalam mode apa, saya harus menggunakan algoritma itu?

• Bagaimana cara menghasilkan kunci enkripsi?

• Bagaimana cara melindungi kunci enkripsi, dan di mana saya harus menyimpannya?

• Bagaimana saya bisa membuat data terenkripsi saya portabel?

• Bagaimana cara memastikan bahwa penerima yang dituju dapat membaca data terenkripsi saya?

• Bagaimana saya bisa memastikan data terenkripsi saya tidak dimodifikasi antara waktu ditulis dan
ketika dibaca?

• Bagaimana cara menggunakan kunci data yang AWS KMS kembali?

Dengan AWS Encryption SDK, Anda menentukan penyedia kunci master atau keyring yang
menentukan kunci pembungkus yang Anda gunakan untuk melindungi data Anda. Kemudian Anda
mengenkripsi dan mendekripsi data Anda menggunakan metode langsung yang disediakan oleh.
AWS Encryption SDK Yang AWS Encryption SDK melakukan sisanya.

Tanpa itu AWS Encryption SDK, Anda mungkin menghabiskan lebih banyak upaya untuk
membangun solusi enkripsi daripada fungsionalitas inti aplikasi Anda. AWS Encryption SDK Jawaban
pertanyaan-pertanyaan ini dengan memberikan hal-hal berikut.

Implementasi default yang mematuhi praktik terbaik kriptografi

Secara default, AWS Encryption SDK menghasilkan kunci data unik untuk setiap objek data yang
dienkripsi. Ini mengikuti praktik terbaik kriptografi menggunakan kunci data unik untuk setiap
operasi enkripsi.

1

AWS Encryption SDK Panduan Developerr

AWS Encryption SDK Enkripsi data Anda menggunakan algoritma kunci simetris yang aman,
terautentikasi. Untuk informasi selengkapnya, lihat the section called “Suite algoritma yang
didukung”.

Kerangka kerja untuk melindungi kunci data dengan kunci pembungkus

Ini AWS Encryption SDK melindungi kunci data yang mengenkripsi data Anda dengan
mengenkripsi mereka di bawah satu atau lebih kunci pembungkus. Dengan menyediakan
kerangka kerja untuk mengenkripsi kunci data dengan lebih dari satu kunci pembungkus, AWS
Encryption SDK membantu membuat data terenkripsi Anda portabel.

Misalnya, mengenkripsi data di bawah kunci AWS KMS key masuk AWS KMS dan kunci dari
HSM lokal Anda. Anda dapat menggunakan salah satu kunci pembungkus untuk mendekripsi
data, jika salah satu tidak tersedia atau pemanggil tidak memiliki izin untuk menggunakan kedua
kunci.

Pesan diformat yang menyimpan kunci data terenkripsi dengan data terenkripsi

AWS Encryption SDK Menyimpan data terenkripsi dan kunci data terenkripsi bersama-sama
dalam pesan terenkripsi yang menggunakan format data yang ditentukan. Ini berarti Anda tidak
perlu melacak atau melindungi kunci data yang mengenkripsi data Anda karena AWS Encryption
SDK melakukannya untuk Anda.

Beberapa implementasi bahasa AWS Encryption SDK memerlukan AWS SDK, tetapi AWS
Encryption SDK tidak memerlukan Akun AWS dan tidak bergantung pada layanan apa pun
AWS . Anda Akun AWS hanya perlu jika Anda memilih untuk menggunakan AWS KMS keysuntuk
melindungi data Anda.

Dikembangkan dalam repositori sumber terbuka

AWS Encryption SDK Ini dikembangkan dalam repositori sumber terbuka di. GitHub Anda dapat
menggunakan repositori ini untuk melihat kode, membaca dan mengirimkan masalah, dan
menemukan informasi yang spesifik untuk implementasi bahasa Anda.

• AWS Encryption SDK for C — aws-encryption-sdk-c

• AWS Encryption SDK untuk direktori.NET — .NET dari aws-encryption-sdk repositori.

• AWS Enkripsi CLI — aws-encryption-sdk-cli

• AWS Encryption SDK for Java — aws-encryption-sdk-java

Dikembangkan dalam repositori sumber terbuka 2

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms-keys
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-java/

AWS Encryption SDK Panduan Developerr

• AWS Encryption SDK for JavaScript — aws-encryption-sdk-javascript

• AWS Encryption SDK for Python — aws-encryption-sdk-python

• AWS Encryption SDK untuk direktori Rust — Rust dari aws-encryption-sdk repositori.

• AWS Encryption SDK untuk direktori Go — Go dari aws-encryption-sdk repositori

Kompatibilitas dengan pustaka dan layanan enkripsi

AWS Encryption SDK Ini didukung dalam beberapa bahasa pemrograman. Semua implementasi
bahasa dapat dioperasikan secara interoperable. Anda dapat mengenkripsi dengan satu
implementasi bahasa dan mendekripsi dengan yang lain. Interoperabilitas mungkin tunduk pada
kendala bahasa. Jika demikian, kendala ini dijelaskan dalam topik tentang implementasi bahasa.
Selain itu, saat mengenkripsi dan mendekripsi, Anda harus menggunakan keyring yang kompatibel,
atau kunci master dan penyedia kunci master. Lihat perinciannya di the section called “Kompatibilitas
keyring”.

Namun, AWS Encryption SDK tidak dapat beroperasi dengan perpustakaan lain. Karena setiap
pustaka mengembalikan data terenkripsi dalam format yang berbeda, Anda tidak dapat mengenkripsi
dengan satu pustaka dan mendekripsi dengan yang lain.

Klien Enkripsi DynamoDB dan enkripsi sisi klien Amazon S3

AWS Encryption SDK Tidak dapat mendekripsi data yang dienkripsi oleh Klien Enkripsi
DynamoDB atau enkripsi sisi klien Amazon S3. Pustaka ini tidak dapat mendekripsi pesan
terenkripsi yang dikembalikan. AWS Encryption SDK

AWS Key Management Service (AWS KMS)

AWS Encryption SDK Dapat menggunakan AWS KMS keysdan kunci data untuk melindungi data
Anda, termasuk kunci KMS Multi-wilayah. Misalnya, Anda dapat mengonfigurasi AWS Encryption
SDK untuk mengenkripsi data Anda di bawah satu atau lebih AWS KMS keys di file Anda Akun
AWS. Namun, Anda harus menggunakan AWS Encryption SDK untuk mendekripsi data tersebut.

AWS Encryption SDK Tidak dapat mendekripsi ciphertext yang dikembalikan AWS KMS Enkripsi
atau operasi. ReEncrypt Demikian pula, operasi AWS KMS Dekripsi tidak dapat mendekripsi
pesan terenkripsi yang dikembalikan. AWS Encryption SDK

Hanya AWS Encryption SDK mendukung kunci KMS enkripsi simetris. Anda tidak dapat
menggunakan kunci KMS asimetris untuk enkripsi atau masuk. AWS Encryption SDK Ini AWS

Kompatibilitas dengan pustaka dan layanan enkripsi 3

https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/symm-asymm-concepts.html#asymmetric-cmks

AWS Encryption SDK Panduan Developerr

Encryption SDK menghasilkan kunci penandatanganan ECDSA sendiri untuk rangkaian algoritme
yang menandatangani pesan.

Support dan pemeliharaan

AWS Encryption SDK Menggunakan kebijakan pemeliharaan yang sama dengan yang digunakan
AWS SDK dan Tools, termasuk fase pembuatan versi dan siklus hidupnya. Sebagai praktik terbaik,
kami menyarankan Anda menggunakan versi terbaru yang tersedia AWS Encryption SDK untuk
bahasa pemrograman Anda, dan meningkatkan saat versi baru dirilis. Ketika versi memerlukan
perubahan signifikan, seperti upgrade dari AWS Encryption SDK versi lebih awal dari 1.7. x ke versi
2.0. x dan yang lebih baru, kami memberikan instruksi terperinci untuk membantu Anda.

Setiap implementasi bahasa AWS Encryption SDK pemrograman dikembangkan dalam GitHub
repositori open-source terpisah. Siklus hidup dan fase dukungan dari setiap versi cenderung
bervariasi di antara repositori. Misalnya, versi yang diberikan AWS Encryption SDK mungkin berada
dalam fase ketersediaan umum (dukungan penuh) dalam satu bahasa pemrograman, tetapi end-of-
support fase dalam bahasa pemrograman yang berbeda. Kami menyarankan Anda menggunakan
versi yang didukung sepenuhnya bila memungkinkan dan menghindari versi yang tidak lagi didukung.

Untuk menemukan fase siklus hidup AWS Encryption SDK versi untuk bahasa pemrograman Anda,
lihat SUPPORT_POLICY.rst file di setiap AWS Encryption SDK repositori.

• AWS Encryption SDK for C — Support_Policy.rst

• AWS Encryption SDK untuk .NET — SUPPORT_POLICY.RST

• AWS Enkripsi CLI — SUPPORT_POLICY.RST

• AWS Encryption SDK for Java — Support_Policy.rst

• AWS Encryption SDK for JavaScript — Support_Policy.rst

• AWS Encryption SDK for Python — Support_Policy.rst

Untuk informasi selengkapnya, lihat Versi dari AWS Encryption SDK AWS SDKs dan serta Kebijakan
pemeliharaan alat di Panduan Referensi Alat AWS SDKs dan Alat.

Belajar lebih

Untuk informasi lebih lanjut tentang enkripsi sisi klien AWS Encryption SDK dan enkripsi, coba
sumber-sumber ini.

Support dan pemeliharaan 4

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-dafny/blob/mainline/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-cli/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-java/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/SUPPORT_POLICY.rst
https://github.com/aws/aws-encryption-sdk-python/blob/master/SUPPORT_POLICY.rst
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html

AWS Encryption SDK Panduan Developerr

• Untuk bantuan mengenai istilah dan konsep yang digunakan dalam SDK ini, lihatKonsep dalam
AWS Encryption SDK.

• Untuk pedoman praktik terbaik, lihatPraktik terbaik untuk AWS Encryption SDK.

• Untuk informasi tentang cara kerja SDK ini, lihatCara kerja SDK.

• Untuk contoh yang menunjukkan cara mengkonfigurasi opsi di AWS Encryption SDK,
lihatMengkonfigurasi AWS Encryption SDK.

• Untuk informasi teknis terperinci, lihatReferensi.

• Untuk spesifikasi teknis AWS Encryption SDK, lihat AWS Encryption SDK Spesifikasi di GitHub.

• Untuk jawaban atas pertanyaan Anda tentang penggunaan AWS Encryption SDK, baca dan
posting di Forum Diskusi Alat AWS Crypto.

Untuk informasi tentang implementasi dari AWS Encryption SDK dalam bahasa pemrograman yang
berbeda.

• C: LihatAWS Encryption SDK for C, dokumentasi AWS Encryption SDK C, dan aws-encryption-
sdk-crepositori aktif. GitHub

• C#/.NET: Lihat AWS Encryption SDK untuk .NET dan aws-encryption-sdk-netdirektori repositori
aktif. aws-encryption-sdk GitHub

• Antarmuka Baris Perintah: LihatAWS Encryption SDK antarmuka baris perintah, Baca Dokumen
untuk CLI AWS Enkripsi, dan aws-encryption-sdk-clirepositori aktif. GitHub

• Java: LihatAWS Encryption SDK for Java, AWS Encryption SDK Javadoc, dan aws-encryption-sdk-
javarepositori aktif. GitHub

JavaScript: Lihat the section called “JavaScript” dan aws-encryption-sdk-javascriptrepositori aktif.
GitHub

• Python: LihatAWS Encryption SDK for Python, dokumentasi AWS Encryption SDK Python, dan
repositori aktif. aws-encryption-sdk-python GitHub

Mengirim umpan balik

Kami menyambut umpan balik Anda! Jika Anda memiliki pertanyaan atau komentar, atau masalah
yang perlu dilaporkan, silakan gunakan sumber daya berikut.

• Jika Anda menemukan potensi kerentanan keamanan di AWS Encryption SDK, harap beri tahu
AWS keamanan. Jangan membuat GitHub masalah publik.

Mengirim umpan balik 5

https://github.com/awslabs/aws-encryption-sdk-specification/
https://forums.aws.amazon.com/forum.jspa?forumID=302
https://aws.github.io/aws-encryption-sdk-c/html/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/
https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/
https://aws.amazon.com/security/vulnerability-reporting/
https://aws.amazon.com/security/vulnerability-reporting/

AWS Encryption SDK Panduan Developerr

• Untuk memberikan umpan balik tentang AWS Encryption SDK, ajukan masalah di GitHub repositori
untuk bahasa pemrograman yang Anda gunakan.

• Untuk memberikan umpan balik tentang dokumentasi ini, gunakan tautan Umpan Balik di halaman
ini. Anda juga dapat mengajukan masalah atau berkontribusi pada aws-encryption-sdk-docs,
repositori sumber terbuka untuk dokumentasi ini. GitHub

Konsep dalam AWS Encryption SDK

Bagian ini memperkenalkan konsep yang digunakan dalam AWS Encryption SDK, dan memberikan
glosarium dan referensi. Ini dirancang untuk membantu Anda memahami cara AWS Encryption SDK
kerja dan istilah yang kami gunakan untuk menggambarkannya.

Butuh bantuan?

• Pelajari cara AWS Encryption SDK menggunakan enkripsi amplop untuk melindungi data Anda.

• Pelajari tentang elemen enkripsi amplop: kunci data yang melindungi data Anda dan kunci
pembungkus yang melindungi kunci data Anda.

• Pelajari tentang keyrings dan penyedia kunci utama yang menentukan kunci pembungkus yang
Anda gunakan.

• Pelajari tentang konteks enkripsi yang menambahkan integritas pada proses enkripsi Anda. Ini
opsional, tetapi ini adalah praktik terbaik yang kami rekomendasikan.

• Pelajari tentang pesan terenkripsi yang dikembalikan oleh metode enkripsi.

• Kemudian Anda siap untuk menggunakan AWS Encryption SDK dalam bahasa pemrograman
pilihan Anda.

Topik

• Enkripsi amplop

• Kunci data

• Kunci pembungkus

• Gantungan kunci dan penyedia kunci utama

• Konteks enkripsi

• Pesan terenkripsi

• Suite algoritma

Konsep 6

https://github.com/awsdocs/aws-encryption-sdk-docs

AWS Encryption SDK Panduan Developerr

• Manajer materi kriptografi

• Enkripsi simetris dan asimetris

• Komitmen utama

• Kebijakan komitmen

• Tanda tangan digital

Enkripsi amplop

Keamanan data terenkripsi Anda sebagian bergantung pada perlindungan kunci data yang dapat
mendekripsi itu. Salah satu praktik terbaik yang diterima untuk melindungi kunci data adalah
mengenkripsinya. Untuk melakukan ini, Anda memerlukan kunci enkripsi lain, yang dikenal sebagai
kunci enkripsi kunci atau kunci pembungkus. Praktek menggunakan kunci pembungkus untuk
mengenkripsi kunci data dikenal sebagai enkripsi amplop.

Melindungi kunci data

AWS Encryption SDK Enkripsi setiap pesan dengan kunci data yang unik. Kemudian
mengenkripsi kunci data di bawah kunci pembungkus yang Anda tentukan. Ini menyimpan kunci
data terenkripsi dengan data terenkripsi dalam pesan terenkripsi yang dikembalikan.

Untuk menentukan kunci pembungkus Anda, Anda menggunakan keyring atau penyedia kunci
master.

Mengenkripsi data yang sama di bawah beberapa kunci pembungkus

Anda dapat mengenkripsi kunci data di bawah beberapa kunci pembungkus. Anda mungkin
ingin memberikan kunci pembungkus yang berbeda untuk pengguna yang berbeda, atau kunci

Enkripsi amplop 7

AWS Encryption SDK Panduan Developerr

pembungkus dari jenis yang berbeda, atau di lokasi yang berbeda. Setiap kunci pembungkus
mengenkripsi kunci data yang sama. AWS Encryption SDK Menyimpan semua kunci data
terenkripsi dengan data terenkripsi dalam pesan terenkripsi.

Untuk mendekripsi data, Anda perlu menyediakan kunci pembungkus yang dapat mendekripsi
salah satu kunci data terenkripsi.

Menggabungkan kekuatan dari beberapa algoritme

Untuk mengenkripsi data Anda, secara default, AWS Encryption SDK menggunakan rangkaian
algoritma canggih dengan enkripsi simetris AES-GCM, fungsi derivasi kunci (HKDF), dan
penandatanganan. Untuk mengenkripsi kunci data, Anda dapat menentukan algoritma enkripsi
simetris atau asimetris yang sesuai dengan kunci pembungkus Anda.

Secara umum, algoritma enkripsi kunci simetris lebih cepat dan menghasilkan ciphertext
yang lebih kecil daripada enkripsi kunci asimetris atau publik. Namun algoritme kunci publik
memberikan pemisahan peran yang melekat dan manajemen kunci yang lebih mudah. Untuk
menggabungkan kekuatan masing-masing, Anda dapat mengenkripsi data Anda dengan enkripsi
kunci simetris, dan kemudian mengenkripsi kunci data dengan enkripsi kunci publik.

Kunci data

Kunci data adalah kunci enkripsi yang AWS Encryption SDK digunakan untuk mengenkripsi data
Anda. Setiap kunci data adalah array byte yang sesuai dengan persyaratan untuk kunci kriptografi.

Kunci data 8

AWS Encryption SDK Panduan Developerr

Kecuali Anda menggunakan caching kunci data, AWS Encryption SDK menggunakan kunci data unik
untuk mengenkripsi setiap pesan.

Anda tidak perlu menentukan, menghasilkan, mengimplementasikan, memperluas, melindungi,
atau menggunakan kunci data. AWS Encryption SDK Apakah itu bekerja untuk Anda ketika Anda
memanggil operasi enkripsi dan dekripsi.

Untuk melindungi kunci data Anda, AWS Encryption SDK mengenkripsi mereka di bawah satu atau
beberapa kunci enkripsi kunci yang dikenal sebagai kunci pembungkus atau kunci master. Setelah
AWS Encryption SDK menggunakan kunci data plaintext Anda untuk mengenkripsi data Anda, itu
akan menghapusnya dari memori sesegera mungkin. Kemudian menyimpan kunci data terenkripsi
dengan data terenkripsi dalam pesan terenkripsi yang dikembalikan oleh operasi enkripsi. Lihat
perinciannya di the section called “Cara kerja SDK”.

Tip

Dalam AWS Encryption SDK, kami membedakan kunci data dari kunci enkripsi data.
Beberapa suite algoritma yang didukung, termasuk suite default, menggunakan fungsi
derivasi kunci yang mencegah kunci data mencapai batas kriptografinya. Fungsi derivasi
kunci mengambil kunci data sebagai input dan mengembalikan kunci enkripsi data yang
sebenarnya digunakan untuk mengenkripsi data. Untuk alasan ini, kita sering mengatakan
bahwa data dienkripsi “di bawah” kunci data daripada “oleh” kunci data.

Setiap kunci data terenkripsi mencakup metadata, termasuk pengidentifikasi kunci pembungkus yang
mengenkripsi itu. Metadata ini memudahkan untuk mengidentifikasi kunci pembungkus yang valid
saat AWS Encryption SDK mendekripsi.

Kunci pembungkus

Kunci pembungkus adalah kunci enkripsi kunci yang AWS Encryption SDK digunakan untuk
mengenkripsi kunci data yang mengenkripsi data Anda. Setiap kunci data plaintext dapat dienkripsi
di bawah satu atau lebih kunci pembungkus. Anda menentukan kunci pembungkus mana yang
digunakan untuk melindungi data Anda saat mengonfigurasi keyring atau penyedia kunci utama.

Kunci pembungkus 9

https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function

AWS Encryption SDK Panduan Developerr

Note

Kunci pembungkus mengacu pada kunci di keyring atau penyedia kunci master. Kunci
master biasanya dikaitkan dengan MasterKey kelas yang Anda buat instance saat Anda
menggunakan penyedia kunci master.

Ini AWS Encryption SDK mendukung beberapa kunci pembungkus yang umum digunakan, seperti
AWS Key Management Service (AWS KMS) simetris AWS KMS keys(termasuk kunci KMS Multi-
wilayah), kunci mentah AES-GCM (Advanced Encryption Standard/Galois Counter Mode), dan kunci
RSA mentah. Anda juga dapat memperluas atau mengimplementasikan kunci pembungkus Anda
sendiri.

Saat Anda menggunakan enkripsi amplop, Anda perlu melindungi kunci pembungkus Anda dari
akses yang tidak sah. Anda dapat melakukan ini dengan salah satu cara berikut:

• Gunakan layanan web yang dirancang untuk tujuan ini, seperti AWS Key Management Service
(AWS KMS).

• Gunakan modul keamanan perangkat keras (HSM) seperti yang ditawarkan oleh AWS CloudHSM.

• Gunakan alat dan layanan manajemen kunci lainnya.

Jika Anda tidak memiliki sistem manajemen kunci, kami sarankan AWS KMS. AWS Encryption
SDK Terintegrasi dengan AWS KMS untuk membantu Anda melindungi dan menggunakan kunci
pembungkus Anda. Namun, AWS Encryption SDK tidak memerlukan AWS atau AWS layanan apa
pun.

Gantungan kunci dan penyedia kunci utama

Untuk menentukan kunci pembungkus yang Anda gunakan untuk enkripsi dan dekripsi, Anda
menggunakan keyring atau penyedia kunci utama. Anda dapat menggunakan keyrings dan penyedia
kunci master yang AWS Encryption SDK menyediakan atau merancang implementasi Anda sendiri.
AWS Encryption SDK Menyediakan keyrings dan penyedia kunci master yang kompatibel satu sama
lain tunduk pada kendala bahasa. Lihat perinciannya di Kompatibilitas keyring.

Sebuah keyring menghasilkan, mengenkripsi, dan mendekripsi kunci data. Saat Anda menentukan
keyring, Anda dapat menentukan kunci pembungkus yang mengenkripsi kunci data Anda.
Kebanyakan keyrings menentukan setidaknya satu kunci pembungkus atau layanan yang
menyediakan dan melindungi kunci pembungkus. Anda juga dapat menentukan keyring tanpa

Gantungan kunci dan penyedia kunci utama 10

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/

AWS Encryption SDK Panduan Developerr

tombol pembungkus atau keyring yang lebih kompleks dengan opsi konfigurasi tambahan. Untuk
bantuan memilih dan menggunakan gantungan kunci yang AWS Encryption SDK didefinisikan, lihat.
Gantungan kunci

Keyrings didukung dalam bahasa pemrograman berikut:

• AWS Encryption SDK for C

• AWS Encryption SDK for JavaScript

• AWS Encryption SDK untuk .NET

• Versi 3. x dari AWS Encryption SDK for Java

• Versi 4. x dari AWS Encryption SDK for Python, bila digunakan dengan dependensi Perpustakaan
Penyedia Materi Kriptografi (MPL) opsional.

• Versi 1. x dari AWS Encryption SDK untuk Rust

• Versi 0.1. x atau yang lebih baru AWS Encryption SDK untuk Go

Penyedia kunci master adalah alternatif untuk keyring. Penyedia kunci master mengembalikan kunci
pembungkus (atau kunci master) yang Anda tentukan. Setiap kunci master dikaitkan dengan satu
penyedia kunci master, tetapi penyedia kunci master biasanya menyediakan beberapa kunci master.
Penyedia kunci master didukung di Java, Python, dan AWS CLI Enkripsi.

Anda harus menentukan keyring (atau penyedia kunci utama) untuk enkripsi. Anda dapat
menentukan keyring yang sama (atau penyedia kunci utama), atau yang lain, untuk dekripsi. Saat
mengenkripsi, AWS Encryption SDK menggunakan semua kunci pembungkus yang Anda tentukan
untuk mengenkripsi kunci data. Saat mendekripsi, hanya AWS Encryption SDK menggunakan kunci
pembungkus yang Anda tentukan untuk mendekripsi kunci data terenkripsi. Menentukan kunci
pembungkus untuk dekripsi adalah opsional, tetapi ini adalah praktik terbaik. AWS Encryption SDK

Untuk detail tentang menentukan kunci pembungkus, lihat. Memilih tombol pembungkus

Konteks enkripsi

Untuk meningkatkan keamanan operasi kriptografi Anda, sertakan konteks enkripsi dalam semua
permintaan untuk mengenkripsi data. Menggunakan konteks enkripsi adalah opsional, tetapi ini
adalah praktik terbaik kriptografi yang kami rekomendasikan.

Konteks enkripsi adalah sekumpulan pasangan nama-nilai yang berisi data otentikasi tambahan
non-rahasia yang sewenang-wenang. Konteks enkripsi dapat berisi data apa pun yang Anda pilih,

Konteks enkripsi 11

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Panduan Developerr

tetapi biasanya terdiri dari data yang berguna dalam pencatatan dan pelacakan, seperti data tentang
jenis file, tujuan, atau kepemilikan. Saat Anda mengenkripsi data, konteks enkripsi terikat secara
kriptografis ke data terenkripsi sehingga konteks enkripsi yang sama diperlukan untuk mendekripsi
data. AWS Encryption SDK Termasuk konteks enkripsi dalam plaintext di header pesan terenkripsi
yang dikembalikan.

Konteks enkripsi yang AWS Encryption SDK digunakan terdiri dari konteks enkripsi yang Anda
tentukan dan public key pair yang ditambahkan oleh manajer bahan kriptografi (CMM). Secara
khusus, setiap kali Anda menggunakan algoritma enkripsi dengan penandatanganan, CMM
menambahkan pasangan nama-nilai ke konteks enkripsi yang terdiri dari nama cadanganaws-
crypto-public-key, dan nilai yang mewakili kunci verifikasi publik. aws-crypto-public-
keyNama dalam konteks enkripsi dicadangkan oleh AWS Encryption SDK dan tidak dapat digunakan
sebagai nama dalam pasangan lain dalam konteks enkripsi. Untuk detailnya, lihat AAD di Referensi
Format Pesan.

Contoh konteks enkripsi berikut terdiri dari dua pasangan konteks enkripsi yang ditentukan dalam
permintaan dan public key pair yang ditambahkan CMM.

"Purpose"="Test", "Department"="IT", aws-crypto-public-key=<public key>

Untuk mendekripsi data, Anda meneruskan pesan terenkripsi. Karena AWS Encryption SDK
dapat mengekstrak konteks enkripsi dari header pesan terenkripsi, Anda tidak diharuskan untuk
menyediakan konteks enkripsi secara terpisah. Namun, konteks enkripsi dapat membantu Anda
mengonfirmasi bahwa Anda mendekripsi pesan terenkripsi yang benar.

• Dalam AWS Encryption SDK Command Line Interface (CLI), jika Anda memberikan konteks
enkripsi dalam perintah dekripsi, CLI memverifikasi bahwa nilai-nilai hadir dalam konteks enkripsi
pesan terenkripsi sebelum mengembalikan data plaintext.

• Dalam implementasi bahasa pemrograman lainnya, respon dekripsi mencakup konteks enkripsi
dan data plaintext. Fungsi dekripsi dalam aplikasi Anda harus selalu memverifikasi bahwa konteks
enkripsi dalam respons dekripsi menyertakan konteks enkripsi dalam permintaan enkripsi (atau
subset) sebelum mengembalikan data teks biasa.

Note

Versi berikut mendukung konteks enkripsi CMM yang diperlukan, yang dapat Anda gunakan
untuk memerlukan konteks enkripsi di semua permintaan enkripsi.

Konteks enkripsi 12

AWS Encryption SDK Panduan Developerr

• Versi 3. x dari AWS Encryption SDK for Java

• Versi 4. x dari AWS Encryption SDK untuk .NET

• Versi 4. x dari AWS Encryption SDK for Python, bila digunakan dengan dependensi
Perpustakaan Penyedia Materi Kriptografi (MPL) opsional.

• Versi 1. x dari AWS Encryption SDK untuk Rust

• Versi 0.1. x atau yang lebih baru AWS Encryption SDK untuk Go

Saat memilih konteks enkripsi, ingatlah bahwa itu bukan rahasia. Konteks enkripsi ditampilkan
dalam plaintext di header pesan terenkripsi yang dikembalikan. AWS Encryption SDK Jika Anda
menggunakan AWS Key Management Service, konteks enkripsi juga mungkin muncul dalam teks
biasa dalam catatan audit dan log, seperti. AWS CloudTrail

Untuk contoh mengirimkan dan memverifikasi konteks enkripsi dalam kode Anda, lihat contoh untuk
bahasa pemrograman pilihan Anda.

Pesan terenkripsi

Ketika Anda mengenkripsi data dengan AWS Encryption SDK, ia mengembalikan pesan terenkripsi.

Pesan terenkripsi adalah struktur data berformat portabel yang mencakup data terenkripsi bersama
dengan salinan kunci data terenkripsi, ID algoritma, dan, secara opsional, konteks enkripsi dan tanda
tangan digital. Enkripsi operasi dalam AWS Encryption SDK pengembalian pesan terenkripsi dan
operasi dekripsi mengambil pesan terenkripsi sebagai input.

Menggabungkan data terenkripsi dan kunci data terenkripsi merampingkan operasi dekripsi dan
membebaskan Anda dari keharusan menyimpan dan mengelola kunci data terenkripsi secara
independen dari data yang mereka enkripsi.

Untuk informasi teknis tentang pesan terenkripsi, lihat Format Pesan Terenkripsi.

Suite algoritma

AWS Encryption SDK Menggunakan rangkaian algoritma untuk mengenkripsi dan menandatangani
data dalam pesan terenkripsi yang dikembalikan oleh operasi enkripsi dan dekripsi. AWS Encryption
SDK Mendukung beberapa suite algoritma. Semua suite yang didukung menggunakan Advanced
Encryption Standard (AES) sebagai algoritma utama, dan menggabungkannya dengan algoritme dan
nilai lainnya.

Pesan terenkripsi 13

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Panduan Developerr

AWS Encryption SDK Menetapkan suite algoritma yang direkomendasikan sebagai default untuk
semua operasi enkripsi. Default mungkin berubah seiring dengan peningkatan standar dan praktik
terbaik. Anda dapat menentukan rangkaian algoritme alternatif dalam permintaan untuk mengenkripsi
data atau saat membuat manajer bahan kriptografi (CMM), tetapi kecuali alternatif diperlukan untuk
situasi Anda, yang terbaik adalah menggunakan default. Default saat ini adalah AES-GCM dengan
fungsi derivasi extract-and-expand kunci berbasis HMAC (HKDF), komitmen utama, tanda tangan
Elliptic Curve Digital Signature Algorithm (ECDSA), dan kunci enkripsi 256-bit.

Jika aplikasi Anda memerlukan kinerja tinggi dan pengguna yang mengenkripsi data dan mereka
yang mendekripsi data sama-sama dipercaya, Anda dapat mempertimbangkan untuk menentukan
rangkaian algoritme tanpa tanda tangan digital. Namun, kami sangat merekomendasikan rangkaian
algoritme yang mencakup komitmen kunci dan fungsi derivasi kunci. Suite algoritma tanpa fitur ini
hanya didukung untuk kompatibilitas mundur.

Manajer materi kriptografi

Manajer bahan kriptografi (CMM) merakit bahan kriptografi yang digunakan untuk mengenkripsi
dan mendekripsi data. Materi kriptografi termasuk plaintext dan kunci data terenkripsi, dan kunci
penandatanganan pesan opsional. Anda tidak pernah berinteraksi dengan CMM secara langsung.
Metode enkripsi dan dekripsi menanganinya untuk Anda.

Anda dapat menggunakan CMM default atau CMM caching yang AWS Encryption SDK disediakan,
atau menulis CMM kustom. Dan Anda dapat menentukan CMM, tetapi itu tidak diperlukan. Saat Anda
menentukan keyring atau penyedia kunci master, CMM AWS Encryption SDK default akan dibuat
untuk Anda. CMM default mendapatkan materi enkripsi atau dekripsi dari keyring atau penyedia kunci
utama yang Anda tentukan. Ini mungkin melibatkan panggilan ke layanan kriptografi, seperti AWS
Key Management Service(AWS KMS).

Karena CMM bertindak sebagai penghubung antara keyring AWS Encryption SDK dan keyring (atau
penyedia kunci utama), ini adalah titik ideal untuk penyesuaian dan ekstensi, seperti dukungan untuk
penegakan kebijakan dan caching. AWS Encryption SDK Ini menyediakan CMM caching untuk
mendukung caching kunci data.

Enkripsi simetris dan asimetris

Enkripsi simetris menggunakan kunci yang sama untuk mengenkripsi dan mendekripsi data.

Enkripsi asimetris menggunakan data key pair yang terkait secara matematis. Satu kunci dalam
pasangan mengenkripsi data; hanya kunci lain dalam pasangan yang dapat mendekripsi data.

Manajer materi kriptografi 14

https://en.wikipedia.org/wiki/HKDF
https://en.wikipedia.org/wiki/HKDF
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Encryption SDK Panduan Developerr

AWS Encryption SDK Menggunakan enkripsi amplop. Ini mengenkripsi data Anda dengan kunci data
simetris. Ini mengenkripsi kunci data simetris dengan satu atau lebih tombol pembungkus simetris
atau asimetris. Ia mengembalikan pesan terenkripsi yang mencakup data terenkripsi dan setidaknya
satu salinan kunci data terenkripsi.

Mengenkripsi data Anda (enkripsi simetris)

Untuk mengenkripsi data Anda, AWS Encryption SDK menggunakan kunci data simetris dan
rangkaian algoritma yang menyertakan algoritma enkripsi simetris. Untuk mendekripsi data, AWS
Encryption SDK menggunakan kunci data yang sama dan rangkaian algoritma yang sama.

Mengenkripsi kunci data Anda (enkripsi simetris atau asimetris)

Penyedia keyring atau kunci utama yang Anda berikan ke operasi enkripsi dan dekripsi
menentukan bagaimana kunci data simetris dienkripsi dan didekripsi. Anda dapat memilih keyring
atau penyedia kunci utama yang menggunakan enkripsi simetris, seperti AWS KMS keyring, atau
yang menggunakan enkripsi asimetris, seperti keyring RSA mentah atau. JceMasterKey

Komitmen utama

AWS Encryption SDK Mendukung komitmen kunci (kadang-kadang dikenal sebagai ketahanan),
properti keamanan yang menjamin bahwa setiap ciphertext dapat didekripsi hanya untuk satu
plaintext. Untuk melakukan ini, komitmen utama menjamin bahwa hanya kunci data yang
mengenkripsi pesan Anda yang akan digunakan untuk mendekripsi itu. Mengenkripsi dan
mendekripsi dengan komitmen utama adalah praktik terbaik.AWS Encryption SDK

Sebagian besar cipher simetris modern (termasuk AES) mengenkripsi plaintext di bawah satu kunci
rahasia, seperti kunci data unik yang digunakan untuk mengenkripsi setiap pesan teks biasa. AWS
Encryption SDK Mendekripsi data ini dengan kunci data yang sama mengembalikan plaintext yang
identik dengan aslinya. Mendekripsi dengan kunci yang berbeda biasanya akan gagal. Namun,
dimungkinkan untuk mendekripsi ciphertext di bawah dua kunci yang berbeda. Dalam kasus
yang jarang terjadi, adalah layak untuk menemukan kunci yang dapat mendekripsi beberapa byte
ciphertext menjadi plaintext yang berbeda, tetapi masih dapat dipahami.

AWS Encryption SDK Selalu mengenkripsi setiap pesan teks biasa di bawah satu kunci data unik.
Mungkin mengenkripsi kunci data itu di bawah beberapa kunci pembungkus (atau kunci master),
tetapi kunci pembungkus selalu mengenkripsi kunci data yang sama. Meskipun demikian, pesan
terenkripsi yang canggih dan dibuat secara manual mungkin sebenarnya berisi kunci data yang
berbeda, masing-masing dienkripsi oleh kunci pembungkus yang berbeda. Misalnya, jika satu

Komitmen utama 15

AWS Encryption SDK Panduan Developerr

pengguna mendekripsi pesan terenkripsi, ia mengembalikan 0x0 (false) sementara pengguna lain
yang mendekripsi pesan terenkripsi yang sama mendapat 0x1 (true).

Untuk mencegah skenario ini, AWS Encryption SDK mendukung komitmen utama saat mengenkripsi
dan mendekripsi. Ketika AWS Encryption SDK mengenkripsi pesan dengan komitmen utama,
secara kriptografis mengikat kunci data unik yang menghasilkan ciphertext ke string komitmen
kunci, pengidentifikasi kunci data non-rahasia. Kemudian menyimpan string komitmen utama dalam
metadata pesan terenkripsi. Ketika mendekripsi pesan dengan komitmen utama, AWS Encryption
SDK memverifikasi bahwa kunci data adalah satu-satunya kunci untuk pesan terenkripsi itu. Jika
verifikasi kunci data gagal, operasi dekripsi gagal.

Support untuk komitmen utama diperkenalkan di versi 1.7. x, yang dapat mendekripsi pesan dengan
komitmen utama, tetapi tidak akan mengenkripsi dengan komitmen utama. Anda dapat menggunakan
versi ini untuk sepenuhnya menyebarkan kemampuan untuk mendekripsi ciphertext dengan
komitmen utama. Versi 2.0. x mencakup dukungan penuh untuk komitmen utama. Secara default,
ini mengenkripsi dan mendekripsi hanya dengan komitmen utama. Ini adalah konfigurasi yang ideal
untuk aplikasi yang tidak perlu mendekripsi ciphertext yang dienkripsi oleh versi sebelumnya. AWS
Encryption SDK

Meskipun mengenkripsi dan mendekripsi dengan komitmen utama adalah praktik terbaik, kami
membiarkan Anda memutuskan kapan itu digunakan, dan membiarkan Anda menyesuaikan
kecepatan Anda mengadopsinya. Dimulai pada versi 1.7. x, AWS Encryption SDK mendukung
kebijakan komitmen yang menetapkan rangkaian algoritme default dan membatasi rangkaian
algoritme yang dapat digunakan. Kebijakan ini menentukan apakah data Anda dienkripsi dan
didekripsi dengan komitmen utama.

Komitmen utama menghasilkan pesan terenkripsi yang sedikit lebih besar (+ 30 byte) dan
membutuhkan lebih banyak waktu untuk diproses. Jika aplikasi Anda sangat sensitif terhadap ukuran
atau kinerja, Anda dapat memilih untuk keluar dari komitmen utama. Tetapi lakukan hanya jika Anda
harus.

Untuk informasi selengkapnya tentang migrasi ke versi 1.7. x dan 2.0. x, termasuk fitur komitmen
utama mereka, lihatMigrasi Anda AWS Encryption SDK. Untuk informasi teknis tentang komitmen
utama, lihat the section called “Referensi algoritma” danthe section called “Referensi format pesan”.

Komitmen utama 16

AWS Encryption SDK Panduan Developerr

Kebijakan komitmen

Kebijakan komitmen adalah pengaturan konfigurasi yang menentukan apakah aplikasi Anda
mengenkripsi dan mendekripsi dengan komitmen utama. Mengenkripsi dan mendekripsi dengan
komitmen utama adalah praktik terbaik.AWS Encryption SDK

Kebijakan komitmen memiliki tiga nilai.

Note

Anda mungkin harus menggulir secara horizontal atau vertikal untuk melihat seluruh tabel.

Nilai-nilai kebijakan komitmen

Nilai Enkripsi dengan
komitmen utama

Enkripsi tanpa
komitmen utama

Dekripsi dengan
komitmen utama

Mendekripsi
tanpa komitmen
utama

ForbidEnc
ryptAllowDecrypt

RequireEn
cryptAllo
wDecrypt

RequireEn
cryptRequ
ireDecrypt

Pengaturan kebijakan komitmen diperkenalkan di AWS Encryption SDK versi 1.7. x. Ini berlaku di
semua bahasa pemrograman yang didukung.

• ForbidEncryptAllowDecryptmendekripsi dengan atau tanpa komitmen utama, tetapi tidak
akan mengenkripsi dengan komitmen utama. Nilai ini, diperkenalkan dalam versi 1.7. x, dirancang
untuk mempersiapkan semua host yang menjalankan aplikasi Anda untuk mendekripsi dengan
komitmen utama sebelum mereka menemukan ciphertext yang dienkripsi dengan komitmen utama.

Kebijakan komitmen 17

AWS Encryption SDK Panduan Developerr

• RequireEncryptAllowDecryptselalu mengenkripsi dengan komitmen utama. Itu dapat
mendekripsi dengan atau tanpa komitmen utama. Nilai ini, diperkenalkan dalam versi 2.0. x,
memungkinkan Anda mulai mengenkripsi dengan komitmen utama, tetapi masih mendekripsi
ciphertext lama tanpa komitmen utama.

• RequireEncryptRequireDecryptmengenkripsi dan mendekripsi hanya dengan komitmen
utama. Nilai ini adalah default untuk versi 2.0. x. Gunakan nilai ini ketika Anda yakin bahwa semua
ciphertext Anda dienkripsi dengan komitmen utama.

Pengaturan kebijakan komitmen menentukan rangkaian algoritme mana yang dapat Anda gunakan.
Dimulai pada versi 1.7. x, AWS Encryption SDK mendukung rangkaian algoritma untuk komitmen
utama; dengan dan tanpa penandatanganan. Jika Anda menentukan rangkaian algoritme yang
bertentangan dengan kebijakan komitmen Anda, AWS Encryption SDK kesalahan akan ditampilkan.

Untuk bantuan menetapkan kebijakan komitmen Anda, lihatMenetapkan kebijakan komitmen Anda.

Tanda tangan digital

AWS Encryption SDK Enkripsi data Anda menggunakan algoritma enkripsi yang diautentikasi,
AES-GCM, dan proses dekripsi memverifikasi integritas dan keaslian pesan terenkripsi tanpa
menggunakan tanda tangan digital. Tetapi karena AES-GCM menggunakan kunci simetris, siapa pun
yang dapat mendekripsi kunci data yang digunakan untuk mendekripsi ciphertext juga dapat secara
manual membuat ciphertext terenkripsi baru, yang menyebabkan masalah keamanan potensial.
Misalnya, jika Anda menggunakan AWS KMS key sebagai kunci pembungkus, pengguna dengan
kms:Decrypt izin dapat membuat ciphertext terenkripsi tanpa menelepon. kms:Encrypt

Untuk menghindari masalah ini, AWS Encryption SDK dukungan menambahkan tanda tangan Elliptic
Curve Digital Signature Algorithm (ECDSA) ke akhir pesan terenkripsi. Ketika rangkaian algoritma
penandatanganan digunakan, akan AWS Encryption SDK menghasilkan kunci pribadi sementara
dan public key pair untuk setiap pesan terenkripsi. AWS Encryption SDK Menyimpan kunci publik
dalam konteks enkripsi kunci data dan membuang kunci pribadi. Ini memastikan bahwa tidak ada
yang dapat membuat tanda tangan lain yang memverifikasi dengan kunci publik. Algoritma mengikat
kunci publik ke kunci data terenkripsi sebagai data otentikasi tambahan di header pesan, mencegah
pengguna yang hanya dapat mendekripsi pesan dari mengubah kunci publik atau memengaruhi
verifikasi tanda tangan.

Verifikasi tanda tangan menambahkan biaya kinerja yang signifikan pada dekripsi. Jika pengguna
mengenkripsi data dan pengguna yang mendekripsi data sama-sama dipercaya, pertimbangkan
untuk menggunakan rangkaian algoritme yang tidak menyertakan penandatanganan.

Tanda tangan digital 18

AWS Encryption SDK Panduan Developerr

Note

Jika keyring atau akses ke materi kriptografi pembungkus tidak menggambarkan antara
enkripsi dan dekripsi, tanda tangan digital tidak memberikan nilai kriptografi.

AWS KMS keyrings, termasuk AWS KMS keyring RSA asimetris, dapat menggambarkan antara
enkripsi dan dekripsi berdasarkan kebijakan utama dan kebijakan IAM. AWS KMS

Karena sifat kriptografinya, gantungan kunci berikut tidak dapat menggambarkan antara enkripsi dan
dekripsi:

• AWS KMS Gantungan kunci hierarkis

• AWS KMS Gantungan kunci ECDH

• Gantungan kunci AES mentah

• Gantungan kunci RSA mentah

• Gantungan kunci ECDH mentah

Bagaimana cara AWS Encryption SDK kerjanya
Alur kerja di bagian ini menjelaskan cara AWS Encryption SDK mengenkripsi data dan mendekripsi
pesan terenkripsi. Alur kerja ini menjelaskan proses dasar menggunakan fitur default. Untuk detail
tentang mendefinisikan dan menggunakan komponen kustom, lihat GitHub repositori untuk setiap
implementasi bahasa yang didukung.

AWS Encryption SDK Menggunakan enkripsi amplop untuk melindungi data Anda. Setiap pesan
dienkripsi di bawah kunci data unik. Kemudian kunci data dienkripsi oleh kunci pembungkus
yang Anda tentukan. Untuk mendekripsi pesan terenkripsi, AWS Encryption SDK menggunakan
kunci pembungkus yang Anda tentukan untuk mendekripsi setidaknya satu kunci data terenkripsi.
Kemudian dapat mendekripsi ciphertext dan mengembalikan pesan teks biasa.

Butuh bantuan dengan terminologi yang kita gunakan di? AWS Encryption SDK Lihat the section
called “Konsep”.

Bagaimana AWS Encryption SDK mengenkripsi data

AWS Encryption SDK Ini menyediakan metode yang mengenkripsi string, array byte, dan aliran byte.
Untuk contoh kode, lihat topik Contoh di setiap Bahasa pemrograman bagian.

Cara kerja SDK 19

AWS Encryption SDK Panduan Developerr

1. Buat keyring (atau penyedia kunci utama) yang menentukan kunci pembungkus yang melindungi
data Anda.

2. Teruskan data keyring dan plaintext ke metode enkripsi. Kami menyarankan Anda meneruskan
konteks enkripsi opsional dan non-rahasia.

3. Metode enkripsi meminta keyring untuk bahan enkripsi. Keyring mengembalikan kunci enkripsi
data unik untuk pesan: satu kunci data teks biasa dan satu salinan kunci data yang dienkripsi oleh
masing-masing kunci pembungkus yang ditentukan.

4. Metode enkripsi menggunakan kunci data plaintext untuk mengenkripsi data, dan kemudian
membuang kunci data plaintext. Jika Anda menyediakan konteks enkripsi (praktik AWS Encryption
SDK terbaik), metode enkripsi secara kriptografis mengikat konteks enkripsi ke data terenkripsi.

5. Metode enkripsi mengembalikan pesan terenkripsi yang berisi data terenkripsi, kunci data
terenkripsi, dan metadata lainnya, termasuk konteks enkripsi, jika Anda menggunakannya.

Bagaimana AWS Encryption SDK mendekripsi pesan terenkripsi

AWS Encryption SDK Menyediakan metode yang mendekripsi pesan terenkripsi dan mengembalikan
plaintext. Untuk contoh kode, lihat topik Contoh di setiap Bahasa pemrograman bagian.

Keyring (atau penyedia kunci utama) yang mendekripsi pesan terenkripsi harus kompatibel
dengan yang digunakan untuk mengenkripsi pesan. Salah satu kunci pembungkusnya harus dapat
mendekripsi kunci data terenkripsi dalam pesan terenkripsi. Untuk informasi tentang kompatibilitas
dengan keyrings dan penyedia kunci utama, lihatthe section called “Kompatibilitas keyring”.

1. Buat keyring atau penyedia kunci master dengan kunci pembungkus yang dapat mendekripsi
data Anda. Anda dapat menggunakan keyring yang sama dengan yang Anda berikan ke metode
enkripsi atau yang berbeda.

2. Teruskan pesan terenkripsi dan keyring ke metode dekripsi.

3. Metode dekripsi meminta keyring atau penyedia kunci master untuk mendekripsi salah satu
kunci data terenkripsi dalam pesan terenkripsi. Ini meneruskan informasi dari pesan terenkripsi,
termasuk kunci data terenkripsi.

4. Keyring menggunakan kunci pembungkusnya untuk mendekripsi salah satu kunci data terenkripsi.
Jika berhasil, responsnya menyertakan kunci data plaintext. Jika tidak ada kunci pembungkus
yang ditentukan oleh keyring atau penyedia kunci master dapat mendekripsi kunci data terenkripsi,
panggilan dekripsi gagal.

Bagaimana AWS Encryption SDK mendekripsi pesan terenkripsi 20

AWS Encryption SDK Panduan Developerr

5. Metode dekripsi menggunakan kunci data plaintext untuk mendekripsi data, membuang kunci data
plaintext, dan mengembalikan data plaintext.

Suite algoritma yang didukung di AWS Encryption SDK

Sebuah algoritma suite adalah kumpulan algoritma kriptografi dan nilai-nilai terkait. Sistem kriptografi
menggunakan implementasi algoritma untuk menghasilkan pesan ciphertext.

Rangkaian AWS Encryption SDK algoritma menggunakan algoritma Advanced Encryption Standard
(AES) dalam Galois/Counter Mode (GCM), yang dikenal sebagai AES-GCM, untuk mengenkripsi
data mentah. AWS Encryption SDK Mendukung kunci enkripsi 256-bit, 192-bit, dan 128-bit. Panjang
vektor inisialisasi (IV) selalu 12 byte. Panjang tag otentikasi selalu 16 byte.

Secara default, AWS Encryption SDK menggunakan rangkaian algoritma dengan AES-GCM dengan
fungsi derivasi extract-and-expand kunci berbasis HMAC (HKDF), penandatanganan, dan kunci
enkripsi 256-bit. Jika kebijakan komitmen memerlukan komitmen utama, AWS Encryption SDK
memilih rangkaian algoritme yang juga mendukung komitmen utama; jika tidak, ia memilih rangkaian
algoritme dengan derivasi dan penandatanganan kunci, tetapi bukan komitmen utama.

Direkomendasikan: AES-GCM dengan derivasi kunci, penandatanganan,
dan komitmen utama

Ini AWS Encryption SDK merekomendasikan rangkaian algoritma yang memperoleh kunci enkripsi
AES-GCM dengan memasok kunci enkripsi data 256-bit ke fungsi derivasi kunci berbasis HMAC
(extract-and-expandHKDF). AWS Encryption SDK Menambahkan tanda tangan Elliptic Curve
Digital Signature Algorithm (ECDSA). Untuk mendukung komitmen utama, rangkaian algoritme
ini juga memperoleh string komitmen utama — pengidentifikasi kunci data non-rahasia — yang
disimpan dalam metadata pesan terenkripsi. String komitmen kunci ini juga diturunkan melalui HKDF
menggunakan prosedur yang mirip dengan menurunkan kunci enkripsi data.

Suite algoritma yang didukung 21

https://en.wikipedia.org/wiki/HKDF

AWS Encryption SDK Panduan Developerr

AWS Encryption SDK Suite Algoritma

Enkripsi
algoritme

Panjang kunci
enkripsi data
(dalam bit)

Algoritma
derivasi kunci

Algoritma tanda
tangan

Komitmen utama

AES-GCM 256 HKDF dengan
SHA-384

ECDSA dengan
P-384 dan
SHA-384

HKDF dengan
SHA-512

HKDF membantu Anda menghindari penggunaan kembali kunci enkripsi data yang tidak disengaja
dan mengurangi risiko penggunaan kunci data secara berlebihan.

Untuk penandatanganan, rangkaian algoritma ini menggunakan ECDSA dengan algoritma fungsi
hash kriptografi (SHA-384). ECDSA digunakan secara default, meskipun tidak ditentukan oleh
kebijakan untuk kunci master yang mendasarinya. Penandatanganan pesan memverifikasi bahwa
pengirim pesan diberi wewenang untuk mengenkripsi pesan dan memberikan non-penolakan. Hal
ini sangat berguna ketika kebijakan otorisasi untuk kunci master memungkinkan satu set pengguna
untuk mengenkripsi data dan satu set pengguna yang berbeda untuk mendekripsi data.

Rangkaian algoritma dengan komitmen utama memastikan bahwa setiap ciphertext mendekripsi
hanya satu teks biasa. Mereka melakukan ini dengan memvalidasi identitas kunci data yang
digunakan sebagai input ke algoritma enkripsi. Saat mengenkripsi, rangkaian algoritma ini
memperoleh string komitmen utama. Sebelum mendekripsi, mereka memvalidasi bahwa kunci data
cocok dengan string komitmen kunci. Jika tidak, panggilan dekripsi gagal.

Suite algoritma lain yang didukung

AWS Encryption SDK Mendukung rangkaian algoritma alternatif berikut untuk kompatibilitas mundur.
Secara umum, kami tidak merekomendasikan suite algoritma ini. Namun, kami menyadari bahwa
penandatanganan dapat menghambat kinerja secara signifikan, jadi kami menawarkan rangkaian
komitmen utama dengan derivasi kunci untuk kasus-kasus tersebut. Untuk aplikasi yang harus
membuat pengorbanan kinerja yang lebih signifikan, kami terus menawarkan suite yang tidak
memiliki penandatanganan, komitmen utama, dan derivasi kunci.

AES-GCM tanpa komitmen utama

Suite algoritma tanpa komitmen kunci tidak memvalidasi kunci data sebelum mendekripsi.
Akibatnya, rangkaian algoritma ini dapat mendekripsi satu ciphertext menjadi pesan teks biasa

Suite algoritma lain yang didukung 22

AWS Encryption SDK Panduan Developerr

yang berbeda. Namun, karena rangkaian algoritma dengan komitmen utama menghasilkan pesan
terenkripsi yang sedikit lebih besar (+30 byte) dan membutuhkan waktu lebih lama untuk diproses,
mereka mungkin bukan pilihan terbaik untuk setiap aplikasi.

Ini AWS Encryption SDK mendukung rangkaian algoritme dengan derivasi kunci, komitmen
utama, penandatanganan, dan satu dengan derivasi kunci dan komitmen utama, tetapi tidak
menandatangani. Kami tidak menyarankan menggunakan rangkaian algoritma tanpa komitmen
utama. Jika Anda harus, kami merekomendasikan rangkaian algoritme dengan derivasi kunci dan
komitmen kunci, tetapi tidak menandatangani. Namun, jika profil kinerja aplikasi Anda mendukung
penggunaan rangkaian algoritme, menggunakan rangkaian algoritme dengan komitmen utama,
derivasi kunci, dan penandatanganan adalah praktik terbaik.

AES-GCM tanpa penandatanganan

Suite algoritma tanpa penandatanganan tidak memiliki tanda tangan ECDSA yang memberikan
keaslian dan non-penolakan. Gunakan suite ini hanya ketika pengguna yang mengenkripsi data
dan mereka yang mendekripsi data sama-sama dipercaya.

Saat menggunakan rangkaian algoritme tanpa penandatanganan, kami sarankan Anda memilih
satu dengan derivasi kunci dan komitmen kunci.

AES-GCM tanpa derivasi kunci

Suite algoritma tanpa derivasi kunci menggunakan kunci enkripsi data sebagai kunci enkripsi
AES-GCM, alih-alih menggunakan fungsi derivasi kunci untuk mendapatkan kunci unik. Kami
tidak menyarankan menggunakan suite ini untuk menghasilkan ciphertext, tetapi AWS Encryption
SDK mendukungnya untuk alasan kompatibilitas.

Untuk informasi lebih lanjut tentang bagaimana suite ini diwakili dan digunakan di perpustakaan,
lihatthe section called “Referensi algoritma”.

Suite algoritma lain yang didukung 23

AWS Encryption SDK Panduan Developerr

Menggunakan AWS Encryption SDK dengan AWS KMS

Untuk menggunakan AWS Encryption SDK, Anda perlu mengkonfigurasi keyrings atau penyedia
kunci master dengan kunci pembungkus. Jika Anda tidak memiliki infrastruktur utama, sebaiknya
gunakan AWS Key Management Service (AWS KMS). Banyak contoh kode di AWS Encryption SDK
require an AWS KMS key.

Untuk berinteraksi AWS KMS, AWS Encryption SDK diperlukan AWS SDK untuk bahasa
pemrograman pilihan Anda. Pustaka AWS Encryption SDK klien bekerja dengan AWS SDKs untuk
mendukung kunci master yang disimpan di AWS KMS.

Untuk mempersiapkan untuk menggunakan AWS Encryption SDK dengan AWS KMS

1. Buat sebuah Akun AWS. Untuk mempelajari caranya, lihat Bagaimana cara membuat dan
mengaktifkan akun Amazon Web Services baru? di pusat AWS pengetahuan.

2. Buat enkripsi AWS KMS key simetris. Untuk bantuan, lihat Membuat Kunci di Panduan AWS Key
Management Service Pengembang.

Tip

Untuk menggunakan AWS KMS key pemrograman, Anda akan memerlukan ID kunci
atau Nama Sumber Daya Amazon (ARN) dari file. AWS KMS keyUntuk bantuan
menemukan ID atau ARN AWS KMS key, lihat Menemukan ID Kunci dan ARN di
Panduan Pengembang.AWS Key Management Service

3. Hasilkan ID kunci akses dan kunci akses keamanan. Anda dapat menggunakan ID kunci akses
dan kunci akses rahasia untuk pengguna IAM atau Anda dapat menggunakan AWS Security
Token Service untuk membuat sesi baru dengan kredenal keamanan sementara yang mencakup
ID kunci akses, kunci akses rahasia, dan token sesi. Sebagai praktik keamanan terbaik, kami
menyarankan Anda menggunakan kredenal sementara alih-alih kredensi jangka panjang yang
terkait dengan pengguna IAM atau akun pengguna AWS (root) Anda.

Untuk membuat pengguna IAM dengan kunci akses, lihat Membuat Pengguna IAM di Panduan
Pengguna IAM.

Untuk menghasilkan kredenal keamanan sementara, lihat Meminta kredenal keamanan
sementara di Panduan Pengguna IAM.

24

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html

AWS Encryption SDK Panduan Developerr

4. Tetapkan AWS kredensi Anda menggunakan instruksi di AWS SDK for Java, AWS SDK for
JavaScript, AWS SDK untuk Python (Boto)atau AWS SDK untuk C++(untuk C), dan ID kunci
akses dan kunci akses rahasia yang Anda buat di langkah 3. Jika Anda membuat kredensi
sementara, Anda juga perlu menentukan token sesi.

Prosedur ini memungkinkan AWS SDKs untuk menandatangani permintaan AWS untuk Anda.
Contoh kode dalam AWS Encryption SDK yang berinteraksi dengan AWS KMS berasumsi
bahwa Anda telah menyelesaikan langkah ini.

5. Unduh dan instal AWS Encryption SDK. Untuk mempelajari caranya, lihat petunjuk penginstalan
untuk bahasa pemrograman yang ingin Anda gunakan.

25

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials.html
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/setting-credentials.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html#guide-configuration
https://docs.aws.amazon.com/sdk-for-cpp/latest/developer-guide/credentials.html

AWS Encryption SDK Panduan Developerr

Praktik terbaik untuk AWS Encryption SDK
AWS Encryption SDK Ini dirancang untuk memudahkan Anda melindungi data Anda menggunakan
standar industri dan praktik terbaik. Meskipun banyak praktik terbaik dipilih untuk Anda dalam nilai
default, beberapa praktik bersifat opsional tetapi disarankan kapan pun praktis.

Gunakan versi terbaru

Saat Anda mulai menggunakan AWS Encryption SDK, gunakan versi terbaru yang ditawarkan
dalam bahasa pemrograman pilihan Anda. Jika Anda telah menggunakan AWS Encryption SDK,
tingkatkan ke setiap versi terbaru sesegera mungkin. Ini memastikan bahwa Anda menggunakan
konfigurasi yang disarankan dan memanfaatkan properti keamanan baru untuk melindungi data
Anda. Untuk detail tentang versi yang didukung, termasuk panduan untuk migrasi dan penerapan,
lihat Support dan pemeliharaan danVersi dari AWS Encryption SDK.

Jika versi baru menghentikan elemen dalam kode Anda, ganti mereka sesegera mungkin.
Peringatan penghentian dan komentar kode biasanya merekomendasikan alternatif yang baik.

Untuk membuat peningkatan signifikan lebih mudah dan tidak rentan terhadap kesalahan, kami
sesekali menyediakan rilis sementara atau transisi. Gunakan rilis ini, dan dokumentasi yang
menyertainya, untuk memastikan bahwa Anda dapat meningkatkan aplikasi tanpa mengganggu
alur kerja produksi Anda.

Gunakan nilai default

AWS Encryption SDK Desain praktik terbaik ke dalam nilai defaultnya. Kapan pun memungkinkan,
gunakan mereka. Untuk kasus di mana default tidak praktis, kami menyediakan alternatif, seperti
rangkaian algoritma tanpa penandatanganan. Kami juga memberikan kesempatan kepada
pengguna tingkat lanjut untuk kustomisasi, seperti gantungan kunci khusus, penyedia kunci
utama, dan manajer materi kriptografi ()CMMs. Gunakan alternatif canggih ini dengan hati-hati
dan mintalah pilihan Anda diverifikasi oleh insinyur keamanan bila memungkinkan.

Gunakan konteks enkripsi

Untuk meningkatkan keamanan operasi kriptografi Anda, sertakan konteks enkripsi dengan
nilai yang berarti dalam semua permintaan untuk mengenkripsi data. Menggunakan konteks
enkripsi adalah opsional, tetapi ini adalah praktik terbaik kriptografi yang kami rekomendasikan.
Konteks enkripsi menyediakan data otentikasi tambahan (AAD) untuk enkripsi yang diautentikasi
di file. AWS Encryption SDK Meskipun bukan rahasia, konteks enkripsi dapat membantu Anda
melindungi integritas dan keaslian data terenkripsi Anda.

26

https://aws.amazon.com/blogs/security/how-to-protect-the-integrity-of-your-encrypted-data-by-using-aws-key-management-service-and-encryptioncontext/

AWS Encryption SDK Panduan Developerr

Dalam AWS Encryption SDK, Anda menentukan konteks enkripsi hanya saat mengenkripsi. Saat
mendekripsi, AWS Encryption SDK menggunakan konteks enkripsi di header pesan terenkripsi
yang dikembalikan. AWS Encryption SDK Sebelum aplikasi Anda mengembalikan data teks biasa,
verifikasi bahwa konteks enkripsi yang Anda gunakan untuk mengenkripsi pesan disertakan
dalam konteks enkripsi yang digunakan untuk mendekripsi pesan. Untuk detailnya, lihat contoh
dalam bahasa pemrograman Anda.

Saat Anda menggunakan antarmuka baris perintah, AWS Encryption SDK memverifikasi konteks
enkripsi untuk Anda.

Lindungi kunci pembungkus Anda

Ini AWS Encryption SDK menghasilkan kunci data unik untuk mengenkripsi setiap pesan teks
biasa. Kemudian mengenkripsi kunci data dengan kunci pembungkus yang Anda berikan. Jika
kunci pembungkus Anda hilang atau dihapus, data terenkripsi Anda tidak dapat dipulihkan. Jika
kunci Anda tidak diamankan, data Anda mungkin rentan.

Gunakan kunci pembungkus yang dilindungi oleh infrastruktur kunci aman, seperti AWS Key
Management Service(AWS KMS). Saat menggunakan kunci AES mentah atau RSA mentah,
gunakan sumber keacakan dan penyimpanan tahan lama yang memenuhi persyaratan keamanan
Anda. Membuat dan menyimpan kunci pembungkus dalam modul keamanan perangkat keras
(HSM), atau layanan yang menyediakan HSMs, seperti AWS CloudHSM, adalah praktik terbaik.

Gunakan mekanisme otorisasi infrastruktur kunci Anda untuk membatasi akses ke kunci
pembungkus Anda hanya untuk pengguna yang membutuhkannya. Menerapkan prinsip-prinsip
praktik terbaik, seperti hak istimewa paling sedikit. Saat menggunakan AWS KMS keys, gunakan
kebijakan utama dan kebijakan IAM yang menerapkan prinsip-prinsip praktik terbaik.

Tentukan kunci pembungkus Anda

Itu selalu merupakan praktik terbaik untuk menentukan kunci pembungkus Anda secara eksplisit
saat mendekripsi, serta mengenkripsi. Ketika Anda melakukannya, hanya AWS Encryption
SDK menggunakan kunci yang Anda tentukan. Praktik ini memastikan bahwa Anda hanya
menggunakan kunci enkripsi yang Anda inginkan. Untuk AWS KMS membungkus kunci, ini
juga meningkatkan kinerja dengan mencegah Anda menggunakan kunci secara tidak sengaja
di wilayah Akun AWS atau yang berbeda, atau mencoba mendekripsi dengan kunci yang tidak
memiliki izin untuk digunakan.

Saat mengenkripsi, gantungan kunci dan penyedia kunci utama yang diperlukan AWS Encryption
SDK persediaan agar Anda menentukan kunci pembungkus. Mereka menggunakan semua
dan hanya kunci pembungkus yang Anda tentukan. Anda juga diminta untuk menentukan

27

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/iam-policies.html#iam-policies-best-practices

AWS Encryption SDK Panduan Developerr

kunci pembungkus saat mengenkripsi dan mendekripsi dengan gantungan kunci AES mentah,
gantungan kunci RSA mentah, dan Kunci. JCEMaster

Namun, saat mendekripsi dengan AWS KMS keyrings dan penyedia kunci master, Anda tidak
diharuskan menentukan kunci pembungkus. AWS Encryption SDK Bisa mendapatkan pengenal
kunci dari metadata kunci data terenkripsi. Tetapi menentukan kunci pembungkus adalah praktik
terbaik yang kami rekomendasikan.

Untuk mendukung praktik terbaik ini saat bekerja dengan kunci AWS KMS pembungkus, kami
merekomendasikan hal berikut:

• Gunakan AWS KMS keyrings yang menentukan tombol pembungkus. Saat mengenkripsi dan
mendekripsi, gantungan kunci ini hanya menggunakan kunci pembungkus tertentu yang Anda
tentukan.

• Saat menggunakan kunci AWS KMS master dan penyedia kunci master, gunakan konstruktor
mode ketat yang diperkenalkan di versi 1.7. x dari AWS Encryption SDK. Mereka membuat
penyedia yang mengenkripsi dan mendekripsi hanya dengan kunci pembungkus yang Anda
tentukan. Konstruktor untuk penyedia kunci master yang selalu mendekripsi dengan kunci
pembungkus apa pun tidak digunakan lagi di versi 1.7. x dan dihapus dalam versi 2.0. x.

Saat menentukan kunci AWS KMS pembungkus untuk mendekripsi tidak praktis, Anda dapat
menggunakan penyedia penemuan. AWS Encryption SDK Di C dan JavaScript mendukung
keyrings AWS KMS penemuan. Penyedia kunci master dengan mode penemuan tersedia
untuk Java dan Python dalam versi 1.7. x dan kemudian. Penyedia penemuan ini, yang
hanya digunakan untuk mendekripsi dengan kunci AWS KMS pembungkus, secara eksplisit
mengarahkan AWS Encryption SDK untuk menggunakan kunci pembungkus apa pun yang
mengenkripsi kunci data.

Jika Anda harus menggunakan penyedia penemuan, gunakan fitur filter penemuannya untuk
membatasi kunci pembungkus yang mereka gunakan. Misalnya, keyring penemuan AWS
KMS regional hanya menggunakan kunci pembungkus tertentu. Wilayah AWS Anda juga
dapat mengonfigurasi AWS KMS keyrings dan penyedia kunci AWS KMS master untuk hanya
menggunakan kunci pembungkus pada khususnya. Akun AWS Juga, seperti biasa, gunakan
kebijakan utama dan kebijakan IAM untuk mengontrol akses ke kunci AWS KMS pembungkus
Anda.

Gunakan tanda tangan digital

Ini adalah praktik terbaik untuk menggunakan rangkaian algoritma dengan penandatanganan.
Tanda tangan digital memverifikasi bahwa pengirim pesan diberi wewenang untuk mengirim

28

AWS Encryption SDK Panduan Developerr

pesan dan melindungi integritas pesan. Semua versi suite algoritma AWS Encryption SDK
penggunaan dengan penandatanganan secara default.

Jika persyaratan keamanan Anda tidak menyertakan tanda tangan digital, Anda dapat memilih
rangkaian algoritme tanpa tanda tangan digital. Namun, kami merekomendasikan penggunaan
tanda tangan digital, terutama ketika satu kelompok pengguna mengenkripsi data dan kumpulan
pengguna yang berbeda mendekripsi data tersebut.

Gunakan komitmen utama

Ini adalah praktik terbaik untuk menggunakan fitur keamanan komitmen utama. Dengan
memverifikasi identitas kunci data unik yang mengenkripsi data Anda, komitmen kunci mencegah
Anda mendekripsi ciphertext apa pun yang dapat menghasilkan lebih dari satu pesan teks biasa.

AWS Encryption SDK Ini memberikan dukungan penuh untuk mengenkripsi dan mendekripsi
dengan komitmen utama yang dimulai pada versi 2.0. x. Secara default, semua pesan Anda
dienkripsi dan didekripsi dengan komitmen utama. Versi 1.7. x dari AWS Encryption SDK kaleng
mendekripsi ciphertext dengan komitmen utama. Ini dirancang untuk membantu pengguna versi
sebelumnya menyebarkan versi 2.0. x berhasil.

Support for key commitment mencakup rangkaian algoritma baru dan format pesan baru yang
menghasilkan ciphertext hanya 30 byte lebih besar dari ciphertext tanpa komitmen kunci.
Desain meminimalkan dampaknya pada kinerja sehingga sebagian besar pengguna dapat
menikmati manfaat dari komitmen utama. Jika aplikasi Anda sangat sensitif terhadap ukuran dan
kinerja, Anda dapat memutuskan untuk menggunakan pengaturan kebijakan komitmen untuk
menonaktifkan komitmen utama atau mengizinkan AWS Encryption SDK untuk mendekripsi
pesan tanpa komitmen, tetapi melakukannya hanya jika Anda harus.

Batasi jumlah kunci data terenkripsi

Ini adalah praktik terbaik untuk membatasi jumlah kunci data terenkripsi dalam pesan yang Anda
dekripsi, terutama pesan dari sumber yang tidak tepercaya. Mendekripsi pesan dengan banyak
kunci data terenkripsi yang tidak dapat Anda dekripsi dapat menyebabkan penundaan yang
diperpanjang, menghabiskan biaya, membatasi aplikasi Anda dan orang lain yang berbagi akun
Anda, dan berpotensi menghabiskan infrastruktur utama Anda. Tanpa batas, pesan terenkripsi
dapat memiliki hingga 65.535 (2^16 - 1) kunci data terenkripsi. Lihat perinciannya di Membatasi
kunci data terenkripsi.

29

AWS Encryption SDK Panduan Developerr

Untuk informasi selengkapnya tentang fitur AWS Encryption SDK keamanan yang mendasari
praktik terbaik ini, lihat Peningkatan enkripsi sisi klien: Komitmen eksplisit KeyIds dan kunci di Blog
Keamanan.AWS

30

https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK Panduan Developerr

Mengkonfigurasi AWS Encryption SDK

AWS Encryption SDK Ini dirancang agar mudah digunakan. Meskipun AWS Encryption SDK memiliki
beberapa opsi konfigurasi, nilai default dipilih dengan cermat agar praktis dan aman untuk sebagian
besar aplikasi. Namun, Anda mungkin perlu menyesuaikan konfigurasi untuk meningkatkan kinerja
atau menyertakan fitur khusus dalam desain Anda.

Saat mengonfigurasi implementasi Anda, tinjau praktik AWS Encryption SDK terbaik dan terapkan
sebanyak yang Anda bisa.

Topik

• Memilih bahasa pemrograman

• Memilih tombol pembungkus

• Menggunakan Multi-region AWS KMS keys

• Memilih rangkaian algoritme

• Membatasi kunci data terenkripsi

• Membuat filter penemuan

• Mengkonfigurasi konteks enkripsi yang diperlukan CMM

• Menetapkan kebijakan komitmen

• Bekerja dengan data streaming

• Menyembunyikan kunci data

Memilih bahasa pemrograman

AWS Encryption SDK Ini tersedia dalam berbagai bahasa pemrograman. Implementasi bahasa
dirancang untuk sepenuhnya dapat dioperasikan dan menawarkan fitur yang sama, meskipun
mereka mungkin diimplementasikan dengan cara yang berbeda. Biasanya, Anda menggunakan
perpustakaan yang kompatibel dengan aplikasi Anda. Namun, Anda dapat memilih bahasa
pemrograman untuk implementasi tertentu. Misalnya, jika Anda lebih suka bekerja dengan gantungan
kunci, Anda dapat memilih AWS Encryption SDK for C atau. AWS Encryption SDK for JavaScript

Memilih bahasa pemrograman 31

AWS Encryption SDK Panduan Developerr

Memilih tombol pembungkus

Ini AWS Encryption SDK menghasilkan kunci data simetris yang unik untuk mengenkripsi setiap
pesan. Kecuali Anda menggunakan caching kunci data, Anda tidak perlu mengkonfigurasi,
mengelola, atau menggunakan kunci data. Yang AWS Encryption SDK melakukannya untuk Anda.

Namun, Anda harus memilih satu atau lebih kunci pembungkus untuk mengenkripsi setiap kunci data.
AWS Encryption SDK Mendukung tombol simetris AES dan tombol asimetris RSA dalam berbagai
ukuran. Ini juga mendukung enkripsi AWS KMS keys simetris AWS Key Management Service(AWS
KMS). Anda bertanggung jawab atas keamanan dan daya tahan kunci pembungkus Anda, jadi kami
sarankan Anda menggunakan kunci enkripsi dalam modul keamanan perangkat keras atau layanan
infrastruktur utama, seperti AWS KMS.

Untuk menentukan kunci pembungkus Anda untuk enkripsi dan dekripsi, Anda menggunakan keyring
(C, Java,, .NET JavaScript, dan Python) atau penyedia kunci master (Java, Python, Encryption
CLI). AWS Anda dapat menentukan satu kunci pembungkus atau beberapa kunci pembungkus
dari jenis yang sama atau berbeda. Jika Anda menggunakan beberapa kunci pembungkus untuk
membungkus kunci data, setiap kunci pembungkus akan mengenkripsi salinan kunci data yang
sama. Kunci data terenkripsi (satu per kunci pembungkus) disimpan dengan data terenkripsi dalam
pesan terenkripsi yang dikembalikan. AWS Encryption SDK Untuk mendekripsi data, pertama-tama
AWS Encryption SDK harus menggunakan salah satu kunci pembungkus Anda untuk mendekripsi
kunci data terenkripsi.

Untuk menentukan AWS KMS key dalam keyring atau penyedia kunci utama, gunakan pengenal
AWS KMS kunci yang didukung. Untuk detail tentang pengidentifikasi kunci untuk AWS KMS kunci,
lihat Pengidentifikasi Kunci di Panduan AWS Key Management Service Pengembang.

• Saat mengenkripsi dengan AWS Encryption SDK for Java,, AWS Encryption SDK for
JavaScript, atau AWS CLI Enkripsi AWS Encryption SDK for Python, Anda dapat menggunakan
pengidentifikasi kunci yang valid (ID kunci, ARN kunci, nama alias, atau alias ARN) untuk kunci
KMS. Saat mengenkripsi dengan AWS Encryption SDK for C, Anda hanya dapat menggunakan ID
kunci atau kunci ARN.

Jika Anda menentukan nama alias atau alias ARN untuk kunci KMS saat mengenkripsi,
menyimpan kunci ARN saat ini terkait dengan alias AWS Encryption SDK itu; itu tidak menyimpan
alias. Perubahan pada alias tidak memengaruhi kunci KMS yang digunakan untuk mendekripsi
kunci data Anda.

Memilih tombol pembungkus 32

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Panduan Developerr

• Saat mendekripsi dalam mode ketat (di mana Anda menentukan kunci pembungkus tertentu), Anda
harus menggunakan ARN kunci untuk mengidentifikasi. AWS KMS keys Persyaratan ini berlaku
untuk semua implementasi bahasa dari. AWS Encryption SDK

Ketika Anda mengenkripsi dengan AWS KMS keyring, AWS Encryption SDK menyimpan ARN
kunci AWS KMS key dalam metadata kunci data terenkripsi. Saat mendekripsi dalam mode
ketat, AWS Encryption SDK memverifikasi bahwa ARN kunci yang sama muncul di keyring (atau
penyedia kunci utama) sebelum mencoba menggunakan kunci pembungkus untuk mendekripsi
kunci data terenkripsi. Jika Anda menggunakan pengenal kunci yang berbeda, tidak AWS
Encryption SDK akan mengenali atau menggunakan AWS KMS key, bahkan jika pengidentifikasi
merujuk ke kunci yang sama.

Untuk menentukan kunci AES mentah atau key pair RSA mentah sebagai kunci pembungkus dalam
keyring, Anda harus menentukan namespace dan nama. Dalam penyedia kunci master, Provider
ID adalah setara dengan namespace dan setara dengan nama. Key ID Saat mendekripsi, Anda
harus menggunakan namespace dan nama yang sama persis untuk setiap kunci pembungkus
mentah seperti yang Anda gunakan saat mengenkripsi. Jika Anda menggunakan namespace
atau nama yang berbeda, tidak AWS Encryption SDK akan mengenali atau menggunakan kunci
pembungkus, meskipun materi kuncinya sama.

Menggunakan Multi-region AWS KMS keys

Anda dapat menggunakan AWS Key Management Service (AWS KMS) Tombol multi-region sebagai
kunci pembungkus di. AWS Encryption SDK Jika Anda mengenkripsi dengan kunci Multi-wilayah
dalam satu Wilayah AWS, Anda dapat mendekripsi menggunakan kunci Multi-wilayah terkait di yang
berbeda. Wilayah AWS Support untuk kunci Multi-region diperkenalkan di versi 2.3. x dari AWS
Encryption SDK dan versi 3.0. x dari CLI AWS Enkripsi.

AWS KMS Kunci multi-wilayah adalah satu set berbeda AWS KMS keys Wilayah AWS yang
memiliki bahan kunci dan ID kunci yang sama. Anda dapat menggunakan kunci terkait ini seolah-
olah mereka adalah kunci yang sama di Wilayah yang berbeda. Kunci Multi-Region mendukung
pemulihan bencana umum dan skenario pencadangan yang memerlukan enkripsi di satu Wilayah
dan mendekripsi di Wilayah yang berbeda tanpa melakukan panggilan Lintas wilayah. AWS KMS
Untuk informasi tentang kunci Multi-region, lihat Menggunakan kunci Multi-region di Panduan AWS
Key Management Service Pengembang.

Menggunakan Multi-region AWS KMS keys 33

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Encryption SDK Panduan Developerr

Untuk mendukung kunci Multi-wilayah, AWS Encryption SDK termasuk gantungan kunci yang AWS
KMS sadar Multi-wilayah dan penyedia kunci utama. multi-Region-awareSimbol baru dalam setiap
bahasa pemrograman mendukung tombol Single-region dan Multi-region.

• Untuk kunci Single-region, multi-Region-aware simbol berperilaku seperti AWS KMS keyring
wilayah tunggal dan penyedia kunci master. Ini mencoba untuk mendekripsi ciphertext hanya
dengan kunci Single-region yang mengenkripsi data.

• Untuk kunci Multi-region, multi-Region-aware simbol mencoba mendekripsi ciphertext dengan kunci
Multi-region yang sama yang mengenkripsi data atau dengan kunci replika Multi-wilayah terkait di
Wilayah yang Anda tentukan.

Di multi-Region-aware keyrings dan penyedia kunci master yang mengambil lebih dari satu kunci
KMS, Anda dapat menentukan beberapa kunci Single-region dan Multi-region. Namun, Anda
hanya dapat menentukan satu kunci dari setiap set kunci replika Multi-wilayah terkait. Jika Anda
menentukan lebih dari satu pengenal kunci dengan ID kunci yang sama, panggilan konstruktor gagal.

Anda juga dapat menggunakan kunci Multi-region dengan AWS KMS keyring standar, Single-region
dan penyedia kunci master. Namun, Anda harus menggunakan kunci Multi-region yang sama di
Wilayah yang sama untuk mengenkripsi dan mendekripsi. Keyring wilayah tunggal dan penyedia
kunci utama mencoba mendekripsi ciphertext hanya dengan kunci yang mengenkripsi data.

Contoh berikut menunjukkan cara mengenkripsi dan mendekripsi data menggunakan kunci
Multi-region dan multi-Region-aware keyrings baru dan penyedia kunci utama. Contoh-contoh
ini mengenkripsi data di us-east-1 Wilayah dan mendekripsi data di us-west-2 Wilayah
menggunakan kunci replika Multi-wilayah terkait di setiap Wilayah. Sebelum menjalankan contoh ini,
ganti contoh Multi-region key ARN dengan nilai yang valid dari Anda. Akun AWS

C

Untuk mengenkripsi dengan kunci Multi-region, gunakan
Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder() metode ini untuk
membuat instance keyring. Tentukan kunci Multi-wilayah.

Contoh sederhana ini tidak termasuk konteks enkripsi. Untuk contoh yang menggunakan konteks
enkripsi di C, lihatMengenkripsi dan mendekripsi string.

Untuk contoh lengkap, lihat kms_multi_region_keys.cpp di AWS Encryption SDK for C repositori
pada. GitHub

Menggunakan Multi-region AWS KMS keys 34

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html#mrk-replica-key
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK Panduan Developerr

/* Encrypt with a multi-Region KMS key in us-east-1 */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
 Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder().Build(mrk_us_east_1);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),
 AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Encrypt the data
 * aws_cryptosdk_session_process_full is designed for non-streaming data
 */
aws_cryptosdk_session_process_full(
 session, ciphertext, ciphertext_buf_sz, &ciphertext_len, plaintext,
 plaintext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C# / .NET

Untuk mengenkripsi dengan kunci Multi-region di Wilayah AS Timur (Virginia N.) (us-east-1),
buat instance CreateAwsKmsMrkKeyringInput objek dengan pengenal kunci untuk
kunci Multi-region dan klien untuk Wilayah yang ditentukan. AWS KMS Kemudian gunakan
CreateAwsKmsMrkKeyring() metode untuk membuat keyring.

CreateAwsKmsMrkKeyring()Metode ini membuat keyring dengan tepat satu kunci Multi-
region. Untuk mengenkripsi dengan beberapa kunci pembungkus, termasuk kunci Multi-wilayah,
gunakan metode ini. CreateAwsKmsMrkMultiKeyring()

Untuk contoh lengkapnya, lihat AwsKmsMrkKeyringExample.cs di repositori.NET AWS Encryption
SDK for. GitHub

Menggunakan Multi-region AWS KMS keys 35

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK Panduan Developerr

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1
string mrkUSEast1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

// Create the keyring
// You can specify the Region or get the Region from the key ARN
var createMrkEncryptKeyringInput = new CreateAwsKmsMrkKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USEast1),
 KmsKeyId = mrkUSEast1
};
var mrkEncryptKeyring =
 materialProviders.CreateAwsKmsMrkKeyring(createMrkEncryptKeyringInput);

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()
{
 {"purpose", "test"}
};

// Encrypt your plaintext data.
var encryptInput = new EncryptInput
{
 Plaintext = plaintext,
 Keyring = mrkEncryptKeyring,
 EncryptionContext = encryptionContext
};
var encryptOutput = encryptionSdk.Encrypt(encryptInput);

Menggunakan Multi-region AWS KMS keys 36

AWS Encryption SDK Panduan Developerr

AWS Encryption CLI

Contoh ini mengenkripsi hello.txt file di bawah kunci Multi-region di Wilayah us-east-1. Karena
contoh menentukan ARN kunci dengan elemen Region, contoh ini tidak menggunakan atribut
region dari parameter. --wrapping-keys

Jika ID kunci dari kunci pembungkus tidak menentukan Wilayah, Anda dapat menggunakan
atribut region --wrapping-keys untuk menentukan wilayah, seperti--wrapping-keys key=
$keyID region=us-east-1.

Encrypt with a multi-Region KMS key in us-east-1 Region

To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSEast1=arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab

$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$mrkUSEast1 \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --output .

Java

Untuk mengenkripsi dengan kunci Multi-region, buat instance
AwsKmsMrkAwareMasterKeyProvider dan tentukan kunci Multi-region.

Untuk contoh lengkap, lihat BasicMultiRegionKeyEncryptionExample.javadi AWS Encryption SDK
for Java repositori pada. GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

// Multi-Region keys have a distinctive key ID that begins with 'mrk'
// Specify a multi-Region key in us-east-1
final String mrkUSEast1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

Menggunakan Multi-region AWS KMS keys 37

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java

AWS Encryption SDK Panduan Developerr

// Instantiate an AWS KMS master key provider in strict mode for multi-Region keys
// Configure it to encrypt with the multi-Region key in us-east-1
final AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
 AwsKmsMrkAwareMasterKeyProvider
 .builder()
 .buildStrict(mrkUSEast1);

// Create an encryption context
final Map<String, String> encryptionContext = Collections.singletonMap("Purpose",
 "Test");

// Encrypt your plaintext data
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> encryptResult =
 crypto.encryptData(
 kmsMrkProvider,
 encryptionContext,
 sourcePlaintext);
byte[] ciphertext = encryptResult.getResult();

JavaScript Browser

Untuk mengenkripsi dengan kunci Multi-region, gunakan
buildAwsKmsMrkAwareStrictMultiKeyringBrowser() metode untuk membuat keyring
dan tentukan kunci Multi-region.

Untuk contoh lengkap, lihat kms_multi_region_simple.ts di repositori pada. AWS Encryption SDK
for JavaScript GitHub

/* Encrypt with a multi-Region KMS key in us-east-1 Region */

import {
 buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
 buildClient,
 CommitmentPolicy,
 KMS,
} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { encrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Menggunakan Multi-region AWS KMS keys 38

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK Panduan Developerr

declare const credentials: {
 accessKeyId: string
 secretAccessKey: string
 sessionToken: string
}

/* Instantiate an AWS KMS client
 * The AWS Encryption SDK for JavaScript gets the Region from the key ARN
 */
const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-east-1 */
const multiRegionUsEastKey =
 'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

/* Instantiate the keyring */
const encryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowser({
 generatorKeyId: multiRegionUsEastKey,
 clientProvider,
 })

/* Set the encryption context */
const context = {
 purpose: 'test',
 }

/* Test data to encrypt */
const cleartext = new Uint8Array([1, 2, 3, 4, 5])

/* Encrypt the data */
const { result } = await encrypt(encryptKeyring, cleartext, {
 encryptionContext: context,
 })

JavaScript Node.js

Untuk mengenkripsi dengan kunci Multi-region, gunakan
buildAwsKmsMrkAwareStrictMultiKeyringNode() metode untuk membuat keyring dan
tentukan kunci Multi-region.

Menggunakan Multi-region AWS KMS keys 39

AWS Encryption SDK Panduan Developerr

Untuk contoh lengkap, lihat kms_multi_region_simple.ts di repositori pada. AWS Encryption SDK
for JavaScript GitHub

//Encrypt with a multi-Region KMS key in us-east-1 Region

import { buildClient } from '@aws-crypto/client-node'

/* Instantiate the AWS Encryption SDK client
const { encrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

/* Test string to encrypt */
const cleartext = 'asdf'

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
 * Specify a multi-Region key in us-east-1
 */
const multiRegionUsEastKey =
 'arn:aws:kms:us-east-1:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

/* Create an AWS KMS keyring */
const mrkEncryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
 generatorKeyId: multiRegionUsEastKey,
 })

/* Specify an encryption context */
const context = {
 purpose: 'test',
 }

/* Create an encryption keyring */
const { result } = await encrypt(mrkEncryptKeyring, cleartext, {
 encryptionContext: context,
 })

Python

Untuk mengenkripsi dengan kunci AWS KMS Multi-region, gunakan
MRKAwareStrictAwsKmsMasterKeyProvider() metode dan tentukan kunci Multi-region.

Untuk contoh lengkap, lihat mrk_aware_kms_provider.py di AWS Encryption SDK for Python
repositori pada. GitHub

Menggunakan Multi-region AWS KMS keys 40

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK Panduan Developerr

* Encrypt with a multi-Region KMS key in us-east-1 Region

Instantiate the client
client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

Specify a multi-Region key in us-east-1
mrk_us_east_1 = "arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider
in strict mode
strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
 key_ids=[mrk_us_east_1]
)

Set the encryption context
encryption_context = {
 "purpose": "test"
 }

Encrypt your plaintext data
ciphertext, encrypt_header = client.encrypt(
 source=source_plaintext,
 encryption_context=encryption_context,
 key_provider=strict_mrk_key_provider
)

Selanjutnya, pindahkan ciphertext Anda ke Region. us-west-2 Anda tidak perlu mengenkripsi ulang
ciphertext.

Untuk mendekripsi ciphertext dalam mode ketat di us-west-2 Region, buat instance simbol multi-
Region-aware dengan kunci ARN dari kunci Multi-region terkait di Region. us-west-2 Jika Anda
menentukan kunci ARN dari kunci Multi-wilayah terkait di Wilayah yang berbeda (termasukus-
east-1, di mana itu dienkripsi), multi-Region-aware simbol akan membuat panggilan lintas wilayah
untuk itu. AWS KMS key

Saat mendekripsi dalam mode ketat, multi-Region-aware simbol membutuhkan kunci ARN. Ini hanya
menerima satu ARN kunci dari setiap set kunci Multi-wilayah terkait.

Menggunakan Multi-region AWS KMS keys 41

AWS Encryption SDK Panduan Developerr

Sebelum menjalankan contoh ini, ganti contoh Multi-region key ARN dengan nilai yang valid dari
Anda. Akun AWS

C

Untuk mendekripsi dalam mode ketat dengan kunci Multi-region, gunakan
Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder() metode ini untuk
membuat instance keyring. Tentukan kunci Multi-wilayah terkait di Wilayah lokal (us-west-2).

Untuk contoh lengkap, lihat kms_multi_region_keys.cpp di AWS Encryption SDK for C repositori
pada. GitHub

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Initialize a multi-Region keyring */
const char *mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

struct aws_cryptosdk_keyring *mrk_keyring =
 Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder().Build(mrk_us_west_2);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),
 AWS_CRYPTOSDK_ENCRYPT, mrk_keyring);

aws_cryptosdk_session_set_commitment_policy(session,
 COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT);

aws_cryptosdk_keyring_release(mrk_keyring);

/* Decrypt the ciphertext
 * aws_cryptosdk_session_process_full is designed for non-streaming data
 */
aws_cryptosdk_session_process_full(
 session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
 ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

Menggunakan Multi-region AWS KMS keys 42

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK Panduan Developerr

C# / .NET

Untuk mendekripsi dalam mode ketat dengan satu kunci Multi-wilayah, gunakan konstruktor
dan metode yang sama yang Anda gunakan untuk merakit input dan membuat keyring untuk
mengenkripsi. Buat instance CreateAwsKmsMrkKeyringInput objek dengan ARN kunci dari
kunci Multi-wilayah terkait dan AWS KMS klien untuk Wilayah AS Barat (Oregon) (us-west-2).
Kemudian gunakan CreateAwsKmsMrkKeyring() metode untuk membuat keyring Multi-
wilayah dengan satu kunci KMS Multi-wilayah.

Untuk contoh lengkapnya, lihat AwsKmsMrkKeyringExample.cs di repositori.NET AWS Encryption
SDK for. GitHub

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Specify the key ARN of the multi-Region key in us-west-2
string mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

// Instantiate the keyring input
// You can specify the Region or get the Region from the key ARN
var createMrkDecryptKeyringInput = new CreateAwsKmsMrkKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
 KmsKeyId = mrkUSWest2
};

// Create the multi-Region keyring
var mrkDecryptKeyring =
 materialProviders.CreateAwsKmsMrkKeyring(createMrkDecryptKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
 Ciphertext = ciphertext,
 Keyring = mrkDecryptKeyring
};

Menggunakan Multi-region AWS KMS keys 43

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkKeyringExample.cs

AWS Encryption SDK Panduan Developerr

var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Untuk mendekripsi dengan kunci Multi-region terkait di Wilayah us-west-2, gunakan atribut kunci
parameter untuk menentukan ARN kuncinya. --wrapping-keys

Decrypt with a related multi-Region KMS key in us-west-2 Region

To run this example, replace the fictitious key ARN with a valid value.
$ mrkUSWest2=arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys key=$mrkUSWest2 \
 --commitment-policy require-encrypt-require-decrypt \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --output .

Java

Untuk mendekripsi dalam mode ketat, buat instance AwsKmsMrkAwareMasterKeyProvider
dan tentukan kunci Multi-wilayah terkait di Wilayah lokal (us-west-2).

Untuk contoh lengkap, lihat BasicMultiRegionKeyEncryptionExample.java di AWS Encryption SDK
for Java repositori pada. GitHub

// Decrypt with a related multi-Region KMS key in us-west-2 Region

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

// Related multi-Region keys have the same key ID. Their key ARNs differs only in
 the Region field.
String mrkUSWest2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab";

Menggunakan Multi-region AWS KMS keys 44

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicMultiRegionKeyEncryptionExample.java

AWS Encryption SDK Panduan Developerr

// Use the multi-Region method to create the master key provider
// in strict mode
AwsKmsMrkAwareMasterKeyProvider kmsMrkProvider =
 AwsKmsMrkAwareMasterKeyProvider.builder()
 .buildStrict(mrkUSWest2);

// Decrypt your ciphertext
CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto.decryptData(
 kmsMrkProvider,
 ciphertext);
byte[] decrypted = decryptResult.getResult();

JavaScript Browser

Untuk mendekripsi dalam mode ketat, gunakan
buildAwsKmsMrkAwareStrictMultiKeyringBrowser() metode untuk membuat keyring
dan tentukan kunci Multi-region terkait di Wilayah lokal (us-west-2).

Untuk contoh lengkap, lihat kms_multi_region_simple.ts di repositori pada. AWS Encryption SDK
for JavaScript GitHub

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

import {
 buildAwsKmsMrkAwareStrictMultiKeyringBrowser,
 buildClient,
 CommitmentPolicy,
 KMS,
} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

declare const credentials: {
 accessKeyId: string
 secretAccessKey: string
 sessionToken: string
}

/* Instantiate an AWS KMS client

Menggunakan Multi-region AWS KMS keys 45

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_simple.ts

AWS Encryption SDK Panduan Developerr

 * The AWS Encryption SDK for JavaScript gets the Region from the key ARN
 */
const clientProvider = (region: string) => new KMS({ region, credentials })

/* Specify a multi-Region key in us-west-2 */
const multiRegionUsWestKey =
 'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

/* Instantiate the keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringBrowser({
 generatorKeyId: multiRegionUsWestKey,
 clientProvider,
 })

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDecryptKeyring, result)

JavaScript Node.js

Untuk mendekripsi dalam mode ketat, gunakan
buildAwsKmsMrkAwareStrictMultiKeyringNode() metode untuk membuat keyring dan
tentukan kunci Multi-region terkait di Wilayah lokal (us-west-2).

Untuk contoh lengkap, lihat kms_multi_region_simple.ts di repositori pada. AWS Encryption SDK
for JavaScript GitHub

/* Decrypt with a related multi-Region KMS key in us-west-2 Region */

import { buildClient } from '@aws-crypto/client-node'

/* Instantiate the client
const { decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

/* Multi-Region keys have a distinctive key ID that begins with 'mrk'
 * Specify a multi-Region key in us-west-2
 */
const multiRegionUsWestKey =
 'arn:aws:kms:us-west-2:111122223333:key/mrk-1234abcd12ab34cd56ef1234567890ab'

Menggunakan Multi-region AWS KMS keys 46

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_simple.ts

AWS Encryption SDK Panduan Developerr

/* Create an AWS KMS keyring */
const mrkDecryptKeyring = buildAwsKmsMrkAwareStrictMultiKeyringNode({
 generatorKeyId: multiRegionUsWestKey,
 })

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(decryptKeyring, result)

Python

Untuk mendekripsi dalam mode ketat, gunakan
MRKAwareStrictAwsKmsMasterKeyProvider() metode untuk membuat penyedia kunci
master. Tentukan kunci Multi-wilayah terkait di Wilayah lokal (us-west-2).

Untuk contoh lengkap, lihat mrk_aware_kms_provider.py di AWS Encryption SDK for Python
repositori pada. GitHub

Decrypt with a related multi-Region KMS key in us-west-2 Region

Instantiate the client
client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

Related multi-Region keys have the same key ID. Their key ARNs differs only in the
 Region field
mrk_us_west_2 = "arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab"

Use the multi-Region method to create the master key provider
in strict mode
strict_mrk_key_provider = MRKAwareStrictAwsKmsMasterKeyProvider(
 key_ids=[mrk_us_west_2]
)

Decrypt your ciphertext
plaintext, _ = client.decrypt(
 source=ciphertext,
 key_provider=strict_mrk_key_provider
)

Anda juga dapat mendekripsi dalam mode penemuan dengan tombol AWS KMS Multi-wilayah.
Saat mendekripsi dalam mode penemuan, Anda tidak menentukan apa pun. AWS KMS keys(Untuk

Menggunakan Multi-region AWS KMS keys 47

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK Panduan Developerr

informasi tentang gantungan kunci AWS KMS penemuan wilayah tunggal, lihatMenggunakan AWS
KMS keyring penemuan.)

Jika Anda dienkripsi dengan kunci Multi-region, multi-Region-aware simbol dalam mode penemuan
akan mencoba mendekripsi dengan menggunakan kunci Multi-wilayah terkait di Wilayah lokal. Jika
tidak ada; panggilan gagal. Dalam mode penemuan, tidak AWS Encryption SDK akan mencoba
panggilan lintas wilayah untuk kunci Multi-wilayah yang digunakan untuk enkripsi.

Note

Jika Anda menggunakan multi-Region-aware simbol dalam mode penemuan untuk
mengenkripsi data, operasi enkripsi gagal.

Contoh berikut menunjukkan cara mendekripsi dengan multi-Region-aware simbol dalam
mode penemuan. Karena Anda tidak menentukan AWS KMS key, AWS Encryption SDK harus
mendapatkan Wilayah dari sumber yang berbeda. Jika memungkinkan, tentukan Wilayah lokal
secara eksplisit. Jika tidak, AWS Encryption SDK akan mendapatkan Wilayah lokal dari Wilayah yang
dikonfigurasi dalam AWS SDK untuk bahasa pemrograman Anda.

Sebelum menjalankan contoh ini, ganti contoh ID akun dan ARN kunci Multi-wilayah dengan nilai
yang valid dari Anda. Akun AWS

C

Untuk mendekripsi dalam mode penemuan dengan kunci Multi-region, gunakan
Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder() metode untuk
membangun keyring, dan
Aws::Cryptosdk::KmsKeyring::DiscoveryFilter::Builder() metode
untuk membangun filter penemuan. Untuk menentukan Wilayah lokal, tentukan
ClientConfiguration dan tentukan di AWS KMS klien.

Untuk contoh lengkap, lihat kms_multi_region_keys.cpp di AWS Encryption SDK for C repositori
pada. GitHub

/* Decrypt in discovery mode with a multi-Region KMS key */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

Menggunakan Multi-region AWS KMS keys 48

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples/kms_multi_region_keys.cpp

AWS Encryption SDK Panduan Developerr

/* Construct a discovery filter for the account and partition. The
 * filter is optional, but it's a best practice that we recommend.
 */
const char *account_id = "111122223333";
const char *partition = "aws";
const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter
 =

 Aws::Cryptosdk::KmsKeyring::DiscoveryFilter::Builder(partition).AddAccount(account_id).Build();

/* Create an AWS KMS client in the desired region. */
const char *region = "us-west-2";

Aws::Client::ClientConfiguration client_config;
client_config.region = region;
const std::shared_ptr<Aws::KMS::KMSClient> kms_client =
 Aws::MakeShared<Aws::KMS::KMSClient>("AWS_SAMPLE_CODE", client_config);

struct aws_cryptosdk_keyring *mrk_keyring =
 Aws::Cryptosdk::KmsMrkAwareSymmetricKeyring::Builder()
 .WithKmsClient(kms_client)
 .BuildDiscovery(region, discovery_filter);

/* Create a session; release the keyring */
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(aws_default_allocator(),
 AWS_CRYPTOSDK_DECRYPT, mrk_keyring);

aws_cryptosdk_keyring_release(mrk_keyring);
commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
/* Decrypt the ciphertext
 * aws_cryptosdk_session_process_full is designed for non-streaming data
 */
aws_cryptosdk_session_process_full(
 session, plaintext, plaintext_buf_sz, &plaintext_len, ciphertext,
 ciphertext_len));

/* Clean up the session */
aws_cryptosdk_session_destroy(session);

C# / .NET

Untuk membuat keyring multi-Region-aware penemuan di AWS Encryption SDK for .NET, buat
instance CreateAwsKmsMrkDiscoveryKeyringInput objek yang mengambil AWS KMS klien

Menggunakan Multi-region AWS KMS keys 49

AWS Encryption SDK Panduan Developerr

untuk tertentu Wilayah AWS, dan filter penemuan opsional yang membatasi kunci KMS ke partisi
dan akun tertentu AWS . Kemudian panggil CreateAwsKmsMrkDiscoveryKeyring() metode
dengan objek input. Untuk contoh lengkapnya, lihat AwsKmsMrkDiscoveryKeyringExample.cs di
repositori.NET AWS Encryption SDK for. GitHub

Untuk membuat keyring multi-Region-aware penemuan untuk lebih dari satu Wilayah AWS,
gunakan CreateAwsKmsMrkDiscoveryMultiKeyring() metode ini untuk membuat multi-
keyring, atau gunakan CreateAwsKmsMrkDiscoveryKeyring() untuk membuat beberapa
keyring multi-Region-aware penemuan dan kemudian gunakan CreateMultiKeyring()
metode untuk menggabungkannya dalam multi-keyring.

Sebagai contoh, lihat AwsKmsMrkDiscoveryMultiKeyringExample.cs.

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

List<string> account = new List<string> { "111122223333" };

// Instantiate the discovery filter
DiscoveryFilter mrkDiscoveryFilter = new DiscoveryFilter()
{
 AccountIds = account,
 Partition = "aws"
}

// Create the keyring
var createMrkDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
 DiscoveryFilter = mrkDiscoveryFilter
};
var mrkDiscoveryKeyring =
 materialProviders.CreateAwsKmsMrkDiscoveryKeyring(createMrkDiscoveryKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput

Menggunakan Multi-region AWS KMS keys 50

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsMrkDiscoveryMultiKeyringExample.cs

AWS Encryption SDK Panduan Developerr

{
 Ciphertext = ciphertext,
 Keyring = mrkDiscoveryKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Untuk mendekripsi dalam mode penemuan, gunakan atribut penemuan parameter. --wrapping-
keys Atribut discovery-account dan discovery-partition membuat filter penemuan yang opsional,
tetapi direkomendasikan.

Untuk menentukan Region, perintah ini mencakup atribut region dari --wrapping-keys
parameter.

Decrypt in discovery mode with a multi-Region KMS key

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys discovery=true \
 discovery-account=111122223333 \
 discovery-partition=aws \
 region=us-west-2 \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --output .

Java

Untuk menentukan Wilayah lokal, gunakan builder().withDiscoveryMrkRegion
parameter. Jika tidak, AWS Encryption SDK mendapatkan Wilayah lokal dari Wilayah yang
dikonfigurasi di AWS SDK for Java.

Untuk contoh lengkap, lihat DiscoveryMultiRegionDecryptionExample.java di AWS Encryption
SDK for Java repositori pada. GitHub

// Decrypt in discovery mode with a multi-Region KMS key

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)

Menggunakan Multi-region AWS KMS keys 51

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryMultiRegionDecryptionExample.java

AWS Encryption SDK Panduan Developerr

 .build();

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

AwsKmsMrkAwareMasterKeyProvider mrkDiscoveryProvider =
 AwsKmsMrkAwareMasterKeyProvider
 .builder()
 .withDiscoveryMrkRegion(Region.US_WEST_2)
 .buildDiscovery(discoveryFilter);

// Decrypt your ciphertext
final CryptoResult<byte[], AwsKmsMrkAwareMasterKey> decryptResult = crypto
 .decryptData(mrkDiscoveryProvider, ciphertext);

JavaScript Browser

Untuk mendekripsi dalam mode penemuan dengan kunci Multi-region simetris, gunakan metode
ini. AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser()

Untuk contoh lengkap, lihat kms_multi_region_discovery.ts di repositori pada. AWS Encryption
SDK for JavaScript GitHub

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
 AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser,
 buildClient,
 CommitmentPolicy,
 KMS,
} from '@aws-crypto/client-browser'

/* Instantiate an AWS Encryption SDK client */
const { decrypt } = buildClient()

declare const credentials: {
 accessKeyId: string
 secretAccessKey: string
 sessionToken: string
}

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2', credentials })

Menggunakan Multi-region AWS KMS keys 52

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts

AWS Encryption SDK Panduan Developerr

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */
const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringBrowser({
 client,
 discoveryFilter,
 })

/* Decrypt the data */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, ciphertext)

JavaScript Node.js

Untuk mendekripsi dalam mode penemuan dengan kunci Multi-region simetris, gunakan metode
ini. AwsKmsMrkAwareSymmetricDiscoveryKeyringNode()

Untuk contoh lengkap, lihat kms_multi_region_discovery.ts di repositori pada. AWS Encryption
SDK for JavaScript GitHub

/* Decrypt in discovery mode with a multi-Region KMS key */

import {
 AwsKmsMrkAwareSymmetricDiscoveryKeyringNode,
 buildClient,
 CommitmentPolicy,
 KMS,
} from '@aws-crypto/client-node'

/* Instantiate the Encryption SDK client
const { decrypt } = buildClient()

/* Instantiate the KMS client with an explicit Region */
const client = new KMS({ region: 'us-west-2' })

/* Create a discovery filter */
const discoveryFilter = { partition: 'aws', accountIDs: ['111122223333'] }

/* Create an AWS KMS discovery keyring */

Menggunakan Multi-region AWS KMS keys 53

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_multi_region_discovery.ts

AWS Encryption SDK Panduan Developerr

const mrkDiscoveryKeyring = new AwsKmsMrkAwareSymmetricDiscoveryKeyringNode({
 client,
 discoveryFilter,
 })

/* Decrypt your ciphertext */
const { plaintext, messageHeader } = await decrypt(mrkDiscoveryKeyring, result)

Python

Untuk mendekripsi dalam mode penemuan dengan kunci Multi-wilayah, gunakan metode ini.
MRKAwareDiscoveryAwsKmsMasterKeyProvider()

Untuk contoh lengkap, lihat mrk_aware_kms_provider.py di AWS Encryption SDK for Python
repositori pada. GitHub

Decrypt in discovery mode with a multi-Region KMS key

Instantiate the client
client = aws_encryption_sdk.EncryptionSDKClient()

Create the discovery filter and specify the region
decrypt_kwargs = dict(
 discovery_filter=DiscoveryFilter(account_ids="111122223333",
 partition="aws"),
 discovery_region="us-west-2",
)

Use the multi-Region method to create the master key provider
in discovery mode
mrk_discovery_key_provider =
 MRKAwareDiscoveryAwsKmsMasterKeyProvider(**decrypt_kwargs)

Decrypt your ciphertext
plaintext, _ = client.decrypt(
 source=ciphertext,
 key_provider=mrk_discovery_key_provider
)

Menggunakan Multi-region AWS KMS keys 54

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/mrk_aware_kms_provider.py

AWS Encryption SDK Panduan Developerr

Memilih rangkaian algoritme

AWS Encryption SDK Mendukung beberapa algoritma enkripsi simetris dan asimetris untuk
mengenkripsi kunci data Anda di bawah kunci pembungkus yang Anda tentukan. Namun, ketika
menggunakan kunci data tersebut untuk mengenkripsi data Anda, AWS Encryption SDK default
ke rangkaian algoritme yang direkomendasikan yang menggunakan algoritma AES-GCM dengan
derivasi kunci, tanda tangan digital, dan komitmen kunci. Meskipun rangkaian algoritme default
kemungkinan cocok untuk sebagian besar aplikasi, Anda dapat memilih rangkaian algoritme
alternatif. Misalnya, beberapa model kepercayaan akan dipenuhi oleh rangkaian algoritma tanpa
tanda tangan digital. Untuk informasi tentang rangkaian algoritme yang AWS Encryption SDK
didukung, lihatSuite algoritma yang didukung di AWS Encryption SDK.

Contoh berikut menunjukkan cara memilih rangkaian algoritma alternatif saat mengenkripsi. Contoh-
contoh ini memilih rangkaian algoritma AES-GCM yang direkomendasikan dengan derivasi kunci
dan komitmen kunci, tetapi tanpa tanda tangan digital. Saat Anda mengenkripsi dengan rangkaian
algoritme yang tidak menyertakan tanda tangan digital, gunakan mode dekripsi khusus tanpa tanda
tangan saat mendekripsi. Mode ini, yang gagal jika menemukan ciphertext yang ditandatangani,
paling berguna saat streaming dekripsi.

C

Untuk menentukan rangkaian algoritma alternatif di AWS Encryption SDK
for C, Anda harus membuat CMM secara eksplisit. Kemudian gunakan
aws_cryptosdk_default_cmm_set_alg_id with the CMM dan suite algoritma yang dipilih.

/* Specify an algorithm suite without signing */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

/* To set an alternate algorithm suite, create an cryptographic
 materials manager (CMM) explicitly
 */
struct aws_cryptosdk_cmm *cmm =
 aws_cryptosdk_default_cmm_new(aws_default_allocator(), kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

Memilih rangkaian algoritme 55

AWS Encryption SDK Panduan Developerr

/* Specify the algorithm suite for the CMM */
aws_cryptosdk_default_cmm_set_alg_id(cmm, ALG_AES256_GCM_HKDF_SHA512_COMMIT_KEY);

/* Construct the session with the CMM,
 then release the CMM reference
 */
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(alloc,
 AWS_CRYPTOSDK_ENCRYPT, cmm);
aws_cryptosdk_cmm_release(cmm);

/* Encrypt the data
 Use aws_cryptosdk_session_process_full with non-streaming data
 */
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
 session,
 ciphertext,
 ciphertext_buf_sz,
 &ciphertext_len,
 plaintext,
 plaintext_len)) {
 aws_cryptosdk_session_destroy(session);
 return AWS_OP_ERR;
}

Saat mendekripsi data yang dienkripsi tanpa tanda tangan digital, gunakan.
AWS_CRYPTOSDK_DECRYPT_UNSIGNED Hal ini menyebabkan dekripsi gagal jika menemukan
ciphertext yang ditandatangani.

/* Decrypt unsigned streaming data */

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

/* Create a session for decrypting with the AWS KMS keyring
 Then release the keyring reference
 */
struct aws_cryptosdk_session *session =

Memilih rangkaian algoritme 56

AWS Encryption SDK Panduan Developerr

 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT_UNSIGNED,
 kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

if (!session) {
 return AWS_OP_ERR;
}

/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 1);

/* Decrypt
 Use aws_cryptosdk_session_process_full with non-streaming data
 */
 if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(
 session,
 plaintext,
 plaintext_buf_sz,
 &plaintext_len,
 ciphertext,
 ciphertext_len)) {
 aws_cryptosdk_session_destroy(session);
 return AWS_OP_ERR;
}

C# / .NET

Untuk menentukan rangkaian algoritme alternatif di AWS Encryption SDK for .NET, tentukan
AlgorithmSuiteId properti EncryptInputobjek. AWS Encryption SDK Untuk .NET mencakup
konstanta yang dapat Anda gunakan untuk mengidentifikasi rangkaian algoritme pilihan Anda.

The AWS Encryption SDK for .NET tidak memiliki metode untuk mendeteksi ciphertext yang
ditandatangani saat streaming dekripsi karena pustaka ini tidak mendukung data streaming.

// Specify an algorithm suite without signing

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

Memilih rangkaian algoritme 57

https://github.com/aws/aws-encryption-sdk/blob/mainline/AwsEncryptionSDK/runtimes/net/Generated/AwsEncryptionSdk/EncryptInput.cs
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/net/Generated/AwsCryptographicMaterialProviders/AlgorithmSuiteId.cs

AWS Encryption SDK Panduan Developerr

// Create the keyring
var keyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = keyArn
};
var keyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput
{
 Plaintext = plaintext,
 Keyring = keyring,
 AlgorithmSuiteId = AlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY
};
var encryptOutput = encryptionSdk.Encrypt(encryptInput);

AWS Encryption CLI

Saat mengenkripsi hello.txt file, contoh ini menggunakan --algorithm parameter untuk
menentukan rangkaian algoritma tanpa tanda tangan digital.

Specify an algorithm suite without signing

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$keyArn \
 --algorithm AES_256_GCM_HKDF_SHA512_COMMIT_KEY \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --commitment-policy require-encrypt-require-decrypt \
 --output hello.txt.encrypted \
 --decode

Saat mendekripsi, contoh ini menggunakan parameter. --decrypt-unsigned Parameter ini
disarankan untuk memastikan bahwa Anda mendekripsi ciphertext yang tidak ditandatangani,
terutama dengan CLI, yang selalu streaming input dan output.

Decrypt unsigned streaming data

Memilih rangkaian algoritme 58

AWS Encryption SDK Panduan Developerr

To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt-unsigned \
 --input hello.txt.encrypted \
 --wrapping-keys key=$keyArn \
 --max-encrypted-data-keys 1 \
 --commitment-policy require-encrypt-require-decrypt \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

Java

Untuk menentukan rangkaian algoritma alternatif, gunakan
AwsCrypto.builder().withEncryptionAlgorithm() metode ini. Contoh ini menentukan
rangkaian algoritma alternatif tanpa tanda tangan digital.

// Specify an algorithm suite without signing

// Instantiate the client
AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
 .build();

String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a master key provider in strict mode
KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(awsKmsKey);

// Create an encryption context to identify this ciphertext
 Map<String, String> encryptionContext = Collections.singletonMap("Example",
 "FileStreaming");

// Encrypt your plaintext data
CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData(
 masterKeyProvider,
 sourcePlaintext,
 encryptionContext);

Memilih rangkaian algoritme 59

AWS Encryption SDK Panduan Developerr

byte[] ciphertext = encryptResult.getResult();

Saat streaming data untuk dekripsi, gunakan createUnsignedMessageDecryptingStream()
metode ini untuk memastikan bahwa semua ciphertext yang Anda dekripsi tidak ditandatangani.

// Decrypt unsigned streaming data

// Instantiate the client
AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .withMaxEncryptedDataKeys(1)
 .build();

// Create a master key provider in strict mode
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(awsKmsKey);

// Decrypt the encrypted message
FileInputStream in = new FileInputStream(srcFile + ".encrypted");
CryptoInputStream<KmsMasterKey> decryptingStream =
 crypto.createUnsignedMessageDecryptingStream(masterKeyProvider, in);

// Return the plaintext data
// Write the plaintext data to disk
FileOutputStream out = new FileOutputStream(srcFile + ".decrypted");
IOUtils.copy(decryptingStream, out);
decryptingStream.close();

JavaScript Browser

Untuk menentukan rangkaian algoritma alternatif, gunakan suiteId parameter dengan nilai
AlgorithmSuiteIdentifier enum.

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

Memilih rangkaian algoritme 60

AWS Encryption SDK Panduan Developerr

// Create a keyring with the KMS key
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Encrypt your plaintext data
const { result } = await encrypt(keyring, cleartext, { suiteId:
 AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
 encryptionContext: context, })

Saat mendekripsi, gunakan metode standardecrypt. AWS Encryption SDK for JavaScript di
browser tidak memiliki decrypt-unsigned mode karena browser tidak mendukung streaming.

// Decrypt unsigned streaming data

// Instantiate the client
const { decrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringBrowser({ generatorKeyId })

// Decrypt the encrypted message
const { plaintext, messageHeader } = await decrypt(keyring, ciphertextMessage)

JavaScript Node.js

Untuk menentukan rangkaian algoritma alternatif, gunakan suiteId parameter dengan nilai
AlgorithmSuiteIdentifier enum.

// Specify an algorithm suite without signing

// Instantiate the client
const { encrypt } = buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Specify a KMS key
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Create a keyring with the KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

// Encrypt your plaintext data

Memilih rangkaian algoritme 61

AWS Encryption SDK Panduan Developerr

const { result } = await encrypt(keyring, cleartext, { suiteId:
 AlgorithmSuiteIdentifier.ALG_AES256_GCM_IV12_TAG16_HKDF_SHA512_COMMIT_KEY,
 encryptionContext: context, })

Saat mendekripsi data yang dienkripsi tanpa tanda tangan digital, gunakan Stream.
decryptUnsignedMessage Metode ini gagal jika menemukan ciphertext yang ditandatangani.

// Decrypt unsigned streaming data

// Instantiate the client
const { decryptUnsignedMessageStream } =
 buildClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

// Create a keyring with the same KMS key used to encrypt
const generatorKeyId = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
const keyring = new KmsKeyringNode({ generatorKeyId })

// Decrypt the encrypted message
const outputStream =
 createReadStream(filename) .pipe(decryptUnsignedMessageStream(keyring))

Python

Untuk menentukan algoritma enkripsi alternatif, gunakan algorithm parameter dengan nilai
Algorithm enum.

Specify an algorithm suite without signing

Instantiate a client
client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT,
 max_encrypted_data_keys=1)

Create a master key provider in strict mode
aws_kms_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
 key_ids=[aws_kms_key]
)

Encrypt the plaintext using an alternate algorithm suite
ciphertext, encrypted_message_header = client.encrypt(

Memilih rangkaian algoritme 62

AWS Encryption SDK Panduan Developerr

 algorithm=Algorithm.AES_256_GCM_HKDF_SHA512_COMMIT_KEY, source=source_plaintext,
 key_provider=kms_key_provider
)

Saat mendekripsi pesan yang dienkripsi tanpa tanda tangan digital, gunakan mode decrypt-
unsigned streaming, terutama saat mendekripsi saat streaming.

Decrypt unsigned streaming data

Instantiate the client
client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT,
 max_encrypted_data_keys=1)

Create a master key provider in strict mode
aws_kms_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
 key_ids=[aws_kms_key]
)

Decrypt with decrypt-unsigned
with open(ciphertext_filename, "rb") as ciphertext, open(cycled_plaintext_filename,
 "wb") as plaintext:
 with client.stream(mode="decrypt-unsigned",
 source=ciphertext,
 key_provider=master_key_provider) as decryptor:
 for chunk in decryptor:
 plaintext.write(chunk)

Verify that the encryption context
assert all(
 pair in decryptor.header.encryption_context.items() for pair in
 encryptor.header.encryption_context.items()
)
return ciphertext_filename, cycled_plaintext_filename

Rust

Untuk menentukan rangkaian algoritme alternatif di AWS Encryption SDK for Rust, tentukan
algorithm_suite_id properti dalam permintaan enkripsi Anda.

// Instantiate the AWS Encryption SDK client

Memilih rangkaian algoritme 63

AWS Encryption SDK Panduan Developerr

let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring
let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name(key_name)
 .key_namespace(key_namespace)
 .wrapping_key(aws_smithy_types::Blob::new(AESWrappingKey))
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
 .plaintext(plaintext)
 .keyring(raw_aes_keyring.clone())
 .encryption_context(encryption_context.clone())
 .algorithm_suite_id(AlgAes256GcmHkdfSha512CommitKey)
 .send()
 .await?;

Memilih rangkaian algoritme 64

AWS Encryption SDK Panduan Developerr

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)
// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "AES_256_012"

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
 KeyName: keyName,
 KeyNamespace: keyNamespace,
 WrappingKey: key,

Memilih rangkaian algoritme 65

AWS Encryption SDK Panduan Developerr

 WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tag16,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
 aesKeyRingInput)
if err != nil {
 panic(err)
}

// Encrypt your plaintext data
algorithmSuiteId := mpltypes.ESDKAlgorithmSuiteIdAlgAes256GcmHkdfSha512CommitKey
res, err := encryptionClient.Encrypt(context.Background(), esdktypes.EncryptInput{
 Plaintext: []byte(exampleText),
 EncryptionContext: encryptionContext,
 Keyring: aesKeyring,
 AlgorithmSuiteId: &algorithmSuiteId,
})
if err != nil {
 panic(err)
}

Membatasi kunci data terenkripsi

Anda dapat membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Fitur praktik terbaik ini
dapat membantu Anda mendeteksi keyring yang salah konfigurasi saat mengenkripsi atau ciphertext
berbahaya saat mendekripsi. Ini juga mencegah panggilan yang tidak perlu, mahal, dan berpotensi
lengkap ke infrastruktur utama Anda. Membatasi kunci data terenkripsi paling berharga saat Anda
mendekripsi pesan dari sumber yang tidak tepercaya.

Meskipun sebagian besar pesan terenkripsi memiliki satu kunci data terenkripsi untuk setiap kunci
pembungkus yang digunakan dalam enkripsi, pesan terenkripsi dapat berisi hingga 65.535 kunci data
terenkripsi. Aktor jahat mungkin membuat pesan terenkripsi dengan ribuan kunci data terenkripsi,
tidak ada yang dapat didekripsi. Akibatnya, AWS Encryption SDK akan mencoba untuk mendekripsi
setiap kunci data terenkripsi sampai habis kunci data terenkripsi dalam pesan.

Untuk membatasi kunci data terenkripsi, gunakan parameter. MaxEncryptedDataKeys
Parameter ini tersedia untuk semua bahasa pemrograman yang didukung mulai versi 1.9. x dan
2.2. x dari AWS Encryption SDK. Ini opsional dan valid saat mengenkripsi dan mendekripsi.
Contoh berikut mendekripsi data yang dienkripsi di bawah tiga kunci pembungkus yang berbeda.
MaxEncryptedDataKeysNilai diatur ke 3.

Membatasi kunci data terenkripsi 66

AWS Encryption SDK Panduan Developerr

C

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Construct an AWS KMS keyring */
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn1, { key_arn2, key_arn3 });

/* Create a session */
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,
 kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);

/* Limit encrypted data keys */
aws_cryptosdk_session_set_max_encrypted_data_keys(session, 3);

/* Decrypt */
size_t ciphertext_consumed_output;
aws_cryptosdk_session_process(session,
 plaintext_output,
 plaintext_buf_sz_output,
 &plaintext_len_output,
 ciphertext_input,
 ciphertext_len_input,
 &ciphertext_consumed_output);
assert(aws_cryptosdk_session_is_done(session));
assert(ciphertext_consumed == ciphertext_len);

C# / .NET

Untuk membatasi kunci data terenkripsi di AWS Encryption SDK for .NET, buat instance klien
untuk.NET dan atur MaxEncryptedDataKeys parameter opsionalnya ke nilai yang diinginkan.
AWS Encryption SDK Kemudian, panggil Decrypt() metode pada AWS Encryption SDK
instance yang dikonfigurasi.

// Decrypt with limited data keys

// Instantiate the material providers
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

Membatasi kunci data terenkripsi 67

AWS Encryption SDK Panduan Developerr

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig
{
 MaxEncryptedDataKeys = 3
};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

// Create the keyring
string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
var createKeyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = keyArn
};
var decryptKeyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Decrypt the ciphertext
var decryptInput = new DecryptInput
{
 Ciphertext = ciphertext,
 Keyring = decryptKeyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Decrypt with limited encrypted data keys

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys key=$key_arn1 key=$key_arn2 key=$key_arn3 \
 --buffer \
 --max-encrypted-data-keys 3 \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

Java

// Construct a client with limited encrypted data keys
final AwsCrypto crypto = AwsCrypto.builder()

Membatasi kunci data terenkripsi 68

AWS Encryption SDK Panduan Developerr

 .withMaxEncryptedDataKeys(3)
 .build();

// Create an AWS KMS master key provider
final KmsMasterKeyProvider keyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(keyArn1, keyArn2, keyArn3);

// Decrypt
final CryptoResult<byte[], KmsMasterKey> decryptResult =
 crypto.decryptData(keyProvider, ciphertext)

JavaScript Browser

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

declare const credentials: {
 accessKeyId: string
 secretAccessKey: string
 sessionToken: string
}
const clientProvider = getClient(KMS, {
 credentials: { accessKeyId, secretAccessKey, sessionToken }
})

// Create an AWS KMS keyring
const keyring = new KmsKeyringBrowser({
 clientProvider,
 keyIds: [keyArn1, keyArn2, keyArn3],
})

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

JavaScript Node.js

// Construct a client with limited encrypted data keys
const { encrypt, decrypt } = buildClient({ maxEncryptedDataKeys: 3 })

// Create an AWS KMS keyring
const keyring = new KmsKeyringBrowser({
 keyIds: [keyArn1, keyArn2, keyArn3],
})

Membatasi kunci data terenkripsi 69

AWS Encryption SDK Panduan Developerr

// Decrypt
const { plaintext, messageHeader } = await decrypt(keyring, ciphertext)

Python

Instantiate a client with limited encrypted data keys
client = aws_encryption_sdk.EncryptionSDKClient(max_encrypted_data_keys=3)

Create an AWS KMS master key provider
master_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(
 key_ids=[key_arn1, key_arn2, key_arn3])

Decrypt
plaintext, header = client.decrypt(source=ciphertext,
 key_provider=master_key_provider)

Rust

// Instantiate the AWS Encryption SDK client with limited encrypted data keys
let esdk_config = AwsEncryptionSdkConfig::builder()
 .max_encrypted_data_keys(max_encrypted_data_keys)
 .build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Generate `max_encrypted_data_keys` raw AES keyrings to use with your keyring
let mut raw_aes_keyrings: Vec<KeyringRef> = vec![];

assert!(max_encrypted_data_keys > 0, "max_encrypted_data_keys MUST be greater than
 0");

let mut i = 0;
while i < max_encrypted_data_keys {
 let aes_key_bytes = generate_aes_key_bytes();

Membatasi kunci data terenkripsi 70

AWS Encryption SDK Panduan Developerr

 let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name(key_name)
 .key_namespace(key_namespace)
 .wrapping_key(aes_key_bytes)
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

 raw_aes_keyrings.push(raw_aes_keyring);
 i += 1;
}

// Create a Multi Keyring with `max_encrypted_data_keys` AES Keyrings
let generator_keyring = raw_aes_keyrings.remove(0);

let multi_keyring = mpl
 .create_multi_keyring()
 .generator(generator_keyring)
 .child_keyrings(raw_aes_keyrings)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client with limited encrypted data keys
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{
 MaxEncryptedDataKeys: &maxEncryptedDataKeys,
})
if err != nil {

Membatasi kunci data terenkripsi 71

AWS Encryption SDK Panduan Developerr

 panic(err)
}

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "RSA_2048_06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Generate `maxEncryptedDataKeys` raw AES keyrings to use with your keyring
rawAESKeyrings := make([]mpltypes.IKeyring, 0, maxEncryptedDataKeys)
var i int64 = 0
for i < maxEncryptedDataKeys {
 key, err := generate256KeyBytesAES()
 if err != nil {
 panic(err)
 }
 aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
 KeyName: keyName,
 KeyNamespace: keyNamespace,
 WrappingKey: key,
 WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tag16,
 }
 aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
 aesKeyRingInput)
 if err != nil {
 panic(err)
 }
 rawAESKeyrings = append(rawAESKeyrings, aesKeyring)
 i++
}

// Create a Multi Keyring with `max_encrypted_data_keys` AES Keyrings
createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
 Generator: rawAESKeyrings[0],
 ChildKeyrings: rawAESKeyrings[1:],
}
multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
 createMultiKeyringInput)
if err != nil {

Membatasi kunci data terenkripsi 72

AWS Encryption SDK Panduan Developerr

 panic(err)
}

Membuat filter penemuan
Saat mendekripsi data yang dienkripsi dengan kunci KMS, ini adalah praktik terbaik untuk
mendekripsi dalam mode ketat, yaitu membatasi kunci pembungkus yang digunakan hanya untuk
yang Anda tentukan. Namun, jika perlu, Anda juga dapat mendekripsi dalam mode penemuan,
di mana Anda tidak menentukan kunci pembungkus apa pun. Dalam mode ini, AWS KMS dapat
mendekripsi kunci data terenkripsi menggunakan kunci KMS yang mengenkripsi itu, terlepas dari
siapa yang memiliki atau memiliki akses ke kunci KMS itu.

Jika Anda harus mendekripsi dalam mode penemuan, kami sarankan Anda selalu menggunakan filter
penemuan, yang membatasi kunci KMS yang dapat digunakan untuk yang ada di partisi dan yang
ditentukan Akun AWS . Filter penemuan adalah opsional, tetapi ini adalah praktik terbaik.

Gunakan tabel berikut untuk menentukan nilai partisi untuk filter penemuan Anda.

Region Partition

Wilayah AWS aws

Wilayah Tiongkok aws-cn

AWS GovCloud (US) Regions aws-us-gov

Contoh di bagian ini menunjukkan cara membuat filter penemuan. Sebelum menggunakan kode,
ganti nilai contoh dengan nilai yang valid untuk partisi Akun AWS dan.

C

Untuk contoh lengkap, lihat kms_discovery.cpp di file AWS Encryption SDK for C.

/* Create a discovery filter for an AWS account and partition */

const char *account_id = "111122223333";
const char *partition = "aws";
const std::shared_ptr<Aws::Cryptosdk::KmsKeyring::DiscoveryFilter> discovery_filter
 =

Membuat filter penemuan 73

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK Panduan Developerr

 Aws::Cryptosdk::KmsKeyring::DiscoveryFilter::Builder(partition).AddAccount(account_id).Build();

C# / .NET

Untuk contoh lengkapnya, lihat DiscoveryFilterExample.cs di AWS Encryption SDK for .NET.

// Create a discovery filter for an AWS account and partition

List<string> account = new List<string> { "111122223333" };

DiscoveryFilter exampleDiscoveryFilter = new DiscoveryFilter()
{
 AccountIds = account,
 Partition = "aws"
}

AWS Encryption CLI

Decrypt in discovery mode with a discovery filter

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys discovery=true \
 discovery-account=111122223333 \
 discovery-partition=aws \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --output .

Java

Untuk contoh lengkap, lihat DiscoveryDecryptionExample.java di file. AWS Encryption SDK for
Java

// Create a discovery filter for an AWS account and partition

DiscoveryFilter discoveryFilter = new DiscoveryFilter("aws", 111122223333);

Membuat filter penemuan 74

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/DiscoveryFilterExample.cs
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/DiscoveryDecryptionExample.java

AWS Encryption SDK Panduan Developerr

JavaScript (Node and Browser)

Untuk contoh lengkap, lihat kms_filtered_discovery.ts (Node.js) dan kms_multi_region_discovery.ts
(Browser) di file. AWS Encryption SDK for JavaScript

/* Create a discovery filter for an AWS account and partition */
const discoveryFilter = {
 accountIDs: ['111122223333'],
 partition: 'aws',
}

Python

Untuk contoh lengkap, lihat discovery_kms_provider.py di file AWS Encryption SDK for Python.

Create the discovery filter and specify the region
decrypt_kwargs = dict(
 discovery_filter=DiscoveryFilter(account_ids="111122223333",
 partition="aws"),
 discovery_region="us-west-2",
)

Rust

let discovery_filter = DiscoveryFilter::builder()
 .account_ids(vec![111122223333.to_string()])
 .partition("aws".to_string())
 .build()?;

Go

import (
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
)

discoveryFilter := mpltypes.DiscoveryFilter{
 AccountIds: []string{111122223333},
 Partition: "aws",
}

Membuat filter penemuan 75

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_multi_region_discovery.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS Encryption SDK Panduan Developerr

Mengkonfigurasi konteks enkripsi yang diperlukan CMM

Anda dapat menggunakan konteks enkripsi CMM yang diperlukan untuk memerlukan konteks
enkripsi dalam operasi kriptografi Anda. Konteks enkripsi adalah sekumpulan pasangan kunci-nilai
non-rahasia. Konteks enkripsi terikat secara kriptografis ke data terenkripsi sehingga konteks enkripsi
yang sama diperlukan untuk mendekripsi bidang. Bila Anda menggunakan konteks enkripsi CMM
yang diperlukan, Anda dapat menentukan satu atau beberapa kunci konteks enkripsi yang diperlukan
(kunci wajib) yang harus disertakan dalam semua panggilan enkripsi dan dekripsi.

Note

Konteks enkripsi yang diperlukan CMM hanya didukung oleh versi berikut:

• Versi 3. x dari AWS Encryption SDK for Java

• Versi 4. x dari AWS Encryption SDK untuk .NET

• Versi 4. x dari AWS Encryption SDK for Python, bila digunakan dengan dependensi
Perpustakaan Penyedia Materi Kriptografi (MPL) opsional.

• Versi 0.1. x atau yang lebih baru AWS Encryption SDK untuk Go

Jika Anda mengenkripsi data menggunakan konteks enkripsi CMM yang diperlukan, Anda
hanya dapat mendekripsi dengan salah satu versi yang didukung ini.

Pada enkripsi, AWS Encryption SDK memverifikasi bahwa semua kunci konteks enkripsi yang
diperlukan disertakan dalam konteks enkripsi yang Anda tentukan. AWS Encryption SDK Tanda
konteks enkripsi yang Anda tentukan. Hanya pasangan kunci-nilai yang bukan kunci wajib yang
diserialisasi dan disimpan dalam teks biasa di header pesan terenkripsi yang dikembalikan oleh
operasi enkripsi.

Saat mendekripsi, Anda harus menyediakan konteks enkripsi yang berisi semua pasangan kunci-nilai
yang mewakili kunci yang diperlukan. AWS Encryption SDK Menggunakan konteks enkripsi ini dan
pasangan kunci-nilai yang disimpan dalam header pesan terenkripsi untuk merekonstruksi konteks
enkripsi asli yang Anda tentukan dalam operasi enkripsi. Jika AWS Encryption SDK tidak dapat
merekonstruksi konteks enkripsi asli, maka operasi dekripsi gagal. Jika Anda memberikan pasangan
kunci-nilai yang berisi kunci yang diperlukan dengan nilai yang salah, pesan terenkripsi tidak dapat
didekripsi. Anda harus memberikan pasangan nilai kunci yang sama yang ditentukan pada enkripsi.

Membutuhkan konteks enkripsi 76

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Panduan Developerr

Important

Pertimbangkan dengan cermat nilai mana yang Anda pilih untuk kunci yang diperlukan
dalam konteks enkripsi Anda. Anda harus dapat memberikan kunci yang sama dan nilai yang
sesuai lagi pada dekripsi. Jika Anda tidak dapat mereproduksi kunci yang diperlukan, pesan
terenkripsi tidak dapat didekripsi.

Contoh berikut menginisialisasi AWS KMS keyring dengan konteks enkripsi CMM yang diperlukan.

C# / .NET

var encryptionContext = new Dictionary<string, string>()
{
 {"encryption", "context"},
 {"is not", "secret"},
 {"but adds", "useful metadata"},
 {"that can help you", "be confident that"},
 {"the data you are handling", "is what you think it is"}
};

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = kmsKey
};

// Create the keyring
var kmsKeyring = mpl.CreateAwsKmsKeyring(createKeyringInput);

var createCMMInput = new CreateRequiredEncryptionContextCMMInput
{
 UnderlyingCMM = mpl.CreateDefaultCryptographicMaterialsManager(new
 CreateDefaultCryptographicMaterialsManagerInput{Keyring = kmsKeyring}),
 // If you pass in a keyring but no underlying cmm, it will result in a failure
 because only cmm is supported.
 RequiredEncryptionContextKeys = new List<string>(encryptionContext.Keys)

Membutuhkan konteks enkripsi 77

AWS Encryption SDK Panduan Developerr

};

// Create the required encryption context CMM
var requiredEcCMM = mpl.CreateRequiredEncryptionContextCMM(createCMMInput);

Java

// Instantiate the AWS Encryption SDK
final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

// Create your encryption context
final Map<String, String> encryptionContext = new HashMap<>();
encryptionContext.put("encryption", "context");
encryptionContext.put("is not", "secret");
encryptionContext.put("but adds", "useful metadata");
encryptionContext.put("that can help you", "be confident that");
encryptionContext.put("the data you are handling", "is what you think it is");

// Create a list of required encryption contexts
final List<String> requiredEncryptionContextKeys = Arrays.asList("encryption",
 "context");

// Create the keyring
final MaterialProviders materialProviders = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsKeyringInput keyringInput = CreateAwsKmsKeyringInput.builder()
 .kmsKeyId(keyArn)
 .kmsClient(KmsClient.create())
 .build();
IKeyring kmsKeyring = materialProviders.CreateAwsKmsKeyring(keyringInput);

// Create the required encryption context CMM
ICryptographicMaterialsManager cmm =
 materialProviders.CreateDefaultCryptographicMaterialsManager(
 CreateDefaultCryptographicMaterialsManagerInput.builder()
 .keyring(kmsKeyring)
 .build()
);
ICryptographicMaterialsManager requiredCMM =
 materialProviders.CreateRequiredEncryptionContextCMM(

Membutuhkan konteks enkripsi 78

AWS Encryption SDK Panduan Developerr

 CreateRequiredEncryptionContextCMMInput.builder()
 .requiredEncryptionContextKeys(requiredEncryptionContextKeys)
 .underlyingCMM(cmm)
 .build()
);

Python

Untuk menggunakan CMM konteks enkripsi yang diperlukan, Anda juga harus menggunakan
pustaka penyedia materi (MPL). AWS Encryption SDK for Python

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Create your encryption context
encryption_context: Dict[str, str] = {
 "key1": "value1",
 "key2": "value2",
 "requiredKey1": "requiredValue1",
 "requiredKey2": "requiredValue2"
}

Create a list of required encryption context keys
required_encryption_context_keys: List[str] = ["requiredKey1", "requiredKey2"]

Instantiate the material providers library
mpl: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS keyring
 keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
 kms_key_id=kms_key_id,
 kms_client=boto3.client('kms', region_name="us-west-2")
)
kms_keyring: IKeyring = mpl.create_aws_kms_keyring(keyring_input)

Create the required encryption context CMM
underlying_cmm: ICryptographicMaterialsManager = \
 mpl.create_default_cryptographic_materials_manager(
 CreateDefaultCryptographicMaterialsManagerInput(

Membutuhkan konteks enkripsi 79

AWS Encryption SDK Panduan Developerr

 keyring=kms_keyring
)
)

required_ec_cmm: ICryptographicMaterialsManager = \
 mpl.create_required_encryption_context_cmm(
 CreateRequiredEncryptionContextCMMInput(
 required_encryption_context_keys=required_encryption_context_keys,
 underlying_cmm=underlying_cmm,
)
)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Create your encryption context
let encryption_context = HashMap::from([
 ("key1".to_string(), "value1".to_string()),
 ("key2".to_string(), "value2".to_string()),
 ("requiredKey1".to_string(), "requiredValue1".to_string()),
 ("requiredKey2".to_string(), "requiredValue2".to_string()),
]);

// Create a list of required encryption context keys
let required_encryption_context_keys: Vec<String> = vec![
 "requiredKey1".to_string(),
 "requiredKey2".to_string(),
];

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_keyring = mpl

Membutuhkan konteks enkripsi 80

AWS Encryption SDK Panduan Developerr

 .create_aws_kms_keyring()
 .kms_key_id(kms_key_id)
 .kms_client(kms_client)
 .send()
 .await?;

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
 input=kms_multi_keyring_input
)

// Create the required encryption context CMM
let underlying_cmm = mpl
 .create_default_cryptographic_materials_manager()
 .keyring(kms_keyring)
 .send()
 .await?;

let required_ec_cmm = mpl
 .create_required_encryption_context_cmm()
 .underlying_cmm(underlying_cmm.clone())
 .required_encryption_context_keys(required_encryption_context_keys)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})

Membutuhkan konteks enkripsi 81

AWS Encryption SDK Panduan Developerr

if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = defaultKmsKeyRegion
})

// Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Create a list of required encryption context keys
requiredEncryptionContextKeys := []string{}
requiredEncryptionContextKeys = append(requiredEncryptionContextKeys,
 "requiredKey1", "requiredKey2")

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create the AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
 KmsClient: kmsClient,
 KmsKeyId: utils.GetDefaultKMSKeyId(),
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
 awsKmsKeyringInput)
if err != nil {
 panic(err)
}

Membutuhkan konteks enkripsi 82

AWS Encryption SDK Panduan Developerr

// Create the required encryption context CMM
underlyingCMM, err :=
 matProv.CreateDefaultCryptographicMaterialsManager(context.Background(),
 mpltypes.CreateDefaultCryptographicMaterialsManagerInput{Keyring: awsKmsKeyring})
if err != nil {
 panic(err)
}
requiredEncryptionContextInput := mpltypes.CreateRequiredEncryptionContextCMMInput{
 UnderlyingCMM: underlyingCMM,
 RequiredEncryptionContextKeys: requiredEncryptionContextKeys,
}
requiredEC, err := matProv.CreateRequiredEncryptionContextCMM(context.Background(),
 requiredEncryptionContextInput)
if err != nil {
 panic(err)
}

Menetapkan kebijakan komitmen

Kebijakan komitmen adalah pengaturan konfigurasi yang menentukan apakah aplikasi Anda
mengenkripsi dan mendekripsi dengan komitmen utama. Mengenkripsi dan mendekripsi dengan
komitmen utama adalah praktik terbaik.AWS Encryption SDK

Menyetel dan menyesuaikan kebijakan komitmen Anda adalah langkah penting dalam bermigrasi dari
versi 1.7. x dan sebelumnya AWS Encryption SDK ke versi 2.0. x dan kemudian. Perkembangan ini
dijelaskan secara rinci dalam topik migrasi.

Nilai kebijakan komitmen default di versi terbaru AWS Encryption SDK (dimulai pada versi 2.0.
x),RequireEncryptRequireDecrypt, sangat ideal untuk sebagian besar situasi. Namun, jika
Anda perlu mendekripsi ciphertext yang dienkripsi tanpa komitmen utama, Anda mungkin perlu
mengubah kebijakan komitmen Anda. RequireEncryptAllowDecrypt Untuk contoh cara
menetapkan kebijakan komitmen dalam setiap bahasa pemrograman, lihatMenetapkan kebijakan
komitmen Anda.

Bekerja dengan data streaming

Saat Anda mengalirkan data untuk dekripsi, ketahuilah bahwa teks biasa yang didekripsi AWS
Encryption SDK kembali setelah pemeriksaan integritas selesai, tetapi sebelum tanda tangan digital

Menetapkan kebijakan komitmen 83

AWS Encryption SDK Panduan Developerr

diverifikasi. Untuk memastikan bahwa Anda tidak mengembalikan atau menggunakan plaintext
sampai tanda tangan diverifikasi, kami sarankan Anda menyangga plaintext yang dialirkan hingga
seluruh proses dekripsi selesai.

Masalah ini muncul hanya ketika Anda melakukan streaming ciphertext untuk dekripsi, dan
hanya ketika Anda menggunakan rangkaian algoritme, seperti rangkaian algoritme default, yang
menyertakan tanda tangan digital.

Untuk mempermudah buffering, beberapa implementasi AWS Encryption SDK bahasa, seperti AWS
Encryption SDK for JavaScript di Node.js, menyertakan fitur buffering sebagai bagian dari metode
dekripsi. AWS Encryption CLI, yang selalu mengalirkan input dan output memperkenalkan --buffer
parameter dalam versi 1.9. x dan 2.2. x. Dalam implementasi bahasa lain, Anda dapat menggunakan
fitur buffering yang ada. (AWS Encryption SDK Untuk .NET tidak mendukung streaming.)

Jika Anda menggunakan rangkaian algoritme tanpa tanda tangan digital, pastikan untuk
menggunakan decrypt-unsigned fitur ini di setiap implementasi bahasa. Fitur ini mendekripsi
ciphertext tetapi gagal jika menemukan ciphertext yang ditandatangani. Lihat perinciannya di Memilih
rangkaian algoritme.

Menyembunyikan kunci data

Secara umum, menggunakan kembali kunci data tidak disarankan, tetapi AWS Encryption SDK
menawarkan opsi caching kunci data yang menyediakan penggunaan kembali kunci data secara
terbatas. Caching kunci data dapat meningkatkan kinerja beberapa aplikasi dan mengurangi
panggilan ke infrastruktur utama Anda. Sebelum menggunakan caching kunci data dalam produksi,
sesuaikan ambang keamanan, dan uji untuk memastikan bahwa manfaatnya lebih besar daripada
kerugian menggunakan kembali kunci data.

Menyembunyikan kunci data 84

AWS Encryption SDK Panduan Developerr

Toko-toko utama di AWS Encryption SDK
Dalam AWS Encryption SDK, penyimpanan kunci adalah tabel Amazon DynamoDB yang
mempertahankan data hierarkis yang digunakan oleh keyring Hierarkis.AWS KMS Toko kunci
membantu mengurangi jumlah panggilan yang perlu Anda lakukan AWS KMS untuk melakukan
operasi kriptografi dengan keyring Hierarkis.

Penyimpanan kunci tetap ada dan mengelola kunci cabang yang digunakan keyring Hierarkis untuk
melakukan enkripsi amplop dan melindungi kunci enkripsi data. Key store menyimpan kunci cabang
aktif dan semua versi sebelumnya dari kunci cabang. Kunci cabang aktif adalah versi kunci cabang
terbaru. Keyring Hierarkis menggunakan kunci enkripsi data unik untuk setiap permintaan enkripsi
dan mengenkripsi setiap kunci enkripsi data dengan kunci pembungkus unik yang berasal dari kunci
cabang aktif. Keyring Hierarkis tergantung pada hierarki yang ditetapkan antara kunci cabang aktif
dan kunci pembungkus turunannya.

Terminologi dan konsep toko kunci

Toko kunci

Tabel DynamoDB yang mempertahankan data hierarkis, seperti kunci cabang dan kunci suar.

Kunci root

Kunci KMS enkripsi simetris yang menghasilkan dan melindungi kunci cabang dan kunci suar di
toko kunci Anda.

Kunci cabang

Kunci data yang digunakan kembali untuk mendapatkan kunci pembungkus unik untuk enkripsi
amplop. Anda dapat membuat beberapa kunci cabang dalam satu penyimpanan kunci, tetapi
setiap kunci cabang hanya dapat memiliki satu versi kunci cabang aktif pada satu waktu. Kunci
cabang aktif adalah versi kunci cabang terbaru.

Kunci cabang berasal dari AWS KMS keys menggunakan kms: GenerateDataKeyWithoutPlaintext
operasi.

Kunci pembungkus

Kunci data unik yang digunakan untuk mengenkripsi kunci enkripsi data yang digunakan dalam
operasi enkripsi.

Terminologi dan konsep toko kunci 85

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK Panduan Developerr

Kunci pembungkus berasal dari kunci cabang. Untuk informasi selengkapnya tentang proses
derivasi kunci, lihat Detail teknis keyring AWS KMS hierarkis.

Kunci enkripsi data

Kunci data yang digunakan dalam operasi enkripsi. Keyring Hierarkis menggunakan kunci enkripsi
data unik untuk setiap permintaan enkripsi.

Menerapkan izin yang paling tidak diistimewakan

Saat menggunakan penyimpanan kunci dan gantungan kunci AWS KMS Hierarkis, kami sarankan
Anda mengikuti prinsip hak istimewa paling sedikit dengan mendefinisikan peran berikut:

Administrator toko kunci

Administrator toko utama bertanggung jawab untuk membuat dan mengelola toko kunci dan kunci
cabang yang bertahan dan dilindungi. Administrator toko utama harus menjadi satu-satunya
pengguna dengan izin menulis ke tabel Amazon DynamoDB yang berfungsi sebagai toko kunci
Anda. Mereka harus menjadi satu-satunya pengguna dengan akses ke operasi administrator
istimewa, seperti CreateKeydan VersionKey. Anda hanya dapat melakukan operasi ini ketika
Anda mengonfigurasi tindakan penyimpanan kunci secara statis.

CreateKeyadalah operasi istimewa yang dapat menambahkan ARN kunci KMS baru ke daftar
izin toko kunci Anda. Kunci KMS ini dapat membuat kunci cabang aktif baru. Kami menyarankan
untuk membatasi akses ke operasi ini karena setelah kunci KMS ditambahkan ke toko kunci
cabang, itu tidak dapat dihapus.

Pengguna toko kunci

Dalam kebanyakan kasus penggunaan, pengguna key store hanya berinteraksi
dengan key store melalui keyring Hierarchical saat mereka mengenkripsi, mendekripsi,
menandatangani, dan memverifikasi data. Akibatnya, mereka hanya perlu izin baca ke
tabel Amazon DynamoDB yang berfungsi sebagai toko kunci Anda. Pengguna toko kunci
hanya perlu akses ke operasi penggunaan yang memungkinkan operasi kriptografi,
sepertiGetActiveBranchKey,GetBranchKeyVersion, danGetBeaconKey. Mereka tidak
memerlukan izin untuk membuat atau mengelola kunci cabang yang mereka gunakan.

Anda dapat melakukan operasi penggunaan ketika tindakan penyimpanan kunci Anda
dikonfigurasi secara statis, atau ketika mereka dikonfigurasi untuk penemuan. Anda tidak dapat

Menerapkan izin yang paling tidak diistimewakan 86

AWS Encryption SDK Panduan Developerr

melakukan operasi administrator (CreateKeydanVersionKey) ketika tindakan penyimpanan
kunci Anda dikonfigurasi untuk penemuan.

Jika administrator toko kunci cabang Anda mengizinkan daftar beberapa kunci KMS di toko
kunci cabang Anda, kami menyarankan agar pengguna toko kunci Anda mengonfigurasi
tindakan penyimpanan kunci mereka untuk ditemukan sehingga keyring Hierarkis mereka dapat
menggunakan beberapa kunci KMS.

Buat toko kunci
Sebelum Anda dapat membuat kunci cabang atau menggunakan keyring AWS KMS Hierarkis, Anda
harus membuat toko kunci Anda, tabel Amazon DynamoDB yang mengelola dan melindungi kunci
cabang Anda.

Important

Jangan hapus tabel DynamoDB yang mempertahankan kunci cabang Anda. Jika Anda
menghapus tabel ini, Anda tidak akan dapat mendekripsi data apa pun yang dienkripsi
menggunakan keyring Hierarkis.

Ikuti prosedur Buat tabel di Panduan Pengembang Amazon DynamoDB, menggunakan nilai string
yang diperlukan berikut untuk kunci partisi dan kunci sortir.

Kunci partisi Sortir kunci

Tabel dasar branch-key-id type

Nama toko kunci logis

Saat menamai tabel DynamoDB yang berfungsi sebagai penyimpanan kunci Anda, penting
untuk mempertimbangkan dengan cermat nama toko kunci logis yang akan Anda tentukan saat
mengonfigurasi tindakan penyimpanan kunci Anda. Nama penyimpanan kunci logis bertindak
sebagai pengidentifikasi untuk toko kunci Anda dan tidak dapat diubah setelah awalnya ditentukan
oleh pengguna pertama. Anda harus selalu menentukan nama penyimpanan kunci logis yang sama
dalam tindakan penyimpanan kunci Anda.

Buat toko kunci 87

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS Encryption SDK Panduan Developerr

Harus ada one-to-one pemetaan antara nama tabel DynamoDB dan nama toko kunci logis. Nama
penyimpanan kunci logis terikat secara kriptografis ke semua data yang disimpan dalam tabel
untuk menyederhanakan operasi pemulihan DynamoDB. Meskipun nama toko kunci logis dapat
berbeda dari nama tabel DynamoDB Anda, kami sangat menyarankan untuk menentukan nama
tabel DynamoDB Anda sebagai nama toko kunci logis. Jika nama tabel Anda berubah setelah
memulihkan tabel DynamoDB Anda dari cadangan, nama penyimpanan kunci logis dapat dipetakan
ke nama tabel DynamoDB baru untuk memastikan bahwa keyring Hierarkis masih dapat mengakses
penyimpanan kunci Anda.

Jangan sertakan informasi rahasia atau sensitif dalam nama toko kunci logis Anda. Nama
penyimpanan kunci logis ditampilkan dalam teks biasa dalam AWS KMS CloudTrail peristiwa
sebagai. tablename

Langkah selanjutnya

1. the section called “Konfigurasikan tindakan penyimpanan kunci”

2. the section called “Buat kunci cabang”

3. Buat keyring AWS KMS Hierarkis

Konfigurasikan tindakan penyimpanan kunci

Tindakan penyimpanan kunci menentukan operasi apa yang dapat dilakukan pengguna Anda dan
bagaimana keyring AWS KMS Hierarkis mereka menggunakan kunci KMS yang diizinkan terdaftar di
toko kunci Anda. AWS Encryption SDK Mendukung konfigurasi tindakan penyimpanan kunci berikut.

Statis

Saat Anda mengonfigurasi penyimpanan kunci secara statis, toko kunci hanya dapat
menggunakan kunci KMS yang terkait dengan ARN kunci KMS yang Anda berikan
kmsConfiguration saat Anda mengonfigurasi tindakan penyimpanan kunci Anda.
Pengecualian dilemparkan jika ARN kunci KMS yang berbeda ditemukan saat membuat,
membuat versi, atau mendapatkan kunci cabang.

Anda dapat menentukan kunci KMS Multi-wilayah di AndakmsConfiguration, tetapi seluruh
ARN kunci, termasuk wilayah, disimpan di kunci cabang yang berasal dari kunci KMS. Anda tidak
dapat menentukan kunci di wilayah yang berbeda, Anda harus memberikan kunci multi-wilayah
yang sama persis agar nilainya cocok.

Konfigurasikan tindakan penyimpanan kunci 88

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS Encryption SDK Panduan Developerr

Saat Anda mengonfigurasi tindakan penyimpanan kunci secara statis, Anda dapat melakukan
operasi penggunaan (GetActiveBranchKey,GetBranchKeyVersion,GetBeaconKey) dan
operasi administratif (CreateKeydanVersionKey). CreateKeyadalah operasi istimewa yang
dapat menambahkan ARN kunci KMS baru ke daftar izin toko kunci Anda. Kunci KMS ini dapat
membuat kunci cabang aktif baru. Kami menyarankan untuk membatasi akses ke operasi ini
karena setelah kunci KMS ditambahkan ke toko kunci, itu tidak dapat dihapus.

Penemuan

Saat Anda mengonfigurasi tindakan penyimpanan kunci untuk penemuan, toko kunci dapat
menggunakan AWS KMS key ARN apa pun yang diizinkan terdaftar di toko kunci Anda. Namun,
pengecualian dilemparkan ketika kunci KMS Multi-wilayah ditemui dan wilayah di ARN kunci tidak
cocok dengan wilayah klien yang digunakan. AWS KMS

Ketika Anda mengonfigurasi penyimpanan kunci untuk penemuan, Anda tidak dapat melakukan
operasi administratif, seperti CreateKey danVersionKey. Anda hanya dapat melakukan operasi
penggunaan yang mengaktifkan enkripsi, mendekripsi, menandatangani, dan memverifikasi
operasi. Untuk informasi selengkapnya, lihat the section called “Menerapkan izin yang paling tidak
diistimewakan”.

Konfigurasikan tindakan penyimpanan kunci Anda

Sebelum Anda mengonfigurasi tindakan penyimpanan kunci Anda, pastikan prasyarat berikut
terpenuhi.

• Tentukan operasi apa yang perlu Anda lakukan. Untuk informasi selengkapnya, lihat the section
called “Menerapkan izin yang paling tidak diistimewakan”.

• Pilih nama toko kunci logis

Harus ada one-to-one pemetaan antara nama tabel DynamoDB dan nama toko kunci logis. Nama
penyimpanan kunci logis terikat secara kriptografis ke semua data yang disimpan dalam tabel
untuk menyederhanakan operasi pemulihan DynamoDB, tidak dapat diubah setelah awalnya
ditentukan oleh pengguna pertama. Anda harus selalu menentukan nama penyimpanan kunci logis
yang sama dalam tindakan penyimpanan kunci Anda. Untuk informasi selengkapnya, lihat logical
key store name.

Konfigurasikan tindakan penyimpanan kunci Anda 89

AWS Encryption SDK Panduan Developerr

Konfigurasi statis

Contoh berikut secara statis mengkonfigurasi tindakan penyimpanan kunci. Anda harus menentukan
nama tabel DynamoDB yang berfungsi sebagai penyimpanan kunci Anda, nama logis untuk
penyimpanan kunci, dan ARN kunci KMS yang mengidentifikasi kunci KMS enkripsi simetris.

Note

Pertimbangkan dengan cermat ARN kunci KMS yang Anda tentukan saat mengonfigurasi
layanan penyimpanan kunci Anda secara statis. CreateKeyOperasi menambahkan ARN
kunci KMS ke daftar izin toko kunci cabang Anda. Setelah kunci KMS ditambahkan ke toko
kunci cabang, itu tidak dapat dihapus.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())
 .ddbTableName(keyStoreName)
 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .kmsKeyArn(kmsKeyArn)
 .build())
 .build()).build();

C# / .NET

var kmsConfig = new KMSConfiguration { KmsKeyArn = kmsKeyArn };
 var keystoreConfig = new KeyStoreConfig
 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = kmsConfig,
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Konfigurasikan tindakan penyimpanan kunci Anda 90

AWS Encryption SDK Panduan Developerr

Python

keystore: KeyStore = KeyStore(
 config=KeyStoreConfig(
 ddb_client=ddb_client,
 ddb_table_name=key_store_name,
 logical_key_store_name=logical_key_store_name,
 kms_client=kms_client,
 kms_configuration=KMSConfigurationKmsKeyArn(
 value=kms_key_id
),
)
)

Rust

let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let key_store_config = KeyStoreConfig::builder()
 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
 .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)
 .kms_configuration(KmsConfiguration::KmsKeyArn(kms_key_arn.to_string()))
 .build()?;

let keystore = keystore_client::Client::from_conf(key_store_config)?;

Go

import (
 keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygenerated"
 keystoretypes "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes"
)

kmsConfig := keystoretypes.KMSConfigurationMemberkmsKeyArn{
 Value: kmsKeyArn,
}
keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{
 DdbTableName: keyStoreTableName,
 KmsConfiguration: &kmsConfig,

Konfigurasikan tindakan penyimpanan kunci Anda 91

AWS Encryption SDK Panduan Developerr

 LogicalKeyStoreName: logicalKeyStoreName,
 DdbClient: ddbClient,
 KmsClient: kmsClient,
})
if err != nil {
 panic(err)
}

Konfigurasi penemuan

Contoh berikut mengonfigurasi tindakan penyimpanan kunci untuk penemuan. Anda harus
menentukan nama tabel DynamoDB yang berfungsi sebagai toko kunci Anda dan nama toko kunci
logis.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())
 .ddbTableName(keyStoreName)
 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .discovery(Discovery.builder().build())
 .build())
 .build()).build();

C# / .NET

var keystoreConfig = new KeyStoreConfig
 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = new KMSConfiguration {Discovery = new Discovery()},
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Konfigurasikan tindakan penyimpanan kunci Anda 92

AWS Encryption SDK Panduan Developerr

Python

keystore: KeyStore = KeyStore(
 config=KeyStoreConfig(
 ddb_client=ddb_client,
 ddb_table_name=key_store_name,
 logical_key_store_name=logical_key_store_name,
 kms_client=kms_client,
 kms_configuration=KMSConfigurationDiscovery(
 value=Discovery()
),
)
)

Rust

let key_store_config = KeyStoreConfig::builder()
 .kms_client(kms_client)
 .ddb_client(ddb_client)
 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)

 .kms_configuration(KmsConfiguration::Discovery(Discovery::builder().build()?))
 .build()?;

Go

import (
 keystore "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygenerated"
 keystoretypes "github.com/aws/aws-cryptographic-material-providers-library/mpl/
awscryptographykeystoresmithygeneratedtypes"
)

kmsConfig := keystoretypes.KMSConfigurationMemberdiscovery{}
keyStore, err := keystore.NewClient(keystoretypes.KeyStoreConfig{
 DdbTableName: keyStoreName,
 KmsConfiguration: &kmsConfig,
 LogicalKeyStoreName: logicalKeyStoreName,
 DdbClient: ddbClient,
 KmsClient: kmsClient,
})
if err != nil {

Konfigurasikan tindakan penyimpanan kunci Anda 93

AWS Encryption SDK Panduan Developerr

 panic(err)
}

Buat kunci cabang aktif

Kunci cabang adalah kunci data yang berasal dari AWS KMS key yang digunakan oleh keyring AWS
KMS Hierarkis untuk mengurangi jumlah panggilan yang dilakukan. AWS KMS Kunci cabang aktif
adalah versi kunci cabang terbaru. Keyring Hierarkis menghasilkan kunci data unik untuk setiap
permintaan enkripsi dan mengenkripsi setiap kunci data dengan kunci pembungkus unik yang
berasal dari kunci cabang aktif.

Untuk membuat kunci cabang aktif baru, Anda harus mengonfigurasi tindakan penyimpanan kunci
secara statis. CreateKeyadalah operasi istimewa yang menambahkan ARN kunci KMS yang
ditentukan dalam konfigurasi tindakan penyimpanan kunci Anda ke daftar izin toko kunci Anda.
Kemudian, kunci KMS digunakan untuk menghasilkan kunci cabang aktif baru. Kami menyarankan
untuk membatasi akses ke operasi ini karena setelah kunci KMS ditambahkan ke toko kunci, itu tidak
dapat dihapus.

Anda dapat mengizinkan daftar satu kunci KMS di toko kunci Anda, atau Anda dapat mengizinkan
beberapa kunci KMS dengan memperbarui ARN kunci KMS yang Anda tentukan dalam konfigurasi
tindakan penyimpanan kunci Anda dan menelepon lagi. CreateKey Jika Anda mengizinkan
beberapa kunci KMS, pengguna toko kunci Anda harus mengonfigurasi tindakan penyimpanan kunci
mereka untuk penemuan sehingga mereka dapat menggunakan salah satu kunci yang diizinkan
di toko kunci yang dapat mereka akses. Untuk informasi selengkapnya, lihat the section called
“Konfigurasikan tindakan penyimpanan kunci”.

Izin yang diperlukan

Untuk membuat kunci cabang, Anda memerlukan ReEncrypt izin kms:
GenerateDataKeyWithoutPlaintext dan kms: pada kunci KMS yang ditentukan dalam tindakan
penyimpanan kunci Anda.

Buat kunci cabang

Operasi berikut membuat kunci cabang aktif baru menggunakan kunci KMS yang Anda tentukan
dalam konfigurasi tindakan penyimpanan kunci Anda, dan menambahkan kunci cabang aktif ke tabel
DynamoDB yang berfungsi sebagai penyimpanan kunci Anda.

Saat Anda meneleponCreateKey, Anda dapat memilih untuk menentukan nilai opsional berikut.

Buat kunci cabang 94

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Encryption SDK Panduan Developerr

• branchKeyIdentifier: mendefinisikan kustombranch-key-id.

Untuk membuat kustombranch-key-id, Anda juga harus menyertakan konteks enkripsi
tambahan dengan encryptionContext parameter.

• encryptionContext: mendefinisikan kumpulan opsional pasangan kunci-nilai non-rahasia yang
menyediakan data terautentikasi tambahan (AAD) dalam konteks enkripsi yang disertakan dalam
panggilan kms:. GenerateDataKeyWithoutPlaintext

Konteks enkripsi tambahan ini ditampilkan dengan aws-crypto-ec: awalan.

Java

final Map<String, String> additionalEncryptionContext =
 Collections.singletonMap("Additional Encryption Context for",
 "custom branch key id");

 final String BranchKey = keystore.CreateKey(
 CreateKeyInput.builder()
 .branchKeyIdentifier(custom-branch-key-id) //OPTIONAL
 .encryptionContext(additionalEncryptionContext) //OPTIONAL

 .build()).branchKeyIdentifier();

C# / .NET

var additionalEncryptionContext = new Dictionary<string, string>();
 additionalEncryptionContext.Add("Additional Encryption Context for", "custom
 branch key id");

 var branchKeyId = keystore.CreateKey(new CreateKeyInput
 {
 BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL
 EncryptionContext = additionalEncryptionContext // OPTIONAL
 });

Python

additional_encryption_context = {"Additional Encryption Context for": "custom branch
 key id"}

branch_key_id: str = keystore.create_key(

Buat kunci cabang 95

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS Encryption SDK Panduan Developerr

 CreateKeyInput(
 branch_key_identifier = "custom-branch-key-id", # OPTIONAL
 encryption_context = additional_encryption_context, # OPTIONAL
)
)

Rust

let additional_encryption_context = HashMap::from([
 ("Additional Encryption Context for".to_string(), "custom branch key
 id".to_string())
]);

let branch_key_id = keystore.create_key()
 .branch_key_identifier("custom-branch-key-id") // OPTIONAL
 .encryption_context(additional_encryption_context) // OPTIONAL
 .send()
 .await?
 .branch_key_identifier
 .unwrap();

Go

encryptionContext := map[string]string{
 "Additional Encryption Context for": "custom branch key id",
}

branchKey, err := keyStore.CreateKey(context.Background(),
 keystoretypes.CreateKeyInput{
 BranchKeyIdentifier: &customBranchKeyId,
 EncryptionContext: additional_encryption_context,
})
if err != nil {
 return "", err
}

Pertama, CreateKey operasi menghasilkan nilai-nilai berikut.

• Versi 4 Universally Unique Identifier (UUID) untuk branch-key-id (kecuali Anda menentukan
kustom). branch-key-id

• UUID versi 4 untuk versi kunci cabang

Buat kunci cabang 96

https://www.ietf.org/rfc/rfc4122.txt

AWS Encryption SDK Panduan Developerr

• A timestamp dalam format tanggal dan waktu ISO 8601 dalam Coordinated Universal Time
(UTC).

Kemudian, CreateKey operasi memanggil kms: GenerateDataKeyWithoutPlaintext menggunakan
permintaan berikut.

{
 "EncryptionContext": {
 "branch-key-id" : "branch-key-id",
 "type" : "type",
 "create-time" : "timestamp",
 "logical-key-store-name" : "the logical table name for your key store",
 "kms-arn" : the KMS key ARN,
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 },
 "KeyId": "the KMS key ARN you specified in your key store actions",
 "NumberOfBytes": "32"
 }

Selanjutnya, CreateKey operasi memanggil kms: ReEncrypt untuk membuat catatan aktif untuk
kunci cabang dengan memperbarui konteks enkripsi.

Terakhir, CreateKey operasi memanggil ddb: TransactWriteItems untuk menulis item baru yang
akan mempertahankan kunci cabang dalam tabel yang Anda buat di Langkah 2. Item memiliki atribut
berikut.

{
 "branch-key-id" : branch-key-id,
 "type" : "branch:ACTIVE",
 "enc" : the branch key returned by the GenerateDataKeyWithoutPlaintext call,
 "version": "branch:version:the branch key version UUID",
 "create-time" : "timestamp",
 "kms-arn" : "the KMS key ARN you specified in Step 1",
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 }

Buat kunci cabang 97

https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html

AWS Encryption SDK Panduan Developerr

Putar kunci cabang aktif Anda

Hanya ada satu versi aktif untuk setiap kunci cabang pada satu waktu. Biasanya, setiap versi kunci
cabang aktif digunakan untuk memenuhi beberapa permintaan. Tetapi Anda mengontrol sejauh mana
kunci cabang aktif digunakan kembali dan menentukan seberapa sering kunci cabang aktif diputar.

Kunci cabang tidak digunakan untuk mengenkripsi kunci data teks biasa. Mereka digunakan untuk
mendapatkan kunci pembungkus unik yang mengenkripsi kunci data teks biasa. Proses derivasi
kunci pembungkus menghasilkan kunci pembungkus 32 byte yang unik dengan 28 byte keacakan.
Ini berarti bahwa kunci cabang dapat memperoleh lebih dari 79 oktillion, atau 2 96, kunci pembungkus
unik sebelum keausan kriptografi terjadi. Meskipun risiko kelelahan yang sangat rendah ini, Anda
mungkin diminta untuk memutar kunci cabang aktif Anda karena aturan bisnis atau kontrak atau
peraturan pemerintah.

Versi aktif dari kunci cabang tetap aktif sampai Anda memutarnya. Versi sebelumnya dari kunci
cabang aktif tidak akan digunakan untuk melakukan operasi enkripsi dan tidak dapat digunakan untuk
mendapatkan kunci pembungkus baru, tetapi mereka masih dapat ditanyakan dan menyediakan
kunci pembungkus untuk mendekripsi kunci data yang mereka enkripsi saat aktif.

Izin yang diperlukan

Untuk memutar kunci cabang, Anda memerlukan ReEncrypt izin kms:
GenerateDataKeyWithoutPlaintext dan kms: pada kunci KMS yang ditentukan dalam tindakan
penyimpanan kunci Anda.

Putar tombol cabang aktif

Gunakan VersionKey operasi untuk memutar kunci cabang aktif Anda. Saat Anda memutar kunci
cabang aktif, kunci cabang baru dibuat untuk menggantikan versi sebelumnya. branch-key-
idTidak berubah saat Anda memutar kunci cabang aktif. Anda harus menentukan branch-key-id
yang mengidentifikasi kunci cabang aktif saat ini ketika Anda meneleponVersionKey.

Java

keystore.VersionKey(
 VersionKeyInput.builder()
 .branchKeyIdentifier("branch-key-id")
 .build()
);

Putar kunci cabang aktif Anda 98

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Encryption SDK Panduan Developerr

C# / .NET

 keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});

Python

keystore.version_key(
 VersionKeyInput(
 branch_key_identifier=branch_key_id
)
)

Rust

keystore.version_key()
 .branch_key_identifier(branch_key_id)
 .send()
 .await?;

Go

_, err = keyStore.VersionKey(context.Background(), keystoretypes.VersionKeyInput{
 BranchKeyIdentifier: branchKeyId,
})
if err != nil {
 return err
}

Putar kunci cabang aktif Anda 99

AWS Encryption SDK Panduan Developerr

Gantungan kunci
Implementasi bahasa pemrograman yang didukung menggunakan keyrings untuk melakukan enkripsi
amplop. Keyrings menghasilkan, mengenkripsi, dan mendekripsi kunci data. Keyrings menentukan
sumber kunci data unik yang melindungi setiap pesan, dan kunci pembungkus yang mengenkripsi
kunci data tersebut. Anda menentukan keyring saat mengenkripsi dan keyring yang sama atau
berbeda saat mendekripsi. Anda dapat menggunakan gantungan kunci yang disediakan SDK atau
menulis gantungan kunci kustom Anda sendiri yang kompatibel.

Anda dapat menggunakan setiap keyring satu per satu atau menggabungkan keyrings menjadi multi-
keyring. Meskipun sebagian besar keyrings dapat menghasilkan, mengenkripsi, dan mendekripsi
kunci data, Anda dapat membuat keyring yang hanya melakukan satu operasi tertentu, seperti
keyring yang hanya menghasilkan kunci data, dan menggunakan keyring tersebut dalam kombinasi
dengan yang lain.

Kami menyarankan Anda menggunakan keyring yang melindungi kunci pembungkus Anda dan
melakukan operasi kriptografi dalam batas aman, seperti AWS KMS keyring, yang menggunakan
AWS KMS keys yang tidak pernah meninggalkan () tidak terenkripsi. AWS Key Management
ServiceAWS KMS Anda juga dapat menulis keyring yang menggunakan kunci pembungkus yang
disimpan dalam modul keamanan perangkat keras Anda (HSMs) atau dilindungi oleh layanan kunci
utama lainnya. Untuk detailnya, lihat topik Antarmuka Keyring di AWS Encryption SDK Spesifikasi.

Keyrings memainkan peran kunci master dan penyedia kunci master yang digunakan dalam
implementasi bahasa pemrograman lainnya. Jika Anda menggunakan implementasi bahasa
yang berbeda AWS Encryption SDK untuk mengenkripsi dan mendekripsi data Anda, pastikan
untuk menggunakan keyrings yang kompatibel dan penyedia kunci master. Lihat perinciannya di
Kompatibilitas keyring.

Topik ini menjelaskan cara menggunakan fitur keyring AWS Encryption SDK dan cara memilih
keyring.

Cara kerja gantungan kunci
Ketika Anda mengenkripsi data, AWS Encryption SDK meminta keyring untuk materi enkripsi.
Keyring mengembalikan kunci data plaintext dan salinan kunci data yang dienkripsi oleh masing-
masing kunci pembungkus di keyring. AWS Encryption SDK Menggunakan kunci plaintext untuk
mengenkripsi data, dan kemudian menghancurkan kunci data plaintext. Kemudian, AWS Encryption
SDK mengembalikan pesan terenkripsi yang mencakup kunci data terenkripsi dan data terenkripsi.

Cara kerja gantungan kunci 100

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/keyring-interface.md

AWS Encryption SDK Panduan Developerr

Saat mendekripsi data, Anda dapat menggunakan keyring yang sama dengan yang Anda
gunakan untuk mengenkripsi data, atau yang lain. Untuk mendekripsi data, keyring dekripsi harus
menyertakan (atau memiliki akses ke) setidaknya satu kunci pembungkus dalam keyring enkripsi.

AWS Encryption SDK Lolos kunci data terenkripsi dari pesan terenkripsi ke keyring, dan meminta
keyring untuk mendekripsi salah satu dari mereka. Keyring menggunakan kunci pembungkusnya
untuk mendekripsi salah satu kunci data terenkripsi dan mengembalikan kunci data plaintext. AWS
Encryption SDK Menggunakan kunci data plaintext untuk mendekripsi data. Jika tidak ada kunci
pembungkus di keyring yang dapat mendekripsi salah satu kunci data terenkripsi, operasi dekripsi
gagal.

Cara kerja gantungan kunci 101

AWS Encryption SDK Panduan Developerr

Anda dapat menggunakan keyring tunggal atau juga menggabungkan keyrings dari jenis yang
sama atau jenis yang berbeda ke dalam multi-keyring. Saat Anda mengenkripsi data, multi-keyring
mengembalikan salinan kunci data yang dienkripsi oleh semua kunci pembungkus di semua keyring
yang terdiri dari multi-keyring. Anda dapat mendekripsi data menggunakan keyring dengan salah satu
tombol pembungkus di multi-keyring.

Kompatibilitas keyring

Meskipun implementasi bahasa yang berbeda AWS Encryption SDK memiliki beberapa perbedaan
arsitektur, mereka sepenuhnya kompatibel, tunduk pada kendala bahasa. Anda dapat mengenkripsi
data Anda menggunakan satu implementasi bahasa dan mendekripsi dengan implementasi bahasa
lainnya. Namun, Anda harus menggunakan kunci pembungkus yang sama atau sesuai untuk
mengenkripsi dan mendekripsi kunci data Anda. Untuk informasi tentang kendala bahasa, lihat topik
tentang setiap implementasi bahasa, seperti the section called “Kompatibilitas” dalam topik. AWS
Encryption SDK for JavaScript

Keyrings didukung dalam bahasa pemrograman berikut:

Kompatibilitas keyring 102

AWS Encryption SDK Panduan Developerr

• AWS Encryption SDK for C

• AWS Encryption SDK for JavaScript

• AWS Encryption SDK untuk .NET

• Versi 3. x dari AWS Encryption SDK for Java

• Versi 4. x dari AWS Encryption SDK for Python, bila digunakan dengan dependensi Perpustakaan
Penyedia Materi Kriptografi (MPL) opsional.

• AWS Encryption SDK untuk Rust

• AWS Encryption SDK untuk Go

Memvariasikan persyaratan untuk gantungan kunci enkripsi

Dalam implementasi AWS Encryption SDK bahasa selain AWS Encryption SDK for C, semua kunci
pembungkus dalam keyring enkripsi (atau multi-keyring) atau penyedia kunci utama harus dapat
mengenkripsi kunci data. Jika ada kunci pembungkus gagal untuk mengenkripsi, metode enkripsi
gagal. Akibatnya, penelepon harus memiliki izin yang diperlukan untuk semua kunci di keyring. Jika
Anda menggunakan keyring penemuan untuk mengenkripsi data, sendiri atau dalam multi-keyring,
operasi enkripsi gagal.

Pengecualiannya adalah AWS Encryption SDK for C, di mana operasi enkripsi mengabaikan keyring
penemuan standar, tetapi gagal jika Anda menentukan keyring penemuan Multi-wilayah, sendiri atau
dalam multi-keyring.

Gantungan Kunci yang Kompatibel dan Penyedia Kunci Utama

Tabel berikut menunjukkan kunci master dan penyedia kunci master mana yang kompatibel dengan
gantungan kunci yang disediakan AWS Encryption SDK . Setiap ketidakcocokan kecil karena kendala
bahasa dijelaskan dalam topik tentang implementasi bahasa.

Gantungan kunci: Penyedia Kunci Utama:

AWS KMS gantungan
kunci

KMSMasterKunci (Java)

KMSMasterKeyProvider (Jawa)

KMSMasterKunci (Python)

KMSMasterKeyProvider (Python)

Memvariasikan persyaratan untuk gantungan kunci enkripsi 103

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/kms/KmsMasterKeyProvider.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.kms.html#aws_encryption_sdk.key_providers.kms.KMSMasterKeyProvider

AWS Encryption SDK Panduan Developerr

Gantungan kunci: Penyedia Kunci Utama:

Note

Itu AWS Encryption SDK for Python dan AWS Encryption
SDK for Java tidak termasuk kunci master atau penyedia
kunci master yang setara dengan keyring penemuan AWS
KMS regional.

AWS KMS Gantungan
kunci hierarkis

Didukung oleh bahasa dan versi pemrograman berikut:

• Versi 3. x dari AWS Encryption SDK for Java

• Versi 4. x dari AWS Encryption SDK untuk .NET

• Versi 4. x dari AWS Encryption SDK for Python, bila digunakan
dengan dependensi Perpustakaan Penyedia Materi Kriptografi
(MPL) opsional.

• Versi 1. x dari AWS Encryption SDK untuk Rust

• Versi 0.1. x atau yang lebih baru AWS Encryption SDK untuk Go

AWS KMS Gantungan
kunci ECDH

Didukung oleh bahasa dan versi pemrograman berikut:

• Versi 3. x dari AWS Encryption SDK for Java

• Versi 4. x dari AWS Encryption SDK untuk .NET

• Versi 4. x dari AWS Encryption SDK for Python, bila digunakan
dengan dependensi Perpustakaan Penyedia Materi Kriptografi
(MPL) opsional.

• Versi 1. x dari AWS Encryption SDK untuk Rust

• Versi 0.1. x atau yang lebih baru AWS Encryption SDK untuk Go

Gantungan kunci AES
mentah

Ketika mereka digunakan dengan kunci enkripsi simetris:
JceMasterKey(Jawa)

RawMasterKey(Python)

Gantungan Kunci yang Kompatibel dan Penyedia Kunci Utama 104

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey

AWS Encryption SDK Panduan Developerr

Gantungan kunci: Penyedia Kunci Utama:

Gantungan kunci RSA
mentah

Ketika mereka digunakan dengan kunci enkripsi asimetris:
JceMasterKey(Jawa)

RawMasterKey(Python)

Note

Raw RSA keyring tidak mendukung kunci KMS asimetris.
Jika Anda ingin menggunakan tombol KMS RSA asimetris,
versi 4. x dari AWS Encryption SDK untuk .NET mendukung
AWS KMS keyrings yang menggunakan enkripsi simetris
(SYMMETRIC_DEFAULT) atau RSA asimetris. AWS KMS
keys

Gantungan kunci ECDH
mentah

Didukung oleh bahasa dan versi pemrograman berikut:

• Versi 3. x dari AWS Encryption SDK for Java

• Versi 4. x dari AWS Encryption SDK untuk .NET

• Versi 4. x dari AWS Encryption SDK for Python, bila digunakan
dengan dependensi Perpustakaan Penyedia Materi Kriptografi
(MPL) opsional.

• Versi 1. x dari AWS Encryption SDK untuk Rust

• Versi 0.1. x atau yang lebih baru AWS Encryption SDK untuk Go

AWS KMS gantungan kunci

AWS KMS Keyring digunakan AWS KMS keysuntuk menghasilkan, mengenkripsi, dan mendekripsi
kunci data. AWS Key Management Service (AWS KMS) melindungi kunci KMS Anda dan melakukan
operasi kriptografi dalam batas FIPS. Kami menyarankan Anda menggunakan AWS KMS keyring,
atau keyring dengan properti keamanan serupa, bila memungkinkan.

Semua implementasi bahasa pemrograman yang mendukung keyrings, mendukung AWS KMS
keyrings yang menggunakan kunci KMS enkripsi simetris. Implementasi bahasa pemrograman
berikut juga mendukung AWS KMS keyrings yang menggunakan kunci KMS RSA asimetris:

AWS KMS gantungan kunci 105

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS Encryption SDK Panduan Developerr

• Versi 3. x dari AWS Encryption SDK for Java

• Versi 4. x dari AWS Encryption SDK untuk .NET

• Versi 4. x dari AWS Encryption SDK for Python, bila digunakan dengan dependensi Perpustakaan
Penyedia Materi Kriptografi (MPL) opsional.

• Versi 1. x dari AWS Encryption SDK untuk Rust

• Versi 0.1. x atau yang lebih baru AWS Encryption SDK untuk Go

Jika Anda mencoba memasukkan kunci KMS asimetris dalam keyring enkripsi dalam implementasi
bahasa lain, panggilan enkripsi gagal. Jika Anda memasukkannya ke dalam keyring dekripsi, itu
diabaikan.

Anda dapat menggunakan kunci AWS KMS Multi-region di AWS KMS keyring atau penyedia kunci
master yang dimulai pada versi 2.3. x dari AWS Encryption SDK dan versi 3.0. x dari CLI AWS
Enkripsi. Untuk detail dan contoh penggunaan multi-Region-aware simbol, lihatMenggunakan Multi-
region AWS KMS keys. Untuk informasi tentang kunci Multi-region, lihat Menggunakan kunci Multi-
region di Panduan AWS Key Management Service Pengembang.

Note

Semua penyebutan gantungan kunci KMS dalam AWS Encryption SDK referensi ke keyrings.
AWS KMS

AWS KMS gantungan kunci dapat mencakup dua jenis kunci pembungkus:

• Kunci generator: Menghasilkan kunci data teks biasa dan mengenkripsinya. Sebuah keyring yang
mengenkripsi data harus memiliki satu kunci generator.

• Kunci tambahan: Mengenkripsi kunci data teks biasa yang dihasilkan oleh kunci generator. AWS
KMS keyrings dapat memiliki nol atau lebih tombol tambahan.

Anda menggunakan harus memiliki kunci generator untuk mengenkripsi pesan. Ketika AWS KMS
keyring hanya memiliki satu kunci KMS, kunci itu digunakan untuk menghasilkan dan mengenkripsi
kunci data. Saat mendekripsi, kunci generator adalah opsional, dan perbedaan antara kunci
generator dan kunci tambahan diabaikan.

Seperti semua gantungan kunci, AWS KMS gantungan kunci dapat digunakan secara independen
atau dalam multi-keyring dengan gantungan kunci lain dari jenis yang sama atau berbeda.

AWS KMS gantungan kunci 106

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS Encryption SDK Panduan Developerr

Topik

• Izin yang diperlukan untuk keyrings AWS KMS

• Mengidentifikasi AWS KMS keys dalam AWS KMS keyring

• Membuat AWS KMS keyring

• Menggunakan AWS KMS keyring penemuan

• Menggunakan AWS KMS keyring penemuan regional

Izin yang diperlukan untuk keyrings AWS KMS

AWS Encryption SDK Itu tidak memerlukan Akun AWS dan itu tidak tergantung pada apa pun
Layanan AWS. Namun, untuk menggunakan AWS KMS keyring, Anda memerlukan izin minimum
Akun AWS dan berikut pada keyring Anda. AWS KMS keys

• Untuk mengenkripsi dengan AWS KMS keyring, Anda memerlukan GenerateDataKey izin kms:
pada kunci generator. Anda memerlukan izin KMS: Encrypt pada semua kunci tambahan di
keyring. AWS KMS

• Untuk mendekripsi dengan AWS KMS keyring, Anda memerlukan izin KMS: Decrypt pada
setidaknya satu kunci di keyring. AWS KMS

• Untuk mengenkripsi dengan multi-keyring yang terdiri dari AWS KMS keyrings, Anda memerlukan
GenerateDataKey izin kms: pada kunci generator di keyring generator. Anda memerlukan izin
KMS: Encrypt pada semua kunci lain di semua keyrings lainnya. AWS KMS

• Untuk mengenkripsi dengan AWS KMS keyring RSA asimetris, Anda tidak perlu kms:
GenerateDataKey atau KMS:Encrypt karena Anda harus menentukan materi kunci publik yang
ingin Anda gunakan untuk enkripsi saat Anda membuat keyring. Tidak ada AWS KMS panggilan
yang dilakukan saat mengenkripsi dengan keyring ini. Untuk mendekripsi dengan AWS KMS
keyring RSA asimetris, Anda memerlukan izin KMS: Dekripsi.

Untuk informasi selengkapnya tentang izin AWS KMS keys, lihat akses kunci KMS dan izin di
Panduan Pengembang.AWS Key Management Service

Mengidentifikasi AWS KMS keys dalam AWS KMS keyring

AWS KMS Keyring dapat mencakup satu atau lebih AWS KMS keys. Untuk menentukan AWS KMS
key dalam AWS KMS keyring, gunakan pengenal AWS KMS kunci yang didukung. Pengidentifikasi
kunci yang dapat Anda gunakan untuk mengidentifikasi AWS KMS key dalam keyring bervariasi

Izin yang diperlukan untuk keyrings AWS KMS 107

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html

AWS Encryption SDK Panduan Developerr

dengan operasi dan implementasi bahasa. Untuk detail tentang pengidentifikasi kunci AWS KMS key,
lihat Pengidentifikasi Kunci di Panduan AWS Key Management Service Pengembang.

Sebagai praktik terbaik, gunakan pengenal kunci paling spesifik yang praktis untuk tugas Anda.

• Dalam keyring enkripsi untuk AWS Encryption SDK for C, Anda dapat menggunakan kunci ARN
atau alias ARN untuk mengidentifikasi kunci KMS. Dalam semua implementasi bahasa lainnya,
Anda dapat menggunakan ID kunci, ARN kunci, nama alias, atau alias ARN untuk mengenkripsi
data.

• Dalam keyring dekripsi, Anda harus menggunakan ARN kunci untuk mengidentifikasi. AWS KMS
keys Persyaratan ini berlaku untuk semua implementasi bahasa dari. AWS Encryption SDK Lihat
perinciannya di Memilih tombol pembungkus.

• Dalam keyring yang digunakan untuk enkripsi dan dekripsi, Anda harus menggunakan ARN kunci
untuk mengidentifikasi. AWS KMS keys Persyaratan ini berlaku untuk semua implementasi bahasa
dari. AWS Encryption SDK

Jika Anda menentukan nama alias atau alias ARN untuk kunci KMS dalam keyring enkripsi, operasi
enkripsi menyimpan ARN kunci yang saat ini terkait dengan alias dalam metadata kunci data
terenkripsi. Itu tidak menyimpan alias. Perubahan pada alias tidak memengaruhi kunci KMS yang
digunakan untuk mendekripsi kunci data terenkripsi Anda.

Membuat AWS KMS keyring

Anda dapat mengonfigurasi setiap AWS KMS keyring dengan satu AWS KMS key atau beberapa
AWS KMS keys yang sama atau berbeda Akun AWS dan Wilayah AWS. AWS KMS keys Harus
berupa kunci KMS enkripsi simetris (SYMMETRIC_DEFAULT) atau kunci KMS RSA asimetris. Anda
juga dapat menggunakan enkripsi simetris Multi-region KMS key. Anda dapat menggunakan satu
atau lebih AWS KMS keyring dalam multi-keyring.

Anda dapat membuat AWS KMS keyring yang mengenkripsi dan mendekripsi data, atau Anda dapat
membuat AWS KMS gantungan kunci khusus untuk mengenkripsi atau mendekripsi. Saat Anda
membuat AWS KMS keyring untuk mengenkripsi data, Anda harus menentukan kunci generator,
AWS KMS key yang digunakan untuk menghasilkan kunci data plaintext dan mengenkripsinya. Kunci
data secara matematis tidak terkait dengan kunci KMS. Kemudian, jika Anda memilih, Anda dapat
menentukan tambahan AWS KMS keys yang mengenkripsi kunci data teks biasa yang sama. Untuk
mendekripsi bidang terenkripsi yang dilindungi oleh keyring ini, keyring dekripsi yang Anda gunakan
harus menyertakan setidaknya satu dari yang ditentukan dalam keyring, atau tidak. AWS KMS keys

Membuat AWS KMS keyring 108

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN

AWS Encryption SDK Panduan Developerr

AWS KMS keys(AWS KMS Gantungan kunci tanpa AWS KMS keys dikenal sebagai gantungan
kunci AWS KMS penemuan.)

Dalam implementasi AWS Encryption SDK bahasa selain AWS Encryption SDK for C, semua kunci
pembungkus dalam keyring enkripsi atau multi-keyring harus dapat mengenkripsi kunci data. Jika
ada kunci pembungkus gagal untuk mengenkripsi, metode enkripsi gagal. Akibatnya, penelepon
harus memiliki izin yang diperlukan untuk semua kunci di keyring. Jika Anda menggunakan keyring
penemuan untuk mengenkripsi data, sendiri atau dalam multi-keyring, operasi enkripsi gagal.
Pengecualiannya adalah AWS Encryption SDK for C, di mana operasi enkripsi mengabaikan keyring
penemuan standar, tetapi gagal jika Anda menentukan keyring penemuan Multi-wilayah, sendiri atau
dalam multi-keyring.

Contoh berikut membuat AWS KMS keyring dengan kunci generator dan satu kunci tambahan.
Baik kunci generator dan kunci tambahan adalah kunci KMS enkripsi simetris. Contoh-contoh ini
menggunakan kunci ARNs untuk mengidentifikasi kunci KMS. Ini adalah praktik terbaik untuk AWS
KMS gantungan kunci yang digunakan untuk enkripsi, dan persyaratan untuk AWS KMS gantungan
kunci yang digunakan untuk dekripsi. Lihat perinciannya di Mengidentifikasi AWS KMS keys dalam
AWS KMS keyring.

C

Untuk mengidentifikasi AWS KMS key dalam keyring enkripsi di AWS Encryption SDK for C,
tentukan kunci ARN atau alias ARN. Dalam keyring dekripsi, Anda harus menggunakan kunci
ARN. Lihat perinciannya di Mengidentifikasi AWS KMS keys dalam AWS KMS keyring.

Untuk contoh lengkap, lihat string.cpp.

const char * generator_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

const char * additional_key = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"

struct aws_cryptosdk_keyring *kms_encrypt_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(generator_key,{additional_key});

C# / .NET

Untuk membuat keyring dengan satu atau lebih kunci KMS di AWS Encryption SDK for .NET,
gunakan metode iniCreateAwsKmsMultiKeyring(). Contoh ini menggunakan dua AWS

Membuat AWS KMS keyring 109

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK Panduan Developerr

KMS kunci. Untuk menentukan satu kunci KMS, gunakan hanya Generator parameter.
KmsKeyIdsParameter yang menentukan kunci KMS tambahan adalah opsional.

Input untuk keyring ini tidak membutuhkan AWS KMS klien. Sebaliknya, AWS Encryption SDK
menggunakan AWS KMS klien default untuk setiap Wilayah diwakili oleh kunci KMS di keyring.
Misalnya, jika kunci KMS yang diidentifikasi oleh nilai Generator parameter berada di Wilayah
AS Barat (Oregon) (us-west-2), akan AWS Encryption SDK membuat AWS KMS klien default
untuk Wilayah tersebutus-west-2. Jika Anda perlu menyesuaikan AWS KMS klien, gunakan
CreateAwsKmsKeyring() metode ini.

Saat Anda menentukan AWS KMS key untuk keyring enkripsi di AWS Encryption SDK for .NET,
Anda dapat menggunakan pengenal kunci yang valid: ID kunci, ARN kunci, nama alias, atau
alias ARN. Untuk bantuan mengidentifikasi AWS KMS keys dalam AWS KMS gantungan kunci,
lihatMengidentifikasi AWS KMS keys dalam AWS KMS keyring.

Contoh berikut menggunakan versi 4. x AWS Encryption SDK untuk .NET dan
CreateAwsKmsKeyring() metode untuk menyesuaikan AWS KMS klien.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

string generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<string> additionalKeys = new List<string> { "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321" };

// Instantiate the keyring input object
var createEncryptKeyringInput = new CreateAwsKmsMultiKeyringInput
{
 Generator = generatorKey,
 KmsKeyIds = additionalKeys
};

var kmsEncryptKeyring = mpl.CreateAwsKmsMultiKeyring(createEncryptKeyringInput);

JavaScript Browser

Saat Anda menentukan AWS KMS key untuk gantungan kunci enkripsi di AWS Encryption
SDK for JavaScript, Anda dapat menggunakan pengenal kunci yang valid: ID kunci, ARN kunci,

Membuat AWS KMS keyring 110

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Panduan Developerr

nama alias, atau alias ARN. Untuk bantuan mengidentifikasi AWS KMS keys dalam AWS KMS
gantungan kunci, lihatMengidentifikasi AWS KMS keys dalam AWS KMS keyring.

Contoh berikut menggunakan buildClient fungsi untuk menentukan kebijakan komitmen
default,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Anda juga dapat menggunakan buildClient
untuk membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Untuk informasi
selengkapnya, lihat the section called “Membatasi kunci data terenkripsi”.

Untuk contoh lengkap, lihat kms_simple.ts di repositori di. AWS Encryption SDK for JavaScript
GitHub

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider = getClient(KMS, { credentials })
const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringBrowser({
 clientProvider,
 generatorKeyId,
 keyIds: [additionalKey]
})

JavaScript Node.js

Saat Anda menentukan AWS KMS key untuk gantungan kunci enkripsi di AWS Encryption
SDK for JavaScript, Anda dapat menggunakan pengenal kunci yang valid: ID kunci, ARN kunci,
nama alias, atau alias ARN. Untuk bantuan mengidentifikasi AWS KMS keys dalam AWS KMS
gantungan kunci, lihatMengidentifikasi AWS KMS keys dalam AWS KMS keyring.

Contoh berikut menggunakan buildClient fungsi untuk menentukan kebijakan komitmen
default,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Anda juga dapat menggunakan buildClient

Membuat AWS KMS keyring 111

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Panduan Developerr

untuk membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Untuk informasi
selengkapnya, lihat the section called “Membatasi kunci data terenkripsi”.

Untuk contoh lengkap, lihat kms_simple.ts di repositori di. AWS Encryption SDK for JavaScript
GitHub

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const generatorKeyId = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

const additionalKey = 'alias/exampleAlias'

const keyring = new KmsKeyringNode({
 generatorKeyId,
 keyIds: [additionalKey]
})

Java

Untuk membuat keyring dengan satu atau lebih AWS KMS tombol, gunakan
CreateAwsKmsMultiKeyring() metode ini. Contoh ini menggunakan dua kunci KMS. Untuk
menentukan satu kunci KMS, gunakan hanya generator parameter. kmsKeyIdsParameter
yang menentukan kunci KMS tambahan adalah opsional.

Input untuk keyring ini tidak membutuhkan AWS KMS klien. Sebaliknya, AWS Encryption SDK
menggunakan AWS KMS klien default untuk setiap Wilayah diwakili oleh kunci KMS di keyring.
Misalnya, jika kunci KMS yang diidentifikasi oleh nilai Generator parameter berada di Wilayah
AS Barat (Oregon) (us-west-2), akan AWS Encryption SDK membuat AWS KMS klien default
untuk Wilayah tersebutus-west-2. Jika Anda perlu menyesuaikan AWS KMS klien, gunakan
CreateAwsKmsKeyring() metode ini.

Saat Anda menentukan AWS KMS key untuk gantungan kunci enkripsi di AWS Encryption SDK
for Java, Anda dapat menggunakan pengenal kunci yang valid: ID kunci, ARN kunci, nama alias,

Membuat AWS KMS keyring 112

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Panduan Developerr

atau alias ARN. Untuk bantuan mengidentifikasi AWS KMS keys dalam AWS KMS gantungan
kunci, lihatMengidentifikasi AWS KMS keys dalam AWS KMS keyring.

Untuk contoh lengkap, lihat BasicEncryptionKeyringExample.java di AWS Encryption SDK for
Java repositori di. GitHub

// Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder().build();
final MaterialProviders materialProviders = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

String generatorKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
List<String> additionalKey = Collections.singletonList("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");
// Create the keyring
final CreateAwsKmsMultiKeyringInput keyringInput =
 CreateAwsKmsMultiKeyringInput.builder()
 .generator(generatorKey)
 .kmsKeyIds(additionalKey)
 .build();
final IKeyring kmsKeyring =
 materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

Python

Untuk membuat keyring dengan satu atau lebih AWS KMS tombol, gunakan
create_aws_kms_multi_keyring() metode ini. Contoh ini menggunakan dua kunci
KMS. Untuk menentukan satu kunci KMS, gunakan hanya generator parameter.
kms_key_idsParameter yang menentukan kunci KMS tambahan adalah opsional.

Input untuk keyring ini tidak membutuhkan AWS KMS klien. Sebaliknya, AWS Encryption SDK
menggunakan AWS KMS klien default untuk setiap Wilayah diwakili oleh kunci KMS di keyring.
Misalnya, jika kunci KMS yang diidentifikasi oleh nilai generator parameter berada di Wilayah
AS Barat (Oregon) (us-west-2), akan AWS Encryption SDK membuat AWS KMS klien default
untuk Wilayah tersebutus-west-2. Jika Anda perlu menyesuaikan AWS KMS klien, gunakan
create_aws_kms_keyring() metode ini.

Saat Anda menentukan AWS KMS key untuk gantungan kunci enkripsi di AWS Encryption
SDK for Python, Anda dapat menggunakan pengenal kunci yang valid: ID kunci, ARN kunci,

Membuat AWS KMS keyring 113

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/BasicEncryptionKeyringExample.java
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Panduan Developerr

nama alias, atau alias ARN. Untuk bantuan mengidentifikasi AWS KMS keys dalam AWS KMS
gantungan kunci, lihatMengidentifikasi AWS KMS keys dalam AWS KMS keyring.

Contoh berikut membuat instance AWS Encryption SDK klien dengan kebijakan
komitmen default,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Untuk contoh lengkap, lihat
aws_kms_multi_keyring_example.py di AWS Encryption SDK for Python repositori di. GitHub

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS keyring
kms_multi_keyring_input: CreateAwsKmsMultiKeyringInput =
 CreateAwsKmsMultiKeyringInput(
 generator="arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 kms_key_ids="arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"
)

kms_multi_keyring: IKeyring = mat_prov.create_aws_kms_multi_keyring(
 input=kms_multi_keyring_input
)

Rust

Untuk membuat keyring dengan satu atau lebih AWS KMS tombol, gunakan
create_aws_kms_multi_keyring() metode ini. Contoh ini menggunakan dua kunci

Membuat AWS KMS keyring 114

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/aws_kms_multi_keyring_example.py

AWS Encryption SDK Panduan Developerr

KMS. Untuk menentukan satu kunci KMS, gunakan hanya generator parameter.
kms_key_idsParameter yang menentukan kunci KMS tambahan adalah opsional.

Input untuk keyring ini tidak membutuhkan AWS KMS klien. Sebaliknya, AWS Encryption SDK
menggunakan AWS KMS klien default untuk setiap Wilayah diwakili oleh kunci KMS di keyring.
Misalnya, jika kunci KMS yang diidentifikasi oleh nilai generator parameter berada di Wilayah
AS Barat (Oregon) (us-west-2), akan AWS Encryption SDK membuat AWS KMS klien default
untuk Wilayah tersebutus-west-2. Jika Anda perlu menyesuaikan AWS KMS klien, gunakan
create_aws_kms_keyring() metode ini.

Saat Anda menentukan keyring enkripsi AWS KMS key untuk Rust, Anda dapat menggunakan
pengenal kunci yang valid: ID kunci, ARN kunci, nama alias, atau alias ARN. AWS Encryption
SDK Untuk bantuan mengidentifikasi AWS KMS keys dalam AWS KMS gantungan kunci,
lihatMengidentifikasi AWS KMS keys dalam AWS KMS keyring.

Contoh berikut membuat instance AWS Encryption SDK klien dengan kebijakan komitmen
default,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Untuk contoh lengkapnya, lihat
aws_kms_keyring_example.rs di direktori Rust dari repositori di. aws-encryption-sdk GitHub

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

Membuat AWS KMS keyring 115

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/keyring/aws_kms_keyring_example.rs

AWS Encryption SDK Panduan Developerr

// Create the AWS KMS keyring
let kms_keyring = mpl
 .create_aws_kms_keyring()
 .kms_key_id(kms_key_id)
 .kms_client(kms_client)
 .send()
 .await?;

kms_multi_keyring: IKeyring = mpl.create_aws_kms_multi_keyring(
 input=kms_multi_keyring_input
)

Go

Untuk membuat keyring dengan satu atau lebih AWS KMS tombol, gunakan
create_aws_kms_multi_keyring() metode ini. Contoh ini menggunakan dua kunci
KMS. Untuk menentukan satu kunci KMS, gunakan hanya generator parameter.
kms_key_idsParameter yang menentukan kunci KMS tambahan adalah opsional.

Input untuk keyring ini tidak membutuhkan AWS KMS klien. Sebaliknya, AWS Encryption SDK
menggunakan AWS KMS klien default untuk setiap Wilayah diwakili oleh kunci KMS di keyring.
Misalnya, jika kunci KMS yang diidentifikasi oleh nilai generator parameter berada di Wilayah
AS Barat (Oregon) (us-west-2), akan AWS Encryption SDK membuat AWS KMS klien default
untuk Wilayah tersebutus-west-2. Jika Anda perlu menyesuaikan AWS KMS klien, gunakan
create_aws_kms_keyring() metode ini.

Saat Anda menentukan keyring enkripsi AWS KMS keyAWS Encryption SDK untuk Go,
Anda dapat menggunakan pengenal kunci yang valid: ID kunci, ARN kunci, nama alias, atau
aliasARN. Untuk bantuan mengidentifikasi AWS KMS keys dalam AWS KMS gantungan kunci,
lihatMengidentifikasi AWS KMS keys dalam AWS KMS keyring.

Contoh berikut membuat instance AWS Encryption SDK klien dengan kebijakan komitmen
default,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"

Membuat AWS KMS keyring 116

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Panduan Developerr

 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create the AWS KMS keyring
awsKmsMultiKeyringInput := mpltypes.CreateAwsKmsMultiKeyringInput{
 Generator: "&arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 KmsKeyIds: []string{"arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"},
}
awsKmsMultiKeyring, err := matProv.CreateAwsKmsMultiKeyring(context.Background(),
 awsKmsMultiKeyringInput)

Ini AWS Encryption SDK juga mendukung AWS KMS keyrings yang menggunakan tombol RSA KMS
asimetris. AWS KMS Keyring RSA asimetris hanya dapat berisi satu key pair.

Membuat AWS KMS keyring 117

AWS Encryption SDK Panduan Developerr

Untuk mengenkripsi dengan AWS KMS keyring RSA asimetris, Anda tidak perlu kms:
GenerateDataKey atau KMS:Encrypt karena Anda harus menentukan materi kunci publik yang ingin
Anda gunakan untuk enkripsi saat Anda membuat keyring. Tidak ada AWS KMS panggilan yang
dilakukan saat mengenkripsi dengan keyring ini. Untuk mendekripsi dengan AWS KMS keyring RSA
asimetris, Anda memerlukan izin KMS: Dekripsi.

Note

Untuk membuat AWS KMS keyring yang menggunakan kunci KMS RSA asimetris, Anda
harus menggunakan salah satu implementasi bahasa pemrograman berikut:

• Versi 3. x dari AWS Encryption SDK for Java

• Versi 4. x dari AWS Encryption SDK untuk .NET

• Versi 4. x dari AWS Encryption SDK for Python, bila digunakan dengan dependensi
Perpustakaan Penyedia Materi Kriptografi (MPL) opsional.

• Versi 1. x dari AWS Encryption SDK untuk Rust

• Versi 0.1. x atau yang lebih baru AWS Encryption SDK untuk Go

Contoh berikut menggunakan CreateAwsKmsRsaKeyring metode untuk membuat AWS KMS
keyring dengan kunci KMS RSA asimetris. Untuk membuat AWS KMS keyring RSA asimetris,
berikan nilai berikut.

• kmsClient: buat AWS KMS klien baru

• kmsKeyID: kunci ARN yang mengidentifikasi kunci KMS RSA asimetris Anda

• publicKey: file PEM yang dikodekan UTF-8 yang mewakili kunci publik dari kunci yang Anda
berikan ByteBuffer kmsKeyID

• encryptionAlgorithm: algoritma enkripsi harus RSAES_OAEP_SHA_256 atau
RSAES_OAEP_SHA_1

C# / .NET

Untuk membuat AWS KMS keyring RSA asimetris, Anda harus memberikan kunci publik dan
kunci pribadi ARN dari kunci KMS RSA asimetris Anda. Kunci publik harus dikodekan PEM.
Contoh berikut membuat AWS KMS keyring dengan asimetris RSA key pair.

// Instantiate the AWS Encryption SDK and material providers

Membuat AWS KMS keyring 118

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Panduan Developerr

var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var publicKey = new MemoryStream(Encoding.UTF8.GetBytes(AWS KMS RSA public key));

// Instantiate the keyring input object
var createKeyringInput = new CreateAwsKmsRsaKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = AWS KMS RSA private key ARN,
 PublicKey = publicKey,
 EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};

// Create the keyring
var kmsRsaKeyring = mpl.CreateAwsKmsRsaKeyring(createKeyringInput);

Java

Untuk membuat AWS KMS keyring RSA asimetris, Anda harus memberikan kunci publik dan
kunci pribadi ARN dari kunci KMS RSA asimetris Anda. Kunci publik harus dikodekan PEM.
Contoh berikut membuat AWS KMS keyring dengan asimetris RSA key pair.

// Instantiate the AWS Encryption SDK and material providers
final AwsCrypto crypto = AwsCrypto.builder()
 // Specify algorithmSuite without asymmetric signing here
 //
 // ALG_AES_128_GCM_IV12_TAG16_NO_KDF("0x0014"),
 // ALG_AES_192_GCM_IV12_TAG16_NO_KDF("0x0046"),
 // ALG_AES_256_GCM_IV12_TAG16_NO_KDF("0x0078"),
 // ALG_AES_128_GCM_IV12_TAG16_HKDF_SHA256("0x0114"),
 // ALG_AES_192_GCM_IV12_TAG16_HKDF_SHA256("0x0146"),
 // ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256("0x0178")

 .withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_IV12_TAG16_HKDF_SHA256)
 .build();

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

// Create a KMS RSA keyring.
// This keyring takes in:

Membuat AWS KMS keyring 119

AWS Encryption SDK Panduan Developerr

// - kmsClient
// - kmsKeyId: Must be an ARN representing an asymmetric RSA KMS key
// - publicKey: A ByteBuffer of a UTF-8 encoded PEM file representing the public
// key for the key passed into kmsKeyId
// - encryptionAlgorithm: Must be either RSAES_OAEP_SHA_256 or RSAES_OAEP_SHA_1
final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
 CreateAwsKmsRsaKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .kmsKeyId(rsaKeyArn)
 .publicKey(publicKey)
 .encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
 .build();
IKeyring awsKmsRsaKeyring =
 matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Python

Untuk membuat AWS KMS keyring RSA asimetris, Anda harus memberikan kunci publik dan
kunci pribadi ARN dari kunci KMS RSA asimetris Anda. Kunci publik harus dikodekan PEM.
Contoh berikut membuat AWS KMS keyring dengan asimetris RSA key pair.

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS keyring
keyring_input: CreateAwsKmsRsaKeyringInput = CreateAwsKmsRsaKeyringInput(
 public_key="public_key",

Membuat AWS KMS keyring 120

AWS Encryption SDK Panduan Developerr

 kms_key_id="kms_key_id",
 encryption_algorithm="RSAES_OAEP_SHA_256",
 kms_client=kms_client
)

kms_rsa_keyring: IKeyring = mat_prov.create_aws_kms_rsa_keyring(
 input=keyring_input
)

Rust

Untuk membuat AWS KMS keyring RSA asimetris, Anda harus memberikan kunci publik dan
kunci pribadi ARN dari kunci KMS RSA asimetris Anda. Kunci publik harus dikodekan PEM.
Contoh berikut membuat AWS KMS keyring dengan asimetris RSA key pair.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create the AWS KMS keyring
let kms_rsa_keyring = mpl
 .create_aws_kms_rsa_keyring()
 .kms_key_id(kms_key_id)
 .public_key(aws_smithy_types::Blob::new(public_key))

Membuat AWS KMS keyring 121

AWS Encryption SDK Panduan Developerr

 .encryption_algorithm(aws_sdk_kms::types::EncryptionAlgorithmSpec::RsaesOaepSha256)
 .kms_client(kms_client)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",

Membuat AWS KMS keyring 122

AWS Encryption SDK Panduan Developerr

 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create the AWS KMS keyring
awsKmsRSAKeyringInput := mpltypes.CreateAwsKmsRsaKeyringInput{
 KmsClient: kmsClient,
 KmsKeyId: kmsKeyID,
 PublicKey: kmsPublicKey,
 EncryptionAlgorithm: kmstypes.EncryptionAlgorithmSpecRsaesOaepSha256,
}
awsKmsRSAKeyring, err := matProv.CreateAwsKmsRsaKeyring(context.Background(),
 awsKmsRSAKeyringInput)
if err != nil {
 panic(err)
}

Menggunakan AWS KMS keyring penemuan

Saat mendekripsi, ini adalah praktik terbaik untuk menentukan kunci pembungkus yang dapat
digunakan. AWS Encryption SDK Untuk mengikuti praktik terbaik ini, gunakan keyring AWS KMS
dekripsi yang membatasi kunci AWS KMS pembungkus ke kunci yang Anda tentukan. Namun, Anda
juga dapat membuat keyring AWS KMS penemuan, yaitu AWS KMS keyring yang tidak menentukan
kunci pembungkus apa pun.

AWS Encryption SDK Ini menyediakan keyring AWS KMS penemuan standar dan keyring penemuan
untuk kunci AWS KMS Multi-wilayah. Untuk informasi tentang menggunakan kunci Multi-wilayah
dengan AWS Encryption SDK, lihatMenggunakan Multi-region AWS KMS keys.

Karena tidak menentukan kunci pembungkus apa pun, keyring penemuan tidak dapat mengenkripsi
data. Jika Anda menggunakan keyring penemuan untuk mengenkripsi data, sendiri atau dalam
multi-keyring, operasi enkripsi gagal. Pengecualiannya adalah AWS Encryption SDK for C, di mana
operasi enkripsi mengabaikan keyring penemuan standar, tetapi gagal jika Anda menentukan keyring
penemuan Multi-wilayah, sendiri atau dalam multi-keyring.

Menggunakan AWS KMS keyring penemuan 123

AWS Encryption SDK Panduan Developerr

Saat mendekripsi, keyring penemuan memungkinkan AWS Encryption SDK untuk meminta AWS
KMS untuk mendekripsi kunci data terenkripsi apa pun dengan menggunakan yang mengenkripsi
itu, terlepas dari siapa AWS KMS key yang memiliki atau memiliki akses ke sana. AWS KMS key
Panggilan hanya berhasil ketika penelepon memiliki kms:Decrypt izin pada. AWS KMS key

Important

Jika Anda menyertakan keyring AWS KMS penemuan dalam multi-keyring dekripsi, keyring
penemuan mengesampingkan semua batasan kunci KMS yang ditentukan oleh gantungan
kunci lain di multi-keyring. Multi-keyring berperilaku seperti keyring yang paling tidak
membatasi. Keyring AWS KMS penemuan tidak berpengaruh pada enkripsi saat digunakan
sendiri atau dalam multi-keyring.

AWS Encryption SDK Ini menyediakan keyring AWS KMS penemuan untuk kenyamanan. Namun,
kami menyarankan Anda menggunakan keyring yang lebih terbatas bila memungkinkan karena
alasan berikut.

• Keaslian — Keyring AWS KMS penemuan dapat menggunakan apa pun AWS KMS key yang
digunakan untuk mengenkripsi kunci data dalam pesan terenkripsi, sehingga penelepon memiliki
izin untuk menggunakannya untuk mendekripsi. AWS KMS key Ini mungkin bukan AWS KMS key
yang ingin digunakan oleh penelepon. Misalnya, salah satu kunci data terenkripsi mungkin telah
dienkripsi di bawah yang kurang aman AWS KMS key yang dapat digunakan siapa pun.

• Latensi dan kinerja — Keyring AWS KMS penemuan mungkin terlihat lebih lambat daripada
keyring lain karena AWS Encryption SDK mencoba mendekripsi semua kunci data terenkripsi,
termasuk yang dienkripsi oleh AWS KMS keys di lain Akun AWS dan Wilayah, dan AWS KMS keys
penelepon tidak memiliki izin untuk digunakan untuk dekripsi.

Jika Anda menggunakan keyring penemuan, kami sarankan Anda menggunakan filter penemuan
untuk membatasi kunci KMS yang dapat digunakan untuk kunci yang ditentukan Akun AWS dan
partisi. Filter penemuan didukung dalam versi 1.7. x dan kemudian AWS Encryption SDK. Untuk
bantuan menemukan ID akun dan partisi Anda, lihat Akun AWS Pengenal Anda dan format ARN di.
Referensi Umum AWS

Kode berikut membuat instance keyring penemuan dengan filter AWS KMS penemuan yang
membatasi kunci KMS yang AWS Encryption SDK dapat digunakan untuk yang ada di aws partisi
dan akun contoh 111122223333.

Menggunakan AWS KMS keyring penemuan 124

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS Encryption SDK Panduan Developerr

Sebelum menggunakan kode ini, ganti contoh Akun AWS dan nilai partisi dengan nilai yang valid
untuk Anda Akun AWS dan partisi. Jika kunci KMS Anda berada di Wilayah Tiongkok, gunakan nilai
aws-cn partisi. Jika kunci KMS Anda masuk AWS GovCloud (US) Regions, gunakan nilai aws-us-
gov partisi. Untuk yang lainnya Wilayah AWS, gunakan nilai aws partisi.

C

Untuk contoh lengkap, lihat: kms_discovery.cpp.

std::shared_ptr<KmsKeyring::> discovery_filter(
 KmsKeyring::DiscoveryFilter::Builder("aws")
 .AddAccount("111122223333")
 .Build());

struct aws_cryptosdk_keyring *kms_discovery_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder()
 .BuildDiscovery(discovery_filter));

C# / .NET

Contoh berikut menggunakan versi 4. x dari AWS Encryption SDK untuk .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" };

// In a discovery keyring, you specify an AWS KMS client and a discovery filter,
// but not a AWS KMS key
var kmsDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 DiscoveryFilter = new DiscoveryFilter()
 {
 AccountIds = account,
 Partition = "aws"
 }
};

var kmsDiscoveryKeyring =
 mpl.CreateAwsKmsDiscoveryKeyring(kmsDiscoveryKeyringInput);

Menggunakan AWS KMS keyring penemuan 125

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK Panduan Developerr

JavaScript Browser

Dalam JavaScript, Anda harus secara eksplisit menentukan properti penemuan.

Contoh berikut menggunakan buildClient fungsi untuk menentukan kebijakan komitmen
default,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Anda juga dapat menggunakan buildClient
untuk membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Untuk informasi
selengkapnya, lihat the section called “Membatasi kunci data terenkripsi”.

import {
 KmsKeyringBrowser,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const keyring = new KmsKeyringBrowser(clientProvider, {
 discovery,
 discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }
})

JavaScript Node.js

Dalam JavaScript, Anda harus secara eksplisit menentukan properti penemuan.

Contoh berikut menggunakan buildClient fungsi untuk menentukan kebijakan komitmen
default,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Anda juga dapat menggunakan buildClient
untuk membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Untuk informasi
selengkapnya, lihat the section called “Membatasi kunci data terenkripsi”.

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(

Menggunakan AWS KMS keyring penemuan 126

AWS Encryption SDK Panduan Developerr

 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const discovery = true

const keyring = new KmsKeyringNode({
 discovery,
 discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
})

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_region)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Menggunakan AWS KMS keyring penemuan 127

AWS Encryption SDK Panduan Developerr

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS discovery keyring
discovery_keyring_input: CreateAwsKmsDiscoveryKeyringInput =
 CreateAwsKmsDiscoveryKeyringInput(
 kms_client=kms_client,
 discovery_filter=DiscoveryFilter(
 account_ids=[aws_account_id],
 partition="aws"
)
)

discovery_keyring: IKeyring = mat_prov.create_aws_kms_discovery_keyring(
 input=discovery_keyring_input
)

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create a AWS KMS client.
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .account_ids(vec![aws_account_id.to_string()])
 .partition("aws".to_string())
 .build()?;

Menggunakan AWS KMS keyring penemuan 128

AWS Encryption SDK Panduan Developerr

// Create the AWS KMS discovery keyring
let discovery_keyring = mpl
 .create_aws_kms_discovery_keyring()
 .kms_client(kms_client.clone())
 .discovery_filter(discovery_filter)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",

Menggunakan AWS KMS keyring penemuan 129

AWS Encryption SDK Panduan Developerr

 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
 AccountIds: []string{kmsKeyAccountID},
 Partition: "aws",
}
awsKmsDiscoveryKeyringInput := mpltypes.CreateAwsKmsDiscoveryKeyringInput{
 KmsClient: kmsClient,
 DiscoveryFilter: &discoveryFilter,
}
awsKmsDiscoveryKeyring, err :=
 matProv.CreateAwsKmsDiscoveryKeyring(context.Background(),
 awsKmsDiscoveryKeyringInput)
if err != nil {
 panic(err)
}

Menggunakan AWS KMS keyring penemuan regional

Keyring penemuan AWS KMS regional adalah keyring yang tidak menentukan kunci ARNs KMS.
Sebaliknya, ini memungkinkan AWS Encryption SDK untuk mendekripsi hanya menggunakan kunci
KMS pada khususnya. Wilayah AWS

Saat mendekripsi dengan keyring penemuan AWS KMS regional, AWS Encryption SDK mendekripsi
kunci data terenkripsi apa pun yang dienkripsi di bawah yang ditentukan. AWS KMS key Wilayah
AWS Agar berhasil, penelepon harus memiliki kms:Decrypt izin setidaknya satu dari yang AWS
KMS keys ditentukan Wilayah AWS yang mengenkripsi kunci data.

Seperti keyrings penemuan lainnya, keyring penemuan regional tidak berpengaruh pada enkripsi.
Ini hanya berfungsi saat mendekripsi pesan terenkripsi. Jika Anda menggunakan keyring penemuan

Menggunakan AWS KMS keyring penemuan regional 130

AWS Encryption SDK Panduan Developerr

regional dalam multi-keyring yang digunakan untuk mengenkripsi dan mendekripsi, ini hanya efektif
saat mendekripsi. Jika Anda menggunakan keyring penemuan Multi-wilayah untuk mengenkripsi
data, sendiri atau dalam multi-keyring, operasi enkripsi gagal.

Important

Jika Anda menyertakan keyring penemuan AWS KMS regional dalam multi-keyring dekripsi,
keyring penemuan regional mengesampingkan semua batasan kunci KMS yang ditentukan
oleh gantungan kunci lain di multi-keyring. Multi-keyring berperilaku seperti keyring yang
paling tidak membatasi. Keyring AWS KMS penemuan tidak berpengaruh pada enkripsi saat
digunakan sendiri atau dalam multi-keyring.

Penemuan regional keyring dalam AWS Encryption SDK for C upaya untuk mendekripsi hanya
dengan kunci KMS di Wilayah yang ditentukan. Saat Anda menggunakan keyring penemuan di AWS
Encryption SDK for JavaScript dan AWS Encryption SDK untuk.NET, Anda mengonfigurasi Wilayah
pada AWS KMS klien. AWS Encryption SDK Implementasi ini tidak memfilter kunci KMS berdasarkan
Wilayah, tetapi AWS KMS akan gagal dalam permintaan dekripsi untuk kunci KMS di luar Wilayah
yang ditentukan.

Jika Anda menggunakan keyring penemuan, sebaiknya gunakan filter penemuan untuk membatasi
kunci KMS yang digunakan dalam dekripsi ke kunci yang ditentukan dan partisi. Akun AWS Filter
penemuan didukung dalam versi 1.7. x dan kemudian AWS Encryption SDK.

Misalnya, kode berikut membuat keyring penemuan AWS KMS regional dengan filter penemuan.
Gantungan kunci ini membatasi kunci KMS di akun 111122223333 di Wilayah AS Barat (Oregon) (us-
west-2). AWS Encryption SDK

C

Untuk melihat keyring ini, dan create_kms_client metodenya, dalam contoh kerja, lihat
kms_discovery.cpp.

std::shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter(
 KmsKeyring::DiscoveryFilter::Builder("aws")
 .AddAccount("111122223333")
 .Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder()

Menggunakan AWS KMS keyring penemuan regional 131

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK Panduan Developerr

 .WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery(discovery_filter));

C# / .NET

The AWS Encryption SDK for .NET tidak memiliki keyring penemuan regional khusus. Namun,
Anda dapat menggunakan beberapa teknik untuk membatasi kunci KMS yang digunakan saat
mendekripsi ke Wilayah tertentu.

Cara paling efisien untuk membatasi Wilayah dalam keyring penemuan adalah dengan
menggunakan keyring multi-Region-aware penemuan, meskipun Anda mengenkripsi data hanya
menggunakan kunci Wilayah tunggal. Saat menemukan tombol Single-region, multi-Region-aware
keyring tidak menggunakan fitur Multi-region apa pun.

Gantungan kunci yang dikembalikan oleh CreateAwsKmsMrkDiscoveryKeyring()
metode menyaring kunci KMS menurut Wilayah sebelum memanggil. AWS KMS Ini
mengirimkan permintaan dekripsi AWS KMS hanya ketika kunci data terenkripsi dienkripsi
oleh kunci KMS di Wilayah yang ditentukan oleh parameter dalam objek. Region
CreateAwsKmsMrkDiscoveryKeyringInput

Contoh berikut menggunakan versi 4. x dari AWS Encryption SDK untuk .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" };

// Create the discovery filter
var filter = DiscoveryFilter = new DiscoveryFilter
{
 AccountIds = account,
 Partition = "aws"
};

var regionalDiscoveryKeyringInput = new CreateAwsKmsMrkDiscoveryKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
 Region = RegionEndpoint.USWest2,
 DiscoveryFilter = filter
};

Menggunakan AWS KMS keyring penemuan regional 132

AWS Encryption SDK Panduan Developerr

var kmsRegionalDiscoveryKeyring =
 mpl.CreateAwsKmsMrkDiscoveryKeyring(regionalDiscoveryKeyringInput);

Anda juga dapat membatasi kunci KMS ke kunci tertentu Wilayah AWS dengan menentukan
Region dalam instance AWS KMS klien Anda () AmazonKeyManagementServiceClient. Namun,
konfigurasi ini kurang efisien dan berpotensi lebih mahal daripada menggunakan keyring
multi-Region-aware penemuan. Alih-alih memfilter kunci KMS berdasarkan Wilayah sebelum
menelepon AWS KMS, AWS Encryption SDK untuk .NET memanggil AWS KMS setiap kunci data
terenkripsi (hingga mendekripsi satu) dan bergantung pada AWS KMS untuk membatasi kunci
KMS yang digunakannya ke Wilayah yang ditentukan.

Contoh berikut menggunakan versi 4. x dari AWS Encryption SDK untuk .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

List<string> account = new List<string> { "111122223333" };

// Create the discovery filter,
// but not a AWS KMS key
var createRegionalDiscoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(RegionEndpoint.USWest2),
 DiscoveryFilter = new DiscoveryFilter()
 {
 AccountIds = account,
 Partition = "aws"
 }
};

var kmsRegionalDiscoveryKeyring =
 mlp.CreateAwsKmsDiscoveryKeyring(createRegionalDiscoveryKeyringInput);

JavaScript Browser

Contoh berikut menggunakan buildClient fungsi untuk menentukan kebijakan komitmen
default,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Anda juga dapat menggunakan buildClient
untuk membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Untuk informasi
selengkapnya, lihat the section called “Membatasi kunci data terenkripsi”.

import {

Menggunakan AWS KMS keyring penemuan regional 133

https://docs.aws.amazon.com/sdkfornet/v4/apidocs/items/KeyManagementService/TKeyManagementServiceClient.html

AWS Encryption SDK Panduan Developerr

 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
 discovery,
 discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
})

JavaScript Node.js

Contoh berikut menggunakan buildClient fungsi untuk menentukan kebijakan komitmen
default,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Anda juga dapat menggunakan buildClient
untuk membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Untuk informasi
selengkapnya, lihat the section called “Membatasi kunci data terenkripsi”.

Untuk melihat keyring ini, dan limitRegions fungsinya, dalam contoh kerja, lihat
kms_regional_discovery.ts.

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({
 clientProvider,
 discovery,

Menggunakan AWS KMS keyring penemuan regional 134

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_regional_discovery.ts

AWS Encryption SDK Panduan Developerr

 discoveryFilter: { accountIDs: ['111122223333'], partition: 'aws' }
})

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .regions("us-west-2")
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Python

Instantiate the AWS Encryption SDK
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Create a boto3 client for AWS KMS
kms_client = boto3.client('kms', region_name=aws_region)

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Menggunakan AWS KMS keyring penemuan regional 135

AWS Encryption SDK Panduan Developerr

Create the AWS KMS regional discovery keyring
regional_discovery_keyring_input: CreateAwsKmsMrkDiscoveryKeyringInput = \
 CreateAwsKmsMrkDiscoveryKeyringInput(
 kms_client=kms_client,
 region=mrk_replica_decrypt_region,
 discovery_filter=DiscoveryFilter(
 account_ids=[111122223333],
 partition="aws"
)
)

 regional_discovery_keyring: IKeyring =
 mat_prov.create_aws_kms_mrk_discovery_keyring(
 input=regional_discovery_keyring_input
)

Rust

// Instantiate the AWS Encryption SDK
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS client
let decrypt_kms_config = aws_sdk_kms::config::Builder::from(&sdk_config)
 .region(Region::new(mrk_replica_decrypt_region.clone()))
 .build();
let decrypt_kms_client = aws_sdk_kms::Client::from_conf(decrypt_kms_config);

Menggunakan AWS KMS keyring penemuan regional 136

AWS Encryption SDK Panduan Developerr

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .account_ids(vec![aws_account_id.to_string()])
 .partition("aws".to_string())
 .build()?;

// Create the regional discovery keyring
let discovery_keyring = mpl
 .create_aws_kms_mrk_discovery_keyring()
 .kms_client(decrypt_kms_client)
 .region(mrk_replica_decrypt_region)
 .discovery_filter(discovery_filter)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {

Menggunakan AWS KMS keyring penemuan regional 137

AWS Encryption SDK Panduan Developerr

 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Create discovery filter
discoveryFilter := mpltypes.DiscoveryFilter{
 AccountIds: []string{awsAccountID},
 Partition: "aws",
}

// Create the regional discovery keyring
awsKmsMrkDiscoveryInput := mpltypes.CreateAwsKmsMrkDiscoveryKeyringInput{
 KmsClient: kmsClient,
 Region: alternateRegionMrkKeyRegion,
 DiscoveryFilter: &discoveryFilter,
}
awsKmsMrkDiscoveryKeyring, err :=
 matProv.CreateAwsKmsMrkDiscoveryKeyring(context.Background(),
 awsKmsMrkDiscoveryInput)
if err != nil {
 panic(err)
}

AWS Encryption SDK for JavaScript Juga mengekspor excludeRegions fungsi untuk Node.js dan
browser. Fungsi ini menciptakan keyring penemuan AWS KMS regional yang menghilangkan AWS
KMS keys di wilayah tertentu. Contoh berikut membuat keyring penemuan AWS KMS regional yang
dapat digunakan AWS KMS keys di akun 111122223333 di setiap Wilayah AWS kecuali untuk US
East (Virginia N.) (us-east-1).

AWS Encryption SDK for C Tidak memiliki metode analog, tetapi Anda dapat menerapkannya dengan
membuat kustom. ClientSupplier

Menggunakan AWS KMS keyring penemuan regional 138

https://github.com/aws/aws-encryption-sdk-c/blob/master/aws-encryption-sdk-cpp/include/aws/cryptosdk/cpp/kms_keyring.h#L157

AWS Encryption SDK Panduan Developerr

Contoh ini menunjukkan kode untuk Node.js.

const discovery = true
const clientProvider = excludeRegions(['us-east-1'], getKmsClient)
const keyring = new KmsKeyringNode({
 clientProvider,
 discovery,
 discoveryFilter: { accountIDs: [111122223333], partition: 'aws' }
})

AWS KMS Gantungan kunci hierarkis

Dengan keyring AWS KMS Hierarkis, Anda dapat melindungi materi kriptografi Anda di bawah kunci
KMS enkripsi simetris tanpa menelepon AWS KMS setiap kali Anda mengenkripsi atau mendekripsi
data. Ini adalah pilihan yang baik untuk aplikasi yang perlu meminimalkan panggilan ke AWS
KMS, dan aplikasi yang dapat menggunakan kembali beberapa materi kriptografi tanpa melanggar
persyaratan keamanan mereka.

Hierarchical keyring adalah solusi caching materi kriptografi yang mengurangi jumlah AWS KMS
panggilan dengan menggunakan kunci cabang yang AWS KMS dilindungi yang disimpan dalam
tabel Amazon DynamoDB, dan kemudian secara lokal menyimpan materi kunci cabang yang
digunakan dalam operasi enkripsi dan dekripsi. Tabel DynamoDB berfungsi sebagai penyimpanan
kunci yang mengelola dan melindungi kunci cabang. Ini menyimpan kunci cabang aktif dan semua
versi sebelumnya dari kunci cabang. Kunci cabang aktif adalah versi kunci cabang terbaru. Keyring
Hierarkis menggunakan kunci data unik untuk mengenkripsi setiap pesan dan mengenkripsi setiap
kunci enkripsi data untuk setiap permintaan enkripsi dan mengenkripsi setiap kunci enkripsi data
dengan kunci pembungkus unik yang berasal dari kunci cabang aktif. Keyring Hierarkis tergantung
pada hierarki yang ditetapkan antara kunci cabang aktif dan kunci pembungkus turunannya.

Keyring Hierarkis biasanya menggunakan setiap versi kunci cabang untuk memenuhi beberapa
permintaan. Tetapi Anda mengontrol sejauh mana kunci cabang aktif digunakan kembali dan
menentukan seberapa sering kunci cabang aktif diputar. Versi aktif dari kunci cabang tetap aktif
sampai Anda memutarnya. Versi sebelumnya dari kunci cabang aktif tidak akan digunakan untuk
melakukan operasi enkripsi, tetapi masih dapat ditanyakan dan digunakan dalam operasi dekripsi.

Ketika Anda membuat instance keyring Hierarchical, itu membuat cache lokal. Anda menentukan
batas cache yang menentukan jumlah waktu maksimum materi kunci cabang disimpan dalam cache
lokal sebelum kedaluwarsa dan dikeluarkan dari cache. Hierarchical keyring membuat satu AWS

AWS KMS Gantungan kunci hierarkis 139

AWS Encryption SDK Panduan Developerr

KMS panggilan untuk mendekripsi kunci cabang dan merakit materi kunci cabang saat pertama kali
a branch-key-id ditentukan dalam suatu operasi. Kemudian, materi kunci cabang disimpan dalam
cache lokal dan digunakan kembali untuk semua operasi enkripsi dan dekripsi yang menentukan
itu branch-key-id sampai batas cache berakhir. Menyimpan materi kunci cabang di cache lokal
mengurangi AWS KMS panggilan. Misalnya, pertimbangkan batas cache 15 menit. Jika Anda
melakukan 10.000 operasi enkripsi dalam batas cache tersebut, AWS KMS keyring tradisional perlu
melakukan 10.000 AWS KMS panggilan untuk memenuhi 10.000 operasi enkripsi. Jika Anda memiliki
satu aktifbranch-key-id, keyring Hierarkis hanya perlu membuat satu AWS KMS panggilan untuk
memenuhi 10.000 operasi enkripsi.

Cache lokal memisahkan bahan enkripsi dari bahan dekripsi. Materi enkripsi dirakit dari kunci cabang
aktif dan digunakan kembali untuk semua operasi enkripsi hingga batas cache berakhir. Materi
dekripsi dirakit dari ID kunci cabang dan versi yang diidentifikasi dalam metadata bidang terenkripsi,
dan digunakan kembali untuk semua operasi dekripsi yang terkait dengan ID kunci cabang dan versi
hingga batas cache berakhir. Cache lokal dapat menyimpan beberapa versi kunci cabang yang sama
sekaligus. Ketika cache lokal dikonfigurasi untuk menggunakan abranch key ID supplier, itu juga
dapat menyimpan materi kunci cabang dari beberapa kunci cabang aktif pada satu waktu.

Note

Semua penyebutan keyring Hierarkis AWS Encryption SDK mengacu pada keyring Hierarkis.
AWS KMS

Kompatibilitas bahasa pemrograman

Keyring Hierarkis didukung oleh bahasa dan versi pemrograman berikut:

• Versi 3. x dari AWS Encryption SDK for Java

• Versi 4. x dari AWS Encryption SDK untuk .NET

• Versi 4. x dari AWS Encryption SDK for Python, bila digunakan dengan dependensi MPL opsional.

• Versi 1. x dari AWS Encryption SDK untuk Rust

• Versi 0.1. x atau yang lebih baru AWS Encryption SDK untuk Go

Topik

• Cara kerjanya

• Prasyarat

AWS KMS Gantungan kunci hierarkis 140

AWS Encryption SDK Panduan Developerr

• Izin yang diperlukan

• Pilih cache

• Buat keyring Hierarkis

Cara kerjanya

Panduan berikut menjelaskan bagaimana keyring Hierarkis merakit bahan enkripsi dan dekripsi, dan
panggilan berbeda yang dibuat oleh keyring untuk mengenkripsi dan mendekripsi operasi. Untuk
detail teknis tentang derivasi kunci pembungkus dan proses enkripsi kunci data plaintext, lihat Detail
teknis keyring AWS KMS hierarkis.

Enkripsi dan tandatangani

Panduan berikut menjelaskan bagaimana keyring Hierarkis merakit bahan enkripsi dan memperoleh
kunci pembungkus yang unik.

1. Metode enkripsi meminta keyring Hierarkis untuk materi enkripsi. Keyring menghasilkan kunci
data plaintext, lalu memeriksa untuk melihat apakah ada materi cabang yang valid di cache
lokal untuk menghasilkan kunci pembungkus. Jika ada materi kunci cabang yang valid, keyring
dilanjutkan ke Langkah 4.

2. Jika tidak ada materi kunci cabang yang valid, keyring Hierarkis menanyakan penyimpanan
kunci untuk kunci cabang aktif.

a. Key store memanggil AWS KMS untuk mendekripsi kunci cabang aktif dan mengembalikan
kunci cabang aktif plaintext. Data yang mengidentifikasi kunci cabang aktif diserialisasi untuk
memberikan data otentikasi tambahan (AAD) dalam panggilan dekripsi ke. AWS KMS

b. Toko kunci mengembalikan kunci cabang plaintext dan data yang mengidentifikasinya,
seperti versi kunci cabang.

3. Hierarchical keyring merakit materi kunci cabang (kunci cabang plaintext dan versi kunci cabang)
dan menyimpan salinannya di cache lokal.

4. Keyring Hierarchical memperoleh kunci pembungkus unik dari kunci cabang plaintext dan garam
acak 16-byte. Ini menggunakan kunci pembungkus turunan untuk mengenkripsi salinan kunci
data teks biasa.

Metode enkripsi menggunakan bahan enkripsi untuk mengenkripsi data. Untuk informasi
selengkapnya, lihat Cara AWS Encryption SDK mengenkripsi data.

Cara kerjanya 141

AWS Encryption SDK Panduan Developerr

Dekripsi dan verifikasi

Panduan berikut menjelaskan bagaimana keyring Hierarkis merakit bahan dekripsi dan mendekripsi
kunci data terenkripsi.

1. Metode dekripsi mengidentifikasi kunci data terenkripsi dari pesan terenkripsi, dan
meneruskannya ke keyring Hierarkis.

2. Hierarchical keyring deserialisasi data yang mengidentifikasi kunci data terenkripsi, termasuk
versi kunci cabang, garam 16-byte, dan informasi lain yang menjelaskan bagaimana kunci data
dienkripsi.

Untuk informasi selengkapnya, lihat AWS KMS Rincian teknis keyring hierarkis.

3. Keyring hierarkis memeriksa untuk melihat apakah ada materi kunci cabang yang valid di cache
lokal yang cocok dengan versi kunci cabang yang diidentifikasi pada Langkah 2. Jika ada materi
kunci cabang yang valid, keyring dilanjutkan ke Langkah 6.

4. Jika tidak ada materi kunci cabang yang valid, keyring Hierarkis menanyakan penyimpanan
kunci untuk kunci cabang yang cocok dengan versi kunci cabang yang diidentifikasi pada
Langkah 2.

a. Key store memanggil AWS KMS untuk mendekripsi kunci cabang dan mengembalikan kunci
cabang aktif plaintext. Data yang mengidentifikasi kunci cabang aktif diserialisasi untuk
memberikan data otentikasi tambahan (AAD) dalam panggilan dekripsi ke. AWS KMS

b. Toko kunci mengembalikan kunci cabang plaintext dan data yang mengidentifikasinya,
seperti versi kunci cabang.

5. Hierarchical keyring merakit materi kunci cabang (kunci cabang plaintext dan versi kunci cabang)
dan menyimpan salinannya di cache lokal.

6. Keyring Hierarchical menggunakan bahan kunci cabang yang dirakit dan garam 16-byte yang
diidentifikasi pada Langkah 2 untuk mereproduksi kunci pembungkus unik yang mengenkripsi
kunci data.

7. Keyring Hierarkis menggunakan kunci pembungkus yang direproduksi untuk mendekripsi kunci
data dan mengembalikan kunci data plaintext.

Metode dekripsi menggunakan bahan dekripsi dan kunci data teks biasa untuk mendekripsi pesan
terenkripsi. Untuk informasi selengkapnya, lihat Cara AWS Encryption SDK mendekripsi pesan
terenkripsi.

Cara kerjanya 142

AWS Encryption SDK Panduan Developerr

Prasyarat

Sebelum Anda membuat dan menggunakan keyring Hierarkis, pastikan prasyarat berikut terpenuhi.

• Anda, atau administrator toko kunci Anda, telah membuat toko kunci dan membuat setidaknya satu
kunci cabang aktif.

• Anda telah mengonfigurasi tindakan penyimpanan utama Anda.

Note

Cara Anda mengonfigurasi tindakan penyimpanan kunci menentukan operasi apa yang
dapat Anda lakukan dan kunci KMS apa yang dapat digunakan oleh keyring Hierarkis.
Untuk informasi selengkapnya, lihat Tindakan penyimpanan kunci.

• Anda memiliki AWS KMS izin yang diperlukan untuk mengakses dan menggunakan kunci
penyimpanan dan cabang kunci. Untuk informasi selengkapnya, lihat the section called “Izin yang
diperlukan”.

• Anda telah meninjau jenis cache yang didukung dan mengonfigurasi jenis cache yang paling
sesuai dengan kebutuhan Anda. Untuk informasi selengkapnya, lihat the section called “Pilih
cache”

Izin yang diperlukan

AWS Encryption SDK Itu tidak memerlukan Akun AWS dan itu tidak tergantung pada apa pun
Layanan AWS. Namun, untuk menggunakan keyring Hierarkis, Anda memerlukan izin minimum Akun
AWS dan berikut pada enkripsi simetris di AWS KMS key toko kunci Anda.

• Untuk mengenkripsi dan mendekripsi data dengan keyring Hierarkis, Anda memerlukan KMS:
Decrypt.

• Untuk membuat dan memutar kunci cabang, Anda memerlukan kms:
GenerateDataKeyWithoutPlaintext dan kms:. ReEncrypt

Untuk informasi selengkapnya tentang mengontrol akses ke kunci cabang dan penyimpanan kunci
Anda, lihatthe section called “Menerapkan izin yang paling tidak diistimewakan”.

Prasyarat 143

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS Encryption SDK Panduan Developerr

Pilih cache

Keyring Hierarkis mengurangi jumlah panggilan yang dilakukan AWS KMS dengan menyimpan
materi kunci cabang secara lokal yang digunakan dalam operasi enkripsi dan dekripsi. Sebelum Anda
membuat keyring Hierarkis Anda, Anda perlu memutuskan jenis cache yang ingin Anda gunakan.
Anda dapat menggunakan cache default atau menyesuaikan cache agar sesuai dengan kebutuhan
Anda.

Keyring Hierarkis mendukung jenis cache berikut:

• the section called “Cache default”

• the section called “MultiThreaded cache”

• the section called “StormTracking cache”

• the section called “Cache bersama”

Important

Semua jenis cache yang didukung dirancang untuk mendukung lingkungan multithreaded.
Namun, ketika digunakan dengan AWS Encryption SDK for Python, keyring Hierarchical
tidak mendukung lingkungan multithreaded. Untuk informasi selengkapnya, lihat file Python
README.rst di repositori -library pada. aws-cryptographic-material-providers GitHub

Cache default

Untuk sebagian besar pengguna, cache Default memenuhi persyaratan threading mereka. Cache
Default dirancang untuk mendukung lingkungan yang sangat multithreaded. Ketika entri materi
kunci cabang kedaluwarsa, cache Default mencegah beberapa utas memanggil AWS KMS dengan
memberi tahu satu utas bahwa entri materi kunci cabang akan kedaluwarsa 10 detik sebelumnya. Ini
memastikan bahwa hanya satu utas yang mengirimkan permintaan AWS KMS untuk menyegarkan
cache.

Default dan StormTracking cache mendukung model threading yang sama, tetapi Anda hanya perlu
menentukan kapasitas entri untuk menggunakan cache Default. Untuk kustomisasi cache yang lebih
terperinci, gunakan file. the section called “StormTracking cache”

Kecuali Anda ingin menyesuaikan jumlah entri materi kunci cabang yang dapat disimpan di cache
lokal, Anda tidak perlu menentukan jenis cache saat Anda membuat keyring Hierarkis. Jika Anda

Pilih cache 144

https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/python/README.rst
https://github.com/aws/aws-cryptographic-material-providers-library/tree/main
https://github.com/aws/aws-cryptographic-material-providers-library/blob/main/AwsCryptographicMaterialProviders/runtimes/python/README.rst
https://github.com/aws/aws-cryptographic-material-providers-library/tree/main

AWS Encryption SDK Panduan Developerr

tidak menentukan jenis cache, keyring Hierarkis menggunakan jenis cache Default dan menetapkan
kapasitas entri ke 1000.

Untuk menyesuaikan cache Default, tentukan nilai berikut:

• Kapasitas entri: membatasi jumlah entri materi kunci cabang yang dapat disimpan di cache lokal.

Java

.cache(CacheType.builder()
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())

C# / .NET

CacheType defaultCache = new CacheType
{
 Default = new DefaultCache{EntryCapacity = 100}
};

Python

default_cache = CacheTypeDefault(
 value=DefaultCache(
 entry_capacity=100
)
)

Rust

let cache: CacheType = CacheType::Default(
 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

Go

cache := mpltypes.CacheTypeMemberDefault{
 Value: mpltypes.DefaultCache{

Pilih cache 145

AWS Encryption SDK Panduan Developerr

 EntryCapacity: 100,
 },
 }

MultiThreaded cache

MultiThreaded Cache aman digunakan di lingkungan multithreaded, tetapi tidak menyediakan
fungsionalitas apa pun untuk meminimalkan atau panggilan Amazon AWS KMS DynamoDB.
Akibatnya, ketika entri materi kunci cabang kedaluwarsa, semua utas akan diberitahukan pada saat
yang sama. Ini dapat menghasilkan beberapa AWS KMS panggilan untuk menyegarkan cache.

Untuk menggunakan MultiThreaded cache, tentukan nilai berikut:

• Kapasitas entri: membatasi jumlah entri materi kunci cabang yang dapat disimpan di cache lokal.

• Ukuran ekor pemangkasan entri: menentukan jumlah entri yang akan dipangkas jika kapasitas
masuk tercapai.

Java

.cache(CacheType.builder()
 .MultiThreaded(MultiThreadedCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)
 .build())

C# / .NET

CacheType multithreadedCache = new CacheType
{
 MultiThreaded = new MultiThreadedCache
 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1
 }
};

Python

multithreaded_cache = CacheTypeMultiThreaded(
 value=MultiThreadedCache(

Pilih cache 146

AWS Encryption SDK Panduan Developerr

 entry_capacity=100,
 entry_pruning_tail_size=1
)
)

Rust

CacheType::MultiThreaded(
 MultiThreadedCache::builder()
 .entry_capacity(100)
 .entry_pruning_tail_size(1)
 .build()?)

Go

var entryPruningTailSize int32 = 1
 cache := mpltypes.CacheTypeMemberMultiThreaded{
 Value: mpltypes.MultiThreadedCache{
 EntryCapacity: 100,
 EntryPruningTailSize: &entryPruningTailSize,
 },
 }

StormTracking cache

StormTracking Cache dirancang untuk mendukung lingkungan yang sangat multithreaded. Ketika
entri materi kunci cabang kedaluwarsa, StormTracking cache mencegah beberapa utas memanggil
AWS KMS dengan memberi tahu satu utas bahwa entri materi kunci cabang akan kedaluwarsa
sebelumnya. Ini memastikan bahwa hanya satu utas yang mengirimkan permintaan AWS KMS untuk
menyegarkan cache.

Untuk menggunakan StormTracking cache, tentukan nilai berikut:

• Kapasitas entri: membatasi jumlah entri materi kunci cabang yang dapat disimpan di cache lokal.

Nilai default: 1000 entri

• Ukuran ekor pemangkasan entri: menentukan jumlah entri bahan kunci cabang untuk dipangkas
sekaligus.

Nilai default: 1 entri

Pilih cache 147

AWS Encryption SDK Panduan Developerr

• Masa tenggang: mendefinisikan jumlah detik sebelum kedaluwarsa bahwa upaya untuk
menyegarkan materi kunci cabang dilakukan.

Nilai default: 10 detik

• Interval rahmat: mendefinisikan jumlah detik antara upaya untuk menyegarkan materi kunci
cabang.

Nilai default: 1 detik

• Fan out: mendefinisikan jumlah upaya simultan yang dapat dilakukan untuk menyegarkan materi
kunci cabang.

Nilai default: 20 upaya

• In flight time to live (TTL): mendefinisikan jumlah detik hingga upaya untuk menyegarkan materi
kunci cabang habis waktu. Setiap kali cache kembali NoSuchEntry sebagai respons terhadap
aGetCacheEntry, kunci cabang tersebut dianggap dalam penerbangan sampai kunci yang sama
ditulis dengan PutCache entri.

Nilai default: 10 detik

• Tidur: mendefinisikan jumlah milidetik yang harus ditidurkan oleh sebuah utas jika fanOut
terlampaui.

Nilai default: 20 milidetik

Java

.cache(CacheType.builder()
 .StormTracking(StormTrackingCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)
 .gracePeriod(10)
 .graceInterval(1)
 .fanOut(20)
 .inFlightTTL(10)
 .sleepMilli(20)
 .build())

C# / .NET

CacheType stormTrackingCache = new CacheType

Pilih cache 148

AWS Encryption SDK Panduan Developerr

{
 StormTracking = new StormTrackingCache
 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1,
 FanOut = 20,
 GraceInterval = 1,
 GracePeriod = 10,
 InFlightTTL = 10,
 SleepMilli = 20
 }
};

Python

storm_tracking_cache = CacheTypeStormTracking(
 value=StormTrackingCache(
 entry_capacity=100,
 entry_pruning_tail_size=1,
 fan_out=20,
 grace_interval=1,
 grace_period=10,
 in_flight_ttl=10,
 sleep_milli=20
)
)

Rust

CacheType::StormTracking(
 StormTrackingCache::builder()
 .entry_capacity(100)
 .entry_pruning_tail_size(1)
 .grace_period(10)
 .grace_interval(1)
 .fan_out(20)
 .in_flight_ttl(10)
 .sleep_milli(20)
 .build()?)

Go

var entryPruningTailSize int32 = 1

Pilih cache 149

AWS Encryption SDK Panduan Developerr

 cache := mpltypes.CacheTypeMemberStormTracking{
 Value: mpltypes.StormTrackingCache{
 EntryCapacity: 100,
 EntryPruningTailSize: &entryPruningTailSize,
 GraceInterval: 1,
 GracePeriod: 10,
 FanOut: 20,
 InFlightTTL: 10,
 SleepMilli: 20,
 },
 }

Cache bersama

Secara default, keyring Hierarkis membuat cache lokal baru setiap kali Anda membuat instance
keyring. Namun, cache Bersama dapat membantu menghemat memori dengan memungkinkan Anda
berbagi cache di beberapa gantungan kunci Hierarkis. Daripada membuat cache materi kriptografi
baru untuk setiap keyring Hierarkis yang Anda buat instance, cache Bersama hanya menyimpan
satu cache dalam memori, yang dapat digunakan oleh semua gantungan kunci Hierarkis yang
mereferensikannya. Cache bersama membantu mengoptimalkan penggunaan memori dengan
menghindari duplikasi materi kriptografi di seluruh keyrings. Sebagai gantinya, gantungan kunci
Hierarkis dapat mengakses cache dasar yang sama, mengurangi jejak memori secara keseluruhan.

Saat Anda membuat cache Bersama, Anda masih menentukan jenis cache. Anda dapat
menentukanthe section called “Cache default”,the section called “MultiThreaded cache”, atau the
section called “StormTracking cache” sebagai jenis cache, atau mengganti cache kustom yang
kompatibel.

Partisi

Beberapa keyrings Hierarkis dapat menggunakan satu cache Bersama. Saat Anda membuat
keyring Hierarkis dengan cache Bersama, Anda dapat menentukan ID partisi opsional. ID
partisi membedakan keyring Hierarkis mana yang menulis ke cache. Jika dua keyrings hirarkis
mereferensikan ID partisi yang samalogical key store name, dan ID kunci cabang kedua keyrings
akan berbagi entri cache yang sama dalam cache. Jika Anda membuat dua gantungan kunci
Hierarkis dengan cache Bersama yang sama, tetapi partisi yang berbeda IDs, setiap keyring hanya
akan mengakses entri cache dari partisi yang ditunjuk sendiri dalam cache Bersama. Partisi bertindak

Pilih cache 150

AWS Encryption SDK Panduan Developerr

sebagai divisi logis dalam cache bersama, memungkinkan setiap keyring Hierarkis beroperasi secara
independen pada partisi yang ditunjuk sendiri, tanpa mengganggu data yang disimpan di partisi lain.

Jika Anda bermaksud untuk menggunakan kembali atau berbagi entri cache di partisi, Anda harus
menentukan ID partisi Anda sendiri. Saat Anda meneruskan ID partisi ke keyring Hierarkis Anda,
keyring dapat menggunakan kembali entri cache yang sudah ada di cache Bersama, daripada harus
mengambil dan mengotorisasi ulang materi kunci cabang lagi. Jika Anda tidak menentukan ID partisi,
ID partisi unik secara otomatis ditetapkan ke keyring setiap kali Anda membuat instance keyring
Hierarkis.

Prosedur berikut menunjukkan cara membuat cache Bersama dengan tipe cache Default dan
meneruskannya ke keyring Hierarkis.

1. Buat CryptographicMaterialsCache (CMC) menggunakan Material Providers Library
(MPL).

Java

// Instantiate the MPL
final MaterialProviders matProv =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

// Create a CacheType object for the Default cache
final CacheType cache =
 CacheType.builder()
 .Default(DefaultCache.builder().entryCapacity(100).build())
 .build();

// Create a CMC using the default cache
final CreateCryptographicMaterialsCacheInput cryptographicMaterialsCacheInput =
 CreateCryptographicMaterialsCacheInput.builder()
 .cache(cache)
 .build();

final ICryptographicMaterialsCache sharedCryptographicMaterialsCache =
 matProv.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

C# / .NET

// Instantiate the MPL

Pilih cache 151

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Panduan Developerr

var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create a CacheType object for the Default cache
var cache = new CacheType { Default = new DefaultCache{EntryCapacity = 100} };

// Create a CMC using the default cache
var cryptographicMaterialsCacheInput = new
 CreateCryptographicMaterialsCacheInput {Cache = cache};

var sharedCryptographicMaterialsCache =
 materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

Python

Instantiate the MPL
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create a CacheType object for the default cache
cache: CacheType = CacheTypeDefault(
 value=DefaultCache(
 entry_capacity=100,
)
)

Create a CMC using the default cache
cryptographic_materials_cache_input = CreateCryptographicMaterialsCacheInput(
 cache=cache,
)

shared_cryptographic_materials_cache =
 mat_prov.create_cryptographic_materials_cache(
 cryptographic_materials_cache_input
)

Rust

// Instantiate the MPL
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create a CacheType object for the default cache

Pilih cache 152

AWS Encryption SDK Panduan Developerr

let cache: CacheType = CacheType::Default(
 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

// Create a CMC using the default cache
let shared_cryptographic_materials_cache: CryptographicMaterialsCacheRef = mpl.
 create_cryptographic_materials_cache()
 .cache(cache)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
)

// Instantiate the MPL
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create a CacheType object for the default cache
cache := mpltypes.CacheTypeMemberDefault{
 Value: mpltypes.DefaultCache{
 EntryCapacity: 100,
 },
}

// Create a CMC using the default cache
cmcCacheInput := mpltypes.CreateCryptographicMaterialsCacheInput{
 Cache: &cache,
}
sharedCryptographicMaterialsCache, err :=
 matProv.CreateCryptographicMaterialsCache(context.Background(), cmcCacheInput)

Pilih cache 153

AWS Encryption SDK Panduan Developerr

if err != nil {
 panic(err)
}

2. Buat CacheType objek untuk cache Bersama.

Lulus yang sharedCryptographicMaterialsCache Anda buat di Langkah 1 ke CacheType
objek baru.

Java

// Create a CacheType object for the sharedCryptographicMaterialsCache
final CacheType sharedCache =
 CacheType.builder()
 .Shared(sharedCryptographicMaterialsCache)
 .build();

C# / .NET

// Create a CacheType object for the sharedCryptographicMaterialsCache
var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache };

Python

Create a CacheType object for the shared_cryptographic_materials_cache
shared_cache: CacheType = CacheTypeShared(
 value=shared_cryptographic_materials_cache
)

Rust

// Create a CacheType object for the shared_cryptographic_materials_cache
let shared_cache: CacheType =
 CacheType::Shared(shared_cryptographic_materials_cache);

Go

// Create a CacheType object for the shared_cryptographic_materials_cache

Pilih cache 154

AWS Encryption SDK Panduan Developerr

shared_cache :=
 mpltypes.CacheTypeMemberShared{sharedCryptographicMaterialsCache}

3. Lewati sharedCache objek dari Langkah 2 ke keyring Hierarkis Anda.

Saat Anda membuat keyring Hierarkis dengan cache Bersama, Anda dapat secara opsional
menentukan entri partitionID untuk berbagi cache di beberapa gantungan kunci Hierarkis.
Jika Anda tidak menentukan ID partisi, keyring Hierarkis secara otomatis menetapkan keyring ID
partisi unik.

Note

Keyring Hierarkis Anda akan berbagi entri cache yang sama dalam cache Bersama jika
Anda membuat dua atau lebih keyrings yang mereferensikan ID partisi yang samalogical
key store name, dan ID kunci cabang. Jika Anda tidak ingin beberapa keyrings berbagi
entri cache yang sama, Anda harus menggunakan ID partisi unik untuk setiap keyring
Hierarkis.

Contoh berikut membuat keyring Hierarkis denganbranch key ID supplier, dan batas cache 600
detik. Untuk informasi selengkapnya tentang nilai yang ditentukan dalam konfigurasi keyring
Hierarkis berikut, lihat. the section called “Buat keyring Hierarkis”

Java

// Create the Hierarchical keyring
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(sharedCache)
 .partitionID(partitionID)
 .build();
final IKeyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

// Create the Hierarchical keyring

Pilih cache 155

AWS Encryption SDK Panduan Developerr

var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 Cache = sharedCache,
 TtlSeconds = 600,
 PartitionId = partitionID
};
var keyring =
 materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Python

Create the Hierarchical keyring
keyring_input: CreateAwsKmsHierarchicalKeyringInput =
 CreateAwsKmsHierarchicalKeyringInput(
 key_store=keystore,
 branch_key_id_supplier=branch_key_id_supplier,
 ttl_seconds=600,
 cache=shared_cache,
 partition_id=partition_id
)

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
 input=keyring_input
)

Rust

// Create the Hierarchical keyring
let keyring1 = mpl
 .create_aws_kms_hierarchical_keyring()
 .key_store(key_store1)
 .branch_key_id(branch_key_id.clone())
 // CryptographicMaterialsCacheRef is an Rc (Reference Counted), so if you
 clone it to
 // pass it to different Hierarchical Keyrings, it will still point to the
 same
 // underlying cache, and increment the reference count accordingly.
 .cache(shared_cache.clone())
 .ttl_seconds(600)
 .partition_id(partition_id.clone())
 .send()

Pilih cache 156

AWS Encryption SDK Panduan Developerr

 .await?;

Go

// Create the Hierarchical keyring
hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
 KeyStore: keyStore1,
 BranchKeyId: &branchKeyId,
 TtlSeconds: 600,
 Cache: &shared_cache,
 PartitionId: &partitionId,
}
keyring, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
 hkeyringInput)
if err != nil {
 panic(err)
}

Buat keyring Hierarkis

Untuk membuat keyring Hierarkis, Anda harus memberikan nilai-nilai berikut:

• Nama toko kunci

Nama tabel DynamoDB yang Anda, atau administrator toko utama Anda, dibuat untuk berfungsi
sebagai toko kunci Anda.

•

Batas waktu cache untuk hidup (TTL)

Jumlah waktu dalam hitungan detik entri materi kunci cabang dalam cache lokal dapat digunakan
sebelum kedaluwarsa. Batas cache TTL menentukan seberapa sering klien memanggil AWS KMS
untuk mengotorisasi penggunaan kunci cabang. Nilai ini harus lebih besar dari nol. Setelah batas
cache TTL berakhir, entri tidak pernah disajikan, dan akan diusir dari cache lokal.

• Pengidentifikasi kunci cabang

Anda dapat mengonfigurasi secara statis branch-key-id yang mengidentifikasi satu kunci
cabang aktif di toko kunci Anda, atau memberikan pemasok ID kunci cabang.

Buat keyring Hierarkis 157

AWS Encryption SDK Panduan Developerr

Pemasok ID kunci cabang menggunakan bidang yang disimpan dalam konteks enkripsi untuk
menentukan kunci cabang mana yang diperlukan untuk mendekripsi catatan.

Kami sangat menyarankan menggunakan pemasok ID kunci cabang untuk database
multitenant di mana setiap penyewa memiliki kunci cabang mereka sendiri. Anda dapat
menggunakan pemasok ID kunci cabang untuk membuat nama ramah untuk kunci cabang
Anda IDs agar mudah mengenali ID kunci cabang yang benar untuk penyewa tertentu.
Misalnya, nama ramah memungkinkan Anda merujuk ke kunci cabang sebagai tenant1
gantinyab3f61619-4d35-48ad-a275-050f87e15122.

Untuk operasi dekripsi, Anda dapat mengonfigurasi secara statis satu keyring Hierarkis untuk
membatasi dekripsi ke penyewa tunggal, atau Anda dapat menggunakan pemasok ID kunci
cabang untuk mengidentifikasi penyewa mana yang bertanggung jawab untuk mendekripsi catatan.

• (Opsional) Sebuah cache

Jika Anda ingin menyesuaikan jenis cache atau jumlah entri materi kunci cabang yang dapat
disimpan di cache lokal, tentukan jenis cache dan kapasitas entri saat Anda menginisialisasi
keyring.

Keyring Hierarkis mendukung jenis cache berikut: Default,, MultiThreaded StormTracking, dan
Shared. Untuk informasi selengkapnya dan contoh yang menunjukkan cara menentukan setiap
jenis cache, lihatthe section called “Pilih cache”.

Jika Anda tidak menentukan cache, keyring Hierarkis secara otomatis menggunakan jenis cache
Default dan menetapkan kapasitas entri ke 1000.

• (Opsional) ID partisi

Jika Anda menentukanthe section called “Cache bersama”, Anda dapat secara opsional
menentukan ID partisi. ID partisi membedakan keyring Hierarkis mana yang menulis ke cache.
Jika Anda bermaksud untuk menggunakan kembali atau berbagi entri cache di partisi, Anda harus
menentukan ID partisi Anda sendiri. Anda dapat menentukan string apa pun untuk ID partisi.
Jika Anda tidak menentukan ID partisi, ID partisi unik secara otomatis ditetapkan ke keyring saat
pembuatan.

Untuk informasi selengkapnya, lihat Partitions.

Buat keyring Hierarkis 158

AWS Encryption SDK Panduan Developerr

Note

Keyring Hierarkis Anda akan berbagi entri cache yang sama dalam cache Bersama jika
Anda membuat dua atau lebih keyrings yang mereferensikan ID partisi yang samalogical
key store name, dan ID kunci cabang. Jika Anda tidak ingin beberapa keyrings berbagi
entri cache yang sama, Anda harus menggunakan ID partisi unik untuk setiap keyring
Hierarkis.

• (Opsional) Daftar Token Hibah

Jika Anda mengontrol akses ke kunci KMS di keyring Hierarkis Anda dengan hibah, Anda harus
menyediakan semua token hibah yang diperlukan saat Anda menginisialisasi keyring.

Buat keyring Hierarkis dengan ID kunci cabang statis

Contoh berikut menunjukkan cara membuat keyring Hierarki dengan ID kunci cabang statis, TTLthe
section called “Cache default”, dan batas cache 600 detik.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(branchKeyStoreName)
 .branchKeyId(branch-key-id)
 .ttlSeconds(600)
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyId = branch-key-id,
 TtlSeconds = 600

Buat keyring Hierarkis 159

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK Panduan Developerr

};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
 CreateAwsKmsHierarchicalKeyringInput(
 key_store=keystore,
 branch_key_id=branch_key_id,
 ttl_seconds=600
)

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
 input=keyring_input
)

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .key_store(key_store.clone())
 .branch_key_id(branch_key_id)
 .ttl_seconds(600)
 .send()
 .await?;

Go

matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}
hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
 KeyStore: keyStore,
 BranchKeyId: &branchKeyID,

Buat keyring Hierarkis 160

AWS Encryption SDK Panduan Developerr

 TtlSeconds: 600,
}
hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
 hkeyringInput)
if err != nil {
 panic(err)
}

Buat keyring Hierarkis dengan pemasok ID kunci cabang

Prosedur berikut menunjukkan cara membuat keyring Hierarkis dengan pemasok ID kunci cabang.

1. Buat pemasok ID kunci cabang

Contoh berikut membuat nama ramah untuk dua kunci cabang dan panggilan
CreateDynamoDbEncryptionBranchKeyIdSupplier untuk membuat pemasok ID kunci
cabang.

Java

// Create friendly names for each branch-key-id
class ExampleBranchKeyIdSupplier implements IDynamoDbKeyBranchKeyIdSupplier {
 private static String branchKeyIdForTenant1;
 private static String branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {
 this.branchKeyIdForTenant1 = tenant1Id;
 this.branchKeyIdForTenant2 = tenant2Id;
 }
// Create the branch key ID supplier
final DynamoDbEncryption ddbEnc = DynamoDbEncryption.builder()
 .DynamoDbEncryptionConfig(DynamoDbEncryptionConfig.builder().build())
 .build();
final BranchKeyIdSupplier branchKeyIdSupplier =
 ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 CreateDynamoDbEncryptionBranchKeyIdSupplierInput.builder()
 .ddbKeyBranchKeyIdSupplier(new ExampleBranchKeyIdSupplier(branch-
key-ID-tenant1, branch-key-ID-tenant2))
 .build()).branchKeyIdSupplier();

Buat keyring Hierarkis 161

AWS Encryption SDK Panduan Developerr

C# / .NET

// Create friendly names for each branch-key-id
 class ExampleBranchKeyIdSupplier : DynamoDbKeyBranchKeyIdSupplierBase {
 private String _branchKeyIdForTenant1;
 private String _branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {
 this._branchKeyIdForTenant1 = tenant1Id;
 this._branchKeyIdForTenant2 = tenant2Id;
 }
// Create the branch key ID supplier
var ddbEnc = new DynamoDbEncryption(new DynamoDbEncryptionConfig());
var branchKeyIdSupplier = ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 new CreateDynamoDbEncryptionBranchKeyIdSupplierInput
 {
 DdbKeyBranchKeyIdSupplier = new ExampleBranchKeyIdSupplier(branch-key-
ID-tenant1, branch-key-ID-tenant2)
 }).BranchKeyIdSupplier;

Python

Create branch key ID supplier that maps the branch key ID to a friendly name
branch_key_id_supplier: IBranchKeyIdSupplier = ExampleBranchKeyIdSupplier(
 tenant_1_id=branch_key_id_a,
 tenant_2_id=branch_key_id_b,
)

Rust

// Create branch key ID supplier that maps the branch key ID to a friendly name
let branch_key_id_supplier = ExampleBranchKeyIdSupplier::new(
 &branch_key_id_a,
 &branch_key_id_b
);

Go

// Create branch key ID supplier that maps the branch key ID to a friendly name
keySupplier := branchKeySupplier{branchKeyA: branchKeyA, branchKeyB: branchKeyB}

Buat keyring Hierarkis 162

AWS Encryption SDK Panduan Developerr

2. Buat keyring Hierarkis

Contoh berikut menginisialisasi keyring Hierarkis dengan pemasok ID kunci cabang yang dibuat
pada Langkah 1, batas cache TLL 600 detik, dan ukuran cache maksimum 1000.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(CacheType.builder() //OPTIONAL
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600,
 Cache = new CacheType
 {
 Default = new DefaultCache { EntryCapacity = 100 }
 }
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Python

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()

Buat keyring Hierarkis 163

AWS Encryption SDK Panduan Developerr

)

keyring_input: CreateAwsKmsHierarchicalKeyringInput =
 CreateAwsKmsHierarchicalKeyringInput(
 key_store=keystore,
 branch_key_id_supplier=branch_key_id_supplier,
 ttl_seconds=600,
 cache=CacheTypeDefault(
 value=DefaultCache(
 entry_capacity=100
)
),
)

hierarchical_keyring: IKeyring = mat_prov.create_aws_kms_hierarchical_keyring(
 input=keyring_input
)

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .key_store(key_store.clone())
 .branch_key_id_supplier(branch_key_id_supplier)
 .ttl_seconds(600)
 .send()
 .await?;

Go

hkeyringInput := mpltypes.CreateAwsKmsHierarchicalKeyringInput{
 KeyStore: keyStore,
 BranchKeyIdSupplier: &keySupplier,
 TtlSeconds: 600,
}
hKeyRing, err := matProv.CreateAwsKmsHierarchicalKeyring(context.Background(),
 hkeyringInput)
if err != nil {
 panic(err)

Buat keyring Hierarkis 164

AWS Encryption SDK Panduan Developerr

}

AWS KMS Gantungan kunci ECDH

Gantungan kunci AWS KMS ECDH menggunakan kesepakatan kunci asimetris AWS KMS
keysuntuk mendapatkan kunci pembungkus simetris bersama antara dua pihak. Pertama, keyring
menggunakan algoritma perjanjian kunci Elliptic Curve Diffie-Hellman (ECDH) untuk mendapatkan
rahasia bersama dari kunci pribadi di KMS key pair pengirim dan kunci publik penerima. Kemudian,
keyring menggunakan rahasia bersama untuk mendapatkan kunci pembungkus bersama yang
melindungi kunci enkripsi data Anda. Fungsi derivasi kunci yang AWS Encryption SDK digunakan
(KDF_CTR_HMAC_SHA384) untuk menurunkan kunci pembungkus bersama sesuai dengan
rekomendasi NIST untuk derivasi kunci.

Fungsi derivasi kunci mengembalikan 64 byte bahan kunci. Untuk memastikan bahwa kedua belah
pihak menggunakan materi kunci yang benar, AWS Encryption SDK menggunakan 32 byte pertama
sebagai kunci komitmen dan 32 byte terakhir sebagai kunci pembungkus bersama. Saat mendekripsi,
jika keyring tidak dapat mereproduksi kunci komitmen yang sama dan kunci pembungkus bersama
yang disimpan di ciphertext header pesan, operasi gagal. Misalnya, jika Anda mengenkripsi data
dengan keyring yang dikonfigurasi dengan kunci pribadi Alice dan kunci publik Bob, keyring yang
dikonfigurasi dengan kunci pribadi Bob dan kunci publik Alice akan mereproduksi kunci komitmen
yang sama dan kunci pembungkus bersama dan dapat mendekripsi data. Jika kunci publik Bob
bukan dari key pair KMS, maka Bob dapat membuat keyring ECDH mentah untuk mendekripsi data.

Keyring AWS KMS ECDH mengenkripsi data dengan kunci simetris menggunakan AES-GCM. Kunci
data kemudian dienkripsi dengan kunci pembungkus bersama turunan menggunakan AES-GCM.
Setiap keyring AWS KMS ECDH hanya dapat memiliki satu kunci pembungkus bersama, tetapi Anda
dapat menyertakan beberapa gantungan kunci AWS KMS ECDH, sendiri atau dengan gantungan
kunci lainnya, dalam multi-keyring.

Kompatibilitas bahasa pemrograman

Keyring AWS KMS ECDH diperkenalkan dalam versi 1.5.0 dari Cryptographic Material Providers
Library (MPL) dan didukung oleh bahasa dan versi pemrograman berikut:

• Versi 3. x dari AWS Encryption SDK for Java

• Versi 4. x dari AWS Encryption SDK untuk .NET

• Versi 4. x dari AWS Encryption SDK for Python, bila digunakan dengan dependensi MPL opsional.

AWS KMS Gantungan kunci ECDH 165

https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Panduan Developerr

• Versi 1. x dari AWS Encryption SDK untuk Rust

• Versi 0.1. x atau yang lebih baru AWS Encryption SDK untuk Go

Topik

• Izin yang diperlukan untuk gantungan kunci AWS KMS ECDH

• Membuat keyring AWS KMS ECDH

• Membuat keyring AWS KMS penemuan ECDH

Izin yang diperlukan untuk gantungan kunci AWS KMS ECDH

AWS Encryption SDK Tidak memerlukan AWS akun dan tidak tergantung pada AWS layanan apa
pun. Namun, untuk menggunakan keyring AWS KMS ECDH, Anda memerlukan AWS akun dan izin
minimum berikut pada keyring Anda. AWS KMS keys Izin bervariasi berdasarkan skema perjanjian
kunci yang Anda gunakan.

• Untuk mengenkripsi dan mendekripsi data menggunakan skema perjanjian
KmsPrivateKeyToStaticPublicKey kunci, Anda memerlukan kms: GetPublicKey dan kms:
DeriveSharedSecret pada key pair KMS asimetris pengirim. Jika Anda langsung memberikan
kunci publik yang dienkode DER pengirim saat membuat instance keyring, Anda hanya perlu
DeriveSharedSecret izin kms: pada key pair KMS asimetris pengirim.

• Untuk mendekripsi data menggunakan skema perjanjian KmsPublicKeyDiscovery kunci, Anda
memerlukan GetPublicKey izin kms: DeriveSharedSecret dan kms: pada key pair KMS asimetris
yang ditentukan.

Membuat keyring AWS KMS ECDH

Untuk membuat keyring AWS KMS ECDH yang mengenkripsi dan mendekripsi data, Anda
harus menggunakan skema perjanjian kunci. KmsPrivateKeyToStaticPublicKey
Untuk menginisialisasi keyring AWS KMS ECDH dengan skema perjanjian
KmsPrivateKeyToStaticPublicKey kunci, berikan nilai-nilai berikut:

• ID Pengirim AWS KMS key

Harus mengidentifikasi asymmetric NIST recommended elliptic curve (ECC) KMS key pair dengan
nilai. KeyUsage KEY_AGREEMENT Kunci pribadi pengirim digunakan untuk mendapatkan rahasia
bersama.

Izin yang diperlukan untuk gantungan kunci AWS KMS ECDH 166

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS Encryption SDK Panduan Developerr

• (Opsional) Kunci publik pengirim

Harus berupa kunci publik X.509 yang dikodekan DER, juga dikenal sebagai
SubjectPublicKeyInfo (SPKI), sebagaimana didefinisikan dalam RFC 5280.

AWS KMS GetPublicKeyOperasi mengembalikan kunci publik dari key pair KMS asimetris dalam
format yang dienkode DER yang diperlukan.

Untuk mengurangi jumlah AWS KMS panggilan yang dilakukan keyring Anda, Anda dapat
langsung memberikan kunci publik pengirim. Jika tidak ada nilai yang diberikan untuk kunci publik
pengirim, keyring akan memanggil AWS KMS untuk mengambil kunci publik pengirim.

• Kunci publik penerima

Anda harus memberikan kunci publik X.509 yang dikodekan DER penerima, juga dikenal sebagai
SubjectPublicKeyInfo (SPKI), sebagaimana didefinisikan dalam RFC 5280.

AWS KMS GetPublicKeyOperasi mengembalikan kunci publik dari key pair KMS asimetris dalam
format yang dienkode DER yang diperlukan.

• Spesifikasi kurva

Mengidentifikasi spesifikasi kurva elips dalam pasangan kunci yang ditentukan. Pasangan kunci
pengirim dan penerima harus memiliki spesifikasi kurva yang sama.

Nilai valid: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Opsional) Daftar Token Hibah

Jika Anda mengontrol akses ke kunci KMS di keyring AWS KMS ECDH Anda dengan hibah, Anda
harus memberikan semua token hibah yang diperlukan saat Anda menginisialisasi keyring.

C# / .NET

Contoh berikut membuat keyring AWS KMS ECDH dengan kunci KMS pengirim, kunci publik
pengirim, dan kunci publik penerima. Contoh ini menggunakan SenderPublicKey parameter
opsional untuk menyediakan kunci publik pengirim. Jika Anda tidak memberikan kunci publik
pengirim, keyring akan memanggil AWS KMS untuk mengambil kunci publik pengirim. Pasangan
kunci pengirim dan penerima berada di ECC_NIST_P256 kurva.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

Membuat keyring AWS KMS ECDH 167

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS Encryption SDK Panduan Developerr

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations
{
 KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput
 {
 SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 SenderPublicKey = BobPublicKey,
 RecipientPublicKey = AlicePublicKey
 }
};

var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = staticConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

Contoh berikut membuat keyring AWS KMS ECDH dengan kunci KMS pengirim, kunci publik
pengirim, dan kunci publik penerima. Contoh ini menggunakan senderPublicKey parameter
opsional untuk menyediakan kunci publik pengirim. Jika Anda tidak memberikan kunci publik
pengirim, keyring akan memanggil AWS KMS untuk mengambil kunci publik pengirim. Pasangan
kunci pengirim dan penerima berada di ECC_NIST_P256 kurva.

// Retrieve public keys
// Must be DER-encoded X.509 public keys
ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab");
 ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

// Create the AWS KMS ECDH static keyring
 final CreateAwsKmsEcdhKeyringInput senderKeyringInput =

Membuat keyring AWS KMS ECDH 168

AWS Encryption SDK Panduan Developerr

 CreateAwsKmsEcdhKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPrivateKeyToStaticPublicKey(
 KmsPrivateKeyToStaticPublicKeyInput.builder()
 .senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
 .senderPublicKey(BobPublicKey)
 .recipientPublicKey(AlicePublicKey)
 .build()).build()).build();

Python

Contoh berikut membuat keyring AWS KMS ECDH dengan kunci KMS pengirim, kunci publik
pengirim, dan kunci publik penerima. Contoh ini menggunakan senderPublicKey parameter
opsional untuk menyediakan kunci publik pengirim. Jika Anda tidak memberikan kunci publik
pengirim, keyring akan memanggil AWS KMS untuk mengambil kunci publik pengirim. Pasangan
kunci pengirim dan penerima berada di ECC_NIST_P256 kurva.

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
 CreateAwsKmsEcdhKeyringInput,
 KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey,
 KmsPrivateKeyToStaticPublicKeyInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
 import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Retrieve public keys
Must be DER-encoded X.509 public keys
bob_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
alice_public_key = get_public_key_bytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321")

Create the AWS KMS ECDH static keyring

Membuat keyring AWS KMS ECDH 169

AWS Encryption SDK Panduan Developerr

sender_keyring_input = CreateAwsKmsEcdhKeyringInput(
 kms_client = boto3.client('kms', region_name="us-west-2"),
 curve_spec = ECDHCurveSpec.ECC_NIST_P256,
 key_agreement_scheme =
 KmsEcdhStaticConfigurationsKmsPrivateKeyToStaticPublicKey(
 KmsPrivateKeyToStaticPublicKeyInput(
 sender_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 sender_public_key = bob_public_key,
 recipient_public_key = alice_public_key,

)
)
)

keyring = mat_prov.create_aws_kms_ecdh_keyring(sender_keyring_input)

Rust

Contoh berikut membuat keyring AWS KMS ECDH dengan kunci KMS pengirim, kunci publik
pengirim, dan kunci publik penerima. Contoh ini menggunakan sender_public_key parameter
opsional untuk menyediakan kunci publik pengirim. Jika Anda tidak memberikan kunci publik
pengirim, keyring akan memanggil AWS KMS untuk mengambil kunci publik pengirim.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

Membuat keyring AWS KMS ECDH 170

AWS Encryption SDK Panduan Developerr

// Retrieve public keys
// Must be DER-encoded X.509 keys
let public_key_file_content_sender =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_SENDER))?;
let parsed_public_key_file_content_sender = parse(public_key_file_content_sender)?;
let public_key_sender_utf8_bytes = parsed_public_key_file_content_sender.contents();

let public_key_file_content_recipient =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content_recipient =
 parse(public_key_file_content_recipient)?;
let public_key_recipient_utf8_bytes =
 parsed_public_key_file_content_recipient.contents();

// Create KmsPrivateKeyToStaticPublicKeyInput
let kms_ecdh_static_configuration_input =
 KmsPrivateKeyToStaticPublicKeyInput::builder()
 .sender_kms_identifier(arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab)
 // Must be a UTF8 DER-encoded X.509 public key
 .sender_public_key(public_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let kms_ecdh_static_configuration =
 KmsEcdhStaticConfigurations::KmsPrivateKeyToStaticPublicKey(kms_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH keyring
let kms_ecdh_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client)
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_static_configuration)
 .send()
 .await?;

Membuat keyring AWS KMS ECDH 171

AWS Encryption SDK Panduan Developerr

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Retrieve public keys
// Must be DER-encoded X.509 keys
publicKeySender, err := utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameSender)

Membuat keyring AWS KMS ECDH 172

AWS Encryption SDK Panduan Developerr

if err != nil {
 panic(err)
}
publicKeyRecipient, err :=
 utils.LoadPublicKeyFromPEM(kmsEccPublicKeyFileNameRecipient)
if err != nil {
 panic(err)
}

// Create KmsPrivateKeyToStaticPublicKeyInput
kmsEcdhStaticConfigurationInput := mpltypes.KmsPrivateKeyToStaticPublicKeyInput{
 RecipientPublicKey: publicKeyRecipient,
 SenderKmsIdentifier: arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
 SenderPublicKey: publicKeySender,
}
kmsEcdhStaticConfiguration :=
 &mpltypes.KmsEcdhStaticConfigurationsMemberKmsPrivateKeyToStaticPublicKey{
 Value: kmsEcdhStaticConfigurationInput,
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create AWS KMS ECDH keyring
awsKmsEcdhKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{
 CurveSpec: ecdhCurveSpec,
 KeyAgreementScheme: kmsEcdhStaticConfiguration,
 KmsClient: kmsClient,
}
awsKmsEcdhKeyring, err := matProv.CreateAwsKmsEcdhKeyring(context.Background(),
 awsKmsEcdhKeyringInput)
if err != nil {
 panic(err)
}

Membuat keyring AWS KMS ECDH 173

AWS Encryption SDK Panduan Developerr

Membuat keyring AWS KMS penemuan ECDH

Saat mendekripsi, ini adalah praktik terbaik untuk menentukan kunci yang AWS Encryption SDK
dapat digunakan. Untuk mengikuti praktik terbaik ini, gunakan gantungan kunci AWS KMS ECDH
dengan skema perjanjian KmsPrivateKeyToStaticPublicKey kunci. Namun, Anda juga
dapat membuat keyring penemuan AWS KMS ECDH, yaitu keyring AWS KMS ECDH yang dapat
mendekripsi pesan apa pun di mana kunci publik dari key pair KMS yang ditentukan cocok dengan
kunci publik penerima yang disimpan pada ciphertext pesan.

Important

Ketika Anda mendekripsi pesan menggunakan skema perjanjian KmsPublicKeyDiscovery
kunci, Anda menerima semua kunci publik, terlepas dari siapa yang memilikinya.

Untuk menginisialisasi keyring AWS KMS ECDH dengan skema perjanjian
KmsPublicKeyDiscovery kunci, berikan nilai-nilai berikut:

• AWS KMS key ID Penerima

Harus mengidentifikasi asymmetric NIST recommended elliptic curve (ECC) KMS key pair dengan
nilai. KeyUsage KEY_AGREEMENT

• Spesifikasi kurva

Mengidentifikasi spesifikasi kurva eliptik dalam key pair KMS penerima.

Nilai valid: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Opsional) Daftar Token Hibah

Jika Anda mengontrol akses ke kunci KMS di keyring AWS KMS ECDH Anda dengan hibah, Anda
harus memberikan semua token hibah yang diperlukan saat Anda menginisialisasi keyring.

C# / .NET

Contoh berikut membuat keyring penemuan AWS KMS ECDH dengan key pair KMS pada kurva.
ECC_NIST_P256 Anda harus memiliki DeriveSharedSecret izin kms: GetPublicKey dan kms:
pada key pair KMS yang ditentukan. Keyring ini dapat mendekripsi pesan apa pun di mana kunci
publik dari key pair KMS yang ditentukan cocok dengan kunci publik penerima yang disimpan
pada ciphertext pesan.

Membuat keyring AWS KMS penemuan ECDH 174

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK Panduan Developerr

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create the AWS KMS ECDH discovery keyring
var discoveryConfiguration = new KmsEcdhStaticConfigurations
{
 KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput
 {
 RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
 }

};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = discoveryConfiguration
};
var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

Contoh berikut membuat keyring penemuan AWS KMS ECDH dengan key pair KMS pada kurva.
ECC_NIST_P256 Anda harus memiliki DeriveSharedSecret izin kms: GetPublicKey dan kms:
pada key pair KMS yang ditentukan. Keyring ini dapat mendekripsi pesan apa pun di mana kunci
publik dari key pair KMS yang ditentukan cocok dengan kunci publik penerima yang disimpan
pada ciphertext pesan.

// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput =
 CreateAwsKmsEcdhKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPublicKeyDiscovery(
 KmsPublicKeyDiscoveryInput.builder()
 .recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321").build()
).build())
 .build();

Membuat keyring AWS KMS penemuan ECDH 175

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK Panduan Developerr

Python

Contoh berikut membuat keyring penemuan AWS KMS ECDH dengan key pair KMS pada kurva.
ECC_NIST_P256 Anda harus memiliki DeriveSharedSecret izin kms: GetPublicKey dan kms:
pada key pair KMS yang ditentukan. Keyring ini dapat mendekripsi pesan apa pun di mana kunci
publik dari key pair KMS yang ditentukan cocok dengan kunci publik penerima yang disimpan
pada ciphertext pesan.

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
 CreateAwsKmsEcdhKeyringInput,
 KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery,
 KmsPublicKeyDiscoveryInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
 import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create the AWS KMS ECDH discovery keyring
create_keyring_input = CreateAwsKmsEcdhKeyringInput(
 kms_client = boto3.client('kms', region_name="us-west-2"),
 curve_spec = ECDHCurveSpec.ECC_NIST_P256,
 key_agreement_scheme = KmsEcdhStaticConfigurationsKmsPublicKeyDiscovery(
 KmsPublicKeyDiscoveryInput(
 recipient_kms_identifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321",
)
)
)

keyring = mat_prov.create_aws_kms_ecdh_keyring(create_keyring_input)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create the AWS KMS client

Membuat keyring AWS KMS penemuan ECDH 176

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS Encryption SDK Panduan Developerr

let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Optional: Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Create KmsPublicKeyDiscoveryInput
let kms_ecdh_discovery_static_configuration_input =
 KmsPublicKeyDiscoveryInput::builder()
 .recipient_kms_identifier(ecc_recipient_key_arn)
 .build()?;

let kms_ecdh_discovery_static_configuration =
 KmsEcdhStaticConfigurations::KmsPublicKeyDiscovery(kms_ecdh_discovery_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH discovery keyring
let kms_ecdh_discovery_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client.clone())
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_discovery_static_configuration)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

Membuat keyring AWS KMS penemuan ECDH 177

AWS Encryption SDK Panduan Developerr

 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Create KmsPublicKeyDiscoveryInput
kmsEcdhDiscoveryStaticConfigurationInput := mpltypes.KmsPublicKeyDiscoveryInput{
 RecipientKmsIdentifier: eccRecipientKeyArn,
}
kmsEcdhDiscoveryStaticConfiguration :=
 &mpltypes.KmsEcdhStaticConfigurationsMemberKmsPublicKeyDiscovery{
 Value: kmsEcdhDiscoveryStaticConfigurationInput,
}

// Instantiate the material providers library

Membuat keyring AWS KMS penemuan ECDH 178

AWS Encryption SDK Panduan Developerr

matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create AWS KMS ECDH discovery keyring
awsKmsEcdhDiscoveryKeyringInput := mpltypes.CreateAwsKmsEcdhKeyringInput{
 CurveSpec: ecdhCurveSpec,
 KeyAgreementScheme: kmsEcdhDiscoveryStaticConfiguration,
 KmsClient: kmsClient,
}
awsKmsEcdhDiscoveryKeyring, err :=
 matProv.CreateAwsKmsEcdhKeyring(context.Background(),
 awsKmsEcdhDiscoveryKeyringInput)
if err != nil {
 panic(err)
}

Gantungan kunci AES mentah

Ini AWS Encryption SDK memungkinkan Anda menggunakan kunci simetris AES yang Anda berikan
sebagai kunci pembungkus yang melindungi kunci data Anda. Anda perlu membuat, menyimpan,
dan melindungi materi utama, sebaiknya dalam modul keamanan perangkat keras (HSM) atau sistem
manajemen kunci. Gunakan keyring Raw AES saat Anda perlu memberikan kunci pembungkus dan
mengenkripsi kunci data secara lokal atau offline.

Raw AES keyring mengenkripsi data dengan menggunakan algoritma AES-GCM dan kunci
pembungkus yang Anda tentukan sebagai array byte. Anda hanya dapat menentukan satu kunci
pembungkus di setiap keyring Raw AES, tetapi Anda dapat menyertakan beberapa gantungan kunci
Raw AES, sendiri atau dengan gantungan kunci lainnya, dalam multi-keyring.

Raw AES keyring setara dengan dan berinteraksi dengan JceMasterKeykelas di AWS Encryption
SDK for Java dan RawMasterKeykelas AWS Encryption SDK for Python ketika mereka digunakan
dengan kunci enkripsi AES. Anda dapat mengenkripsi data dengan satu implementasi dan
mendekripsi data dengan implementasi lain menggunakan kunci pembungkus yang sama. Lihat
perinciannya di Kompatibilitas keyring.

Ruang nama dan nama kunci

Gantungan kunci AES mentah 179

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey

AWS Encryption SDK Panduan Developerr

Untuk mengidentifikasi kunci AES dalam keyring, keyring Raw AES menggunakan namespace kunci
dan nama kunci yang Anda berikan. Nilai-nilai ini bukan rahasia. Mereka muncul dalam teks biasa di
header pesan terenkripsi yang dikembalikan oleh operasi enkripsi. Sebaiknya gunakan namespace
kunci HSM atau sistem manajemen kunci Anda dan nama kunci yang mengidentifikasi kunci AES
dalam sistem itu.

Note

Namespace kunci dan nama kunci setara dengan kolom ID Penyedia (atau Penyedia) dan ID
Kunci di JceMasterKey dan. RawMasterKey
The AWS Encryption SDK for C and AWS Encryption SDK for .NET menyimpan nilai
namespace aws-kms kunci untuk kunci KMS. Jangan gunakan nilai namespace ini dalam
keyring Raw AES atau Raw RSA keyring dengan pustaka ini.

Jika Anda membuat keyring yang berbeda untuk mengenkripsi dan mendekripsi pesan yang
diberikan, namespace dan nilai nama sangat penting. Jika namespace kunci dan nama kunci dalam
keyring dekripsi bukan kecocokan yang tepat dan peka huruf besar/kecil untuk namespace kunci dan
nama kunci dalam keyring enkripsi, keyring dekripsi tidak digunakan, meskipun byte materi kunci
identik.

Misalnya, Anda mungkin mendefinisikan keyring Raw AES dengan namespace HSM_01 kunci dan
nama kunci. AES_256_012 Kemudian, Anda menggunakan keyring itu untuk mengenkripsi beberapa
data. Untuk mendekripsi data tersebut, buat keyring Raw AES dengan namespace kunci, nama
kunci, dan material kunci yang sama.

Contoh berikut menunjukkan cara membuat keyring Raw AES. AESWrappingKeyVariabel mewakili
materi kunci yang Anda berikan.

C

Untuk membuat instance keyring Raw AES di, gunakan. AWS Encryption SDK for
Caws_cryptosdk_raw_aes_keyring_new() Untuk contoh lengkap, lihat raw_aes_keyring.c.

struct aws_allocator *alloc = aws_default_allocator();

AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_namespace, "HSM_01");
AWS_STATIC_STRING_FROM_LITERAL(wrapping_key_name, "AES_256_012");

struct aws_cryptosdk_keyring *raw_aes_keyring = aws_cryptosdk_raw_aes_keyring_new(

Gantungan kunci AES mentah 180

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c

AWS Encryption SDK Panduan Developerr

 alloc, wrapping_key_namespace, wrapping_key_name, aes_wrapping_key,
 wrapping_key_len);

C# / .NET

Untuk membuat keyring Raw AES AWS Encryption SDK untuk .NET, gunakan metode
inimaterialProviders.CreateRawAesKeyring(). Untuk contoh lengkapnya, lihat Raw
AESKeyring Example.cs.

Contoh berikut menggunakan versi 4. x dari AWS Encryption SDK untuk .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

// This example uses the key generator in Bouncy Castle to generate the key
 material.
// In production, use key material from a secure source.
var aesWrappingKey = new
 MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

// Create the keyring that determines how your data keys are protected.
var createKeyringInput = new CreateRawAesKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 WrappingKey = aesWrappingKey,
 WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
};

var keyring = materialProviders.CreateRawAesKeyring(createKeyringInput);

JavaScript Browser

AWS Encryption SDK for JavaScript Di browser mendapatkan primitif kriptografinya
dari API. WebCrypto Sebelum Anda membuat keyring, Anda harus menggunakan
RawAesKeyringWebCrypto.importCryptoKey() untuk mengimpor bahan kunci mentah
ke backend. WebCrypto Ini memastikan bahwa keyring selesai meskipun semua panggilan ke
WebCrypto asinkron.

Gantungan kunci AES mentah 181

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs
https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API

AWS Encryption SDK Panduan Developerr

Kemudian, untuk membuat instance keyring Raw AES, gunakan metode ini.
RawAesKeyringWebCrypto() Anda harus menentukan algoritma pembungkus AES (“wrapping
suite) berdasarkan panjang materi kunci Anda. Untuk contoh lengkap, lihat aes_simple.ts
(Browser). JavaScript

Contoh berikut menggunakan buildClient fungsi untuk menentukan kebijakan komitmen
default,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Anda juga dapat menggunakan buildClient
untuk membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Untuk informasi
selengkapnya, lihat the section called “Membatasi kunci data terenkripsi”.

import {
 RawAesWrappingSuiteIdentifier,
 RawAesKeyringWebCrypto,
 synchronousRandomValues,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const keyNamespace = 'HSM_01'
const keyName = 'AES_256_012'

const wrappingSuite =
 RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

/* Import the plaintext AES key into the WebCrypto backend. */
const aesWrappingKey = await RawAesKeyringWebCrypto.importCryptoKey(
 rawAesKey,
 wrappingSuite
)

const rawAesKeyring = new RawAesKeyringWebCrypto({
 keyName,
 keyNamespace,
 wrappingSuite,
 aesWrappingKey
})

Gantungan kunci AES mentah 182

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts

AWS Encryption SDK Panduan Developerr

JavaScript Node.js

Untuk membuat instance keyring Raw AES di AWS Encryption SDK for JavaScript untuk Node.js,
buat instance kelas. RawAesKeyringNode Anda harus menentukan algoritma pembungkus
AES (“wrapping suite”) berdasarkan panjang materi kunci Anda. Untuk contoh lengkap, lihat
aes_simple.ts (Node.js). JavaScript

Contoh berikut menggunakan buildClient fungsi untuk menentukan kebijakan komitmen
default,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Anda juga dapat menggunakan buildClient
untuk membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Untuk informasi
selengkapnya, lihat the section called “Membatasi kunci data terenkripsi”.

import {
 RawAesKeyringNode,
 buildClient,
 CommitmentPolicy,
 RawAesWrappingSuiteIdentifier,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const keyName = 'AES_256_012'
const keyNamespace = 'HSM_01'

const wrappingSuite =
 RawAesWrappingSuiteIdentifier.AES256_GCM_IV12_TAG16_NO_PADDING

const rawAesKeyring = new RawAesKeyringNode({
 keyName,
 keyNamespace,
 aesWrappingKey,
 wrappingSuite,
})

Java

Untuk membuat instance keyring Raw AES di, gunakan. AWS Encryption SDK for
JavamatProv.CreateRawAesKeyring()

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder()

Gantungan kunci AES mentah 183

https://github.com/aws/aws-encryption-sdk-javascript//blob/master/modules/example-node/src/aes_simple.ts

AWS Encryption SDK Panduan Developerr

 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Python

Contoh berikut membuat instance AWS Encryption SDK klien dengan kebijakan
komitmen default,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Untuk contoh lengkap, lihat
raw_aes_keyring_example.py di AWS Encryption SDK for Python repositori di. GitHub

Instantiate the AWS Encryption SDK client
client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "AES_256_012"

Optional: Create an encryption context
encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create Raw AES keyring
keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
 key_namespace=key_name_space,
 key_name=key_name,

Gantungan kunci AES mentah 184

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_aes_keyring_example.py

AWS Encryption SDK Panduan Developerr

 wrapping_key=AESWrappingKey,
 wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
)

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
 input=keyring_input
)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "AES_256_012";

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw AES keyring
let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name(key_name)
 .key_namespace(key_namespace)
 .wrapping_key(aws_smithy_types::Blob::new(AESWrappingKey))
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

Gantungan kunci AES mentah 185

AWS Encryption SDK Panduan Developerr

Go

import (
 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)
//Instantiate the AWS Encryption SDK client.
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}
// Define the key namespace and key name
var keyNamespace = "A managed aes keys"
var keyName = "My 256-bit AES wrapping key"

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}
// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}
// Create Raw AES keyring
aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
 KeyName: keyName,
 KeyNamespace: keyNamespace,
 WrappingKey: aesWrappingKey,
 WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tag16,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
 aesKeyRingInput)
if err != nil {

Gantungan kunci AES mentah 186

AWS Encryption SDK Panduan Developerr

 panic(err)
}

Gantungan kunci RSA mentah
Raw RSA keyring melakukan enkripsi asimetris dan dekripsi kunci data dalam memori lokal dengan
kunci publik dan pribadi RSA yang Anda berikan. Anda perlu membuat, menyimpan, dan melindungi
kunci pribadi, sebaiknya dalam modul keamanan perangkat keras (HSM) atau sistem manajemen
kunci. Fungsi enkripsi mengenkripsi kunci data di bawah kunci publik RSA. Fungsi dekripsi
mendekripsi kunci data menggunakan kunci pribadi. Anda dapat memilih dari antara beberapa mode
padding RSA.

Raw RSA keyring yang mengenkripsi dan mendekripsi harus menyertakan kunci publik asimetris
dan private key pair. Namun, Anda dapat mengenkripsi data dengan keyring Raw RSA yang hanya
memiliki kunci publik, dan Anda dapat mendekripsi data dengan keyring Raw RSA yang hanya
memiliki kunci pribadi. Anda dapat menyertakan keyring Raw RSA apa pun dalam multi-keyring. Jika
Anda mengonfigurasi keyring Raw RSA dengan kunci publik dan pribadi, pastikan bahwa mereka
adalah bagian dari key pair yang sama. Beberapa implementasi bahasa tidak AWS Encryption
SDK akan membangun keyring Raw RSA dengan kunci dari pasangan yang berbeda. Orang lain
mengandalkan Anda untuk memverifikasi bahwa kunci Anda berasal dari key pair yang sama.

Raw RSA keyring setara dengan dan berinteraksi dengan in AWS Encryption SDK for Java dan
JceMasterKeyin AWS Encryption SDK for Python ketika mereka digunakan dengan kunci enkripsi
asimetris RSA. RawMasterKey Anda dapat mengenkripsi data dengan satu implementasi dan
mendekripsi data dengan implementasi lain menggunakan kunci pembungkus yang sama. Lihat
perinciannya di Kompatibilitas keyring.

Note

Raw RSA keyring tidak mendukung kunci KMS asimetris. Jika Anda ingin menggunakan
kunci KMS RSA asimetris, bahasa pemrograman berikut mendukung AWS KMS keyrings
yang menggunakan RSA asimetris: AWS KMS keys

• Versi 3. x dari AWS Encryption SDK for Java

• Versi 4. x dari AWS Encryption SDK untuk .NET

• Versi 4. x dari AWS Encryption SDK for Python, bila digunakan dengan dependensi
Perpustakaan Penyedia Materi Kriptografi (MPL) opsional.

Gantungan kunci RSA mentah 187

https://github.com/aws/aws-encryption-sdk-c/blob/master/include/aws/cryptosdk/cipher.h
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.key_providers.raw.html#aws_encryption_sdk.key_providers.raw.RawMasterKey
https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Panduan Developerr

• Versi 0.1. x atau yang lebih baru AWS Encryption SDK untuk Go

Jika Anda mengenkripsi data dengan keyring Raw RSA yang menyertakan kunci publik kunci
RSA KMS, baik maupun tidak dapat mendekripsi. AWS Encryption SDK AWS KMS Anda
tidak dapat mengekspor kunci pribadi kunci KMS AWS KMS asimetris ke dalam keyring
Raw RSA. Operasi AWS KMS Dekripsi tidak dapat mendekripsi pesan terenkripsi yang
dikembalikan. AWS Encryption SDK

Saat membuat keyring Raw RSA di AWS Encryption SDK for C, pastikan untuk memberikan konten
file PEM yang menyertakan setiap kunci sebagai C-string yang dihentikan nol, bukan sebagai jalur
atau nama file. Saat membuat keyring Raw RSA JavaScript, waspadai potensi ketidakcocokan
dengan implementasi bahasa lain.

Ruang nama dan nama

Untuk mengidentifikasi materi kunci RSA dalam keyring, keyring Raw RSA menggunakan namespace
kunci dan nama kunci yang Anda berikan. Nilai-nilai ini bukan rahasia. Mereka muncul dalam teks
biasa di header pesan terenkripsi yang dikembalikan oleh operasi enkripsi. Sebaiknya gunakan
namespace kunci dan nama kunci yang mengidentifikasi key pair RSA (atau kunci privatnya) di HSM
atau sistem manajemen kunci Anda.

Note

Namespace kunci dan nama kunci setara dengan kolom ID Penyedia (atau Penyedia) dan ID
Kunci di JceMasterKey dan. RawMasterKey
AWS Encryption SDK for C Cadangan nilai namespace aws-kms kunci untuk kunci KMS.
Jangan menggunakannya dalam keyring Raw AES atau Raw RSA keyring dengan. AWS
Encryption SDK for C

Jika Anda membuat keyring yang berbeda untuk mengenkripsi dan mendekripsi pesan yang
diberikan, namespace dan nilai nama sangat penting. Jika namespace kunci dan nama kunci dalam
keyring dekripsi bukan kecocokan yang tepat dan peka huruf besar/kecil untuk namespace kunci
dan nama kunci dalam keyring enkripsi, keyring dekripsi tidak digunakan, bahkan jika kunci tersebut
berasal dari key pair yang sama.

Gantungan kunci RSA mentah 188

AWS Encryption SDK Panduan Developerr

Namespace kunci dan nama kunci dari bahan kunci dalam enkripsi dan dekripsi keyrings harus
sama apakah keyring berisi kunci publik RSA, kunci pribadi RSA, atau kedua kunci dalam key
pair. Misalnya, Anda mengenkripsi data dengan keyring Raw RSA untuk kunci publik RSA dengan
namespace kunci dan nama HSM_01 kunci. RSA_2048_06 Untuk mendekripsi data tersebut, buat
keyring Raw RSA dengan kunci pribadi (atau key pair), dan namespace dan nama kunci yang sama.

Modus padding

Anda harus menentukan mode padding untuk keyring Raw RSA yang digunakan untuk enkripsi dan
dekripsi, atau menggunakan fitur implementasi bahasa Anda yang menentukannya untuk Anda.

AWS Encryption SDK Mendukung mode padding berikut, tunduk pada kendala masing-masing
bahasa. Kami merekomendasikan mode padding OAEP, terutama OAEP dengan SHA-256 dan
dengan SHA-256 Padding. MGF1 Mode PKCS1padding hanya didukung untuk kompatibilitas
mundur.

• OAEP dengan SHA-1 dan MGF1 dengan SHA-1 Padding

• OAEP dengan SHA-256 dan dengan SHA-256 Padding MGF1

• OAEP dengan SHA-384 dan dengan Padding SHA-384 MGF1

• OAEP dengan SHA-512 dan dengan Padding SHA-512 MGF1

• PKCS1 v1.5 Bantalan

Contoh berikut menunjukkan cara membuat keyring Raw RSA dengan kunci publik dan pribadi
dari key pair RSA dan OAEP dengan SHA-256 dan dengan mode padding SHA-256. MGF1
RSAPrivateKeyVariabel RSAPublicKey dan mewakili materi kunci yang Anda berikan.

C

Untuk membuat keyring Raw RSA di AWS Encryption SDK for C, gunakan.
aws_cryptosdk_raw_rsa_keyring_new

Saat membuat keyring Raw RSA di AWS Encryption SDK for C, pastikan untuk memberikan
konten file PEM yang menyertakan setiap kunci sebagai C-string yang dihentikan nol, bukan
sebagai jalur atau nama file. Untuk contoh lengkap, lihat raw_rsa_keyring.c.

struct aws_allocator *alloc = aws_default_allocator();

AWS_STATIC_STRING_FROM_LITERAL(key_namespace, "HSM_01");

Gantungan kunci RSA mentah 189

https://tools.ietf.org/html/rfc8017#section-7.1
https://tools.ietf.org/html/rfc8017#section-7.2
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_rsa_keyring.c

AWS Encryption SDK Panduan Developerr

AWS_STATIC_STRING_FROM_LITERAL(key_name, "RSA_2048_06");

struct aws_cryptosdk_keyring *rawRsaKeyring = aws_cryptosdk_raw_rsa_keyring_new(
 alloc,
 key_namespace,
 key_name,
 private_key_from_pem,
 public_key_from_pem,
 AWS_CRYPTOSDK_RSA_OAEP_SHA256_MGF1);

C# / .NET

Untuk membuat instance Raw RSA keyring di AWS Encryption SDK for .NET, gunakan metode
ini. materialProviders.CreateRawRsaKeyring() Untuk contoh lengkapnya, lihat Raw
RSAKeyring Example.cs.

Contoh berikut menggunakan versi 4. x dari AWS Encryption SDK untuk .NET.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

var keyNamespace = "HSM_01";
var keyName = "RSA_2048_06";

// Get public and private keys from PEM files
var publicKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));
var privateKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));

// Create the keyring input
var createRawRsaKeyringInput = new CreateRawRsaKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 PaddingScheme = PaddingScheme.OAEP_SHA512_MGF1,
 PublicKey = publicKey,
 PrivateKey = privateKey
};

// Create the keyring
var rawRsaKeyring = materialProviders.CreateRawRsaKeyring(createRawRsaKeyringInput);

Gantungan kunci RSA mentah 190

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawRSAKeyringExample.cs
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawRSAKeyringExample.cs

AWS Encryption SDK Panduan Developerr

JavaScript Browser

AWS Encryption SDK for JavaScript Di browser mendapatkan primitif kriptografinya dari
perpustakaan. WebCrypto Sebelum Anda membuat keyring, Anda harus menggunakan
importPublicKey() and/or importPrivateKey() untuk mengimpor bahan kunci mentah
ke backend. WebCrypto Ini memastikan bahwa keyring selesai meskipun semua panggilan ke
WebCrypto asinkron. Objek yang diambil metode impor mencakup algoritma pembungkus dan
mode padding-nya.

Setelah mengimpor materi kunci, gunakan RawRsaKeyringWebCrypto() metode untuk
membuat instance keyring. Saat membuat keyring Raw RSA JavaScript, waspadai potensi
ketidakcocokan dengan implementasi bahasa lain.

Contoh berikut menggunakan buildClient fungsi untuk menentukan kebijakan komitmen
default,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Anda juga dapat menggunakan buildClient
untuk membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Untuk informasi
selengkapnya, lihat the section called “Membatasi kunci data terenkripsi”.

Untuk contoh lengkap, lihat rsa_simple.ts (Browser). JavaScript

import {
 RsaImportableKey,
 RawRsaKeyringWebCrypto,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const privateKey = await RawRsaKeyringWebCrypto.importPrivateKey(
 privateRsaJwKKey
)

const publicKey = await RawRsaKeyringWebCrypto.importPublicKey(
 publicRsaJwKKey
)

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048_06'

Gantungan kunci RSA mentah 191

https://developer.mozilla.org/en-US/docs/Web/API/Web_Crypto_API
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/rsa_simple.ts

AWS Encryption SDK Panduan Developerr

const keyring = new RawRsaKeyringWebCrypto({
 keyName,
 keyNamespace,
 publicKey,
 privateKey,
})

JavaScript Node.js

Untuk membuat instance Raw RSA keyring AWS Encryption SDK for JavaScript untuk Node.js,
buat instance baru dari kelas. RawRsaKeyringNode wrapKeyParameter memegang kunci
publik. unwrapKeyParameter memegang kunci pribadi. RawRsaKeyringNodeKonstruktor
menghitung mode padding default untuk Anda, meskipun Anda dapat menentukan mode padding
yang disukai.

Saat membuat keyring RSA mentah JavaScript, waspadai potensi ketidakcocokan dengan
implementasi bahasa lain.

Contoh berikut menggunakan buildClient fungsi untuk menentukan kebijakan komitmen
default,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Anda juga dapat menggunakan buildClient
untuk membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Untuk informasi
selengkapnya, lihat the section called “Membatasi kunci data terenkripsi”.

Untuk contoh lengkap, lihat rsa_simple.ts (Node.js). JavaScript

import {
 RawRsaKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const keyNamespace = 'HSM_01'
const keyName = 'RSA_2048_06'

const keyring = new RawRsaKeyringNode({ keyName, keyNamespace, rsaPublicKey,
 rsaPrivateKey})

Gantungan kunci RSA mentah 192

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/rsa_simple.ts

AWS Encryption SDK Panduan Developerr

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder()
 .keyName("RSA_2048_06")
 .keyNamespace("HSM_01")
 .paddingScheme(PaddingScheme.OAEP_SHA256_MGF1)
 .publicKey(RSAPublicKey)
 .privateKey(RSAPrivateKey)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Python

Contoh berikut membuat instance AWS Encryption SDK klien dengan kebijakan
komitmen default,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT Untuk contoh lengkap, lihat
raw_rsa_keyring_example.py di AWS Encryption SDK for Python repositori di. GitHub

Define the key namespace and key name
key_name_space = "HSM_01"
key_name = "RSA_2048_06"

Instantiate the material providers
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Create Raw RSA keyring
keyring_input: CreateRawRsaKeyringInput = CreateRawRsaKeyringInput(
 key_namespace=key_name_space,
 key_name=key_name,
 padding_scheme=PaddingScheme.OAEP_SHA256_MGF1,
 public_key=RSAPublicKey,
 private_key=RSAPrivateKey
)

raw_rsa_keyring: IKeyring = mat_prov.create_raw_rsa_keyring(
 input=keyring_input
)

Gantungan kunci RSA mentah 193

https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/raw_rsa_keyring_example.py

AWS Encryption SDK Panduan Developerr

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create an encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Define the key namespace and key name
let key_namespace: &str = "HSM_01";
let key_name: &str = "RSA_2048_06";

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create Raw RSA keyring
let raw_rsa_keyring = mpl
 .create_raw_rsa_keyring()
 .key_name(key_name)
 .key_namespace(key_namespace)
 .padding_scheme(PaddingScheme::OaepSha256Mgf1)
 .public_key(aws_smithy_types::Blob::new(RSAPublicKey))
 .private_key(aws_smithy_types::Blob::new(RSAPrivateKey))
 .send()
 .await?;

Go

// Instantiate the material providers library
matProv, err :=
 awscryptographymaterialproviderssmithygenerated.NewClient(awscryptographymaterialproviderssmithygeneratedtypes.MaterialProvidersConfig{})

// Create Raw RSA keyring

Gantungan kunci RSA mentah 194

AWS Encryption SDK Panduan Developerr

rsaKeyRingInput :=
 awscryptographymaterialproviderssmithygeneratedtypes.CreateRawRsaKeyringInput{
 KeyName: "rsa",
 KeyNamespace: "rsa-keyring",
 PaddingScheme:
 awscryptographymaterialproviderssmithygeneratedtypes.PaddingSchemePkcs1,
 PublicKey: pem.EncodeToMemory(publicKeyBlock),
 PrivateKey: pem.EncodeToMemory(privateKeyBlock),
}

rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
 rsaKeyRingInput)

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

Gantungan kunci RSA mentah 195

AWS Encryption SDK Panduan Developerr

// Define the key namespace and key name
var keyNamespace = "HSM_01"
var keyName = "RSA_2048_06"

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create Raw RSA keyring
rsaKeyRingInput := mpltypes.CreateRawRsaKeyringInput{
 KeyName: keyName,
 KeyNamespace: keyNamespace,
 PaddingScheme: mpltypes.PaddingSchemeOaepSha512Mgf1,
 PublicKey: (RSAPublicKey),
 PrivateKey: (RSAPrivateKey),
}
rsaKeyring, err := matProv.CreateRawRsaKeyring(context.Background(),
 rsaKeyRingInput)
if err != nil {
 panic(err)
}

Gantungan kunci ECDH mentah

Raw ECDH keyring menggunakan kurva elips pasangan kunci publik-pribadi yang Anda berikan
untuk mendapatkan kunci pembungkus bersama antara dua pihak. Pertama, keyring memperoleh
rahasia bersama menggunakan kunci pribadi pengirim, kunci publik penerima, dan algoritma
perjanjian kunci Elliptic Curve Diffie-Hellman (ECDH). Kemudian, keyring menggunakan rahasia
bersama untuk mendapatkan kunci pembungkus bersama yang melindungi kunci enkripsi data
Anda. Fungsi derivasi kunci yang AWS Encryption SDK digunakan (KDF_CTR_HMAC_SHA384) untuk
menurunkan kunci pembungkus bersama sesuai dengan rekomendasi NIST untuk derivasi kunci.

Fungsi derivasi kunci mengembalikan 64 byte bahan kunci. Untuk memastikan bahwa kedua belah
pihak menggunakan materi kunci yang benar, AWS Encryption SDK menggunakan 32 byte pertama
sebagai kunci komitmen dan 32 byte terakhir sebagai kunci pembungkus bersama. Saat mendekripsi,
jika keyring tidak dapat mereproduksi kunci komitmen yang sama dan kunci pembungkus bersama
yang disimpan di ciphertext header pesan, operasi gagal. Misalnya, jika Anda mengenkripsi data

Gantungan kunci ECDH mentah 196

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS Encryption SDK Panduan Developerr

dengan keyring yang dikonfigurasi dengan kunci pribadi Alice dan kunci publik Bob, keyring yang
dikonfigurasi dengan kunci pribadi Bob dan kunci publik Alice akan mereproduksi kunci komitmen
yang sama dan kunci pembungkus bersama dan dapat mendekripsi data. Jika kunci publik Bob
berasal dari AWS KMS key pasangan, maka Bob dapat membuat keyring AWS KMS ECDH untuk
mendekripsi data.

Raw ECDH keyring mengenkripsi data dengan kunci simetris menggunakan AES-GCM. Kunci
data kemudian dienkripsi dengan kunci pembungkus bersama turunan menggunakan AES-GCM.
Setiap keyring ECDH mentah hanya dapat memiliki satu kunci pembungkus bersama, tetapi Anda
dapat menyertakan beberapa gantungan kunci ECDH mentah, sendiri atau dengan gantungan kunci
lainnya, dalam multi-keyring.

Anda bertanggung jawab untuk membuat, menyimpan, dan melindungi kunci pribadi Anda,
sebaiknya dalam modul keamanan perangkat keras (HSM) atau sistem manajemen kunci. Pasangan
kunci pengirim dan penerima banyak berada pada kurva elips yang sama. AWS Encryption SDK
Mendukung spesifikasi kurva elips berikut:

• ECC_NIST_P256

• ECC_NIST_P384

• ECC_NIST_P512

Kompatibilitas bahasa pemrograman

Raw ECDH keyring diperkenalkan dalam versi 1.5.0 dari Cryptographic Material Providers Library
(MPL) dan didukung oleh bahasa dan versi pemrograman berikut:

• Versi 3. x dari AWS Encryption SDK for Java

• Versi 4. x dari AWS Encryption SDK untuk .NET

• Versi 4. x dari AWS Encryption SDK for Python, bila digunakan dengan dependensi MPL opsional.

• Versi 1. x dari AWS Encryption SDK untuk Rust

• Versi 0.1. x atau yang lebih baru AWS Encryption SDK untuk Go

Membuat keyring ECDH mentah

Raw ECDH keyring mendukung tiga skema perjanjian
utama:RawPrivateKeyToStaticPublicKey,, dan.
EphemeralPrivateKeyToStaticPublicKey PublicKeyDiscovery Skema perjanjian utama

Membuat keyring ECDH mentah 197

https://github.com/aws/aws-cryptographic-material-providers-library

AWS Encryption SDK Panduan Developerr

yang Anda pilih menentukan operasi kriptografi mana yang dapat Anda lakukan dan bagaimana
bahan kunci dirakit.

Topik

• RawPrivateKeyToStaticPublicKey

• EphemeralPrivateKeyToStaticPublicKey

• PublicKeyDiscovery

RawPrivateKeyToStaticPublicKey

Gunakan skema perjanjian RawPrivateKeyToStaticPublicKey kunci untuk mengonfigurasi
kunci pribadi pengirim dan kunci publik penerima secara statis di keyring. Skema perjanjian kunci ini
dapat mengenkripsi dan mendekripsi data.

Untuk menginisialisasi keyring ECDH mentah dengan skema perjanjian
RawPrivateKeyToStaticPublicKey kunci, berikan nilai-nilai berikut:

• Kunci pribadi pengirim

Anda harus memberikan kunci pribadi yang dikodekan PEM pengirim (PrivateKeyInfo struktur
PKCS #8), seperti yang didefinisikan dalam RFC 5958.

• Kunci publik penerima

Anda harus memberikan kunci publik X.509 yang dikodekan DER penerima, juga dikenal sebagai
SubjectPublicKeyInfo (SPKI), sebagaimana didefinisikan dalam RFC 5280.

Anda dapat menentukan kunci publik dari perjanjian kunci asimetris KMS key pair atau kunci publik
dari key pair yang dihasilkan di luar. AWS

• Spesifikasi kurva

Mengidentifikasi spesifikasi kurva elips dalam pasangan kunci yang ditentukan. Pasangan kunci
pengirim dan penerima harus memiliki spesifikasi kurva yang sama.

Nilai valid: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

// Instantiate material providers

Membuat keyring ECDH mentah 198

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK Panduan Developerr

var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var BobPrivateKey = new MemoryStream(new byte[] { });
 var AlicePublicKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH static keyring
 var staticConfiguration = new RawEcdhStaticConfigurations()
 {
 RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput
 {
 SenderStaticPrivateKey = BobPrivateKey,
 RecipientPublicKey = AlicePublicKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = staticConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

Contoh Java berikut menggunakan skema perjanjian RawPrivateKeyToStaticPublicKey
kunci untuk secara statis mengkonfigurasi kunci pribadi pengirim dan kunci publik penerima.
Kedua pasangan kunci berada di ECC_NIST_P256 kurva.

private static void StaticRawKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair senderKeys = GetRawEccKey();
 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH static keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(

Membuat keyring ECDH mentah 199

AWS Encryption SDK Panduan Developerr

 RawEcdhStaticConfigurations.builder()
 .RawPrivateKeyToStaticPublicKey(
 RawPrivateKeyToStaticPublicKeyInput.builder()
 // Must be a PEM-encoded private key

 .senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded()))
 // Must be a DER-encoded X.509 public key

 .recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded()))
 .build()
)
 .build()
).build();

 final IKeyring staticKeyring =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Python

Contoh Python berikut menggunakan skema perjanjian
RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey kunci untuk secara
statis mengkonfigurasi kunci pribadi pengirim dan kunci publik penerima. Kedua pasangan kunci
berada di ECC_NIST_P256 kurva.

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
 CreateRawEcdhKeyringInput,
 RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey,
 RawPrivateKeyToStaticPublicKeyInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
 import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Must be a PEM-encoded private key
bob_private_key = get_private_key_bytes()
Must be a DER-encoded X.509 public key
alice_public_key = get_public_key_bytes()

Membuat keyring ECDH mentah 200

AWS Encryption SDK Panduan Developerr

Create the raw ECDH static keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
 curve_spec = ECDHCurveSpec.ECC_NIST_P256,
 key_agreement_scheme =
 RawEcdhStaticConfigurationsRawPrivateKeyToStaticPublicKey(
 RawPrivateKeyToStaticPublicKeyInput(
 sender_static_private_key = bob_private_key,
 recipient_public_key = alice_public_key,
)
)
)

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)

Rust

Contoh Python berikut menggunakan skema perjanjian raw_ecdh_static_configuration
kunci untuk secara statis mengkonfigurasi kunci pribadi pengirim dan kunci publik penerima.
Kedua pasangan kunci harus berada pada kurva yang sama.

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Create keyring input
let raw_ecdh_static_configuration_input =
 RawPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .sender_static_private_key(private_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

Membuat keyring ECDH mentah 201

AWS Encryption SDK Panduan Developerr

let raw_ecdh_static_configuration =
 RawEcdhStaticConfigurations::RawPrivateKeyToStaticPublicKey(raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH static keyring
let raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(raw_ecdh_static_configuration)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Optional: Create your encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",

Membuat keyring ECDH mentah 202

AWS Encryption SDK Panduan Developerr

 "the data you are handling": "is what you think it is",
}

// Create keyring input
rawEcdhStaticConfigurationInput := mpltypes.RawPrivateKeyToStaticPublicKeyInput{
 SenderStaticPrivateKey: privateKeySender,
 RecipientPublicKey: publicKeyRecipient,
}
rawECDHStaticConfiguration :=
 &mpltypes.RawEcdhStaticConfigurationsMemberRawPrivateKeyToStaticPublicKey{
 Value: rawEcdhStaticConfigurationInput,
}
rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
 CurveSpec: ecdhCurveSpec,
 KeyAgreementScheme: rawECDHStaticConfiguration,
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create raw ECDH static keyring
rawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
 rawEcdhKeyRingInput)
if err != nil {
 panic(err)
}

EphemeralPrivateKeyToStaticPublicKey

Keyrings yang dikonfigurasi dengan skema perjanjian
EphemeralPrivateKeyToStaticPublicKey kunci membuat key pair baru secara lokal dan
mendapatkan kunci pembungkus bersama yang unik untuk setiap panggilan enkripsi.

Skema perjanjian kunci ini hanya dapat mengenkripsi pesan. Untuk mendekripsi pesan yang
dienkripsi dengan skema perjanjian EphemeralPrivateKeyToStaticPublicKey kunci, Anda
harus menggunakan skema perjanjian kunci penemuan yang dikonfigurasi dengan kunci publik
penerima yang sama. Untuk mendekripsi, Anda dapat menggunakan keyring ECDH mentah dengan
algoritma perjanjian PublicKeyDiscoverykunci, atau, jika kunci publik penerima berasal dari key

Membuat keyring ECDH mentah 203

AWS Encryption SDK Panduan Developerr

pair KMS perjanjian kunci asimetris, Anda dapat menggunakan keyring AWS KMS ECDH dengan
skema perjanjian kunci. KmsPublicKeyDiscovery

Untuk menginisialisasi keyring ECDH mentah dengan skema perjanjian
EphemeralPrivateKeyToStaticPublicKey kunci, berikan nilai-nilai berikut:

• Kunci publik penerima

Anda harus memberikan kunci publik X.509 yang dikodekan DER penerima, juga dikenal sebagai
SubjectPublicKeyInfo (SPKI), sebagaimana didefinisikan dalam RFC 5280.

Anda dapat menentukan kunci publik dari perjanjian kunci asimetris KMS key pair atau kunci publik
dari key pair yang dihasilkan di luar. AWS

• Spesifikasi kurva

Mengidentifikasi spesifikasi kurva elips dalam kunci publik yang ditentukan.

Pada enkripsi, keyring membuat key pair baru pada kurva yang ditentukan dan menggunakan
kunci pribadi baru dan kunci publik tertentu untuk mendapatkan kunci pembungkus bersama.

Nilai valid: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

Contoh berikut membuat keyring ECDH mentah dengan skema perjanjian
EphemeralPrivateKeyToStaticPublicKey kunci. Pada enkripsi, keyring akan membuat key
pair baru secara lokal pada kurva yang ditentukan. ECC_NIST_P256

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePublicKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH ephemeral keyring
 var ephemeralConfiguration = new RawEcdhStaticConfigurations()
 {
 EphemeralPrivateKeyToStaticPublicKey = new
 EphemeralPrivateKeyToStaticPublicKeyInput
 {
 RecipientPublicKey = AlicePublicKey
 }
 };

Membuat keyring ECDH mentah 204

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS Encryption SDK Panduan Developerr

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = ephemeralConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

Contoh berikut membuat keyring ECDH mentah dengan skema perjanjian
EphemeralPrivateKeyToStaticPublicKey kunci. Pada enkripsi, keyring akan membuat key
pair baru secara lokal pada kurva yang ditentukan. ECC_NIST_P256

private static void EphemeralRawEcdhKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 ByteBuffer recipientPublicKey = getPublicKeyBytes();

 // Create the Raw ECDH ephemeral keyring
 final CreateRawEcdhKeyringInput ephemeralInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .EphemeralPrivateKeyToStaticPublicKey(
 EphemeralPrivateKeyToStaticPublicKeyInput.builder()
 .recipientPublicKey(recipientPublicKey)
 .build()
)
 .build()
).build();

 final IKeyring ephemeralKeyring =
 materialProviders.CreateRawEcdhKeyring(ephemeralInput);
}

Membuat keyring ECDH mentah 205

AWS Encryption SDK Panduan Developerr

Python

Contoh berikut membuat keyring ECDH mentah dengan skema perjanjian
RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey kunci.
Pada enkripsi, keyring akan membuat key pair baru secara lokal pada kurva yang ditentukan.
ECC_NIST_P256

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
 CreateRawEcdhKeyringInput,
 RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey,
 EphemeralPrivateKeyToStaticPublicKeyInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
 import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Your get_public_key_bytes must return a DER-encoded X.509 public key
recipient_public_key = get_public_key_bytes()

Create the raw ECDH ephemeral private key keyring
ephemeral_input = CreateRawEcdhKeyringInput(
 curve_spec = ECDHCurveSpec.ECC_NIST_P256,
 key_agreement_scheme =
 RawEcdhStaticConfigurationsEphemeralPrivateKeyToStaticPublicKey(
 EphemeralPrivateKeyToStaticPublicKeyInput(
 recipient_public_key = recipient_public_key,
)
)
)

keyring = mat_prov.create_raw_ecdh_keyring(ephemeral_input)

Rust

Contoh berikut membuat keyring ECDH mentah dengan skema perjanjian
ephemeral_raw_ecdh_static_configuration kunci. Pada enkripsi, keyring akan membuat
key pair baru secara lokal pada kurva yang ditentukan.

Membuat keyring ECDH mentah 206

AWS Encryption SDK Panduan Developerr

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Optional: Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Load public key from UTF-8 encoded PEM files into a DER encoded public key.
let public_key_file_content =
 std::fs::read_to_string(Path::new(EXAMPLE_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content = parse(public_key_file_content)?;
let public_key_recipient_utf8_bytes = parsed_public_key_file_content.contents();

// Create EphemeralPrivateKeyToStaticPublicKeyInput
let ephemeral_raw_ecdh_static_configuration_input =
 EphemeralPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let ephemeral_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::EphemeralPrivateKeyToStaticPublicKey(ephemeral_raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH ephemeral private key keyring
let ephemeral_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(ephemeral_raw_ecdh_static_configuration)
 .send()
 .await?;

Membuat keyring ECDH mentah 207

AWS Encryption SDK Panduan Developerr

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Optional: Create your encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Load public key from UTF-8 encoded PEM files into a DER encoded public key
publicKeyRecipient, err := LoadPublicKeyFromPEM(eccPublicKeyFileNameRecipient)
if err != nil {
 panic(err)
}

// Create EphemeralPrivateKeyToStaticPublicKeyInput
ephemeralRawEcdhStaticConfigurationInput :=
 mpltypes.EphemeralPrivateKeyToStaticPublicKeyInput{
 RecipientPublicKey: publicKeyRecipient,
}
ephemeralRawECDHStaticConfiguration :=
 mpltypes.RawEcdhStaticConfigurationsMemberEphemeralPrivateKeyToStaticPublicKey{
 Value: ephemeralRawEcdhStaticConfigurationInput,

Membuat keyring ECDH mentah 208

AWS Encryption SDK Panduan Developerr

 }

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create raw ECDH ephemeral private key keyring
rawEcdhKeyRingInput := mpltypes.CreateRawEcdhKeyringInput{
 CurveSpec: ecdhCurveSpec,
 KeyAgreementScheme: &ephemeralRawECDHStaticConfiguration,
}
ecdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
 rawEcdhKeyRingInput)
if err != nil {
 panic(err)
}

PublicKeyDiscovery

Saat mendekripsi, ini adalah praktik terbaik untuk menentukan kunci pembungkus yang dapat
digunakan. AWS Encryption SDK Untuk mengikuti praktik terbaik ini, gunakan keyring ECDH yang
menentukan kunci pribadi pengirim dan kunci publik penerima. Namun, Anda juga dapat membuat
keyring penemuan ECDH mentah, yaitu keyring ECDH mentah yang dapat mendekripsi pesan apa
pun di mana kunci publik kunci yang ditentukan cocok dengan kunci publik penerima yang disimpan
pada ciphertext pesan. Skema perjanjian kunci ini hanya dapat mendekripsi pesan.

Important

Ketika Anda mendekripsi pesan menggunakan skema perjanjian PublicKeyDiscovery
kunci, Anda menerima semua kunci publik, terlepas dari siapa yang memilikinya.

Untuk menginisialisasi keyring ECDH mentah dengan skema perjanjian PublicKeyDiscovery
kunci, berikan nilai-nilai berikut:

• Kunci pribadi statis penerima

Membuat keyring ECDH mentah 209

AWS Encryption SDK Panduan Developerr

Anda harus memberikan kunci pribadi yang disandikan PEM penerima (PrivateKeyInfo struktur
PKCS #8), seperti yang didefinisikan dalam RFC 5958.

• Spesifikasi kurva

Mengidentifikasi spesifikasi kurva elips dalam kunci pribadi yang ditentukan. Pasangan kunci
pengirim dan penerima harus memiliki spesifikasi kurva yang sama.

Nilai valid: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

Contoh berikut membuat keyring ECDH mentah dengan skema perjanjian
PublicKeyDiscovery kunci. Keyring ini dapat mendekripsi pesan apa pun di mana kunci publik
dari kunci pribadi yang ditentukan cocok dengan kunci publik penerima yang disimpan pada
ciphertext pesan.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePrivateKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH discovery keyring
 var discoveryConfiguration = new RawEcdhStaticConfigurations()
 {
 PublicKeyDiscovery = new PublicKeyDiscoveryInput
 {
 RecipientStaticPrivateKey = AlicePrivateKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = discoveryConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Membuat keyring ECDH mentah 210

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2

AWS Encryption SDK Panduan Developerr

Java

Contoh berikut membuat keyring ECDH mentah dengan skema perjanjian
PublicKeyDiscovery kunci. Keyring ini dapat mendekripsi pesan apa pun di mana kunci publik
dari kunci pribadi yang ditentukan cocok dengan kunci publik penerima yang disimpan pada
ciphertext pesan.

private static void RawEcdhDiscovery() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH discovery keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .PublicKeyDiscovery(
 PublicKeyDiscoveryInput.builder()
 // Must be a PEM-encoded private key

 .recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded()))
 .build()
)
 .build()
).build();

 final IKeyring publicKeyDiscovery =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Python

Contoh berikut membuat keyring ECDH mentah dengan skema perjanjian
RawEcdhStaticConfigurationsPublicKeyDiscovery kunci. Keyring ini dapat mendekripsi
pesan apa pun di mana kunci publik dari kunci pribadi yang ditentukan cocok dengan kunci publik
penerima yang disimpan pada ciphertext pesan.

Membuat keyring ECDH mentah 211

AWS Encryption SDK Panduan Developerr

import boto3
from aws_cryptographic_materialproviders.mpl.models import (
 CreateRawEcdhKeyringInput,
 RawEcdhStaticConfigurationsPublicKeyDiscovery,
 PublicKeyDiscoveryInput,
)
from aws_cryptography_primitives.smithygenerated.aws_cryptography_primitives.models
 import ECDHCurveSpec

Instantiate the material providers library
mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

Your get_private_key_bytes must return a PEM-encoded private key
recipient_private_key = get_private_key_bytes()

Create the raw ECDH discovery keyring
raw_keyring_input = CreateRawEcdhKeyringInput(
 curve_spec = ECDHCurveSpec.ECC_NIST_P256,
 key_agreement_scheme = RawEcdhStaticConfigurationsPublicKeyDiscovery(
 PublicKeyDiscoveryInput(
 recipient_static_private_key = recipient_private_key,
)
)
)

keyring = mat_prov.create_raw_ecdh_keyring(raw_keyring_input)

Rust

Contoh berikut membuat keyring ECDH mentah dengan skema perjanjian
discovery_raw_ecdh_static_configuration kunci. Keyring ini dapat mendekripsi pesan
apa pun di mana kunci publik dari kunci pribadi yang ditentukan cocok dengan kunci publik
penerima yang disimpan pada ciphertext pesan.

// Instantiate the AWS Encryption SDK client and material providers library
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

Membuat keyring ECDH mentah 212

AWS Encryption SDK Panduan Developerr

// Optional: Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Load keys from UTF-8 encoded PEM files.
let mut file = File::open(Path::new(EXAMPLE_ECC_PRIVATE_KEY_FILENAME_RECIPIENT))?;
let mut private_key_recipient_utf8_bytes = Vec::new();
file.read_to_end(&mut private_key_recipient_utf8_bytes)?;

// Create PublicKeyDiscoveryInput
let discovery_raw_ecdh_static_configuration_input =
 PublicKeyDiscoveryInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .recipient_static_private_key(private_key_recipient_utf8_bytes)
 .build()?;

let discovery_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::PublicKeyDiscovery(discovery_raw_ecdh_static_configuration_input);

// Create raw ECDH discovery private key keyring
let discovery_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(discovery_raw_ecdh_static_configuration)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

Membuat keyring ECDH mentah 213

AWS Encryption SDK Panduan Developerr

 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Optional: Create your encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Load keys from UTF-8 encoded PEM files.
privateKeyRecipient, err := os.ReadFile(eccPrivateKeyFileNameRecipient)
if err != nil {
 panic(err)
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create PublicKeyDiscoveryInput
discoveryRawEcdhStaticConfigurationInput := mpltypes.PublicKeyDiscoveryInput{
 RecipientStaticPrivateKey: privateKeyRecipient,
}

discoveryRawEcdhStaticConfiguration :=
 &mpltypes.RawEcdhStaticConfigurationsMemberPublicKeyDiscovery{
 Value: discoveryRawEcdhStaticConfigurationInput,
}

Membuat keyring ECDH mentah 214

AWS Encryption SDK Panduan Developerr

// Create raw ECDH discovery private key keyring
discoveryRawEcdhKeyringInput := mpltypes.CreateRawEcdhKeyringInput{
 CurveSpec: ecdhCurveSpec,
 KeyAgreementScheme: discoveryRawEcdhStaticConfiguration,
}

discoveryRawEcdhKeyring, err := matProv.CreateRawEcdhKeyring(context.Background(),
 discoveryRawEcdhKeyringInput)
if err != nil {
 panic(err)
}

Multi-kunci

Anda dapat menggabungkan keyrings menjadi multi-keyring. Multi-keyring adalah keyring yang terdiri
dari satu atau lebih gantungan kunci individu dari jenis yang sama atau berbeda. Efeknya seperti
menggunakan beberapa gantungan kunci dalam satu seri. Bila Anda menggunakan multi-keyring
untuk mengenkripsi data, salah satu kunci pembungkus di salah satu keyrings nya dapat mendekripsi
data tersebut.

Saat Anda membuat multi-keyring untuk mengenkripsi data, Anda menunjuk salah satu keyring
sebagai keyring generator. Semua gantungan kunci lainnya dikenal sebagai gantungan kunci anak.
Generator keyring menghasilkan dan mengenkripsi kunci data plaintext. Kemudian, semua kunci
pembungkus di semua keyring anak mengenkripsi kunci data teks biasa yang sama. Multi-keyring
mengembalikan kunci plaintext dan satu kunci data terenkripsi untuk setiap kunci pembungkus di
multi-keyring. Jika keyring generator adalah keyring KMS, kunci generator di AWS KMS keyring
menghasilkan dan mengenkripsi kunci plaintext. Kemudian, semua tambahan AWS KMS keys
di AWS KMS keyring, dan semua kunci pembungkus di semua keyring anak di multi-keyring,
mengenkripsi kunci plaintext yang sama.

Jika Anda membuat multi-keyring tanpa keyring generator, Anda dapat menggunakannya sendiri
untuk mendekripsi data, tetapi tidak untuk mengenkripsi. Atau, untuk menggunakan multi-keyring
tanpa keyring genertor dalam operasi enkripsi, Anda dapat menentukannya sebagai keyring anak
di multi-keyring lain. Multi-keyring tanpa keyring generator tidak dapat ditetapkan sebagai keyring
generator di multi-keyring lain.

Multi-kunci 215

AWS Encryption SDK Panduan Developerr

Saat mendekripsi, AWS Encryption SDK menggunakan keyrings untuk mencoba mendekripsi salah
satu kunci data terenkripsi. Gantungan kunci dipanggil dalam urutan yang ditentukan dalam multi-
keyring. Pemrosesan berhenti segera setelah kunci apa pun di keyring apa pun dapat mendekripsi
kunci data terenkripsi.

Dimulai pada versi 1.7. x, ketika kunci data terenkripsi dienkripsi di bawah keyring AWS Key
Management Service (AWS KMS) (atau penyedia kunci master), selalu AWS Encryption SDK
meneruskan ARN kunci AWS KMS key ke parameter operasi Dekripsi. KeyIdAWS KMS Ini adalah
praktik AWS KMS terbaik yang memastikan bahwa Anda mendekripsi kunci data terenkripsi dengan
kunci pembungkus yang ingin Anda gunakan.

Untuk melihat contoh kerja multi-keyring, lihat:

• C: multi_keyring.cpp

• C#/.NET: .cs MultiKeyringExample

• JavaScript Node.js: multi_keyring.ts

• JavaScript Browser: multi_keyring.ts

• Jawa: MultiKeyringExample.java

• Python: multi_keyring_example.py

Untuk membuat multi-keyring, pertama-tama buat instance keyrings anak. Dalam contoh ini, kami
menggunakan AWS KMS keyring dan keyring Raw AES, tetapi Anda dapat menggabungkan keyrings
yang didukung dalam multi-keyring.

C

/* Define an AWS KMS keyring. For details, see string.cpp */
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(example_key);

// Define a Raw AES keyring. For details, see raw_aes_keyring.c */
struct aws_cryptosdk_keyring *aes_keyring = aws_cryptosdk_raw_aes_keyring_new(
 alloc, wrapping_key_namespace, wrapping_key_name, wrapping_key,
 AWS_CRYPTOSDK_AES256);

C# / .NET

// Define an AWS KMS keyring. For details, see AwsKmsKeyringExample.cs.
var kmsKeyring = materialProviders.CreateAwsKmsKeyring(createKmsKeyringInput);

Multi-kunci 216

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/multi_keyring.cpp
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/MultiKeyringExample.cs
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/multi_keyring.ts
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/keyrings/MultiKeyringExample.java
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/multi_keyring_example.py
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/raw_aes_keyring.c
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/AwsKmsKeyringExample.cs

AWS Encryption SDK Panduan Developerr

// Define a Raw AES keyring. For details, see RawAESKeyringExample.cs.
var aesKeyring = materialProviders.CreateRawAesKeyring(createAesKeyringInput);

JavaScript Browser

Contoh berikut menggunakan buildClient fungsi untuk menentukan kebijakan komitmen
default,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Anda juga dapat menggunakan buildClient
untuk membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Untuk informasi
selengkapnya, lihat the section called “Membatasi kunci data terenkripsi”.

import {
 KmsKeyringBrowser,
 KMS,
 getClient,
 RawAesKeyringWebCrypto,
 RawAesWrappingSuiteIdentifier,
 MultiKeyringWebCrypto,
 buildClient,
 CommitmentPolicy,
 synchronousRandomValues,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

const clientProvider = getClient(KMS, { credentials })

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringBrowser({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see aes_simple.ts.
const aesKeyring = new RawAesKeyringWebCrypto({ keyName, keyNamespace,
 wrappingSuite, masterKey })

JavaScript Node.js

Contoh berikut menggunakan buildClient fungsi untuk menentukan kebijakan komitmen
default,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Anda juga dapat menggunakan buildClient
untuk membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Untuk informasi
selengkapnya, lihat the section called “Membatasi kunci data terenkripsi”.

Multi-kunci 217

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/Keyring/RawAESKeyringExample.cs
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/aes_simple.ts

AWS Encryption SDK Panduan Developerr

import {
 MultiKeyringNode,
 KmsKeyringNode,
 RawAesKeyringNode,
 RawAesWrappingSuiteIdentifier,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

// Define an AWS KMS keyring. For details, see kms_simple.ts.
const kmsKeyring = new KmsKeyringNode({ generatorKeyId: exampleKey })

// Define a Raw AES keyring. For details, see raw_aes_keyring_node.ts.
const aesKeyring = new RawAesKeyringNode({ keyName, keyNamespace, wrappingSuite,
 unencryptedMasterKey })

Java

// Define the raw AES keyring.
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateRawAesKeyringInput createRawAesKeyringInput =
 CreateRawAesKeyringInput.builder()
 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// Define the AWS KMS keyring.
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyArn)
 .build();
IKeyring awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Multi-kunci 218

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/raw-aes-keyring-node/src/raw_aes_keyring_node.ts

AWS Encryption SDK Panduan Developerr

Python

Contoh berikut membuat instance AWS Encryption SDK klien dengan kebijakan komitmen
default,. REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Create the AWS KMS keyring
kms_client = boto3.client('kms', region_name="us-west-2")

mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

kms_keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
 generator=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab,
 kms_client=kms_client
)

kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
 input=kms_keyring_input
)

Create Raw AES keyring
key_name_space = "HSM_01"
key_name = "AES_256_012"

raw_aes_keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
 key_namespace=key_name_space,
 key_name=key_name,
 wrapping_key=AESWrappingKey,
 wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
)

raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
 input=raw_aes_keyring_input
)

Rust

// Instantiate the AWS Encryption SDK client
let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

Multi-kunci 219

AWS Encryption SDK Panduan Developerr

// Create the AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
 .create_aws_kms_keyring()
 .kms_key_id(kms_key_id)
 .kms_client(kms_client)
 .send()
 .await?;

// Create a Raw AES keyring
let key_namespace: &str = "my-key-namespace";
let key_name: &str = "my-aes-key-name";

let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name(key_name)
 .key_namespace(key_namespace)
 .wrapping_key(aws_smithy_types::Blob::new(AESWrappingKey))
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"
 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"

Multi-kunci 220

AWS Encryption SDK Panduan Developerr

 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
encryptionClient, err := client.NewClient(esdktypes.AwsEncryptionSdkConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

// Create an AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
 KmsClient: kmsClient,
 KmsKeyId: kmsKeyId,
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
 awsKmsKeyringInput)
if err != nil {
 panic(err)
}

// Create a Raw AES keyring
var keyNamespace = "my-key-namespace"
var keyName = "my-aes-key-name"

aesKeyRingInput := mpltypes.CreateRawAesKeyringInput{
 KeyName: keyName,
 KeyNamespace: keyNamespace,
 WrappingKey: AESWrappingKey,

Multi-kunci 221

AWS Encryption SDK Panduan Developerr

 WrappingAlg: mpltypes.AesWrappingAlgAlgAes256GcmIv12Tag16,
}
aesKeyring, err := matProv.CreateRawAesKeyring(context.Background(),
 aesKeyRingInput)

Selanjutnya, buat multi-keyring dan tentukan keyring generatornya, jika ada. Dalam contoh ini, kami
membuat multi-keyring di mana keyring adalah AWS KMS keyring generator dan keyring AES adalah
keyring anak.

C

Dalam konstruktor multi-keyring di C, Anda hanya menentukan keyring generatornya.

struct aws_cryptosdk_keyring *multi_keyring = aws_cryptosdk_multi_keyring_new(alloc,
 kms_keyring);

Untuk menambahkan keyring anak ke multi-keyring Anda, gunakan metode ini.
aws_cryptosdk_multi_keyring_add_child Anda perlu memanggil metode satu kali untuk
setiap keyring anak yang Anda tambahkan.

// Add the Raw AES keyring (C only)
aws_cryptosdk_multi_keyring_add_child(multi_keyring, aes_keyring);

C# / .NET

CreateMultiKeyringInputKonstruktor.NET memungkinkan Anda menentukan keyring
generator dan keyrings anak. CreateMultiKeyringInputObjek yang dihasilkan tidak dapat
diubah.

var createMultiKeyringInput = new CreateMultiKeyringInput
{
 Generator = kmsKeyring,
 ChildKeyrings = new List<IKeyring>() {aesKeyring}
};

var multiKeyring = materialProviders.CreateMultiKeyring(createMultiKeyringInput);

Multi-kunci 222

AWS Encryption SDK Panduan Developerr

JavaScript Browser

JavaScript multi-keyrings tidak dapat diubah. Konstruktor JavaScript multi-keyring memungkinkan
Anda menentukan keyring generator dan beberapa keyring anak.

const clientProvider = getClient(KMS, { credentials })

const multiKeyring = new MultiKeyringWebCrypto(generator: kmsKeyring, children:
 [aesKeyring]);

JavaScript Node.js

JavaScript multi-keyrings tidak dapat diubah. Konstruktor JavaScript multi-keyring memungkinkan
Anda menentukan keyring generator dan beberapa keyring anak.

const multiKeyring = new MultiKeyringNode(generator: kmsKeyring, children:
 [aesKeyring]);

Java

CreateMultiKeyringInputKonstruktor Java memungkinkan Anda menentukan keyring
generator dan keyrings anak. createMultiKeyringInputObjek yang dihasilkan tidak dapat
diubah.

final CreateMultiKeyringInput createMultiKeyringInput =
 CreateMultiKeyringInput.builder()
 .generator(awsKmsMrkMultiKeyring)
 .childKeyrings(Collections.singletonList(rawAesKeyring))
 .build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Python

multi_keyring_input: CreateMultiKeyringInput = CreateMultiKeyringInput(
 generator=kms_keyring,
 child_keyrings=[raw_aes_keyring]
)

multi_keyring: IKeyring = mat_prov.create_multi_keyring(
 input=multi_keyring_input
)

Multi-kunci 223

AWS Encryption SDK Panduan Developerr

Rust

let multi_keyring = mpl
 .create_multi_keyring()
 .generator(kms_keyring.clone())
 .child_keyrings(vec![raw_aes_keyring.clone()])
 .send()
 .await?;

Go

createMultiKeyringInput := mpltypes.CreateMultiKeyringInput{
 Generator: awsKmsKeyring,
 ChildKeyrings: []mpltypes.IKeyring{rawAESKeyring},
 }
 multiKeyring, err := matProv.CreateMultiKeyring(context.Background(),
 createMultiKeyringInput)
 if err != nil {
 panic(err)
 }

Sekarang, Anda dapat menggunakan multi-keyring untuk mengenkripsi dan mendekripsi data.

Multi-kunci 224

AWS Encryption SDK Panduan Developerr

AWS Encryption SDK bahasa pemrograman
AWS Encryption SDK Ini tersedia untuk bahasa pemrograman berikut. Semua implementasi bahasa
dapat dioperasikan secara interoperable. Anda dapat mengenkripsi dengan satu implementasi
bahasa dan mendekripsi dengan yang lain. Interoperabilitas mungkin tunduk pada kendala bahasa.
Jika demikian, kendala ini dijelaskan dalam topik tentang implementasi bahasa. Selain itu, saat
mengenkripsi dan mendekripsi, Anda harus menggunakan keyring yang kompatibel, atau kunci
master dan penyedia kunci master. Lihat perinciannya di the section called “Kompatibilitas keyring”.

Topik

• AWS Encryption SDK for C

• AWS Encryption SDK untuk .NET

• AWS Encryption SDK untuk Go

• AWS Encryption SDK for Java

• AWS Encryption SDK for JavaScript

• AWS Encryption SDK for Python

• AWS Encryption SDK untuk Rust

• AWS Encryption SDK antarmuka baris perintah

AWS Encryption SDK for C
AWS Encryption SDK for C Ini menyediakan pustaka enkripsi sisi klien untuk pengembang yang
menulis aplikasi di C. Ini juga berfungsi sebagai dasar untuk implementasi AWS Encryption SDK
dalam bahasa pemrograman tingkat tinggi.

Seperti semua implementasi AWS Encryption SDK, AWS Encryption SDK for C menawarkan fitur
perlindungan data tingkat lanjut. Ini termasuk enkripsi amplop, data otentikasi tambahan (AAD),
dan rangkaian algoritma kunci simetris yang aman, diautentikasi, seperti AES-GCM 256-bit dengan
derivasi dan penandatanganan kunci.

Semua implementasi khusus bahasa sepenuhnya dapat AWS Encryption SDK dioperasikan.
Misalnya, Anda dapat mengenkripsi data dengan AWS Encryption SDK for C dan mendekripsi
dengan implementasi bahasa yang didukung, termasuk CLI Enkripsi AWS .

AWS Encryption SDK for C Membutuhkan AWS SDK untuk C++ untuk berinteraksi dengan AWS
Key Management Service (AWS KMS). Anda perlu menggunakannya hanya jika Anda menggunakan

C 225

AWS Encryption SDK Panduan Developerr

AWS KMS keyring opsional. Namun, AWS Encryption SDK tidak memerlukan AWS KMS atau AWS
layanan lainnya.

Pelajari Lebih Lanjut

• Untuk detail tentang pemrograman dengan AWS Encryption SDK for C, lihat contoh C, contoh di
aws-encryption-sdk-c repositori aktif GitHub, dan dokumentasi AWS Encryption SDK for C API.

• Untuk diskusi tentang cara menggunakan data AWS Encryption SDK for C untuk mengenkripsi
sehingga Anda dapat mendekripsi dalam beberapa Wilayah AWS, lihat Cara mendekripsi
ciphertext di beberapa wilayah dengan di C di Blog Keamanan. AWS Encryption SDK AWS

Topik

• Instalasi AWS Encryption SDK for C

• Menggunakan AWS Encryption SDK for C

• AWS Encryption SDK for C contoh

Instalasi AWS Encryption SDK for C

Instal versi terbaru dari file AWS Encryption SDK for C.

Note

Semua versi yang AWS Encryption SDK for C lebih awal dari 2.0.0 sedang dalam fase. end-
of-support
Anda dapat memperbarui dengan aman dari versi 2.0. x dan yang lebih baru ke versi
terbaru AWS Encryption SDK for C tanpa kode atau perubahan data apa pun. Namun,
fitur keamanan baru diperkenalkan di versi 2.0. x tidak kompatibel ke belakang. Untuk
memperbarui dari versi lebih awal dari 1.7. x ke versi 2.0. x dan yang lebih baru, Anda harus
terlebih dahulu memperbarui ke yang terbaru 1. x versi AWS Encryption SDK for C. Lihat
perinciannya di Migrasi Anda AWS Encryption SDK.

Anda dapat menemukan petunjuk terperinci untuk menginstal dan membangun file README dari
aws-encryption-sdk-crepositori. AWS Encryption SDK for C Ini termasuk instruksi untuk membangun
di Amazon Linux, Ubuntu, macOS, dan platform Windows.

Menginstal 226

https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://aws.github.io/aws-encryption-sdk-c/html/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://aws.amazon.com/blogs/security/how-to-decrypt-ciphertexts-multiple-regions-aws-encryption-sdk-in-c/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-c/#readme
https://github.com/aws/aws-encryption-sdk-c/

AWS Encryption SDK Panduan Developerr

Sebelum Anda mulai, putuskan apakah Anda ingin menggunakan AWS KMS gantungan kunci
di. AWS Encryption SDK Jika Anda menggunakan AWS KMS keyring, Anda perlu menginstal.
AWS SDK untuk C++ AWS SDK diperlukan untuk berinteraksi dengan AWS Key Management
Service(AWS KMS). Ketika Anda menggunakan AWS KMS keyrings, AWS Encryption SDK
digunakan AWS KMS untuk menghasilkan dan melindungi kunci enkripsi yang melindungi data Anda.

Anda tidak perlu menginstal AWS SDK untuk C++ jika Anda menggunakan jenis keyring lain, seperti
keyring AES mentah, keyring RSA mentah, atau multi-keyring yang tidak menyertakan keyring. AWS
KMS Namun, saat menggunakan tipe keyring mentah, Anda perlu membuat dan melindungi kunci
pembungkus mentah Anda sendiri.

Jika Anda mengalami masalah dengan instalasi Anda, ajukan masalah di aws-encryption-sdk-c
repositori atau gunakan tautan umpan balik apa pun di halaman ini.

Menggunakan AWS Encryption SDK for C

Topik ini menjelaskan beberapa fitur yang tidak didukung dalam implementasi bahasa pemrograman
lainnya. AWS Encryption SDK for C

Contoh di bagian ini menunjukkan cara menggunakan versi 2.0. x dan yang lebih baru AWS
Encryption SDK for C. Untuk contoh yang menggunakan versi sebelumnya, temukan rilis Anda di
daftar Rilis dari aws-encryption-sdk-c repositori repositori di. GitHub

Untuk detail tentang pemrograman dengan AWS Encryption SDK for C, lihat contoh C, contoh di aws-
encryption-sdk-c repositori aktif GitHub, dan dokumentasi AWS Encryption SDK for C API.

Lihat juga: Gantungan kunci

Topik

• Pola untuk mengenkripsi dan mendekripsi data

• Penghitungan referensi

Pola untuk mengenkripsi dan mendekripsi data

Bila Anda menggunakan AWS Encryption SDK for C, Anda mengikuti pola yang mirip dengan ini:
membuat keyring, membuat CMM yang menggunakan keyring, membuat sesi yang menggunakan
CMM (dan keyring), dan kemudian memproses sesi.

Menggunakan C SDK 227

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/aws/aws-encryption-sdk-c/issues
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/
https://aws.github.io/aws-encryption-sdk-c/html/

AWS Encryption SDK Panduan Developerr

1. Memuat string kesalahan.

Panggil aws_cryptosdk_load_error_strings() metode dalam kode C atau C ++ Anda. Ini
memuat informasi kesalahan yang sangat berguna untuk debugging.

Anda hanya perlu memanggilnya sekali, seperti dalam main metode Anda.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

2. Buat keyring.

Konfigurasikan keyring Anda dengan tombol pembungkus yang ingin Anda gunakan untuk
mengenkripsi kunci data Anda. Contoh ini menggunakan AWS KMS keyring dengan satu AWS
KMS key, tetapi Anda dapat menggunakan semua jenis keyring sebagai gantinya.

Untuk mengidentifikasi AWS KMS key dalam keyring enkripsi di AWS Encryption SDK for C,
tentukan kunci ARN atau alias ARN. Dalam keyring dekripsi, Anda harus menggunakan kunci
ARN. Lihat perinciannya di Mengidentifikasi AWS KMS keys dalam AWS KMS keyring.

const char * KEY_ARN = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(KEY_ARN);

3. Buat sesi.

Dalam AWS Encryption SDK for C, Anda menggunakan sesi untuk mengenkripsi pesan
teks biasa tunggal atau mendekripsi pesan ciphertext tunggal, terlepas dari ukurannya. Sesi
mempertahankan status pesan selama pemrosesannya.

Konfigurasikan sesi Anda dengan pengalokasi, keyring, dan mode: atau.
AWS_CRYPTOSDK_ENCRYPT AWS_CRYPTOSDK_DECRYPT Jika Anda perlu mengubah mode sesi,
gunakan aws_cryptosdk_session_reset metode ini.

Saat Anda membuat sesi dengan keyring, AWS Encryption SDK for C secara otomatis membuat
manajer materi kriptografi default (CMM) untuk Anda. Anda tidak perlu membuat, memelihara,
atau menghancurkan objek ini.

Misalnya, sesi berikut menggunakan pengalokasi dan keyring yang didefinisikan pada langkah 1.
Saat Anda mengenkripsi data, modenya adalahAWS_CRYPTOSDK_ENCRYPT.

Menggunakan C SDK 228

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Panduan Developerr

struct aws_cryptosdk_session * session =
 aws_cryptosdk_session_new_from_keyring_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
 kms_keyring);

4. Enkripsi atau dekripsi data.

Untuk memproses data dalam sesi, gunakan aws_cryptosdk_session_process
metode ini. Jika buffer input cukup besar untuk menampung seluruh plaintext, dan buffer
output cukup besar untuk menampung seluruh ciphertext, Anda dapat menelepon.
aws_cryptosdk_session_process_full Namun, jika Anda perlu menangani data streaming,
Anda dapat menelepon aws_cryptosdk_session_process dalam satu lingkaran. Sebagai
contoh, lihat contoh file_streaming.cpp. aws_cryptosdk_session_process_fullIni
diperkenalkan dalam AWS Encryption SDK versi 1.9. x dan 2.2. x.

Ketika sesi dikonfigurasi untuk mengenkripsi data, bidang plaintext menjelaskan input dan
bidang ciphertext menggambarkan output. plaintextBidang menyimpan pesan yang ingin
Anda enkripsi dan ciphertext bidang mendapatkan pesan terenkripsi yang dikembalikan oleh
metode enkripsi.

/* Encrypting data */
aws_cryptosdk_session_process_full(session,
 ciphertext,
 ciphertext_buffer_size,
 &ciphertext_length,
 plaintext,
 plaintext_length)

Ketika sesi dikonfigurasi untuk mendekripsi data, bidang ciphertext menjelaskan input dan bidang
plaintext menggambarkan output. ciphertextBidang menyimpan pesan terenkripsi yang
dikembalikan oleh metode enkripsi, dan plaintext bidang mendapatkan pesan teks biasa yang
dikembalikan oleh metode dekripsi.

Untuk mendekripsi data, panggil metode. aws_cryptosdk_session_process_full

/* Decrypting data */
aws_cryptosdk_session_process_full(session,
 plaintext,
 plaintext_buffer_size,

Menggunakan C SDK 229

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/file_streaming.cpp

AWS Encryption SDK Panduan Developerr

 &plaintext_length,
 ciphertext,
 ciphertext_length)

Penghitungan referensi

Untuk mencegah kebocoran memori, pastikan untuk melepaskan referensi Anda ke semua objek
yang Anda buat saat Anda selesai menggunakannya. Jika tidak, Anda akan berakhir dengan
kebocoran memori. SDK menyediakan metode untuk mempermudah tugas ini.

Setiap kali Anda membuat objek induk dengan salah satu objek anak berikut, objek induk
mendapatkan dan mempertahankan referensi ke objek anak, sebagai berikut:

• Sebuah keyring, seperti membuat sesi dengan keyring

• Manajer materi kriptografi default (CMM), seperti membuat sesi atau CMM khusus dengan CMM
default

• Cache kunci data, seperti membuat CMM caching dengan keyring dan cache

Kecuali Anda memerlukan referensi independen ke objek anak, Anda dapat melepaskan referensi
Anda ke objek anak segera setelah Anda membuat objek induk. Referensi yang tersisa untuk objek
anak dilepaskan ketika objek induk dihancurkan. Pola ini memastikan bahwa Anda mempertahankan
referensi ke setiap objek hanya selama Anda membutuhkannya, dan Anda tidak membocorkan
memori karena referensi yang belum dirilis.

Anda hanya bertanggung jawab untuk merilis referensi ke objek anak yang Anda buat secara
eksplisit. Anda tidak bertanggung jawab untuk mengelola referensi ke objek apa pun yang
dibuat SDK untuk Anda. Jika SDK membuat objek, seperti CMM default yang ditambahkan
aws_cryptosdk_caching_cmm_new_from_keyring metode ke sesi, SDK mengelola pembuatan
dan penghancuran objek dan referensinya.

Dalam contoh berikut, ketika Anda membuat sesi dengan keyring, sesi mendapatkan
referensi ke keyring, dan mempertahankan referensi itu sampai sesi dihancurkan. Jika Anda
tidak perlu mempertahankan referensi tambahan ke keyring, Anda dapat menggunakan
aws_cryptosdk_keyring_release metode untuk melepaskan objek keyring segera setelah sesi
dibuat. Metode ini mengurangi jumlah referensi untuk keyring. Referensi sesi ke keyring dilepaskan
saat Anda menelepon aws_cryptosdk_session_destroy untuk menghancurkan sesi.

Menggunakan C SDK 230

AWS Encryption SDK Panduan Developerr

// The session gets a reference to the keyring.
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT, keyring);

// After you create a session with a keyring, release the reference to the keyring
 object.
aws_cryptosdk_keyring_release(keyring);

Untuk tugas yang lebih kompleks, seperti menggunakan kembali keyring untuk beberapa sesi atau
menentukan rangkaian algoritme dalam CMM, Anda mungkin perlu mempertahankan referensi
independen ke objek. Jika demikian, jangan segera panggil metode rilis. Sebagai gantinya, lepaskan
referensi Anda saat Anda tidak lagi menggunakan objek, selain menghancurkan sesi.

Teknik penghitungan referensi ini juga berfungsi ketika Anda menggunakan alternatif CMMs, seperti
CMM caching untuk caching kunci data. Saat Anda membuat CMM caching dari cache dan keyring,
CMM caching mendapatkan referensi ke kedua objek. Kecuali Anda membutuhkannya untuk tugas
lain, Anda dapat melepaskan referensi independen Anda ke cache dan keyring segera setelah
CMM caching dibuat. Kemudian, ketika Anda membuat sesi dengan CMM caching, Anda dapat
melepaskan referensi Anda ke CMM caching.

Perhatikan bahwa Anda hanya bertanggung jawab untuk merilis referensi ke objek yang Anda buat
secara eksplisit. Objek yang dibuat metode untuk Anda, seperti CMM default yang mendasari CMM
caching, dikelola oleh metode.

/ Create the caching CMM from a cache and a keyring.
struct aws_cryptosdk_cmm *caching_cmm =
 aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL, 60,
 AWS_TIMESTAMP_SECS);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

// Create a session with the caching CMM.
struct aws_cryptosdk_session *session = aws_cryptosdk_session_new_from_cmm_2(allocator,
 AWS_CRYPTOSDK_ENCRYPT, caching_cmm);

// Release your references to the caching CMM.
aws_cryptosdk_cmm_release(caching_cmm);

// ...

Menggunakan C SDK 231

AWS Encryption SDK Panduan Developerr

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK for C contoh

Contoh berikut menunjukkan cara menggunakan untuk mengenkripsi dan AWS Encryption SDK for C
mendekripsi data.

Contoh di bagian ini menunjukkan cara menggunakan versi 2.0. x dan kemudian AWS Encryption
SDK for C. Untuk contoh yang menggunakan versi sebelumnya, temukan rilis Anda di daftar Rilis dari
aws-encryption-sdk-c repositori repositori di. GitHub

Ketika Anda menginstal dan membangun AWS Encryption SDK for C, kode sumber untuk ini dan
contoh lainnya disertakan dalam examples subdirektori, dan mereka dikompilasi dan dibangun ke
dalam build direktori. Anda juga dapat menemukannya di contoh subdirektori aws-encryption-sdk-
crepositori di. GitHub

Topik

• Mengenkripsi dan mendekripsi string

Mengenkripsi dan mendekripsi string

Contoh berikut menunjukkan kepada Anda bagaimana menggunakan AWS Encryption SDK for C
untuk mengenkripsi dan mendekripsi string.

Contoh ini menampilkan AWS KMS keyring, jenis keyring yang menggunakan AWS KMS key in AWS
Key Management Service (AWS KMS) untuk menghasilkan dan mengenkripsi kunci data. Contohnya
termasuk kode yang ditulis dalam C ++. Yang AWS Encryption SDK for C mengharuskan AWS
SDK untuk C++ untuk memanggil AWS KMS saat menggunakan AWS KMS keyrings. Jika Anda
menggunakan keyring yang tidak berinteraksi AWS KMS, seperti keyring AES mentah, keyring RSA
mentah, atau multi-keyring yang tidak menyertakan keyring, tidak diperlukan. AWS KMS AWS SDK
untuk C++

Untuk bantuan membuat AWS KMS key, lihat Membuat Kunci di Panduan AWS Key Management
Service Pengembang. Untuk bantuan mengidentifikasi AWS KMS keys dalam AWS KMS gantungan
kunci, lihatMengidentifikasi AWS KMS keys dalam AWS KMS keyring.

Lihat contoh kode lengkap: string.cpp

Contoh 232

https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/tree/master/examples
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK Panduan Developerr

Topik

• Enkripsi string

• Dekripsi string

Enkripsi string

Bagian pertama dari contoh ini menggunakan AWS KMS keyring dengan satu AWS KMS key untuk
mengenkripsi string plaintext.

Langkah 1. Memuat string kesalahan.

Panggil aws_cryptosdk_load_error_strings() metode dalam kode C atau C ++ Anda. Ini
memuat informasi kesalahan yang sangat berguna untuk debugging.

Anda hanya perlu memanggilnya sekali, seperti dalam main metode Anda.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

Langkah 2: Bangun keyring.

Buat AWS KMS keyring untuk enkripsi. Keyring dalam contoh ini dikonfigurasi dengan satu AWS
KMS key, tetapi Anda dapat mengonfigurasi AWS KMS keyring dengan beberapa AWS KMS
keys, termasuk AWS KMS keys di akun yang berbeda Wilayah AWS dan berbeda.

Untuk mengidentifikasi AWS KMS key dalam keyring enkripsi di AWS Encryption SDK for C,
tentukan kunci ARN atau alias ARN. Dalam keyring dekripsi, Anda harus menggunakan kunci
ARN. Lihat perinciannya di Mengidentifikasi AWS KMS keys dalam AWS KMS keyring.

Mengidentifikasi AWS KMS keys dalam AWS KMS keyring

Ketika Anda membuat keyring dengan beberapa AWS KMS keys, Anda menentukan yang
AWS KMS key digunakan untuk menghasilkan dan mengenkripsi kunci data plaintext, dan array
opsional tambahan yang mengenkripsi kunci data plaintext AWS KMS keys yang sama. Dalam hal
ini, Anda hanya menentukan generator AWS KMS key.

Sebelum menjalankan kode ini, ganti contoh kunci ARN dengan yang valid.

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

Contoh 233

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Panduan Developerr

struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

Langkah 3: Buat sesi.

Buat sesi menggunakan pengalokasi, enumerator mode, dan keyring.

Setiap sesi membutuhkan mode: baik AWS_CRYPTOSDK_ENCRYPT untuk mengenkripsi atau
AWS_CRYPTOSDK_DECRYPT mendekripsi. Untuk mengubah mode sesi yang ada, gunakan
aws_cryptosdk_session_reset metode ini.

Setelah membuat sesi dengan keyring, Anda dapat melepaskan referensi ke keyring
menggunakan metode yang disediakan SDK. Sesi mempertahankan referensi ke objek
keyring selama masa pakainya. Referensi ke keyring dan objek sesi dilepaskan saat Anda
menghancurkan sesi. Teknik penghitungan referensi ini membantu mencegah kebocoran memori
dan mencegah objek dilepaskan saat sedang digunakan.

struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_ENCRYPT,
 kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

Langkah 4: Atur konteks enkripsi.

Konteks enkripsi adalah data otentikasi tambahan yang sewenang-wenang dan tidak
rahasia. Ketika Anda menyediakan konteks enkripsi pada enkripsi, AWS Encryption SDK
kriptografis mengikat konteks enkripsi ke ciphertext sehingga konteks enkripsi yang sama
diperlukan untuk mendekripsi data. Menggunakan konteks enkripsi adalah opsional, tetapi kami
merekomendasikannya sebagai praktik terbaik.

Pertama, buat tabel hash yang menyertakan string konteks enkripsi.

/* Allocate a hash table for the encryption context */
int set_up_enc_ctx(struct aws_allocator *alloc, struct aws_hash_table *my_enc_ctx)

// Create encryption context strings
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key1, "Example");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value1, "String");

Contoh 234

AWS Encryption SDK Panduan Developerr

AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key2, "Company");
AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value2, "MyCryptoCorp");

// Put the key-value pairs in the hash table
aws_hash_table_put(my_enc_ctx, enc_ctx_key1, (void *)enc_ctx_value1, &was_created)
aws_hash_table_put(my_enc_ctx, enc_ctx_key2, (void *)enc_ctx_value2, &was_created)

Dapatkan pointer yang bisa berubah ke konteks enkripsi dalam sesi. Kemudian, gunakan
aws_cryptosdk_enc_ctx_clone fungsi untuk menyalin konteks enkripsi ke dalam sesi.
Simpan salinan my_enc_ctx sehingga Anda dapat memvalidasi nilai setelah mendekripsi data.

Konteks enkripsi adalah bagian dari sesi, bukan parameter yang diteruskan ke fungsi proses sesi.
Ini menjamin bahwa konteks enkripsi yang sama digunakan untuk setiap segmen pesan, bahkan
jika fungsi proses sesi dipanggil beberapa kali untuk mengenkripsi seluruh pesan.

struct aws_hash_table *session_enc_ctx =
 aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);

aws_cryptosdk_enc_ctx_clone(alloc, session_enc_ctx, my_enc_ctx)

Langkah 5: Enkripsi string.

Untuk mengenkripsi string plaintext, gunakan aws_cryptosdk_session_process_full
metode dengan sesi dalam mode enkripsi. Metode ini, diperkenalkan dalam AWS Encryption SDK
versi 1.9. x dan 2.2. x, dirancang untuk enkripsi dan dekripsi non-streaming. Untuk menangani
streaming data, panggil aws_cryptosdk_session_process dalam satu lingkaran.

Saat mengenkripsi, bidang plaintext adalah bidang input; bidang ciphertext adalah bidang
keluaran. Saat pemrosesan selesai, ciphertext_output bidang berisi pesan terenkripsi,
termasuk ciphertext aktual, kunci data terenkripsi, dan konteks enkripsi. Anda dapat mendekripsi
pesan terenkripsi ini dengan menggunakan AWS Encryption SDK untuk setiap bahasa
pemrograman yang didukung.

/* Gets the length of the plaintext that the session processed */
size_t ciphertext_len_output;
if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,
 ciphertext_output,
 ciphertext_buf_sz_output,
 &ciphertext_len_output,
 plaintext_input,

Contoh 235

AWS Encryption SDK Panduan Developerr

 plaintext_len_input)) {
 aws_cryptosdk_session_destroy(session);
 return 8;
}

Langkah 6: Bersihkan sesi.

Langkah terakhir menghancurkan sesi termasuk referensi ke CMM dan keyring.

Jika Anda lebih suka, alih-alih menghancurkan sesi, Anda dapat menggunakan kembali
sesi dengan keyring dan CMM yang sama untuk mendekripsi string, atau untuk
mengenkripsi atau mendekripsi pesan lain. Untuk menggunakan sesi untuk mendekripsi,
gunakan aws_cryptosdk_session_reset metode untuk mengubah mode ke.
AWS_CRYPTOSDK_DECRYPT

Dekripsi string

Bagian kedua dari contoh ini mendekripsi pesan terenkripsi yang berisi ciphertext dari string asli.

Langkah 1: Muat string kesalahan.

Panggil aws_cryptosdk_load_error_strings() metode dalam kode C atau C ++ Anda. Ini
memuat informasi kesalahan yang sangat berguna untuk debugging.

Anda hanya perlu memanggilnya sekali, seperti dalam main metode Anda.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

Langkah 2: Bangun keyring.

Saat Anda mendekripsi data AWS KMS, Anda meneruskan pesan terenkripsi yang dikembalikan
oleh API enkripsi. Decrypt API tidak mengambil AWS KMS key sebagai input. Sebaliknya, AWS
KMS menggunakan yang sama AWS KMS key untuk mendekripsi ciphertext yang digunakan
untuk mengenkripsi itu. Namun, AWS Encryption SDK memungkinkan Anda menentukan AWS
KMS keyring dengan enkripsi dan AWS KMS keys dekripsi.

Saat mendekripsi, Anda dapat mengonfigurasi keyring hanya dengan AWS KMS keys yang ingin
Anda gunakan untuk mendekripsi pesan terenkripsi. Misalnya, Anda mungkin ingin membuat
keyring hanya dengan AWS KMS key yang digunakan oleh peran tertentu dalam organisasi Anda.

Contoh 236

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Encryption SDK Panduan Developerr

Tidak AWS Encryption SDK akan pernah menggunakan AWS KMS key kecuali muncul di keyring
dekripsi. Jika SDK tidak dapat mendekripsi kunci data terenkripsi dengan menggunakan keyring
AWS KMS keys dalam yang Anda berikan, baik karena tidak ada AWS KMS keys dalam keyring
yang digunakan untuk mengenkripsi salah satu kunci data, atau karena pemanggil tidak memiliki
izin untuk menggunakan AWS KMS keys dalam keyring untuk mendekripsi, panggilan dekripsi
gagal.

Ketika Anda menentukan AWS KMS key untuk keyring dekripsi, Anda harus menggunakan
kunci ARN. Alias hanya ARNs diizinkan dalam gantungan kunci enkripsi. Untuk bantuan
mengidentifikasi AWS KMS keys dalam AWS KMS gantungan kunci, lihatMengidentifikasi AWS
KMS keys dalam AWS KMS keyring.

Dalam contoh ini, kami menentukan keyring yang dikonfigurasi dengan yang sama AWS KMS
key digunakan untuk mengenkripsi string. Sebelum menjalankan kode ini, ganti contoh kunci ARN
dengan yang valid.

const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

Langkah 3: Buat sesi.

Buat sesi menggunakan pengalokasi dan keyring. Untuk mengkonfigurasi sesi untuk dekripsi,
konfigurasikan sesi dengan mode. AWS_CRYPTOSDK_DECRYPT

Setelah membuat sesi dengan keyring, Anda dapat melepaskan referensi ke keyring
menggunakan metode yang disediakan SDK. Sesi mempertahankan referensi ke objek keyring
selama masa pakainya, dan sesi dan keyring dilepaskan saat Anda menghancurkan sesi. Teknik
penghitungan referensi ini membantu mencegah kebocoran memori dan mencegah objek
dilepaskan saat sedang digunakan.

struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_keyring_2(alloc, AWS_CRYPTOSDK_DECRYPT,
 kms_keyring);

/* When you add the keyring to the session, release the keyring object */
aws_cryptosdk_keyring_release(kms_keyring);

Contoh 237

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-arn

AWS Encryption SDK Panduan Developerr

Langkah 4: Dekripsi string.

Untuk mendekripsi string, gunakan aws_cryptosdk_session_process_full metode dengan
sesi yang dikonfigurasi untuk dekripsi. Metode ini, diperkenalkan dalam AWS Encryption SDK
versi 1.9. x dan 2.2. x, dirancang untuk enkripsi dan dekripsi non-streaming. Untuk menangani
streaming data, panggil aws_cryptosdk_session_process dalam satu lingkaran.

Saat mendekripsi, bidang ciphertext adalah bidang input dan bidang plaintext adalah bidang
keluaran. ciphertext_inputBidang menyimpan pesan terenkripsi yang dikembalikan oleh
metode enkripsi. Saat pemrosesan selesai, plaintext_output bidang berisi string plaintext
(didekripsi).

size_t plaintext_len_output;

if (AWS_OP_SUCCESS != aws_cryptosdk_session_process_full(session,
 plaintext_output,
 plaintext_buf_sz_output,
 &plaintext_len_output,
 ciphertext_input,
 ciphertext_len_input)) {
 aws_cryptosdk_session_destroy(session);
 return 13;
}

Langkah 5: Verifikasi konteks enkripsi.

Pastikan bahwa konteks enkripsi yang sebenarnya — yang digunakan untuk mendekripsi pesan
— berisi konteks enkripsi yang Anda berikan saat mengenkripsi pesan. Konteks enkripsi yang
sebenarnya mungkin mencakup pasangan tambahan, karena pengelola materi kriptografi (CMM)
dapat menambahkan pasangan ke konteks enkripsi yang disediakan sebelum mengenkripsi
pesan.

Di dalam AWS Encryption SDK for C, Anda tidak diharuskan untuk menyediakan konteks
enkripsi saat mendekripsi karena konteks enkripsi disertakan dalam pesan terenkripsi yang
dikembalikan SDK. Namun, sebelum mengembalikan pesan teks biasa, fungsi dekripsi Anda
harus memverifikasi bahwa semua pasangan dalam konteks enkripsi yang disediakan muncul
dalam konteks enkripsi yang digunakan untuk mendekripsi pesan.

Pertama, dapatkan pointer read-only ke tabel hash di sesi. Tabel hash ini berisi konteks enkripsi
yang digunakan untuk mendekripsi pesan.

Contoh 238

AWS Encryption SDK Panduan Developerr

const struct aws_hash_table *session_enc_ctx =
 aws_cryptosdk_session_get_enc_ctx_ptr(session);

Kemudian, loop melalui konteks enkripsi dalam tabel my_enc_ctx hash yang Anda salin saat
mengenkripsi. Verifikasi bahwa setiap pasangan dalam tabel my_enc_ctx hash yang digunakan
untuk mengenkripsi muncul di tabel session_enc_ctx hash yang digunakan untuk mendekripsi.
Jika ada kunci yang hilang, atau kunci itu memiliki nilai yang berbeda, hentikan pemrosesan dan
tulis pesan kesalahan.

for (struct aws_hash_iter iter = aws_hash_iter_begin(my_enc_ctx); !
aws_hash_iter_done(&iter);
 aws_hash_iter_next(&iter)) {
 struct aws_hash_element *session_enc_ctx_kv_pair;
 aws_hash_table_find(session_enc_ctx, iter.element.key,
 &session_enc_ctx_kv_pair)

 if (!session_enc_ctx_kv_pair ||
 !aws_string_eq(
 (struct aws_string *)iter.element.value, (struct aws_string
 *)session_enc_ctx_kv_pair->value)) {
 fprintf(stderr, "Wrong encryption context!\n");
 abort();
 }
}

Langkah 6: Bersihkan sesi.

Setelah Anda memverifikasi konteks enkripsi, Anda dapat menghancurkan sesi, atau
menggunakannya kembali. Jika Anda perlu mengkonfigurasi ulang sesi, gunakan
aws_cryptosdk_session_reset metode ini.

aws_cryptosdk_session_destroy(session);

AWS Encryption SDK untuk .NET

The AWS Encryption SDK for .NET adalah pustaka enkripsi sisi klien untuk pengembang yang
menulis aplikasi dalam C # dan bahasa pemrograman.NET lainnya. Hal ini didukung di Windows,
macOS, dan Linux.

.NET 239

AWS Encryption SDK Panduan Developerr

Note

Versi 4.0.0 AWS Encryption SDK untuk .NET menyimpang dari Spesifikasi Pesan. AWS
Encryption SDK Akibatnya, pesan yang dienkripsi oleh versi 4.0.0 hanya dapat didekripsi
oleh versi 4.0.0 atau yang lebih baru untuk .NET. AWS Encryption SDK Mereka tidak dapat
didekripsi oleh implementasi bahasa pemrograman lainnya.
Versi 4.0.1 AWS Encryption SDK untuk .NET menulis pesan sesuai dengan Spesifikasi
AWS Encryption SDK Pesan, dan interoperable dengan implementasi bahasa pemrograman
lainnya. Secara default, versi 4.0.1 dapat membaca pesan yang dienkripsi oleh versi 4.0.0.
Namun, jika Anda tidak ingin mendekripsi pesan yang dienkripsi oleh versi 4.0.0, Anda
dapat menentukan NetV4_0_0_RetryPolicyproperti untuk mencegah klien membaca
pesan-pesan ini. Untuk informasi lebih lanjut, lihat catatan rilis v4.0.1 di aws-encryption-sdk
repositori di. GitHub

AWS Encryption SDK Untuk .NET berbeda dari beberapa implementasi bahasa pemrograman
lainnya dengan AWS Encryption SDK cara berikut:

• Tidak ada dukungan untuk caching kunci data

Note

Versi 4. x dari AWS Encryption SDK untuk .NET mendukung keyring AWS KMS
Hierarchical, solusi caching bahan kriptografi alternatif.

• Tidak ada dukungan untuk streaming data

• Tidak ada pencatatan atau jejak tumpukan dari AWS Encryption SDK untuk .NET

• Membutuhkan AWS SDK for .NET

The AWS Encryption SDK for .NET mencakup semua fitur keamanan yang diperkenalkan dalam
versi 2.0. x dan yang lebih baru dari implementasi bahasa lain dari. AWS Encryption SDK Namun,
jika Anda menggunakan AWS Encryption SDK untuk.NET untuk mendekripsi data yang dienkripsi
oleh pra-2.0. x versi implementasi bahasa lain dari AWS Encryption SDK, Anda mungkin perlu
menyesuaikan kebijakan komitmen Anda. Lihat perinciannya di Cara menetapkan kebijakan
komitmen Anda.

.NET 240

https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples/NetV4_0_0Example.cs
https://github.com/aws/aws-encryption-sdk/releases/tag/v4.0.1

AWS Encryption SDK Panduan Developerr

The AWS Encryption SDK for .NET adalah produk dari AWS Encryption SDK in Dafny, bahasa
verifikasi formal di mana Anda menulis spesifikasi, kode untuk mengimplementasikannya, dan
bukti untuk mengujinya. Hasilnya adalah perpustakaan yang mengimplementasikan fitur-fitur AWS
Encryption SDK dalam kerangka kerja yang menjamin kebenaran fungsional.

Pelajari Lebih Lanjut

• Untuk contoh yang menunjukkan cara mengonfigurasi opsi di AWS Encryption SDK, seperti
menentukan rangkaian algoritme alternatif, membatasi kunci data terenkripsi, dan menggunakan
kunci AWS KMS Multi-region, lihat. Mengkonfigurasi AWS Encryption SDK

• Untuk detail tentang pemrograman dengan AWS Encryption SDK for .NET, lihat aws-
encryption-sdk-netdirektori aws-encryption-sdk repositori di. GitHub

Topik

• Instalasi AWS Encryption SDK untuk .NET

• Debugging AWS Encryption SDK untuk .NET

• AWS Encryption SDK untuk contoh.NET

Instalasi AWS Encryption SDK untuk .NET

The AWS Encryption SDK for .NET tersedia sebagai AWS.Cryptography.EncryptionSDKpaket di
NuGet. Untuk detail tentang menginstal dan membangun AWS Encryption SDK untuk .NET, lihat file
README.md di repositori. aws-encryption-sdk-net

Versi 3.x

Versi 3. x dari AWS Encryption SDK untuk .NET mendukung .NET Framework 4.5.2 - 4.8 hanya
pada Windows. Ini mendukung .NET Core 3.0+ dan .NET 5.0 dan kemudian pada semua sistem
operasi yang didukung.

Versi 4.x

Versi 4. x dari AWS Encryption SDK untuk .NET mendukung .NET 6.0 dan .NET Framework
net48 dan yang lebih baru. Versi 4. x membutuhkan AWS SDK untuk.NET v3.

AWS Encryption SDK Untuk .NET membutuhkan SDK for .NET bahkan jika Anda tidak menggunakan
kunci AWS Key Management Service (AWS KMS). Itu diinstal dengan NuGet paket. Namun, kecuali

Instal dan bangun 241

https://github.com/dafny-lang/dafny/blob/master/README.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/#readme

AWS Encryption SDK Panduan Developerr

Anda menggunakan AWS KMS kunci, AWS Encryption SDK untuk .NET tidak memerlukan Akun
AWS, AWS kredensi, atau interaksi dengan layanan apa pun AWS . Untuk bantuan menyiapkan
AWS akun jika Anda membutuhkannya, lihatMenggunakan AWS Encryption SDK dengan AWS KMS.

Debugging AWS Encryption SDK untuk .NET

The AWS Encryption SDK for .NET tidak menghasilkan log apa pun. Pengecualian di AWS
Encryption SDK for .NET menghasilkan pesan pengecualian, tetapi tidak ada jejak tumpukan.

Untuk membantu Anda men-debug, pastikan untuk mengaktifkan login. SDK for .NET Log dan pesan
kesalahan dari SDK for .NET dapat membantu Anda membedakan kesalahan yang timbul SDK
for .NET dari yang ada di AWS Encryption SDK untuk .NET. Untuk bantuan terkait SDK for .NET
logging, lihat AWSLoggingdi Panduan AWS SDK for .NET Pengembang. (Untuk melihat topiknya,
perluas bagian konten Open to view .NET Framework.)

AWS Encryption SDK untuk contoh.NET

Contoh berikut menunjukkan pola pengkodean dasar yang Anda gunakan saat pemrograman
dengan AWS Encryption SDK for .NET. Secara khusus, Anda membuat instance perpustakaan
AWS Encryption SDK dan penyedia materi. Kemudian, sebelum memanggil setiap metode, Anda
membuat instance objek yang mendefinisikan input untuk metode tersebut. Ini sangat mirip dengan
pola pengkodean yang Anda gunakan di SDK for .NET.

Untuk contoh yang menunjukkan cara mengonfigurasi opsi di AWS Encryption SDK, seperti
menentukan rangkaian algoritme alternatif, membatasi kunci data terenkripsi, dan menggunakan
kunci AWS KMS Multi-region, lihat. Mengkonfigurasi AWS Encryption SDK

Untuk lebih banyak contoh pemrograman dengan AWS Encryption SDK untuk .NET, lihat contoh di
aws-encryption-sdk-net direktori aws-encryption-sdk repositori pada. GitHub

Mengenkripsi data di untuk .NET AWS Encryption SDK

Contoh ini menunjukkan pola dasar untuk mengenkripsi data. Ini mengenkripsi file kecil dengan kunci
data yang dilindungi oleh satu kunci AWS KMS pembungkus.

Langkah 1: Buat instance AWS Encryption SDK dan perpustakaan penyedia materi.

Mulailah dengan membuat instance perpustakaan penyedia AWS Encryption SDK dan materi.
Anda akan menggunakan metode dalam AWS Encryption SDK untuk mengenkripsi dan

Debugging 242

https://docs.aws.amazon.com/sdk-for-net/v4/developer-guide/net-dg-config-other.html#config-setting-awslogging
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/Examples

AWS Encryption SDK Panduan Developerr

mendekripsi data. Anda akan menggunakan metode di pustaka penyedia materi untuk membuat
keyrings yang menentukan kunci mana yang melindungi data Anda.

Cara Anda membuat instance AWS Encryption SDK dan pustaka penyedia materi berbeda antara
versi 3. x dan 4. x dari AWS Encryption SDK untuk .NET. Semua langkah berikut adalah sama
untuk kedua versi 3. x dan 4. x dari AWS Encryption SDK untuk .NET.

Version 3.x

// Instantiate the AWS Encryption SDK and material providers
var encryptionSdk = AwsEncryptionSdkFactory.CreateDefaultAwsEncryptionSdk();
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

Version 4.x

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Langkah 2: Buat objek input untuk keyring.

Setiap metode yang membuat keyring memiliki kelas objek input yang sesuai. Misalnya,
untuk membuat objek masukan untuk CreateAwsKmsKeyring() metode, buat instance
CreateAwsKmsKeyringInput kelas.

Meskipun input untuk keyring ini tidak menentukan kunci generator, kunci KMS tunggal yang
ditentukan oleh KmsKeyId parameter adalah kunci generator. Ini menghasilkan dan mengenkripsi
kunci data yang mengenkripsi data.

Objek masukan ini membutuhkan AWS KMS klien untuk kunci KMS. Wilayah AWS Untuk
membuat AWS KMS klien, buat instance AmazonKeyManagementServiceClient kelas
di. SDK for .NET Memanggil AmazonKeyManagementServiceClient() konstruktor tanpa
parameter membuat klien dengan nilai default.

Dalam AWS KMS keyring yang digunakan untuk mengenkripsi dengan AWS Encryption SDK
for .NET, Anda dapat mengidentifikasi kunci KMS dengan menggunakan ID kunci, kunci ARN,
nama alias, atau alias ARN. Dalam AWS KMS keyring yang digunakan untuk mendekripsi, Anda
harus menggunakan ARN kunci untuk mengidentifikasi setiap kunci KMS. Jika Anda berencana

Contoh 243

AWS Encryption SDK Panduan Developerr

untuk menggunakan kembali keyring enkripsi Anda untuk mendekripsi, gunakan pengenal ARN
kunci untuk semua kunci KMS.

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object
var kmsKeyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = keyArn
};

Langkah 3: Buat keyring.

Untuk membuat keyring, panggil metode keyring dengan objek input keyring. Contoh ini
menggunakan CreateAwsKmsKeyring() metode, yang hanya membutuhkan satu kunci KMS.

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

Langkah 4: Tentukan konteks enkripsi.

Konteks enkripsi adalah elemen opsional, tetapi sangat direkomendasikan dari operasi kriptografi
dalam. AWS Encryption SDK Anda dapat menentukan satu atau lebih pasangan nilai kunci non-
rahasia.

Note

Dengan versi 4. x dari AWS Encryption SDK untuk .NET, Anda dapat memerlukan
konteks enkripsi di semua permintaan enkripsi dengan konteks enkripsi CMM yang
diperlukan.

// Define the encryption context
var encryptionContext = new Dictionary<string, string>()
{
 {"purpose", "test"}
};

Contoh 244

AWS Encryption SDK Panduan Developerr

Langkah 5: Buat objek input untuk mengenkripsi.

Sebelum memanggil Encrypt() metode, buat instance dari EncryptInput kelas.

string plaintext = File.ReadAllText("C:\\Documents\\CryptoTest\\TestFile.txt");

// Define the encrypt input
var encryptInput = new EncryptInput
{
 Plaintext = plaintext,
 Keyring = keyring,
 EncryptionContext = encryptionContext
};

Langkah 6: Enkripsi plaintext.

Gunakan Encrypt() metode AWS Encryption SDK untuk mengenkripsi plaintext menggunakan
keyring yang Anda tentukan.

Encrypt() Metode EncryptOutput yang dikembalikan memiliki metode untuk mendapatkan
pesan terenkripsi (Ciphertext), konteks enkripsi, dan rangkaian algoritma.

var encryptOutput = encryptionSdk.Encrypt(encryptInput);

Langkah 7: Dapatkan pesan terenkripsi.

Decrypt()Metode dalam AWS Encryption SDK for .NET mengambil Ciphertext anggota
EncryptOutput instance.

CiphertextAnggota EncryptOutput objek adalah pesan terenkripsi, objek portabel yang
mencakup data terenkripsi, kunci data terenkripsi, dan metadata, termasuk konteks enkripsi. Anda
dapat menyimpan pesan terenkripsi dengan aman untuk waktu yang lama atau mengirimkannya
ke Decrypt() metode untuk memulihkan teks biasa.

var encryptedMessage = encryptOutput.Ciphertext;

Mendekripsi dalam mode ketat di untuk.NET AWS Encryption SDK

Praktik terbaik menyarankan Anda menentukan kunci yang Anda gunakan untuk mendekripsi data,
opsi yang dikenal sebagai mode ketat. Hanya AWS Encryption SDK menggunakan kunci KMS yang

Contoh 245

AWS Encryption SDK Panduan Developerr

Anda tentukan dalam keyring Anda untuk mendekripsi ciphertext. Kunci dalam keyring dekripsi Anda
harus menyertakan setidaknya salah satu kunci yang mengenkripsi data.

Contoh ini menunjukkan pola dasar dekripsi dalam mode ketat dengan AWS Encryption SDK
untuk .NET.

Langkah 1: Buat instance perpustakaan penyedia materi AWS Encryption SDK dan.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Langkah 2: Buat objek input untuk keyring Anda.

Untuk menentukan parameter untuk metode keyring, buat objek input. Setiap metode
keyring di AWS Encryption SDK for .NET memiliki objek input yang sesuai. Karena contoh
ini menggunakan CreateAwsKmsKeyring() metode untuk membuat keyring, itu membuat
instance CreateAwsKmsKeyringInput kelas untuk input.

Dalam keyring dekripsi, Anda harus menggunakan ARN kunci untuk mengidentifikasi kunci KMS.

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

// Instantiate the keyring input object
var kmsKeyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = keyArn
};

Langkah 3: Buat keyring.

Untuk membuat keyring dekripsi, contoh ini menggunakan CreateAwsKmsKeyring() metode
dan objek input keyring.

var keyring = materialProviders.CreateAwsKmsKeyring(kmsKeyringInput);

Langkah 4: Buat objek input untuk mendekripsi.

Untuk membuat objek masukan untuk Decrypt() metode ini, buat instance kelas.
DecryptInput

Contoh 246

AWS Encryption SDK Panduan Developerr

CiphertextParameter DecryptInput() konstruktor mengambil Ciphertext anggota
EncryptOutput objek yang dikembalikan Encrypt() metode. CiphertextProperti mewakili
pesan terenkripsi, yang mencakup data terenkripsi, kunci data terenkripsi, dan metadata yang
diperlukan untuk mendekripsi pesan. AWS Encryption SDK

Dengan versi 4. x dari AWS Encryption SDK untuk .NET, Anda dapat menggunakan
EncryptionContext parameter opsional untuk menentukan konteks enkripsi Anda dalam
Decrypt() metode.

Gunakan EncryptionContext parameter untuk memverifikasi bahwa konteks enkripsi yang
digunakan pada enkripsi disertakan dalam konteks enkripsi yang digunakan untuk mendekripsi
ciphertext. AWS Encryption SDK Menambahkan pasangan ke konteks enkripsi, termasuk tanda
tangan digital jika Anda menggunakan rangkaian algoritme dengan penandatanganan, seperti
rangkaian algoritme default.

var encryptedMessage = encryptOutput.Ciphertext;

var decryptInput = new DecryptInput
{
 Ciphertext = encryptedMessage,
 Keyring = keyring,
 EncryptionContext = encryptionContext // OPTIONAL
};

Langkah 5: Dekripsi ciphertext.

var decryptOutput = encryptionSdk.Decrypt(decryptInput);

Langkah 6: Verifikasi konteks enkripsi - Versi 3. x

Decrypt()Metode versi 3. x dari AWS Encryption SDK untuk .NET tidak mengambil konteks
enkripsi. Ini mendapatkan nilai konteks enkripsi dari metadata dalam pesan terenkripsi.
Namun, sebelum mengembalikan atau menggunakan plaintext, ini adalah praktik terbaik untuk
memverifikasi bahwa konteks enkripsi yang digunakan untuk mendekripsi ciphertext mencakup
konteks enkripsi yang Anda berikan saat mengenkripsi.

Verifikasi bahwa konteks enkripsi yang digunakan pada enkripsi disertakan dalam konteks
enkripsi yang digunakan untuk mendekripsi ciphertext. AWS Encryption SDK Menambahkan
pasangan ke konteks enkripsi, termasuk tanda tangan digital jika Anda menggunakan rangkaian
algoritme dengan penandatanganan, seperti rangkaian algoritme default.

Contoh 247

AWS Encryption SDK Panduan Developerr

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
 decryptContextValue)
 || !decryptContextValue.Equals(contextValue))
{
 throw new Exception("Encryption context does not match expected values");
}

Mendekripsi dengan keyring penemuan di for .NET AWS Encryption SDK

Daripada menentukan kunci KMS untuk dekripsi, Anda dapat memberikan keyring AWS KMS
penemuan, yang merupakan keyring yang tidak menentukan kunci KMS apa pun. Keyring penemuan
memungkinkan AWS Encryption SDK dekripsi data dengan menggunakan kunci KMS mana pun
yang dienkripsi, asalkan penelepon memiliki izin dekripsi pada kunci tersebut. Untuk praktik terbaik,
tambahkan filter penemuan yang membatasi kunci KMS yang dapat digunakan untuk kunci khusus
Akun AWS partisi tertentu.

The AWS Encryption SDK for .NET menyediakan keyring penemuan dasar yang membutuhkan
AWS KMS klien dan penemuan multi-keyring yang mengharuskan Anda menentukan satu atau
lebih. Wilayah AWS Klien dan Wilayah membatasi kunci KMS yang dapat digunakan untuk
mendekripsi pesan terenkripsi. Objek input untuk kedua keyring mengambil filter penemuan yang
direkomendasikan.

Contoh berikut menunjukkan pola untuk mendekripsi data dengan keyring AWS KMS penemuan dan
filter penemuan.

Langkah 1: Buat instance AWS Encryption SDK dan perpustakaan penyedia materi.

// Instantiate the AWS Encryption SDK and material providers
var esdk = new ESDK(new AwsEncryptionSdkConfig());
var mpl = new MaterialProviders(new MaterialProvidersConfig());

Langkah 2: Buat objek input untuk keyring.

Untuk menentukan parameter untuk metode keyring, buat objek input. Setiap metode keyring di
AWS Encryption SDK for .NET memiliki objek input yang sesuai. Karena contoh ini menggunakan

Contoh 248

AWS Encryption SDK Panduan Developerr

CreateAwsKmsDiscoveryKeyring() metode untuk membuat keyring, itu membuat instance
CreateAwsKmsDiscoveryKeyringInput kelas untuk input.

List<string> accounts = new List<string> { "111122223333" };

var discoveryKeyringInput = new CreateAwsKmsDiscoveryKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 DiscoveryFilter = new DiscoveryFilter()
 {
 AccountIds = accounts,
 Partition = "aws"
 }
};

Langkah 3: Buat keyring.

Untuk membuat keyring dekripsi, contoh ini menggunakan
CreateAwsKmsDiscoveryKeyring() metode dan objek input keyring.

var discoveryKeyring =
 materialProviders.CreateAwsKmsDiscoveryKeyring(discoveryKeyringInput);

Langkah 4: Buat objek input untuk mendekripsi.

Untuk membuat objek masukan untuk Decrypt() metode ini, buat instance kelas.
DecryptInput Nilai Ciphertext parameter adalah Ciphertext anggota EncryptOutput
objek yang dikembalikan Encrypt() metode.

Dengan versi 4. x dari AWS Encryption SDK untuk .NET, Anda dapat menggunakan
EncryptionContext parameter opsional untuk menentukan konteks enkripsi Anda dalam
Decrypt() metode.

Gunakan EncryptionContext parameter untuk memverifikasi bahwa konteks enkripsi yang
digunakan pada enkripsi disertakan dalam konteks enkripsi yang digunakan untuk mendekripsi
ciphertext. AWS Encryption SDK Menambahkan pasangan ke konteks enkripsi, termasuk tanda
tangan digital jika Anda menggunakan rangkaian algoritme dengan penandatanganan, seperti
rangkaian algoritme default.

var ciphertext = encryptOutput.Ciphertext;

Contoh 249

AWS Encryption SDK Panduan Developerr

var decryptInput = new DecryptInput
{
 Ciphertext = ciphertext,
 Keyring = discoveryKeyring,
 EncryptionContext = encryptionContext // OPTIONAL

};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

Langkah 5: Verifikasi konteks enkripsi - Versi 3. x

Decrypt()Metode versi 3. x dari AWS Encryption SDK untuk .NET tidak mengambil konteks
enkripsi padaDecrypt(). Ini mendapatkan nilai konteks enkripsi dari metadata dalam pesan
terenkripsi. Namun, sebelum mengembalikan atau menggunakan plaintext, ini adalah praktik
terbaik untuk memverifikasi bahwa konteks enkripsi yang digunakan untuk mendekripsi ciphertext
mencakup konteks enkripsi yang Anda berikan saat mengenkripsi.

Verifikasi bahwa konteks enkripsi yang digunakan pada enkripsi disertakan dalam konteks
enkripsi yang digunakan untuk mendekripsi ciphertext. AWS Encryption SDK Menambahkan
pasangan ke konteks enkripsi, termasuk tanda tangan digital jika Anda menggunakan rangkaian
algoritme dengan penandatanganan, seperti rangkaian algoritme default.

// Verify the encryption context
string contextKey = "purpose";
string contextValue = "test";

if (!decryptOutput.EncryptionContext.TryGetValue(contextKey, out var
 decryptContextValue)
 || !decryptContextValue.Equals(contextValue))
{
 throw new Exception("Encryption context does not match expected values");
}

AWS Encryption SDK untuk Go

Topik ini menjelaskan cara menginstal dan menggunakan AWS Encryption SDK for Go. Untuk detail
tentang pemrograman dengan AWS Encryption SDK for Go, lihat direktori go dari aws-encryption-sdk
repositori di. GitHub

Go 250

https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/

AWS Encryption SDK Panduan Developerr

The AWS Encryption SDK for Go berbeda dari beberapa implementasi bahasa pemrograman lainnya
dengan AWS Encryption SDK cara berikut:

• Tidak ada dukungan untuk caching kunci data. Namun, AWS Encryption SDK for Go mendukung
keyring AWS KMS Hierarchical, solusi caching bahan kriptografi alternatif.

• Tidak ada dukungan untuk streaming data

The AWS Encryption SDK for Go mencakup semua fitur keamanan yang diperkenalkan di versi 2.0.
x dan yang lebih baru dari implementasi bahasa lain dari. AWS Encryption SDK Namun, jika Anda
menggunakan AWS Encryption SDK for Go untuk mendekripsi data yang dienkripsi oleh pra-2.0.
x versi implementasi bahasa lain dari AWS Encryption SDK, Anda mungkin perlu menyesuaikan
kebijakan komitmen Anda. Lihat perinciannya di Cara menetapkan kebijakan komitmen Anda.

The AWS Encryption SDK for Go adalah produk dari AWS Encryption SDK in Dafny, bahasa
verifikasi formal di mana Anda menulis spesifikasi, kode untuk mengimplementasikannya, dan
bukti untuk mengujinya. Hasilnya adalah perpustakaan yang mengimplementasikan fitur-fitur AWS
Encryption SDK dalam kerangka kerja yang menjamin kebenaran fungsional.

Pelajari Lebih Lanjut

• Untuk contoh yang menunjukkan cara mengonfigurasi opsi di AWS Encryption SDK, seperti
menentukan rangkaian algoritme alternatif, membatasi kunci data terenkripsi, dan menggunakan
kunci AWS KMS Multi-region, lihat. Mengkonfigurasi AWS Encryption SDK

• Untuk contoh yang menunjukkan cara mengonfigurasi dan menggunakan AWS Encryption SDK for
Go, lihat contoh Go di aws-encryption-sdk repositori aktif. GitHub

Topik

• Prasyarat

• Penginstalan

Prasyarat

Sebelum Anda menginstal AWS Encryption SDK for Go, pastikan Anda memiliki prasyarat berikut.

Versi Go yang didukung

Go 1.23 atau yang lebih baru diperlukan oleh AWS Encryption SDK for Go.

Prasyarat 251

https://github.com/dafny-lang/dafny/blob/master/README.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/examples

AWS Encryption SDK Panduan Developerr

Untuk informasi selengkapnya tentang mengunduh dan menginstal Go, lihat Instalasi Go.

Penginstalan

Instal versi terbaru AWS Encryption SDK untuk Go. Untuk detail tentang menginstal dan membangun
AWS Encryption SDK untuk Go, lihat README.md di direktori go repositori di aws-encryption-sdk.
GitHub

Pasang versi terbaru

• Instal AWS Encryption SDK untuk Go

go get github.com/aws/aws-encryption-sdk/releases/go/encryption-sdk@latest

• Instal Perpustakaan Penyedia Materi Kriptografi (MPL)

go get github.com/aws/aws-cryptographic-material-providers-library/releases/go/mpl

AWS Encryption SDK for Java

Topik ini menjelaskan cara menginstal dan menggunakan AWS Encryption SDK for Java. Untuk
detail tentang pemrograman dengan AWS Encryption SDK for Java, lihat aws-encryption-sdk-
javarepositori di. GitHub Untuk dokumentasi API, lihat Javadoc untuk dokumen. AWS Encryption
SDK for Java

Topik

• Prasyarat

• Penginstalan

• AWS Encryption SDK for Java contoh

Prasyarat

Sebelum Anda menginstal AWS Encryption SDK for Java, pastikan Anda memiliki prasyarat berikut.

Penginstalan 252

https://go.dev/doc/install
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/README.md
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://aws.github.io/aws-encryption-sdk-java/

AWS Encryption SDK Panduan Developerr

Lingkungan pengembangan Java

Anda akan membutuhkan Java 8 atau yang lebih baru. Di situs web Oracle, buka Unduhan Java
SE, kemudian unduh dan instal Java SE Development Kit (JDK).

Jika Anda menggunakan Oracle JDK, Anda juga harus mengunduh dan menginstal File Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy.

Kastil Goyang

AWS Encryption SDK for Java Membutuhkan Kastil Bouncy.

• AWS Encryption SDK for Java versi 1.6.1 dan yang lebih baru menggunakan Bouncy Castle
untuk membuat serial dan deserialisasi objek kriptografi. Anda dapat menggunakan Bouncy
Castle atau Bouncy Castle FIPS untuk memenuhi persyaratan ini. Untuk bantuan menginstal
dan mengonfigurasi FIPS Bouncy Castle, lihat Dokumentasi BC FIPS, terutama Panduan
Pengguna dan Kebijakan Keamanan. PDFs

• Versi sebelumnya AWS Encryption SDK for Java menggunakan API kriptografi Bouncy Castle
untuk Java. Persyaratan ini hanya dipenuhi oleh Kastil Bouncy non-FIPS.

Jika Anda tidak memiliki Bouncy Castle, buka Unduh Bouncy Castle for Java untuk mengunduh
file penyedia yang sesuai dengan JDK Anda. Anda juga dapat menggunakan Apache Maven
untuk mendapatkan artefak untuk penyedia Bouncy Castle standar (bcprov-ext-jdk15on) atau
artefak untuk Bouncy Castle FIPS (bc-fips).

AWS SDK for Java

Versi 3. x dari AWS Encryption SDK for Java membutuhkan AWS SDK for Java 2.x, bahkan jika
Anda tidak menggunakan AWS KMS gantungan kunci.

Versi 2. x atau sebelumnya AWS Encryption SDK for Java tidak memerlukan AWS SDK for Java.
Namun, AWS SDK for Java diperlukan untuk menggunakan AWS Key Management Service(AWS
KMS) sebagai penyedia kunci utama. Dimulai pada AWS Encryption SDK for Java versi 2.4.0,
AWS Encryption SDK for Java mendukung versi 1.x dan 2.x dari versi. AWS SDK for Java AWS
Encryption SDK kode untuk AWS SDK for Java 1.x dan 2.x dapat dioperasikan. Misalnya, Anda
dapat mengenkripsi data dengan AWS Encryption SDK kode yang mendukung AWS SDK for
Java 1.x dan mendekripsi menggunakan kode yang mendukung AWS SDK for Java 2.x (atau
sebaliknya). Versi yang AWS Encryption SDK for Java lebih awal dari 2.4.0 hanya mendukung
AWS SDK for Java 1.x. Untuk informasi tentang memperbarui versi Anda AWS Encryption SDK,
lihatMigrasi Anda AWS Encryption SDK.

Prasyarat 253

https://www.oracle.com/java/technologies/downloads/
https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://www.bouncycastle.org/download/bouncy-castle-java/
https://www.bouncycastle.org/about/bouncy-castle-fips-faq/
https://www.bouncycastle.org/documentation/
https://bouncycastle.org/download/bouncy-castle-java/
https://maven.apache.org/
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://mvnrepository.com/artifact/org.bouncycastle/bcprov-ext-jdk15on
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://mvnrepository.com/artifact/org.bouncycastle/bc-fips
https://aws.amazon.com/kms/

AWS Encryption SDK Panduan Developerr

Saat memperbarui AWS Encryption SDK for Java kode Anda dari AWS SDK for Java 1.x ke
AWS SDK for Java 2.x, ganti referensi ke AWSKMSantarmuka di AWS SDK for Java 1.x dengan
referensi ke KmsClientantarmuka di. AWS SDK for Java 2.x AWS Encryption SDK for Java
Tidak mendukung KmsAsyncClientantarmuka. Juga, perbarui kode Anda untuk menggunakan
objek AWS KMS-related di kmssdkv2 namespace, bukan namespace. kms

Untuk menginstal AWS SDK for Java, gunakan Apache Maven.

• Untuk mengimpor keseluruhan AWS SDK for Java sebagai dependensi, deklarasikan dalam file
Anda. pom.xml

• Untuk membuat dependensi hanya untuk AWS KMS modul di AWS SDK for Java 1.x, ikuti
instruksi untuk menentukan modul tertentu, dan atur ke. artifactId aws-java-sdk-kms

• Untuk membuat dependensi hanya untuk AWS KMS modul di AWS SDK for Java 2.x, ikuti
instruksi untuk menentukan modul tertentu. Atur groupId ke software.amazon.awssdk dan
artifactId kekms.

Untuk perubahan lainnya, lihat Apa yang berbeda antara AWS SDK for Java 1.x dan 2.x di
Panduan AWS SDK for Java 2.x Pengembang.

Contoh Java dalam Panduan AWS Encryption SDK Pengembang menggunakan file AWS SDK for
Java 2.x.

Penginstalan

Instal versi terbaru dari file AWS Encryption SDK for Java.

Note

Semua versi yang AWS Encryption SDK for Java lebih awal dari 2.0.0 sedang dalam fase.
end-of-support
Anda dapat memperbarui dengan aman dari versi 2.0. x dan yang lebih baru ke versi terbaru
AWS Encryption SDK for Java tanpa kode atau perubahan data. Namun, fitur keamanan
baru diperkenalkan di versi 2.0. x tidak kompatibel ke belakang. Untuk memperbarui dari
versi lebih awal dari 1.7. x ke versi 2.0. x dan yang lebih baru, Anda harus terlebih dahulu
memperbarui ke yang terbaru 1. x versi AWS Encryption SDK. Lihat perinciannya di Migrasi
Anda AWS Encryption SDK.

Anda dapat menginstal dengan cara berikut. AWS Encryption SDK for Java

Penginstalan 254

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/kms/KmsAsyncClient.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-whats-different.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

Secara manual

Untuk menginstal AWS Encryption SDK for Java, kloning atau unduh aws-encryption-sdk-java
GitHubrepositori.

Menggunakan Apache Maven

AWS Encryption SDK for Java Ini tersedia melalui Apache Maven dengan definisi ketergantungan
berikut.

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-encryption-sdk-java</artifactId>
 <version>3.0.0</version>
</dependency>

Setelah Anda menginstal SDK, mulailah dengan melihat contoh kode Java dalam panduan ini dan
Javadoc aktif. GitHub

AWS Encryption SDK for Java contoh

Contoh berikut menunjukkan cara menggunakan untuk mengenkripsi dan AWS Encryption SDK
for Java mendekripsi data. Contoh-contoh ini menunjukkan cara menggunakan versi 3. x dan
yang lebih baru AWS Encryption SDK for Java. Versi 3. x dari yang AWS Encryption SDK for Java
membutuhkan AWS SDK for Java 2.x. Versi 3. x dari AWS Encryption SDK for Java menggantikan
penyedia kunci master dengan keyrings. Untuk contoh yang menggunakan versi sebelumnya,
temukan rilis Anda di daftar Rilis aws-encryption-sdk-javarepositori di. GitHub

Topik

• Mengenkripsi dan mendekripsi string

• Mengenkripsi dan mendekripsi aliran byte

• Mengenkripsi dan mendekripsi aliran byte dengan multi-keyring

Mengenkripsi dan mendekripsi string

Contoh berikut menunjukkan cara menggunakan versi 3. x dari AWS Encryption SDK for Java untuk
mengenkripsi dan mendekripsi string. Sebelum menggunakan string, ubah menjadi array byte.

Contoh 255

https://github.com/aws/aws-encryption-sdk-java/
https://maven.apache.org/
https://aws.github.io/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/releases

AWS Encryption SDK Panduan Developerr

Contoh ini menggunakan AWS KMS keyring. Saat Anda mengenkripsi dengan AWS KMS keyring,
Anda dapat menggunakan ID kunci, ARN kunci, nama alias, atau alias ARN untuk mengidentifikasi
kunci KMS. Saat mendekripsi, Anda harus menggunakan ARN kunci untuk mengidentifikasi kunci
KMS.

Ketika Anda memanggil encryptData() metode, ia mengembalikan pesan terenkripsi
(CryptoResult) yang mencakup ciphertext, kunci data terenkripsi, dan konteks enkripsi. Ketika
Anda memanggil getResult CryptoResult objek, ia mengembalikan versi string yang dikodekan
basis-64 dari pesan terenkripsi yang dapat Anda teruskan ke metode. decryptData()

Demikian pula, ketika Anda memanggildecryptData(), CryptoResult objek yang dikembalikan
berisi pesan teks biasa AWS KMS key dan ID. Sebelum aplikasi Anda mengembalikan plaintext,
verifikasi bahwa AWS KMS key ID dan konteks enkripsi dalam pesan terenkripsi adalah yang Anda
harapkan.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoResult;
import software.amazon.cryptography.materialproviders.IKeyring;
import software.amazon.cryptography.materialproviders.MaterialProviders;
import
 software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;
import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.Collections;
import java.util.Map;

/**
 * Encrypts and then decrypts data using an AWS KMS Keyring.
 *
 * <p>Arguments:
 *
 *
 * Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS
 customer master

Contoh 256

AWS Encryption SDK Panduan Developerr

 * key (CMK), see 'Viewing Keys' at
 * http://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
 *
 */
public class BasicEncryptionKeyringExample {

 private static final byte[] EXAMPLE_DATA = "Hello
 World".getBytes(StandardCharsets.UTF_8);

 public static void main(final String[] args) {
 final String keyArn = args[0];

 encryptAndDecryptWithKeyring(keyArn);
 }

 public static void encryptAndDecryptWithKeyring(final String keyArn) {
 // 1. Instantiate the SDK
 // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
 commitment policy,
 // which means this client only encrypts using committing algorithm suites and
 enforces
 // that the client will only decrypt encrypted messages that were created with a
 committing
 // algorithm suite.
 // This is the default commitment policy if you build the client with
 // `AwsCrypto.builder().build()`
 // or `AwsCrypto.standard()`.
 final AwsCrypto crypto =
 AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

 // 2. Create the AWS KMS keyring.
 // This example creates a multi keyring, which automatically creates the KMS
 client.
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMultiKeyringInput keyringInput =
 CreateAwsKmsMultiKeyringInput.builder().generator(keyArn).build();
 final IKeyring kmsKeyring =
 materialProviders.CreateAwsKmsMultiKeyring(keyringInput);

Contoh 257

AWS Encryption SDK Panduan Developerr

 // 3. Create an encryption context
 // We recommend using an encryption context whenever possible
 // to protect integrity. This sample uses placeholder values.
 // For more information see:
 // blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-Integrity-
of-Your-Encrypted-Data-by-Using-AWS-Key-Management
 final Map<String, String> encryptionContext =
 Collections.singletonMap("ExampleContextKey", "ExampleContextValue");

 // 4. Encrypt the data
 final CryptoResult<byte[], ?> encryptResult =
 crypto.encryptData(kmsKeyring, EXAMPLE_DATA, encryptionContext);
 final byte[] ciphertext = encryptResult.getResult();

 // 5. Decrypt the data
 final CryptoResult<byte[], ?> decryptResult =
 crypto.decryptData(
 kmsKeyring,
 ciphertext,
 // Verify that the encryption context in the result contains the
 // encryption context supplied to the encryptData method
 encryptionContext);

 // 6. Verify that the decrypted plaintext matches the original plaintext
 assert Arrays.equals(decryptResult.getResult(), EXAMPLE_DATA);
 }
}

Mengenkripsi dan mendekripsi aliran byte

Contoh berikut menunjukkan cara menggunakan untuk mengenkripsi dan AWS Encryption SDK
mendekripsi aliran byte.

Contoh ini menggunakan keyring Raw AES.

Saat mengenkripsi, contoh ini menggunakan
AwsCrypto.builder() .withEncryptionAlgorithm() metode
untuk menentukan rangkaian algoritma tanpa tanda tangan digital. Saat
mendekripsi, untuk memastikan bahwa ciphertext tidak ditandatangani, contoh ini
menggunakan metode ini. createUnsignedMessageDecryptingStream()
createUnsignedMessageDecryptingStream()Metode, gagal jika menemukan ciphertext
dengan tanda tangan digital.

Contoh 258

AWS Encryption SDK Panduan Developerr

Jika Anda mengenkripsi dengan rangkaian algoritme default, yang menyertakan tanda tangan digital,
gunakan createDecryptingStream() metode ini sebagai gantinya, seperti yang ditunjukkan
pada contoh berikutnya.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoAlgorithm;
import com.amazonaws.encryptionsdk.CryptoInputStream;
import com.amazonaws.encryptionsdk.jce.JceMasterKey;
import com.amazonaws.util.IOUtils;
import software.amazon.cryptography.materialproviders.IKeyring;
import software.amazon.cryptography.materialproviders.MaterialProviders;
import software.amazon.cryptography.materialproviders.model.AesWrappingAlg;
import software.amazon.cryptography.materialproviders.model.CreateRawAesKeyringInput;
import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.security.SecureRandom;
import java.util.Collections;
import java.util.Map;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;

/**
 * <p>
 * Encrypts and then decrypts a file under a random key.
 *
 * <p>
 * Arguments:
 *
 * Name of file containing plaintext data to encrypt
 *
 *
 * <p>

Contoh 259

AWS Encryption SDK Panduan Developerr

 * This program demonstrates using a standard Java {@link SecretKey} object as a {@link
 IKeyring} to
 * encrypt and decrypt streaming data.
 */
public class FileStreamingKeyringExample {
 private static String srcFile;

 public static void main(String[] args) throws IOException {
 srcFile = args[0];

 // In this example, we generate a random key. In practice,
 // you would get a key from an existing store
 SecretKey cryptoKey = retrieveEncryptionKey();

 // Create a Raw Aes Keyring using the random key and an AES-GCM encryption
 algorithm
 final MaterialProviders materialProviders = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateRawAesKeyringInput keyringInput =
 CreateRawAesKeyringInput.builder()
 .wrappingKey(ByteBuffer.wrap(cryptoKey.getEncoded()))
 .keyNamespace("Example")
 .keyName("RandomKey")
 .wrappingAlg(AesWrappingAlg.ALG_AES128_GCM_IV12_TAG16)
 .build();
 IKeyring keyring = materialProviders.CreateRawAesKeyring(keyringInput);

 // Instantiate the SDK.
 // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
 commitment policy,
 // which means this client only encrypts using committing algorithm suites and
 enforces
 // that the client will only decrypt encrypted messages that were created with
 a committing
 // algorithm suite.
 // This is the default commitment policy if you build the client with
 // `AwsCrypto.builder().build()`
 // or `AwsCrypto.standard()`.
 // This example encrypts with an algorithm suite that doesn't include signing
 for faster decryption,
 // since this use case assumes that the contexts that encrypt and decrypt are
 equally trusted.
 final AwsCrypto crypto = AwsCrypto.builder()

Contoh 260

AWS Encryption SDK Panduan Developerr

 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)

 .withEncryptionAlgorithm(CryptoAlgorithm.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY)
 .build();

 // Create an encryption context to identify the ciphertext
 Map<String, String> context = Collections.singletonMap("Example",
 "FileStreaming");

 // Because the file might be too large to load into memory, we stream the data,
 instead of
 //loading it all at once.
 FileInputStream in = new FileInputStream(srcFile);
 CryptoInputStream<JceMasterKey> encryptingStream =
 crypto.createEncryptingStream(keyring, in, context);

 FileOutputStream out = new FileOutputStream(srcFile + ".encrypted");
 IOUtils.copy(encryptingStream, out);
 encryptingStream.close();
 out.close();

 // Decrypt the file. Verify the encryption context before returning the
 plaintext.
 // Since the data was encrypted using an unsigned algorithm suite, use the
 recommended
 // createUnsignedMessageDecryptingStream method, which only accepts unsigned
 messages.
 in = new FileInputStream(srcFile + ".encrypted");
 CryptoInputStream<JceMasterKey> decryptingStream =
 crypto.createUnsignedMessageDecryptingStream(keyring, in);
 // Does it contain the expected encryption context?
 if
 (!"FileStreaming".equals(decryptingStream.getCryptoResult().getEncryptionContext().get("Example")))
 {
 throw new IllegalStateException("Bad encryption context");
 }

 // Write the plaintext data to disk.
 out = new FileOutputStream(srcFile + ".decrypted");
 IOUtils.copy(decryptingStream, out);
 decryptingStream.close();
 out.close();
 }

Contoh 261

AWS Encryption SDK Panduan Developerr

 /**
 * In practice, this key would be saved in a secure location.
 * For this demo, we generate a new random key for each operation.
 */
 private static SecretKey retrieveEncryptionKey() {
 SecureRandom rnd = new SecureRandom();
 byte[] rawKey = new byte[16]; // 128 bits
 rnd.nextBytes(rawKey);
 return new SecretKeySpec(rawKey, "AES");
 }
}

Mengenkripsi dan mendekripsi aliran byte dengan multi-keyring

Contoh berikut menunjukkan cara menggunakan AWS Encryption SDK dengan multi-keyring. Bila
Anda menggunakan multi-keyring untuk mengenkripsi data, salah satu kunci pembungkus di salah
satu keyrings nya dapat mendekripsi data tersebut. Contoh ini menggunakan AWS KMS keyring dan
keyring Raw RSA sebagai keyring anak.

Contoh ini mengenkripsi dengan rangkaian algoritme default, yang mencakup tanda tangan digital.
Saat streaming, AWS Encryption SDK rilis plaintext setelah pemeriksaan integritas, tetapi sebelum
memverifikasi tanda tangan digital. Untuk menghindari penggunaan plaintext sampai tanda tangan
diverifikasi, contoh ini menyangga plaintext, dan menuliskannya ke disk hanya ketika dekripsi dan
verifikasi selesai.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.keyrings;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoOutputStream;
import com.amazonaws.util.IOUtils;
import software.amazon.cryptography.materialproviders.IKeyring;
import software.amazon.cryptography.materialproviders.MaterialProviders;
import
 software.amazon.cryptography.materialproviders.model.CreateAwsKmsMultiKeyringInput;
import software.amazon.cryptography.materialproviders.model.CreateMultiKeyringInput;
import software.amazon.cryptography.materialproviders.model.CreateRawRsaKeyringInput;
import software.amazon.cryptography.materialproviders.model.MaterialProvidersConfig;
import software.amazon.cryptography.materialproviders.model.PaddingScheme;

Contoh 262

AWS Encryption SDK Panduan Developerr

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.nio.ByteBuffer;
import java.security.GeneralSecurityException;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.util.Collections;

/**
 * <p>
 * Encrypts a file using both AWS KMS Key and an asymmetric key pair.
 *
 * <p>
 * Arguments:
 *
 * Key ARN: For help finding the Amazon Resource Name (ARN) of your AWS KMS key,
 * see 'Viewing Keys' at http://docs.aws.amazon.com/kms/latest/developerguide/
viewing-keys.html
 *
 * Name of file containing plaintext data to encrypt
 *
 * <p>
 * You might use AWS Key Management Service (AWS KMS) for most encryption and
 decryption operations, but
 * still want the option of decrypting your data offline independently of AWS KMS. This
 sample
 * demonstrates one way to do this.
 * <p>
 * The sample encrypts data under both an AWS KMS key and an "escrowed" RSA key pair
 * so that either key alone can decrypt it. You might commonly use the AWS KMS key for
 decryption. However,
 * at any time, you can use the private RSA key to decrypt the ciphertext independent
 of AWS KMS.
 * <p>
 * This sample uses the RawRsaKeyring to generate a RSA public-private key pair
 * and saves the key pair in memory. In practice, you would store the private key in a
 secure offline
 * location, such as an offline HSM, and distribute the public key to your development
 team.
 */
public class EscrowedEncryptKeyringExample {

Contoh 263

AWS Encryption SDK Panduan Developerr

 private static ByteBuffer publicEscrowKey;
 private static ByteBuffer privateEscrowKey;

 public static void main(final String[] args) throws Exception {
 // This sample generates a new random key for each operation.
 // In practice, you would distribute the public key and save the private key in
 secure
 // storage.
 generateEscrowKeyPair();

 final String kmsArn = args[0];
 final String fileName = args[1];

 standardEncrypt(kmsArn, fileName);
 standardDecrypt(kmsArn, fileName);

 escrowDecrypt(fileName);
 }

 private static void standardEncrypt(final String kmsArn, final String fileName)
 throws Exception {
 // Encrypt with the KMS key and the escrowed public key
 // 1. Instantiate the SDK
 // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
 commitment policy,
 // which means this client only encrypts using committing algorithm suites and
 enforces
 // that the client will only decrypt encrypted messages that were created with
 a committing
 // algorithm suite.
 // This is the default commitment policy if you build the client with
 // `AwsCrypto.builder().build()`
 // or `AwsCrypto.standard()`.
 final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

 // 2. Create the AWS KMS keyring.
 // This example creates a multi keyring, which automatically creates the KMS
 client.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

Contoh 264

AWS Encryption SDK Panduan Developerr

 final CreateAwsKmsMultiKeyringInput keyringInput =
 CreateAwsKmsMultiKeyringInput.builder()
 .generator(kmsArn)
 .build();
 IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

 // 3. Create the Raw Rsa Keyring with Public Key.
 final CreateRawRsaKeyringInput encryptingKeyringInput =
 CreateRawRsaKeyringInput.builder()
 .keyName("Escrow")
 .keyNamespace("Escrow")
 .paddingScheme(PaddingScheme.OAEP_SHA512_MGF1)
 .publicKey(publicEscrowKey)
 .build();
 IKeyring rsaPublicKeyring =
 matProv.CreateRawRsaKeyring(encryptingKeyringInput);

 // 4. Create the multi-keyring.
 final CreateMultiKeyringInput createMultiKeyringInput =
 CreateMultiKeyringInput.builder()
 .generator(kmsKeyring)
 .childKeyrings(Collections.singletonList(rsaPublicKeyring))
 .build();
 IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

 // 5. Encrypt the file
 // To simplify this code example, we omit the encryption context. Production
 code should always
 // use an encryption context.
 final FileInputStream in = new FileInputStream(fileName);
 final FileOutputStream out = new FileOutputStream(fileName + ".encrypted");
 final CryptoOutputStream<?> encryptingStream =
 crypto.createEncryptingStream(multiKeyring, out);

 IOUtils.copy(in, encryptingStream);
 in.close();
 encryptingStream.close();
 }

 private static void standardDecrypt(final String kmsArn, final String fileName)
 throws Exception {
 // Decrypt with the AWS KMS key and the escrow public key.

 // 1. Instantiate the SDK.

Contoh 265

AWS Encryption SDK Panduan Developerr

 // This builds the AwsCrypto client with the RequireEncryptRequireDecrypt
 commitment policy,
 // which means this client only encrypts using committing algorithm suites and
 enforces
 // that the client will only decrypt encrypted messages that were created with
 a committing
 // algorithm suite.
 // This is the default commitment policy if you build the client with
 // `AwsCrypto.builder().build()`
 // or `AwsCrypto.standard()`.
 final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

 // 2. Create the AWS KMS keyring.
 // This example creates a multi keyring, which automatically creates the KMS
 client.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMultiKeyringInput keyringInput =
 CreateAwsKmsMultiKeyringInput.builder()
 .generator(kmsArn)
 .build();
 IKeyring kmsKeyring = matProv.CreateAwsKmsMultiKeyring(keyringInput);

 // 3. Create the Raw Rsa Keyring with Public Key.
 final CreateRawRsaKeyringInput encryptingKeyringInput =
 CreateRawRsaKeyringInput.builder()
 .keyName("Escrow")
 .keyNamespace("Escrow")
 .paddingScheme(PaddingScheme.OAEP_SHA512_MGF1)
 .publicKey(publicEscrowKey)
 .build();
 IKeyring rsaPublicKeyring =
 matProv.CreateRawRsaKeyring(encryptingKeyringInput);

 // 4. Create the multi-keyring.
 final CreateMultiKeyringInput createMultiKeyringInput =
 CreateMultiKeyringInput.builder()
 .generator(kmsKeyring)
 .childKeyrings(Collections.singletonList(rsaPublicKeyring))
 .build();
 IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Contoh 266

AWS Encryption SDK Panduan Developerr

 // 5. Decrypt the file
 // To simplify this code example, we omit the encryption context. Production
 code should always
 // use an encryption context.
 final FileInputStream in = new FileInputStream(fileName + ".encrypted");
 final FileOutputStream out = new FileOutputStream(fileName + ".decrypted");
 // Since we are using a signing algorithm suite, we avoid streaming decryption
 directly to the output file,
 // to ensure that the trailing signature is verified before writing any
 untrusted plaintext to disk.
 final ByteArrayOutputStream plaintextBuffer = new ByteArrayOutputStream();
 final CryptoOutputStream<?> decryptingStream =
 crypto.createDecryptingStream(multiKeyring, plaintextBuffer);
 IOUtils.copy(in, decryptingStream);
 in.close();
 decryptingStream.close();
 final ByteArrayInputStream plaintextReader = new
 ByteArrayInputStream(plaintextBuffer.toByteArray());
 IOUtils.copy(plaintextReader, out);
 out.close();
 }

 private static void escrowDecrypt(final String fileName) throws Exception {
 // You can decrypt the stream using only the private key.
 // This method does not call AWS KMS.

 // 1. Instantiate the SDK
 final AwsCrypto crypto = AwsCrypto.standard();

 // 2. Create the Raw Rsa Keyring with Private Key.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateRawRsaKeyringInput encryptingKeyringInput =
 CreateRawRsaKeyringInput.builder()
 .keyName("Escrow")
 .keyNamespace("Escrow")
 .paddingScheme(PaddingScheme.OAEP_SHA512_MGF1)
 .publicKey(publicEscrowKey)
 .privateKey(privateEscrowKey)
 .build();
 IKeyring escrowPrivateKeyring =
 matProv.CreateRawRsaKeyring(encryptingKeyringInput);

Contoh 267

AWS Encryption SDK Panduan Developerr

 // 3. Decrypt the file
 // To simplify this code example, we omit the encryption context. Production
 code should always
 // use an encryption context.
 final FileInputStream in = new FileInputStream(fileName + ".encrypted");
 final FileOutputStream out = new FileOutputStream(fileName + ".deescrowed");
 final CryptoOutputStream<?> decryptingStream =
 crypto.createDecryptingStream(escrowPrivateKeyring, out);
 IOUtils.copy(in, decryptingStream);
 in.close();
 decryptingStream.close();

 }

 private static void generateEscrowKeyPair() throws GeneralSecurityException {
 final KeyPairGenerator kg = KeyPairGenerator.getInstance("RSA");
 kg.initialize(4096); // Escrow keys should be very strong
 final KeyPair keyPair = kg.generateKeyPair();
 publicEscrowKey = RawRsaKeyringExample.getPEMPublicKey(keyPair.getPublic());
 privateEscrowKey = RawRsaKeyringExample.getPEMPrivateKey(keyPair.getPrivate());

 }
}

AWS Encryption SDK for JavaScript
AWS Encryption SDK for JavaScript Ini dirancang untuk menyediakan pustaka enkripsi sisi klien
untuk pengembang yang menulis aplikasi browser web di JavaScript atau aplikasi server web di
Node.js.

Seperti semua implementasi AWS Encryption SDK, AWS Encryption SDK for JavaScript
menawarkan fitur perlindungan data tingkat lanjut. Ini termasuk enkripsi amplop, data otentikasi
tambahan (AAD), dan rangkaian algoritma kunci simetris yang aman, diautentikasi, seperti AES-GCM
256-bit dengan derivasi dan penandatanganan kunci.

Semua implementasi khusus bahasa dirancang agar dapat dioperasikan, tunduk pada kendala
bahasa. AWS Encryption SDK Untuk detail tentang batasan bahasa, lihat. JavaScript the section
called “Kompatibilitas”

Pelajari Lebih Lanjut

JavaScript 268

AWS Encryption SDK Panduan Developerr

• Untuk detail tentang pemrograman dengan AWS Encryption SDK for JavaScript, lihat aws-
encryption-sdk-javascriptrepositori di. GitHub

• Untuk contoh pemrograman, lihat the section called “Contoh” dan modul example-browser dan
example-node di repositori. aws-encryption-sdk-javascript

• Untuk contoh dunia nyata menggunakan data AWS Encryption SDK for JavaScript untuk
mengenkripsi dalam aplikasi web, lihat Cara mengaktifkan enkripsi di browser dengan AWS
Encryption SDK for JavaScript dan Node.js di Blog AWS Keamanan.

Topik

• Kompatibilitas AWS Encryption SDK for JavaScript

• Memasang AWS Encryption SDK for JavaScript

• Modul di AWS Encryption SDK for JavaScript

• AWS Encryption SDK for JavaScript contoh

Kompatibilitas AWS Encryption SDK for JavaScript

AWS Encryption SDK for JavaScript Ini dirancang untuk dapat dioperasikan dengan implementasi
bahasa lain dari. AWS Encryption SDK Dalam kebanyakan kasus, Anda dapat mengenkripsi
data dengan AWS Encryption SDK for JavaScript dan mendekripsi dengan implementasi bahasa
lain, termasuk Antarmuka Baris AWS Encryption SDK Perintah. Dan Anda dapat menggunakan
AWS Encryption SDK for JavaScript untuk mendekripsi pesan terenkripsi yang dihasilkan oleh
implementasi bahasa lain dari. AWS Encryption SDK

Namun, ketika Anda menggunakan AWS Encryption SDK for JavaScript, Anda perlu menyadari
beberapa masalah kompatibilitas dalam implementasi JavaScript bahasa dan di browser web.

Selain itu, saat menggunakan implementasi bahasa yang berbeda, pastikan untuk mengonfigurasi
penyedia kunci master, kunci master, dan gantungan kunci yang kompatibel. Lihat perinciannya di
Kompatibilitas keyring.

AWS Encryption SDK for JavaScript kompatibilitas

JavaScript Implementasi AWS Encryption SDK berbeda dari implementasi bahasa lain dengan cara
berikut:

Kompatibilitas 269

https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/
https://aws.amazon.com/blogs/security/how-to-enable-encryption-browser-aws-encryption-sdk-javascript-node-js/

AWS Encryption SDK Panduan Developerr

• Operasi enkripsi AWS Encryption SDK for JavaScript tidak mengembalikan ciphertext nonframed.
Namun, AWS Encryption SDK for JavaScript wasiat mendekripsi ciphertext berbingkai dan tidak
dibingkai yang dikembalikan oleh implementasi bahasa lain dari. AWS Encryption SDK

• Mulai dari Node.js versi 12.9.0, Node.js mendukung opsi pembungkus kunci RSA berikut:

• OAEP dengan SHA1,, SHA256, SHA384 atau SHA512

• OAEP dengan dan dengan SHA1 MGF1 SHA1

• PKCS1v15

• Sebelum versi 12.9.0, Node.js hanya mendukung opsi pembungkus kunci RSA berikut:

• OAEP dengan dan dengan SHA1 MGF1 SHA1

• PKCS1v15

Kompabilitas peramban

Beberapa browser web tidak mendukung operasi kriptografi dasar yang AWS Encryption SDK
for JavaScript diperlukan. Anda dapat mengkompensasi beberapa operasi yang hilang dengan
mengonfigurasi fallback untuk WebCrypto API yang diterapkan browser.

Keterbatasan browser web

Keterbatasan berikut umum untuk semua browser web:

• WebCrypto API tidak mendukung pembungkus PKCS1v15 kunci.

• Browser tidak mendukung kunci 192-bit.

Operasi kriptografi yang diperlukan

Ini AWS Encryption SDK for JavaScript membutuhkan operasi berikut di browser web. Jika browser
tidak mendukung operasi ini, itu tidak kompatibel dengan. AWS Encryption SDK for JavaScript

• Browser harus menyertakancrypto.getRandomValues(), yang merupakan metode
untuk menghasilkan nilai acak kriptografis. Untuk informasi tentang versi browser web yang
mendukungcrypto.getRandomValues(), lihat Dapatkah Saya Menggunakan kripto.
getRandomValues()? .

Fallback yang dibutuhkan

Kompatibilitas 270

https://caniuse.com/#feat=getrandomvalues
https://caniuse.com/#feat=getrandomvalues

AWS Encryption SDK Panduan Developerr

Ini AWS Encryption SDK for JavaScript membutuhkan perpustakaan dan operasi berikut di browser
web. Jika Anda mendukung browser web yang tidak memenuhi persyaratan ini, Anda harus
mengonfigurasi fallback. Jika tidak, upaya untuk AWS Encryption SDK for JavaScript menggunakan
browser akan gagal.

• WebCrypto API, yang melakukan operasi kriptografi dasar dalam aplikasi web, tidak tersedia untuk
semua browser. Untuk informasi tentang versi browser web yang mendukung kriptografi web, lihat
Dapatkah Saya Menggunakan Kriptografi Web? .

• Versi modern dari browser web Safari tidak mendukung enkripsi AES-GCM nol byte, yang
diperlukan. AWS Encryption SDK Jika browser mengimplementasikan WebCrypto API, tetapi
tidak dapat menggunakan AES-GCM untuk mengenkripsi nol byte, browser AWS Encryption SDK
for JavaScript menggunakan pustaka fallback hanya untuk enkripsi nol-byte. Ini menggunakan
WebCrypto API untuk semua operasi lainnya.

Untuk mengonfigurasi fallback untuk salah satu batasan, tambahkan pernyataan berikut ke kode
Anda. Dalam fungsi ConfigurefallBack, tentukan pustaka yang mendukung fitur yang hilang. Contoh
berikut menggunakan Microsoft Research JavaScript Cryptography Library (msrcrypto), tetapi
Anda dapat menggantinya dengan perpustakaan yang kompatibel. Untuk contoh lengkapnya, lihat
fallback.ts.

import { configureFallback } from '@aws-crypto/client-browser'
configureFallback(msrCrypto)

Memasang AWS Encryption SDK for JavaScript

AWS Encryption SDK for JavaScript Terdiri dari kumpulan modul yang saling bergantung. Beberapa
modul hanyalah kumpulan modul yang dirancang untuk bekerja sama. Beberapa modul dirancang
untuk bekerja secara mandiri. Beberapa modul diperlukan untuk semua implementasi; beberapa
lainnya hanya diperlukan untuk kasus khusus. Untuk informasi tentang modul di AWS Encryption
SDK for JavaScript, lihat Modul di AWS Encryption SDK for JavaScript dan README.md file di
masing-masing modul di aws-encryption-sdk-javascriptrepositori pada. GitHub

Note

Semua versi yang AWS Encryption SDK for JavaScript lebih awal dari 2.0.0 sedang dalam
fase. end-of-support

Penginstalan 271

https://caniuse.com/#feat=cryptography
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/web-crypto-backend/src/backend-factory.ts#L78
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/fallback.ts
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

Anda dapat memperbarui dengan aman dari versi 2.0. x dan yang lebih baru ke versi
terbaru AWS Encryption SDK for JavaScript tanpa kode atau perubahan data. Namun,
fitur keamanan baru diperkenalkan di versi 2.0. x tidak kompatibel ke belakang. Untuk
memperbarui dari versi lebih awal dari 1.7. x ke versi 2.0. x dan yang lebih baru, Anda harus
terlebih dahulu memperbarui ke yang terbaru 1. x versi AWS Encryption SDK for JavaScript.
Lihat perinciannya di Migrasi Anda AWS Encryption SDK.

Untuk menginstal modul, gunakan manajer paket npm.

Misalnya, untuk menginstal client-node modul, yang mencakup semua modul yang Anda
butuhkan untuk memprogram dengan AWS Encryption SDK for JavaScript di Node.js, gunakan
perintah berikut.

npm install @aws-crypto/client-node

Untuk menginstal client-browser modul, yang mencakup semua modul yang perlu Anda program
dengan AWS Encryption SDK for JavaScript di browser, gunakan perintah berikut.

npm install @aws-crypto/client-browser

Untuk contoh kerja tentang cara menggunakan AWS Encryption SDK for JavaScript, lihat contoh di
example-node dan example-browser modul di aws-encryption-sdk-javascriptrepositori pada.
GitHub

Modul di AWS Encryption SDK for JavaScript

Modul di AWS Encryption SDK for JavaScript membuatnya mudah untuk menginstal kode yang Anda
butuhkan untuk proyek Anda.

Modul untuk JavaScript Node.js

simpul klien

Termasuk semua modul yang Anda butuhkan untuk memprogram dengan AWS Encryption SDK
for JavaScript di Node.js.

Modul 272

https://www.npmjs.com/get-npm
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-node

AWS Encryption SDK Panduan Developerr

caching-materials-manager-node

Mengekspor fungsi yang mendukung fitur caching kunci data AWS Encryption SDK for JavaScript
di Node.js.

dekripsi-simpul

Mengekspor fungsi yang mendekripsi dan memverifikasi pesan terenkripsi yang mewakili aliran
data dan data. Termasuk dalam client-node modul.

enkripsi-simpul

Mengekspor fungsi yang mengenkripsi dan menandatangani berbagai jenis data. Termasuk
dalam client-node modul.

contoh-simpul

Mengekspor contoh kerja pemrograman dengan AWS Encryption SDK for JavaScript di Node.js.
Termasuk contoh berbagai jenis gantungan kunci dan berbagai jenis data.

hkdf-simpul

Mengekspor Fungsi Derivasi Kunci (HKDF) berbasis HMAC yang digunakan di Node.js AWS
Encryption SDK for JavaScript dalam rangkaian algoritma tertentu. AWS Encryption SDK for
JavaScript Di browser menggunakan fungsi HKDF asli di API. WebCrypto

integrasi-simpul

Mendefinisikan pengujian yang memverifikasi bahwa AWS Encryption SDK for JavaScript di
Node.js kompatibel dengan implementasi bahasa lain dari file. AWS Encryption SDK

kms-keyring-node

Mengekspor fungsi yang mendukung AWS KMS keyrings di Node.js.

raw-aes-keyring-node

Mengekspor fungsi yang mendukung keyrings Raw AES di Node.js.

raw-rsa-keyring-node

Mengekspor fungsi yang mendukung keyring Raw RSA di Node.js.

Modul 273

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/hkdf-node
https://en.wikipedia.org/wiki/HKDF
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-node

AWS Encryption SDK Panduan Developerr

Modul untuk JavaScript Browser

peramban klien

Termasuk semua modul yang Anda butuhkan untuk memprogram dengan AWS Encryption SDK
for JavaScript di browser.

caching-materials-manager-browser

Mengekspor fungsi yang mendukung fitur caching kunci data untuk JavaScript di browser.

dekripsi-browser

Mengekspor fungsi yang mendekripsi dan memverifikasi pesan terenkripsi yang mewakili aliran
data dan data.

browser terenkripsi

Mengekspor fungsi yang mengenkripsi dan menandatangani berbagai jenis data.

contoh-browser

Contoh kerja pemrograman dengan AWS Encryption SDK for JavaScript di browser. Termasuk
contoh berbagai jenis gantungan kunci dan berbagai jenis data.

integrasi-browser

Mendefinisikan tes yang memverifikasi bahwa AWS Encryption SDK for Java Script di browser
kompatibel dengan implementasi bahasa lain dari file. AWS Encryption SDK

kms-keyring-browser

Mengekspor fungsi yang mendukung AWS KMS keyrings di browser.

raw-aes-keyring-browser

Mengekspor fungsi yang mendukung keyrings Raw AES di browser.

raw-rsa-keyring-browser

Mengekspor fungsi yang mendukung keyring Raw RSA di browser.

Modul untuk semua implementasi

bahan tembolok

Mendukung fitur caching kunci data. Menyediakan kode untuk merakit materi kriptografi yang di-
cache dengan setiap kunci data.

Modul 274

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/client-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/caching-materials-manager-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/decrypt-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/encrypt-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/integration-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-aes-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-rsa-keyring-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/cache-material

AWS Encryption SDK Panduan Developerr

kms-keyring

Mengekspor fungsi yang mendukung keyrings KMS.

manajemen material

Menerapkan manajer bahan kriptografi (CMM).

gantungan kunci mentah

Fungsi ekspor diperlukan untuk gantungan kunci AES dan RSA mentah.

serialisasi

Mengekspor fungsi yang digunakan SDK untuk membuat serial outputnya.

web-crypto-backend

Mengekspor fungsi yang menggunakan WebCrypto API AWS Encryption SDK for JavaScript di
browser.

AWS Encryption SDK for JavaScript contoh

Contoh berikut menunjukkan cara menggunakan untuk mengenkripsi dan AWS Encryption SDK for
JavaScript mendekripsi data.

Anda dapat menemukan lebih banyak contoh penggunaan modul example-node dan example-
browser AWS Encryption SDK for JavaScript di repositori pada. aws-encryption-sdk-javascript GitHub
Modul contoh ini tidak diinstal ketika Anda menginstal client-browser atau client-node modul.

Lihat contoh kode lengkap: Node: kms_simple.ts, Browser: kms_simple.ts

Topik

• Mengenkripsi data dengan keyring AWS KMS

• Mendekripsi data dengan keyring AWS KMS

Mengenkripsi data dengan keyring AWS KMS

Contoh berikut menunjukkan kepada Anda bagaimana menggunakan AWS Encryption SDK for
JavaScript untuk mengenkripsi dan mendekripsi string pendek atau array byte.

Contoh ini menampilkan AWS KMS keyring, jenis keyring yang menggunakan AWS KMS key untuk
menghasilkan dan mengenkripsi kunci data. Untuk bantuan membuat AWS KMS key, lihat Membuat

Contoh 275

https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/kms-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/material-management
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/raw-keyring
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/serialize
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/web-crypto-backend
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-browser
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules/example-node
https://github.com/aws/aws-encryption-sdk-javascript/
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_simple.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/kms_simple.ts
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS Encryption SDK Panduan Developerr

Kunci di Panduan AWS Key Management Service Pengembang. Untuk bantuan mengidentifikasi
AWS KMS keys dalam AWS KMS gantungan kunci, lihat Mengidentifikasi AWS KMS keys dalam
AWS KMS keyring

Langkah 1: Tetapkan kebijakan komitmen.

Dimulai pada versi 1.7. x dari AWS Encryption SDK for JavaScript, Anda dapat mengatur
kebijakan komitmen ketika Anda memanggil buildClient fungsi baru yang membuat instance
AWS Encryption SDK klien. buildClientFungsi ini mengambil nilai yang disebutkan yang
mewakili kebijakan komitmen Anda. Ini mengembalikan decrypt fungsi yang diperbarui
encrypt dan memberlakukan kebijakan komitmen Anda saat Anda mengenkripsi dan
mendekripsi.

Contoh berikut menggunakan buildClient fungsi untuk menentukan kebijakan komitmen
default,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Anda juga dapat menggunakan buildClient
untuk membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Untuk informasi
selengkapnya, lihat the section called “Membatasi kunci data terenkripsi”.

JavaScript Browser

import {
 KmsKeyringBrowser,
 KMS,
 getClient,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

JavaScript Node.js

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT

Contoh 276

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS Encryption SDK Panduan Developerr

)

Langkah 2: Bangun keyring.

Buat AWS KMS keyring untuk enkripsi.

Saat mengenkripsi dengan AWS KMS keyring, Anda harus menentukan kunci generator, yaitu
kunci yang digunakan untuk menghasilkan kunci data plaintext dan mengenkripsinya. AWS KMS
key Anda juga dapat menentukan nol atau lebih kunci tambahan yang mengenkripsi kunci data
teks biasa yang sama. Keyring mengembalikan kunci data plaintext dan satu salinan terenkripsi
dari kunci data tersebut untuk masing-masing AWS KMS key di keyring, termasuk kunci
generator. Untuk mendekripsi data, Anda perlu mendekripsi salah satu kunci data terenkripsi.

Untuk menentukan keyring enkripsi di dalam AWS Encryption SDK for JavaScript, Anda
dapat menggunakan pengenal AWS KMS kunci yang didukung. AWS KMS keys Contoh ini
menggunakan kunci generator, yang diidentifikasi oleh alias ARN, dan satu kunci tambahan, yang
diidentifikasi oleh ARN kunci.

Note

Jika Anda berencana untuk menggunakan kembali AWS KMS keyring Anda untuk
mendekripsi, Anda harus menggunakan kunci ARNs untuk mengidentifikasi di AWS KMS
keys keyring.

Sebelum menjalankan kode ini, ganti AWS KMS key pengidentifikasi contoh dengan
pengidentifikasi yang valid. Anda harus memiliki izin yang diperlukan untuk menggunakan AWS
KMS keys di keyring.

JavaScript Browser

Mulailah dengan memberikan kredensil Anda ke browser. AWS Encryption SDK for JavaScript
Contohnya menggunakan webpack. DefinePlugin, yang menggantikan konstanta kredenal
dengan kredensil Anda yang sebenarnya. Tetapi Anda dapat menggunakan metode apa pun
untuk memberikan kredensil Anda. Kemudian, gunakan kredensialnya untuk membuat klien.
AWS KMS

declare const credentials: {accessKeyId: string, secretAccessKey:string,
 sessionToken:string }

Contoh 277

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK Panduan Developerr

const clientProvider = getClient(KMS, {
 credentials: {
 accessKeyId,
 secretAccessKey,
 sessionToken
 }
})

Selanjutnya, tentukan AWS KMS keys untuk kunci generator dan kunci tambahan. Kemudian,
buat AWS KMS keyring menggunakan AWS KMS klien dan. AWS KMS keys

const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt'
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringBrowser({ clientProvider, generatorKeyId, keyIds })

JavaScript Node.js

const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/EncryptDecrypt'
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

Langkah 3: Atur konteks enkripsi.

Konteks enkripsi adalah data otentikasi tambahan yang sewenang-wenang dan tidak
rahasia. Ketika Anda menyediakan konteks enkripsi pada enkripsi, AWS Encryption SDK
kriptografis mengikat konteks enkripsi ke ciphertext sehingga konteks enkripsi yang sama
diperlukan untuk mendekripsi data. Menggunakan konteks enkripsi adalah opsional, tetapi kami
merekomendasikannya sebagai praktik terbaik.

Buat objek sederhana yang mencakup pasangan konteks enkripsi. Kunci dan nilai dalam setiap
pasangan harus berupa string.

JavaScript Browser

const context = {
 stage: 'demo',
 purpose: 'simple demonstration app',

Contoh 278

AWS Encryption SDK Panduan Developerr

 origin: 'us-west-2'
}

JavaScript Node.js

const context = {
 stage: 'demo',
 purpose: 'simple demonstration app',
 origin: 'us-west-2'
}

Langkah 4: Enkripsi data.

Untuk mengenkripsi data plaintext, panggil fungsi. encrypt Masukkan AWS KMS keyring, data
plaintext, dan konteks enkripsi.

encryptFungsi mengembalikan pesan terenkripsi (result) yang berisi data terenkripsi, kunci
data terenkripsi, dan metadata penting, termasuk konteks enkripsi dan tanda tangan.

Anda dapat mendekripsi pesan terenkripsi ini dengan menggunakan AWS Encryption SDK untuk
bahasa pemrograman yang didukung.

JavaScript Browser

const plaintext = new Uint8Array([1, 2, 3, 4, 5])

const { result } = await encrypt(keyring, plaintext, { encryptionContext:
 context })

JavaScript Node.js

const plaintext = 'asdf'

const { result } = await encrypt(keyring, plaintext, { encryptionContext:
 context })

Mendekripsi data dengan keyring AWS KMS

Anda dapat menggunakan AWS Encryption SDK for JavaScript untuk mendekripsi pesan terenkripsi
dan memulihkan data asli.

Contoh 279

AWS Encryption SDK Panduan Developerr

Dalam contoh ini, kami mendekripsi data yang kami enkripsi dalam contoh. the section called
“Mengenkripsi data dengan keyring AWS KMS”

Langkah 1: Tetapkan kebijakan komitmen.

Dimulai pada versi 1.7. x dari AWS Encryption SDK for JavaScript, Anda dapat mengatur
kebijakan komitmen ketika Anda memanggil buildClient fungsi baru yang membuat instance
AWS Encryption SDK klien. buildClientFungsi ini mengambil nilai yang disebutkan yang
mewakili kebijakan komitmen Anda. Ini mengembalikan decrypt fungsi yang diperbarui
encrypt dan memberlakukan kebijakan komitmen Anda saat Anda mengenkripsi dan
mendekripsi.

Contoh berikut menggunakan buildClient fungsi untuk menentukan kebijakan komitmen
default,REQUIRE_ENCRYPT_REQUIRE_DECRYPT. Anda juga dapat menggunakan buildClient
untuk membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Untuk informasi
selengkapnya, lihat the section called “Membatasi kunci data terenkripsi”.

JavaScript Browser

import {
 KmsKeyringBrowser,
 KMS,
 getClient,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-browser'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

JavaScript Node.js

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
} from '@aws-crypto/client-node'

const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

Contoh 280

AWS Encryption SDK Panduan Developerr

Langkah 2: Bangun keyring.

Untuk mendekripsi data, masukkan pesan terenkripsi (result) yang dikembalikan fungsi.
encrypt Pesan terenkripsi mencakup data terenkripsi, kunci data terenkripsi, dan metadata
penting, termasuk konteks enkripsi dan tanda tangan.

Anda juga harus menentukan AWS KMS keyring saat mendekripsi. Anda dapat menggunakan
keyring yang sama yang digunakan untuk mengenkripsi data atau keyring yang berbeda. Agar
berhasil, setidaknya satu AWS KMS key di keyring dekripsi harus dapat mendekripsi salah satu
kunci data terenkripsi dalam pesan terenkripsi. Karena tidak ada kunci data yang dihasilkan, Anda
tidak perlu menentukan kunci generator dalam keyring dekripsi. Jika Anda melakukannya, kunci
generator dan kunci tambahan diperlakukan dengan cara yang sama.

Untuk menentukan AWS KMS key untuk keyring dekripsi di AWS Encryption SDK for JavaScript,
Anda harus menggunakan kunci ARN. Kalau tidak, AWS KMS key tidak dikenali. Untuk bantuan
mengidentifikasi AWS KMS keys dalam AWS KMS gantungan kunci, lihat Mengidentifikasi AWS
KMS keys dalam AWS KMS keyring

Note

Jika Anda menggunakan keyring yang sama untuk mengenkripsi dan mendekripsi,
gunakan kunci ARNs untuk mengidentifikasi di keyring. AWS KMS keys

Dalam contoh ini, kami membuat keyring yang hanya menyertakan salah satu dari keyring
enkripsi. AWS KMS keys Sebelum menjalankan kode ini, ganti contoh kunci ARN dengan yang
valid. Anda harus memiliki kms:Decrypt izin pada AWS KMS key.

JavaScript Browser

Mulailah dengan memberikan kredensil Anda ke browser. AWS Encryption SDK for JavaScript
Contohnya menggunakan webpack. DefinePlugin, yang menggantikan konstanta kredenal
dengan kredensil Anda yang sebenarnya. Tetapi Anda dapat menggunakan metode apa pun
untuk memberikan kredensil Anda. Kemudian, gunakan kredensialnya untuk membuat klien.
AWS KMS

declare const credentials: {accessKeyId: string, secretAccessKey:string,
 sessionToken:string }

const clientProvider = getClient(KMS, {

Contoh 281

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://webpack.js.org/plugins/define-plugin/

AWS Encryption SDK Panduan Developerr

 credentials: {
 accessKeyId,
 secretAccessKey,
 sessionToken
 }
})

Selanjutnya, buat AWS KMS keyring menggunakan AWS KMS klien. Contoh ini hanya
menggunakan salah satu AWS KMS keys dari keyring enkripsi.

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringBrowser({ clientProvider, keyIds })

JavaScript Node.js

const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']

const keyring = new KmsKeyringNode({ keyIds })

Langkah 3: Dekripsi data.

Selanjutnya, panggil decrypt fungsinya. Masukkan keyring dekripsi yang baru saja Anda buat
(keyring) dan pesan terenkripsi yang dikembalikan oleh fungsi (). encrypt result AWS
Encryption SDK Menggunakan keyring untuk mendekripsi salah satu kunci data terenkripsi.
Kemudian menggunakan kunci data plaintext untuk mendekripsi data.

Jika panggilan berhasil, plaintext bidang berisi data plaintext (didekripsi).
messageHeaderBidang berisi metadata tentang proses dekripsi, termasuk konteks enkripsi yang
digunakan untuk mendekripsi data.

JavaScript Browser

const { plaintext, messageHeader } = await decrypt(keyring, result)

JavaScript Node.js

const { plaintext, messageHeader } = await decrypt(keyring, result)

Contoh 282

AWS Encryption SDK Panduan Developerr

Langkah 4: Verifikasi konteks enkripsi.

Konteks enkripsi yang digunakan untuk mendekripsi data disertakan dalam header pesan
(messageHeader) yang dikembalikan decrypt fungsi. Sebelum aplikasi Anda mengembalikan
data plaintext, verifikasi bahwa konteks enkripsi yang Anda berikan saat mengenkripsi disertakan
dalam konteks enkripsi yang digunakan saat mendekripsi. Ketidakcocokan mungkin menunjukkan
bahwa data telah dirusak, atau bahwa Anda tidak mendekripsi ciphertext yang tepat.

Saat memverifikasi konteks enkripsi, tidak memerlukan kecocokan persis. Saat Anda
menggunakan algoritma enkripsi dengan penandatanganan, pengelola materi kriptografi (CMM)
menambahkan kunci penandatanganan publik ke konteks enkripsi sebelum mengenkripsi pesan.
Tetapi semua pasangan konteks enkripsi yang Anda kirimkan harus disertakan dalam konteks
enkripsi yang dikembalikan.

Pertama, dapatkan konteks enkripsi dari header pesan. Kemudian, verifikasi bahwa setiap
pasangan kunci-nilai dalam konteks enkripsi asli (context) cocok dengan pasangan kunci-nilai
dalam konteks enkripsi yang dikembalikan (). encryptionContext

JavaScript Browser

const { encryptionContext } = messageHeader

Object
 .entries(context)
 .forEach(([key, value]) => {
 if (encryptionContext[key] !== value) throw new Error('Encryption Context
 does not match expected values')
})

JavaScript Node.js

const { encryptionContext } = messageHeader

Object
 .entries(context)
 .forEach(([key, value]) => {
 if (encryptionContext[key] !== value) throw new Error('Encryption Context
 does not match expected values')
})

Jika pemeriksaan konteks enkripsi berhasil, Anda dapat mengembalikan data teks biasa.

Contoh 283

AWS Encryption SDK Panduan Developerr

AWS Encryption SDK for Python

Topik ini menjelaskan cara menginstal dan menggunakan AWS Encryption SDK for Python. Untuk
detail tentang pemrograman dengan AWS Encryption SDK for Python, lihat aws-encryption-sdk-
pythonrepositori di. GitHub Untuk dokumentasi API, lihat Membaca Dokumen.

Topik

• Prasyarat

• Penginstalan

• AWS Encryption SDK for Python kode contoh

Prasyarat

Sebelum Anda menginstal AWS Encryption SDK for Python, pastikan Anda memiliki prasyarat
berikut.

Versi Python yang didukung

Python 3.8 atau yang lebih baru diperlukan oleh AWS Encryption SDK for Python versi 3.2.0 dan
yang lebih baru.

Note

AWS Cryptographic Material Providers Library (MPL) adalah dependensi opsional untuk
yang AWS Encryption SDK for Python diperkenalkan di versi 4. x. Jika Anda berniat
menginstal MPL, Anda harus menggunakan Python 3.11 atau yang lebih baru.

Versi sebelumnya dari AWS Encryption SDK dukungan Python 2.7 dan Python 3.4 dan yang lebih
baru, tetapi kami menyarankan Anda menggunakan versi terbaru dari versi. AWS Encryption SDK

Untuk mengunduh Python, lihat Unduh Python.

Alat instalasi pip untuk Python

piptermasuk dalam Python 3.6 dan versi yang lebih baru, meskipun Anda mungkin ingin
memutakhirkannya. Untuk informasi selengkapnya tentang memutakhirkan atau menginstalpip,
lihat Instalasi di pip dokumentasi.

Python 284

https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-cryptographic-material-providers-library
https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installation/

AWS Encryption SDK Panduan Developerr

Penginstalan

Instal versi terbaru dari file AWS Encryption SDK for Python.

Note

Semua versi yang AWS Encryption SDK for Python lebih awal dari 3.0.0 sedang dalam fase.
end-of-support
Anda dapat memperbarui dengan aman dari versi 2.0. x dan yang lebih baru ke versi
terbaru AWS Encryption SDK tanpa kode atau perubahan data. Namun, fitur keamanan
baru diperkenalkan di versi 2.0. x tidak kompatibel ke belakang. Untuk memperbarui dari
versi lebih awal dari 1.7. x ke versi 2.0. x dan yang lebih baru, Anda harus terlebih dahulu
memperbarui ke yang terbaru 1. x versi AWS Encryption SDK. Lihat perinciannya di Migrasi
Anda AWS Encryption SDK.

Gunakan pip untuk menginstal AWS Encryption SDK for Python, seperti yang ditunjukkan dalam
contoh berikut.

Pasang versi terbaru

pip install "aws-encryption-sdk[MPL]"

[MPL]Akhiran menginstal Perpustakaan Penyedia Materi AWS Kriptografi (MPL). MPL
berisi konstruksi untuk mengenkripsi dan mendekripsi data Anda. MPL adalah dependensi
opsional untuk AWS Encryption SDK for Python diperkenalkan di versi 4. x. Kami sangat
merekomendasikan menginstal MPL. Namun, jika Anda tidak berniat menggunakan MPL, Anda
dapat menghilangkan akhiran. [MPL]

Untuk detail selengkapnya tentang penggunaan pip untuk menginstal dan memutakhirkan paket, lihat
Menginstal Paket.

AWS Encryption SDK for Python Membutuhkan perpustakaan kriptografi (pyca/kriptografi) di semua
platform. Semua versi menginstal dan membangun cryptography perpustakaan pip secara
otomatis di Windows. pip8.1 dan yang lebih baru secara otomatis menginstal dan membangun
cryptography di Linux. Jika Anda menggunakan versi sebelumnya pip dan lingkungan Linux Anda
tidak memiliki alat yang diperlukan untuk membangun cryptography perpustakaan, Anda perlu
menginstalnya. Untuk informasi selengkapnya, lihat Membangun Kriptografi di Linux.

Penginstalan 285

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-cryptographic-material-providers-library
https://packaging.python.org/tutorials/installing-packages/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux

AWS Encryption SDK Panduan Developerr

Versi 1.10.0 dan 2.5.0 dari AWS Encryption SDK for Python pin ketergantungan kriptografi antara
2.5.0 dan 3.3.2. Versi lain dari AWS Encryption SDK for Python menginstal versi terbaru kriptografi.
Jika Anda memerlukan versi kriptografi lebih lambat dari 3.3.2, kami sarankan Anda menggunakan
versi utama terbaru dari. AWS Encryption SDK for Python

Untuk versi pengembangan terbaru AWS Encryption SDK for Python, buka aws-encryption-sdk-
pythonrepositori di. GitHub

Setelah Anda menginstal AWS Encryption SDK for Python, mulailah dengan melihat kode contoh
Python dalam panduan ini.

AWS Encryption SDK for Python kode contoh

Contoh berikut menunjukkan cara menggunakan untuk mengenkripsi dan AWS Encryption SDK for
Python mendekripsi data.

Contoh di bagian ini menunjukkan cara menggunakan versi 4. x dari AWS Encryption SDK for
Python dengan ketergantungan Perpustakaan Penyedia Materi Kriptografi opsional ()aws-
cryptographic-material-providers. Untuk melihat contoh yang menggunakan versi
sebelumnya, atau penginstalan tanpa pustaka penyedia materi (MPL), temukan rilis Anda di daftar
Rilis aws-encryption-sdk-pythonrepositori di. GitHub

Bila Anda menggunakan versi 4. x dari AWS Encryption SDK for Python dengan MPL, ia
menggunakan keyrings untuk melakukan enkripsi amplop. AWS Encryption SDK Ini menyediakan
gantungan kunci yang kompatibel dengan penyedia kunci utama yang Anda gunakan di versi
sebelumnya. Untuk informasi selengkapnya, lihat the section called “Kompatibilitas keyring”.
Untuk contoh tentang migrasi dari penyedia kunci utama ke keyrings, lihat Contoh Migrasi di aws-
encryption-sdk-python repositori pada; GitHub

Topik

• Mengenkripsi dan mendekripsi string

• Mengenkripsi dan mendekripsi aliran byte

Mengenkripsi dan mendekripsi string

Contoh berikut menunjukkan cara menggunakan untuk mengenkripsi dan AWS Encryption SDK
mendekripsi string. Contoh ini menggunakan AWS KMS keyring dengan kunci KMS enkripsi simetris.

Contoh 286

https://cryptography.io/en/latest/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/releases
https://github.com/aws/aws-encryption-sdk-python/tree/master/examples/src/migration

AWS Encryption SDK Panduan Developerr

Contoh ini membuat instance AWS Encryption SDK klien dengan kebijakan komitmen default,.
REQUIRE_ENCRYPT_REQUIRE_DECRYPT Untuk informasi selengkapnya, lihat the section called
“Menetapkan kebijakan komitmen Anda”.

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0
"""
This example sets up the KMS Keyring

The AWS KMS keyring uses symmetric encryption KMS keys to generate, encrypt and
decrypt data keys. This example creates a KMS Keyring and then encrypts a custom input
 EXAMPLE_DATA
with an encryption context. This example also includes some sanity checks for
 demonstration:
1. Ciphertext and plaintext data are not the same
2. Encryption context is correct in the decrypted message header
3. Decrypted plaintext value matches EXAMPLE_DATA
These sanity checks are for demonstration in the example only. You do not need these in
 your code.

AWS KMS keyrings can be used independently or in a multi-keyring with other keyrings
of the same or a different type.

"""

import boto3
from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import CreateAwsKmsKeyringInput
from aws_cryptographic_material_providers.mpl.references import IKeyring
from typing import Dict # noqa pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

EXAMPLE_DATA: bytes = b"Hello World"

def encrypt_and_decrypt_with_keyring(
 kms_key_id: str
):
 """Demonstrate an encrypt/decrypt cycle using an AWS KMS keyring.

Contoh 287

AWS Encryption SDK Panduan Developerr

 Usage: encrypt_and_decrypt_with_keyring(kms_key_id)
 :param kms_key_id: KMS Key identifier for the KMS key you want to use for
 encryption and
 decryption of your data keys.
 :type kms_key_id: string

 """
 # 1. Instantiate the encryption SDK client.
 # This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
 policy,
 # which enforces that this client only encrypts using committing algorithm suites
 and enforces
 # that this client will only decrypt encrypted messages that were created with a
 committing
 # algorithm suite.
 # This is the default commitment policy if you were to build the client as
 # `client = aws_encryption_sdk.EncryptionSDKClient()`.
 client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

 # 2. Create a boto3 client for KMS.
 kms_client = boto3.client('kms', region_name="us-west-2")

 # 3. Optional: create encryption context.
 # Remember that your encryption context is NOT SECRET.
 encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
 }

 # 4. Create your keyring
 mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

 keyring_input: CreateAwsKmsKeyringInput = CreateAwsKmsKeyringInput(
 kms_key_id=kms_key_id,
 kms_client=kms_client
)

Contoh 288

AWS Encryption SDK Panduan Developerr

 kms_keyring: IKeyring = mat_prov.create_aws_kms_keyring(
 input=keyring_input
)

 # 5. Encrypt the data with the encryptionContext.
 ciphertext, _ = client.encrypt(
 source=EXAMPLE_DATA,
 keyring=kms_keyring,
 encryption_context=encryption_context
)

 # 6. Demonstrate that the ciphertext and plaintext are different.
 # (This is an example for demonstration; you do not need to do this in your own
 code.)
 assert ciphertext != EXAMPLE_DATA, \
 "Ciphertext and plaintext data are the same. Invalid encryption"

 # 7. Decrypt your encrypted data using the same keyring you used on encrypt.
 plaintext_bytes, _ = client.decrypt(
 source=ciphertext,
 keyring=kms_keyring,
 # Provide the encryption context that was supplied to the encrypt method
 encryption_context=encryption_context,
)

 # 8. Demonstrate that the decrypted plaintext is identical to the original
 plaintext.
 # (This is an example for demonstration; you do not need to do this in your own
 code.)
 assert plaintext_bytes == EXAMPLE_DATA, \
 "Decrypted plaintext should be identical to the original plaintext. Invalid
 decryption"

Mengenkripsi dan mendekripsi aliran byte

Contoh berikut menunjukkan cara menggunakan untuk mengenkripsi dan AWS Encryption SDK
mendekripsi aliran byte. Contoh ini menggunakan keyring Raw AES.

Contoh ini membuat instance AWS Encryption SDK klien dengan kebijakan komitmen default,.
REQUIRE_ENCRYPT_REQUIRE_DECRYPT Lihat informasi yang lebih lengkap di the section called
“Menetapkan kebijakan komitmen Anda”.

Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.

Contoh 289

AWS Encryption SDK Panduan Developerr

SPDX-License-Identifier: Apache-2.0
"""
This example demonstrates file streaming for encryption and decryption.

File streaming is useful when the plaintext or ciphertext file/data is too large to
 load into
memory. Therefore, the AWS Encryption SDK allows users to stream the data, instead of
 loading it
all at once in memory. In this example, we demonstrate file streaming for encryption
 and decryption
using a Raw AES keyring. However, you can use any keyring with streaming.

This example creates a Raw AES Keyring and then encrypts an input stream from the file
`plaintext_filename` with an encryption context to an output (encrypted) file
 `ciphertext_filename`.
It then decrypts the ciphertext from `ciphertext_filename` to a new file
 `decrypted_filename`.
This example also includes some sanity checks for demonstration:
1. Ciphertext and plaintext data are not the same
2. Encryption context is correct in the decrypted message header
3. Decrypted plaintext value matches EXAMPLE_DATA
These sanity checks are for demonstration in the example only. You do not need these in
 your code.

See raw_aes_keyring_example.py in the same directory for another raw AES keyring
 example
in the AWS Encryption SDK for Python.
"""
import filecmp
import secrets

from aws_cryptographic_material_providers.mpl import AwsCryptographicMaterialProviders
from aws_cryptographic_material_providers.mpl.config import MaterialProvidersConfig
from aws_cryptographic_material_providers.mpl.models import AesWrappingAlg,
 CreateRawAesKeyringInput
from aws_cryptographic_material_providers.mpl.references import IKeyring
from typing import Dict # noqa pylint: disable=wrong-import-order

import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

def encrypt_and_decrypt_with_keyring(
 plaintext_filename: str,

Contoh 290

AWS Encryption SDK Panduan Developerr

 ciphertext_filename: str,
 decrypted_filename: str
):
 """Demonstrate a streaming encrypt/decrypt cycle.

 Usage: encrypt_and_decrypt_with_keyring(plaintext_filename
 ciphertext_filename
 decrypted_filename)
 :param plaintext_filename: filename of the plaintext data
 :type plaintext_filename: string
 :param ciphertext_filename: filename of the ciphertext data
 :type ciphertext_filename: string
 :param decrypted_filename: filename of the decrypted data
 :type decrypted_filename: string
 """
 # 1. Instantiate the encryption SDK client.
 # This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
 policy,
 # which enforces that this client only encrypts using committing algorithm suites
 and enforces
 # that this client will only decrypt encrypted messages that were created with a
 committing
 # algorithm suite.
 # This is the default commitment policy if you were to build the client as
 # `client = aws_encryption_sdk.EncryptionSDKClient()`.
 client = aws_encryption_sdk.EncryptionSDKClient(
 commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

 # 2. The key namespace and key name are defined by you.
 # and are used by the Raw AES keyring to determine
 # whether it should attempt to decrypt an encrypted data key.
 key_name_space = "Some managed raw keys"
 key_name = "My 256-bit AES wrapping key"

 # 3. Optional: create encryption context.
 # Remember that your encryption context is NOT SECRET.
 encryption_context: Dict[str, str] = {
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
 }

Contoh 291

AWS Encryption SDK Panduan Developerr

 # 4. Generate a 256-bit AES key to use with your keyring.
 # In practice, you should get this key from a secure key management system such as
 an HSM.

 # Here, the input to secrets.token_bytes() = 32 bytes = 256 bits
 static_key = secrets.token_bytes(32)

 # 5. Create a Raw AES keyring
 # We choose to use a raw AES keyring, but any keyring can be used with streaming.
 mat_prov: AwsCryptographicMaterialProviders = AwsCryptographicMaterialProviders(
 config=MaterialProvidersConfig()
)

 keyring_input: CreateRawAesKeyringInput = CreateRawAesKeyringInput(
 key_namespace=key_name_space,
 key_name=key_name,
 wrapping_key=static_key,
 wrapping_alg=AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
)

 raw_aes_keyring: IKeyring = mat_prov.create_raw_aes_keyring(
 input=keyring_input
)

 # 6. Encrypt the data stream with the encryptionContext
 with open(plaintext_filename, 'rb') as pt_file, open(ciphertext_filename, 'wb') as
 ct_file:
 with client.stream(
 mode='e',
 source=pt_file,
 keyring=raw_aes_keyring,
 encryption_context=encryption_context
) as encryptor:
 for chunk in encryptor:
 ct_file.write(chunk)

 # 7. Demonstrate that the ciphertext and plaintext are different.
 # (This is an example for demonstration; you do not need to do this in your own
 code.)
 assert not filecmp.cmp(plaintext_filename, ciphertext_filename), \
 "Ciphertext and plaintext data are the same. Invalid encryption"

Contoh 292

AWS Encryption SDK Panduan Developerr

 # 8. Decrypt your encrypted data stream using the same keyring you used on
 encrypt.
 with open(ciphertext_filename, 'rb') as ct_file, open(decrypted_filename, 'wb') as
 pt_file:
 with client.stream(
 mode='d',
 source=ct_file,
 keyring=raw_aes_keyring,
 encryption_context=encryption_context
) as decryptor:
 for chunk in decryptor:
 pt_file.write(chunk)

 # 10. Demonstrate that the decrypted plaintext is identical to the original
 plaintext.
 # (This is an example for demonstration; you do not need to do this in your own
 code.)
 assert filecmp.cmp(plaintext_filename, decrypted_filename), \
 "Decrypted plaintext should be identical to the original plaintext. Invalid
 decryption"

AWS Encryption SDK untuk Rust

Topik ini menjelaskan cara menginstal dan menggunakan AWS Encryption SDK for Rust. Untuk detail
tentang pemrograman dengan AWS Encryption SDK for Rust, lihat direktori Rust dari aws-encryption-
sdk repositori di. GitHub

The AWS Encryption SDK for Rust berbeda dari beberapa implementasi bahasa pemrograman
lainnya dengan AWS Encryption SDK cara berikut:

• Tidak ada dukungan untuk caching kunci data. Namun, AWS Encryption SDK for Rust mendukung
keyring AWS KMS Hierarchical, solusi caching bahan kriptografi alternatif.

• Tidak ada dukungan untuk streaming data

The AWS Encryption SDK for Rust mencakup semua fitur keamanan yang diperkenalkan dalam
versi 2.0. x dan yang lebih baru dari implementasi bahasa lain dari. AWS Encryption SDK Namun,
jika Anda menggunakan for Rust AWS Encryption SDK untuk mendekripsi data yang dienkripsi
oleh pra-2.0. x versi implementasi bahasa lain dari AWS Encryption SDK, Anda mungkin perlu
menyesuaikan kebijakan komitmen Anda. Lihat perinciannya di Cara menetapkan kebijakan
komitmen Anda.

Karat 293

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/

AWS Encryption SDK Panduan Developerr

The AWS Encryption SDK for Rust adalah produk dari AWS Encryption SDK in Dafny, bahasa
verifikasi formal di mana Anda menulis spesifikasi, kode untuk mengimplementasikannya, dan
bukti untuk mengujinya. Hasilnya adalah perpustakaan yang mengimplementasikan fitur-fitur AWS
Encryption SDK dalam kerangka kerja yang menjamin kebenaran fungsional.

Pelajari Lebih Lanjut

• Untuk contoh yang menunjukkan cara mengonfigurasi opsi di AWS Encryption SDK, seperti
menentukan rangkaian algoritme alternatif, membatasi kunci data terenkripsi, dan menggunakan
kunci AWS KMS Multi-region, lihat. Mengkonfigurasi AWS Encryption SDK

• Untuk contoh yang menunjukkan cara mengonfigurasi dan menggunakan AWS Encryption SDK
untuk Rust, lihat contoh Rust di aws-encryption-sdk repositori aktif. GitHub

Topik

• Prasyarat

• Penginstalan

• AWS Encryption SDK untuk kode contoh Rust

Prasyarat

Sebelum Anda menginstal AWS Encryption SDK untuk Rust, pastikan Anda memiliki prasyarat
berikut.

Instal Rust dan Cargo

Instal rilis stabil Rust saat ini menggunakan rustup.

Untuk informasi lebih lanjut tentang mengunduh dan menginstal rustup, lihat prosedur instalasi di
The Cargo Book.

Penginstalan

The AWS Encryption SDK for Rust tersedia sebagai aws-esdkpeti di Crates.io. Untuk detail tentang
menginstal dan membangun AWS Encryption SDK untuk Rust, lihat README.md di repositori di.
aws-encryption-sdk GitHub

Anda dapat menginstal AWS Encryption SDK for Rust dengan cara berikut.

Prasyarat 294

https://github.com/dafny-lang/dafny/blob/master/README.md
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples
https://www.rust-lang.org/
https://rustup.rs/
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://crates.io/crates/aws-esdk
https://github.com/aws/aws-encryption-sdk/tree/mainline

AWS Encryption SDK Panduan Developerr

Secara manual

Untuk menginstal AWS Encryption SDK for Rust, kloning atau unduh aws-encryption-sdk GitHub
repositori.

Menggunakan Crates.io

Jalankan perintah Cargo berikut di direktori proyek Anda:

cargo add aws-esdk

Atau tambahkan baris berikut ke Cargo.toml Anda:

aws-esdk = "<version>"

AWS Encryption SDK untuk kode contoh Rust

Contoh berikut menunjukkan pola pengkodean dasar yang Anda gunakan saat memprogram
dengan AWS Encryption SDK for Rust. Secara khusus, Anda membuat instance perpustakaan AWS
Encryption SDK dan penyedia materi. Kemudian, sebelum memanggil setiap metode, Anda membuat
instance objek yang mendefinisikan input untuk metode tersebut.

Untuk contoh yang menunjukkan cara mengonfigurasi opsi di AWS Encryption SDK, seperti
menentukan rangkaian algoritme alternatif dan membatasi kunci data terenkripsi, lihat contoh Rust di
repositori aktif. aws-encryption-sdk GitHub

Mengenkripsi dan mendekripsi data di for Rust AWS Encryption SDK

Contoh ini menunjukkan pola dasar untuk mengenkripsi dan mendekripsi data. Ini mengenkripsi file
kecil dengan kunci data yang dilindungi oleh satu kunci AWS KMS pembungkus.

Langkah 1: Instantiate. AWS Encryption SDK

Anda akan menggunakan metode dalam AWS Encryption SDK untuk mengenkripsi dan
mendekripsi data.

let esdk_config = AwsEncryptionSdkConfig::builder().build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

Contoh 295

https://github.com/aws/aws-encryption-sdk/tree/mainline
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/
https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/examples/

AWS Encryption SDK Panduan Developerr

Langkah 2: Buat AWS KMS klien.

let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

Opsional: Buat konteks enkripsi Anda.

let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),
 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

Langkah 3: Buat instance perpustakaan penyedia materi.

Anda akan menggunakan metode di pustaka penyedia materi untuk membuat keyrings yang
menentukan kunci mana yang melindungi data Anda.

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

Langkah 4: Buat AWS KMS keyring.

Untuk membuat keyring, panggil metode keyring dengan objek input keyring. Contoh ini
menggunakan create_aws_kms_keyring() metode dan menentukan satu kunci KMS.

let kms_keyring = mpl
 .create_aws_kms_keyring()
 .kms_key_id(kms_key_id)
 .kms_client(kms_client)
 .send()
 .await?;

Langkah 5: Enkripsi plaintext.

let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()

Contoh 296

AWS Encryption SDK Panduan Developerr

 .plaintext(plaintext)
 .keyring(kms_keyring.clone())
 .encryption_context(encryption_context.clone())
 .send()
 .await?;

let ciphertext = encryption_response
 .ciphertext
 .expect("Unable to unwrap ciphertext from encryption response");

Langkah 6: Dekripsi data terenkripsi Anda menggunakan keyring yang sama yang Anda gunakan
pada enkripsi.

let decryption_response = esdk_client.decrypt()
 .ciphertext(ciphertext)
 .keyring(kms_keyring)
 // Provide the encryption context that was supplied to the encrypt method
 .encryption_context(encryption_context)
 .send()
 .await?;

let decrypted_plaintext = decryption_response
 .plaintext
 .expect("Unable to unwrap plaintext from decryption
 response");

AWS Encryption SDK antarmuka baris perintah

AWS Encryption SDK Command Line Interface (AWS Encryption CLI) memungkinkan Anda untuk
menggunakan AWS Encryption SDK untuk mengenkripsi dan mendekripsi data secara interaktif di
baris perintah dan skrip. Anda tidak perlu keahlian kriptografi atau pemrograman.

Note

Versi CLI AWS Enkripsi lebih awal dari 4.0.0 sedang dalam fase. end-of-support
Anda dapat memperbarui dengan aman dari versi 2.1. x dan yang lebih baru ke versi terbaru
CLI AWS Enkripsi tanpa perubahan kode atau data apa pun. Namun, fitur keamanan baru
diperkenalkan di versi 2.1. x tidak kompatibel ke belakang. Untuk memperbarui dari versi 1.7.
x atau sebelumnya, Anda harus terlebih dahulu memperbarui ke yang terbaru 1. x versi CLI
AWS Enkripsi. Lihat perinciannya di Migrasi Anda AWS Encryption SDK.

Antarmuka baris perintah 297

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

Fitur keamanan baru awalnya dirilis dalam AWS Enkripsi CLI versi 1.7. x dan 2.0. x. Namun,
AWS Enkripsi CLI versi 1.8. x menggantikan versi 1.7. x dan AWS Enkripsi CLI 2.1. x
menggantikan 2.0. x. Untuk detailnya, lihat penasihat keamanan yang relevan di aws-
encryption-sdk-clirepositori di. GitHub

Seperti semua implementasi AWS Encryption SDK, CLI AWS Enkripsi menawarkan fitur perlindungan
data tingkat lanjut. Ini termasuk enkripsi amplop, data otentikasi tambahan (AAD), dan rangkaian
algoritma kunci simetris yang aman, diautentikasi, seperti AES-GCM 256-bit dengan derivasi kunci,
komitmen kunci, dan penandatanganan.

CLI AWS Enkripsi dibangun di atas AWS Encryption SDK for Pythondan didukung di Linux, macOS,
dan Windows. Anda dapat menjalankan perintah dan skrip untuk mengenkripsi dan mendekripsi data
Anda di shell pilihan Anda di Linux atau macOS, di jendela Command Prompt (cmd.exe) di Windows,
dan di konsol di sistem apa pun. PowerShell

Semua implementasi khusus bahasa, termasuk AWS CLI Enkripsi AWS Encryption SDK, dapat
dioperasikan secara interoperable. Misalnya, Anda dapat mengenkripsi data dengan AWS Encryption
SDK for Javadan mendekripsi dengan CLI Enkripsi AWS .

Topik ini memperkenalkan CLI AWS Enkripsi, menjelaskan cara menginstal dan menggunakannya,
dan memberikan beberapa contoh untuk membantu Anda memulai. Untuk memulai dengan cepat,
lihat Cara Mengenkripsi dan Mendekripsi Data Anda dengan AWS CLI Enkripsi di Blog Keamanan.
AWS Untuk informasi lebih rinci, lihat Baca Dokumen, dan bergabunglah dengan kami dalam
mengembangkan CLI AWS Enkripsi di aws-encryption-sdk-clirepositori. GitHub

Performa

CLI AWS Enkripsi dibangun di atas file. AWS Encryption SDK for Python Setiap kali Anda
menjalankan CLI, Anda memulai instance baru runtime Python. Untuk meningkatkan kinerja, bila
memungkinkan, gunakan satu perintah alih-alih serangkaian perintah independen. Misalnya, jalankan
satu perintah yang memproses file dalam direktori secara rekursif alih-alih menjalankan perintah
terpisah untuk setiap file.

Topik

• Menginstal antarmuka baris AWS Encryption SDK perintah

• Cara menggunakan CLI AWS Enkripsi

• Contoh CLI AWS Enkripsi

Antarmuka baris perintah 298

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/how-it-works.html#envelope-encryption
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/supported-algorithms.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/supported-algorithms.html
https://aws.amazon.com/blogs/security/how-to-encrypt-and-decrypt-your-data-with-the-aws-encryption-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Panduan Developerr

• AWS Encryption SDK Sintaks CLI dan referensi parameter

• Versi CLI AWS Enkripsi

Menginstal antarmuka baris AWS Encryption SDK perintah

Topik ini menjelaskan cara menginstal CLI AWS Enkripsi. Untuk informasi lebih lanjut, lihat aws-
encryption-sdk-clirepositori GitHub dan Baca Dokumen.

Topik

• Memasang prasyarat

• Menginstal dan memperbarui CLI AWS Enkripsi

Memasang prasyarat

CLI AWS Enkripsi dibangun di atas file. AWS Encryption SDK for Python Untuk menginstal CLI AWS
Enkripsi, Anda memerlukan Python dan, alat manajemen paket pip Python. Python dan pip tersedia
di semua platform yang didukung.

Instal prasyarat berikut sebelum Anda menginstal CLI Enkripsi, AWS

Python

Python 3.8 atau yang lebih baru diperlukan oleh Encryption AWS CLI versi 4.2.0 dan yang lebih
baru.

Versi sebelumnya dari AWS Encryption CLI mendukung Python 2.7 dan 3.4 dan yang lebih baru,
tetapi kami menyarankan Anda menggunakan versi terbaru dari Encryption CLI. AWS

Python termasuk dalam sebagian besar instalasi Linux dan macOS, tetapi Anda perlu
meningkatkan ke Python 3.6 atau yang lebih baru. Kami menyarankan Anda menggunakan versi
terbaru Python. Pada Windows, Anda harus menginstal Python; itu tidak diinstal secara default.
Untuk mengunduh dan menginstal Python, lihat unduhan Python.

Untuk menentukan apakah Python diinstal, pada baris perintah, ketik berikut ini.

python

Untuk memeriksa versi Python, gunakan parameter -V (huruf besar V).

Menginstal CLI 299

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://www.python.org/downloads/

AWS Encryption SDK Panduan Developerr

python -V

Di Windows, setelah Anda menginstal Python, tambahkan path ke Python.exe file ke nilai
variabel lingkungan Path.

Secara default, Python dipasang di direktori semua pengguna atau di direktori profil pengguna
($homeatau%userprofile%) di subdirektori. AppData\Local\Programs\Python Untuk
menemukan lokasi Python.exe file di sistem Anda, periksa salah satu kunci registri berikut.
Anda dapat menggunakan PowerShell untuk mencari registri.

PS C:\> dir HKLM:\Software\Python\PythonCore\version\InstallPath
-or-
PS C:\> dir HKCU:\Software\Python\PythonCore\version\InstallPath

pip

pipadalah manajer paket Python. Untuk menginstal CLI AWS Enkripsi dan dependensinya, Anda
memerlukan pip 8.1 atau lebih baru. Untuk bantuan menginstal atau meningkatkanpip, lihat
Instalasi dalam pip dokumentasi.

Pada instalasi Linux, versi pip lebih awal dari 8.1 tidak dapat membangun pustaka kriptografi
yang dibutuhkan AWS CLI Enkripsi. Jika Anda memilih untuk tidak memperbarui pip versi, Anda
dapat menginstal alat build secara terpisah. Untuk informasi selengkapnya, lihat Membangun
kriptografi di Linux.

AWS Command Line Interface

AWS Command Line Interface (AWS CLI) diperlukan hanya jika Anda menggunakan AWS
KMS keys in AWS Key Management Service (AWS KMS) dengan CLI AWS Enkripsi. Jika Anda
menggunakan penyedia kunci master yang berbeda, tidak AWS CLI diperlukan.

Untuk menggunakan AWS KMS keys CLI AWS Enkripsi, Anda perlu menginstal dan
mengkonfigurasi file. AWS CLI Konfigurasi membuat kredensional yang Anda gunakan untuk
mengautentikasi agar AWS KMS tersedia untuk CLI Enkripsi AWS .

Menginstal dan memperbarui CLI AWS Enkripsi

Instal CLI AWS Enkripsi versi terbaru. Ketika Anda menggunakan pip untuk menginstal CLI AWS
Enkripsi, secara otomatis menginstal pustaka yang dibutuhkan CLI, termasuk, pustaka kriptografi
Python, AWS Encryption SDK for Pythondan file. AWS SDK untuk Python (Boto3)

Menginstal CLI 300

https://pip.pypa.io/en/latest/installing/
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://cryptography.io/en/latest/installation.html#building-cryptography-on-linux
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://cryptography.io/en/latest/

AWS Encryption SDK Panduan Developerr

Note

Versi CLI AWS Enkripsi lebih awal dari 4.0.0 sedang dalam fase. end-of-support
Anda dapat memperbarui dengan aman dari versi 2.1. x dan yang lebih baru ke versi terbaru
CLI AWS Enkripsi tanpa perubahan kode atau data apa pun. Namun, fitur keamanan baru
diperkenalkan di versi 2.1. x tidak kompatibel ke belakang. Untuk memperbarui dari versi 1.7.
x atau sebelumnya, Anda harus terlebih dahulu memperbarui ke yang terbaru 1. x versi CLI
AWS Enkripsi. Lihat perinciannya di Migrasi Anda AWS Encryption SDK.
Fitur keamanan baru awalnya dirilis dalam AWS Enkripsi CLI versi 1.7. x dan 2.0. x. Namun,
AWS Enkripsi CLI versi 1.8. x menggantikan versi 1.7. x dan AWS Enkripsi CLI 2.1. x
menggantikan 2.0. x. Untuk detailnya, lihat penasihat keamanan yang relevan di aws-
encryption-sdk-clirepositori di. GitHub

Untuk menginstal versi terbaru dari AWS Encryption CLI

pip install aws-encryption-sdk-cli

Untuk meng-upgrade ke versi terbaru dari AWS Encryption CLI

pip install --upgrade aws-encryption-sdk-cli

Untuk menemukan nomor versi CLI AWS Enkripsi Anda dan AWS Encryption SDK

aws-encryption-cli --version

Output mencantumkan nomor versi kedua pustaka.

aws-encryption-sdk-cli/2.1.0 aws-encryption-sdk/2.0.0

Untuk meng-upgrade ke versi terbaru dari AWS Encryption CLI

pip install --upgrade aws-encryption-sdk-cli

Menginstal CLI AWS Enkripsi juga menginstal versi terbaru dari AWS SDK untuk Python (Boto3), jika
belum diinstal. Jika Boto3 diinstal, penginstal memverifikasi versi Boto3 dan memperbaruinya jika
diperlukan.

Menginstal CLI 301

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Panduan Developerr

Untuk menemukan versi Boto3 yang Anda instal

pip show boto3

Untuk memperbarui ke versi terbaru Boto3

pip install --upgrade boto3

Untuk menginstal versi CLI AWS Enkripsi yang saat ini sedang dalam pengembangan, lihat aws-
encryption-sdk-clirepositori aktif. GitHub

Untuk detail selengkapnya tentang penggunaan pip untuk menginstal dan memutakhirkan paket
Python, lihat dokumentasi pip.

Cara menggunakan CLI AWS Enkripsi

Topik ini menjelaskan cara menggunakan parameter dalam CLI AWS Enkripsi. Sebagai contoh, lihat
Contoh CLI AWS Enkripsi. Untuk dokumentasi selengkapnya, lihat Membaca Dokumen. Sintaks yang
ditunjukkan dalam contoh ini adalah untuk AWS Enkripsi CLI versi 2.1. x dan kemudian.

Note

Versi CLI AWS Enkripsi lebih awal dari 4.0.0 sedang dalam fase. end-of-support
Anda dapat memperbarui dengan aman dari versi 2.1. x dan yang lebih baru ke versi terbaru
CLI AWS Enkripsi tanpa perubahan kode atau data apa pun. Namun, fitur keamanan baru
diperkenalkan di versi 2.1. x tidak kompatibel ke belakang. Untuk memperbarui dari versi 1.7.
x atau sebelumnya, Anda harus terlebih dahulu memperbarui ke yang terbaru 1. x versi CLI
AWS Enkripsi. Lihat perinciannya di Migrasi Anda AWS Encryption SDK.
Fitur keamanan baru awalnya dirilis dalam AWS Enkripsi CLI versi 1.7. x dan 2.0. x. Namun,
AWS Enkripsi CLI versi 1.8. x menggantikan versi 1.7. x dan AWS Enkripsi CLI 2.1. x
menggantikan 2.0. x. Untuk detailnya, lihat penasihat keamanan yang relevan di aws-
encryption-sdk-clirepositori di. GitHub

Untuk contoh yang menunjukkan cara menggunakan fitur keamanan yang membatasi kunci data
terenkripsi, lihat. Membatasi kunci data terenkripsi

Cara menggunakan CLI 302

https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://pip.pypa.io/en/stable/quickstart/
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Panduan Developerr

Untuk contoh yang menunjukkan cara menggunakan kunci AWS KMS Multi-region,
lihatMenggunakan Multi-region AWS KMS keys.

Topik

• Cara mengenkripsi dan mendekripsi data

• Cara menentukan kunci pembungkus

• Cara memberikan masukan

• Cara menentukan lokasi output

• Cara menggunakan konteks enkripsi

• Cara menentukan kebijakan komitmen

• Cara menyimpan parameter dalam file konfigurasi

Cara mengenkripsi dan mendekripsi data

AWS Enkripsi CLI menggunakan fitur AWS Encryption SDK untuk membuatnya mudah untuk
mengenkripsi dan mendekripsi data dengan aman.

Note

--master-keysParameter tidak digunakan lagi di versi 1.8. x dari CLI AWS Enkripsi dan
dihapus dalam versi 2.1. x. Sebagai gantinya, gunakan --wrapping-keys parameternya.
Dimulai pada versi 2.1. x, --wrapping-keys parameter diperlukan saat mengenkripsi
dan mendekripsi. Lihat perinciannya di AWS Encryption SDK Sintaks CLI dan referensi
parameter.

• Saat Anda mengenkripsi data di CLI AWS Enkripsi, Anda menentukan data teks biasa dan kunci
pembungkus (atau kunci master), seperti in (). AWS KMS key AWS Key Management Service
AWS KMS Jika Anda menggunakan penyedia kunci master kustom, Anda juga perlu menentukan
penyedia. Anda juga menentukan lokasi keluaran untuk pesan terenkripsi dan untuk metadata
tentang operasi enkripsi. Konteks enkripsi bersifat opsional, tetapi disarankan.

Dalam versi 1.8. x, --commitment-policy parameter diperlukan saat Anda menggunakan
--wrapping-keys parameter; jika tidak maka tidak valid. Dimulai pada versi 2.1. x, --
commitment-policy parameternya opsional, tetapi disarankan.

Cara menggunakan CLI 303

AWS Encryption SDK Panduan Developerr

aws-encryption-cli --encrypt --input myPlaintextData \
 --wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
 --output myEncryptedMessage \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --commitment-policy require-encrypt-require-decrypt

CLI AWS Enkripsi mengenkripsi data Anda di bawah kunci data unik. Kemudian mengenkripsi
kunci data di bawah kunci pembungkus yang Anda tentukan. Ia mengembalikan pesan terenkripsi
dan metadata tentang operasi. Pesan terenkripsi berisi data terenkripsi Anda (ciphertext) dan
salinan kunci data terenkripsi. Anda tidak perlu khawatir tentang menyimpan, mengelola, atau
kehilangan kunci data.

• Ketika Anda mendekripsi data, Anda meneruskan pesan terenkripsi Anda, konteks enkripsi
opsional, dan lokasi untuk output plaintext dan metadata. Anda juga menentukan kunci
pembungkus yang dapat digunakan CLI AWS Enkripsi untuk mendekripsi pesan, atau memberi
tahu CLI AWS Enkripsi bahwa ia dapat menggunakan kunci pembungkus apa pun yang
mengenkripsi pesan.

Dimulai pada versi 1.8. x, --wrapping-keys parameternya opsional saat mendekripsi,
tetapi disarankan. Dimulai pada versi 2.1. x, --wrapping-keys parameter diperlukan saat
mengenkripsi dan mendekripsi.

Saat mendekripsi, Anda dapat menggunakan atribut kunci --wrapping-keys parameter untuk
menentukan kunci pembungkus yang mendekripsi data Anda. Menentukan kunci AWS KMS
pembungkus saat mendekripsi adalah opsional, tetapi ini adalah praktik terbaik yang mencegah
Anda menggunakan kunci yang tidak ingin Anda gunakan. Jika Anda menggunakan penyedia
kunci master kustom, Anda harus menentukan penyedia dan kunci pembungkus.

Jika Anda tidak menggunakan atribut kunci, Anda harus menyetel atribut penemuan --wrapping-
keys parameter ketrue, yang memungkinkan CLI AWS Enkripsi mendekripsi menggunakan kunci
pembungkus apa pun yang mengenkripsi pesan.

Sebagai praktik terbaik, gunakan --max-encrypted-data-keys parameter untuk menghindari
dekripsi pesan yang salah dengan jumlah kunci data terenkripsi yang berlebihan. Tentukan jumlah
yang diharapkan dari kunci data terenkripsi (satu untuk setiap kunci pembungkus yang digunakan

Cara menggunakan CLI 304

AWS Encryption SDK Panduan Developerr

dalam enkripsi) atau maksimum yang wajar (seperti 5). Lihat perinciannya di Membatasi kunci data
terenkripsi.

--bufferParameter mengembalikan plaintext hanya setelah semua input diproses, termasuk
memverifikasi tanda tangan digital jika ada.

--decrypt-unsignedParameter mendekripsi ciphertext dan memastikan bahwa pesan tidak
ditandatangani sebelum dekripsi. Gunakan parameter ini jika Anda menggunakan --algorithm
parameter dan memilih rangkaian algoritme tanpa penandatanganan digital untuk mengenkripsi
data. Jika ciphertext ditandatangani, dekripsi gagal.

Anda dapat menggunakan --decrypt atau --decrypt-unsigned untuk dekripsi tetapi tidak
keduanya.

aws-encryption-cli --decrypt --input myEncryptedMessage \
 --wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab \
 --output myPlaintextData \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --encryption-context purpose=test \
 --commitment-policy require-encrypt-require-decrypt

CLI AWS Enkripsi menggunakan kunci pembungkus untuk mendekripsi kunci data dalam pesan
terenkripsi. Kemudian menggunakan kunci data untuk mendekripsi data Anda. Ini mengembalikan
data plaintext dan metadata Anda tentang operasi.

Cara menentukan kunci pembungkus

Saat Anda mengenkripsi data di CLI AWS Enkripsi, Anda perlu menentukan setidaknya satu
kunci pembungkus (atau kunci master). Anda dapat menggunakan AWS KMS keys in AWS Key
Management Service (AWS KMS), kunci pembungkus dari penyedia kunci master kustom, atau
keduanya. Penyedia kunci master kustom dapat berupa penyedia kunci master Python yang
kompatibel.

Untuk menentukan kunci pembungkus di versi 1.8. x dan kemudian, gunakan --wrapping-keys
parameter (-w). Nilai parameter ini adalah kumpulan atribut dengan attribute=value format.
Atribut yang Anda gunakan bergantung pada penyedia kunci master dan perintah.

Cara menggunakan CLI 305

AWS Encryption SDK Panduan Developerr

• AWS KMS. Dalam perintah enkripsi, Anda harus menentukan --wrapping-keys parameter
dengan atribut kunci. Dimulai pada versi 2.1. x, --wrapping-keys parameter juga diperlukan
dalam perintah dekripsi. Saat mendekripsi, --wrapping-keys parameter harus memiliki atribut
kunci atau atribut penemuan dengan nilai true (tetapi tidak keduanya). Atribut lainnya adalah
opsional.

• Penyedia kunci master kustom. Anda harus menentukan --wrapping-keys parameter di setiap
perintah. Nilai parameter harus memiliki atribut kunci dan penyedia.

Anda dapat menyertakan beberapa --wrapping-keys parameter dan beberapa atribut kunci dalam
perintah yang sama.

Membungkus atribut parameter kunci

Nilai --wrapping-keys parameter terdiri dari atribut berikut dan nilainya. --wrapping-
keysParameter (atau --master-keys parameter) diperlukan di semua perintah enkripsi. Dimulai
pada versi 2.1. x, --wrapping-keys parameter juga diperlukan saat mendekripsi.

Jika nama atau nilai atribut menyertakan spasi atau karakter khusus, lampirkan nama dan nilai dalam
tanda kutip. Misalnya, --wrapping-keys key=12345 "provider=my cool provider".

Kunci: Tentukan kunci pembungkus

Gunakan atribut kunci untuk mengidentifikasi kunci pembungkus. Saat mengenkripsi, nilainya
dapat berupa pengidentifikasi kunci apa pun yang dikenali oleh penyedia kunci utama.

--wrapping-keys key=1234abcd-12ab-34cd-56ef-1234567890ab

Dalam perintah enkripsi, Anda harus menyertakan setidaknya satu atribut kunci dan nilai. Untuk
mengenkripsi kunci data Anda di bawah beberapa kunci pembungkus, gunakan beberapa atribut
kunci.

aws-encryption-cli --encrypt --wrapping-keys
 key=1234abcd-12ab-34cd-56ef-1234567890ab key=1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d

Dalam perintah enkripsi yang digunakan AWS KMS keys, nilai kunci dapat berupa ID kunci,
ARN kuncinya, nama alias, atau alias ARN. Misalnya, perintah enkripsi ini menggunakan alias
ARN dalam nilai atribut kunci. Untuk detail tentang pengidentifikasi kunci AWS KMS key, lihat
Pengidentifikasi Kunci di Panduan AWS Key Management Service Pengembang.

Cara menggunakan CLI 306

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Panduan Developerr

aws-encryption-cli --encrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:alias/ExampleAlias

Dalam perintah dekripsi yang menggunakan penyedia kunci master kustom, atribut kunci dan
penyedia diperlukan.

\\ Custom master key provider
aws-encryption-cli --decrypt --wrapping-keys provider='myProvider' key='100101'

Dalam perintah dekripsi yang digunakan AWS KMS, Anda dapat menggunakan atribut kunci untuk
menentukan yang akan digunakan AWS KMS keys untuk mendekripsi, atau atribut penemuan
dengan nilaitrue, yang memungkinkan AWS CLI Enkripsi menggunakan apa pun AWS KMS
key yang digunakan untuk mengenkripsi pesan. Jika Anda menentukan AWS KMS key, itu harus
menjadi salah satu kunci pembungkus yang digunakan untuk mengenkripsi pesan.

Menentukan kunci pembungkus adalah praktik AWS Encryption SDK terbaik. Ini memastikan
bahwa Anda menggunakan yang ingin AWS KMS key Anda gunakan.

Dalam perintah dekripsi, nilai atribut kunci harus berupa ARN kunci.

\\ AWS KMS key
aws-encryption-cli --decrypt --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

Penemuan: Gunakan apa saja AWS KMS key saat mendekripsi

Jika Anda tidak perlu membatasi penggunaan saat mendekripsi, Anda dapat menggunakan atribut
penemuan dengan nilai. AWS KMS keys true Nilai true memungkinkan CLI AWS Enkripsi
untuk mendekripsi menggunakan apa pun AWS KMS key yang mengenkripsi pesan. Jika Anda
tidak menentukan atribut penemuan, penemuan adalah false (default). Atribut penemuan hanya
valid dalam perintah dekripsi dan hanya ketika pesan dienkripsi dengan. AWS KMS keys

Atribut penemuan dengan nilai true adalah alternatif untuk menggunakan atribut kunci untuk
menentukan AWS KMS keys. Saat mendekripsi pesan yang dienkripsi AWS KMS keys, setiap
--wrapping-keys parameter harus memiliki atribut kunci atau atribut penemuan dengan
nilaitrue, tetapi tidak keduanya.

Ketika penemuan benar, sebaiknya gunakan atribut partisi penemuan dan akun penemuan untuk
membatasi yang AWS KMS keys digunakan pada atribut yang Anda tentukan. Akun AWS Dalam

Cara menggunakan CLI 307

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Panduan Developerr

contoh berikut, atribut penemuan memungkinkan CLI AWS Enkripsi untuk menggunakan apa pun
AWS KMS key dalam yang ditentukan. Akun AWS

aws-encryption-cli --decrypt --wrapping-keys \
 discovery=true \
 discovery-partition=aws \
 discovery-account=111122223333 \
 discovery-account=444455556666

Penyedia: Tentukan penyedia kunci utama

Atribut provider mengidentifikasi penyedia kunci master. Nilai default adalahaws-kms, yang
mewakili AWS KMS. Jika Anda menggunakan penyedia kunci master yang berbeda, atribut
penyedia diperlukan.

--wrapping-keys key=12345 provider=my_custom_provider

Untuk informasi selengkapnya tentang penggunaan penyedia kunci master kustom (non-#-AWS
KMS), lihat topik Konfigurasi Lanjutan dalam file README untuk repositori CLI AWS Enkripsi.

Wilayah: Tentukan Wilayah AWS

Gunakan atribut region untuk menentukan Wilayah AWS dari AWS KMS key. Atribut ini hanya
valid dalam perintah enkripsi dan hanya ketika penyedia kunci master. AWS KMS

--encrypt --wrapping-keys key=alias/primary-key region=us-east-2

AWS Enkripsi perintah CLI menggunakan Wilayah AWS yang ditentukan dalam nilai atribut kunci
jika termasuk wilayah, seperti ARN. jika nilai kunci menentukan Wilayah AWS, atribut region
diabaikan.

Atribut region lebih diutamakan daripada spesifikasi wilayah lainnya. Jika Anda tidak
menggunakan atribut region, perintah AWS Encryption CLI menggunakan yang Wilayah AWS
ditentukan dalam profil AWS CLI bernama Anda, jika ada, atau profil default Anda.

Profil: Tentukan profil bernama

Gunakan atribut profil untuk menentukan profil AWS CLI bernama. Profil bernama dapat
mencakup kredensil dan file. Wilayah AWS Atribut ini hanya valid jika penyedia kunci master AWS
KMS.

Cara menggunakan CLI 308

https://github.com/aws/aws-encryption-sdk-cli/blob/master/README.rst
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles

AWS Encryption SDK Panduan Developerr

--wrapping-keys key=alias/primary-key profile=admin-1

Anda dapat menggunakan atribut profil untuk menentukan kredensi alternatif dalam perintah
enkripsi dan dekripsi. Dalam perintah enkripsi, CLI AWS Enkripsi menggunakan Wilayah AWS
dalam profil bernama hanya ketika nilai kunci tidak menyertakan wilayah dan tidak ada atribut
wilayah. Dalam perintah dekripsi, profil Wilayah AWS dalam nama diabaikan.

Cara menentukan beberapa tombol pembungkus

Anda dapat menentukan beberapa tombol pembungkus (atau kunci master) di setiap perintah.

Jika Anda menentukan lebih dari satu kunci pembungkus, kunci pembungkus pertama menghasilkan
dan mengenkripsi kunci data yang digunakan untuk mengenkripsi data Anda. Kunci pembungkus
lainnya mengenkripsi kunci data yang sama. Pesan terenkripsi yang dihasilkan berisi data terenkripsi
(“ciphertext”) dan kumpulan kunci data terenkripsi, satu dienkripsi oleh setiap kunci pembungkus.
Setiap pembungkus dapat mendekripsi satu kunci data terenkripsi dan kemudian mendekripsi data.

Ada dua cara untuk menentukan beberapa kunci pembungkus:

• Sertakan beberapa atribut kunci dalam nilai --wrapping-keys parameter.

$key_oregon=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$key_ohio=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

--wrapping-keys key=$key_oregon key=$key_ohio

• Sertakan beberapa --wrapping-keys parameter dalam perintah yang sama. Gunakan sintaks
ini ketika nilai atribut yang Anda tentukan tidak berlaku untuk semua kunci pembungkus dalam
perintah.

--wrapping-keys region=us-east-2 key=alias/test_key \
--wrapping-keys region=us-west-1 key=alias/test_key

Atribut penemuan dengan nilai true memungkinkan CLI AWS Enkripsi menggunakan apa pun
AWS KMS key yang mengenkripsi pesan. Jika Anda menggunakan beberapa --wrapping-
keys parameter dalam perintah yang sama, menggunakan discovery=true --wrapping-

Cara menggunakan CLI 309

AWS Encryption SDK Panduan Developerr

keys parameter apa pun secara efektif mengesampingkan batas atribut kunci di parameter lain--
wrapping-keys.

Misalnya, dalam perintah berikut, atribut kunci dalam --wrapping-keys parameter pertama
membatasi CLI AWS Enkripsi ke yang ditentukan. AWS KMS key Namun, atribut penemuan di --
wrapping-keys parameter kedua memungkinkan CLI AWS Enkripsi menggunakan apa pun AWS
KMS key di akun yang ditentukan untuk mendekripsi pesan.

aws-encryption-cli --decrypt \
 --wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab \
 --wrapping-keys discovery=true \
 discovery-partition=aws \
 discovery-account=111122223333 \
 discovery-account=444455556666

Cara memberikan masukan

Operasi enkripsi di CLI AWS Enkripsi mengambil data teks biasa sebagai input dan mengembalikan
pesan terenkripsi. Operasi dekripsi mengambil pesan terenkripsi sebagai input dan mengembalikan
data plaintext.

--inputParameter (-i), yang memberi tahu AWS Encryption CLI di mana menemukan input,
diperlukan di semua perintah Encryption AWS CLI.

Anda dapat memberikan masukan dengan salah satu cara berikut:

• Gunakan file.

--input myData.txt

• Gunakan pola nama file.

--input testdir/*.xml

• Gunakan pola nama direktori atau direktori. Ketika input adalah direktori, --recursive parameter
(-r,-R) diperlukan.

--input testdir --recursive

Cara menggunakan CLI 310

AWS Encryption SDK Panduan Developerr

• Input pipa ke perintah (stdin). Gunakan nilai - untuk --input parameter. (--inputParameter
selalu diperlukan.)

echo 'Hello World' | aws-encryption-cli --encrypt --input -

Cara menentukan lokasi output

--outputParameter memberi tahu CLI AWS Enkripsi tempat menulis hasil operasi enkripsi atau
dekripsi. Hal ini diperlukan dalam setiap perintah AWS Enkripsi CLI. CLI AWS Enkripsi membuat file
output baru untuk setiap file input dalam operasi.

Jika file keluaran sudah ada, secara default, CLI AWS Enkripsi mencetak peringatan, lalu menimpa
file tersebut. Untuk mencegah penimpaan, gunakan --interactive parameter, yang meminta
Anda untuk konfirmasi sebelum menimpa, atau--no-overwrite, yang melewatkan input jika output
akan menyebabkan penimpaan. Untuk menekan peringatan penimpaan, gunakan. --quiet Untuk
menangkap kesalahan dan peringatan dari CLI AWS Enkripsi, gunakan operator 2>&1 pengalihan
untuk menuliskannya ke aliran output.

Note

Perintah yang menimpa file output dimulai dengan menghapus file output. Jika perintah
gagal, file output mungkin sudah dihapus.

Anda dapat lokasi output dalam beberapa cara.

• Tentukan nama file. Jika Anda menentukan jalur ke file, semua direktori di jalur harus ada sebelum
perintah berjalan.

--output myEncryptedData.txt

• Tentukan direktori. Direktori output harus ada sebelum perintah berjalan.

Jika input berisi subdirektori, perintah mereproduksi subdirektori di bawah direktori yang ditentukan.

--output Test

Cara menggunakan CLI 311

AWS Encryption SDK Panduan Developerr

Ketika lokasi output adalah direktori (tanpa nama file), CLI AWS Enkripsi membuat nama file output
berdasarkan nama file input ditambah akhiran. Enkripsi operasi append .encrypted ke nama
file input dan operasi dekripsi ditambahkan. .decrypted Untuk mengubah sufiks, gunakan --
suffix parameter.

Misalnya, jika Anda mengenkripsifile.txt, perintah enkripsi dibuat. file.txt.encrypted
Jika Anda mendekripsifile.txt.encrypted, perintah dekripsi akan dibuat.
file.txt.encrypted.decrypted

• Tulis ke baris perintah (stdout). Masukkan nilai - untuk --output parameter. Anda dapat
menggunakan --output - untuk menyalurkan output ke perintah atau program lain.

--output -

Cara menggunakan konteks enkripsi

AWS Enkripsi CLI memungkinkan Anda menyediakan konteks enkripsi dalam mengenkripsi dan
mendekripsi perintah. Ini tidak diperlukan, tetapi ini adalah praktik terbaik kriptografi yang kami
rekomendasikan.

Konteks enkripsi adalah jenis data otentikasi tambahan yang sewenang-wenang dan non-rahasia.
Dalam CLI AWS Enkripsi, konteks enkripsi terdiri dari kumpulan pasangan. name=value Anda
dapat menggunakan konten apa pun dalam pasangan, termasuk informasi tentang file, data yang
membantu Anda menemukan operasi enkripsi di log, atau data yang diperlukan oleh hibah atau
kebijakan Anda.

Dalam perintah enkripsi

Konteks enkripsi yang Anda tentukan dalam perintah enkripsi, bersama dengan pasangan
tambahan apa pun yang ditambahkan CMM, terikat secara kriptografis ke data terenkripsi. Ini juga
termasuk (dalam teks biasa) dalam pesan terenkripsi yang dikembalikan oleh perintah. Jika Anda
menggunakan AWS KMS key, konteks enkripsi juga mungkin muncul dalam teks biasa dalam catatan
audit dan log, seperti. AWS CloudTrail

Contoh berikut menunjukkan konteks enkripsi dengan tiga name=value pasang.

--encryption-context purpose=test dept=IT class=confidential

Cara menggunakan CLI 312

AWS Encryption SDK Panduan Developerr

Dalam perintah dekripsi

Dalam perintah dekripsi, konteks enkripsi membantu Anda mengonfirmasi bahwa Anda mendekripsi
pesan terenkripsi yang tepat.

Anda tidak diharuskan untuk menyediakan konteks enkripsi dalam perintah dekripsi, bahkan jika
konteks enkripsi digunakan pada enkripsi. Namun, jika Anda melakukannya, CLI AWS Enkripsi
memverifikasi bahwa setiap elemen dalam konteks enkripsi perintah dekripsi cocok dengan elemen
dalam konteks enkripsi pesan terenkripsi. Jika ada elemen yang tidak cocok, perintah dekripsi gagal.

Misalnya, perintah berikut mendekripsi pesan terenkripsi hanya jika konteks enkripsi termasuk.
dept=IT

aws-encryption-cli --decrypt --encryption-context dept=IT ...

Konteks enkripsi adalah bagian penting dari strategi keamanan Anda. Namun, ketika memilih konteks
enkripsi, ingatlah bahwa nilainya bukan rahasia. Jangan sertakan data rahasia apa pun dalam
konteks enkripsi.

Untuk menentukan konteks enkripsi

• Dalam perintah enkripsi, gunakan --encryption-context parameter dengan satu atau lebih
name=value pasangan. Gunakan spasi untuk memisahkan setiap pasangan.

--encryption-context name=value [name=value] ...

• Dalam perintah dekripsi, nilai --encryption-context parameter dapat mencakup name=value
pasangan, name elemen (tanpa nilai), atau kombinasi keduanya.

--encryption-context name[=value] [name] [name=value] ...

Jika name atau value dalam name=value pasangan menyertakan spasi atau karakter khusus,
lampirkan seluruh pasangan dalam tanda kutip.

--encryption-context "department=software engineering" "Wilayah AWS=us-west-2"

Misalnya, perintah enkripsi ini mencakup konteks enkripsi dengan dua pasang, purpose=test
dandept=23.

Cara menggunakan CLI 313

AWS Encryption SDK Panduan Developerr

aws-encryption-cli --encrypt --encryption-context purpose=test dept=23 ...

Perintah dekripsi ini akan berhasil. Konteks enkripsi dalam setiap perintah adalah bagian dari konteks
enkripsi asli.

\\ Any one or both of the encryption context pairs
aws-encryption-cli --decrypt --encryption-context dept=23 ...

\\ Any one or both of the encryption context names
aws-encryption-cli --decrypt --encryption-context purpose ...

\\ Any combination of names and pairs
aws-encryption-cli --decrypt --encryption-context dept purpose=test ...

Namun, perintah dekripsi ini akan gagal. Konteks enkripsi dalam pesan terenkripsi tidak mengandung
elemen yang ditentukan.

aws-encryption-cli --decrypt --encryption-context dept=Finance ...
aws-encryption-cli --decrypt --encryption-context scope ...

Cara menentukan kebijakan komitmen

Untuk menetapkan kebijakan komitmen untuk perintah, gunakan --commitment-
policyparameter. Parameter ini diperkenalkan dalam versi 1.8. x. Ini berlaku dalam perintah
enkripsi dan dekripsi. Kebijakan komitmen yang Anda tetapkan hanya berlaku untuk perintah yang
muncul. Jika Anda tidak menetapkan kebijakan komitmen untuk suatu perintah, CLI AWS Enkripsi
menggunakan nilai default.

Misalnya, nilai parameter berikut menetapkan kebijakan komitmenrequire-encrypt-allow-
decrypt, yang selalu mengenkripsi dengan komitmen utama, tetapi akan mendekripsi ciphertext
yang dienkripsi dengan atau tanpa komitmen utama.

--commitment-policy require-encrypt-allow-decrypt

Cara menyimpan parameter dalam file konfigurasi

Anda dapat menghemat waktu dan menghindari kesalahan pengetikan dengan menyimpan
parameter dan nilai CLI AWS Enkripsi yang sering digunakan dalam file konfigurasi.

Cara menggunakan CLI 314

AWS Encryption SDK Panduan Developerr

File konfigurasi adalah file teks yang berisi parameter dan nilai untuk perintah CLI AWS Enkripsi.
Ketika Anda merujuk ke file konfigurasi dalam perintah AWS Encryption CLI, referensi digantikan oleh
parameter dan nilai dalam file konfigurasi. Efeknya sama adalah jika Anda mengetik konten file di
baris perintah. File konfigurasi dapat memiliki nama apa pun dan dapat ditemukan di direktori mana
pun yang dapat diakses pengguna saat ini.

Contoh file konfigurasi berikut,key.conf, menentukan dua AWS KMS keys di Wilayah yang
berbeda.

--wrapping-keys key=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
--wrapping-keys key=arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef

Untuk menggunakan file konfigurasi dalam perintah, awali nama file dengan tanda at (@). Di
PowerShell konsol, gunakan karakter backtick untuk keluar dari tanda at (`@).

Perintah contoh ini menggunakan key.conf file dalam perintah enkripsi.

Bash

$ aws-encryption-cli -e @key.conf -i hello.txt -o testdir

PowerShell

PS C:\> aws-encryption-cli -e `@key.conf -i .\Hello.txt -o .\TestDir

Aturan file konfigurasi

Aturan untuk menggunakan file konfigurasi adalah sebagai berikut:

• Anda dapat menyertakan beberapa parameter di setiap file konfigurasi dan mencantumkannya
dalam urutan apa pun. Buat daftar setiap parameter dengan nilainya (jika ada) pada baris terpisah.

• Gunakan # untuk menambahkan komentar ke semua atau sebagian baris.

• Anda dapat menyertakan referensi ke file konfigurasi lainnya. Jangan gunakan backtick untuk
menghindari @ tanda, bahkan masuk PowerShell.

• Jika Anda menggunakan tanda kutip dalam file konfigurasi, teks yang dikutip tidak dapat
menjangkau beberapa baris.

Cara menggunakan CLI 315

AWS Encryption SDK Panduan Developerr

Misalnya, ini adalah isi dari encrypt.conf file contoh.

Archive Files
--encrypt
--output /archive/logs
--recursive
--interactive
--encryption-context class=unclassified dept=IT
--suffix # No suffix
--metadata-output ~/metadata
@caching.conf # Use limited caching

Anda juga dapat menyertakan beberapa file konfigurasi dalam sebuah perintah. Perintah contoh ini
menggunakan file encrypt.conf dan master-keys.conf konfigurasi.

Bash

$ aws-encryption-cli -i /usr/logs @encrypt.conf @master-keys.conf

PowerShell

PS C:\> aws-encryption-cli -i $home\Test*.log `@encrypt.conf `@master-keys.conf

Berikutnya: Coba contoh AWS Encryption CLI

Contoh CLI AWS Enkripsi

Gunakan contoh berikut untuk mencoba CLI AWS Enkripsi pada platform yang Anda inginkan. Untuk
bantuan dengan kunci master dan parameter lainnya, lihatCara menggunakan CLI AWS Enkripsi.
Untuk referensi cepat, lihatAWS Encryption SDK Sintaks CLI dan referensi parameter.

Note

Contoh berikut menggunakan sintaks untuk AWS Enkripsi CLI versi 2.1. x.
Fitur keamanan baru awalnya dirilis dalam AWS Enkripsi CLI versi 1.7. x dan 2.0. x. Namun,
AWS Enkripsi CLI versi 1.8. x menggantikan versi 1.7. x dan AWS Enkripsi CLI 2.1. x
menggantikan 2.0. x. Untuk detailnya, lihat penasihat keamanan yang relevan di aws-
encryption-sdk-clirepositori di. GitHub

Contoh 316

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Panduan Developerr

Untuk contoh yang menunjukkan cara menggunakan fitur keamanan yang membatasi kunci data
terenkripsi, lihat. Membatasi kunci data terenkripsi

Untuk contoh yang menunjukkan cara menggunakan kunci AWS KMS Multi-region,
lihatMenggunakan Multi-region AWS KMS keys.

Topik

• Mengenkripsi file

• Mendekripsi file

• Mengenkripsi semua file dalam direktori

• Mendekripsi semua file dalam direktori

• Mengenkripsi dan mendekripsi pada baris perintah

• Menggunakan beberapa kunci master

• Mengenkripsi dan mendekripsi dalam skrip

• Menggunakan caching kunci data

Mengenkripsi file

Contoh ini menggunakan CLI AWS Enkripsi untuk mengenkripsi isi hello.txt file, yang berisi string
“Hello World”.

Ketika Anda menjalankan perintah enkripsi pada file, CLI AWS Enkripsi mendapatkan konten file,
menghasilkan kunci data unik, mengenkripsi konten file di bawah kunci data, dan kemudian menulis
pesan terenkripsi ke file baru.

Perintah pertama menyimpan ARN kunci dari AWS KMS key variabel. $keyArn Saat mengenkripsi
dengan AWS KMS key, Anda dapat mengidentifikasinya dengan menggunakan ID kunci, ARN
kunci, nama alias, atau alias ARN. Untuk detail tentang pengidentifikasi kunci AWS KMS key, lihat
Pengidentifikasi Kunci di Panduan AWS Key Management Service Pengembang.

Perintah kedua mengenkripsi isi file. Perintah menggunakan --encrypt parameter untuk
menentukan operasi dan --input parameter untuk menunjukkan file yang akan dienkripsi.
--wrapping-keysParameter, dan atribut kunci yang diperlukan, beri tahu perintah untuk
menggunakan yang AWS KMS key diwakili oleh kunci ARN.

Contoh 317

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Panduan Developerr

Perintah menggunakan --metadata-output parameter untuk menentukan file teks untuk metadata
tentang operasi enkripsi. Sebagai praktik terbaik, perintah menggunakan --encryption-context
parameter untuk menentukan konteks enkripsi.

Perintah ini juga menggunakan --commitment-policyparameter untuk menetapkan kebijakan
komitmen secara eksplisit. Dalam versi 1.8. x, parameter ini diperlukan saat Anda menggunakan
--wrapping-keys parameter. Dimulai pada versi 2.1. x, --commitment-policy parameternya
opsional, tetapi disarankan.

Nilai --output parameter, titik (.), memberi tahu perintah untuk menulis file output ke direktori saat
ini.

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$keyArn \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --commitment-policy require-encrypt-require-decrypt \
 --output .

PowerShell

To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --encrypt `
 --input Hello.txt `
 --wrapping-keys key=$keyArn `
 --metadata-output $home\Metadata.txt `
 --commitment-policy require-encrypt-require-decrypt `
 --encryption-context purpose=test `
 --output .

Ketika perintah enkripsi berhasil, itu tidak mengembalikan output apa pun. Untuk menentukan apakah
perintah berhasil, periksa nilai Boolean dalam variabel. $? Ketika perintah berhasil, nilai dari $?

Contoh 318

AWS Encryption SDK Panduan Developerr

adalah 0 (Bash) atau True (PowerShell). Ketika perintah gagal, nilai $? adalah bukan nol (Bash)
atau False (PowerShell).

Bash

$ echo $?
0

PowerShell

PS C:\> $?
True

Anda juga dapat menggunakan perintah daftar direktori untuk melihat bahwa perintah enkripsi
membuat file baru,hello.txt.encrypted. Karena perintah enkripsi tidak menentukan nama file
untuk output, CLI AWS Enkripsi menulis output ke file dengan nama yang sama dengan file input
ditambah .encrypted akhiran. Untuk menggunakan akhiran yang berbeda, atau menekan sufiks,
gunakan parameter. --suffix

hello.txt.encryptedFile berisi pesan terenkripsi yang mencakup ciphertext hello.txt file,
salinan kunci data terenkripsi, dan metadata tambahan, termasuk konteks enkripsi.

Bash

$ ls
hello.txt hello.txt.encrypted

PowerShell

PS C:\> dir

 Directory: C:\TestCLI

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/15/2017 5:57 PM 11 Hello.txt
-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted

Contoh 319

AWS Encryption SDK Panduan Developerr

Mendekripsi file

Contoh ini menggunakan CLI AWS Enkripsi untuk mendekripsi isi Hello.txt.encrypted file yang
dienkripsi pada contoh sebelumnya.

Perintah dekripsi menggunakan --decrypt parameter untuk menunjukkan operasi dan --input
parameter untuk mengidentifikasi file yang akan didekripsi. Nilai --output parameter adalah titik
yang mewakili direktori saat ini.

--wrapping-keysParameter dengan atribut kunci menentukan kunci pembungkus yang digunakan
untuk mendekripsi pesan terenkripsi. Dalam dekripsi perintah dengan AWS KMS keys, nilai atribut
kunci harus berupa ARN kunci. --wrapping-keysParameter diperlukan dalam perintah dekripsi.
Jika Anda menggunakan AWS KMS keys, Anda dapat menggunakan atribut kunci untuk menentukan
AWS KMS keys untuk mendekripsi atau atribut penemuan dengan nilai true (tetapi tidak keduanya).
Jika Anda menggunakan penyedia kunci master kustom, atribut kunci dan penyedia diperlukan.

--commitment-policyParameternya opsional dimulai pada versi 2.1. x, tetapi disarankan.
Menggunakannya secara eksplisit membuat maksud Anda jelas, bahkan jika Anda menentukan nilai
default,. require-encrypt-require-decrypt

--encryption-contextParameter ini opsional dalam perintah dekripsi, bahkan ketika konteks
enkripsi disediakan dalam perintah enkripsi. Dalam hal ini, perintah dekripsi menggunakan konteks
enkripsi yang sama yang disediakan dalam perintah enkripsi. Sebelum mendekripsi, AWS CLI
Enkripsi memverifikasi bahwa konteks enkripsi dalam pesan terenkripsi menyertakan pasangan.
purpose=test Jika tidak, perintah dekripsi gagal.

--metadata-outputParameter menentukan file untuk metadata tentang operasi dekripsi. Nilai --
output parameter, titik (.), menulis file output ke direktori saat ini.

Sebagai praktik terbaik, gunakan --max-encrypted-data-keys parameter untuk menghindari
dekripsi pesan yang salah dengan jumlah kunci data terenkripsi yang berlebihan. Tentukan jumlah
yang diharapkan dari kunci data terenkripsi (satu untuk setiap kunci pembungkus yang digunakan
dalam enkripsi) atau maksimum yang wajar (seperti 5). Lihat perinciannya di Membatasi kunci data
terenkripsi.

Plaintext --buffer mengembalikan hanya setelah semua input diproses, termasuk memverifikasi
tanda tangan digital jika ada.

Bash

\\ To run this example, replace the fictitious key ARN with a valid value.

Contoh 320

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Panduan Developerr

$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys key=$keyArn \
 --commitment-policy require-encrypt-require-decrypt \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --output .

PowerShell

\\ To run this example, replace the fictitious key ARN with a valid value.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt `
 --input Hello.txt.encrypted `
 --wrapping-keys key=$keyArn `
 --commitment-policy require-encrypt-require-decrypt `
 --encryption-context purpose=test `
 --metadata-output $home\Metadata.txt `
 --max-encrypted-data-keys 1 `
 --buffer `
 --output .

Ketika perintah dekripsi berhasil, itu tidak mengembalikan output apa pun. Untuk menentukan apakah
perintah berhasil, dapatkan nilai $? variabel. Anda juga dapat menggunakan perintah daftar direktori
untuk melihat bahwa perintah tersebut membuat file baru dengan .decrypted akhiran. Untuk
melihat konten plaintext, gunakan perintah untuk mendapatkan konten file, seperti cat atau Get-
Content.

Bash

$ ls
hello.txt hello.txt.encrypted hello.txt.encrypted.decrypted

$ cat hello.txt.encrypted.decrypted
Hello World

Contoh 321

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-content
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-content
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.management/get-content

AWS Encryption SDK Panduan Developerr

PowerShell

PS C:\> dir

 Directory: C:\TestCLI

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/17/2017 1:01 PM 11 Hello.txt
-a---- 9/17/2017 1:06 PM 585 Hello.txt.encrypted
-a---- 9/17/2017 1:08 PM 11 Hello.txt.encrypted.decrypted

PS C:\> Get-Content Hello.txt.encrypted.decrypted
Hello World

Mengenkripsi semua file dalam direktori

Contoh ini menggunakan CLI Enkripsi untuk mengenkripsi isi semua file dalam direktori. AWS

Ketika sebuah perintah mempengaruhi beberapa file, CLI AWS Enkripsi memproses setiap file
satu per satu. Ini mendapatkan isi file, mendapatkan kunci data unik untuk file dari kunci master,
mengenkripsi konten file di bawah kunci data, dan menulis hasilnya ke file baru di direktori output.
Akibatnya, Anda dapat mendekripsi file output secara independen.

Daftar TestDir direktori ini menunjukkan file plaintext yang ingin kita enkripsi.

Bash

$ ls testdir
cool-new-thing.py hello.txt employees.csv

PowerShell

PS C:\> dir C:\TestDir

 Directory: C:\TestDir

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/12/2017 3:11 PM 2139 cool-new-thing.py

Contoh 322

AWS Encryption SDK Panduan Developerr

-a---- 9/15/2017 5:57 PM 11 Hello.txt
-a---- 9/17/2017 1:44 PM 46 Employees.csv

Perintah pertama menyimpan Amazon Resource Name (ARN) dari AWS KMS key variabel. $keyArn

Perintah kedua mengenkripsi konten file dalam TestDir direktori dan menulis file konten terenkripsi
ke direktori. TestEnc Jika TestEnc direktori tidak ada, perintah gagal. Karena lokasi input adalah
direktori, --recursive parameter diperlukan.

--wrapping-keysParameter, dan atribut kunci yang diperlukan, tentukan kunci pembungkus yang
akan digunakan. Perintah enkripsi mencakup konteks enkripsi,dept=IT. Saat Anda menentukan
konteks enkripsi dalam perintah yang mengenkripsi beberapa file, konteks enkripsi yang sama
digunakan untuk semua file.

Perintah ini juga memiliki --metadata-output parameter untuk memberi tahu CLI AWS Enkripsi
tempat menulis metadata tentang operasi enkripsi. CLI AWS Enkripsi menulis satu catatan metadata
untuk setiap file yang dienkripsi.

--commitment-policy parameterIni opsional dimulai pada versi 2.1. x, tetapi disarankan. Jika
perintah atau skrip gagal karena tidak dapat mendekripsi ciphertext, pengaturan kebijakan komitmen
eksplisit dapat membantu Anda mendeteksi masalah dengan cepat.

Ketika perintah selesai, CLI AWS Enkripsi menulis file terenkripsi ke TestEnc direktori, tetapi tidak
mengembalikan output apa pun.

Perintah terakhir mencantumkan file dalam TestEnc direktori. Ada satu file output dari konten
terenkripsi untuk setiap file input konten plaintext. Karena perintah tidak menentukan akhiran
alternatif, perintah enkripsi ditambahkan .encrypted ke masing-masing nama file input.

Bash

To run this example, replace the fictitious key ARN with a valid master key
 identifier.
$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
 --input testdir --recursive\
 --wrapping-keys key=$keyArn \
 --encryption-context dept=IT \

Contoh 323

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS Encryption SDK Panduan Developerr

 --commitment-policy require-encrypt-require-decrypt \
 --metadata-output ~/metadata \
 --output testenc

$ ls testenc
cool-new-thing.py.encrypted employees.csv.encrypted hello.txt.encrypted

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
 identifier.
PS C:\> $keyArn = arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PS C:\> aws-encryption-cli --encrypt `
 --input .\TestDir --recursive `
 --wrapping-keys key=$keyArn `
 --encryption-context dept=IT `
 --commitment-policy require-encrypt-require-decrypt `
 --metadata-output .\Metadata\Metadata.txt `
 --output .\TestEnc

PS C:\> dir .\TestEnc

 Directory: C:\TestEnc

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted
-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

Mendekripsi semua file dalam direktori

Contoh ini mendekripsi semua file dalam direktori. Dimulai dengan file di TestEnc direktori yang
dienkripsi dalam contoh sebelumnya.

Bash

$ ls testenc
cool-new-thing.py.encrypted hello.txt.encrypted employees.csv.encrypted

Contoh 324

AWS Encryption SDK Panduan Developerr

PowerShell

PS C:\> dir C:\TestEnc

 Directory: C:\TestEnc

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 9/17/2017 2:32 PM 2713 cool-new-thing.py.encrypted
-a---- 9/17/2017 2:32 PM 620 Hello.txt.encrypted
-a---- 9/17/2017 2:32 PM 585 Employees.csv.encrypted

Perintah dekripsi ini mendekripsi semua file dalam TestEnc direktori dan menulis file plaintext ke
direktori. TestDec --wrapping-keysParameter dengan atribut kunci dan nilai ARN kunci memberi
tahu AWS CLI Enkripsi yang akan digunakan AWS KMS keys untuk mendekripsi file. Perintah
menggunakan --interactive parameter untuk memberi tahu CLI AWS Enkripsi untuk meminta
Anda sebelum menimpa file dengan nama yang sama.

Perintah ini juga menggunakan konteks enkripsi yang disediakan saat file dienkripsi. Saat
mendekripsi beberapa file, AWS CLI Enkripsi memeriksa konteks enkripsi setiap file. Jika
pemeriksaan konteks enkripsi pada file apa pun gagal, CLI AWS Enkripsi menolak file, menulis
peringatan, mencatat kegagalan dalam metadata, dan kemudian terus memeriksa file yang tersisa.
Jika CLI AWS Enkripsi gagal mendekripsi file karena alasan lain, seluruh perintah dekripsi segera
gagal.

Dalam contoh ini, pesan terenkripsi di semua file input berisi elemen konteks dept=IT enkripsi.
Namun, jika Anda mendekripsi pesan dengan konteks enkripsi yang berbeda, Anda mungkin masih
dapat memverifikasi bagian dari konteks enkripsi. Misalnya, jika beberapa pesan memiliki konteks
enkripsi dept=finance dan yang lainnya memilikidept=IT, Anda dapat memverifikasi bahwa
konteks enkripsi selalu berisi dept nama tanpa menentukan nilainya. Jika Anda ingin lebih spesifik,
Anda dapat mendekripsi file dalam perintah terpisah.

Perintah dekripsi tidak mengembalikan output apa pun, tetapi Anda dapat menggunakan perintah
daftar direktori untuk melihat bahwa itu membuat file baru dengan akhiran. .decrypted Untuk
melihat konten plaintext, gunakan perintah untuk mendapatkan konten file.

Contoh 325

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Panduan Developerr

Bash

To run this example, replace the fictitious key ARN with a valid master key
 identifier.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --decrypt \
 --input testenc --recursive \
 --wrapping-keys key=$keyArn \
 --encryption-context dept=IT \
 --commitment-policy require-encrypt-require-decrypt \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 1 \
 --buffer \
 --output testdec --interactive

$ ls testdec
cool-new-thing.py.encrypted.decrypted hello.txt.encrypted.decrypted
 employees.csv.encrypted.decrypted

PowerShell

To run this example, replace the fictitious key ARN with a valid master key
 identifier.
PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --decrypt `
 --input C:\TestEnc --recursive `
 --wrapping-keys key=$keyArn `
 --encryption-context dept=IT `
 --commitment-policy require-encrypt-require-decrypt `
 --metadata-output $home\Metadata.txt `
 --max-encrypted-data-keys 1 `
 --buffer `
 --output C:\TestDec --interactive

PS C:\> dir .\TestDec

 Mode LastWriteTime Length Name
---- ------------- ------ ----

Contoh 326

AWS Encryption SDK Panduan Developerr

-a---- 10/8/2017 4:57 PM 2139 cool-new-
thing.py.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 46 Employees.csv.encrypted.decrypted
-a---- 10/8/2017 4:57 PM 11 Hello.txt.encrypted.decrypted

Mengenkripsi dan mendekripsi pada baris perintah

Contoh-contoh ini menunjukkan cara menyalurkan input ke perintah (stdin) dan menulis output ke
baris perintah (stdout). Mereka menjelaskan cara merepresentasikan stdin dan stdout dalam sebuah
perintah dan cara menggunakan alat pengkodean Base64 bawaan untuk mencegah shell salah
menafsirkan karakter non-ASCII.

Contoh ini menyalurkan string teks biasa ke perintah enkripsi dan menyimpan pesan terenkripsi
dalam variabel. Kemudian, ia menyalurkan pesan terenkripsi dalam variabel ke perintah dekripsi,
yang menulis outputnya ke pipeline (stdout).

Contohnya terdiri dari tiga perintah:

• Perintah pertama menyimpan ARN kunci dari AWS KMS key variabel. $keyArn

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

• Perintah kedua Hello World menyalurkan string ke perintah enkripsi dan menyimpan hasilnya
dalam $encrypted variabel.

--outputParameter --input dan diperlukan di semua perintah AWS Enkripsi CLI. Untuk
menunjukkan bahwa input sedang disalurkan ke perintah (stdin), gunakan tanda hubung (-) untuk
nilai parameter. --input Untuk mengirim output ke baris perintah (stdout), gunakan tanda hubung
untuk nilai parameter. --output

Contoh 327

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Panduan Developerr

--encodeParameter Base64-mengkodekan output sebelum mengembalikannya. Ini mencegah
shell salah menafsirkan karakter non-ASCII dalam pesan terenkripsi.

Karena perintah ini hanyalah bukti konsep, kami menghilangkan konteks enkripsi dan menekan
metadata (). -S

Bash

$ encrypted=$(echo 'Hello World' | aws-encryption-cli --encrypt -S \
 --input - --output - --
encode \
 --wrapping-keys key=
$keyArn)

PowerShell

PS C:\> $encrypted = 'Hello World' | aws-encryption-cli --encrypt -S `
 --input - --output - --
encode `
 --wrapping-keys key=
$keyArn

• Perintah ketiga menyalurkan pesan terenkripsi dalam $encrypted variabel ke perintah dekripsi.

Perintah dekripsi ini digunakan --input - untuk menunjukkan bahwa input berasal dari pipeline
(stdin) dan --output - untuk mengirim output ke pipeline (stdout). (Parameter input mengambil
lokasi input, bukan byte input yang sebenarnya, sehingga Anda tidak dapat menggunakan
$encrypted variabel sebagai nilai --input parameter.)

Contoh ini menggunakan atribut penemuan --wrapping-keys parameter untuk memungkinkan
CLI AWS Enkripsi menggunakan apapun AWS KMS key untuk mendekripsi data. Itu tidak
menentukan kebijakan komitmen, sehingga menggunakan nilai default untuk versi 2.1. x dan
kemudian, require-encrypt-require-decrypt

Karena output dienkripsi dan kemudian dikodekan, perintah dekripsi menggunakan --decode
parameter untuk memecahkan kode input yang dikodekan Base64 sebelum mendekripsi. Anda
juga dapat menggunakan --decode parameter untuk memecahkan kode input yang dikodekan
Base64 sebelum mengenkripsinya.

Contoh 328

AWS Encryption SDK Panduan Developerr

Sekali lagi, perintah menghilangkan konteks enkripsi dan menekan metadata (-). S

Bash

$ echo $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=true
 --input - --output - --decode --buffer -S
Hello World

PowerShell

PS C:\> $encrypted | aws-encryption-cli --decrypt --wrapping-keys discovery=$true
 --input - --output - --decode --buffer -S
Hello World

Anda juga dapat melakukan operasi enkripsi dan dekripsi dalam satu perintah tanpa variabel
intervensi.

Seperti pada contoh sebelumnya, --output parameter --input dan memiliki - nilai dan perintah
menggunakan --encode parameter untuk menyandikan output dan --decode parameter untuk
memecahkan kode input.

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ echo 'Hello World' |
 aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --
output - --encode -S |
 aws-encryption-cli --decrypt --wrapping-keys discovery=true --input - --
output - --decode -S
Hello World

PowerShell

PS C:\> $keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> 'Hello World' |

Contoh 329

AWS Encryption SDK Panduan Developerr

 aws-encryption-cli --encrypt --wrapping-keys key=$keyArn --input - --
output - --encode -S |
 aws-encryption-cli --decrypt --wrapping-keys discovery=$true --input
 - --output - --decode -S
Hello World

Menggunakan beberapa kunci master

Contoh ini menunjukkan cara menggunakan beberapa kunci master saat mengenkripsi dan
mendekripsi data di CLI Enkripsi. AWS

Bila Anda menggunakan beberapa kunci master untuk mengenkripsi data, salah satu kunci master
dapat digunakan untuk mendekripsi data. Strategi ini memastikan bahwa Anda dapat mendekripsi
data bahkan jika salah satu kunci master tidak tersedia. Jika Anda menyimpan data terenkripsi dalam
beberapa Wilayah AWS, strategi ini memungkinkan Anda menggunakan kunci master di Wilayah
yang sama untuk mendekripsi data.

Saat Anda mengenkripsi dengan beberapa kunci master, kunci master pertama memainkan peran
khusus. Ini menghasilkan kunci data yang digunakan untuk mengenkripsi data. Kunci master yang
tersisa mengenkripsi kunci data teks biasa. Pesan terenkripsi yang dihasilkan mencakup data
terenkripsi dan kumpulan kunci data terenkripsi, satu untuk setiap kunci master. Meskipun kunci
master pertama menghasilkan kunci data, salah satu kunci master dapat mendekripsi salah satu
kunci data, yang dapat digunakan untuk mendekripsi data.

Mengenkripsi dengan tiga kunci utama

Perintah contoh ini menggunakan tiga kunci pembungkus untuk mengenkripsi Finance.log file,
satu di masing-masing tiga. Wilayah AWS

Ini menulis pesan terenkripsi ke direktori. Archive Perintah menggunakan --suffix parameter
tanpa nilai untuk menekan akhiran, sehingga nama file input dan output akan sama.

Perintah menggunakan --wrapping-keys parameter dengan tiga atribut kunci. Anda juga dapat
menggunakan beberapa --wrapping-keys parameter dalam perintah yang sama.

Untuk mengenkripsi file log, CLI AWS Enkripsi meminta kunci pembungkus pertama dalam
daftar$key1,, untuk menghasilkan kunci data yang digunakannya untuk mengenkripsi data.
Kemudian, ia menggunakan masing-masing kunci pembungkus lainnya untuk mengenkripsi salinan
teks biasa dari kunci data yang sama. Pesan terenkripsi dalam file output mencakup ketiga kunci data
terenkripsi.

Contoh 330

AWS Encryption SDK Panduan Developerr

Bash

$ key1=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab
$ key2=arn:aws:kms:us-east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef
$ key3=arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d

$ aws-encryption-cli --encrypt --input /logs/finance.log \
 --output /archive --suffix \
 --encryption-context class=log \
 --metadata-output ~/metadata \
 --wrapping-keys key=$key1 key=$key2 key=$key3

PowerShell

PS C:\> $key1 = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
PS C:\> $key2 = 'arn:aws:kms:us-
east-2:111122223333:key/0987ab65-43cd-21ef-09ab-87654321cdef'
PS C:\> $key3 = 'arn:aws:kms:ap-
southeast-1:111122223333:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d'

PS C:\> aws-encryption-cli --encrypt --input D:\Logs\Finance.log `
 --output D:\Archive --suffix `
 --encryption-context class=log `
 --metadata-output $home\Metadata.txt `
 --wrapping-keys key=$key1 key=$key2 key=$key3

Perintah ini mendekripsi salinan Finance.log file yang dienkripsi dan menulisnya ke
Finance.log.clear file di direktori. Finance Untuk mendekripsi data yang dienkripsi di bawah
tiga AWS KMS keys, Anda dapat menentukan tiga AWS KMS keys atau subset yang sama. Contoh
ini hanya menentukan salah satu dari. AWS KMS keys

Untuk memberi tahu CLI AWS Enkripsi yang AWS KMS keys akan digunakan untuk mendekripsi data
Anda, gunakan atribut kunci parameter. --wrapping-keys Saat mendekripsi dengan AWS KMS
keys, nilai atribut kunci harus berupa ARN kunci.

Anda harus memiliki izin untuk memanggil Decrypt API pada yang AWS KMS keys Anda tentukan.
Untuk informasi selengkapnya, lihat Otentikasi dan Kontrol Akses untuk AWS KMS.

Contoh 331

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html

AWS Encryption SDK Panduan Developerr

Sebagai praktik terbaik, contoh ini menggunakan --max-encrypted-data-keys parameter
untuk menghindari dekripsi pesan yang salah dengan jumlah kunci data terenkripsi yang berlebihan.
Meskipun contoh ini hanya menggunakan satu kunci pembungkus untuk dekripsi, pesan terenkripsi
memiliki tiga (3) kunci data terenkripsi; satu untuk masing-masing dari tiga kunci pembungkus yang
digunakan saat mengenkripsi. Tentukan jumlah yang diharapkan dari kunci data terenkripsi atau
nilai maksimum yang wajar, seperti 5. Jika Anda menentukan nilai maksimum kurang dari 3, perintah
gagal. Lihat perinciannya di Membatasi kunci data terenkripsi.

Bash

$ aws-encryption-cli --decrypt --input /archive/finance.log \
 --wrapping-keys key=$key1 \
 --output /finance --suffix '.clear' \
 --metadata-output ~/metadata \
 --max-encrypted-data-keys 3 \
 --buffer \
 --encryption-context class=log

PowerShell

PS C:\> aws-encryption-cli --decrypt `
 --input D:\Archive\Finance.log `
 --wrapping-keys key=$key1 `
 --output D:\Finance --suffix '.clear' `
 --metadata-output .\Metadata\Metadata.txt `
 --max-encrypted-data-keys 3 `
 --buffer `
 --encryption-context class=log

Mengenkripsi dan mendekripsi dalam skrip

Contoh ini menunjukkan cara menggunakan CLI AWS Enkripsi dalam skrip. Anda dapat menulis skrip
yang hanya mengenkripsi dan mendekripsi data, atau skrip yang mengenkripsi atau mendekripsi
sebagai bagian dari proses manajemen data.

Dalam contoh ini, skrip mendapatkan koleksi file log, mengompresnya, mengenkripsi mereka, dan
kemudian menyalin file terenkripsi ke bucket Amazon S3. Skrip ini memproses setiap file secara
terpisah, sehingga Anda dapat mendekripsi dan mengembangkannya secara independen.

Contoh 332

AWS Encryption SDK Panduan Developerr

Saat Anda mengompres dan mengenkripsi file, pastikan untuk mengompres sebelum Anda
mengenkripsi. Data yang dienkripsi dengan benar tidak dapat dikompresi.

Warning

Hati-hati saat mengompresi data yang mencakup rahasia dan data yang mungkin
dikendalikan oleh aktor jahat. Ukuran akhir dari data terkompresi mungkin secara tidak
sengaja mengungkapkan informasi sensitif tentang isinya.

Bash

Continue running even if an operation fails.
set +e

dir=$1
encryptionContext=$2
s3bucket=$3
s3folder=$4
masterKeyProvider="aws-kms"
metadataOutput="/tmp/metadata-$(date +%s)"

compress(){
 gzip -qf $1
}

encrypt(){
 # -e encrypt
 # -i input
 # -o output
 # --metadata-output unique file for metadata
 # -m masterKey read from environment variable
 # -c encryption context read from the second argument.
 # -v be verbose
 aws-encryption-cli -e -i ${1} -o $(dirname ${1}) --metadata-output
 ${metadataOutput} -m key="${masterKey}" provider="${masterKeyProvider}" -c
 "${encryptionContext}" -v
}

s3put (){
 # copy file argument 1 to s3 location passed into the script.

Contoh 333

AWS Encryption SDK Panduan Developerr

 aws s3 cp ${1} ${s3bucket}/${s3folder}
}

Validate all required arguments are present.
if ["${dir}"] && ["${encryptionContext}"] && ["${s3bucket}"] &&
 ["${s3folder}"] && ["${masterKey}"]; then

Is $dir a valid directory?
test -d "${dir}"
if [$? -ne 0]; then
 echo "Input is not a directory; exiting"
 exit 1
fi

Iterate over all the files in the directory, except *gz and *encrypted (in case of
 a re-run).
for f in $(find ${dir} -type f \(-name "*" ! -name *.gz ! -name *encrypted \));
 do
 echo "Working on $f"
 compress ${f}
 encrypt ${f}.gz
 rm -f ${f}.gz
 s3put ${f}.gz.encrypted
done;
else
 echo "Arguments: <Directory> <encryption context> <s3://bucketname> <s3 folder>"
 echo " and ENV var \$masterKey must be set"
 exit 255
fi

PowerShell

#Requires -Modules AWSPowerShell, Microsoft.PowerShell.Archive
Param
(
 [Parameter(Mandatory)]
 [ValidateScript({Test-Path $_})]
 [String[]]
 $FilePath,

 [Parameter()]
 [Switch]
 $Recurse,

Contoh 334

AWS Encryption SDK Panduan Developerr

 [Parameter(Mandatory=$true)]
 [String]
 $wrappingKeyID,

 [Parameter()]
 [String]
 $masterKeyProvider = 'aws-kms',

 [Parameter(Mandatory)]
 [ValidateScript({Test-Path $_})]
 [String]
 $ZipDirectory,

 [Parameter(Mandatory)]
 [ValidateScript({Test-Path $_})]
 [String]
 $EncryptDirectory,

 [Parameter()]
 [String]
 $EncryptionContext,

 [Parameter(Mandatory)]
 [ValidateScript({Test-Path $_})]
 [String]
 $MetadataDirectory,

 [Parameter(Mandatory)]
 [ValidateScript({Test-S3Bucket -BucketName $_})]
 [String]
 $S3Bucket,

 [Parameter()]
 [String]
 $S3BucketFolder
)

BEGIN {}
PROCESS {
 if ($files = dir $FilePath -Recurse:$Recurse)
 {

 # Step 1: Compress

Contoh 335

AWS Encryption SDK Panduan Developerr

 foreach ($file in $files)
 {
 $fileName = $file.Name
 try
 {
 Microsoft.PowerShell.Archive\Compress-Archive -Path $file.FullName -
DestinationPath $ZipDirectory\$filename.zip
 }
 catch
 {
 Write-Error "Zip failed on $file.FullName"
 }

 # Step 2: Encrypt
 if (-not (Test-Path "$ZipDirectory\$filename.zip"))
 {
 Write-Error "Cannot find zipped file: $ZipDirectory\$filename.zip"
 }
 else
 {
 # 2>&1 captures command output
 $err = (aws-encryption-cli -e -i "$ZipDirectory\$filename.zip" `
 -o $EncryptDirectory `
 -m key=$wrappingKeyID provider=
$masterKeyProvider `
 -c $EncryptionContext `
 --metadata-output $MetadataDirectory `
 -v) 2>&1

 # Check error status
 if ($? -eq $false)
 {
 # Write the error
 $err
 }
 elseif (Test-Path "$EncryptDirectory\$fileName.zip.encrypted")
 {
 # Step 3: Write to S3 bucket
 if ($S3BucketFolder)
 {
 Write-S3Object -BucketName $S3Bucket -File
 "$EncryptDirectory\$fileName.zip.encrypted" -Key "$S3BucketFolder/
$fileName.zip.encrypted"

Contoh 336

AWS Encryption SDK Panduan Developerr

 }
 else
 {
 Write-S3Object -BucketName $S3Bucket -File
 "$EncryptDirectory\$fileName.zip.encrypted"
 }
 }
 }
 }
 }
}

Menggunakan caching kunci data

Contoh ini menggunakan caching kunci data dalam perintah yang mengenkripsi sejumlah besar file.

Secara default, CLI AWS Enkripsi (dan versi lain dari AWS Encryption SDK) menghasilkan kunci data
unik untuk setiap file yang dienkripsi. Meskipun menggunakan kunci data unik untuk setiap operasi
adalah praktik terbaik kriptografi, penggunaan kembali kunci data yang terbatas dapat diterima untuk
beberapa situasi. Jika Anda mempertimbangkan caching kunci data, konsultasikan dengan insinyur
keamanan untuk memahami persyaratan keamanan aplikasi Anda dan tentukan ambang keamanan
yang tepat untuk Anda.

Dalam contoh ini, caching kunci data mempercepat operasi enkripsi dengan mengurangi frekuensi
permintaan ke penyedia kunci master.

Perintah dalam contoh ini mengenkripsi direktori besar dengan beberapa subdirektori yang berisi
total sekitar 800 file log kecil. Perintah pertama menyimpan ARN dari AWS KMS key dalam variabel.
keyARN Perintah kedua mengenkripsi semua file dalam direktori input (rekursif) dan menulisnya ke
direktori arsip. Perintah menggunakan --suffix parameter untuk menentukan .archive sufiks.

--cachingParameter memungkinkan caching kunci data. Atribut kapasitas, yang membatasi jumlah
kunci data dalam cache, diatur ke 1, karena pemrosesan file serial tidak pernah menggunakan lebih
dari satu kunci data pada satu waktu. Atribut max_age, yang menentukan berapa lama kunci data
cache dapat digunakan, diatur ke 10 detik.

Atribut max_messages_encrypted opsional disetel ke 10 pesan, sehingga satu kunci data tidak
pernah digunakan untuk mengenkripsi lebih dari 10 file. Membatasi jumlah file yang dienkripsi oleh
setiap kunci data mengurangi jumlah file yang akan terpengaruh jika kunci data dikompromikan.

Contoh 337

AWS Encryption SDK Panduan Developerr

Untuk menjalankan perintah ini pada file log yang dihasilkan sistem operasi Anda, Anda mungkin
memerlukan izin administrator (sudodi Linux; Jalankan sebagai Administrator di Windows).

Bash

$ keyArn=arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

$ aws-encryption-cli --encrypt \
 --input /var/log/httpd --recursive \
 --output ~/archive --suffix .archive \
 --wrapping-keys key=$keyArn \
 --encryption-context class=log \
 --suppress-metadata \
 --caching capacity=1 max_age=10 max_messages_encrypted=10

PowerShell

PS C:\> $keyARN = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

PS C:\> aws-encryption-cli --encrypt `
 --input C:\Windows\Logs --recursive `
 --output $home\Archive --suffix '.archive' `
 --wrapping-keys key=$keyARN `
 --encryption-context class=log `
 --suppress-metadata `
 --caching capacity=1 max_age=10
 max_messages_encrypted=10

Untuk menguji efek caching kunci data, contoh ini menggunakan cmdlet Measure-Command in.
PowerShell Ketika Anda menjalankan contoh ini tanpa caching kunci data, dibutuhkan sekitar 25 detik
untuk menyelesaikannya. Proses ini menghasilkan kunci data baru untuk setiap file dalam direktori.

PS C:\> Measure-Command {aws-encryption-cli --encrypt `
 --input C:\Windows\Logs --recursive `
 --output $home\Archive --suffix '.archive'
 `
 --wrapping-keys key=$keyARN `
 --encryption-context class=log `
 --suppress-metadata }

Contoh 338

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/measure-command

AWS Encryption SDK Panduan Developerr

Days : 0
Hours : 0
Minutes : 0
Seconds : 25
Milliseconds : 453
Ticks : 254531202
TotalDays : 0.000294596298611111
TotalHours : 0.00707031116666667
TotalMinutes : 0.42421867
TotalSeconds : 25.4531202
TotalMilliseconds : 25453.1202

Caching kunci data membuat proses lebih cepat, bahkan ketika Anda membatasi setiap kunci
data hingga maksimal 10 file. Perintah sekarang membutuhkan waktu kurang dari 12 detik untuk
menyelesaikan dan mengurangi jumlah panggilan ke penyedia kunci master menjadi 1/10 dari nilai
aslinya.

PS C:\> Measure-Command {aws-encryption-cli --encrypt `
 --input C:\Windows\Logs --recursive `
 --output $home\Archive --suffix '.archive'
 `
 --wrapping-keys key=$keyARN `
 --encryption-context class=log `
 --suppress-metadata `
 --caching capacity=1 max_age=10
 max_messages_encrypted=10}

Days : 0
Hours : 0
Minutes : 0
Seconds : 11
Milliseconds : 813
Ticks : 118132640
TotalDays : 0.000136727592592593
TotalHours : 0.00328146222222222
TotalMinutes : 0.196887733333333
TotalSeconds : 11.813264
TotalMilliseconds : 11813.264

Contoh 339

AWS Encryption SDK Panduan Developerr

Jika Anda menghilangkan max_messages_encrypted batasan, semua file dienkripsi di bawah
kunci data yang sama. Perubahan ini meningkatkan risiko menggunakan kembali kunci data tanpa
membuat proses lebih cepat. Namun, ini mengurangi jumlah panggilan ke penyedia kunci master
menjadi 1.

PS C:\> Measure-Command {aws-encryption-cli --encrypt `
 --input C:\Windows\Logs --recursive `
 --output $home\Archive --suffix '.archive'
 `
 --wrapping-keys key=$keyARN `
 --encryption-context class=log `
 --suppress-metadata `
 --caching capacity=1 max_age=10}

Days : 0
Hours : 0
Minutes : 0
Seconds : 10
Milliseconds : 252
Ticks : 102523367
TotalDays : 0.000118661304398148
TotalHours : 0.00284787130555556
TotalMinutes : 0.170872278333333
TotalSeconds : 10.2523367
TotalMilliseconds : 10252.3367

AWS Encryption SDK Sintaks CLI dan referensi parameter

Topik ini menyediakan diagram sintaks dan deskripsi parameter singkat untuk membantu Anda
menggunakan AWS Encryption SDK Command Line Interface (CLI). Untuk bantuan dengan kunci
pembungkus dan parameter lainnya, lihatCara menggunakan CLI AWS Enkripsi. Sebagai contoh,
lihat Contoh CLI AWS Enkripsi. Untuk dokumentasi selengkapnya, lihat Membaca Dokumen.

Topik

• AWS Sintaks CLI enkripsi

• AWS Parameter baris perintah CLI enkripsi

• Parameter lanjutan

Referensi sintaks dan parameter 340

https://aws-encryption-sdk-cli.readthedocs.io/en/latest/

AWS Encryption SDK Panduan Developerr

AWS Sintaks CLI enkripsi

Diagram sintaks AWS Enkripsi CLI ini menunjukkan sintaks untuk setiap tugas yang Anda lakukan
dengan CLI Enkripsi. AWS Mereka mewakili sintaks yang direkomendasikan dalam AWS Enkripsi CLI
versi 2.1. x dan kemudian.

Fitur keamanan baru awalnya dirilis dalam AWS Enkripsi CLI versi 1.7. x dan 2.0. x. Namun, AWS
Enkripsi CLI versi 1.8. x menggantikan versi 1.7. x dan AWS Enkripsi CLI 2.1. x menggantikan 2.0. x.
Untuk detailnya, lihat penasihat keamanan yang relevan di aws-encryption-sdk-clirepositori di. GitHub

Note

Kecuali dicatat dalam deskripsi parameter, setiap parameter atau atribut hanya dapat
digunakan sekali dalam setiap perintah.
Jika Anda menggunakan atribut yang parameter tidak mendukung, CLI AWS Enkripsi
mengabaikan atribut yang tidak didukung tanpa peringatan atau kesalahan.

Mencari bantuan

Untuk mendapatkan sintaks AWS Enkripsi CLI lengkap dengan deskripsi parameter, gunakan
atau. --help -h

aws-encryption-cli (--help | -h)

Dapatkan versinya

Untuk mendapatkan nomor versi instalasi CLI AWS Enkripsi Anda, gunakan. --version
Pastikan untuk menyertakan versi saat Anda mengajukan pertanyaan, melaporkan masalah, atau
berbagi tips tentang menggunakan CLI AWS Enkripsi.

aws-encryption-cli --version

Enkripsi data

Diagram sintaks berikut menunjukkan parameter yang digunakan encrypt perintah.

aws-encryption-cli --encrypt
 --input <input> [--recursive] [--decode]
 --output <output> [--interactive] [--no-overwrite] [--suffix
 [<suffix>]] [--encode]

Referensi sintaks dan parameter 341

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Panduan Developerr

 --wrapping-keys [--wrapping-keys] ...
 key=<keyID> [key=<keyID>] ...
 [provider=<provider-name>] [region=<aws-region>]
 [profile=<aws-profile>]
 --metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]
 [--commitment-policy <commitment-policy>]
 [--encryption-context <encryption_context> [<encryption_context>
 ...]]
 [--max-encrypted-data-keys <integer>]
 [--algorithm <algorithm_suite>]
 [--caching <attributes>]
 [--frame-length <length>]
 [-v | -vv | -vvv | -vvvv]
 [--quiet]

Dekripsi data

Diagram sintaks berikut menunjukkan parameter yang digunakan decrypt perintah.

Dalam versi 1.8. x, --wrapping-keys parameternya opsional saat mendekripsi, tetapi
disarankan. Dimulai dari versi 2.1. x, --wrapping-keys parameter diperlukan saat mengenkripsi
dan mendekripsi. Untuk AWS KMS keys, Anda dapat menggunakan atribut kunci untuk
menentukan kunci pembungkus (praktik terbaik) atau menyetel atribut penemuantrue, yang tidak
membatasi kunci pembungkus yang dapat digunakan AWS CLI Enkripsi.

aws-encryption-cli --decrypt (or [--decrypt-unsigned])
 --input <input> [--recursive] [--decode]
 --output <output> [--interactive] [--no-overwrite] [--suffix
 [<suffix>]] [--encode]
 --wrapping-keys [--wrapping-keys] ...
 [key=<keyID>] [key=<keyID>] ...
 [discovery={true|false}] [discovery-partition=<aws-partition-
name> discovery-account=<aws-account-ID> [discovery-account=<aws-account-ID>] ...]
 [provider=<provider-name>] [region=<aws-region>]
 [profile=<aws-profile>]
 --metadata-output <location> [--overwrite-metadata] | --suppress-
metadata]
 [--commitment-policy <commitment-policy>]
 [--encryption-context <encryption_context> [<encryption_context>
 ...]]
 [--buffer]
 [--max-encrypted-data-keys <integer>]

Referensi sintaks dan parameter 342

AWS Encryption SDK Panduan Developerr

 [--caching <attributes>]
 [--max-length <length>]
 [-v | -vv | -vvv | -vvvv]
 [--quiet]

Gunakan file konfigurasi

Anda dapat merujuk ke file konfigurasi yang berisi parameter dan nilainya. Ini setara dengan
mengetik parameter dan nilai dalam perintah. Sebagai contoh, lihat Cara menyimpan parameter
dalam file konfigurasi.

aws-encryption-cli @<configuration_file>

In a PowerShell console, use a backtick to escape the @.
aws-encryption-cli `@<configuration_file>

AWS Parameter baris perintah CLI enkripsi

Daftar ini memberikan deskripsi dasar parameter perintah AWS Enkripsi CLI. Untuk deskripsi
lengkap, lihat aws-encryption-sdk-clidokumentasi.

--enkripsi (-e)

Mengenkripsi data input. Setiap perintah harus memiliki--encrypt, atau--decrypt, atau --
decrypt-unsigned parameter.

--dekripsi (-d)

Mendekripsi data input. Setiap perintah harus memiliki--encrypt,--decrypt, atau --
decrypt-unsigned parameter.

--decrypt-unsigned [Diperkenalkan dalam versi 1.9. x dan 2.2. x]

--decrypt-unsignedParameter mendekripsi ciphertext dan memastikan bahwa pesan tidak
ditandatangani sebelum dekripsi. Gunakan parameter ini jika Anda menggunakan --algorithm
parameter dan memilih rangkaian algoritme tanpa penandatanganan digital untuk mengenkripsi
data. Jika ciphertext ditandatangani, dekripsi gagal.

Anda dapat menggunakan --decrypt atau --decrypt-unsigned untuk dekripsi tetapi tidak
keduanya.

Referensi sintaks dan parameter 343

http://aws-encryption-sdk-cli.readthedocs.io/en/latest/

AWS Encryption SDK Panduan Developerr

--wrapping-keys (-w) [Diperkenalkan dalam versi 1.8. x]

Menentukan kunci pembungkus (atau kunci master) yang digunakan dalam operasi enkripsi dan
dekripsi. Anda dapat menggunakan beberapa --wrapping-keys parameter di setiap perintah.

Dimulai dari versi 2.1. x, --wrapping-keys parameter diperlukan dalam perintah enkripsi dan
dekripsi. Dalam versi 1.8. x, perintah enkripsi memerlukan salah satu --wrapping-keys atau
--master-keys parameter. Dalam versi 1.8. x dekripsi perintah, --wrapping-keys parameter
adalah opsional tetapi direkomendasikan.

Saat menggunakan penyedia kunci master kustom, perintah enkripsi dan dekripsi memerlukan
atribut kunci dan penyedia. Saat menggunakan AWS KMS keys, perintah enkripsi memerlukan
atribut kunci. Perintah dekripsi memerlukan atribut kunci atau atribut penemuan dengan nilai
true (tetapi tidak keduanya). Menggunakan atribut kunci saat mendekripsi adalah praktik AWS
Encryption SDK terbaik. Ini sangat penting jika Anda mendekripsi kumpulan pesan asing, seperti
yang ada di bucket Amazon S3 atau antrian Amazon SQS.

Untuk contoh yang menunjukkan cara menggunakan kunci AWS KMS Multi-region sebagai kunci
pembungkus, lihat. Menggunakan Multi-region AWS KMS keys

Atribut: Nilai --wrapping-keys parameter terdiri dari atribut berikut. Formatnya adalah
attribute_name=value.

kunci

Mengidentifikasi kunci pembungkus yang digunakan dalam operasi. Formatnya adalah
pasangan kunci = ID. Anda dapat menentukan beberapa atribut kunci di setiap nilai --
wrapping-keys parameter.

• Enkripsi perintah: Semua perintah enkripsi memerlukan atribut kunci. Bila Anda
menggunakan AWS KMS key dalam perintah enkripsi, nilai atribut kunci dapat berupa ID
kunci, ARN kunci, nama alias, atau alias ARN. Untuk deskripsi pengidentifikasi AWS KMS
kunci, lihat Pengidentifikasi kunci di Panduan Pengembang.AWS Key Management Service

• Dekripsi perintah: Saat mendekripsi dengan AWS KMS keys, --wrapping-keys
parameter memerlukan atribut kunci dengan nilai ARN kunci atau atribut penemuan
dengan nilai (tetapi tidak keduanya). true Menggunakan atribut kunci adalah praktik AWS
Encryption SDK terbaik. Saat mendekripsi dengan penyedia kunci master kustom, atribut
kunci diperlukan.

Referensi sintaks dan parameter 344

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS Encryption SDK Panduan Developerr

Note

Untuk menentukan kunci AWS KMS pembungkus dalam perintah dekripsi, nilai
atribut kunci harus berupa ARN kunci. Jika Anda menggunakan ID kunci, nama
alias, atau alias ARN, AWS CLI Enkripsi tidak mengenali kunci pembungkus.

Anda dapat menentukan beberapa atribut kunci di setiap nilai --wrapping-keys parameter.
Namun, atribut penyedia, wilayah, dan profil apa pun dalam --wrapping-keys parameter
berlaku untuk semua kunci pembungkus dalam nilai parameter tersebut. Untuk menentukan
kunci pembungkus dengan nilai atribut yang berbeda, gunakan beberapa --wrapping-keys
parameter dalam perintah.

penemuan

Memungkinkan CLI AWS Enkripsi menggunakan apapun AWS KMS key untuk mendekripsi
pesan. Nilai penemuan bisa true ataufalse. Nilai default-nya adalah false. Atribut
penemuan hanya valid dalam perintah dekripsi dan hanya jika penyedia kunci master berada.
AWS KMS

Saat mendekripsi dengan AWS KMS keys, --wrapping-keys parameter memerlukan
atribut kunci atau atribut penemuan dengan nilai true (tetapi tidak keduanya). Jika Anda
menggunakan atribut kunci, Anda dapat menggunakan atribut penemuan dengan nilai false
untuk secara eksplisit menolak penemuan.

• False(default) — Ketika atribut penemuan tidak ditentukan atau nilainyafalse, CLI AWS
Enkripsi mendekripsi pesan hanya menggunakan yang AWS KMS keys ditentukan oleh
atribut kunci parameter. --wrapping-keys Jika Anda tidak menentukan atribut kunci saat
penemuanfalse, perintah dekripsi gagal. Nilai ini mendukung praktik terbaik CLI AWS
Enkripsi.

• True— Ketika nilai atribut penemuan adalahtrue, CLI AWS Enkripsi mendapatkan
metadata AWS KMS keys dari dalam pesan terenkripsi, dan menggunakannya untuk
mendekripsi pesan. AWS KMS keys Atribut penemuan dengan nilai true berperilaku
seperti versi CLI AWS Enkripsi sebelum versi 1.8. x yang tidak mengizinkan Anda
menentukan kunci pembungkus saat mendekripsi. Namun, maksud Anda untuk
menggunakan apapun AWS KMS key adalah eksplisit. Jika Anda menentukan atribut kunci
saat penemuantrue, perintah dekripsi gagal.

Referensi sintaks dan parameter 345

AWS Encryption SDK Panduan Developerr

trueNilai tersebut dapat menyebabkan CLI AWS Enkripsi digunakan AWS KMS keys di
berbagai Wilayah Akun AWS dan yang berbeda, atau mencoba menggunakan AWS KMS
keys yang tidak diizinkan untuk digunakan oleh pengguna.

Saat penemuan dilakukantrue, sebaiknya gunakan atribut partisi penemuan dan akun-
penemuan untuk membatasi atribut yang AWS KMS keys digunakan pada atribut yang Anda
tentukan. Akun AWS

penemuan-akun

Membatasi yang AWS KMS keys digunakan untuk mendekripsi ke yang ditentukan. Akun AWS
Satu-satunya nilai yang valid untuk atribut ini adalah Akun AWS ID.

Atribut ini opsional dan hanya valid dalam perintah dekripsi dengan AWS KMS keys tempat
atribut penemuan diatur true dan atribut partisi penemuan ditentukan.

Setiap atribut discovery-account hanya membutuhkan satu Akun AWS ID, tetapi Anda dapat
menentukan beberapa atribut discovery-account dalam parameter yang sama. --wrapping-
keys Semua akun yang ditentukan dalam --wrapping-keys parameter tertentu harus
berada di AWS partisi yang ditentukan.

penemuan-partisi

Menentukan AWS partisi untuk account di atribut discovery-account. Nilainya harus berupa
AWS partisi, sepertiaws,aws-cn, atauaws-gov-cloud. Untuk selengkapnya, lihat Nama
Sumber Daya Amazon di Referensi Umum AWS.

Atribut ini diperlukan saat Anda menggunakan atribut discovery-account. Anda hanya
dapat menentukan satu atribut partisi penemuan di setiap parameter. --wrapping keys
Untuk menentukan Akun AWS di beberapa partisi, gunakan --wrapping-keys parameter
tambahan.

penyedia

Mengidentifikasi penyedia kunci utama. Formatnya adalah penyedia = pasangan ID. Nilai
default, aws-kms, mewakili. AWS KMS Atribut ini diperlukan hanya jika penyedia kunci master
tidak AWS KMS.

region

Mengidentifikasi Wilayah AWS dari sebuah AWS KMS key. Atribut ini hanya berlaku untuk
AWS KMS keys. Ini hanya digunakan ketika pengidentifikasi kunci tidak menentukan Wilayah;

Referensi sintaks dan parameter 346

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS Encryption SDK Panduan Developerr

jika tidak, itu diabaikan. Ketika digunakan, itu mengganti Wilayah default di profil bernama
AWS CLI.

profile

Mengidentifikasi profil AWS CLI bernama. Atribut ini hanya berlaku untuk AWS KMS keys.
Wilayah di profil hanya digunakan ketika pengidentifikasi kunci tidak menentukan Wilayah dan
tidak ada atribut wilayah dalam perintah.

--masukan (-i)

Menentukan lokasi data untuk mengenkripsi atau mendekripsi. Parameter ini diperlukan. Nilai
dapat berupa jalur ke file atau direktori, atau pola nama file. Jika Anda menyalurkan input ke
perintah (stdin), gunakan. -

Jika input tidak ada, perintah selesai dengan sukses tanpa kesalahan atau peringatan.

--rekursif (-r, -R)

Melakukan operasi pada file di direktori input dan subdirektorinya. Parameter ini diperlukan
ketika nilai --input adalah direktori.

--decode

Mendekode masukan yang dikodekan Base64.

Jika Anda mendekripsi pesan yang dienkripsi dan kemudian dikodekan, Anda harus
memecahkan kode pesan sebelum mendekripsi. Parameter ini melakukan itu untuk Anda.

Misalnya, jika Anda menggunakan --encode parameter dalam perintah enkripsi, gunakan
--decode parameter dalam perintah dekripsi yang sesuai. Anda juga dapat menggunakan
parameter ini untuk memecahkan kode input yang dikodekan Base64 sebelum Anda
mengenkripsinya.

--keluaran (-o)

Menentukan tujuan untuk output. Parameter ini diperlukan. Nilai dapat berupa nama file, direktori
yang ada, atau-, yang menulis output ke baris perintah (stdout).

Jika direktori output yang ditentukan tidak ada, perintah gagal. Jika input berisi subdirektori, AWS
CLI Enkripsi mereproduksi subdirektori di bawah direktori output yang Anda tentukan.

Secara default, CLI AWS Enkripsi menimpa file dengan nama yang sama. Untuk mengubah
perilaku itu, gunakan --no-overwrite parameter --interactive atau. Untuk menekan
peringatan penimpaan, gunakan parameter. --quiet

Referensi sintaks dan parameter 347

https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

AWS Encryption SDK Panduan Developerr

Note

Jika perintah yang akan menimpa file output gagal, file output dihapus.

--interaktif

Meminta sebelum menimpa file.

--tidak menimpa

Tidak menimpa file. Sebaliknya, jika file output ada, CLI AWS Enkripsi melewatkan input yang
sesuai.

--akhiran

Menentukan akhiran nama file kustom untuk file yang dibuat AWS CLI Enkripsi. Untuk
menunjukkan tidak ada akhiran, gunakan parameter tanpa nilai (--suffix).

Secara default, ketika --output parameter tidak menentukan nama file, nama file output
memiliki nama yang sama dengan nama file input ditambah akhiran. Sufiks untuk perintah
enkripsi adalah. .encrypted Sufiks untuk perintah dekripsi adalah. .decrypted

--enkode

Menerapkan pengkodean Base64 (biner ke teks) ke output. Pengkodean mencegah program
host shell salah menafsirkan karakter non-ASCII dalam teks keluaran.

Gunakan parameter ini saat menulis output terenkripsi ke stdout (--output -), terutama
di PowerShell konsol, bahkan saat Anda menyalurkan output ke perintah lain atau
menyimpannya dalam variabel.

--metadata-keluaran

Menentukan lokasi untuk metadata tentang operasi kriptografi. Masukkan jalur dan nama file. Jika
direktori tidak ada, perintah gagal. Untuk menulis metadata ke baris perintah (stdout), gunakan. -

Anda tidak dapat menulis perintah output (--output) dan metadata output (--metadata-
output) ke stdout dalam perintah yang sama. Juga, ketika nilai --input atau --output adalah
direktori (tanpa nama file), Anda tidak dapat menulis keluaran metadata ke direktori yang sama
atau ke subdirektori mana pun dari direktori itu.

Jika Anda menentukan file yang ada, secara default, CLI AWS Enkripsi menambahkan catatan
metadata baru ke konten apa pun dalam file. Fitur ini memungkinkan Anda membuat satu file

Referensi sintaks dan parameter 348

AWS Encryption SDK Panduan Developerr

yang berisi metadata untuk semua operasi kriptografi Anda. Untuk menimpa konten dalam file
yang ada, gunakan --overwrite-metadata parameter.

CLI AWS Enkripsi mengembalikan catatan metadata berformat JSON untuk setiap operasi
enkripsi atau dekripsi yang dilakukan perintah. Setiap catatan metadata mencakup jalur lengkap
ke file input dan output, konteks enkripsi, rangkaian algoritme, dan informasi berharga lainnya
yang dapat Anda gunakan untuk meninjau operasi dan memverifikasi bahwa itu memenuhi
standar keamanan Anda.

--timpa metadata

Menimpa konten dalam file keluaran metadata. Secara default, --metadata-output
parameter menambahkan metadata ke konten yang ada dalam file.

--menekan-metadata (-S)

Menekan metadata tentang operasi enkripsi atau dekripsi.

--komitmen-kebijakan

Menentukan kebijakan komitmen untuk mengenkripsi dan mendekripsi perintah. Kebijakan
komitmen menentukan apakah pesan Anda dienkripsi dan didekripsi dengan fitur keamanan
komitmen utama.

--commitment-policyParameter diperkenalkan dalam versi 1.8. x. Ini berlaku dalam perintah
enkripsi dan dekripsi.

Dalam versi 1.8. x, CLI AWS Enkripsi menggunakan kebijakan forbid-encrypt-allow-
decrypt komitmen untuk semua operasi enkripsi dan dekripsi. Bila Anda menggunakan --
wrapping-keys parameter dalam perintah enkripsi atau dekripsi, --commitment-policy
parameter dengan forbid-encrypt-allow-decrypt nilai diperlukan. Jika Anda tidak
menggunakan --wrapping-keys parameter, --commitment-policy parameter tidak valid.
Menetapkan kebijakan komitmen secara eksplisit mencegah kebijakan komitmen Anda berubah
secara otomatis menjadi require-encrypt-require-decrypt saat Anda meningkatkan ke
versi 2.1. x

Dimulai pada versi 2.1. x, semua nilai kebijakan komitmen didukung. --commitment-
policyParameternya opsional dan nilai defaultnya adalahrequire-encrypt-require-
decrypt.

Parameter ini memiliki nilai-nilai berikut:

Referensi sintaks dan parameter 349

AWS Encryption SDK Panduan Developerr

• forbid-encrypt-allow-decrypt— Tidak dapat mengenkripsi dengan komitmen utama. Ini
dapat mendekripsi ciphertext yang dienkripsi dengan atau tanpa komitmen utama.

Dalam versi 1.8. x, ini adalah satu-satunya nilai yang valid. CLI AWS Enkripsi menggunakan
kebijakan forbid-encrypt-allow-decrypt komitmen untuk semua operasi enkripsi dan
dekripsi.

• require-encrypt-allow-decrypt— Enkripsi hanya dengan komitmen utama. Mendekripsi
dengan dan tanpa komitmen utama. Nilai ini diperkenalkan dalam versi 2.1. x.

• require-encrypt-require-decrypt(default) — Mengenkripsi dan mendekripsi hanya
dengan komitmen utama. Nilai ini diperkenalkan dalam versi 2.1. x. Ini adalah nilai default
dalam versi 2.1. x dan kemudian. Dengan nilai ini, CLI AWS Enkripsi tidak akan mendekripsi
ciphertext apa pun yang dienkripsi dengan versi sebelumnya. AWS Encryption SDK

Untuk informasi terperinci tentang menetapkan kebijakan komitmen Anda, lihatMigrasi Anda AWS
Encryption SDK.

--enkripsi-konteks (-c)

Menentukan konteks enkripsi untuk operasi. Parameter ini tidak diperlukan, tetapi disarankan.

• Dalam sebuah --encrypt perintah, masukkan satu atau lebih name=value pasangan.
Gunakan spasi untuk memisahkan pasangan.

• Dalam sebuah --decrypt perintah, masukkan name=value pasangan, name elemen tanpa
nilai, atau keduanya.

Jika name atau value dalam name=value pasangan menyertakan spasi atau karakter
khusus, lampirkan seluruh pasangan dalam tanda kutip. Misalnya, --encryption-context
"department=software development".

--buffer (-b) [Diperkenalkan dalam versi 1.9. x dan 2.2. x]

Mengembalikan plaintext hanya setelah semua input diproses, termasuk memverifikasi tanda
tangan digital jika ada.

-- max-encrypted-data-keys [Diperkenalkan dalam versi 1.9. x dan 2.2. x]

Menentukan jumlah maksimum kunci data terenkripsi dalam pesan terenkripsi. Parameter ini
bersifat opsional.

Nilai yang valid adalah 1 - 65.535. Jika Anda menghilangkan parameter ini, CLI AWS Enkripsi
tidak memberlakukan maksimum apa pun. Pesan terenkripsi dapat menampung hingga 65.535
(2^16 - 1) kunci data terenkripsi.

Referensi sintaks dan parameter 350

AWS Encryption SDK Panduan Developerr

Anda dapat menggunakan parameter ini dalam perintah enkripsi untuk mencegah pesan yang
salah. Anda dapat menggunakannya dalam perintah dekripsi untuk mendeteksi pesan berbahaya
dan menghindari mendekripsi pesan dengan banyak kunci data terenkripsi yang tidak dapat Anda
dekripsi. Untuk detail dan contoh, lihat Membatasi kunci data terenkripsi.

--bantuan (-h)

Mencetak penggunaan dan sintaks pada baris perintah.

--versi

Mendapat versi CLI AWS Enkripsi.

-v | -vv | -vvv | -vvv

Menampilkan informasi verbose, peringatan, dan pesan debugging. Detail dalam output
meningkat dengan jumlah v s dalam parameter. Setelan (-vvvv) yang paling rinci
mengembalikan data tingkat debugging dari AWS CLI Enkripsi dan semua komponen yang
digunakannya.

--tenang (-q)

Menekan pesan peringatan, seperti pesan yang muncul saat Anda menimpa file keluaran.

--master-keys (-m) [Usang]

Note

Parameter --master-keys tidak digunakan lagi di 1.8. x dan dihapus dalam versi 2.1. x.
Sebagai gantinya, gunakan parameter --wrapping-keys.

Menentukan kunci master yang digunakan dalam operasi enkripsi dan dekripsi. Anda dapat
menggunakan beberapa parameter kunci master di setiap perintah.

--master-keysParameter diperlukan dalam perintah enkripsi. Ini diperlukan dalam perintah
dekripsi hanya ketika Anda menggunakan penyedia kunci master kustom (non-#-AWS KMS).

Atribut: Nilai --master-keys parameter terdiri dari atribut berikut. Formatnya adalah
attribute_name=value.

kunci

Mengidentifikasi kunci pembungkus yang digunakan dalam operasi. Formatnya adalah
pasangan kunci = ID. Atribut kunci diperlukan di semua perintah enkripsi.

Referensi sintaks dan parameter 351

AWS Encryption SDK Panduan Developerr

Bila Anda menggunakan AWS KMS key dalam perintah enkripsi, nilai atribut kunci dapat
berupa ID kunci, ARN kunci, nama alias, atau alias ARN. Untuk detail tentang pengidentifikasi
AWS KMS kunci, lihat Pengidentifikasi kunci di Panduan AWS Key Management Service
Pengembang.

Atribut kunci diperlukan dalam perintah dekripsi ketika penyedia kunci master tidak. AWS KMS
Atribut kunci tidak diizinkan dalam perintah yang mendekripsi data yang dienkripsi di bawah
file. AWS KMS key

Anda dapat menentukan beberapa atribut kunci di setiap nilai --master-keys parameter.
Namun, atribut penyedia, wilayah, dan profil apa pun berlaku untuk semua kunci master dalam
nilai parameter. Untuk menentukan kunci master dengan nilai atribut yang berbeda, gunakan
beberapa --master-keys parameter dalam perintah.

penyedia

Mengidentifikasi penyedia kunci utama. Formatnya adalah penyedia = pasangan ID. Nilai
default, aws-kms, mewakili. AWS KMS Atribut ini diperlukan hanya jika penyedia kunci master
tidak AWS KMS.

region

Mengidentifikasi Wilayah AWS dari sebuah AWS KMS key. Atribut ini hanya berlaku untuk
AWS KMS keys. Ini hanya digunakan ketika pengidentifikasi kunci tidak menentukan Wilayah;
jika tidak, itu diabaikan. Ketika digunakan, itu mengganti Wilayah default di profil bernama
AWS CLI.

profile

Mengidentifikasi profil AWS CLI bernama. Atribut ini hanya berlaku untuk AWS KMS keys.
Wilayah di profil hanya digunakan ketika pengidentifikasi kunci tidak menentukan Wilayah dan
tidak ada atribut wilayah dalam perintah.

Parameter lanjutan

--algoritma

Menentukan suite algoritma alternatif. Parameter ini opsional dan hanya valid dalam perintah
enkripsi.

Jika Anda menghilangkan parameter ini, CLI AWS Enkripsi menggunakan salah satu rangkaian
algoritme default untuk yang diperkenalkan AWS Encryption SDK di versi 1.8. x. Kedua algoritma

Referensi sintaks dan parameter 352

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/cli/latest/userguide/cli-multiple-profiles.html

AWS Encryption SDK Panduan Developerr

default menggunakan AES-GCM dengan HKDF, tanda tangan ECDSA, dan kunci enkripsi 256-bit.
Seseorang menggunakan komitmen utama; yang satu tidak. Pilihan rangkaian algoritma default
ditentukan oleh kebijakan komitmen untuk perintah.

Suite algoritma default direkomendasikan untuk sebagian besar operasi enkripsi. Untuk daftar nilai
yang valid, lihat nilai untuk algorithm parameter di Baca Dokumen.

--bingkai-panjang

Menciptakan output dengan panjang bingkai yang ditentukan. Parameter ini opsional dan hanya
valid dalam perintah enkripsi.

Masukkan nilai dalam byte. Nilai yang valid adalah 0 dan 1 - 2^31 - 1. Nilai 0 menunjukkan data
yang tidak dibingkai. Defaultnya adalah 4096 (byte).

Note

Bila memungkinkan, gunakan data berbingkai. AWS Encryption SDK Mendukung data
nonframed hanya untuk penggunaan lama. Beberapa implementasi bahasa masih AWS
Encryption SDK dapat menghasilkan ciphertext nonframed. Semua implementasi bahasa
yang didukung dapat mendekripsi ciphertext berbingkai dan nonframed.

--max-panjang

Menunjukkan ukuran bingkai maksimum (atau panjang konten maksimum untuk pesan yang
tidak dibingkai) dalam byte untuk dibaca dari pesan terenkripsi. Parameter ini opsional dan hanya
valid dalam perintah dekripsi. Ini dirancang untuk melindungi Anda dari mendekripsi ciphertext
berbahaya yang sangat besar.

Masukkan nilai dalam byte. Jika Anda menghilangkan parameter ini, AWS Encryption SDK tidak
membatasi ukuran bingkai saat mendekripsi.

--caching

Mengaktifkan fitur caching kunci data, yang menggunakan kembali kunci data, alih-alih
menghasilkan kunci data baru untuk setiap file input. Parameter ini mendukung skenario lanjutan.
Pastikan untuk membaca dokumentasi Data Key Caching sebelum menggunakan fitur ini.

--cachingParameter memiliki atribut berikut.

Referensi sintaks dan parameter 353

https://en.wikipedia.org/wiki/HKDF
https://aws-encryption-sdk-cli.readthedocs.io/en/latest/index.html#execution

AWS Encryption SDK Panduan Developerr

kapasitas (diperlukan)

Menentukan jumlah maksimum entri dalam cache.

Nilai minimum adalah 1. Tidak ada nilai maksimum.

max_age (wajib)

Tentukan berapa lama entri cache digunakan, dalam hitungan detik, dimulai saat ditambahkan
ke cache.

Masukkan nilai yang lebih besar dari 0. Tidak ada nilai maksimum.

max_messages_encrypted (opsional)

Menentukan jumlah maksimum pesan yang dapat dienkripsi oleh entri cache.

Nilai yang valid adalah 1 - 2 ^ 32. Nilai default adalah 2 ^ 32 (pesan).

max_bytes_encrypted (opsional)

Menentukan jumlah maksimum byte yang dapat dienkripsi oleh entri yang di-cache.

Nilai yang valid adalah 0 dan 1 - 2^63 - 1. Nilai default adalah 2 ^ 63 - 1 (pesan). Nilai 0
memungkinkan Anda menggunakan caching kunci data hanya ketika Anda mengenkripsi
string pesan kosong.

Versi CLI AWS Enkripsi

Kami menyarankan Anda menggunakan CLI AWS Enkripsi versi terbaru.

Note

Versi CLI AWS Enkripsi lebih awal dari 4.0.0 sedang dalam fase. end-of-support
Anda dapat memperbarui dengan aman dari versi 2.1. x dan yang lebih baru ke versi terbaru
CLI AWS Enkripsi tanpa perubahan kode atau data apa pun. Namun, fitur keamanan baru
diperkenalkan di versi 2.1. x tidak kompatibel ke belakang. Untuk memperbarui dari versi 1.7.
x atau sebelumnya, Anda harus terlebih dahulu memperbarui ke yang terbaru 1. x versi CLI
AWS Enkripsi. Lihat perinciannya di Migrasi Anda AWS Encryption SDK.
Fitur keamanan baru awalnya dirilis dalam AWS Enkripsi CLI versi 1.7. x dan 2.0. x. Namun,
AWS Enkripsi CLI versi 1.8. x menggantikan versi 1.7. x dan AWS Enkripsi CLI 2.1. x

Versi 354

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

menggantikan 2.0. x. Untuk detailnya, lihat penasihat keamanan yang relevan di aws-
encryption-sdk-clirepositori di. GitHub

Untuk informasi tentang versi signifikan dari AWS Encryption SDK, lihatVersi dari AWS Encryption
SDK.

Versi mana yang saya gunakan?

Jika Anda baru mengenal CLI AWS Enkripsi, gunakan versi terbaru.

Untuk mendekripsi data yang dienkripsi oleh versi AWS Encryption SDK sebelumnya dari versi
1.7. x, migrasi terlebih dahulu ke versi terbaru dari CLI AWS Enkripsi. Buat semua perubahan yang
disarankan sebelum memperbarui ke versi 2.1. x atau yang lebih baru. Lihat perinciannya di Migrasi
Anda AWS Encryption SDK.

Pelajari selengkapnya

• Untuk informasi terperinci tentang perubahan dan panduan untuk bermigrasi ke versi baru ini,
lihatMigrasi Anda AWS Encryption SDK.

• Untuk deskripsi parameter dan atribut CLI AWS Enkripsi baru, lihat. AWS Encryption SDK Sintaks
CLI dan referensi parameter

Daftar berikut menjelaskan perubahan CLI AWS Enkripsi di versi 1.8. x dan 2.1. x.

Versi 1.8. x perubahan pada CLI AWS Enkripsi

• Menghentikan parameter. --master-keys Sebagai gantinya, gunakan --wrapping-keys
parameternya.

• Menambahkan parameter --wrapping-keys (-w). Ini mendukung semua atribut --master-
keys parameter. Ini juga menambahkan atribut opsional berikut, yang hanya valid saat
mendekripsi dengan. AWS KMS keys

• penemuan

• penemuan-partisi

• penemuan-akun

Untuk penyedia kunci master kustom, --encrypt dan - -decrypt perintah memerlukan --
wrapping-keys parameter atau --master-keys parameter (tetapi tidak keduanya). Juga, --

Versi 355

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Panduan Developerr

encrypt perintah dengan AWS KMS keys membutuhkan --wrapping-keys parameter atau --
master-keys parameter (tetapi tidak keduanya).

Dalam --decrypt perintah dengan AWS KMS keys, --wrapping-keys parameternya opsional,
tetapi disarankan, karena diperlukan dalam versi 2.1. x. Jika Anda menggunakannya, Anda harus
menentukan atribut kunci atau atribut penemuan dengan nilai true (tetapi tidak keduanya).

• Menambahkan --commitment-policy parameter. Satu-satunya nilai yang valid adalah
forbid-encrypt-allow-decrypt. Kebijakan forbid-encrypt-allow-decrypt komitmen
digunakan dalam semua perintah enkripsi dan dekripsi.

Dalam versi 1.8. x, ketika Anda menggunakan --wrapping-keys parameter, --commitment-
policy parameter dengan forbid-encrypt-allow-decrypt nilai diperlukan. Menyetel nilai
secara eksplisit mencegah kebijakan komitmen Anda berubah secara otomatis menjadi require-
encrypt-require-decrypt saat Anda meningkatkan ke versi 2.1. x.

Versi 2.1. x perubahan pada CLI AWS Enkripsi

• Menghapus --master-keys parameter. Sebagai gantinya, gunakan --wrapping-keys
parameternya.

• --wrapping-keysParameter diperlukan di semua perintah enkripsi dan dekripsi. Anda harus
menentukan atribut kunci atau atribut penemuan dengan nilai true (tetapi tidak keduanya).

• --commitment-policyParameter mendukung nilai-nilai berikut. Lihat perinciannya di
Menetapkan kebijakan komitmen Anda.

• forbid-encrypt-allow-decrypt

• require-encrypt-allow-decrypt

• require-encrypt-require decrypt(Default)

• --commitment-policyParameternya opsional di versi 2.1. x. Nilai default-nya adalah require-
encrypt-require-decrypt.

Versi 1.9. x dan 2.2. x perubahan pada CLI AWS Enkripsi

• Menambahkan --decrypt-unsigned parameter. Lihat perinciannya di Versi 2.2. x.

• Menambahkan --buffer parameter. Lihat perinciannya di Versi 2.2. x.

• Menambahkan --max-encrypted-data-keys parameter. Lihat perinciannya di Membatasi
kunci data terenkripsi.

Versi 356

AWS Encryption SDK Panduan Developerr

Versi 3.0. x perubahan pada CLI AWS Enkripsi

• Menambahkan dukungan untuk kunci AWS KMS Multi-wilayah. Lihat perinciannya di Menggunakan
Multi-region AWS KMS keys.

Versi 357

AWS Encryption SDK Panduan Developerr

Caching kunci data
Caching kunci data menyimpan kunci data dan materi kriptografi terkait dalam cache. Ketika
Anda mengenkripsi atau mendekripsi data, AWS Encryption SDK mencari kunci data yang cocok
dalam cache. Jika menemukan kecocokan, ia menggunakan kunci data yang di-cache daripada
menghasilkan yang baru. Caching kunci data dapat meningkatkan kinerja, mengurangi biaya, dan
membantu Anda tetap dalam batas layanan saat aplikasi Anda meningkat.

Aplikasi Anda dapat memperoleh manfaat dari caching kunci data jika:

• Itu dapat menggunakan kembali kunci data.

• Ini menghasilkan banyak kunci data.

• Operasi kriptografi Anda sangat lambat, mahal, terbatas, atau intensif sumber daya.

Caching dapat mengurangi penggunaan layanan kriptografi Anda, seperti AWS Key Management
Service ()AWS KMS. Jika Anda mencapai AWS KMS requests-per-secondbatas Anda, caching dapat
membantu. Aplikasi Anda dapat menggunakan kunci cache untuk melayani beberapa permintaan
kunci data Anda alih-alih menelepon AWS KMS. (Anda juga dapat membuat kasus di AWS Support
Center untuk menaikkan batas akun Anda.)

AWS Encryption SDK Ini membantu Anda membuat dan mengelola cache kunci data Anda. Ini
menyediakan cache lokal dan manajer bahan kriptografi caching (caching CMM) yang berinteraksi
dengan cache dan memberlakukan ambang keamanan yang Anda tetapkan. Bekerja sama,
komponen-komponen ini membantu Anda mendapatkan keuntungan dari efisiensi penggunaan
kembali kunci data sambil menjaga keamanan sistem Anda.

Caching kunci data adalah fitur opsional AWS Encryption SDK yang harus Anda gunakan dengan
hati-hati. Secara default, AWS Encryption SDK menghasilkan kunci data baru untuk setiap operasi
enkripsi. Teknik ini mendukung praktik terbaik kriptografi, yang mencegah penggunaan kembali
kunci data yang berlebihan. Secara umum, gunakan caching kunci data hanya jika diperlukan untuk
memenuhi tujuan kinerja Anda. Kemudian, gunakan ambang keamanan caching kunci data untuk
memastikan bahwa Anda menggunakan jumlah minimum caching yang diperlukan untuk memenuhi
tujuan biaya dan kinerja Anda.

Versi 3. x dari AWS Encryption SDK for Java satu-satunya mendukung CMM caching dengan
antarmuka penyedia kunci master lama, bukan antarmuka keyring. Namun, versi 4. x dari AWS
Encryption SDK untuk .NET, versi 3. x dari AWS Encryption SDK for Java, versi 4. x dari AWS

358

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/support/home#/

AWS Encryption SDK Panduan Developerr

Encryption SDK for Python, versi 1. x dari AWS Encryption SDK untuk Rust dan versi 0.1. x atau
yang lebih baru dari AWS Encryption SDK for Go mendukung keyring AWS KMS Hierarchical, solusi
caching bahan kriptografi alternatif. Konten yang dienkripsi dengan keyring AWS KMS Hierarkis
hanya dapat didekripsi dengan keyring Hierarkis. AWS KMS

Untuk diskusi rinci tentang pengorbanan keamanan ini, lihat AWS Encryption SDK: Cara
Memutuskan apakah Caching Kunci Data Tepat untuk Aplikasi Anda di Blog Keamanan. AWS

Topik

• Cara menggunakan caching kunci data

• Mengatur ambang keamanan cache

• Detail caching kunci data

• Contoh caching kunci data

Cara menggunakan caching kunci data

Topik ini menunjukkan cara menggunakan caching kunci data dalam aplikasi Anda. Ini membawa
Anda melalui proses langkah demi langkah. Kemudian, ia menggabungkan langkah-langkah dalam
contoh sederhana yang menggunakan caching kunci data dalam operasi untuk mengenkripsi string.

Contoh di bagian ini menunjukkan cara menggunakan versi 2.0. x dan yang lebih baru AWS
Encryption SDK. Untuk contoh yang menggunakan versi sebelumnya, temukan rilis Anda di daftar
Rilis GitHub repositori untuk bahasa pemrograman Anda.

Untuk contoh lengkap dan teruji menggunakan caching kunci data di AWS Encryption SDK, lihat:

• C/C++: caching_cmm.cpp

• Jawa: SimpleDataKeyCachingExample.java

• JavaScript Peramban: caching_cmm.ts

• JavaScript Node.js: caching_cmm.ts

• Python: data_key_caching_basic.py

AWS Encryption SDK Untuk .NET tidak mendukung caching kunci data.

Topik

• Menggunakan caching kunci data: Step-by-step

Cara menggunakan caching kunci data 359

https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://github.com/aws/aws-encryption-sdk-c/releases
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py

AWS Encryption SDK Panduan Developerr

• Contoh caching kunci data: Enkripsi string

Menggunakan caching kunci data: Step-by-step

step-by-stepPetunjuk ini menunjukkan cara membuat komponen yang Anda butuhkan untuk
mengimplementasikan caching kunci data.

• Buat cache kunci data. Dalam contoh ini, kami menggunakan cache lokal yang AWS Encryption
SDK disediakan. Kami membatasi cache hingga 10 kunci data.

C

// Cache capacity (maximum number of entries) is required
size_t cache_capacity = 10;
struct aws_allocator *allocator = aws_default_allocator();

struct aws_cryptosdk_materials_cache *cache =
 aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);

Java

Contoh berikut menggunakan versi 2. x dari AWS Encryption SDK for Java. Versi 3. x dari CMM
AWS Encryption SDK for Java caching kunci data tidak digunakan lagi. Dengan versi 3. x,
Anda juga dapat menggunakan keyring AWS KMS Hierarkis, solusi caching bahan kriptografi
alternatif.

// Cache capacity (maximum number of entries) is required
int MAX_CACHE_SIZE = 10;

CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(MAX_CACHE_SIZE);

JavaScript Browser

const capacity = 10

const cache = getLocalCryptographicMaterialsCache(capacity)

Menggunakan caching kunci data: Step-by-step 360

AWS Encryption SDK Panduan Developerr

JavaScript Node.js

const capacity = 10

const cache = getLocalCryptographicMaterialsCache(capacity)

Python

Cache capacity (maximum number of entries) is required
MAX_CACHE_SIZE = 10

cache = aws_encryption_sdk.LocalCryptoMaterialsCache(MAX_CACHE_SIZE)

• Buat penyedia kunci master (Java dan Python) atau keyring (C dan). JavaScript Contoh-contoh ini
menggunakan penyedia kunci master AWS Key Management Service (AWS KMS) atau AWS KMS
keyring yang kompatibel.

C

// Create an AWS KMS keyring
// The input is the Amazon Resource Name (ARN)
// of an AWS KMS key
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(kms_key_arn);

Java

Contoh berikut menggunakan versi 2. x dari AWS Encryption SDK for Java. Versi 3. x dari CMM
AWS Encryption SDK for Java caching kunci data tidak digunakan lagi. Dengan versi 3. x,
Anda juga dapat menggunakan keyring AWS KMS Hierarkis, solusi caching bahan kriptografi
alternatif.

// Create an AWS KMS master key provider
// The input is the Amazon Resource Name (ARN)
// of an AWS KMS key

Menggunakan caching kunci data: Step-by-step 361

AWS Encryption SDK Panduan Developerr

MasterKeyProvider<KmsMasterKey> keyProvider =
 KmsMasterKeyProvider.builder().buildStrict(kmsKeyArn);

JavaScript Browser

Di browser, Anda harus menyuntikkan kredensyal Anda dengan aman. Contoh ini
mendefinisikan kredensyal dalam webpack (kms.webpack.config) yang menyelesaikan
kredensyal saat runtime. Ini menciptakan instance penyedia AWS KMS klien dari AWS KMS
klien dan kredensialnya. Kemudian, ketika membuat keyring, ia meneruskan penyedia klien ke
konstruktor bersama dengan (. AWS KMS key generatorKeyId)

const { accessKeyId, secretAccessKey, sessionToken } = credentials

const clientProvider = getClient(KMS, {
 credentials: {
 accessKeyId,
 secretAccessKey,
 sessionToken
 }
 })

/* Create an AWS KMS keyring
 * You must configure the AWS KMS keyring with at least one AWS KMS key
* The input is the Amazon Resource Name (ARN)
 */ of an AWS KMS key
const keyring = new KmsKeyringBrowser({
 clientProvider,
 generatorKeyId,
 keyIds,
 })

JavaScript Node.js

/* Create an AWS KMS keyring
 * The input is the Amazon Resource Name (ARN)
*/ of an AWS KMS key
const keyring = new KmsKeyringNode({ generatorKeyId })

Python

Create an AWS KMS master key provider

Menggunakan caching kunci data: Step-by-step 362

AWS Encryption SDK Panduan Developerr

The input is the Amazon Resource Name (ARN)
of an AWS KMS key
key_provider =
 aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

• Buat manajer materi kriptografi caching (caching CMM).

Kaitkan CMM caching Anda dengan cache dan penyedia kunci utama atau keyring Anda.
Kemudian, atur ambang keamanan cache pada CMM caching.

C

Di dalam AWS Encryption SDK for C, Anda dapat membuat CMM caching dari CMM yang
mendasarinya, seperti CMM default, atau dari keyring. Contoh ini membuat CMM caching dari
keyring.

Setelah Anda membuat CMM caching, Anda dapat melepaskan referensi Anda ke keyring dan
cache. Lihat perinciannya di the section called “Penghitungan referensi”.

// Create the caching CMM
// Set the partition ID to NULL.
// Set the required maximum age value to 60 seconds.
struct aws_cryptosdk_cmm *caching_cmm =
 aws_cryptosdk_caching_cmm_new_from_keyring(allocator, cache, kms_keyring, NULL,
 60, AWS_TIMESTAMP_SECS);

// Add an optional message threshold
// The cached data key will not be used for more than 10 messages.
aws_status = aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, 10);

// Release your references to the cache and the keyring.
aws_cryptosdk_materials_cache_release(cache);
aws_cryptosdk_keyring_release(kms_keyring);

Menggunakan caching kunci data: Step-by-step 363

AWS Encryption SDK Panduan Developerr

Java

Contoh berikut menggunakan versi 2. x dari AWS Encryption SDK for Java. Versi 3. x AWS
Encryption SDK for Java tidak mendukung caching kunci data, tetapi mendukung keyring AWS
KMS Hierarkis, solusi caching bahan kriptografi alternatif.

/*
 * Security thresholds
 * Max entry age is required.
 * Max messages (and max bytes) per entry are optional
 */
int MAX_ENTRY_AGE_SECONDS = 60;
int MAX_ENTRY_MSGS = 10;

//Create a caching CMM
CryptoMaterialsManager cachingCmm =
 CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)
 .withCache(cache)
 .withMaxAge(MAX_ENTRY_AGE_SECONDS,
 TimeUnit.SECONDS)
 .withMessageUseLimit(MAX_ENTRY_MSGS)
 .build();

JavaScript Browser

/*
 * Security thresholds
 * Max age (in milliseconds) is required.
 * Max messages (and max bytes) per entry are optional.
 */
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new WebCryptoCachingMaterialsManager({
 backingMaterials: keyring,
 cache,
 maxAge,
 maxMessagesEncrypted
})

Menggunakan caching kunci data: Step-by-step 364

AWS Encryption SDK Panduan Developerr

JavaScript Node.js

/*
 * Security thresholds
 * Max age (in milliseconds) is required.
 * Max messages (and max bytes) per entry are optional.
 */
const maxAge = 1000 * 60
const maxMessagesEncrypted = 10

/* Create a caching CMM from a keyring */
const cachingCmm = new NodeCachingMaterialsManager({
 backingMaterials: keyring,
 cache,
 maxAge,
 maxMessagesEncrypted
})

Python

Security thresholds
Max entry age is required.
Max messages (and max bytes) per entry are optional
#
MAX_ENTRY_AGE_SECONDS = 60.0
MAX_ENTRY_MESSAGES = 10

Create a caching CMM
caching_cmm = CachingCryptoMaterialsManager(
 master_key_provider=key_provider,
 cache=cache,
 max_age=MAX_ENTRY_AGE_SECONDS,
 max_messages_encrypted=MAX_ENTRY_MESSAGES
)

Hanya itu yang perlu Anda lakukan. Kemudian, biarkan AWS Encryption SDK mengelola cache untuk
Anda, atau tambahkan logika manajemen cache Anda sendiri.

Saat Anda ingin menggunakan caching kunci data dalam panggilan untuk mengenkripsi atau
mendekripsi data, tentukan CMM caching Anda alih-alih penyedia kunci master atau CMM lainnya.

Menggunakan caching kunci data: Step-by-step 365

AWS Encryption SDK Panduan Developerr

Note

Jika Anda mengenkripsi aliran data, atau data apa pun dengan ukuran yang tidak diketahui,
pastikan untuk menentukan ukuran data dalam permintaan. AWS Encryption SDK Tidak
menggunakan caching kunci data saat mengenkripsi data dengan ukuran yang tidak
diketahui.

C

Di AWS Encryption SDK for C, Anda membuat sesi dengan CMM caching dan kemudian
memproses sesi.

Secara default, ketika ukuran pesan tidak diketahui dan tidak terbatas, kunci data AWS Encryption
SDK tidak cache. Untuk mengizinkan caching saat Anda tidak mengetahui ukuran data yang
tepat, gunakan aws_cryptosdk_session_set_message_bound metode ini untuk mengatur
ukuran maksimum pesan. Atur batas lebih besar dari perkiraan ukuran pesan. Jika ukuran pesan
sebenarnya melebihi batas, operasi enkripsi gagal.

/* Create a session with the caching CMM. Set the session mode to encrypt. */
struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
 caching_cmm);

/* Set a message bound of 1000 bytes */
aws_status = aws_cryptosdk_session_set_message_bound(session, 1000);

/* Encrypt the message using the session with the caching CMM */
aws_status = aws_cryptosdk_session_process(
 session, output_buffer, output_capacity, &output_produced,
 input_buffer, input_len, &input_consumed);

/* Release your references to the caching CMM and the session. */
aws_cryptosdk_cmm_release(caching_cmm);
aws_cryptosdk_session_destroy(session);

Java

Contoh berikut menggunakan versi 2. x dari AWS Encryption SDK for Java. Versi 3. x dari CMM
AWS Encryption SDK for Java caching kunci data tidak digunakan lagi. Dengan versi 3. x, Anda
juga dapat menggunakan keyring AWS KMS Hierarkis, solusi caching bahan kriptografi alternatif.

Menggunakan caching kunci data: Step-by-step 366

AWS Encryption SDK Panduan Developerr

// When the call to encryptData specifies a caching CMM,
// the encryption operation uses the data key cache
final AwsCrypto encryptionSdk = AwsCrypto.standard();
return encryptionSdk.encryptData(cachingCmm, plaintext_source).getResult();

JavaScript Browser

const { result } = await encrypt(cachingCmm, plaintext)

JavaScript Node.js

Saat Anda menggunakan CMM caching di AWS Encryption SDK for JavaScript for Node.js,
encrypt metode ini membutuhkan panjang plaintext. Jika Anda tidak menyediakannya, kunci
data tidak di-cache. Jika Anda memberikan panjang, tetapi data plaintext yang Anda berikan
melebihi panjang itu, operasi enkripsi gagal. Jika Anda tidak tahu persis panjang plaintext, seperti
saat Anda streaming data, berikan nilai yang diharapkan terbesar.

const { result } = await encrypt(cachingCmm, plaintext, { plaintextLength:
 plaintext.length })

Python

Set up an encryption client
client = aws_encryption_sdk.EncryptionSDKClient()

When the call to encrypt specifies a caching CMM,
the encryption operation uses the data key cache
#
encrypted_message, header = client.encrypt(
 source=plaintext_source,
 materials_manager=caching_cmm
)

Contoh caching kunci data: Enkripsi string

Contoh kode sederhana ini menggunakan caching kunci data saat mengenkripsi string. Ini
menggabungkan kode dari step-by-step prosedur ke kode pengujian yang dapat Anda jalankan.

Contoh ini membuat cache lokal dan penyedia kunci master atau keyring untuk file AWS KMS key.
Kemudian, ia menggunakan cache lokal dan penyedia kunci master atau keyring untuk membuat

Contoh caching kunci data: Enkripsi string 367

AWS Encryption SDK Panduan Developerr

CMM caching dengan ambang keamanan yang sesuai. Di Java dan Python, permintaan enkripsi
menentukan CMM caching, data plaintext untuk mengenkripsi, dan konteks enkripsi. Dalam C, CMM
caching ditentukan dalam sesi, dan sesi disediakan untuk permintaan enkripsi.

Untuk menjalankan contoh ini, Anda perlu menyediakan Amazon Resource Name (ARN) dari
file. AWS KMS key Pastikan bahwa Anda memiliki izin untuk menggunakan AWS KMS key untuk
menghasilkan kunci data.

Untuk contoh dunia nyata yang lebih rinci tentang membuat dan menggunakan cache kunci data,
lihatKode contoh caching kunci data.

C

/*
 * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use
 * this file except in compliance with the License. A copy of the License is
 * located at
 *
 * http://aws.amazon.com/apache2.0/
 *
 * or in the "license" file accompanying this file. This file is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied. See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <aws/cryptosdk/cache.h>
#include <aws/cryptosdk/cpp/kms_keyring.h>
#include <aws/cryptosdk/session.h>

void encrypt_with_caching(
 uint8_t *ciphertext, // output will go here (assumes ciphertext_capacity
 bytes already allocated)
 size_t *ciphertext_len, // length of output will go here
 size_t ciphertext_capacity,
 const char *kms_key_arn,
 int max_entry_age,
 int cache_capacity) {
 const uint64_t MAX_ENTRY_MSGS = 100;

 struct aws_allocator *allocator = aws_default_allocator();

Contoh caching kunci data: Enkripsi string 368

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html#key-policy-default-allow-users

AWS Encryption SDK Panduan Developerr

 // Load error strings for debugging
 aws_cryptosdk_load_error_strings();

 // Create a keyring
 struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(kms_key_arn);

 // Create a cache
 struct aws_cryptosdk_materials_cache *cache =
 aws_cryptosdk_materials_cache_local_new(allocator, cache_capacity);

 // Create a caching CMM
 struct aws_cryptosdk_cmm *caching_cmm =
 aws_cryptosdk_caching_cmm_new_from_keyring(
 allocator, cache, kms_keyring, NULL, max_entry_age, AWS_TIMESTAMP_SECS);
 if (!caching_cmm) abort();

 if (aws_cryptosdk_caching_cmm_set_limit_messages(caching_cmm, MAX_ENTRY_MSGS))
 abort();

 // Create a session
 struct aws_cryptosdk_session *session =
 aws_cryptosdk_session_new_from_cmm_2(allocator, AWS_CRYPTOSDK_ENCRYPT,
 caching_cmm);
 if (!session) abort();

 // Encryption context
 struct aws_hash_table *enc_ctx =
 aws_cryptosdk_session_get_enc_ctx_ptr_mut(session);
 if (!enc_ctx) abort();
 AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_key, "purpose");
 AWS_STATIC_STRING_FROM_LITERAL(enc_ctx_value, "test");
 if (aws_hash_table_put(enc_ctx, enc_ctx_key, (void *)enc_ctx_value, NULL))
 abort();

 // Plaintext data to be encrypted
 const char *my_data = "My plaintext data";
 size_t my_data_len = strlen(my_data);
 if (aws_cryptosdk_session_set_message_size(session, my_data_len)) abort();

 // When the session uses a caching CMM, the encryption operation uses the data
 key cache
 // specified in the caching CMM.

Contoh caching kunci data: Enkripsi string 369

AWS Encryption SDK Panduan Developerr

 size_t bytes_read;
 if (aws_cryptosdk_session_process(
 session,
 ciphertext,
 ciphertext_capacity,
 ciphertext_len,
 (const uint8_t *)my_data,
 my_data_len,
 &bytes_read))
 abort();
 if (!aws_cryptosdk_session_is_done(session) || bytes_read != my_data_len)
 abort();

 aws_cryptosdk_session_destroy(session);
 aws_cryptosdk_cmm_release(caching_cmm);
 aws_cryptosdk_materials_cache_release(cache);
 aws_cryptosdk_keyring_release(kms_keyring);
}

Java

Contoh berikut menggunakan versi 2. x dari AWS Encryption SDK for Java. Versi 3. x dari CMM
AWS Encryption SDK for Java caching kunci data tidak digunakan lagi. Dengan versi 3. x, Anda
juga dapat menggunakan keyring AWS KMS Hierarkis, solusi caching bahan kriptografi alternatif.

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

package com.amazonaws.crypto.examples;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CryptoMaterialsManager;
import com.amazonaws.encryptionsdk.MasterKeyProvider;
import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.CryptoMaterialsCache;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKey;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
import java.nio.charset.StandardCharsets;
import java.util.Collections;
import java.util.Map;
import java.util.concurrent.TimeUnit;

Contoh caching kunci data: Enkripsi string 370

AWS Encryption SDK Panduan Developerr

/**
 * <p>
 * Encrypts a string using an &KMS; key and data key caching
 *
 * <p>
 * Arguments:
 *
 * KMS Key ARN: To find the Amazon Resource Name of your &KMS; key,
 * see 'Find the key ID and ARN' at https://docs.aws.amazon.com/kms/latest/
developerguide/find-cmk-id-arn.html
 * Max entry age: Maximum time (in seconds) that a cached entry can be used
 * Cache capacity: Maximum number of entries in the cache
 *
 */
public class SimpleDataKeyCachingExample {

 /*
 * Security thresholds
 * Max entry age is required.
 * Max messages (and max bytes) per data key are optional
 */
 private static final int MAX_ENTRY_MSGS = 100;

 public static byte[] encryptWithCaching(String kmsKeyArn, int maxEntryAge, int
 cacheCapacity) {
 // Plaintext data to be encrypted
 byte[] myData = "My plaintext data".getBytes(StandardCharsets.UTF_8);

 // Encryption context
 // Most encrypted data should have an associated encryption context
 // to protect integrity. This sample uses placeholder values.
 // For more information see:
 // blogs.aws.amazon.com/security/post/Tx2LZ6WBJJANTNW/How-to-Protect-the-
Integrity-of-Your-Encrypted-Data-by-Using-AWS-Key-Management
 final Map<String, String> encryptionContext =
 Collections.singletonMap("purpose", "test");

 // Create a master key provider
 MasterKeyProvider<KmsMasterKey> keyProvider =
 KmsMasterKeyProvider.builder()
 .buildStrict(kmsKeyArn);

 // Create a cache
 CryptoMaterialsCache cache = new LocalCryptoMaterialsCache(cacheCapacity);

Contoh caching kunci data: Enkripsi string 371

AWS Encryption SDK Panduan Developerr

 // Create a caching CMM
 CryptoMaterialsManager cachingCmm =

 CachingCryptoMaterialsManager.newBuilder().withMasterKeyProvider(keyProvider)
 .withCache(cache)
 .withMaxAge(maxEntryAge, TimeUnit.SECONDS)
 .withMessageUseLimit(MAX_ENTRY_MSGS)
 .build();

 // When the call to encryptData specifies a caching CMM,
 // the encryption operation uses the data key cache
 final AwsCrypto encryptionSdk = AwsCrypto.standard();
 return encryptionSdk.encryptData(cachingCmm, myData,
 encryptionContext).getResult();
 }
}

JavaScript Browser

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

/* This is a simple example of using a caching CMM with a KMS keyring
 * to encrypt and decrypt using the AWS Encryption SDK for Javascript in a browser.
 */

import {
 KmsKeyringBrowser,
 KMS,
 getClient,
 buildClient,
 CommitmentPolicy,
 WebCryptoCachingMaterialsManager,
 getLocalCryptographicMaterialsCache,
} from '@aws-crypto/client-browser'
import { toBase64 } from '@aws-sdk/util-base64-browser'

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
 policy,
 * which enforces that this client only encrypts using committing algorithm suites
 * and enforces that this client
 * will only decrypt encrypted messages

Contoh caching kunci data: Enkripsi string 372

AWS Encryption SDK Panduan Developerr

 * that were created with a committing algorithm suite.
 * This is the default commitment policy
 * if you build the client with `buildClient()`.
 */
const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

/* This is injected by webpack.
 * The webpack.DefinePlugin or @aws-sdk/karma-credential-loader will replace the
 values when bundling.
 * The credential values are pulled from @aws-sdk/credential-provider-node
 * Use any method you like to get credentials into the browser.
 * See kms.webpack.config
 */
declare const credentials: {
 accessKeyId: string
 secretAccessKey: string
 sessionToken: string
}

/* This is done to facilitate testing. */
export async function testCachingCMMExample() {
 /* This example uses an &KMS; keyring. The generator key in a &KMS; keyring
 generates and encrypts the data key.
 * The caller needs kms:GenerateDataKey permission on the &KMS; key in
 generatorKeyId.
 */
 const generatorKeyId =
 'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt'

 /* Adding additional KMS keys that can decrypt.
 * The caller must have kms:Encrypt permission for every &KMS; key in keyIds.
 * You might list several keys in different AWS Regions.
 * This allows you to decrypt the data in any of the represented Regions.
 * In this example, the generator key
 * and the additional key are actually the same &KMS; key.
 * In `generatorId`, this &KMS; key is identified by its alias ARN.
 * In `keyIds`, this &KMS; key is identified by its key ARN.
 * In practice, you would specify different &KMS; keys,
 * or omit the `keyIds` parameter.
 * This is *only* to demonstrate how the &KMS; key ARNs are configured.
 */
 const keyIds = [

Contoh caching kunci data: Enkripsi string 373

AWS Encryption SDK Panduan Developerr

 'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f',
]

 /* Need a client provider that will inject correct credentials.
 * The credentials here are injected by webpack from your environment bundle is
 created
 * The credential values are pulled using @aws-sdk/credential-provider-node.
 * See kms.webpack.config
 * You should inject your credential into the browser in a secure manner
 * that works with your application.
 */
 const { accessKeyId, secretAccessKey, sessionToken } = credentials

 /* getClient takes a KMS client constructor
 * and optional configuration values.
 * The credentials can be injected here,
 * because browsers do not have a standard credential discovery process the way
 Node.js does.
 */
 const clientProvider = getClient(KMS, {
 credentials: {
 accessKeyId,
 secretAccessKey,
 sessionToken,
 },
 })

 /* You must configure the KMS keyring with your &KMS; keys */
 const keyring = new KmsKeyringBrowser({
 clientProvider,
 generatorKeyId,
 keyIds,
 })

 /* Create a cache to hold the data keys (and related cryptographic material).
 * This example uses the local cache provided by the Encryption SDK.
 * The `capacity` value represents the maximum number of entries
 * that the cache can hold.
 * To make room for an additional entry,
 * the cache evicts the oldest cached entry.
 * Both encrypt and decrypt requests count independently towards this threshold.
 * Entries that exceed any cache threshold are actively removed from the cache.
 * By default, the SDK checks one item in the cache every 60 seconds (60,000
 milliseconds).

Contoh caching kunci data: Enkripsi string 374

AWS Encryption SDK Panduan Developerr

 * To change this frequency, pass in a `proactiveFrequency` value
 * as the second parameter. This value is in milliseconds.
 */
 const capacity = 100
 const cache = getLocalCryptographicMaterialsCache(capacity)

 /* The partition name lets multiple caching CMMs share the same local
 cryptographic cache.
 * By default, the entries for each CMM are cached separately. However, if you
 want these CMMs to share the cache,
 * use the same partition name for both caching CMMs.
 * If you don't supply a partition name, the Encryption SDK generates a random
 name for each caching CMM.
 * As a result, sharing elements in the cache MUST be an intentional operation.
 */
 const partition = 'local partition name'

 /* maxAge is the time in milliseconds that an entry will be cached.
 * Elements are actively removed from the cache.
 */
 const maxAge = 1000 * 60

 /* The maximum number of bytes that will be encrypted under a single data key.
 * This value is optional,
 * but you should configure the lowest practical value.
 */
 const maxBytesEncrypted = 100

 /* The maximum number of messages that will be encrypted under a single data key.
 * This value is optional,
 * but you should configure the lowest practical value.
 */
 const maxMessagesEncrypted = 10

 const cachingCMM = new WebCryptoCachingMaterialsManager({
 backingMaterials: keyring,
 cache,
 partition,
 maxAge,
 maxBytesEncrypted,
 maxMessagesEncrypted,
 })

 /* Encryption context is a *very* powerful tool for controlling

Contoh caching kunci data: Enkripsi string 375

AWS Encryption SDK Panduan Developerr

 * and managing access.
 * When you pass an encryption context to the encrypt function,
 * the encryption context is cryptographically bound to the ciphertext.
 * If you don't pass in the same encryption context when decrypting,
 * the decrypt function fails.
 * The encryption context is ***not*** secret!
 * Encrypted data is opaque.
 * You can use an encryption context to assert things about the encrypted data.
 * The encryption context helps you to determine
 * whether the ciphertext you retrieved is the ciphertext you expect to decrypt.
 * For example, if you are are only expecting data from 'us-west-2',
 * the appearance of a different AWS Region in the encryption context can indicate
 malicious interference.
 * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
concepts.html#encryption-context
 *
 * Also, cached data keys are reused ***only*** when the encryption contexts
 passed into the functions are an exact case-sensitive match.
 * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context
 */
 const encryptionContext = {
 stage: 'demo',
 purpose: 'simple demonstration app',
 origin: 'us-west-2',
 }

 /* Find data to encrypt. */
 const plainText = new Uint8Array([1, 2, 3, 4, 5])

 /* Encrypt the data.
 * The caching CMM only reuses data keys
 * when it know the length (or an estimate) of the plaintext.
 * However, in the browser,
 * you must provide all of the plaintext to the encrypt function.
 * Therefore, the encrypt function in the browser knows the length of the
 plaintext
 * and does not accept a plaintextLength option.
 */
 const { result } = await encrypt(cachingCMM, plainText, { encryptionContext })

 /* Log the plain text
 * only for testing and to show that it works.
 */

Contoh caching kunci data: Enkripsi string 376

AWS Encryption SDK Panduan Developerr

 console.log('plainText:', plainText)
 document.write('</br>plainText:' + plainText + '</br>')

 /* Log the base64-encoded result
 * so that you can try decrypting it with another AWS Encryption SDK
 implementation.
 */
 const resultBase64 = toBase64(result)
 console.log(resultBase64)
 document.write(resultBase64)

 /* Decrypt the data.
 * NOTE: This decrypt request will not use the data key
 * that was cached during the encrypt operation.
 * Data keys for encrypt and decrypt operations are cached separately.
 */
 const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

 /* Grab the encryption context so you can verify it. */
 const { encryptionContext: decryptedContext } = messageHeader

 /* Verify the encryption context.
 * If you use an algorithm suite with signing,
 * the Encryption SDK adds a name-value pair to the encryption context that
 contains the public key.
 * Because the encryption context might contain additional key-value pairs,
 * do not include a test that requires that all key-value pairs match.
 * Instead, verify that the key-value pairs that you supplied to the `encrypt`
 function are included in the encryption context that the `decrypt` function
 returns.
 */
 Object.entries(encryptionContext).forEach(([key, value]) => {
 if (decryptedContext[key] !== value)
 throw new Error('Encryption Context does not match expected values')
 })

 /* Log the clear message
 * only for testing and to show that it works.
 */
 document.write('</br>Decrypted:' + plaintext)
 console.log(plaintext)

 /* Return the values to make testing easy. */
 return { plainText, plaintext }

Contoh caching kunci data: Enkripsi string 377

AWS Encryption SDK Panduan Developerr

}

JavaScript Node.js

// Copyright Amazon.com Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0

import {
 KmsKeyringNode,
 buildClient,
 CommitmentPolicy,
 NodeCachingMaterialsManager,
 getLocalCryptographicMaterialsCache,
} from '@aws-crypto/client-node'

/* This builds the client with the REQUIRE_ENCRYPT_REQUIRE_DECRYPT commitment
 policy,
 * which enforces that this client only encrypts using committing algorithm suites
 * and enforces that this client
 * will only decrypt encrypted messages
 * that were created with a committing algorithm suite.
 * This is the default commitment policy
 * if you build the client with `buildClient()`.
 */
const { encrypt, decrypt } = buildClient(
 CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT
)

export async function cachingCMMNodeSimpleTest() {
 /* An &KMS; key is required to generate the data key.
 * You need kms:GenerateDataKey permission on the &KMS; key in generatorKeyId.
 */
 const generatorKeyId =
 'arn:aws:kms:us-west-2:658956600833:alias/EncryptDecrypt'

 /* Adding alternate &KMS; keys that can decrypt.
 * Access to kms:Encrypt is required for every &KMS; key in keyIds.
 * You might list several keys in different AWS Regions.
 * This allows you to decrypt the data in any of the represented Regions.
 * In this example, the generator key
 * and the additional key are actually the same &KMS; key.
 * In `generatorId`, this &KMS; key is identified by its alias ARN.
 * In `keyIds`, this &KMS; key is identified by its key ARN.

Contoh caching kunci data: Enkripsi string 378

AWS Encryption SDK Panduan Developerr

 * In practice, you would specify different &KMS; keys,
 * or omit the `keyIds` parameter.
 * This is *only* to demonstrate how the &KMS; key ARNs are configured.
 */
 const keyIds = [
 'arn:aws:kms:us-west-2:658956600833:key/b3537ef1-d8dc-4780-9f5a-55776cbb2f7f',
]

 /* The &KMS; keyring must be configured with the desired &KMS; keys
 * This example passes the keyring to the caching CMM
 * instead of using it directly.
 */
 const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

 /* Create a cache to hold the data keys (and related cryptographic material).
 * This example uses the local cache provided by the Encryption SDK.
 * The `capacity` value represents the maximum number of entries
 * that the cache can hold.
 * To make room for an additional entry,
 * the cache evicts the oldest cached entry.
 * Both encrypt and decrypt requests count independently towards this threshold.
 * Entries that exceed any cache threshold are actively removed from the cache.
 * By default, the SDK checks one item in the cache every 60 seconds (60,000
 milliseconds).
 * To change this frequency, pass in a `proactiveFrequency` value
 * as the second parameter. This value is in milliseconds.
 */
 const capacity = 100
 const cache = getLocalCryptographicMaterialsCache(capacity)

 /* The partition name lets multiple caching CMMs share the same local
 cryptographic cache.
 * By default, the entries for each CMM are cached separately. However, if you
 want these CMMs to share the cache,
 * use the same partition name for both caching CMMs.
 * If you don't supply a partition name, the Encryption SDK generates a random
 name for each caching CMM.
 * As a result, sharing elements in the cache MUST be an intentional operation.
 */
 const partition = 'local partition name'

 /* maxAge is the time in milliseconds that an entry will be cached.
 * Elements are actively removed from the cache.
 */

Contoh caching kunci data: Enkripsi string 379

AWS Encryption SDK Panduan Developerr

 const maxAge = 1000 * 60

 /* The maximum amount of bytes that will be encrypted under a single data key.
 * This value is optional,
 * but you should configure the lowest value possible.
 */
 const maxBytesEncrypted = 100

 /* The maximum number of messages that will be encrypted under a single data key.
 * This value is optional,
 * but you should configure the lowest value possible.
 */
 const maxMessagesEncrypted = 10

 const cachingCMM = new NodeCachingMaterialsManager({
 backingMaterials: keyring,
 cache,
 partition,
 maxAge,
 maxBytesEncrypted,
 maxMessagesEncrypted,
 })

 /* Encryption context is a *very* powerful tool for controlling
 * and managing access.
 * When you pass an encryption context to the encrypt function,
 * the encryption context is cryptographically bound to the ciphertext.
 * If you don't pass in the same encryption context when decrypting,
 * the decrypt function fails.
 * The encryption context is ***not*** secret!
 * Encrypted data is opaque.
 * You can use an encryption context to assert things about the encrypted data.
 * The encryption context helps you to determine
 * whether the ciphertext you retrieved is the ciphertext you expect to decrypt.
 * For example, if you are are only expecting data from 'us-west-2',
 * the appearance of a different AWS Region in the encryption context can indicate
 malicious interference.
 * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
concepts.html#encryption-context
 *
 * Also, cached data keys are reused ***only*** when the encryption contexts
 passed into the functions are an exact case-sensitive match.
 * See: https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/data-
caching-details.html#caching-encryption-context

Contoh caching kunci data: Enkripsi string 380

AWS Encryption SDK Panduan Developerr

 */
 const encryptionContext = {
 stage: 'demo',
 purpose: 'simple demonstration app',
 origin: 'us-west-2',
 }

 /* Find data to encrypt. A simple string. */
 const cleartext = 'asdf'

 /* Encrypt the data.
 * The caching CMM only reuses data keys
 * when it know the length (or an estimate) of the plaintext.
 * If you do not know the length,
 * because the data is a stream
 * provide an estimate of the largest expected value.
 *
 * If your estimate is smaller than the actual plaintext length
 * the AWS Encryption SDK will throw an exception.
 *
 * If the plaintext is not a stream,
 * the AWS Encryption SDK uses the actual plaintext length
 * instead of any length you provide.
 */
 const { result } = await encrypt(cachingCMM, cleartext, {
 encryptionContext,
 plaintextLength: 4,
 })

 /* Decrypt the data.
 * NOTE: This decrypt request will not use the data key
 * that was cached during the encrypt operation.
 * Data keys for encrypt and decrypt operations are cached separately.
 */
 const { plaintext, messageHeader } = await decrypt(cachingCMM, result)

 /* Grab the encryption context so you can verify it. */
 const { encryptionContext: decryptedContext } = messageHeader

 /* Verify the encryption context.
 * If you use an algorithm suite with signing,
 * the Encryption SDK adds a name-value pair to the encryption context that
 contains the public key.
 * Because the encryption context might contain additional key-value pairs,

Contoh caching kunci data: Enkripsi string 381

AWS Encryption SDK Panduan Developerr

 * do not include a test that requires that all key-value pairs match.
 * Instead, verify that the key-value pairs that you supplied to the `encrypt`
 function are included in the encryption context that the `decrypt` function
 returns.
 */
 Object.entries(encryptionContext).forEach(([key, value]) => {
 if (decryptedContext[key] !== value)
 throw new Error('Encryption Context does not match expected values')
 })

 /* Return the values so the code can be tested. */
 return { plaintext, result, cleartext, messageHeader }
}

Python

Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You
may not use this file except in compliance with the License. A copy of
the License is located at

http://aws.amazon.com/apache2.0/

or in the "license" file accompanying this file. This file is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.
"""Example of encryption with data key caching."""
import aws_encryption_sdk
from aws_encryption_sdk import CommitmentPolicy

def encrypt_with_caching(kms_key_arn, max_age_in_cache, cache_capacity):
 """Encrypts a string using an &KMS; key and data key caching.

 :param str kms_key_arn: Amazon Resource Name (ARN) of the &KMS; key
 :param float max_age_in_cache: Maximum time in seconds that a cached entry can
 be used
 :param int cache_capacity: Maximum number of entries to retain in cache at once
 """
 # Data to be encrypted
 my_data = "My plaintext data"

Contoh caching kunci data: Enkripsi string 382

AWS Encryption SDK Panduan Developerr

 # Security thresholds
 # Max messages (or max bytes per) data key are optional
 MAX_ENTRY_MESSAGES = 100

 # Create an encryption context
 encryption_context = {"purpose": "test"}

 # Set up an encryption client with an explicit commitment policy. Note that if
 you do not explicitly choose a
 # commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default.
 client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

 # Create a master key provider for the &KMS; key
 key_provider =
 aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn])

 # Create a local cache
 cache = aws_encryption_sdk.LocalCryptoMaterialsCache(cache_capacity)

 # Create a caching CMM
 caching_cmm = aws_encryption_sdk.CachingCryptoMaterialsManager(
 master_key_provider=key_provider,
 cache=cache,
 max_age=max_age_in_cache,
 max_messages_encrypted=MAX_ENTRY_MESSAGES,
)

 # When the call to encrypt data specifies a caching CMM,
 # the encryption operation uses the data key cache specified
 # in the caching CMM
 encrypted_message, _header = client.encrypt(
 source=my_data, materials_manager=caching_cmm,
 encryption_context=encryption_context
)

 return encrypted_message

Contoh caching kunci data: Enkripsi string 383

AWS Encryption SDK Panduan Developerr

Mengatur ambang keamanan cache

Saat Anda menerapkan caching kunci data, Anda perlu mengonfigurasi ambang keamanan yang
diberlakukan CMM caching.

Ambang batas keamanan membantu Anda membatasi berapa lama setiap kunci data yang di-
cache digunakan dan berapa banyak data yang dilindungi di bawah setiap kunci data. CMM
caching mengembalikan kunci data cache hanya ketika entri cache sesuai dengan semua ambang
keamanan. Jika entri cache melebihi ambang batas apa pun, entri tidak digunakan untuk operasi saat
ini dan dikeluarkan dari cache sesegera mungkin. Penggunaan pertama setiap kunci data (sebelum
caching) dikecualikan dari ambang batas ini.

Sebagai aturan, gunakan jumlah minimum caching yang diperlukan untuk memenuhi tujuan biaya
dan kinerja Anda.

AWS Encryption SDK Satu-satunya cache kunci data yang dienkripsi dengan menggunakan fungsi
derivasi kunci. Juga, ini menetapkan batas atas untuk beberapa nilai ambang batas. Pembatasan ini
memastikan bahwa kunci data tidak digunakan kembali di luar batas kriptografinya. Namun, karena
kunci data plaintext Anda di-cache (dalam memori, secara default), cobalah untuk meminimalkan
waktu penyimpanan kunci. Juga, cobalah untuk membatasi data yang mungkin terekspos jika kunci
dikompromikan.

Untuk contoh pengaturan ambang keamanan cache, lihat AWS Encryption SDK: Cara Memutuskan
apakah Caching Kunci Data Tepat untuk Aplikasi Anda di Blog Keamanan. AWS

Note

CMM caching memberlakukan semua ambang batas berikut. Jika Anda tidak menentukan
nilai opsional, CMM caching menggunakan nilai default.
Untuk menonaktifkan caching kunci data sementara, implementasi Java dan Python
menyediakan cache materi kriptografi null (cache null). AWS Encryption SDK Cache null
mengembalikan miss untuk setiap GET permintaan dan tidak menanggapi PUT permintaan.
Kami menyarankan Anda menggunakan cache null alih-alih mengatur kapasitas cache atau
ambang keamanan ke 0. Untuk informasi selengkapnya, lihat cache null di Java dan Python.

Mengatur ambang keamanan cache 384

https://en.wikipedia.org/wiki/Key_derivation_function
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.amazon.com/blogs/security/aws-encryption-sdk-how-to-decide-if-data-key-caching-is-right-for-your-application/
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/caching/NullCryptoMaterialsCache.html
https://aws-encryption-sdk-python.readthedocs.io/en/latest/generated/aws_encryption_sdk.caches.null.html

AWS Encryption SDK Panduan Developerr

Usia maksimal (wajib)

Menentukan berapa lama entri cache dapat digunakan, dimulai saat ditambahkan. Nilai ini
diperlukan. Masukkan nilai yang lebih besar dari 0. AWS Encryption SDK Itu tidak membatasi nilai
usia maksimum.

Semua implementasi bahasa AWS Encryption SDK menentukan usia maksimum dalam hitungan
detik, kecuali untuk AWS Encryption SDK for JavaScript, yang menggunakan milidetik.

Gunakan interval terpendek yang masih memungkinkan aplikasi Anda mendapat manfaat dari
cache. Anda dapat menggunakan ambang batas usia maksimum seperti kebijakan rotasi kunci.
Gunakan untuk membatasi penggunaan kembali kunci data, meminimalkan paparan materi
kriptografi, dan mengusir kunci data yang kebijakannya mungkin telah berubah saat di-cache.

Pesan maksimum dienkripsi (opsional)

Menentukan jumlah maksimum pesan yang kunci data cache dapat mengenkripsi. Nilai ini bersifat
opsional. Masukkan nilai antara 1 dan 2 ^ 32 pesan. Nilai default adalah 2 ^ 32 pesan.

Setel jumlah pesan yang dilindungi oleh setiap kunci cache menjadi cukup besar untuk
mendapatkan nilai dari penggunaan kembali, tetapi cukup kecil untuk membatasi jumlah pesan
yang mungkin terpapar jika kunci dikompromikan.

Byte maksimum dienkripsi (opsional)

Menentukan jumlah maksimum byte yang kunci data cache dapat mengenkripsi. Nilai ini
bersifat opsional. Masukkan nilai antara 0 dan 2 ^ 63 - 1. Nilai default adalah 2 ^ 63 - 1. Nilai 0
memungkinkan Anda menggunakan caching kunci data hanya ketika Anda mengenkripsi string
pesan kosong.

Byte dalam permintaan saat ini disertakan saat mengevaluasi ambang batas ini. Jika byte yang
diproses, ditambah byte saat ini, melebihi ambang batas, kunci data yang di-cache dikeluarkan
dari cache, meskipun mungkin telah digunakan pada permintaan yang lebih kecil.

Detail caching kunci data

Sebagian besar aplikasi dapat menggunakan implementasi default caching kunci data tanpa menulis
kode kustom. Bagian ini menjelaskan implementasi default dan beberapa detail tentang opsi.

Topik

Detail caching kunci data 385

AWS Encryption SDK Panduan Developerr

• Cara kerja caching kunci data

• Membuat cache bahan kriptografi

• Membuat manajer materi kriptografi caching

• Apa yang ada dalam entri cache kunci data?

• Konteks enkripsi: Cara memilih entri cache

• Apakah aplikasi saya menggunakan kunci data cache?

Cara kerja caching kunci data

Saat Anda menggunakan caching kunci data dalam permintaan untuk mengenkripsi atau mendekripsi
data, yang AWS Encryption SDK pertama akan mencari cache untuk kunci data yang cocok dengan
permintaan. Jika menemukan kecocokan yang valid, ia menggunakan kunci data cache untuk
mengenkripsi data. Jika tidak, itu menghasilkan kunci data baru, seperti halnya tanpa cache.

Caching kunci data tidak digunakan untuk data dengan ukuran yang tidak diketahui, seperti
data yang dialirkan. Hal ini memungkinkan CMM caching untuk menerapkan ambang batas byte
maksimum dengan benar. Untuk menghindari perilaku ini, tambahkan ukuran pesan ke permintaan
enkripsi.

Selain cache, caching kunci data menggunakan pengelola bahan kriptografi caching (caching CMM).
CMM caching adalah manajer bahan kriptografi khusus (CMM) yang berinteraksi dengan cache
dan CMM yang mendasarinya. (Saat Anda menentukan penyedia kunci master atau keyring, CMM
AWS Encryption SDK default akan dibuat untuk Anda.) CMM caching menyimpan kunci data yang
dikembalikan oleh CMM yang mendasarinya. CMM caching juga memberlakukan ambang keamanan
cache yang Anda tetapkan.

Untuk mencegah kunci data yang salah dipilih dari cache, semua caching yang kompatibel CMMs
mengharuskan properti berikut dari bahan kriptografi yang di-cache cocok dengan permintaan bahan.

• Suite algoritma

• Konteks enkripsi (bahkan saat kosong)

• Nama partisi (string yang mengidentifikasi CMM caching)

• (Hanya dekripsi) Kunci data terenkripsi

Cara kerja caching kunci data 386

AWS Encryption SDK Panduan Developerr

Note

Kunci data AWS Encryption SDK cache hanya ketika rangkaian algoritma menggunakan
fungsi derivasi kunci.

Alur kerja berikut menunjukkan bagaimana permintaan untuk mengenkripsi data diproses dengan
dan tanpa caching kunci data. Mereka menunjukkan bagaimana komponen caching yang Anda buat,
termasuk cache dan CMM caching, digunakan dalam proses.

Enkripsi data tanpa caching

Untuk mendapatkan materi enkripsi tanpa caching:

1. Aplikasi meminta AWS Encryption SDK untuk mengenkripsi data.

Permintaan menentukan penyedia kunci master atau keyring. AWS Encryption SDK Membuat
CMM default yang berinteraksi dengan penyedia kunci master atau keyring Anda.

2. Mereka AWS Encryption SDK meminta CMM untuk bahan enkripsi (dapatkan bahan kriptografi).

3. CMM meminta keyring (C dan JavaScript) atau penyedia kunci master (Java dan Python) untuk
materi kriptografi. Ini mungkin melibatkan panggilan ke layanan kriptografi, seperti AWS Key
Management Service (AWS KMS). CMM mengembalikan materi enkripsi ke file. AWS Encryption
SDK

4. AWS Encryption SDK Menggunakan kunci data plaintext untuk mengenkripsi data. Ini menyimpan
data terenkripsi dan kunci data terenkripsi dalam pesan terenkripsi, yang dikembalikan ke
pengguna.

Cara kerja caching kunci data 387

https://en.wikipedia.org/wiki/Key_derivation_function

AWS Encryption SDK Panduan Developerr

Enkripsi data dengan caching

Untuk mendapatkan materi enkripsi dengan caching kunci data:

1. Aplikasi meminta AWS Encryption SDK untuk mengenkripsi data.

Permintaan tersebut menentukan manajer bahan kriptografi caching (caching CMM) yang terkait
dengan manajer bahan kriptografi yang mendasarinya (CMM). Saat Anda menentukan penyedia
kunci master atau keyring, CMM AWS Encryption SDK default akan dibuat untuk Anda.

2. SDK meminta CMM caching yang ditentukan untuk materi enkripsi.

3. CMM caching meminta materi enkripsi dari cache.

a. Jika cache menemukan kecocokan, cache akan memperbarui usia dan menggunakan nilai entri
cache yang cocok, dan mengembalikan materi enkripsi yang di-cache ke CMM caching.

Jika entri cache sesuai dengan ambang keamanannya, CMM caching mengembalikannya ke
SDK. Jika tidak, ia memberitahu cache untuk mengusir entri dan melanjutkan seolah-olah tidak
ada kecocokan.

b. Jika cache tidak dapat menemukan kecocokan yang valid, CMM caching meminta CMM yang
mendasarinya untuk menghasilkan kunci data baru.

Cara kerja caching kunci data 388

AWS Encryption SDK Panduan Developerr

CMM yang mendasarinya mendapatkan materi kriptografi dari keyring (C dan JavaScript) atau
penyedia kunci master (Java dan Python). Ini mungkin melibatkan panggilan ke layanan, seperti
AWS Key Management Service. CMM yang mendasari mengembalikan plaintext dan salinan
terenkripsi dari kunci data ke CMM caching.

CMM caching menyimpan materi enkripsi baru dalam cache.

4. CMM caching mengembalikan materi enkripsi ke file. AWS Encryption SDK

5. AWS Encryption SDK Menggunakan kunci data plaintext untuk mengenkripsi data. Ini menyimpan
data terenkripsi dan kunci data terenkripsi dalam pesan terenkripsi, yang dikembalikan ke
pengguna.

Membuat cache bahan kriptografi

AWS Encryption SDK Mendefinisikan persyaratan untuk cache bahan kriptografi yang digunakan
dalam caching kunci data. Ini juga menyediakan cache lokal, yang merupakan cache yang dapat
dikonfigurasi, dalam memori, yang paling jarang digunakan (LRU). Untuk membuat instance cache
lokal, gunakan LocalCryptoMaterialsCache konstruktor di Java dan Python, fungsi JavaScript

Membuat cache bahan kriptografi 389

https://en.wikipedia.org/wiki/Cache_replacement_policies#Least_Recently_Used_.28LRU.29

AWS Encryption SDK Panduan Developerr

di, getLocalCryptographic MaterialsCache atau aws_cryptosdk_materials_cache_local_new
konstruktor di C.

Cache lokal mencakup logika untuk manajemen cache dasar, termasuk menambahkan, mengusir,
dan mencocokkan entri cache, dan memelihara cache. Anda tidak perlu menulis logika manajemen
cache khusus apa pun. Anda dapat menggunakan cache lokal apa adanya, menyesuaikannya, atau
mengganti cache yang kompatibel.

Saat Anda membuat cache lokal, Anda mengatur kapasitasnya, yaitu jumlah entri maksimum yang
dapat disimpan cache. Pengaturan ini membantu Anda merancang cache yang efisien dengan
penggunaan kembali kunci data terbatas.

The AWS Encryption SDK for Java and the AWS Encryption SDK for Python juga menyediakan
cache materi kriptografi null ()NullCryptoMaterialsCache. NullCryptoMaterialsCache Pengembalian
kehilangan untuk semua GET operasi dan tidak menanggapi PUT operasi. Anda dapat menggunakan
NullCryptoMaterialsCache dalam pengujian atau untuk menonaktifkan sementara caching dalam
aplikasi yang menyertakan kode caching.

Dalam AWS Encryption SDK, setiap cache materi kriptografi dikaitkan dengan manajer bahan
kriptografi caching (caching CMM). CMM caching mendapatkan kunci data dari cache, menempatkan
kunci data dalam cache, dan memberlakukan ambang keamanan yang Anda tetapkan. Saat Anda
membuat CMM caching, Anda menentukan cache yang digunakannya dan CMM atau penyedia kunci
master yang mendasarinya yang menghasilkan kunci data yang di-cache.

Membuat manajer materi kriptografi caching

Untuk mengaktifkan caching kunci data, Anda membuat cache dan pengelola materi kriptografi
caching (caching CMM). Kemudian, dalam permintaan Anda untuk mengenkripsi atau mendekripsi
data, Anda menentukan CMM caching, bukan manajer bahan kriptografi standar (CMM), atau
penyedia kunci master atau keyring.

Ada dua jenis CMMs. Keduanya mendapatkan kunci data (dan materi kriptografi terkait), tetapi
dengan cara yang berbeda, sebagai berikut:

• CMM dikaitkan dengan keyring (C atau JavaScript) atau penyedia kunci master (Java dan Python).
Ketika SDK meminta CMM untuk bahan enkripsi atau dekripsi, CMM mendapatkan materi dari
keyring atau penyedia kunci masternya. Di Java dan Python, CMM menggunakan kunci master
untuk menghasilkan, mengenkripsi, atau mendekripsi kunci data. Dalam C dan JavaScript, keyring
menghasilkan, mengenkripsi, dan mengembalikan materi kriptografi.

Membuat manajer materi kriptografi caching 390

AWS Encryption SDK Panduan Developerr

• CMM caching dikaitkan dengan satu cache, seperti cache lokal, dan CMM yang mendasarinya.
Ketika SDK meminta CMM caching untuk materi kriptografi, CMM caching mencoba untuk
mendapatkannya dari cache. Jika tidak dapat menemukan kecocokan, CMM caching menanyakan
CMM yang mendasarinya untuk materi. Kemudian, ia menyimpan materi kriptografi baru sebelum
mengembalikannya ke penelepon.

CMM caching juga memberlakukan ambang keamanan yang Anda tetapkan untuk setiap entri cache.
Karena ambang keamanan diatur dan diberlakukan oleh CMM caching, Anda dapat menggunakan
cache yang kompatibel, bahkan jika cache tidak dirancang untuk materi sensitif.

Apa yang ada dalam entri cache kunci data?

Caching kunci data menyimpan kunci data dan materi kriptografi terkait dalam cache. Setiap entri
mencakup elemen-elemen yang tercantum di bawah ini. Anda mungkin menemukan informasi ini
berguna ketika Anda memutuskan apakah akan menggunakan fitur caching kunci data, dan ketika
Anda menetapkan ambang keamanan pada pengelola bahan kriptografi caching (caching CMM).

Entri Cache untuk Permintaan Enkripsi

Entri yang ditambahkan ke cache kunci data sebagai hasil dari operasi enkripsi mencakup elemen-
elemen berikut:

• Kunci data teks biasa

• Kunci data terenkripsi (satu atau lebih)

• Konteks enkripsi

• Kunci penandatanganan pesan (jika digunakan)

• Suite algoritma

• Metadata, termasuk penghitung penggunaan untuk menegakkan ambang keamanan

Entri Cache untuk Permintaan Dekripsi

Entri yang ditambahkan ke cache kunci data sebagai hasil dari operasi dekripsi mencakup elemen-
elemen berikut:

• Kunci data teks biasa

• Kunci verifikasi tanda tangan (jika digunakan)

Apa yang ada dalam entri cache kunci data? 391

AWS Encryption SDK Panduan Developerr

• Metadata, termasuk penghitung penggunaan untuk menegakkan ambang keamanan

Konteks enkripsi: Cara memilih entri cache

Anda dapat menentukan konteks enkripsi dalam permintaan apa pun untuk mengenkripsi data.
Namun, konteks enkripsi memainkan peran khusus dalam caching kunci data. Ini memungkinkan
Anda membuat subkelompok kunci data di cache Anda, bahkan ketika kunci data berasal dari CMM
caching yang sama.

Konteks enkripsi adalah seperangkat pasangan nilai kunci yang berisi data non-rahasia yang
berubah-ubah. Selama enkripsi, konteks enkripsi terikat secara kriptografis ke data terenkripsi
sehingga konteks enkripsi yang sama diperlukan untuk mendekripsi data. Dalam AWS Encryption
SDK, konteks enkripsi disimpan dalam pesan terenkripsi dengan data terenkripsi dan kunci data.

Bila Anda menggunakan cache kunci data, Anda juga dapat menggunakan konteks enkripsi untuk
memilih kunci data cache tertentu untuk operasi enkripsi Anda. Konteks enkripsi disimpan dalam
entri cache dengan kunci data (ini adalah bagian dari ID entri cache). Kunci data yang di-cache
hanya digunakan kembali jika konteks enkripsi mereka cocok. Jika Anda ingin menggunakan kembali
kunci data tertentu untuk permintaan enkripsi, tentukan konteks enkripsi yang sama. Jika Anda ingin
menghindari kunci data tersebut, tentukan konteks enkripsi yang berbeda.

Konteks enkripsi selalu opsional, tetapi disarankan. Jika Anda tidak menentukan konteks enkripsi
dalam permintaan Anda, konteks enkripsi kosong disertakan dalam pengenal entri cache dan
dicocokkan dengan setiap permintaan.

Apakah aplikasi saya menggunakan kunci data cache?

Data key caching adalah strategi optimasi yang sangat efektif untuk aplikasi dan beban kerja
tertentu. Namun, karena mengandung beberapa risiko, penting untuk menentukan seberapa efektif
kemungkinan untuk situasi Anda, dan kemudian memutuskan apakah manfaatnya lebih besar
daripada risikonya.

Karena caching kunci data menggunakan kembali kunci data, efek yang paling jelas adalah
mengurangi jumlah panggilan untuk menghasilkan kunci data baru. Ketika caching kunci data
diimplementasikan, AWS Encryption SDK panggilan AWS KMS GenerateDataKey operasi hanya
untuk membuat kunci data awal dan ketika cache meleset. Namun, caching meningkatkan kinerja
secara nyata hanya dalam aplikasi yang menghasilkan banyak kunci data dengan karakteristik yang
sama, termasuk konteks enkripsi dan rangkaian algoritma yang sama.

Konteks enkripsi: Cara memilih entri cache 392

AWS Encryption SDK Panduan Developerr

Untuk menentukan apakah implementasi Anda AWS Encryption SDK benar-benar menggunakan
kunci data dari cache, coba teknik berikut.

• Di log infrastruktur kunci master Anda, periksa frekuensi panggilan untuk membuat kunci data
baru. Ketika caching kunci data efektif, jumlah panggilan untuk membuat kunci baru akan turun
dengan jelas. Misalnya, jika Anda menggunakan penyedia kunci AWS KMS master atau keyring,
cari CloudTrail log untuk GenerateDataKeypanggilan.

• Bandingkan pesan terenkripsi yang AWS Encryption SDK dikembalikan sebagai respons terhadap
permintaan enkripsi yang berbeda. Misalnya, jika Anda menggunakan AWS Encryption SDK for
Java, bandingkan ParsedCiphertextobjek dari panggilan enkripsi yang berbeda. Dalam AWS
Encryption SDK for JavaScript, bandingkan isi encryptedDataKeys properti MessageHeader.
Ketika kunci data digunakan kembali, kunci data terenkripsi dalam pesan terenkripsi identik.

Contoh caching kunci data

Contoh ini menggunakan caching kunci data dengan cache lokal untuk mempercepat aplikasi di
mana data yang dihasilkan oleh beberapa perangkat dienkripsi dan disimpan di Wilayah yang
berbeda.

Dalam skenario ini, beberapa produsen data menghasilkan data, mengenkripsi, dan menulis ke aliran
Kinesis di setiap Wilayah. AWS Lambdafungsi (konsumen) mendekripsi aliran dan menulis data teks
biasa ke tabel DynamoDB di Wilayah. Produsen data dan konsumen menggunakan AWS Encryption
SDK dan penyedia kunci AWS KMS utama. Untuk mengurangi panggilan ke KMS, setiap produsen
dan konsumen memiliki cache lokal mereka sendiri.

Anda dapat menemukan kode sumber untuk contoh-contoh ini di Java dan Python. Sampel juga
menyertakan CloudFormation template yang mendefinisikan sumber daya untuk sampel.

Contoh caching kunci data 393

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/ParsedCiphertext.html
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/serialize/src/types.ts#L21
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/lambda/

AWS Encryption SDK Panduan Developerr

Hasil cache lokal

Tabel berikut menunjukkan bahwa cache lokal mengurangi total panggilan ke KMS (per detik per
Wilayah) dalam contoh ini menjadi 1% dari nilai aslinya.

Permintaan produsen

 Permintaan per detik per klien Klien per
wilayah

Permintaa
n rata-rata

Hasil cache lokal 394

AWS Encryption SDK Panduan Developerr

Hasilkan
kunci data
(us-west-2)

Enkripsi kunci
data (eu-
central-1)

Total (per
wilayah)

per detik per
wilayah

Tidak ada
cache

1 1 1 500 500

Cache lokal 1 rps/100
penggunaan

1 rps/100
penggunaan

1 rps/100
penggunaan

500 5

Permintaan konsumen

Permintaan per detik per klien

Dekripsi
kunci data

Produser Total

Klien per
wilayah

Permintaa
n rata-rata
per detik per
wilayah

Tidak ada
cache

1 rps per
produsen

500 500 2 1.000

Cache lokal 1 rps per
produsen/100
penggunaan

500 5 2 10

Kode contoh caching kunci data

Contoh kode ini menciptakan implementasi sederhana dari caching kunci data dengan cache lokal
di Java dan Python. Kode ini menciptakan dua contoh cache lokal: satu untuk produsen data yang
mengenkripsi data dan satu lagi untuk konsumen data (AWS Lambda fungsi) yang mendekripsi
data. Untuk detail tentang implementasi caching kunci data dalam setiap bahasa, lihat dokumentasi
Javadoc dan Python untuk. AWS Encryption SDK

Data key caching tersedia untuk semua bahasa pemrograman yang AWS Encryption SDK
mendukung.

Untuk contoh lengkap dan teruji menggunakan caching kunci data di AWS Encryption SDK, lihat:

• C/C++: caching_cmm.cpp

Contoh kode 395

https://aws.github.io/aws-encryption-sdk-java/
https://aws-encryption-sdk-python.readthedocs.io/en/latest/
https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/caching_cmm.cpp

AWS Encryption SDK Panduan Developerr

• Jawa: SimpleDataKeyCachingExample.java

• JavaScript Peramban: caching_cmm.ts

• JavaScript Node.js: caching_cmm.ts

• Python: data_key_caching_basic.py

Produser

Produser mendapatkan peta, mengubahnya menjadi JSON, menggunakan AWS Encryption SDK
untuk mengenkripsi, dan mendorong catatan ciphertext ke aliran Kinesis di masing-masing. Wilayah
AWS

Kode mendefinisikan manajer bahan kriptografi caching (caching CMM) dan mengaitkannya dengan
cache lokal dan penyedia kunci master yang mendasarinya.AWS KMS CMM caching menyimpan
kunci data (dan materi kriptografi terkait) dari penyedia kunci utama. Ini juga berinteraksi dengan
cache atas nama SDK dan memberlakukan ambang keamanan yang Anda tetapkan.

Karena panggilan ke metode enkripsi menentukan CMM caching, bukan manajer bahan kriptografi
biasa (CMM) atau penyedia kunci utama, enkripsi akan menggunakan caching kunci data.

Java

Contoh berikut menggunakan versi 2. x dari AWS Encryption SDK for Java. Versi 3. x dari CMM
AWS Encryption SDK for Java caching kunci data tidak digunakan lagi. Dengan versi 3. x, Anda
juga dapat menggunakan keyring AWS KMS Hierarkis, solusi caching bahan kriptografi alternatif.

/*
 * Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use
 this file except
 * in compliance with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed on an
 "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the
 * specific language governing permissions and limitations under the License.
 */

Contoh kode 396

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SimpleDataKeyCachingExample.java
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-browser/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/caching_cmm.ts
https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/data_key_caching_basic.py
https://aws.amazon.com/kinesis/streams/
https://aws.amazon.com/kinesis/streams/

AWS Encryption SDK Panduan Developerr

package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoResult;
import com.amazonaws.encryptionsdk.MasterKeyProvider;
import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKey;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
import com.amazonaws.encryptionsdk.multi.MultipleProviderFactory;
import com.amazonaws.util.json.Jackson;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.auth.credentials.AwsCredentialsProvider;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.core.SdkBytes;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.kinesis.KinesisClient;
import software.amazon.awssdk.services.kms.KmsClient;

/**
 * Pushes data to Kinesis Streams in multiple Regions.
 */
public class MultiRegionRecordPusher {

 private static final long MAX_ENTRY_AGE_MILLISECONDS = 300000;
 private static final long MAX_ENTRY_USES = 100;
 private static final int MAX_CACHE_ENTRIES = 100;
 private final String streamName_;
 private final ArrayList<KinesisClient> kinesisClients_;
 private final CachingCryptoMaterialsManager cachingMaterialsManager_;
 private final AwsCrypto crypto_;

 /**
 * Creates an instance of this object with Kinesis clients for all target
 Regions and a cached
 * key provider containing KMS master keys in all target Regions.
 */

Contoh kode 397

AWS Encryption SDK Panduan Developerr

 public MultiRegionRecordPusher(final Region[] regions, final String
 kmsAliasName,
 final String streamName) {
 streamName_ = streamName;
 crypto_ = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();
 kinesisClients_ = new ArrayList<>();

 AwsCredentialsProvider credentialsProvider =
 DefaultCredentialsProvider.builder().build();

 // Build KmsMasterKey and AmazonKinesisClient objects for each target region
 List<KmsMasterKey> masterKeys = new ArrayList<>();
 for (Region region : regions) {
 kinesisClients_.add(KinesisClient.builder()
 .credentialsProvider(credentialsProvider)
 .region(region)
 .build());

 KmsMasterKey regionMasterKey = KmsMasterKeyProvider.builder()
 .defaultRegion(region)
 .builderSupplier(() ->
 KmsClient.builder().credentialsProvider(credentialsProvider))
 .buildStrict(kmsAliasName)
 .getMasterKey(kmsAliasName);

 masterKeys.add(regionMasterKey);
 }

 // Collect KmsMasterKey objects into single provider and add cache
 MasterKeyProvider<?> masterKeyProvider =
 MultipleProviderFactory.buildMultiProvider(
 KmsMasterKey.class,
 masterKeys
);

 cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()
 .withMasterKeyProvider(masterKeyProvider)
 .withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
 .withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
 .withMessageUseLimit(MAX_ENTRY_USES)
 .build();
 }

Contoh kode 398

AWS Encryption SDK Panduan Developerr

 /**
 * JSON serializes and encrypts the received record data and pushes it to all
 target streams.
 */
 public void putRecord(final Map<Object, Object> data) {
 String partitionKey = UUID.randomUUID().toString();
 Map<String, String> encryptionContext = new HashMap<>();
 encryptionContext.put("stream", streamName_);

 // JSON serialize data
 String jsonData = Jackson.toJsonString(data);

 // Encrypt data
 CryptoResult<byte[], ?> result = crypto_.encryptData(
 cachingMaterialsManager_,
 jsonData.getBytes(),
 encryptionContext
);
 byte[] encryptedData = result.getResult();

 // Put records to Kinesis stream in all Regions
 for (KinesisClient regionalKinesisClient : kinesisClients_) {
 regionalKinesisClient.putRecord(builder ->
 builder.streamName(streamName_)
 .data(SdkBytes.fromByteArray(encryptedData))
 .partitionKey(partitionKey));
 }
 }
}

Python

"""
Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
 file except
in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

Contoh kode 399

AWS Encryption SDK Panduan Developerr

or in the "license" file accompanying this file. This file is distributed on an "AS
 IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the
specific language governing permissions and limitations under the License.
"""
import json
import uuid

from aws_encryption_sdk import EncryptionSDKClient, StrictAwsKmsMasterKeyProvider,
 CachingCryptoMaterialsManager, LocalCryptoMaterialsCache, CommitmentPolicy
from aws_encryption_sdk.key_providers.kms import KMSMasterKey
import boto3

class MultiRegionRecordPusher(object):
 """Pushes data to Kinesis Streams in multiple Regions."""
 CACHE_CAPACITY = 100
 MAX_ENTRY_AGE_SECONDS = 300.0
 MAX_ENTRY_MESSAGES_ENCRYPTED = 100

 def __init__(self, regions, kms_alias_name, stream_name):
 self._kinesis_clients = []
 self._stream_name = stream_name

 # Set up EncryptionSDKClient
 _client =
 EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

 # Set up KMSMasterKeyProvider with cache
 _key_provider = StrictAwsKmsMasterKeyProvider(kms_alias_name)

 # Add MasterKey and Kinesis client for each Region
 for region in regions:
 self._kinesis_clients.append(boto3.client('kinesis',
 region_name=region))
 regional_master_key = KMSMasterKey(
 client=boto3.client('kms', region_name=region),
 key_id=kms_alias_name
)
 _key_provider.add_master_key_provider(regional_master_key)

 cache = LocalCryptoMaterialsCache(capacity=self.CACHE_CAPACITY)
 self._materials_manager = CachingCryptoMaterialsManager(

Contoh kode 400

AWS Encryption SDK Panduan Developerr

 master_key_provider=_key_provider,
 cache=cache,
 max_age=self.MAX_ENTRY_AGE_SECONDS,
 max_messages_encrypted=self.MAX_ENTRY_MESSAGES_ENCRYPTED
)

 def put_record(self, record_data):
 """JSON serializes and encrypts the received record data and pushes it to
 all target streams.

 :param dict record_data: Data to write to stream
 """
 # Kinesis partition key to randomize write load across stream shards
 partition_key = uuid.uuid4().hex

 encryption_context = {'stream': self._stream_name}

 # JSON serialize data
 json_data = json.dumps(record_data)

 # Encrypt data
 encrypted_data, _header = _client.encrypt(
 source=json_data,
 materials_manager=self._materials_manager,
 encryption_context=encryption_context
)

 # Put records to Kinesis stream in all Regions
 for client in self._kinesis_clients:
 client.put_record(
 StreamName=self._stream_name,
 Data=encrypted_data,
 PartitionKey=partition_key
)

Konsumen

Konsumen data adalah AWS Lambdafungsi yang dipicu oleh peristiwa Kinesis. Ini mendekripsi dan
deserialisasi setiap catatan, dan menulis catatan teks biasa ke tabel Amazon DynamoDB di Wilayah
yang sama.

Contoh kode 401

https://aws.amazon.com/lambda/
https://aws.amazon.com/kinesis/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/

AWS Encryption SDK Panduan Developerr

Seperti kode produsen, kode konsumen memungkinkan caching kunci data dengan menggunakan
manajer bahan kriptografi caching (caching CMM) dalam panggilan ke metode dekripsi.

Kode Java membangun penyedia kunci master dalam mode ketat dengan yang ditentukan AWS
KMS key. Mode ketat tidak diperlukan saat mendekripsi, tetapi ini adalah praktik terbaik. Kode Python
menggunakan mode penemuan, yang memungkinkan AWS Encryption SDK penggunaan kunci
pembungkus apa pun yang mengenkripsi kunci data untuk mendekripsi itu.

Java

Contoh berikut menggunakan versi 2. x dari AWS Encryption SDK for Java. Versi 3. x dari CMM
AWS Encryption SDK for Java caching kunci data tidak digunakan lagi. Dengan versi 3. x, Anda
juga dapat menggunakan keyring AWS KMS Hierarkis, solusi caching bahan kriptografi alternatif.

Kode ini membuat penyedia kunci master untuk mendekripsi dalam mode ketat. Hanya AWS
Encryption SDK dapat menggunakan yang AWS KMS keys Anda tentukan untuk mendekripsi
pesan Anda.

/*
 * Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"). You may not use
 this file except
 * in compliance with the License. A copy of the License is located at
 *
 * http://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed on an
 "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the
 * specific language governing permissions and limitations under the License.
 */
package com.amazonaws.crypto.examples.kinesisdatakeycaching;

import com.amazonaws.encryptionsdk.AwsCrypto;
import com.amazonaws.encryptionsdk.CommitmentPolicy;
import com.amazonaws.encryptionsdk.CryptoResult;
import com.amazonaws.encryptionsdk.caching.CachingCryptoMaterialsManager;
import com.amazonaws.encryptionsdk.caching.LocalCryptoMaterialsCache;
import com.amazonaws.encryptionsdk.kmssdkv2.KmsMasterKeyProvider;
import com.amazonaws.services.lambda.runtime.Context;

Contoh kode 402

AWS Encryption SDK Panduan Developerr

import com.amazonaws.services.lambda.runtime.events.KinesisEvent;
import com.amazonaws.services.lambda.runtime.events.KinesisEvent.KinesisEventRecord;
import com.amazonaws.util.BinaryUtils;
import java.io.UnsupportedEncodingException;
import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.concurrent.TimeUnit;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbEnhancedClient;
import software.amazon.awssdk.enhanced.dynamodb.DynamoDbTable;
import software.amazon.awssdk.enhanced.dynamodb.TableSchema;

/**
 * Decrypts all incoming Kinesis records and writes records to DynamoDB.
 */
public class LambdaDecryptAndWrite {

 private static final long MAX_ENTRY_AGE_MILLISECONDS = 600000;
 private static final int MAX_CACHE_ENTRIES = 100;
 private final CachingCryptoMaterialsManager cachingMaterialsManager_;
 private final AwsCrypto crypto_;
 private final DynamoDbTable<Item> table_;

 /**
 * Because the cache is used only for decryption, the code doesn't set the max
 bytes or max
 * message security thresholds that are enforced only on on data keys used for
 encryption.
 */
 public LambdaDecryptAndWrite() {
 String kmsKeyArn = System.getenv("CMK_ARN");
 cachingMaterialsManager_ = CachingCryptoMaterialsManager.newBuilder()

 .withMasterKeyProvider(KmsMasterKeyProvider.builder().buildStrict(kmsKeyArn))
 .withCache(new LocalCryptoMaterialsCache(MAX_CACHE_ENTRIES))
 .withMaxAge(MAX_ENTRY_AGE_MILLISECONDS, TimeUnit.MILLISECONDS)
 .build();

 crypto_ = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.RequireEncryptRequireDecrypt)
 .build();

 String tableName = System.getenv("TABLE_NAME");
 DynamoDbEnhancedClient dynamodb = DynamoDbEnhancedClient.builder().build();
 table_ = dynamodb.table(tableName, TableSchema.fromClass(Item.class));

Contoh kode 403

AWS Encryption SDK Panduan Developerr

 }

 /**
 * @param event
 * @param context
 */
 public void handleRequest(KinesisEvent event, Context context)
 throws UnsupportedEncodingException {
 for (KinesisEventRecord record : event.getRecords()) {
 ByteBuffer ciphertextBuffer = record.getKinesis().getData();
 byte[] ciphertext = BinaryUtils.copyAllBytesFrom(ciphertextBuffer);

 // Decrypt and unpack record
 CryptoResult<byte[], ?> plaintextResult =
 crypto_.decryptData(cachingMaterialsManager_,
 ciphertext);

 // Verify the encryption context value
 String streamArn = record.getEventSourceARN();
 String streamName = streamArn.substring(streamArn.indexOf("/") + 1);
 if (!
streamName.equals(plaintextResult.getEncryptionContext().get("stream"))) {
 throw new IllegalStateException("Wrong Encryption Context!");
 }

 // Write record to DynamoDB
 String jsonItem = new String(plaintextResult.getResult(),
 StandardCharsets.UTF_8);
 System.out.println(jsonItem);
 table_.putItem(Item.fromJSON(jsonItem));
 }
 }

 private static class Item {

 static Item fromJSON(String jsonText) {
 // Parse JSON and create new Item
 return new Item();
 }
 }
}

Contoh kode 404

AWS Encryption SDK Panduan Developerr

Python

Kode Python ini mendekripsi dengan penyedia kunci master dalam mode penemuan.
Ini memungkinkan AWS Encryption SDK penggunaan kunci pembungkus apa pun yang
mengenkripsi kunci data untuk mendekripsi itu. Mode ketat, di mana Anda menentukan kunci
pembungkus yang dapat digunakan untuk dekripsi, adalah praktik terbaik.

"""
Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this
 file except
in compliance with the License. A copy of the License is located at

https://aws.amazon.com/apache-2-0/

or in the "license" file accompanying this file. This file is distributed on an "AS
 IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 License for the
specific language governing permissions and limitations under the License.
"""
import base64
import json
import logging
import os

from aws_encryption_sdk import EncryptionSDKClient,
 DiscoveryAwsKmsMasterKeyProvider, CachingCryptoMaterialsManager,
 LocalCryptoMaterialsCache, CommitmentPolicy
import boto3

_LOGGER = logging.getLogger(__name__)
_is_setup = False
CACHE_CAPACITY = 100
MAX_ENTRY_AGE_SECONDS = 600.0

def setup():
 """Sets up clients that should persist across Lambda invocations."""
 global encryption_sdk_client
 encryption_sdk_client =
 EncryptionSDKClient(CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT)

Contoh kode 405

AWS Encryption SDK Panduan Developerr

 global materials_manager
 key_provider = DiscoveryAwsKmsMasterKeyProvider()
 cache = LocalCryptoMaterialsCache(capacity=CACHE_CAPACITY)

 # Because the cache is used only for decryption, the code doesn't set
 # the max bytes or max message security thresholds that are enforced
 # only on on data keys used for encryption.
 materials_manager = CachingCryptoMaterialsManager(
 master_key_provider=key_provider,
 cache=cache,
 max_age=MAX_ENTRY_AGE_SECONDS
)
 global table
 table_name = os.environ.get('TABLE_NAME')
 table = boto3.resource('dynamodb').Table(table_name)
 global _is_setup
 _is_setup = True

def lambda_handler(event, context):
 """Decrypts all incoming Kinesis records and writes records to DynamoDB."""
 _LOGGER.debug('New event:')
 _LOGGER.debug(event)
 if not _is_setup:
 setup()
 with table.batch_writer() as batch:
 for record in event.get('Records', []):
 # Record data base64-encoded by Kinesis
 ciphertext = base64.b64decode(record['kinesis']['data'])

 # Decrypt and unpack record
 plaintext, header = encryption_sdk_client.decrypt(
 source=ciphertext,
 materials_manager=materials_manager
)
 item = json.loads(plaintext)

 # Verify the encryption context value
 stream_name = record['eventSourceARN'].split('/', 1)[1]
 if stream_name != header.encryption_context['stream']:
 raise ValueError('Wrong Encryption Context!')

 # Write record to DynamoDB
 batch.put_item(Item=item)

Contoh kode 406

AWS Encryption SDK Panduan Developerr

Contoh caching kunci data: template CloudFormation

CloudFormation Template ini mengatur semua AWS sumber daya yang diperlukan untuk
mereproduksi contoh caching kunci data.

JSON

{
 "Parameters": {
 "SourceCodeBucket": {
 "Type": "String",
 "Description": "S3 bucket containing Lambda source code zip files"
 },
 "PythonLambdaS3Key": {
 "Type": "String",
 "Description": "S3 key containing Python Lambda source code zip file"
 },
 "PythonLambdaObjectVersionId": {
 "Type": "String",
 "Description": "S3 version id for S3 key containing Python Lambda source
 code zip file"
 },
 "JavaLambdaS3Key": {
 "Type": "String",
 "Description": "S3 key containing Python Lambda source code zip file"
 },
 "JavaLambdaObjectVersionId": {
 "Type": "String",
 "Description": "S3 version id for S3 key containing Python Lambda source
 code zip file"
 },
 "KeyAliasSuffix": {
 "Type": "String",
 "Description": "Suffix to use for KMS key Alias (ie: alias/
KeyAliasSuffix)"
 },
 "StreamName": {
 "Type": "String",
 "Description": "Name to use for Kinesis Stream"
 }

CloudFormation Template 407

AWS Encryption SDK Panduan Developerr

 },
 "Resources": {
 "InputStream": {
 "Type": "AWS::Kinesis::Stream",
 "Properties": {
 "Name": {
 "Ref": "StreamName"
 },
 "ShardCount": 2
 }
 },
 "PythonLambdaOutputTable": {
 "Type": "AWS::DynamoDB::Table",
 "Properties": {
 "AttributeDefinitions": [
 {
 "AttributeName": "id",
 "AttributeType": "S"
 }
],
 "KeySchema": [
 {
 "AttributeName": "id",
 "KeyType": "HASH"
 }
],
 "ProvisionedThroughput": {
 "ReadCapacityUnits": 1,
 "WriteCapacityUnits": 1
 }
 }
 },
 "PythonLambdaRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"

CloudFormation Template 408

AWS Encryption SDK Panduan Developerr

 }
]
 },
 "ManagedPolicyArns": [
 "arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole"
],
 "Policies": [
 {
 "PolicyName": "PythonLambdaAccess",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:BatchWriteItem"
],
 "Resource": {
 "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable}"
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem"
],
 "Resource": {
 "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable}*"
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:GetRecords",
 "kinesis:GetShardIterator",
 "kinesis:DescribeStream",
 "kinesis:ListStreams"
],
 "Resource": {

CloudFormation Template 409

AWS Encryption SDK Panduan Developerr

 "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}"
 }
 }
]
 }
 }
]
 }
 },
 "PythonLambdaFunction": {
 "Type": "AWS::Lambda::Function",
 "Properties": {
 "Description": "Python consumer",
 "Runtime": "python2.7",
 "MemorySize": 512,
 "Timeout": 90,
 "Role": {
 "Fn::GetAtt": [
 "PythonLambdaRole",
 "Arn"
]
 },
 "Handler":
 "aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler",
 "Code": {
 "S3Bucket": {
 "Ref": "SourceCodeBucket"
 },
 "S3Key": {
 "Ref": "PythonLambdaS3Key"
 },
 "S3ObjectVersion": {
 "Ref": "PythonLambdaObjectVersionId"
 }
 },
 "Environment": {
 "Variables": {
 "TABLE_NAME": {
 "Ref": "PythonLambdaOutputTable"
 }
 }
 }
 }

CloudFormation Template 410

AWS Encryption SDK Panduan Developerr

 },
 "PythonLambdaSourceMapping": {
 "Type": "AWS::Lambda::EventSourceMapping",
 "Properties": {
 "BatchSize": 1,
 "Enabled": true,
 "EventSourceArn": {
 "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}"
 },
 "FunctionName": {
 "Ref": "PythonLambdaFunction"
 },
 "StartingPosition": "TRIM_HORIZON"
 }
 },
 "JavaLambdaOutputTable": {
 "Type": "AWS::DynamoDB::Table",
 "Properties": {
 "AttributeDefinitions": [
 {
 "AttributeName": "id",
 "AttributeType": "S"
 }
],
 "KeySchema": [
 {
 "AttributeName": "id",
 "KeyType": "HASH"
 }
],
 "ProvisionedThroughput": {
 "ReadCapacityUnits": 1,
 "WriteCapacityUnits": 1
 }
 }
 },
 "JavaLambdaRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {

CloudFormation Template 411

AWS Encryption SDK Panduan Developerr

 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "ManagedPolicyArns": [
 "arn:aws:iam::aws:policy/service-role/
AWSLambdaBasicExecutionRole"
],
 "Policies": [
 {
 "PolicyName": "JavaLambdaAccess",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DescribeTable",
 "dynamodb:BatchWriteItem"
],
 "Resource": {
 "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable}"
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem"
],
 "Resource": {
 "Fn::Sub": "arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable}*"
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:GetRecords",
 "kinesis:GetShardIterator",

CloudFormation Template 412

AWS Encryption SDK Panduan Developerr

 "kinesis:DescribeStream",
 "kinesis:ListStreams"
],
 "Resource": {
 "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}"
 }
 }
]
 }
 }
]
 }
 },
 "JavaLambdaFunction": {
 "Type": "AWS::Lambda::Function",
 "Properties": {
 "Description": "Java consumer",
 "Runtime": "java8",
 "MemorySize": 512,
 "Timeout": 90,
 "Role": {
 "Fn::GetAtt": [
 "JavaLambdaRole",
 "Arn"
]
 },
 "Handler":
 "com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite::handleRequest",
 "Code": {
 "S3Bucket": {
 "Ref": "SourceCodeBucket"
 },
 "S3Key": {
 "Ref": "JavaLambdaS3Key"
 },
 "S3ObjectVersion": {
 "Ref": "JavaLambdaObjectVersionId"
 }
 },
 "Environment": {
 "Variables": {
 "TABLE_NAME": {
 "Ref": "JavaLambdaOutputTable"

CloudFormation Template 413

AWS Encryption SDK Panduan Developerr

 },
 "CMK_ARN": {
 "Fn::GetAtt": [
 "RegionKinesisCMK",
 "Arn"
]
 }
 }
 }
 }
 },
 "JavaLambdaSourceMapping": {
 "Type": "AWS::Lambda::EventSourceMapping",
 "Properties": {
 "BatchSize": 1,
 "Enabled": true,
 "EventSourceArn": {
 "Fn::Sub": "arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}"
 },
 "FunctionName": {
 "Ref": "JavaLambdaFunction"
 },
 "StartingPosition": "TRIM_HORIZON"
 }
 },
 "RegionKinesisCMK": {
 "Type": "AWS::KMS::Key",
 "Properties": {
 "Description": "Used to encrypt data passing through Kinesis Stream
 in this region",
 "Enabled": true,
 "KeyPolicy": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": {
 "Fn::Sub": "arn:aws:iam::${AWS::AccountId}:root"
 }
 },
 "Action": [
 "kms:Encrypt",

CloudFormation Template 414

AWS Encryption SDK Panduan Developerr

 "kms:GenerateDataKey",
 "kms:CreateAlias",
 "kms:DeleteAlias",
 "kms:DescribeKey",
 "kms:DisableKey",
 "kms:EnableKey",
 "kms:PutKeyPolicy",
 "kms:ScheduleKeyDeletion",
 "kms:UpdateAlias",
 "kms:UpdateKeyDescription"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 {
 "Fn::GetAtt": [
 "PythonLambdaRole",
 "Arn"
]
 },
 {
 "Fn::GetAtt": [
 "JavaLambdaRole",
 "Arn"
]
 }
]
 },
 "Action": "kms:Decrypt",
 "Resource": "*"
 }
]
 }
 }
 },
 "RegionKinesisCMKAlias": {
 "Type": "AWS::KMS::Alias",
 "Properties": {
 "AliasName": {
 "Fn::Sub": "alias/${KeyAliasSuffix}"
 },

CloudFormation Template 415

AWS Encryption SDK Panduan Developerr

 "TargetKeyId": {
 "Ref": "RegionKinesisCMK"
 }
 }
 }
 }
}

YAML

Parameters:
 SourceCodeBucket:
 Type: String
 Description: S3 bucket containing Lambda source code zip files
 PythonLambdaS3Key:
 Type: String
 Description: S3 key containing Python Lambda source code zip file
 PythonLambdaObjectVersionId:
 Type: String
 Description: S3 version id for S3 key containing Python Lambda source code
 zip file
 JavaLambdaS3Key:
 Type: String
 Description: S3 key containing Python Lambda source code zip file
 JavaLambdaObjectVersionId:
 Type: String
 Description: S3 version id for S3 key containing Python Lambda source code
 zip file
 KeyAliasSuffix:
 Type: String
 Description: 'Suffix to use for KMS CMK Alias (ie: alias/<KeyAliasSuffix>)'
 StreamName:
 Type: String
 Description: Name to use for Kinesis Stream
Resources:
 InputStream:
 Type: AWS::Kinesis::Stream
 Properties:
 Name: !Ref StreamName
 ShardCount: 2
 PythonLambdaOutputTable:
 Type: AWS::DynamoDB::Table
 Properties:

CloudFormation Template 416

AWS Encryption SDK Panduan Developerr

 AttributeDefinitions:
 -
 AttributeName: id
 AttributeType: S
 KeySchema:
 -
 AttributeName: id
 KeyType: HASH
 ProvisionedThroughput:
 ReadCapacityUnits: 1
 WriteCapacityUnits: 1
 PythonLambdaRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 Service: lambda.amazonaws.com
 Action: sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
 Policies:
 -
 PolicyName: PythonLambdaAccess
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Action:
 - dynamodb:DescribeTable
 - dynamodb:BatchWriteItem
 Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable}
 -
 Effect: Allow
 Action:
 - dynamodb:PutItem
 Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${PythonLambdaOutputTable}*
 -

CloudFormation Template 417

AWS Encryption SDK Panduan Developerr

 Effect: Allow
 Action:
 - kinesis:GetRecords
 - kinesis:GetShardIterator
 - kinesis:DescribeStream
 - kinesis:ListStreams
 Resource: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}
 PythonLambdaFunction:
 Type: AWS::Lambda::Function
 Properties:
 Description: Python consumer
 Runtime: python2.7
 MemorySize: 512
 Timeout: 90
 Role: !GetAtt PythonLambdaRole.Arn
 Handler:
 aws_crypto_examples.kinesis_datakey_caching.consumer.lambda_handler
 Code:
 S3Bucket: !Ref SourceCodeBucket
 S3Key: !Ref PythonLambdaS3Key
 S3ObjectVersion: !Ref PythonLambdaObjectVersionId
 Environment:
 Variables:
 TABLE_NAME: !Ref PythonLambdaOutputTable
 PythonLambdaSourceMapping:
 Type: AWS::Lambda::EventSourceMapping
 Properties:
 BatchSize: 1
 Enabled: true
 EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}
 FunctionName: !Ref PythonLambdaFunction
 StartingPosition: TRIM_HORIZON
 JavaLambdaOutputTable:
 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 -
 AttributeName: id
 AttributeType: S
 KeySchema:
 -
 AttributeName: id

CloudFormation Template 418

AWS Encryption SDK Panduan Developerr

 KeyType: HASH
 ProvisionedThroughput:
 ReadCapacityUnits: 1
 WriteCapacityUnits: 1
 JavaLambdaRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 Service: lambda.amazonaws.com
 Action: sts:AssumeRole
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/service-role/AWSLambdaBasicExecutionRole
 Policies:
 -
 PolicyName: JavaLambdaAccess
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Action:
 - dynamodb:DescribeTable
 - dynamodb:BatchWriteItem
 Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable}
 -
 Effect: Allow
 Action:
 - dynamodb:PutItem
 Resource: !Sub arn:aws:dynamodb:${AWS::Region}:
${AWS::AccountId}:table/${JavaLambdaOutputTable}*
 -
 Effect: Allow
 Action:
 - kinesis:GetRecords
 - kinesis:GetShardIterator
 - kinesis:DescribeStream
 - kinesis:ListStreams

CloudFormation Template 419

AWS Encryption SDK Panduan Developerr

 Resource: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}
 JavaLambdaFunction:
 Type: AWS::Lambda::Function
 Properties:
 Description: Java consumer
 Runtime: java8
 MemorySize: 512
 Timeout: 90
 Role: !GetAtt JavaLambdaRole.Arn
 Handler:
 com.amazonaws.crypto.examples.kinesisdatakeycaching.LambdaDecryptAndWrite::handleRequest
 Code:
 S3Bucket: !Ref SourceCodeBucket
 S3Key: !Ref JavaLambdaS3Key
 S3ObjectVersion: !Ref JavaLambdaObjectVersionId
 Environment:
 Variables:
 TABLE_NAME: !Ref JavaLambdaOutputTable
 CMK_ARN: !GetAtt RegionKinesisCMK.Arn
 JavaLambdaSourceMapping:
 Type: AWS::Lambda::EventSourceMapping
 Properties:
 BatchSize: 1
 Enabled: true
 EventSourceArn: !Sub arn:aws:kinesis:${AWS::Region}:
${AWS::AccountId}:stream/${InputStream}
 FunctionName: !Ref JavaLambdaFunction
 StartingPosition: TRIM_HORIZON
 RegionKinesisCMK:
 Type: AWS::KMS::Key
 Properties:
 Description: Used to encrypt data passing through Kinesis Stream in this
 region
 Enabled: true
 KeyPolicy:
 Version: 2012-10-17
 Statement:
 -
 Effect: Allow
 Principal:
 AWS: !Sub arn:aws:iam::${AWS::AccountId}:root
 Action:
 # Data plane actions

CloudFormation Template 420

AWS Encryption SDK Panduan Developerr

 - kms:Encrypt
 - kms:GenerateDataKey
 # Control plane actions
 - kms:CreateAlias
 - kms:DeleteAlias
 - kms:DescribeKey
 - kms:DisableKey
 - kms:EnableKey
 - kms:PutKeyPolicy
 - kms:ScheduleKeyDeletion
 - kms:UpdateAlias
 - kms:UpdateKeyDescription
 Resource: '*'
 -
 Effect: Allow
 Principal:
 AWS:
 - !GetAtt PythonLambdaRole.Arn
 - !GetAtt JavaLambdaRole.Arn
 Action: kms:Decrypt
 Resource: '*'
 RegionKinesisCMKAlias:
 Type: AWS::KMS::Alias
 Properties:
 AliasName: !Sub alias/${KeyAliasSuffix}
 TargetKeyId: !Ref RegionKinesisCMK

CloudFormation Template 421

AWS Encryption SDK Panduan Developerr

Versi dari AWS Encryption SDK
Implementasi AWS Encryption SDK bahasa menggunakan versi semantik untuk memudahkan Anda
mengidentifikasi besarnya perubahan di setiap rilis. Perubahan nomor versi utama, seperti 1. x. x
ke 2. x. x, menunjukkan perubahan yang melanggar yang kemungkinan memerlukan perubahan
kode dan penerapan yang direncanakan. Memecahkan perubahan dalam versi baru mungkin tidak
memengaruhi setiap kasus penggunaan, tinjau catatan rilis untuk melihat apakah Anda terpengaruh.
Perubahan dalam versi minor, seperti x .1. x ke x .2. x, selalu kompatibel ke belakang, tetapi mungkin
menyertakan elemen usang.

Bila memungkinkan, gunakan versi terbaru dari AWS Encryption SDK dalam bahasa pemrograman
pilihan Anda. Kebijakan pemeliharaan dan dukungan untuk setiap versi berbeda antara implementasi
bahasa pemrograman. Untuk detail tentang versi yang didukung dalam bahasa pemrograman pilihan
Anda, lihat SUPPORT_POLICY.rst file di GitHubrepositorinya.

Ketika peningkatan menyertakan fitur baru yang memerlukan konfigurasi khusus untuk menghindari
kesalahan enkripsi atau dekripsi, kami menyediakan versi perantara dan instruksi terperinci untuk
menggunakannya. Misalnya, versi 1.7. x dan 1.8. x dirancang untuk menjadi versi transisi yang
membantu Anda meningkatkan dari versi lebih awal dari 1.7. x ke versi 2.0. x dan kemudian. Lihat
perinciannya di Migrasi Anda AWS Encryption SDK.

Note

X dalam nomor versi mewakili patch dari versi mayor dan minor. Misalnya, versi 1.7. x
mewakili semua versi yang dimulai dengan 1.7, termasuk 1.7.1 dan 1.7.9.
Fitur keamanan baru awalnya dirilis dalam AWS Enkripsi CLI versi 1.7. x dan 2.0. x. Namun,
AWS Enkripsi CLI versi 1.8. x menggantikan versi 1.7. x dan AWS Enkripsi CLI 2.1. x
menggantikan 2.0. x. Untuk detailnya, lihat penasihat keamanan yang relevan di aws-
encryption-sdk-clirepositori di. GitHub

Tabel berikut memberikan gambaran tentang perbedaan utama antara versi yang didukung AWS
Encryption SDK untuk setiap bahasa pemrograman.

C
Untuk penjelasan rinci tentang semua perubahan, lihat changeLog.md di repositori pada. aws-
encryption-sdk-c GitHub

C 422

https://semver.org/
https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-c/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-c/
https://github.com/aws/aws-encryption-sdk-c/

AWS Encryption SDK Panduan Developerr

Versi utama Detail Fase siklus hidup
versi utama SDK

1.0 Rilis awal.1.x

1.7 Pembaruan untuk
AWS Encryption
SDK yang membantu
pengguna versi
sebelumnya
meningkatkan ke versi
2.0. x dan kemudian.
Untuk informasi
selengkapnya, lihat
versi 1.7. x.

End-of-Support fase

2.0 Pembaruan untuk
AWS Encryption
SDK. Untuk informasi
selengkapnya, lihat
versi 2.0. x.

2.2 Perbaikan proses
dekripsi pesan.

2.x

2.3 Menambahkan
dukungan untuk kunci
AWS KMS Multi-wil
ayah.

Ketersediaan Umum
(GA)

C #/.NET

Untuk penjelasan rinci tentang semua perubahan, lihat changeLog.md di repositori pada. aws-
encryption-sdk-net GitHub

C #/.NET 423

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/
https://github.com/aws/aws-encryption-sdk/tree/mainline/AwsEncryptionSDK/runtimes/net/

AWS Encryption SDK Panduan Developerr

Versi utama Detail Fase siklus hidup
versi utama SDK

3.x 3.1.0 Pelepasan awal. Akhir dukungan

Versi 3.x AWS
Encryption SDK
untuk .NET telah
memasuki End of
Support; tolong,
tingkatkan ke 4.x.

4.x 4.0 Menambahkan
dukungan untuk
keyring AWS KMS
Hierarkis, CMM
konteks enkripsi
yang diperlukan, dan
gantungan kunci RSA
asimetris. AWS KMS

Ketersediaan Umum
(GA)

Antarmuka baris perintah (CLI)
Untuk penjelasan rinci tentang semua perubahan, lihat Versi CLI AWS Enkripsi dan ChangeLog.rst di
repositori pada. aws-encryption-sdk-cli GitHub

Versi utama Detail Fase siklus hidup
versi utama SDK

1.0 Rilis awal.1.x

1.7 Pembaruan untuk
AWS Encryption
SDK yang membantu
pengguna versi
sebelumnya
meningkatkan ke versi

End-of-Support fase

Antarmuka baris perintah (CLI) 424

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.EncryptionSDK
https://www.nuget.org/packages/AWS.Cryptography.EncryptionSDK
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-cli/blob/master/CHANGELOG.rst
https://github.com/aws/aws-encryption-sdk-cli/blob/master/CHANGELOG.rst
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

2.0. x dan kemudian.
Untuk informasi
selengkapnya, lihat
versi 1.7. x.

2.0 Pembaruan untuk
AWS Encryption
SDK. Untuk informasi
selengkapnya, lihat
versi 2.0. x.

2.1 Menghapus --
discovery
parameter dan
menggantinya dengan
discovery atribut
--wrapping-keys
parameter.

Versi 2.1.0 dari
AWS Encryption CLI
setara dengan versi
2.0 dalam bahasa
pemrograman lainnya.

2.x

2.2 Perbaikan proses
dekripsi pesan.

End-of-Support fase

3.x 3.0 Menambahkan
dukungan untuk kunci
AWS KMS Multi-wil
ayah.

End-of-Support fase

Antarmuka baris perintah (CLI) 425

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

4.0 AWS Enkripsi CLI
tidak lagi mendukung
Python 2 atau Python
3.4. Pada versi utama
4. x dari CLI AWS
Enkripsi, hanya
Python 3.5 atau
yang lebih baru yang
didukung.

4.1 AWS Enkripsi CLI
tidak lagi mendukung
Python 3.5. Pada
versi 4.1. x dari CLI
AWS Enkripsi, hanya
Python 3.6 atau
yang lebih baru yang
didukung.

4.x

4.2 AWS Enkripsi CLI
tidak lagi mendukung
Python 3.6. Pada
versi 4.2. x dari CLI
AWS Enkripsi, hanya
Python 3.7 atau
yang lebih baru yang
didukung.

Ketersediaan Umum
(GA)

Java

Untuk penjelasan rinci tentang semua perubahan, lihat ChangeLog.rst di repositori pada. aws-
encryption-sdk-java GitHub

Versi utama Detail Fase siklus hidup
versi utama SDK

Java 426

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-java/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-java/
https://github.com/aws/aws-encryption-sdk-java/

AWS Encryption SDK Panduan Developerr

1.0 Rilis awal.

1.3 Menambahkan
dukungan untuk
pengelola materi
kriptografi dan
caching kunci data.
Pindah ke generasi IV
deterministik.

1.6.1 Mencela AwsCrypto
.encryptS
tring() dan
menggantikannya
dengan AwsCrypto
.decryptS
tring() dan.
AwsCrypto
.encryptD
ata() AwsCrypto
.decryptData()

1.x

1.7 Pembaruan untuk
AWS Encryption
SDK yang membantu
pengguna versi
sebelumnya
meningkatkan ke versi
2.0. x dan kemudian.
Untuk informasi
selengkapnya, lihat
versi 1.7. x.

End-of-Support fase

Java 427

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

2.0 Pembaruan untuk
AWS Encryption
SDK. Untuk informasi
selengkapnya, lihat
versi 2.0. x.

2.2 Perbaikan proses
dekripsi pesan.

2.3 Menambahkan
dukungan untuk kunci
AWS KMS Multi-wil
ayah.

2.x

2.4 Menambahkan
dukungan untuk AWS
SDK for Java 2.x.

Ketersediaan Umum
(GA)

Versi 2.x AWS
Encryption SDK for
Java akan memasuki
mode pemeliharaan
pada tahun 2024.

Java 428

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

3.x 3.0 Mengintegrasikan
AWS Encryption
SDK for Java dengan
Material Providers
Library (MPL).

Menambahkan
dukungan untuk
gantungan kunci
RSA simetris dan
asimetris, AWS KMS
gantungan kunci
AWS KMS ECDH,
gantungan kunci
AWS KMS hierarkis,
gantungan kunci Raw
AES, gantungan kunci
Raw RSA, gantungan
kunci ECDH mentah,
Multi-keyrings, dan
konteks enkripsi CMM
yang diperlukan.

Ketersediaan Umum
(GA)

Go

Untuk penjelasan rinci tentang semua perubahan, lihat ChangeLog.md di direktori Go dari repositori
pada. aws-encryption-sdk GitHub

Versi utama Detail Fase siklus hidup
versi utama SDK

0,1. x 0.1.0 Pelepasan awal. Ketersediaan Umum
(GA)

Go 429

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk/tree/mainline/releases/go/encryption-sdk/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

JavaScript
Untuk penjelasan rinci tentang semua perubahan, lihat changeLog.md di repositori pada. aws-
encryption-sdk-javascript GitHub

Versi utama Detail Fase siklus hidup
versi utama SDK

1.0 Rilis awal.1.x

1.7 Pembaruan untuk
AWS Encryption
SDK yang membantu
pengguna versi
sebelumnya
meningkatkan ke versi
2.0. x dan kemudian.
Untuk informasi
selengkapnya, lihat
versi 1.7. x.

End-of-Support fase

2.0 Pembaruan untuk
AWS Encryption
SDK. Untuk informasi
selengkapnya, lihat
versi 2.0. x.

2.2 Perbaikan proses
dekripsi pesan.

2.x

2.3 Menambahkan
dukungan untuk kunci
AWS KMS Multi-wil
ayah.

End-of-Support fase

3.x 3.0 Menghapus cakupan
CI untuk Node 10.
Upgrade dependens

Maintenance

Support untuk versi
3.x AWS Encryption

JavaScript 430

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://github.com/aws/aws-encryption-sdk-javascript/tree/master/modules
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

i agar tidak lagi
mendukung Node 8
dan Node 10.

SDK for JavaScript
akan berakhir pada 17
Januari 2024.

4.x 4.0 Memerlukan versi 3
dari AWS Encryption
SDK for JavaScript's
kms-client untuk
menggunakan AWS
KMS keyring.

Ketersediaan Umum
(GA)

Python

Untuk penjelasan rinci tentang semua perubahan, lihat ChangeLog.rst di repositori pada. aws-
encryption-sdk-python GitHub

Versi utama Detail Fase siklus hidup
versi utama SDK

1.0 Rilis awal.

1.3 Menambahkan
dukungan untuk
pengelola materi
kriptografi dan
caching kunci data.
Pindah ke generasi IV
deterministik.

1.x

1.7 Pembaruan untuk
AWS Encryption
SDK yang membantu
pengguna versi
sebelumnya
meningkatkan ke versi
2.0. x dan kemudian.
Untuk informasi

End-of-Support fase

Python 431

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-encryption-sdk-python/blob/master/CHANGELOG.rst
https://github.com/aws/aws-encryption-sdk-python/
https://github.com/aws/aws-encryption-sdk-python/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

selengkapnya, lihat
versi 1.7. x.

2.0 Pembaruan untuk
AWS Encryption
SDK. Untuk informasi
selengkapnya, lihat
versi 2.0. x.

2.2 Perbaikan proses
dekripsi pesan.

2.x

2.3 Menambahkan
dukungan untuk kunci
AWS KMS Multi-wil
ayah.

End-of-Support fase

3.x 3.0 AWS Encryption SDK
for Python Tidak lagi
mendukung Python
2 atau Python 3.4.
Pada versi utama 3.
x dari AWS Encryptio
n SDK for Python,
hanya Python 3.5 atau
yang lebih baru yang
didukung.

Ketersediaan Umum
(GA)

4.x 4.0 Mengintegrasikan
AWS Encryption SDK
for Python dengan
Material Providers
Library (MPL).

Ketersediaan Umum
(GA)

Python 432

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

Karat

Untuk penjelasan rinci tentang semua perubahan, lihat ChangeLog.md di direktori Rust dari repositori
pada. aws-encryption-sdk GitHub

Versi utama Detail Fase siklus hidup
versi utama SDK

1.x 1.0 Rilis awal. Ketersediaan Umum
(GA)

Detail versi

Daftar berikut menjelaskan perbedaan utama antara versi yang didukung dari AWS Encryption SDK.

Topik

• Versi lebih awal dari 1.7. x

• Versi 1.7. x

• Versi 2.0. x

• Versi 2.2. x

• Versi 2.3. x

Versi lebih awal dari 1.7. x

Note

Semua 1. x. x versi AWS Encryption SDK sedang dalam end-of-supportfase. Tingkatkan ke
versi terbaru yang tersedia AWS Encryption SDK untuk bahasa pemrograman Anda sesegera
mungkin. Untuk meng-upgrade dari AWS Encryption SDK versi lebih awal dari 1.7. x, Anda
harus terlebih dahulu meng-upgrade ke 1.7. x. Lihat perinciannya di Migrasi Anda AWS
Encryption SDK.

Versi yang AWS Encryption SDK lebih awal dari 1.7. x menyediakan fitur keamanan penting,
termasuk enkripsi dengan algoritma Advanced Encryption Standard in Galois/Counter Mode (AES-

Karat 433

https://github.com/aws/aws-encryption-sdk-dafny/tree/mainline/AwsEncryptionSDK/runtimes/rust/CHANGELOG.md
https://github.com/aws/aws-encryption-sdk/tree/mainline
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

GCM), fungsi derivasi extract-and-expand kunci berbasis HMAC (HKDF), penandatanganan, dan
kunci enkripsi 256-bit. Namun, versi ini tidak mendukung praktik terbaik yang kami rekomendasikan,
termasuk komitmen utama.

Versi 1.7. x

Note

Semua 1. x. x versi AWS Encryption SDK sedang dalam end-of-supportfase.

Versi 1.7. x dirancang untuk membantu pengguna versi sebelumnya AWS Encryption SDK untuk
meningkatkan ke versi 2.0. x dan kemudian. Jika Anda baru mengenal AWS Encryption SDK, Anda
dapat melewati versi ini dan mulai dengan versi terbaru yang tersedia dalam bahasa pemrograman
Anda.

Versi 1.7. x sepenuhnya kompatibel ke belakang; itu tidak memperkenalkan perubahan yang
melanggar atau mengubah perilaku. AWS Encryption SDK Ini juga kompatibel ke depan; ini
memungkinkan Anda untuk memperbarui kode Anda sehingga kompatibel dengan versi 2.0. x. Ini
termasuk fitur baru, tetapi tidak sepenuhnya mengaktifkannya. Dan itu membutuhkan nilai konfigurasi
yang mencegah Anda segera mengadopsi semua fitur baru sampai Anda siap.

Versi 1.7. x mencakup perubahan berikut:

AWS KMS pembaruan penyedia kunci master (wajib)

Versi 1.7. x memperkenalkan konstruktor baru ke AWS Encryption SDK for Java dan AWS
Encryption SDK for Python yang secara eksplisit membuat penyedia kunci AWS KMS master baik
dalam mode ketat atau penemuan. Versi ini menambahkan perubahan serupa pada antarmuka
AWS Encryption SDK baris perintah (CLI). Lihat perinciannya di Memperbarui penyedia kunci
AWS KMS utama.

• Dalam mode ketat, penyedia kunci AWS KMS master memerlukan daftar kunci pembungkus,
dan mereka mengenkripsi dan mendekripsi hanya dengan kunci pembungkus yang Anda
tentukan. Ini adalah praktik AWS Encryption SDK terbaik yang memastikan bahwa Anda
menggunakan kunci pembungkus yang ingin Anda gunakan.

• Dalam mode penemuan, penyedia kunci AWS KMS master tidak mengambil kunci pembungkus
apa pun. Anda tidak dapat menggunakannya untuk mengenkripsi. Saat mendekripsi, mereka
dapat menggunakan kunci pembungkus apa pun untuk mendekripsi kunci data terenkripsi.

Versi 1.7. x 434

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

Namun, Anda dapat membatasi kunci pembungkus yang digunakan untuk dekripsi pada yang
khusus. Akun AWS Pemfilteran akun bersifat opsional, tetapi ini adalah praktik terbaik yang
kami rekomendasikan.

Konstruktor yang membuat versi sebelumnya dari penyedia kunci AWS KMS master tidak
digunakan lagi di versi 1.7. x dan dihapus dalam versi 2.0. x. Konstruktor ini membuat instance
penyedia kunci master yang mengenkripsi menggunakan kunci pembungkus yang Anda tentukan.
Namun, mereka mendekripsi kunci data terenkripsi menggunakan kunci pembungkus yang
mengenkripsi mereka, tanpa memperhatikan kunci pembungkus yang ditentukan. Pengguna
mungkin secara tidak sengaja mendekripsi pesan dengan kunci pembungkus yang tidak ingin
mereka gunakan, termasuk AWS KMS keys di lain dan Wilayah. Akun AWS

Tidak ada perubahan pada konstruktor untuk kunci AWS KMS master. Saat mengenkripsi dan
mendekripsi, kunci AWS KMS master hanya menggunakan yang Anda tentukan. AWS KMS key

AWS KMS pembaruan keyring (opsional)

Versi 1.7. x menambahkan filter baru ke AWS Encryption SDK for C dan AWS Encryption SDK for
JavaScript implementasi yang membatasi keyring AWS KMS penemuan ke tertentu. Akun AWS
Filter akun baru ini bersifat opsional, tetapi ini adalah praktik terbaik yang kami rekomendasikan.
Lihat perinciannya di Memperbarui AWS KMS keyrings.

Tidak ada perubahan pada konstruktor untuk AWS KMS gantungan kunci. AWS KMS Gantungan
kunci standar berperilaku seperti penyedia kunci utama dalam mode ketat. AWS KMS keyrings
penemuan dibuat secara eksplisit dalam mode penemuan.

Melewati ID kunci untuk AWS KMS Dekripsi

Dimulai pada versi 1.7. x, saat mendekripsi kunci data terenkripsi, AWS Encryption SDK selalu
menentukan AWS KMS key dalam panggilannya ke operasi Dekripsi. AWS KMS AWS Encryption
SDK Mendapatkan nilai ID kunci untuk AWS KMS key dari metadata di setiap kunci data
terenkripsi. Fitur ini tidak memerlukan perubahan kode apa pun.

Menentukan ID kunci tidak AWS KMS key diperlukan untuk mendekripsi ciphertext yang dienkripsi
di bawah kunci KMS enkripsi simetris, tetapi ini adalah praktik terbaik.AWS KMS Seperti
menentukan kunci pembungkus di penyedia kunci Anda, praktik ini memastikan bahwa AWS KMS
hanya mendekripsi menggunakan kunci pembungkus yang ingin Anda gunakan.

Dekripsi ciphertext dengan komitmen utama

Versi 1.7. x dapat mendekripsi ciphertext yang dienkripsi dengan atau tanpa komitmen
kunci. Namun, itu tidak dapat mengenkripsi ciphertext dengan komitmen utama. Properti ini

Versi 1.7. x 435

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html#KMS-Decrypt-request-KeyId

AWS Encryption SDK Panduan Developerr

memungkinkan Anda untuk sepenuhnya menyebarkan aplikasi yang dapat mendekripsi ciphertext
yang dienkripsi dengan komitmen utama sebelum mereka menemukan ciphertext semacam itu.
Karena versi ini mendekripsi pesan yang dienkripsi tanpa komitmen utama, Anda tidak perlu
mengenkripsi ulang ciphertext apa pun.

Untuk menerapkan perilaku ini, versi 1.7. x mencakup pengaturan konfigurasi kebijakan komitmen
baru yang menentukan apakah AWS Encryption SDK dapat mengenkripsi atau mendekripsi
dengan komitmen utama. Dalam versi 1.7. x, satu-satunya nilai yang valid untuk kebijakan
komitmen,ForbidEncryptAllowDecrypt, digunakan dalam semua operasi enkripsi dan
dekripsi. Nilai ini AWS Encryption SDK mencegah enkripsi dengan salah satu suite algoritme
baru yang menyertakan komitmen utama. Hal ini memungkinkan AWS Encryption SDK untuk
mendekripsi ciphertext dengan dan tanpa komitmen utama.

Meskipun hanya ada satu nilai kebijakan komitmen yang valid di versi 1.7. x, kami mengharuskan
Anda untuk mengatur nilai ini secara eksplisit saat Anda menggunakan yang baru APIs
diperkenalkan dalam rilis ini. Menyetel nilai secara eksplisit mencegah kebijakan komitmen
Anda berubah secara otomatis menjadi require-encrypt-require-decrypt saat Anda
meningkatkan ke versi 2.1. x. Sebagai gantinya, Anda dapat memigrasikan kebijakan komitmen
Anda secara bertahap.

Suite algoritma dengan komitmen utama

Versi 1.7. x mencakup dua rangkaian algoritma baru yang mendukung komitmen utama. Satu
termasuk penandatanganan; yang lain tidak. Seperti suite algoritma yang didukung sebelumnya,
kedua suite algoritma baru ini mencakup enkripsi dengan AES-GCM, kunci enkripsi 256-bit, dan
fungsi derivasi kunci berbasis HMAC (extract-and-expandHKDF).

Namun, rangkaian algoritma default yang digunakan untuk enkripsi tidak berubah. Suite algoritma
ini ditambahkan ke versi 1.7. x untuk mempersiapkan aplikasi Anda untuk menggunakannya
dalam versi 2.0. x dan kemudian.

Perubahan implementasi CMM

Versi 1.7. x memperkenalkan perubahan pada antarmuka Default cryptographic materials
manager (CMM) untuk mendukung komitmen utama. Perubahan ini hanya memengaruhi Anda
jika Anda telah menulis CMM khusus. Untuk detailnya, lihat dokumentasi API atau GitHub
repositori untuk bahasa pemrograman Anda.

Versi 1.7. x 436

AWS Encryption SDK Panduan Developerr

Versi 2.0. x

Versi 2.0. x mendukung fitur keamanan baru yang ditawarkan di AWS Encryption SDK, termasuk
kunci pembungkus yang ditentukan dan komitmen utama. Untuk mendukung fitur-fitur ini, versi 2.0. x
termasuk melanggar perubahan untuk versi sebelumnya dari file AWS Encryption SDK. Anda dapat
mempersiapkan perubahan ini dengan menerapkan versi 1.7. x. Versi 2.0. x mencakup semua fitur
baru yang diperkenalkan di versi 1.7. x dengan penambahan dan perubahan berikut.

Note

Versi 2. x. x dari AWS Encryption SDK for Python, AWS Encryption SDK for JavaScript, dan
CLI AWS Enkripsi sedang dalam fase. end-of-support
Untuk informasi tentang dukungan dan pemeliharaan AWS Encryption SDK versi ini dalam
bahasa pemrograman pilihan Anda, lihat SUPPORT_POLICY.rst file di GitHubrepositorinya.

AWS KMS penyedia kunci master

Konstruktor penyedia kunci AWS KMS master asli yang tidak digunakan lagi di versi 1.7. x
dihapus dalam versi 2.0. x. Anda harus secara eksplisit membangun penyedia kunci AWS KMS
master dalam mode ketat atau mode penemuan.

Enkripsi dan dekripsi ciphertext dengan komitmen utama

Versi 2.0. x dapat mengenkripsi dan mendekripsi ciphertext dengan atau tanpa komitmen kunci.
Perilakunya ditentukan oleh pengaturan kebijakan komitmen. Secara default, selalu mengenkripsi
dengan komitmen utama dan hanya mendekripsi ciphertext yang dienkripsi dengan komitmen
utama. Kecuali Anda mengubah kebijakan komitmen, ciphertext tidak AWS Encryption SDK
akan mendekripsi ciphertext yang dienkripsi oleh versi sebelumnya, termasuk versi 1.7. AWS
Encryption SDKx.

Important

Secara default, versi 2.0. x tidak akan mendekripsi ciphertext apa pun yang dienkripsi
tanpa komitmen kunci. Jika aplikasi Anda mungkin menemukan ciphertext yang dienkripsi
tanpa komitmen utama, tetapkan nilai kebijakan komitmen dengan. AllowDecrypt

Dalam versi 2.0. x, pengaturan kebijakan komitmen memiliki tiga nilai yang valid:

Versi 2.0. x 437

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

• ForbidEncryptAllowDecrypt— AWS Encryption SDK Tidak dapat mengenkripsi dengan
komitmen utama. Ini dapat mendekripsi ciphertext yang dienkripsi dengan atau tanpa komitmen
utama.

• RequireEncryptAllowDecrypt— AWS Encryption SDK Harus dienkripsi dengan komitmen
utama. Ini dapat mendekripsi ciphertext yang dienkripsi dengan atau tanpa komitmen utama.

• RequireEncryptRequireDecrypt(default) — AWS Encryption SDK Harus dienkripsi
dengan komitmen utama. Itu hanya mendekripsi ciphertext dengan komitmen utama.

Jika Anda bermigrasi dari versi sebelumnya AWS Encryption SDK ke versi 2.0. x, tetapkan
kebijakan komitmen ke nilai yang memastikan bahwa Anda dapat mendekripsi semua ciphertext
yang ada yang mungkin ditemui aplikasi Anda. Anda cenderung menyesuaikan pengaturan ini
dari waktu ke waktu.

Versi 2.2. x

Menambahkan dukungan untuk tanda tangan digital dan membatasi kunci data terenkripsi.

Note

Versi 2. x. x dari AWS Encryption SDK for Python, AWS Encryption SDK for JavaScript, dan
CLI AWS Enkripsi sedang dalam fase. end-of-support
Untuk informasi tentang dukungan dan pemeliharaan AWS Encryption SDK versi ini dalam
bahasa pemrograman pilihan Anda, lihat SUPPORT_POLICY.rst file di GitHubrepositorinya.

Tanda tangan digital

Untuk meningkatkan penanganan tanda tangan digital saat mendekripsi, AWS Encryption SDK
termasuk fitur berikut:

• Mode non-streaming — mengembalikan teks biasa hanya setelah memproses semua input,
termasuk memverifikasi tanda tangan digital jika ada. Fitur ini mencegah Anda menggunakan
plaintext sebelum memverifikasi tanda tangan digital. Gunakan fitur ini setiap kali Anda
mendekripsi data yang dienkripsi dengan tanda tangan digital (rangkaian algoritme default).
Misalnya, karena CLI AWS Enkripsi selalu memproses data dalam mode streaming, gunakan -
-buffer parameter saat mendekripsi ciphertext dengan tanda tangan digital.

• Mode dekripsi khusus tanpa tanda tangan — fitur ini hanya mendekripsi ciphertext yang tidak
ditandatangani. Jika dekripsi menemukan tanda tangan digital dalam ciphertext, operasi gagal.

Versi 2.2. x 438

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

Gunakan fitur ini untuk menghindari pemrosesan plaintext secara tidak sengaja dari pesan yang
ditandatangani sebelum memverifikasi tanda tangan.

Membatasi kunci data terenkripsi

Anda dapat membatasi jumlah kunci data terenkripsi dalam pesan terenkripsi. Fitur ini dapat
membantu Anda mendeteksi penyedia kunci master atau keyring yang salah konfigurasi saat
mengenkripsi, atau mengidentifikasi ciphertext berbahaya saat mendekripsi.

Anda harus membatasi kunci data terenkripsi saat mendekripsi pesan dari sumber yang
tidak tepercaya. Ini mencegah panggilan yang tidak perlu, mahal, dan berpotensi lengkap ke
infrastruktur utama Anda.

Versi 2.3. x

Menambahkan dukungan untuk kunci AWS KMS Multi-wilayah. Lihat perinciannya di Menggunakan
Multi-region AWS KMS keys.

Note

CLI AWS Enkripsi mendukung kunci Multi-wilayah yang dimulai pada versi 3.0. x.
Versi 2. x. x dari AWS Encryption SDK for Python, AWS Encryption SDK for JavaScript, dan
CLI AWS Enkripsi sedang dalam fase. end-of-support
Untuk informasi tentang dukungan dan pemeliharaan AWS Encryption SDK versi ini dalam
bahasa pemrograman pilihan Anda, lihat SUPPORT_POLICY.rst file di GitHubrepositorinya.

Versi 2.3. x 439

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS Encryption SDK Panduan Developerr

Migrasi Anda AWS Encryption SDK
AWS Encryption SDK Mendukung beberapa implementasi bahasa pemrograman interoperable, yang
masing-masing dikembangkan dalam repositori open-source pada. GitHub Sebagai praktik terbaik,
kami menyarankan Anda menggunakan versi terbaru AWS Encryption SDK untuk setiap bahasa.

Anda dapat meng-upgrade dengan aman dari versi 2.0. x atau yang lebih baru AWS Encryption SDK
ke versi terbaru. Namun, 2.0. versi x AWS Encryption SDK memperkenalkan fitur keamanan baru
yang signifikan, beberapa di antaranya melanggar perubahan. Untuk meng-upgrade dari versi lebih
awal dari 1.7. x ke versi 2.0. x dan yang lebih baru, Anda harus terlebih dahulu meningkatkan ke
yang terbaru 1. versi x. Topik di bagian ini dirancang untuk membantu Anda memahami perubahan,
memilih versi yang benar untuk aplikasi Anda, dan bermigrasi dengan aman dan berhasil ke versi
terbaru. AWS Encryption SDK

Untuk informasi tentang versi signifikan dari AWS Encryption SDK, lihatVersi dari AWS Encryption
SDK.

Important

Jangan meng-upgrade langsung dari versi yang lebih awal dari 1.7. x ke versi 2.0. x atau
yang lebih baru tanpa terlebih dahulu meningkatkan ke yang terbaru 1. versi x. Jika Anda
meng-upgrade langsung ke versi 2.0. x atau yang lebih baru dan mengaktifkan semua fitur
baru dengan segera, tidak AWS Encryption SDK akan dapat mendekripsi ciphertext yang
dienkripsi di bawah versi yang lebih lama. AWS Encryption SDK

Note

Versi paling awal AWS Encryption SDK untuk .NET adalah versi 3.0. x. Semua versi AWS
Encryption SDK untuk .NET mendukung praktik terbaik keamanan yang diperkenalkan di 2.0.
x dari AWS Encryption SDK. Anda dapat dengan aman meningkatkan ke versi terbaru tanpa
kode atau perubahan data.
AWS Enkripsi CLI: Saat membaca panduan migrasi ini, gunakan 1.7. x instruksi migrasi untuk
AWS Enkripsi CLI 1.8. x dan gunakan 2.0. x instruksi migrasi untuk AWS Enkripsi CLI 2.1. x.
Lihat perinciannya di Versi CLI AWS Enkripsi.
Fitur keamanan baru awalnya dirilis dalam AWS Enkripsi CLI versi 1.7. x dan 2.0. x. Namun,
AWS Enkripsi CLI versi 1.8. x menggantikan versi 1.7. x dan AWS Enkripsi CLI 2.1. x

440

AWS Encryption SDK Panduan Developerr

menggantikan 2.0. x. Untuk detailnya, lihat penasihat keamanan yang relevan di aws-
encryption-sdk-clirepositori di. GitHub

Pengguna baru

Jika Anda baru mengenal AWS Encryption SDK, instal versi terbaru AWS Encryption SDK untuk
bahasa pemrograman Anda. Nilai default memungkinkan semua fitur keamanan AWS Encryption
SDK, termasuk enkripsi dengan penandatanganan, derivasi kunci, dan komitmen utama. AWS
Encryption SDK

Pengguna saat ini

Kami menyarankan Anda meningkatkan dari versi Anda saat ini ke versi terbaru yang tersedia
sesegera mungkin. Semua 1. x versi AWS Encryption SDK berada dalam end-of-support fase,
seperti versi yang lebih baru dalam beberapa bahasa pemrograman. Untuk detail tentang
status dukungan dan pemeliharaan AWS Encryption SDK dalam bahasa pemrograman Anda,
lihatSupport dan pemeliharaan.

AWS Encryption SDK versi 2.0. x dan yang lebih baru menyediakan fitur keamanan baru untuk
membantu melindungi data Anda. Namun, AWS Encryption SDK versi 2.0. x termasuk melanggar
perubahan yang tidak kompatibel ke belakang. Untuk memastikan transisi yang aman, mulailah
dengan bermigrasi dari versi Anda saat ini ke versi terbaru 1. x dalam bahasa pemrograman
Anda. Ketika terbaru Anda 1. versi x sepenuhnya digunakan dan beroperasi dengan sukses,
Anda dapat dengan aman bermigrasi ke versi 2.0. x dan kemudian. Proses dua langkah ini sangat
penting terutama untuk aplikasi terdistribusi.

Untuk informasi selengkapnya tentang fitur AWS Encryption SDK keamanan yang mendasari
perubahan ini, lihat Peningkatan enkripsi sisi klien: Komitmen eksplisit KeyIds dan kunci di Blog
Keamanan.AWS

Mencari bantuan dengan menggunakan AWS Encryption SDK for Java dengan AWS SDK for Java
2.x? Lihat Prasyarat.

Topik

• Cara memigrasi dan menyebarkan AWS Encryption SDK

• Memperbarui penyedia kunci AWS KMS utama

• Memperbarui AWS KMS keyrings

441

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://aws.amazon.com/blogs/security/improved-client-side-encryption-explicit-keyids-and-key-commitment/

AWS Encryption SDK Panduan Developerr

• Menetapkan kebijakan komitmen Anda

• Memecahkan masalah migrasi ke versi terbaru

Cara memigrasi dan menyebarkan AWS Encryption SDK
Saat bermigrasi dari AWS Encryption SDK versi lebih awal dari 1.7. x ke versi 2.0. x atau yang lebih
baru, Anda harus bertransisi dengan aman ke enkripsi dengan komitmen utama. Jika tidak, aplikasi
Anda akan menemukan ciphertext yang tidak dapat didekripsi. Jika Anda menggunakan penyedia
kunci AWS KMS master, Anda harus memperbarui ke konstruktor baru yang membuat penyedia
kunci master dalam mode ketat atau mode penemuan.

Note

Topik ini dirancang untuk pengguna yang bermigrasi dari versi sebelumnya AWS Encryption
SDK ke versi 2.0. x atau yang lebih baru. Jika Anda baru mengenal AWS Encryption SDK,
Anda dapat mulai menggunakan versi terbaru yang tersedia segera dengan pengaturan
default.

Untuk menghindari situasi kritis di mana Anda tidak dapat mendekripsi ciphertext yang perlu Anda
baca, sebaiknya Anda bermigrasi dan menerapkan dalam beberapa tahap berbeda. Verifikasi bahwa
setiap tahap selesai dan sepenuhnya digunakan sebelum memulai tahap berikutnya. Ini sangat
penting untuk aplikasi terdistribusi dengan banyak host.

Tahap 1: Perbarui aplikasi Anda ke yang terbaru 1. versi x

Perbarui ke yang terbaru 1. versi x untuk bahasa pemrograman Anda. Uji dengan seksama, terapkan
perubahan Anda, dan konfirmasikan bahwa pembaruan telah disebarkan ke semua host tujuan
sebelum memulai tahap 2.

Important

Verifikasi bahwa terbaru Anda 1. Versi x adalah versi 1.7. x atau yang lebih baru AWS
Encryption SDK.

Yang terbaru 1. versi x AWS Encryption SDK kompatibel dengan versi lama AWS Encryption SDK
dan maju yang kompatibel dengan versi 2.0. x dan kemudian. Mereka termasuk fitur-fitur baru

Cara bermigrasi dan menyebarkan 442

AWS Encryption SDK Panduan Developerr

yang hadir di versi 2.0. x, tetapi sertakan default aman yang dirancang untuk migrasi ini. Mereka
memungkinkan Anda untuk meng-upgrade penyedia kunci AWS KMS master Anda, jika perlu, dan
untuk sepenuhnya menyebarkan dengan suite algoritma yang dapat mendekripsi ciphertext dengan
komitmen utama.

• Ganti elemen usang, termasuk konstruktor untuk penyedia kunci master lama AWS KMS . Dengan
Python, pastikan untuk mengaktifkan peringatan penghentian. Elemen kode yang tidak digunakan
lagi di 1 terbaru. versi x dihapus dari versi 2.0. x dan kemudian.

• Tetapkan kebijakan komitmen Anda secara eksplisit. ForbidEncryptAllowDecrypt Meskipun
ini adalah satu-satunya nilai yang valid di 1 terbaru. x versi, pengaturan ini diperlukan saat Anda
menggunakan yang APIs diperkenalkan dalam rilis ini. Ini mencegah aplikasi Anda menolak
ciphertext yang dienkripsi tanpa komitmen utama saat Anda bermigrasi ke versi 2.0. x dan
kemudian. Lihat perinciannya di the section called “Menetapkan kebijakan komitmen Anda”.

• Jika Anda menggunakan penyedia kunci AWS KMS master, Anda harus memperbarui penyedia
kunci master lama Anda untuk menguasai penyedia kunci yang mendukung mode ketat dan mode
penemuan. Pembaruan ini diperlukan untuk AWS Encryption SDK for Java, AWS Encryption SDK
for Python, dan CLI AWS Enkripsi. Jika Anda menggunakan penyedia kunci utama dalam mode
penemuan, sebaiknya Anda menerapkan filter penemuan yang membatasi kunci pembungkus
yang digunakan untuk kunci tertentu Akun AWS. Pembaruan ini opsional, tetapi ini adalah praktik
terbaik yang kami rekomendasikan. Lihat perinciannya di Memperbarui penyedia kunci AWS KMS
utama.

• Jika Anda menggunakan cincin kunci AWS KMS penemuan, sebaiknya sertakan filter penemuan
yang membatasi kunci pembungkus yang digunakan dalam dekripsi pada kunci tertentu. Akun
AWS Pembaruan ini opsional, tetapi ini adalah praktik terbaik yang kami rekomendasikan. Lihat
perinciannya di Memperbarui AWS KMS keyrings.

Tahap 2: Perbarui aplikasi Anda ke versi terbaru

Setelah menerapkan yang terbaru 1. x versi berhasil untuk semua host, Anda dapat meng-upgrade
ke versi 2.0. x dan kemudian. Versi 2.0. x termasuk melanggar perubahan untuk semua versi
sebelumnya dari file AWS Encryption SDK. Namun, jika Anda membuat perubahan kode yang
direkomendasikan di Tahap 1, Anda dapat menghindari kesalahan saat bermigrasi ke versi terbaru.

Sebelum Anda memperbarui ke versi terbaru, verifikasi bahwa kebijakan komitmen Anda diatur
secara konsistenForbidEncryptAllowDecrypt. Kemudian, tergantung pada konfigurasi data
Anda, Anda dapat bermigrasi dengan kecepatan Anda sendiri ke RequireEncryptAllowDecrypt

Tahap 2: Perbarui aplikasi Anda ke versi terbaru 443

https://docs.python.org/3/library/warnings.html

AWS Encryption SDK Panduan Developerr

dan kemudian ke pengaturan default,RequireEncryptRequireDecrypt. Kami
merekomendasikan serangkaian langkah transisi seperti pola berikut.

1. Mulailah dengan kebijakan komitmen Anda yang ditetapkanForbidEncryptAllowDecrypt.
AWS Encryption SDK Dapat mendekripsi pesan dengan komitmen utama, tetapi belum
mengenkripsi dengan komitmen utama.

2. Ketika Anda siap, perbarui kebijakan komitmen Anda untukRequireEncryptAllowDecrypt.
AWS Encryption SDK Mulai mengenkripsi data Anda dengan komitmen utama. Itu dapat
mendekripsi ciphertext dengan dan tanpa komitmen utama.

Sebelum memperbarui kebijakan komitmen AndaRequireEncryptAllowDecrypt, verifikasi
bahwa kebijakan terbaru Anda 1. Versi x digunakan untuk semua host, termasuk host dari aplikasi
apa pun yang mendekripsi ciphertext yang Anda hasilkan. Versi AWS Encryption SDK sebelumnya
ke versi 1.7. x tidak dapat mendekripsi pesan yang dienkripsi dengan komitmen utama.

Ini juga saat yang tepat untuk menambahkan metrik ke aplikasi Anda untuk mengukur
apakah Anda masih memproses ciphertext tanpa komitmen utama. Ini akan membantu
Anda menentukan kapan aman untuk memperbarui pengaturan kebijakan komitmen
AndaRequireEncryptRequireDecrypt. Untuk beberapa aplikasi, seperti yang mengenkripsi
pesan dalam antrian Amazon SQS, ini mungkin berarti menunggu cukup lama sehingga semua
ciphertext yang dienkripsi di bawah versi lama telah dienkripsi ulang atau dihapus. Untuk aplikasi
lain, seperti objek S3 terenkripsi, Anda mungkin perlu mengunduh, mengenkripsi ulang, dan
mengunggah ulang semua objek.

3. Ketika Anda yakin bahwa Anda tidak memiliki pesan yang dienkripsi tanpa komitmen utama,
Anda dapat memperbarui kebijakan komitmen Anda. RequireEncryptRequireDecrypt
Nilai ini memastikan bahwa data Anda selalu dienkripsi dan didekripsi dengan komitmen utama.
Pengaturan ini adalah default, jadi Anda tidak diharuskan untuk mengaturnya secara eksplisit,
tetapi kami merekomendasikannya. Pengaturan eksplisit akan membantu debugging dan potensi
rollback yang mungkin diperlukan jika aplikasi Anda menemukan ciphertext yang dienkripsi tanpa
komitmen utama.

Memperbarui penyedia kunci AWS KMS utama

Untuk bermigrasi ke yang terbaru 1. x versi AWS Encryption SDK, dan kemudian ke versi 2.0. x atau
yang lebih baru, Anda harus mengganti penyedia kunci AWS KMS master lama dengan penyedia
kunci master yang dibuat secara eksplisit dalam mode ketat atau mode penemuan. Penyedia
kunci master lama tidak digunakan lagi di versi 1.7. x dan dihapus dalam versi 2.0. x. Perubahan

Memperbarui penyedia kunci AWS KMS utama 444

AWS Encryption SDK Panduan Developerr

ini diperlukan untuk aplikasi dan skrip yang menggunakan AWS Encryption SDK for Java, AWS
Encryption SDK for Python, dan CLI AWS Enkripsi. Contoh di bagian ini akan menunjukkan cara
memperbarui kode Anda.

Note

Dengan Python, aktifkan peringatan penghentian. Ini akan membantu Anda mengidentifikasi
bagian-bagian kode Anda yang perlu Anda perbarui.

Jika Anda menggunakan kunci AWS KMS master (bukan penyedia kunci master), Anda dapat
melewati langkah ini. AWS KMS kunci master tidak digunakan lagi atau dihapus. Mereka
mengenkripsi dan mendekripsi hanya dengan kunci pembungkus yang Anda tentukan.

Contoh di bagian ini berfokus pada elemen kode Anda yang perlu Anda ubah. Untuk contoh lengkap
kode yang diperbarui, lihat bagian Contoh GitHub repositori untuk bahasa pemrograman Anda. Juga,
contoh-contoh ini biasanya menggunakan kunci ARNs untuk mewakili AWS KMS keys. Saat Anda
membuat penyedia kunci utama untuk mengenkripsi, Anda dapat menggunakan pengidentifikasi
AWS KMS kunci yang valid untuk mewakili. AWS KMS key Saat Anda membuat penyedia kunci
master untuk mendekripsi, Anda harus menggunakan ARN kunci.

Pelajari lebih lanjut tentang migrasi

Untuk semua AWS Encryption SDK pengguna, pelajari tentang menetapkan kebijakan komitmen
Andathe section called “Menetapkan kebijakan komitmen Anda”.

Untuk AWS Encryption SDK for C dan AWS Encryption SDK for JavaScript pengguna, pelajari
tentang pembaruan opsional untuk keyrings diMemperbarui AWS KMS keyrings.

Topik

• Migrasi ke mode ketat

• Migrasi ke mode penemuan

Migrasi ke mode ketat

Setelah memperbarui ke yang terbaru 1. x versi AWS Encryption SDK, ganti penyedia kunci master
lama Anda dengan penyedia kunci master dalam mode ketat. Dalam mode ketat, Anda harus
menentukan kunci pembungkus yang akan digunakan saat mengenkripsi dan mendekripsi. Hanya

Migrasi ke mode ketat 445

https://docs.python.org/3/library/warnings.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS Encryption SDK Panduan Developerr

AWS Encryption SDK menggunakan tombol pembungkus yang Anda tentukan. Penyedia kunci
master yang tidak digunakan lagi dapat mendekripsi data menggunakan data apa pun AWS KMS key
yang mengenkripsi kunci data, termasuk di berbagai dan Wilayah. AWS KMS keys Akun AWS

Penyedia kunci utama dalam mode ketat diperkenalkan dalam AWS Encryption SDK versi 1.7. x.
Mereka menggantikan penyedia kunci master lama, yang tidak digunakan lagi di 1.7. x dan dihapus
di 2.0. x. Menggunakan penyedia kunci master dalam mode ketat adalah praktik AWS Encryption
SDK terbaik.

Kode berikut membuat penyedia kunci master dalam mode ketat yang dapat Anda gunakan untuk
mengenkripsi dan mendekripsi.

Java

Contoh ini mewakili kode dalam aplikasi yang menggunakan versi 1.6.2 atau sebelumnya. AWS
Encryption SDK for Java

Kode ini menggunakan KmsMasterKeyProvider.builder() metode untuk membuat
instance penyedia kunci AWS KMS master yang menggunakannya AWS KMS key sebagai kunci
pembungkus.

// Create a master key provider
// Replace the example key ARN with a valid one
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
 .withKeysForEncryption(awsKmsKey)
 .build();

Contoh ini mewakili kode dalam aplikasi yang menggunakan versi 1.7. x atau yang lebih baru
AWS Encryption SDK for Java . Untuk contoh lengkap, lihat BasicEncryptionExample.java.

Builder.withKeysForEncryption()Metode Builder.build() dan yang digunakan dalam
contoh sebelumnya tidak digunakan lagi di versi 1.7. x dan dihapus dari versi 2.0. x.

Untuk memperbarui ke penyedia kunci master mode ketat, kode ini menggantikan panggilan
ke metode usang dengan panggilan ke metode baru. Builder.buildStrict() Contoh ini
menentukan satu AWS KMS key sebagai kunci pembungkus, tetapi Builder.buildStrict()
metode ini dapat mengambil daftar beberapa. AWS KMS keys

Migrasi ke mode ketat 446

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/BasicEncryptionExample.java

AWS Encryption SDK Panduan Developerr

// Create a master key provider in strict mode
// Replace the example key ARN with a valid one from your Akun AWS.
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(awsKmsKey);

Python

Contoh ini mewakili kode dalam aplikasi yang menggunakan versi 1.4.1 dari file. AWS Encryption
SDK for Python Kode ini menggunakanKMSMasterKeyProvider, yang tidak digunakan lagi di
versi 1.7. x dan dihapus dari versi 2.0. x. Saat mendekripsi, ia menggunakan apa pun AWS KMS
key yang mengenkripsi kunci data tanpa memperhatikan yang Anda tentukan. AWS KMS keys

Perhatikan bahwa KMSMasterKey tidak digunakan lagi atau dihapus. Saat mengenkripsi dan
mendekripsi, hanya menggunakan yang Anda tentukan. AWS KMS key

Create a master key provider
Replace the example key ARN with a valid one
key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

aws_kms_master_key_provider = KMSMasterKeyProvider(
 key_ids=[key_1, key_2]
)

Contoh ini mewakili kode dalam aplikasi yang menggunakan versi 1.7. x dari AWS Encryption
SDK for Python. Untuk contoh lengkap, lihat basic_encryption.py.

Untuk memperbarui ke penyedia kunci master mode ketat, kode ini menggantikan panggilan ke
KMSMasterKeyProvider() dengan panggilan keStrictAwsKmsMasterKeyProvider().

Create a master key provider in strict mode
Replace the example key ARNs with valid values from your Akun AWS
key_1 = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
key_2 = "arn:aws:kms:us-west-2:111122223333:key/0987dcba-09fe-87dc-65ba-
ab0987654321"

Migrasi ke mode ketat 447

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/basic_encryption.py

AWS Encryption SDK Panduan Developerr

aws_kms_master_key_provider = StrictAwsKmsMasterKeyProvider(
 key_ids=[key_1, key_2]
)

AWS Encryption CLI

Contoh ini menunjukkan cara mengenkripsi dan mendekripsi menggunakan Enkripsi AWS CLI
versi 1.1.7 atau sebelumnya.

Di versi 1.1.7 dan sebelumnya, saat mengenkripsi, Anda menentukan satu atau lebih kunci
master (atau kunci pembungkus), seperti. AWS KMS key Saat mendekripsi, Anda tidak dapat
menentukan kunci pembungkus apa pun kecuali Anda menggunakan penyedia kunci master
khusus. CLI AWS Enkripsi dapat menggunakan kunci pembungkus apa pun yang mengenkripsi
kunci data.

\\ Replace the example key ARN with a valid one
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data
$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --master-keys key=$keyArn \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --output .

\\ Decrypt your ciphertext
$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

Contoh ini menunjukkan cara mengenkripsi dan mendekripsi menggunakan Enkripsi AWS CLI
versi 1.7. x atau yang lebih baru. Untuk contoh lengkap, lihatContoh CLI AWS Enkripsi.

--master-keysParameter ini tidak digunakan lagi di versi 1.7. x dan dihapus dalam versi 2.0. x.
Ini diganti dengan --wrapping-keys parameter, yang diperlukan dalam perintah enkripsi dan
dekripsi. Parameter ini mendukung mode ketat dan mode penemuan. Mode ketat adalah praktik
AWS Encryption SDK terbaik yang memastikan bahwa Anda menggunakan kunci pembungkus
yang Anda inginkan.

Migrasi ke mode ketat 448

AWS Encryption SDK Panduan Developerr

Untuk meningkatkan ke mode ketat, gunakan atribut kunci --wrapping-keys parameter untuk
menentukan kunci pembungkus saat mengenkripsi dan mendekripsi.

\\ Replace the example key ARN with a valid value
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data
$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$keyArn \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --output .

\\ Decrypt your ciphertext
$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys key=$keyArn \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

Migrasi ke mode penemuan

Dimulai pada versi 1.7. x, ini adalah praktik AWS Encryption SDK terbaik untuk menggunakan
mode ketat untuk penyedia kunci AWS KMS master, yaitu menentukan kunci pembungkus
saat mengenkripsi dan mendekripsi. Anda harus selalu menentukan kunci pembungkus saat
mengenkripsi. Tetapi ada situasi di mana menentukan kunci ARNs AWS KMS keys untuk
mendekripsi tidak praktis. Misalnya, jika Anda menggunakan alias untuk mengidentifikasi AWS KMS
keys saat mengenkripsi, Anda kehilangan manfaat alias jika Anda harus mencantumkan kunci saat
mendekripsi. ARNs Selain itu, karena penyedia kunci master dalam mode penemuan berperilaku
seperti penyedia kunci master asli, Anda dapat menggunakannya sementara sebagai bagian dari
strategi migrasi Anda, dan kemudian meningkatkan ke penyedia kunci master dalam mode ketat
nanti.

Dalam kasus seperti ini, Anda dapat menggunakan penyedia kunci utama dalam mode penemuan.
Penyedia kunci master ini tidak mengizinkan Anda menentukan kunci pembungkus, sehingga Anda
tidak dapat menggunakannya untuk mengenkripsi. Saat mendekripsi, mereka dapat menggunakan
kunci pembungkus apa pun yang mengenkripsi kunci data. Tetapi tidak seperti penyedia kunci

Migrasi ke mode penemuan 449

AWS Encryption SDK Panduan Developerr

master lama, yang berperilaku dengan cara yang sama, Anda membuatnya dalam mode penemuan
secara eksplisit. Saat menggunakan penyedia kunci master dalam mode penemuan, Anda dapat
membatasi kunci pembungkus yang dapat digunakan untuk yang khusus Akun AWS. Filter
penemuan ini opsional, tetapi ini adalah praktik terbaik yang kami rekomendasikan. Untuk informasi
tentang AWS partisi dan akun, lihat Nama Sumber Daya Amazon di bagian. Referensi Umum AWS

Contoh berikut membuat penyedia kunci AWS KMS master dalam mode ketat untuk mengenkripsi
dan penyedia kunci AWS KMS master dalam mode penemuan untuk mendekripsi. Penyedia kunci
master dalam mode penemuan menggunakan filter penemuan untuk membatasi kunci pembungkus
yang digunakan untuk mendekripsi ke aws partisi dan contoh tertentu. Akun AWS Meskipun filter
akun tidak diperlukan dalam contoh yang sangat sederhana ini, ini adalah praktik terbaik yang sangat
bermanfaat ketika satu aplikasi mengenkripsi data dan aplikasi lain mendekripsi data.

Java

Contoh ini mewakili kode dalam aplikasi yang menggunakan versi 1.7. x atau yang lebih baru
AWS Encryption SDK for Java. Untuk contoh lengkap, lihat DiscoveryDecryptionExample.java.

Untuk membuat instance penyedia kunci master dalam mode ketat untuk mengenkripsi,
contoh ini menggunakan metode ini. Builder.buildStrict() Untuk membuat instance
penyedia kunci master dalam mode penemuan untuk mendekripsi, ia menggunakan metode
ini. Builder.buildDiscovery() Builder.buildDiscovery()Metode ini mengambil
DiscoveryFilter yang membatasi AWS Encryption SDK ke AWS KMS keys dalam AWS
partisi dan akun yang ditentukan.

// Create a master key provider in strict mode for encrypting
// Replace the example alias ARN with a valid one from your Akun AWS.
String awsKmsKey = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias";

KmsMasterKeyProvider encryptingKeyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(awsKmsKey);

// Create a master key provider in discovery mode for decrypting
// Replace the example account IDs with valid values.
DiscoveryFilter accounts = new DiscoveryFilter("aws", Arrays.asList("111122223333",
 "444455556666"));

KmsMasterKeyProvider decryptingKeyProvider = KmsMasterKeyProvider.builder()
 .buildDiscovery(accounts);

Migrasi ke mode penemuan 450

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/

AWS Encryption SDK Panduan Developerr

Python

Contoh ini mewakili kode dalam aplikasi yang menggunakan versi 1.7. x atau yang lebih baru
AWS Encryption SDK for Python . Untuk contoh lengkap, lihat discovery_kms_provider.py.

Untuk membuat penyedia kunci master dalam mode ketat untuk mengenkripsi,
contoh ini menggunakan. StrictAwsKmsMasterKeyProvider Untuk membuat
penyedia kunci master dalam mode penemuan untuk mendekripsi, ia menggunakan
DiscoveryAwsKmsMasterKeyProvider dengan a DiscoveryFilter yang membatasi AWS
Encryption SDK ke AWS KMS keys dalam AWS partisi dan akun yang ditentukan.

Create a master key provider in strict mode
Replace the example key ARN and alias ARNs with valid values from your Akun AWS.
key_1 = "arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias"
key_2 = "arn:aws:kms:us-
west-2:444455556666:key/1a2b3c4d-5e6f-1a2b-3c4d-5e6f1a2b3c4d"

aws_kms_master_key_provider = StrictAwsKmsMasterKeyProvider(
 key_ids=[key_1, key_2]
)

Create a master key provider in discovery mode for decrypting
Replace the example account IDs with valid values
accounts = DiscoveryFilter(
 partition="aws",
 account_ids=["111122223333", "444455556666"]
)
aws_kms_master_key_provider = DiscoveryAwsKmsMasterKeyProvider(
 discovery_filter=accounts
)

AWS Encryption CLI

Contoh ini menunjukkan cara mengenkripsi dan mendekripsi menggunakan Enkripsi AWS CLI
versi 1.7. x atau yang lebih baru. Dimulai pada versi 1.7. x, --wrapping-keys parameter
diperlukan saat mengenkripsi dan mendekripsi. --wrapping-keysParameter mendukung mode
ketat dan mode penemuan. Untuk contoh lengkap, lihatthe section called “Contoh”.

Saat mengenkripsi, contoh ini menentukan kunci pembungkus, yang diperlukan. Saat
mendekripsi, secara eksplisit memilih mode penemuan dengan menggunakan discovery atribut
--wrapping-keys parameter dengan nilai. true

Migrasi ke mode penemuan 451

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/discovery_kms_provider.py

AWS Encryption SDK Panduan Developerr

Untuk membatasi kunci pembungkus yang AWS Encryption SDK dapat digunakan dalam mode
penemuan pada khususnya Akun AWS, contoh ini menggunakan discovery-account atribut
discovery-partition dan --wrapping-keys parameter. Atribut opsional ini hanya valid
ketika discovery atribut diatur ketrue. Anda harus menggunakan discovery-account
atribut discovery-partition dan bersama-sama; tidak ada yang valid sendirian.

\\ Replace the example key ARN with a valid value
$ keyAlias=arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias

\\ Encrypt your plaintext data
$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$keyAlias \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --output .

\\ Decrypt your ciphertext
\\ Replace the example account IDs with valid values
$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys discovery=true \
 discovery-partition=aws \
 discovery-account=111122223333 \
 discovery-account=444455556666 \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

Memperbarui AWS KMS keyrings

AWS KMS Gantungan kunci di AWS Encryption SDK for C, AWS Encryption SDK untuk .NET,
dan AWS Encryption SDK for JavaScriptmendukung praktik terbaik dengan memungkinkan Anda
menentukan kunci pembungkus saat mengenkripsi dan mendekripsi. Jika Anda membuat keyring
AWS KMS penemuan, Anda melakukannya secara eksplisit.

Note

Versi paling awal AWS Encryption SDK untuk .NET adalah versi 3.0. x. Semua versi AWS
Encryption SDK untuk .NET mendukung praktik terbaik keamanan yang diperkenalkan di 2.0.

Memperbarui AWS KMS keyrings 452

AWS Encryption SDK Panduan Developerr

x dari AWS Encryption SDK. Anda dapat dengan aman meningkatkan ke versi terbaru tanpa
kode atau perubahan data.

Saat Anda memperbarui ke yang terbaru 1. x versi AWS Encryption SDK, Anda dapat menggunakan
filter penemuan untuk membatasi kunci pembungkus yang digunakan oleh keyring AWS KMS
penemuan atau keyring penemuan AWS KMS regional saat mendekripsi ke kunci tertentu. Akun
AWS Memfilter keyring penemuan adalah praktik AWS Encryption SDK terbaik.

Contoh di bagian ini akan menunjukkan cara menambahkan filter penemuan ke keyring penemuan
AWS KMS regional.

Pelajari lebih lanjut tentang migrasi

Untuk semua AWS Encryption SDK pengguna, pelajari tentang menetapkan kebijakan komitmen
Andathe section called “Menetapkan kebijakan komitmen Anda”.

Untuk AWS Encryption SDK for Java, AWS Encryption SDK for Python, dan pengguna CLI AWS
Enkripsi, pelajari tentang pembaruan yang diperlukan untuk menguasai penyedia kunci di. the section
called “Memperbarui penyedia kunci AWS KMS utama”

Anda mungkin memiliki kode seperti berikut dalam aplikasi Anda. Contoh ini membuat keyring
penemuan AWS KMS regional yang hanya dapat menggunakan kunci pembungkus di Wilayah AS
Barat (Oregon) (us-west-2). Contoh ini mewakili kode dalam AWS Encryption SDK versi lebih awal
dari 1.7. x. Namun, ini masih berlaku di versi 1.7. x dan kemudian.

C

struct aws_cryptosdk_keyring *kms_regional_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder()
 .WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery());

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true

Memperbarui AWS KMS keyrings 453

AWS Encryption SDK Panduan Developerr

const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser({ clientProvider, discovery })

JavaScript Node.js

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({ clientProvider, discovery })

Dimulai pada versi 1.7. x, Anda dapat menambahkan filter penemuan ke keyring AWS KMS
penemuan apa pun. Filter penemuan ini membatasi AWS KMS keys yang AWS Encryption SDK
dapat digunakan untuk dekripsi ke partisi dan akun yang ditentukan. Sebelum menggunakan kode ini,
ubah partisi, jika perlu, dan ganti akun contoh IDs dengan yang valid.

C

Untuk contoh lengkap, lihat kms_discovery.cpp.

std::shared_ptr<KmsKeyring::DiscoveryFilter> discovery_filter(
 KmsKeyring::DiscoveryFilter::Builder("aws")
 .AddAccount("111122223333")
 .AddAccount("444455556666")
 .Build());

struct aws_cryptosdk_keyring *kms_regional_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder()

 .WithKmsClient(create_kms_client(Aws::Region::US_WEST_2)).BuildDiscovery(discovery_filter));

JavaScript Browser

const clientProvider = getClient(KMS, { credentials })

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringBrowser(clientProvider, {
 discovery,
 discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:
 'aws' }
})

Memperbarui AWS KMS keyrings 454

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/kms_discovery.cpp

AWS Encryption SDK Panduan Developerr

JavaScript Node.js

Untuk contoh lengkap, lihat kms_filtered_discovery.ts.

const discovery = true
const clientProvider = limitRegions(['us-west-2'], getKmsClient)
const keyring = new KmsKeyringNode({
 clientProvider,
 discovery,
 discoveryFilter: { accountIDs: ['111122223333', '444455556666'], partition:
 'aws' }
})

Menetapkan kebijakan komitmen Anda

Komitmen utama memastikan bahwa data terenkripsi Anda selalu didekripsi ke teks biasa yang
sama. Untuk menyediakan properti keamanan ini, dimulai dari versi 1.7. x, AWS Encryption SDK
menggunakan suite algoritma baru dengan komitmen utama. Untuk menentukan apakah data
Anda dienkripsi dan didekripsi dengan komitmen utama, gunakan pengaturan konfigurasi kebijakan
komitmen. Mengenkripsi dan mendekripsi data dengan komitmen utama adalah praktik terbaik.AWS
Encryption SDK

Menetapkan kebijakan komitmen adalah bagian penting dari langkah kedua dalam proses migrasi
— migrasi dari yang terbaru 1. x versi AWS Encryption SDK ke versi 2.0. x dan kemudian. Setelah
menetapkan dan mengubah kebijakan komitmen Anda, pastikan untuk menguji aplikasi Anda secara
menyeluruh sebelum menerapkannya dalam produksi. Untuk panduan migrasi, lihatCara memigrasi
dan menyebarkan AWS Encryption SDK.

Pengaturan kebijakan komitmen memiliki tiga nilai valid di versi 2.0. x dan kemudian. Yang terbaru 1.
x versi (dimulai dengan versi 1.7. x), ForbidEncryptAllowDecrypt hanya valid.

• ForbidEncryptAllowDecrypt— AWS Encryption SDK Tidak dapat mengenkripsi dengan
komitmen utama. Ini dapat mendekripsi ciphertext yang dienkripsi dengan atau tanpa komitmen
utama.

Yang terbaru 1. x versi, ini adalah satu-satunya nilai yang valid. Ini memastikan bahwa Anda tidak
mengenkripsi dengan komitmen utama sampai Anda sepenuhnya siap untuk mendekripsi dengan
komitmen utama. Menyetel nilai secara eksplisit mencegah kebijakan komitmen Anda berubah
secara otomatis menjadi require-encrypt-require-decrypt saat Anda meningkatkan ke

Menetapkan kebijakan komitmen Anda 455

https://github.com/aws/aws-encryption-sdk-javascript/blob/master/modules/example-node/src/kms_filtered_discovery.ts

AWS Encryption SDK Panduan Developerr

versi 2.0. x atau yang lebih baru. Sebagai gantinya, Anda dapat memigrasikan kebijakan komitmen
Anda secara bertahap.

• RequireEncryptAllowDecrypt— AWS Encryption SDK Selalu dienkripsi dengan komitmen
utama. Ini dapat mendekripsi ciphertext yang dienkripsi dengan atau tanpa komitmen utama. Nilai
ini ditambahkan dalam versi 2.0. x.

• RequireEncryptRequireDecrypt— AWS Encryption SDK Selalu mengenkripsi dan
mendekripsi dengan komitmen utama. Nilai ini ditambahkan dalam versi 2.0. x. Ini adalah nilai
default dalam versi 2.0. x dan kemudian.

Yang terbaru 1. x versi, satu-satunya nilai kebijakan komitmen yang valid
adalahForbidEncryptAllowDecrypt. Setelah Anda bermigrasi ke versi 2.0. x atau lebih baru,
Anda dapat mengubah kebijakan komitmen Anda secara bertahap saat Anda siap. Jangan perbarui
kebijakan komitmen Anda RequireEncryptRequireDecrypt sampai Anda yakin bahwa Anda
tidak memiliki pesan yang dienkripsi tanpa komitmen utama.

Contoh-contoh ini menunjukkan kepada Anda cara menetapkan kebijakan komitmen Anda di
1 terbaru. x versi dan dalam versi 2.0. x dan kemudian. Tekniknya tergantung pada bahasa
pemrograman Anda.

Pelajari lebih lanjut tentang migrasi

Untuk AWS Encryption SDK for Java, AWS Encryption SDK for Python, dan CLI AWS Enkripsi,
pelajari tentang perubahan yang diperlukan untuk menguasai penyedia kunci di. the section called
“Memperbarui penyedia kunci AWS KMS utama”

Untuk AWS Encryption SDK for C dan AWS Encryption SDK for JavaScript, pelajari tentang
pembaruan opsional untuk keyrings diMemperbarui AWS KMS keyrings.

Cara menetapkan kebijakan komitmen Anda

Teknik yang Anda gunakan untuk menetapkan kebijakan komitmen Anda sedikit berbeda
dengan setiap implementasi bahasa. Contoh-contoh ini menunjukkan kepada Anda bagaimana
melakukannya. Sebelum mengubah kebijakan komitmen Anda, tinjau pendekatan multi-tahap diCara
bermigrasi dan menyebarkan.

C

Dimulai pada versi 1.7. x dari AWS Encryption SDK for C, Anda menggunakan
aws_cryptosdk_session_set_commitment_policy fungsi untuk mengatur kebijakan

Cara menetapkan kebijakan komitmen Anda 456

AWS Encryption SDK Panduan Developerr

komitmen pada sesi enkripsi dan dekripsi Anda. Kebijakan komitmen yang Anda tetapkan berlaku
untuk semua operasi enkripsi dan dekripsi yang dipanggil pada sesi tersebut.

aws_cryptosdk_session_new_from_cmmFungsi
aws_cryptosdk_session_new_from_keyring dan tidak digunakan
lagi di versi 1.7. x dan dihapus dalam versi 2.0. x. Fungsi-fungsi ini
digantikan oleh aws_cryptosdk_session_new_from_keyring_2 dan
aws_cryptosdk_session_new_from_cmm_2 fungsi yang mengembalikan sesi.

Saat Anda menggunakan aws_cryptosdk_session_new_from_keyring_2 dan
aws_cryptosdk_session_new_from_cmm_2 yang terbaru 1. x versi, Anda diminta
untuk memanggil aws_cryptosdk_session_set_commitment_policy fungsi dengan
nilai kebijakan COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT komitmen.
Dalam versi 2.0. x dan yang lebih baru, memanggil fungsi ini adalah opsional dan dibutuhkan
semua nilai yang valid. Kebijakan komitmen default untuk versi 2.0. x dan yang lebih
COMMITMENT_POLICY_REQUIRE_ENCRYPT_REQUIRE_DECRYPT baru

Untuk contoh lengkap, lihat string.cpp.

/* Load error strings for debugging */
aws_cryptosdk_load_error_strings();

/* Create an AWS KMS keyring */
const char * key_arn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);

/* Create an encrypt session with a CommitmentPolicy setting */
struct aws_cryptosdk_session *encrypt_session =
 aws_cryptosdk_session_new_from_keyring_2(
 alloc, AWS_CRYPTOSDK_ENCRYPT, kms_keyring);

aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(encrypt_session,
 COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

...
/* Encrypt your data */

size_t plaintext_consumed_output;
aws_cryptosdk_session_process(encrypt_session,

Cara menetapkan kebijakan komitmen Anda 457

https://github.com/aws/aws-encryption-sdk-c/blob/master/examples/string.cpp

AWS Encryption SDK Panduan Developerr

 ciphertext_output,
 ciphertext_buf_sz_output,
 ciphertext_len_output,
 plaintext_input,
 plaintext_len_input,
 &plaintext_consumed_output)
...

/* Create a decrypt session with a CommitmentPolicy setting */

struct aws_cryptosdk_keyring *kms_keyring =
 Aws::Cryptosdk::KmsKeyring::Builder().Build(key_arn);
struct aws_cryptosdk_session *decrypt_session =
 *aws_cryptosdk_session_new_from_keyring_2(
 alloc, AWS_CRYPTOSDK_DECRYPT, kms_keyring);
aws_cryptosdk_keyring_release(kms_keyring);
aws_cryptosdk_session_set_commitment_policy(decrypt_session,
 COMMITMENT_POLICY_FORBID_ENCRYPT_ALLOW_DECRYPT);

/* Decrypt your ciphertext */
size_t ciphertext_consumed_output;
aws_cryptosdk_session_process(decrypt_session,
 plaintext_output,
 plaintext_buf_sz_output,
 plaintext_len_output,
 ciphertext_input,
 ciphertext_len_input,
 &ciphertext_consumed_output)

C# / .NET

require-encrypt-require-decryptNilai adalah kebijakan komitmen default di semua
versi AWS Encryption SDK untuk .NET. Anda dapat mengaturnya secara eksplisit sebagai
praktik terbaik, tetapi itu tidak diperlukan. Namun, jika Anda menggunakan AWS Encryption
SDK untuk.NET untuk mendekripsi ciphertext yang dienkripsi oleh implementasi bahasa lain dari
komitmen AWS Encryption SDK tanpa kunci, Anda perlu mengubah nilai kebijakan komitmen
menjadi atau. REQUIRE_ENCRYPT_ALLOW_DECRYPT FORBID_ENCRYPT_ALLOW_DECRYPT Jika
tidak, upaya untuk mendekripsi ciphertext akan gagal.

Dalam AWS Encryption SDK untuk .NET, Anda menetapkan kebijakan komitmen pada
instance AWS Encryption SDK. Buat instance AwsEncryptionSdkConfig objek dengan
CommitmentPolicy parameter, dan gunakan objek konfigurasi untuk membuat instance. AWS

Cara menetapkan kebijakan komitmen Anda 458

AWS Encryption SDK Panduan Developerr

Encryption SDK Kemudian, panggil Encrypt() dan Decrypt() metode dari AWS Encryption
SDK instance yang dikonfigurasi.

Contoh ini menetapkan kebijakan komitmen untukrequire-encrypt-allow-decrypt.

// Instantiate the material providers
var materialProviders =

 AwsCryptographicMaterialProvidersFactory.CreateDefaultAwsCryptographicMaterialProviders();

// Configure the commitment policy on the AWS Encryption SDK instance
var config = new AwsEncryptionSdkConfig
{
 CommitmentPolicy = CommitmentPolicy.REQUIRE_ENCRYPT_ALLOW_DECRYPT
};
var encryptionSdk = AwsEncryptionSdkFactory.CreateAwsEncryptionSdk(config);

string keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

var encryptionContext = new Dictionary<string, string>()
{
 {"purpose", "test"}encryptionSdk
};

var createKeyringInput = new CreateAwsKmsKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = keyArn
};
var keyring = materialProviders.CreateAwsKmsKeyring(createKeyringInput);

// Encrypt your plaintext data
var encryptInput = new EncryptInput
{
 Plaintext = plaintext,
 Keyring = keyring,
 EncryptionContext = encryptionContext
};
var encryptOutput = encryptionSdk.Encrypt(encryptInput);

// Decrypt your ciphertext
var decryptInput = new DecryptInput
{

Cara menetapkan kebijakan komitmen Anda 459

AWS Encryption SDK Panduan Developerr

 Ciphertext = ciphertext,
 Keyring = keyring
};
var decryptOutput = encryptionSdk.Decrypt(decryptInput);

AWS Encryption CLI

Untuk menetapkan kebijakan komitmen dalam CLI AWS Enkripsi, gunakan parameter. --
commitment-policy Parameter ini diperkenalkan dalam versi 1.8. x.

Yang terbaru 1. versi x, ketika Anda menggunakan --wrapping-keys parameter dalam --
decrypt perintah --encrypt atau, --commitment-policy parameter dengan forbid-
encrypt-allow-decrypt nilai diperlukan. Jika tidak, --commitment-policy parameternya
tidak valid.

Dalam versi 2.1. x dan yang lebih baru, --commitment-policy parameternya opsional
dan default ke require-encrypt-require-decrypt nilai, yang tidak akan mengenkripsi
atau mendekripsi ciphertext apa pun yang dienkripsi tanpa komitmen kunci. Namun, kami
menyarankan agar Anda menetapkan kebijakan komitmen secara eksplisit di semua panggilan
enkripsi dan dekripsi untuk membantu pemeliharaan dan pemecahan masalah.

Contoh ini menetapkan kebijakan komitmen. Ini juga menggunakan --wrapping-keys
parameter yang menggantikan --master-keys parameter yang dimulai pada versi 1.8. x. Lihat
perinciannya di the section called “Memperbarui penyedia kunci AWS KMS utama”. Untuk contoh
lengkap, lihatContoh CLI AWS Enkripsi.

\\ To run this example, replace the fictitious key ARN with a valid value.
$ keyArn=arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

\\ Encrypt your plaintext data - no change to algorithm suite used
$ aws-encryption-cli --encrypt \
 --input hello.txt \
 --wrapping-keys key=$keyArn \
 --commitment-policy forbid-encrypt-allow-decrypt \
 --metadata-output ~/metadata \
 --encryption-context purpose=test \
 --output .

\\ Decrypt your ciphertext - supports key commitment on 1.7 and later
$ aws-encryption-cli --decrypt \
 --input hello.txt.encrypted \
 --wrapping-keys key=$keyArn \

Cara menetapkan kebijakan komitmen Anda 460

AWS Encryption SDK Panduan Developerr

 --commitment-policy forbid-encrypt-allow-decrypt \
 --encryption-context purpose=test \
 --metadata-output ~/metadata \
 --output .

Java

Dimulai pada versi 1.7. x dari AWS Encryption SDK for Java, Anda menetapkan kebijakan
komitmen pada instance AndaAwsCrypto, objek yang mewakili AWS Encryption SDK klien.
Pengaturan kebijakan komitmen ini berlaku untuk semua operasi enkripsi dan dekripsi yang
dipanggil pada klien tersebut.

AwsCrypto()Konstruktor tidak digunakan lagi di 1 terbaru. x versi AWS Encryption
SDK for Java dan dihapus dalam versi 2.0. x. Ini digantikan oleh Builder kelas baru,
Builder.withCommitmentPolicy() metode, dan tipe CommitmentPolicy enumerasi.

Yang terbaru 1. x versi, Builder kelas membutuhkan Builder.withCommitmentPolicy()
metode dan CommitmentPolicy.ForbidEncryptAllowDecrypt argumen. Dimulai pada
versi 2.0. x, Builder.withCommitmentPolicy() metode ini opsional; nilai defaultnya
adalahCommitmentPolicy.RequireEncryptRequireDecrypt.

Untuk contoh lengkap, lihat SetCommitmentPolicyExample.java.

// Instantiate the client
final AwsCrypto crypto = AwsCrypto.builder()
 .withCommitmentPolicy(CommitmentPolicy.ForbidEncryptAllowDecrypt)
 .build();

// Create a master key provider in strict mode
String awsKmsKey = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";

KmsMasterKeyProvider masterKeyProvider = KmsMasterKeyProvider.builder()
 .buildStrict(awsKmsKey);

// Encrypt your plaintext data
CryptoResult<byte[], KmsMasterKey> encryptResult = crypto.encryptData(
 masterKeyProvider,
 sourcePlaintext,
 encryptionContext);
byte[] ciphertext = encryptResult.getResult();

Cara menetapkan kebijakan komitmen Anda 461

https://github.com/aws/aws-encryption-sdk-java/blob/master/src/examples/java/com/amazonaws/crypto/examples/v2/SetCommitmentPolicyExample.java

AWS Encryption SDK Panduan Developerr

// Decrypt your ciphertext
CryptoResult<byte[], KmsMasterKey> decryptResult = crypto.decryptData(
 masterKeyProvider,
 ciphertext);
byte[] decrypted = decryptResult.getResult();

JavaScript

Dimulai pada versi 1.7. x dari AWS Encryption SDK for JavaScript, Anda dapat mengatur
kebijakan komitmen ketika Anda memanggil buildClient fungsi baru yang membuat instance
AWS Encryption SDK klien. buildClientFungsi ini mengambil nilai yang disebutkan yang
mewakili kebijakan komitmen Anda. Ini mengembalikan decrypt fungsi yang diperbarui
encrypt dan yang menegakkan kebijakan komitmen Anda saat Anda mengenkripsi dan
mendekripsi.

Yang terbaru 1. x versi, buildClient fungsi membutuhkan
CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT argumen. Dimulai
pada versi 2.0. x, argumen kebijakan komitmen adalah opsional dan nilai defaultnya
adalahCommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

Kode untuk Node.js dan browser identik untuk tujuan ini, kecuali bahwa browser membutuhkan
pernyataan untuk mengatur kredensialnya.

Contoh berikut mengenkripsi data dengan keyring. AWS KMS buildClientFungsi baru
menetapkan kebijakan komitmen keFORBID_ENCRYPT_ALLOW_DECRYPT, nilai default di 1
terbaru. x versin. Upgrade encrypt dan decrypt fungsi yang buildClient dikembalikan
menegakkan kebijakan komitmen yang Anda tetapkan.

import { buildClient } from '@aws-crypto/client-node'
const { encrypt, decrypt } =
 buildClient(CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

// Create an AWS KMS keyring
const generatorKeyId = 'arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias'
const keyIds = ['arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab']
const keyring = new KmsKeyringNode({ generatorKeyId, keyIds })

// Encrypt your plaintext data
const { ciphertext } = await encrypt(keyring, plaintext, { encryptionContext:
 context })

Cara menetapkan kebijakan komitmen Anda 462

AWS Encryption SDK Panduan Developerr

// Decrypt your ciphertext
const { decrypted, messageHeader } = await decrypt(keyring, ciphertext)

Python

Dimulai pada versi 1.7. x dari AWS Encryption SDK for Python, Anda menetapkan kebijakan
komitmen pada instance AndaEncryptionSDKClient, objek baru yang mewakili AWS
Encryption SDK klien. Kebijakan komitmen yang Anda tetapkan berlaku untuk semua encrypt
dan decrypt panggilan yang menggunakan instance klien tersebut.

Yang terbaru 1. x versi, EncryptionSDKClient konstruktor membutuhkan nilai yang
CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT disebutkan. Dimulai
pada versi 2.0. x, argumen kebijakan komitmen adalah opsional dan nilai defaultnya
adalahCommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT.

Contoh ini menggunakan EncryptionSDKClient konstruktor baru dan menetapkan kebijakan
komitmen ke 1.7. x nilai default. Konstruktor membuat instance klien yang mewakili. AWS
Encryption SDK Ketika Anda memanggilencrypt,decrypt, atau stream metode pada klien ini,
mereka menegakkan kebijakan komitmen yang Anda tetapkan. Contoh ini juga menggunakan
konstruktor baru untuk StrictAwsKmsMasterKeyProvider kelas, yang menentukan AWS
KMS keys saat mengenkripsi dan mendekripsi.

Untuk contoh lengkap, lihat set_commitment.py.

Instantiate the client
client =
 aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT)

// Create a master key provider in strict mode
aws_kms_key = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
aws_kms_strict_master_key_provider = StrictAwsKmsMasterKeyProvider(
 key_ids=[aws_kms_key]
)

Encrypt your plaintext data
ciphertext, encrypt_header = client.encrypt(
 source=source_plaintext,
 encryption_context=encryption_context,
 master_key_provider=aws_kms_strict_master_key_provider

Cara menetapkan kebijakan komitmen Anda 463

https://github.com/aws/aws-encryption-sdk-python/blob/master/examples/src/legacy/set_commitment.py

AWS Encryption SDK Panduan Developerr

)

Decrypt your ciphertext
decrypted, decrypt_header = client.decrypt(
 source=ciphertext,
 master_key_provider=aws_kms_strict_master_key_provider
)

Rust

require-encrypt-require-decryptNilainya adalah kebijakan komitmen default di semua
versi AWS Encryption SDK untuk Rust. Anda dapat mengaturnya secara eksplisit sebagai praktik
terbaik, tetapi itu tidak diperlukan. Namun, jika Anda menggunakan AWS Encryption SDK for
Rust untuk mendekripsi ciphertext yang dienkripsi oleh implementasi bahasa lain dari komitmen
AWS Encryption SDK tanpa kunci, Anda perlu mengubah nilai kebijakan komitmen menjadi atau.
REQUIRE_ENCRYPT_ALLOW_DECRYPT FORBID_ENCRYPT_ALLOW_DECRYPT Jika tidak, upaya
untuk mendekripsi ciphertext akan gagal.

Dalam AWS Encryption SDK for Rust, Anda menetapkan kebijakan komitmen pada instance AWS
Encryption SDK. Buat instance AwsEncryptionSdkConfig objek dengan comitment_policy
parameter, dan gunakan objek konfigurasi untuk membuat instance. AWS Encryption SDK
Kemudian, panggil Encrypt() dan Decrypt() metode dari AWS Encryption SDK instance yang
dikonfigurasi.

Contoh ini menetapkan kebijakan komitmen untukforbid-encrypt-allow-decrypt.

// Configure the commitment policy on the AWS Encryption SDK instance
let esdk_config = AwsEncryptionSdkConfig::builder()
 .commitment_policy(ForbidEncryptAllowDecrypt)
 .build()?;
let esdk_client = esdk_client::Client::from_conf(esdk_config)?;

// Create an AWS KMS client
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_client = aws_sdk_kms::Client::new(&sdk_config);

// Create your encryption context
let encryption_context = HashMap::from([
 ("encryption".to_string(), "context".to_string()),
 ("is not".to_string(), "secret".to_string()),
 ("but adds".to_string(), "useful metadata".to_string()),

Cara menetapkan kebijakan komitmen Anda 464

AWS Encryption SDK Panduan Developerr

 ("that can help you".to_string(), "be confident that".to_string()),
 ("the data you are handling".to_string(), "is what you think it
 is".to_string()),
]);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create an AWS KMS keyring
let kms_keyring = mpl
 .create_aws_kms_keyring()
 .kms_key_id(kms_key_id)
 .kms_client(kms_client)
 .send()
 .await?;

// Encrypt your plaintext data
let plaintext = example_data.as_bytes();

let encryption_response = esdk_client.encrypt()
 .plaintext(plaintext)
 .keyring(kms_keyring.clone())
 .encryption_context(encryption_context.clone())
 .send()
 .await?;

// Decrypt your ciphertext
let decryption_response = esdk_client.decrypt()
 .ciphertext(ciphertext)
 .keyring(kms_keyring)
 // Provide the encryption context that was supplied to the encrypt method
 .encryption_context(encryption_context)
 .send()
 .await?;

Go

import (
 "context"

 mpl "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygenerated"

Cara menetapkan kebijakan komitmen Anda 465

AWS Encryption SDK Panduan Developerr

 mpltypes "aws/aws-cryptographic-material-providers-library/releases/go/mpl/
awscryptographymaterialproviderssmithygeneratedtypes"
 client "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygenerated"
 esdktypes "github.com/aws/aws-encryption-sdk/
awscryptographyencryptionsdksmithygeneratedtypes"
 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/kms"
)

// Instantiate the AWS Encryption SDK client
commitPolicyForbidEncryptAllowDecrypt :=
 mpltypes.ESDKCommitmentPolicyForbidEncryptAllowDecrypt
encryptionClient, err :=
 client.NewClient(esdktypes.AwsEncryptionSdkConfig{CommitmentPolicy:
 &commitPolicyForbidEncryptAllowDecrypt})
if err != nil {
 panic(err)
}

// Create an AWS KMS client
cfg, err := config.LoadDefaultConfig(context.TODO())
if err != nil {
 panic(err)
}
kmsClient := kms.NewFromConfig(cfg, func(o *kms.Options) {
 o.Region = KmsKeyRegion
})

// Optional: Create an encryption context
encryptionContext := map[string]string{
 "encryption": "context",
 "is not": "secret",
 "but adds": "useful metadata",
 "that can help you": "be confident that",
 "the data you are handling": "is what you think it is",
}

// Instantiate the material providers library
matProv, err := mpl.NewClient(mpltypes.MaterialProvidersConfig{})
if err != nil {
 panic(err)
}

Cara menetapkan kebijakan komitmen Anda 466

AWS Encryption SDK Panduan Developerr

// Create an AWS KMS keyring
awsKmsKeyringInput := mpltypes.CreateAwsKmsKeyringInput{
 KmsClient: kmsClient,
 KmsKeyId: kmsKeyId,
}
awsKmsKeyring, err := matProv.CreateAwsKmsKeyring(context.Background(),
 awsKmsKeyringInput)
if err != nil {
 panic(err)
}

// Encrypt your plaintext data
res, err := forbidEncryptClient.Encrypt(context.Background(),
 esdktypes.EncryptInput{
 Plaintext: []byte(exampleText),
 EncryptionContext: encryptionContext,
 Keyring: awsKmsKeyring,
})
if err != nil {
 panic(err)
}

// Decrypt your ciphertext
decryptOutput, err := forbidEncryptClient.Decrypt(context.Background(),
 esdktypes.DecryptInput{
 Ciphertext: res.Ciphertext,
 EncryptionContext: encryptionContext,
 Keyring: awsKmsKeyring,
})
if err != nil {
 panic(err)
}

Memecahkan masalah migrasi ke versi terbaru

Sebelum memperbarui aplikasi Anda ke versi 2.0. x atau yang lebih baru AWS Encryption
SDK, perbarui ke yang terbaru 1. x versi AWS Encryption SDK dan terapkan sepenuhnya. Itu
akan membantu Anda menghindari sebagian besar kesalahan yang mungkin Anda temui saat
memperbarui ke versi 2.0. x dan kemudian. Untuk panduan terperinci, termasuk contoh, lihatMigrasi
Anda AWS Encryption SDK.

Memecahkan masalah migrasi ke versi terbaru 467

AWS Encryption SDK Panduan Developerr

Important

Verifikasi bahwa terbaru Anda 1. Versi x adalah versi 1.7. x atau yang lebih baru AWS
Encryption SDK.

Note

AWS Enkripsi CLI: Referensi dalam panduan ini ke versi 1.7. x AWS Encryption SDK berlaku
untuk versi 1.8. x dari CLI AWS Enkripsi. Referensi dalam panduan ini ke versi 2.0. x dari
AWS Encryption SDK berlaku untuk 2.1. x dari CLI AWS Enkripsi.
Fitur keamanan baru awalnya dirilis dalam AWS Enkripsi CLI versi 1.7. x dan 2.0. x. Namun,
AWS Enkripsi CLI versi 1.8. x menggantikan versi 1.7. x dan AWS Enkripsi CLI 2.1. x
menggantikan 2.0. x. Untuk detailnya, lihat penasihat keamanan yang relevan di aws-
encryption-sdk-clirepositori di. GitHub

Topik ini dirancang untuk membantu Anda mengenali dan mengatasi kesalahan paling umum yang
mungkin Anda temui.

Topik

• Objek yang tidak digunakan lagi atau dihapus

• Konflik konfigurasi: Kebijakan komitmen dan rangkaian algoritme

• Konflik konfigurasi: Kebijakan komitmen dan ciphertext

• Validasi komitmen utama gagal

• Kegagalan enkripsi lainnya

• Kegagalan dekripsi lainnya

• Pertimbangan rollback

Objek yang tidak digunakan lagi atau dihapus

Versi 2.0. x mencakup beberapa perubahan yang melanggar, termasuk menghapus konstruktor
lama, metode, fungsi, dan kelas yang tidak digunakan lagi di versi 1.7. x. Untuk menghindari
kesalahan kompiler, kesalahan impor, kesalahan sintaks, dan kesalahan simbol tidak ditemukan
(tergantung pada bahasa pemrograman Anda), tingkatkan terlebih dahulu ke yang terbaru 1. x versi

Objek yang tidak digunakan lagi atau dihapus 468

https://github.com/aws/aws-encryption-sdk-cli/security/advisories/GHSA-2xwp-m7mq-7q3r
https://github.com/aws/aws-encryption-sdk-cli/
https://github.com/aws/aws-encryption-sdk-cli/

AWS Encryption SDK Panduan Developerr

AWS Encryption SDK untuk bahasa pemrograman Anda. (Ini harus versi 1.7. x atau yang lebih baru.)
Saat menggunakan yang terbaru 1. x versi, Anda dapat mulai menggunakan elemen pengganti
sebelum simbol asli dihapus.

Jika Anda perlu meng-upgrade ke versi 2.0. x atau yang lebih baru segera, konsultasikan changelog
untuk bahasa pemrograman Anda, dan ganti simbol warisan dengan simbol yang direkomendasikan
changelog.

Konflik konfigurasi: Kebijakan komitmen dan rangkaian algoritme

Jika Anda menentukan rangkaian algoritme yang bertentangan dengan kebijakan komitmen Anda,
panggilan untuk mengenkripsi gagal dengan kesalahan konflik Konfigurasi.

Untuk menghindari jenis kesalahan ini, jangan tentukan rangkaian algoritme. Secara default, AWS
Encryption SDK memilih algoritma paling aman yang kompatibel dengan kebijakan komitmen Anda.
Namun, jika Anda harus menentukan rangkaian algoritme, seperti tanpa penandatanganan, pastikan
untuk memilih rangkaian algoritme yang kompatibel dengan kebijakan komitmen Anda.

Kebijakan komitmen Suite algoritma yang kompatibel

ForbidEncryptAllowDecrypt Setiap rangkaian algoritma tanpa komitmen
utama, seperti:
AES_256_GCM_IV12_TAG16_HKDF
_SHA384_ECDSA_P384 (03 78) (dengan
penandatanganan)

AES_256_GCM_IV12_TAG16_HKDF
_SHA256 (01 78) (tanpa penandatanganan)

RequireEncryptAllowDecrypt

RequireEncryptRequireDecrypt

Setiap rangkaian algoritma dengan komitmen
utama, seperti:
AES_256_GCM_HKDF_SHA512_COM
MIT_KEY_ECDSA_P384 (05 78) (dengan
penandatanganan)

AES_256_GCM_HKDF_SHA512_COM
MIT_KEY (04 78) (tanpa penandatanganan)

Konflik konfigurasi: Kebijakan komitmen dan rangkaian algoritme 469

AWS Encryption SDK Panduan Developerr

Jika Anda mengalami kesalahan ini ketika Anda belum menentukan rangkaian algoritme, rangkaian
algoritme yang bertentangan mungkin telah dipilih oleh pengelola bahan kriptografi (CMM) Anda.
CMM Default tidak akan memilih rangkaian algoritme yang bertentangan, tetapi CMM khusus
mungkin. Untuk bantuan, lihat dokumentasi untuk CMM kustom Anda.

Konflik konfigurasi: Kebijakan komitmen dan ciphertext

Kebijakan RequireEncryptRequireDecrypt komitmen tidak mengizinkan AWS Encryption
SDK untuk mendekripsi pesan yang dienkripsi tanpa komitmen utama. Jika Anda meminta AWS
Encryption SDK untuk mendekripsi pesan tanpa komitmen kunci, ia mengembalikan kesalahan
konflik Konfigurasi.

Untuk menghindari kesalahan ini, sebelum menetapkan kebijakan
RequireEncryptRequireDecrypt komitmen, pastikan bahwa semua ciphertext yang dienkripsi
tanpa komitmen utama didekripsi dan dienkripsi ulang dengan komitmen utama, atau ditangani oleh
aplikasi yang berbeda. Jika Anda mengalami kesalahan ini, Anda dapat mengembalikan kesalahan
untuk ciphertext yang bertentangan atau mengubah kebijakan komitmen Anda untuk sementara.
RequireEncryptAllowDecrypt

Jika Anda mengalami kesalahan ini karena Anda meningkatkan ke versi 2.0. x atau lebih baru dari
versi lebih awal dari 1.7. x tanpa upgrade terlebih dahulu ke yang terbaru 1. x versi (versi 1.7. x atau
lebih baru), pertimbangkan untuk memutar kembali ke yang terbaru 1. x versi dan menyebarkan versi
itu ke semua host sebelum memutakhirkan ke versi 2.0. x atau yang lebih baru. Untuk bantuan, lihat
Cara memigrasi dan menyebarkan AWS Encryption SDK.

Validasi komitmen utama gagal

Saat mendekripsi pesan yang dienkripsi dengan komitmen utama, Anda mungkin mendapatkan
pesan galat gagal validasi komitmen Kunci. Ini menunjukkan bahwa panggilan dekripsi gagal karena
kunci data dalam pesan terenkripsi tidak identik dengan kunci data unik untuk pesan tersebut.
Dengan memvalidasi kunci data selama dekripsi, komitmen kunci melindungi Anda dari mendekripsi
pesan yang mungkin menghasilkan lebih dari satu teks biasa.

Kesalahan ini menunjukkan bahwa pesan terenkripsi yang Anda coba dekripsi tidak dikembalikan
oleh. AWS Encryption SDK Ini mungkin pesan yang dibuat secara manual atau hasil dari korupsi
data. Jika Anda mengalami kesalahan ini, aplikasi Anda dapat menolak pesan dan melanjutkan, atau
berhenti memproses pesan baru.

Konflik konfigurasi: Kebijakan komitmen dan ciphertext 470

AWS Encryption SDK Panduan Developerr

Kegagalan enkripsi lainnya

Enkripsi dapat gagal karena berbagai alasan. Anda tidak dapat menggunakan keyring AWS KMS
penemuan atau penyedia kunci utama dalam mode penemuan untuk mengenkripsi pesan.

Pastikan Anda menentukan keyring atau penyedia kunci master dengan kunci pembungkus yang
memiliki izin untuk digunakan untuk enkripsi. Untuk bantuan terkait izin AWS KMS keys, lihat Melihat
kebijakan utama dan Menentukan akses ke AWS KMS key dalam Panduan AWS Key Management
Service Pengembang.

Kegagalan dekripsi lainnya

Jika upaya Anda untuk mendekripsi pesan terenkripsi gagal, itu berarti bahwa tidak AWS Encryption
SDK dapat (atau tidak akan) mendekripsi salah satu kunci data terenkripsi dalam pesan.

Jika Anda menggunakan keyring atau penyedia kunci master yang menentukan kunci pembungkus,
hanya AWS Encryption SDK menggunakan kunci pembungkus yang Anda tentukan. Verifikasi
bahwa Anda menggunakan kunci pembungkus yang Anda inginkan dan bahwa Anda memiliki
kms:Decrypt izin pada setidaknya satu dari kunci pembungkus. Jika Anda menggunakan AWS
KMS keys, sebagai fallback, Anda dapat mencoba mendekripsi pesan dengan keyring AWS KMS
penemuan atau penyedia kunci utama dalam mode penemuan. Jika operasi berhasil, sebelum
mengembalikan plaintext, verifikasi bahwa kunci yang digunakan untuk mendekripsi pesan adalah
kunci yang Anda percayai.

Pertimbangan rollback

Jika aplikasi Anda gagal mengenkripsi atau mendekripsi data, Anda biasanya dapat menyelesaikan
masalah dengan memperbarui simbol kode, keyrings, penyedia kunci master, atau kebijakan
komitmen. Namun, dalam beberapa kasus, Anda mungkin memutuskan bahwa yang terbaik adalah
memutar kembali aplikasi Anda ke versi sebelumnya AWS Encryption SDK.

Jika Anda harus memutar kembali, lakukan dengan hati-hati. Versi AWS Encryption SDK sebelum
1.7. x tidak dapat mendekripsi ciphertext yang dienkripsi dengan komitmen utama.

• Bergulir kembali dari yang terbaru 1. versi x ke versi sebelumnya AWS Encryption SDK umumnya
aman. Anda mungkin harus membatalkan perubahan yang Anda buat pada kode Anda untuk
menggunakan simbol dan objek yang tidak didukung di versi sebelumnya.

• Setelah Anda mulai mengenkripsi dengan komitmen utama (menetapkan kebijakan komitmen
AndaRequireEncryptAllowDecrypt) di versi 2.0. x atau yang lebih baru, Anda dapat memutar

Kegagalan enkripsi lainnya 471

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-viewing.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-viewing.html
https://docs.aws.amazon.com/kms/latest/developerguide/determining-access.html

AWS Encryption SDK Panduan Developerr

kembali ke versi 1.7. x, tetapi tidak ke versi sebelumnya. Versi AWS Encryption SDK sebelum 1.7.
x tidak dapat mendekripsi ciphertext yang dienkripsi dengan komitmen utama.

Jika Anda secara tidak sengaja mengaktifkan enkripsi dengan komitmen utama sebelum semua host
dapat mendekripsi dengan komitmen utama, mungkin yang terbaik adalah melanjutkan peluncuran
daripada memutar kembali. Jika pesan bersifat sementara atau dapat dijatuhkan dengan aman,
maka Anda dapat mempertimbangkan rollback dengan hilangnya pesan. Jika rollback diperlukan,
Anda dapat mempertimbangkan untuk menulis alat yang mendekripsi dan mengenkripsi ulang semua
pesan.

Pertimbangan rollback 472

AWS Encryption SDK Panduan Developerr

Pertanyaan umum
Pertanyaan umum

• Bagaimana AWS Encryption SDK bedanya dengan AWS SDKs?

• Apa AWS Encryption SDK bedanya dengan klien enkripsi Amazon S3?

• Algoritma kriptografi mana yang didukung oleh AWS Encryption SDK, dan mana yang merupakan
default?

• Bagaimana vektor inisialisasi (IV) dihasilkan dan di mana disimpan?

• Bagaimana setiap kunci data dihasilkan, dienkripsi, dan didekripsi?

• Bagaimana cara melacak kunci data yang digunakan untuk mengenkripsi data saya?

• Bagaimana cara AWS Encryption SDK menyimpan kunci data terenkripsi dengan data terenkripsi
mereka?

• Berapa banyak overhead yang ditambahkan format AWS Encryption SDK pesan ke data
terenkripsi saya?

• Bisakah saya menggunakan penyedia kunci master saya sendiri?

• Dapatkah saya mengenkripsi data di bawah lebih dari satu kunci pembungkus?

• Tipe data apa yang dapat saya enkripsi dengan? AWS Encryption SDK

• Bagaimana cara AWS Encryption SDK mengenkripsi dan mendekripsi input/output (I/O) mengalir?

Bagaimana AWS Encryption SDK bedanya dengan AWS SDKs?

Ini AWS SDKsmenyediakan pustaka untuk berinteraksi dengan Amazon Web Services (AWS),
termasuk AWS Key Management Service (AWS KMS). Beberapa implementasi bahasa AWS
Encryption SDK, seperti AWS Encryption SDK untuk .NET, selalu memerlukan AWS SDK dalam
bahasa pemrograman yang sama. Implementasi bahasa lain memerlukan AWS SDK yang
sesuai hanya jika Anda menggunakan AWS KMS kunci di keyrings atau penyedia kunci utama.
Untuk detailnya, lihat topik tentang bahasa pemrograman Anda diAWS Encryption SDK bahasa
pemrograman.

Anda dapat menggunakan file AWS SDKs untuk berinteraksi AWS KMS, termasuk mengenkripsi
dan mendekripsi sejumlah kecil data (hingga 4.096 byte dengan kunci enkripsi simetris) dan
menghasilkan kunci data untuk enkripsi sisi klien. Namun, ketika Anda membuat kunci data, Anda

Bagaimana AWS Encryption SDK bedanya dengan AWS SDKs? 473

https://aws.amazon.com/tools/

AWS Encryption SDK Panduan Developerr

harus mengelola seluruh proses enkripsi dan dekripsi, termasuk mengenkripsi data Anda dengan
kunci data di luar, membuang kunci data teks biasa dengan aman AWS KMS, menyimpan kunci data
terenkripsi, dan kemudian mendekripsi kunci data dan mendekripsi data Anda. AWS Encryption SDK
Menangani proses ini untuk Anda.

AWS Encryption SDK Ini menyediakan perpustakaan yang mengenkripsi dan mendekripsi data
menggunakan standar industri dan praktik terbaik. Ini menghasilkan kunci data, mengenkripsi di
bawah kunci pembungkus yang Anda tentukan, dan mengembalikan pesan terenkripsi, objek data
portabel yang mencakup data terenkripsi dan kunci data terenkripsi yang Anda butuhkan untuk
mendekripsi itu. Ketika tiba waktunya untuk mendekripsi, Anda meneruskan pesan terenkripsi dan
setidaknya salah satu kunci pembungkus (opsional), dan mengembalikan data plaintext Anda. AWS
Encryption SDK

Anda dapat menggunakan AWS KMS keys sebagai kunci pembungkus di AWS Encryption SDK,
tetapi tidak diperlukan. Anda dapat menggunakan kunci enkripsi yang Anda buat dan kunci dari
pengelola kunci atau modul keamanan perangkat keras lokal. Anda dapat menggunakan AWS
Encryption SDK bahkan jika Anda tidak memiliki AWS akun.

Apa AWS Encryption SDK bedanya dengan klien enkripsi Amazon
S3?

Klien enkripsi Amazon S3 di dalamnya AWS SDKs menyediakan enkripsi dan dekripsi untuk data
yang Anda simpan di Amazon Simple Storage Service (Amazon S3). Klien ini digabungkan erat ke
Amazon S3 dan dimaksudkan untuk digunakan hanya dengan data yang disimpan di sana.

AWS Encryption SDK Ini menyediakan enkripsi dan dekripsi untuk data yang dapat Anda simpan di
mana saja. Klien enkripsi Amazon S3 AWS Encryption SDK dan Amazon S3 tidak kompatibel karena
mereka menghasilkan ciphertext dengan format data yang berbeda.

Algoritma kriptografi mana yang didukung oleh AWS Encryption
SDK, dan mana yang merupakan default?

AWS Encryption SDK Menggunakan algoritma simetris Advanced Encryption Standard (AES) dalam
Galois/Counter Mode (GCM), yang dikenal sebagai AES-GCM, untuk mengenkripsi data Anda. Ini
memungkinkan Anda memilih dari beberapa algoritma simetris dan asimetris untuk mengenkripsi
kunci data yang mengenkripsi data Anda.

Apa AWS Encryption SDK bedanya dengan klien enkripsi Amazon S3? 474

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingClientSideEncryption.html

AWS Encryption SDK Panduan Developerr

Untuk AES-GCM, rangkaian algoritme default adalah AES-GCM dengan kunci 256-bit, derivasi kunci
(HKDF), tanda tangan digital, dan komitmen kunci. AWS Encryption SDK juga mendukung kunci
enkripsi 192-bit, dan 128-bit dan algoritma enkripsi tanpa tanda tangan digital dan komitmen utama.

Dalam semua kasus, panjang vektor inisialisasi (IV) adalah 12 byte; panjang tag otentikasi adalah
16 byte. Secara default, SDK menggunakan kunci data sebagai input ke fungsi derivasi kunci
berbasis HMAC (HKDF) untuk mendapatkan extract-and-expand kunci enkripsi AES-GCM, dan juga
menambahkan tanda tangan Elliptic Curve Digital Signature Algorithm (ECDSA).

Untuk informasi tentang memilih algoritma mana yang akan digunakan, lihatSuite algoritma yang
didukung.

Untuk detail implementasi tentang algoritme yang didukung, lihatReferensi algoritma.

Bagaimana vektor inisialisasi (IV) dihasilkan dan di mana
disimpan?
AWS Encryption SDK Menggunakan metode deterministik untuk membangun nilai IV yang berbeda
untuk setiap frame. Prosedur ini menjamin bahwa tidak pernah IVs diulang dalam pesan. (Sebelum
versi 1.3.0 AWS Encryption SDK for Java dan AWS Encryption SDK for Python, nilai IV unik yang
dihasilkan AWS Encryption SDK secara acak untuk setiap frame.)

IV disimpan dalam pesan terenkripsi yang dikembalikan. AWS Encryption SDK Untuk informasi
selengkapnya, lihat AWS Encryption SDK referensi format pesan.

Bagaimana setiap kunci data dihasilkan, dienkripsi, dan didekripsi?
Metode ini tergantung pada keyring atau penyedia kunci master yang Anda gunakan.

AWS KMS Keyrings dan penyedia kunci master dalam AWS Encryption SDK menggunakan operasi
AWS KMS GenerateDataKeyAPI untuk menghasilkan setiap kunci data dan mengenkripsinya
di bawah kunci pembungkusnya. Untuk mengenkripsi salinan kunci data di bawah kunci KMS
tambahan, mereka menggunakan operasi AWS KMS Enkripsi. Untuk mendekripsi kunci data,
mereka menggunakan operasi AWS KMS Dekripsi. Untuk detailnya, lihat AWS KMS keyring di AWS
Encryption SDK Spesifikasi di GitHub.

Keyring lain menghasilkan kunci data, mengenkripsi, dan mendekripsi menggunakan metode praktik
terbaik untuk setiap bahasa pemrograman. Untuk detailnya, lihat spesifikasi keyring atau penyedia
kunci utama di bagian Kerangka AWS Encryption SDK Spesifikasi di GitHub.

Bagaimana vektor inisialisasi (IV) dihasilkan dan di mana disimpan? 475

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://github.com/awslabs/aws-encryption-sdk-specification/blob/master/framework/aws-kms/aws-kms-keyring.md
https://github.com/awslabs/aws-encryption-sdk-specification/tree/master/framework

AWS Encryption SDK Panduan Developerr

Bagaimana cara melacak kunci data yang digunakan untuk
mengenkripsi data saya?

Yang AWS Encryption SDK melakukan ini untuk Anda. Saat Anda mengenkripsi data, SDK
mengenkripsi kunci data dan menyimpan kunci terenkripsi bersama dengan data terenkripsi
dalam pesan terenkripsi yang dikembalikan. Ketika Anda mendekripsi data, AWS Encryption
SDK mengekstrak kunci data terenkripsi dari pesan terenkripsi, mendekripsi, dan kemudian
menggunakannya untuk mendekripsi data.

Bagaimana cara AWS Encryption SDK menyimpan kunci data
terenkripsi dengan data terenkripsi mereka?

Operasi enkripsi dalam AWS Encryption SDK mengembalikan pesan terenkripsi, struktur data
tunggal yang berisi data terenkripsi dan kunci data terenkripsi. Format pesan terdiri dari setidaknya
dua bagian: header dan badan. Header pesan berisi kunci data terenkripsi dan informasi tentang
bagaimana badan pesan terbentuk. Badan pesan berisi data terenkripsi. Jika rangkaian algoritme
menyertakan tanda tangan digital, format pesan menyertakan footer yang berisi tanda tangan. Untuk
informasi selengkapnya, lihat AWS Encryption SDK referensi format pesan.

Berapa banyak overhead yang ditambahkan format AWS
Encryption SDK pesan ke data terenkripsi saya?

Jumlah overhead yang ditambahkan oleh AWS Encryption SDK tergantung pada beberapa faktor,
termasuk yang berikut:

• Ukuran data plaintext

• Manakah dari algoritma yang didukung yang digunakan

• Apakah data otentikasi tambahan (AAD) disediakan, dan panjang AAD itu

• Jumlah dan jenis kunci pembungkus atau kunci master

• Ukuran bingkai (saat data berbingkai digunakan)

Saat Anda menggunakan konfigurasi defaultnya (satu AWS KMS key sebagai kunci pembungkus
(atau kunci master), tidak ada AAD, data tidak berbingkai, dan algoritme enkripsi dengan
penandatanganan), overhead sekitar 600 byte. AWS Encryption SDK Secara umum, Anda dapat

Bagaimana cara melacak kunci data yang digunakan untuk mengenkripsi data saya? 476

AWS Encryption SDK Panduan Developerr

berasumsi bahwa AWS Encryption SDK penambahan overhead 1 KB atau kurang, tidak termasuk
AAD yang disediakan. Untuk informasi selengkapnya, lihat AWS Encryption SDK referensi format
pesan.

Bisakah saya menggunakan penyedia kunci master saya sendiri?

Ya. Detail implementasi bervariasi tergantung pada bahasa pemrograman yang didukung yang Anda
gunakan. Namun, semua bahasa yang didukung memungkinkan Anda untuk menentukan manajer
materi kriptografi kustom (CMMs) Ms), penyedia kunci master, gantungan kunci, kunci master, dan
kunci pembungkus.

Dapatkah saya mengenkripsi data di bawah lebih dari satu kunci
pembungkus?

Ya. Anda dapat mengenkripsi kunci data dengan kunci pembungkus tambahan (atau kunci master)
untuk menambahkan redundansi ketika kunci berada di wilayah yang berbeda atau tidak tersedia
untuk dekripsi.

Untuk mengenkripsi data di bawah beberapa kunci pembungkus, buat keyring atau penyedia kunci
master dengan beberapa kunci pembungkus. Saat bekerja dengan keyrings, Anda dapat membuat
keyring tunggal dengan beberapa tombol pembungkus atau multi-keyring.

Saat Anda mengenkripsi data dengan beberapa kunci pembungkus, AWS Encryption SDK
menggunakan satu kunci pembungkus untuk menghasilkan kunci data teks biasa. Kunci data unik
dan secara matematis tidak terkait dengan kunci pembungkus. Operasi mengembalikan kunci data
plaintext dan salinan kunci data yang dienkripsi oleh kunci pembungkus. Kemudian metode enkripsi,
mengenkripsi kunci data dengan kunci pembungkus lainnya. Pesan terenkripsi yang dihasilkan
mencakup data terenkripsi dan satu kunci data terenkripsi untuk setiap kunci pembungkus.

Pesan terenkripsi dapat didekripsi dengan menggunakan salah satu kunci pembungkus yang
digunakan dalam operasi enkripsi. AWS Encryption SDK Menggunakan kunci pembungkus
untuk mendekripsi kunci data terenkripsi. Kemudian, ia menggunakan kunci data plaintext untuk
mendekripsi data.

Bisakah saya menggunakan penyedia kunci master saya sendiri? 477

AWS Encryption SDK Panduan Developerr

Tipe data apa yang dapat saya enkripsi dengan? AWS Encryption
SDK

Sebagian besar implementasi bahasa pemrograman AWS Encryption SDK dapat mengenkripsi byte
mentah (byte array), I/O stream (byte stream), dan string. The AWS Encryption SDK for .NET tidak
mendukung I/O aliran. Kami menyediakan contoh kode untuk masing-masing bahasa pemrograman
yang didukung.

Bagaimana cara AWS Encryption SDK mengenkripsi dan
mendekripsi input/output (I/O) mengalir?

AWS Encryption SDK Membuat aliran enkripsi atau dekripsi yang membungkus aliran yang
mendasarinya. I/O Aliran enkripsi atau dekripsi melakukan operasi kriptografi pada panggilan
baca atau tulis. Misalnya, ia dapat membaca data teks biasa pada aliran yang mendasarinya dan
mengenkripsi sebelum mengembalikan hasilnya. Atau dapat membaca ciphertext dari aliran yang
mendasarinya dan mendekripsi sebelum mengembalikan hasilnya. Kami menyediakan contoh kode
untuk mengenkripsi dan mendekripsi aliran untuk setiap bahasa pemrograman yang didukung yang
mendukung streaming.

The AWS Encryption SDK for .NET tidak mendukung I/O aliran.

Tipe data apa yang dapat saya enkripsi dengan? AWS Encryption SDK 478

AWS Encryption SDK Panduan Developerr

AWS Encryption SDK referensi

Informasi di halaman ini adalah referensi untuk membangun pustaka enkripsi Anda sendiri yang
kompatibel dengan file AWS Encryption SDK. Jika Anda tidak membangun pustaka enkripsi
kompatibel Anda sendiri, Anda mungkin tidak memerlukan informasi ini.

Untuk menggunakan AWS Encryption SDK dalam salah satu bahasa pemrograman yang
didukung, lihatBahasa pemrograman.

Untuk spesifikasi yang mendefinisikan elemen AWS Encryption SDK implementasi yang tepat,
lihat AWS Encryption SDK Spesifikasi di GitHub.

AWS Encryption SDK Menggunakan algoritma yang didukung untuk mengembalikan struktur data
tunggal atau pesan yang berisi data terenkripsi dan kunci data terenkripsi yang sesuai. Topik berikut
menjelaskan algoritma dan struktur data. Gunakan informasi ini untuk membangun pustaka yang
dapat membaca dan menulis ciphertext yang kompatibel dengan SDK ini.

Topik

• AWS Encryption SDK referensi format pesan

• AWS Encryption SDK contoh format pesan

• Referensi data terautentikasi tambahan badan (AAD) untuk AWS Encryption SDK

• AWS Encryption SDK referensi algoritma

• AWS Encryption SDK referensi vektor inisialisasi

• AWS KMS Rincian teknis keyring hierarkis

AWS Encryption SDK referensi format pesan

Informasi di halaman ini adalah referensi untuk membangun pustaka enkripsi Anda sendiri yang
kompatibel dengan file AWS Encryption SDK. Jika Anda tidak membangun pustaka enkripsi
kompatibel Anda sendiri, Anda mungkin tidak memerlukan informasi ini.

Untuk menggunakan AWS Encryption SDK dalam salah satu bahasa pemrograman yang
didukung, lihatBahasa pemrograman.

Referensi format pesan 479

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK Panduan Developerr

Untuk spesifikasi yang mendefinisikan elemen AWS Encryption SDK implementasi yang tepat,
lihat AWS Encryption SDK Spesifikasi di GitHub.

Operasi enkripsi dalam AWS Encryption SDK mengembalikan struktur data tunggal atau pesan
terenkripsi yang berisi data terenkripsi (ciphertext) dan semua kunci data terenkripsi. Untuk
memahami struktur data ini, atau untuk membangun pustaka yang membaca dan menulisnya, Anda
perlu memahami format pesan.

Format pesan terdiri dari setidaknya dua bagian: header dan badan. Dalam beberapa kasus, format
pesan terdiri dari bagian ketiga, footer. Format pesan mendefinisikan urutan urutan byte dalam urutan
byte jaringan, juga disebut format big-endian. Format pesan dimulai dengan header, diikuti oleh
tubuh, diikuti oleh footer (ketika ada).

Suite algoritma didukung oleh AWS Encryption SDK penggunaan salah satu dari dua versi format
pesan. Suite algoritma tanpa komitmen utama menggunakan format pesan versi 1. Suite algoritma
dengan komitmen utama menggunakan format pesan versi 2.

Topik

• Struktur header

• Struktur tubuh

• Struktur footer

Struktur header

Header pesan berisi kunci data terenkripsi dan informasi tentang bagaimana badan pesan terbentuk.
Tabel berikut menjelaskan bidang yang membentuk header dalam format pesan versi 1 dan 2. Byte
ditambahkan dalam urutan yang ditunjukkan.

Nilai tidak hadir menunjukkan bahwa bidang tidak ada dalam versi format pesan tersebut. Teks tebal
menunjukkan nilai yang berbeda di setiap versi.

Note

Anda mungkin perlu menggulir secara horizontal atau vertikal untuk melihat semua data
dalam tabel ini.

Struktur header 480

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK Panduan Developerr

Struktur Header

Bidang Format pesan versi 1

Panjang (byte)

Format pesan versi 2

Panjang (byte)

Version 1 1

Type 1 Tidak hadir

Algorithm ID 2 2

Message ID 16 32

AAD Length 2

Ketika konteks enkripsi
kosong, nilai bidang Panjang
AAD 2-byte adalah 0.

2

Ketika konteks enkripsi
kosong, nilai bidang Panjang
AAD 2-byte adalah 0.

AAD Variabel. Panjang bidang ini
muncul di 2 byte sebelumnya
(bidang Panjang AAD).

Ketika konteks enkripsi
kosong, tidak ada bidang AAD
di header.

Variabel. Panjang bidang ini
muncul di 2 byte sebelumnya
(bidang Panjang AAD).

Ketika konteks enkripsi
kosong, tidak ada bidang AAD
di header.

Encrypted Data Key Count 2 2

Encrypted Data Key(s) Variabel. Ditentukan oleh
jumlah kunci data terenkripsi
dan panjang masing-masing.

Variabel. Ditentukan oleh
jumlah kunci data terenkripsi
dan panjang masing-masing.

Content Type 1 1

Reserved 4 Tidak hadir

IV Length 1 Tidak hadir

Frame Length 4 4

Struktur header 481

AWS Encryption SDK Panduan Developerr

Bidang Format pesan versi 1

Panjang (byte)

Format pesan versi 2

Panjang (byte)

Algorithm Suite Data Tidak hadir Variabel. Ditentukan oleh
algoritma yang menghasilkan
pesan.

Header Authentication Variabel. Ditentukan oleh
algoritma yang menghasilkan
pesan.

Variabel. Ditentukan oleh
algoritma yang menghasilkan
pesan.

Versi

Versi format pesan ini. Versi ini adalah 1 atau 2 dikodekan sebagai byte 01 atau 02 dalam notasi
heksadesimal

Jenis

Jenis format pesan ini. Jenis menunjukkan jenis struktur. Satu-satunya jenis yang didukung
digambarkan sebagai data terenkripsi yang diautentikasi pelanggan. Nilai tipenya adalah 128,
dikodekan sebagai byte 80 dalam notasi heksadesimal.

Bidang ini tidak ada dalam format pesan versi 2.

ID Algoritma

Pengidentifikasi untuk algoritma yang digunakan. Ini adalah nilai 2-byte yang ditafsirkan sebagai
integer unsigned 16-bit. Untuk informasi selengkapnya tentang algoritme, lihatAWS Encryption
SDK referensi algoritma.

ID Pesan

Nilai yang dihasilkan secara acak yang mengidentifikasi pesan. ID Pesan:

• Mengidentifikasi pesan terenkripsi secara unik.

• Lemah mengikat header pesan ke badan pesan.

• Menyediakan mekanisme untuk menggunakan kembali kunci data dengan aman dengan
beberapa pesan terenkripsi.

• Melindungi dari penggunaan kembali kunci data yang tidak disengaja atau keausan kunci di.
AWS Encryption SDK

Struktur header 482

AWS Encryption SDK Panduan Developerr

Nilai ini adalah 128 bit dalam format pesan versi 1 dan 256 bit dalam versi 2.

Panjang AAD

Panjang data otentikasi tambahan (AAD). Ini adalah nilai 2-byte ditafsirkan sebagai 16-bit
unsigned integer yang menentukan jumlah byte yang berisi AAD.

Ketika konteks enkripsi kosong, nilai bidang Panjang AAD adalah 0.

AAD

Data tambahan yang diautentikasi. AAD adalah pengkodean konteks enkripsi, array pasangan
kunci-nilai di mana setiap kunci dan nilai adalah string karakter yang dikodekan UTF-8. Konteks
enkripsi dikonversi ke urutan byte dan digunakan untuk nilai AAD. Ketika konteks enkripsi kosong,
tidak ada bidang AAD di header.

Ketika algoritma dengan penandatanganan digunakan, konteks enkripsi harus berisi pasangan
kunci-nilai. {'aws-crypto-public-key', Qtxt} Qtxt mewakili titik kurva elips Q yang
dikompresi menurut SEC 1 versi 2.0 dan kemudian dikodekan base64. Konteks enkripsi dapat
berisi nilai tambahan, tetapi panjang maksimum AAD yang dibangun adalah 2 ^ 16 - 1 byte.

Tabel berikut menjelaskan bidang yang membentuk AAD. Pasangan nilai kunci diurutkan,
berdasarkan kunci, dalam urutan menaik sesuai dengan kode karakter UTF-8. Byte ditambahkan
dalam urutan yang ditunjukkan.

Struktur AAD

Bidang Panjang (byte)

Key-Value Pair Count 2

Key Length 2

Key Variabel. Sama dengan nilai yang ditentukan
dalam 2 byte sebelumnya (Panjang Kunci).

Value Length 2

Value Variabel. Sama dengan nilai yang ditentukan
dalam 2 byte sebelumnya (Value Length).

Struktur header 483

http://www.secg.org/sec1-v2.pdf

AWS Encryption SDK Panduan Developerr

Hitungan Pasangan Nilai Kunci

Jumlah pasangan kunci-nilai di AAD. Ini adalah nilai 2-byte yang ditafsirkan sebagai integer
unsigned 16-bit yang menentukan jumlah pasangan kunci-nilai di AAD. Jumlah maksimum
pasangan kunci-nilai dalam AAD adalah 2^16 - 1.

Ketika tidak ada konteks enkripsi atau konteks enkripsi kosong, bidang ini tidak ada dalam
struktur AAD.

Panjang Kunci

Panjang kunci untuk pasangan kunci-nilai. Ini adalah nilai 2-byte ditafsirkan sebagai 16-bit
unsigned integer yang menentukan jumlah byte yang berisi kunci.

Kunci

Kunci untuk pasangan kunci-nilai. Ini adalah urutan byte yang dikodekan UTF-8.

Nilai Panjang

Panjang nilai untuk pasangan kunci-nilai. Ini adalah nilai 2-byte ditafsirkan sebagai 16-bit
unsigned integer yang menentukan jumlah byte yang berisi nilai.

Nilai

Nilai untuk pasangan kunci-nilai. Ini adalah urutan byte yang dikodekan UTF-8.

Hitungan Kunci Data Terenkripsi

Jumlah kunci data terenkripsi. Ini adalah nilai 2-byte yang ditafsirkan sebagai integer unsigned 16-
bit yang menentukan jumlah kunci data terenkripsi. Jumlah maksimum kunci data terenkripsi di
setiap pesan adalah 65.535 (2 ^ 16 - 1).

Kunci Data Terenkripsi

Urutan kunci data terenkripsi. Panjang urutan ditentukan oleh jumlah kunci data terenkripsi dan
panjang masing-masing. Urutan berisi setidaknya satu kunci data terenkripsi.

Tabel berikut menjelaskan bidang yang membentuk setiap kunci data terenkripsi. Byte
ditambahkan dalam urutan yang ditunjukkan.

Struktur Kunci Data Terenkripsi

Bidang Panjang (byte)

Key Provider ID Length 2

Struktur header 484

AWS Encryption SDK Panduan Developerr

Bidang Panjang (byte)

Key Provider ID Variabel. Sama dengan nilai yang ditentuka
n dalam 2 byte sebelumnya (Panjang ID
Penyedia Kunci).

Key Provider Information Length 2

Key Provider Information Variabel. Sama dengan nilai yang ditentukan
dalam 2 byte sebelumnya (Panjang Informasi
Penyedia Kunci).

Encrypted Data Key Length 2

Encrypted Data Key Variabel. Sama dengan nilai yang ditentuka
n dalam 2 byte sebelumnya (Panjang Kunci
Data Terenkripsi).

Panjang ID Penyedia Kunci

Panjang pengenal penyedia kunci. Ini adalah nilai 2-byte yang ditafsirkan sebagai integer
unsigned 16-bit yang menentukan jumlah byte yang berisi ID penyedia kunci.

ID Penyedia Kunci

Pengidentifikasi penyedia kunci. Ini digunakan untuk menunjukkan penyedia kunci data
terenkripsi dan dimaksudkan untuk dapat diperluas.

Panjang Informasi Penyedia Kunci

Panjang informasi penyedia kunci. Ini adalah nilai 2-byte yang ditafsirkan sebagai integer
unsigned 16-bit yang menentukan jumlah byte yang berisi informasi penyedia kunci.

Informasi Penyedia Utama

Informasi penyedia utama. Itu ditentukan oleh penyedia kunci.

AWS KMS Kapan penyedia kunci utama atau Anda menggunakan AWS KMS keyring, nilai ini
berisi Nama Sumber Daya Amazon (ARN) dari. AWS KMS key

Struktur header 485

AWS Encryption SDK Panduan Developerr

Panjang Kunci Data Terenkripsi

Panjang kunci data terenkripsi. Ini adalah nilai 2-byte ditafsirkan sebagai 16-bit unsigned
integer yang menentukan jumlah byte yang berisi kunci data terenkripsi.

Kunci Data Terenkripsi

Kunci data terenkripsi. Ini adalah kunci enkripsi data yang dienkripsi oleh penyedia kunci.

Jenis Konten

Jenis data terenkripsi, baik nonframed atau framed.

Note

Bila memungkinkan, gunakan data berbingkai. AWS Encryption SDK Mendukung data
nonframed hanya untuk penggunaan lama. Beberapa implementasi bahasa masih AWS
Encryption SDK dapat menghasilkan ciphertext nonframed. Semua implementasi bahasa
yang didukung dapat mendekripsi ciphertext berbingkai dan nonframed.

Data berbingkai dibagi menjadi bagian yang sama panjangnya; setiap bagian dienkripsi secara
terpisah. Konten berbingkai adalah tipe 2, dikodekan sebagai byte 02 dalam notasi heksadesimal.

Data nonframed tidak dibagi; itu adalah gumpalan terenkripsi tunggal. Konten non-framed adalah
tipe 1, dikodekan sebagai byte 01 dalam notasi heksadesimal.

Dilindungi

Urutan cadangan 4 byte. Nilai ini harus 0. Ini dikodekan sebagai byte 00 00 00 00 dalam notasi
heksadesimal (yaitu, urutan 4-byte dari nilai integer 32-bit sama dengan 0).

Bidang ini tidak ada dalam format pesan versi 2.

Panjang IV

Panjang vektor inisialisasi (IV). Ini adalah nilai 1-byte ditafsirkan sebagai 8-bit unsigned integer
yang menentukan jumlah byte yang berisi IV. Nilai ini ditentukan oleh nilai IV byte dari algoritma
yang menghasilkan pesan.

Bidang ini tidak ada dalam format pesan versi 2, yang hanya mendukung rangkaian algoritme
yang menggunakan nilai IV deterministik di header pesan.

Struktur header 486

AWS Encryption SDK Panduan Developerr

Panjang Bingkai

Panjang setiap frame data berbingkai. Ini adalah nilai 4-byte yang ditafsirkan sebagai integer
unsigned 32-bit yang menentukan jumlah byte di setiap frame. Ketika data tidak dibingkai, yaitu,
ketika nilai Content Type bidang adalah 1, nilai ini harus 0.

Note

Bila memungkinkan, gunakan data berbingkai. AWS Encryption SDK Mendukung data
nonframed hanya untuk penggunaan lama. Beberapa implementasi bahasa masih AWS
Encryption SDK dapat menghasilkan ciphertext nonframed. Semua implementasi bahasa
yang didukung dapat mendekripsi ciphertext berbingkai dan nonframed.

Data Suite Algoritma

Data tambahan yang dibutuhkan oleh algoritma yang menghasilkan pesan. Panjang dan isi
ditentukan oleh algoritma. Panjangnya mungkin 0.

Bidang ini tidak ada dalam format pesan versi 1.

Otentikasi Header

Otentikasi header ditentukan oleh algoritma yang menghasilkan pesan. Otentikasi header dihitung
di seluruh header. Ini terdiri dari IV dan tag otentikasi. Byte ditambahkan dalam urutan yang
ditunjukkan.

Struktur Otentikasi Header

Bidang Panjang dalam versi 1.0
(byte)

Panjang dalam versi 2.0
(byte)

IV Variabel. Ditentukan oleh
nilai IV byte dari algoritma
 yang menghasilkan pesan.

N/A

Authentication Tag Variabel. Ditentukan oleh
nilai byte tag otentikasi dari
algoritma yang menghasilkan
pesan.

Variabel. Ditentukan oleh
nilai byte tag otentikasi dari
algoritma yang menghasilkan
pesan.

Struktur header 487

AWS Encryption SDK Panduan Developerr

IV

Vektor inisialisasi (IV) digunakan untuk menghitung tag otentikasi header.

Bidang ini tidak ada di header format pesan versi 2. Format pesan versi 2 hanya mendukung
rangkaian algoritme yang menggunakan nilai IV deterministik di header pesan.

Tag Otentikasi

Nilai otentikasi untuk header. Ini digunakan untuk mengotentikasi seluruh isi header.

Struktur tubuh

Badan pesan berisi data terenkripsi, yang disebut ciphertext. Struktur tubuh tergantung pada jenis
konten (tidak dibingkai atau dibingkai). Bagian berikut menjelaskan format badan pesan untuk setiap
jenis konten. Struktur isi pesan sama dalam format pesan versi 1 dan 2.

Topik

• Data tidak dibingkai

• Data berbingkai

Data tidak dibingkai

Data non-frame dienkripsi dalam satu gumpalan dengan IV dan tubuh AAD yang unik.

Note

Bila memungkinkan, gunakan data berbingkai. AWS Encryption SDK Mendukung data
nonframed hanya untuk penggunaan lama. Beberapa implementasi bahasa masih AWS
Encryption SDK dapat menghasilkan ciphertext nonframed. Semua implementasi bahasa
yang didukung dapat mendekripsi ciphertext berbingkai dan nonframed.

Tabel berikut menjelaskan bidang yang membentuk data nonframed. Byte ditambahkan dalam urutan
yang ditunjukkan.

Struktur tubuh 488

AWS Encryption SDK Panduan Developerr

Struktur Tubuh Tidak Berbingkai

Bidang Panjangnya, dalam byte

IV Variabel. Sama dengan nilai yang ditentukan
dalam IV Length byte header.

Encrypted Content Length 8

Encrypted Content Variabel. Sama dengan nilai yang ditentuka
n dalam 8 byte sebelumnya (Panjang Konten
Terenkripsi).

Authentication Tag Variabel. Ditentukan oleh implementasi
algoritma yang digunakan.

IV

Vektor inisialisasi (IV) untuk digunakan dengan algoritma enkripsi.

Panjang Konten Terenkripsi

Panjang konten terenkripsi, atau ciphertext. Ini adalah nilai 8-byte yang ditafsirkan sebagai integer
unsigned 64-bit yang menentukan jumlah byte yang berisi konten terenkripsi.

Secara teknis, nilai maksimum yang diizinkan adalah 2^63 - 1, atau 8 exbibytes (8 eIB).
Namun, dalam praktiknya nilai maksimum adalah 2^36 - 32, atau 64 gibibytes (64 GiB), karena
pembatasan yang diberlakukan oleh algoritma yang diterapkan.

Note

Implementasi Java SDK ini selanjutnya membatasi nilai ini menjadi 2^31 - 1, atau 2
gibibytes (2 GiB), karena pembatasan dalam bahasa.

Konten Terenkripsi

Konten terenkripsi (ciphertext) seperti yang dikembalikan oleh algoritma enkripsi.

Tag Otentikasi

Nilai otentikasi untuk tubuh. Ini digunakan untuk mengautentikasi badan pesan.

Struktur tubuh 489

AWS Encryption SDK Panduan Developerr

Data berbingkai

Dalam data berbingkai, data plaintext dibagi menjadi bagian yang sama panjangnya yang disebut
frame. AWS Encryption SDK Enkripsi setiap frame secara terpisah dengan IV dan body AAD yang
unik.

Note

Bila memungkinkan, gunakan data berbingkai. AWS Encryption SDK Mendukung data
nonframed hanya untuk penggunaan lama. Beberapa implementasi bahasa masih AWS
Encryption SDK dapat menghasilkan ciphertext nonframed. Semua implementasi bahasa
yang didukung dapat mendekripsi ciphertext berbingkai dan nonframed.

Panjang bingkai, yang merupakan panjang konten terenkripsi dalam bingkai, dapat berbeda untuk
setiap pesan. Jumlah maksimum byte dalam bingkai adalah 2^32 - 1. Jumlah maksimum frame
dalam pesan adalah 2^32 - 1.

Ada dua jenis frame: reguler dan final. Setiap pesan harus terdiri dari atau menyertakan bingkai akhir.

Semua frame reguler dalam pesan memiliki panjang bingkai yang sama. Bingkai akhir dapat memiliki
panjang bingkai yang berbeda.

Komposisi frame dalam data berbingkai bervariasi dengan panjang konten terenkripsi.

• Sama dengan panjang bingkai — Ketika panjang konten terenkripsi sama dengan panjang bingkai
bingkai biasa, pesan dapat terdiri dari bingkai biasa yang berisi data, diikuti oleh bingkai akhir
dengan panjang nol (0). Atau, pesan hanya dapat terdiri dari bingkai akhir yang berisi data. Dalam
hal ini, frame akhir memiliki panjang frame yang sama dengan frame biasa.

• Kelipatan panjang bingkai — Ketika panjang konten terenkripsi adalah kelipatan yang tepat dari
panjang bingkai bingkai biasa, pesan dapat berakhir dalam bingkai biasa yang berisi data, diikuti
oleh bingkai akhir dengan panjang nol (0). Atau, pesan dapat berakhir dalam bingkai akhir yang
berisi data. Dalam hal ini, frame akhir memiliki panjang frame yang sama dengan frame biasa.

• Bukan kelipatan dari panjang bingkai — Ketika panjang konten terenkripsi bukan kelipatan yang
tepat dari panjang bingkai dari frame biasa, frame akhir berisi data yang tersisa. Panjang bingkai
bingkai akhir kurang dari panjang bingkai bingkai biasa.

Struktur tubuh 490

AWS Encryption SDK Panduan Developerr

• Kurang dari panjang bingkai — Ketika panjang konten terenkripsi kurang dari panjang bingkai
bingkai biasa, pesan terdiri dari bingkai akhir yang berisi semua data. Panjang bingkai bingkai akhir
kurang dari panjang bingkai bingkai biasa.

Tabel berikut menjelaskan bidang yang membentuk bingkai. Byte ditambahkan dalam urutan yang
ditunjukkan.

Struktur Tubuh Berbingkai, Bingkai Biasa

Bidang Panjangnya, dalam byte

Sequence Number 4

IV Variabel. Sama dengan nilai yang ditentukan
dalam IV Length byte header.

Encrypted Content Variabel. Sama dengan nilai yang ditentukan
Frame Length dalam header.

Authentication Tag Variabel. Ditentukan oleh algoritma yang
digunakan, seperti yang Algorithm ID ditentuka
n dalam header.

Nomor Urutan

Nomor urutan bingkai. Ini adalah nomor penghitung tambahan untuk bingkai. Ini adalah nilai 4-
byte yang ditafsirkan sebagai bilangan bulat 32-bit yang tidak ditandatangani.

Data berbingkai harus dimulai dari nomor urut 1. Frame berikutnya harus berurutan dan harus
berisi kenaikan 1 dari frame sebelumnya. Jika tidak, proses dekripsi berhenti dan melaporkan
kesalahan.

IV

Vektor inisialisasi (IV) untuk frame. SDK menggunakan metode deterministik untuk membangun
IV yang berbeda untuk setiap frame dalam pesan. Panjangnya ditentukan oleh rangkaian
algoritma yang digunakan.

Konten Terenkripsi

Konten terenkripsi (ciphertext) untuk frame, seperti yang dikembalikan oleh algoritma enkripsi.

Struktur tubuh 491

AWS Encryption SDK Panduan Developerr

Tag Otentikasi

Nilai otentikasi untuk frame. Ini digunakan untuk mengotentikasi seluruh frame.

Struktur Tubuh Berbingkai, Bingkai Akhir

Bidang Panjangnya, dalam byte

Sequence Number End 4

Sequence Number 4

IV Variabel. Sama dengan nilai yang ditentukan
dalam IV Length byte header.

Encrypted Content Length 4

Encrypted Content Variabel. Sama dengan nilai yang ditentuka
n dalam 4 byte sebelumnya (Panjang Konten
Terenkripsi).

Authentication Tag Variabel. Ditentukan oleh algoritma yang
digunakan, seperti yang Algorithm ID ditentuka
n dalam header.

Nomor Urutan Akhir

Indikator untuk frame akhir. Nilai dikodekan sebagai 4 byte FF FF FF FF dalam notasi
heksadesimal.

Nomor Urutan

Nomor urutan bingkai. Ini adalah nomor penghitung tambahan untuk bingkai. Ini adalah nilai 4-
byte yang ditafsirkan sebagai bilangan bulat 32-bit yang tidak ditandatangani.

Data berbingkai harus dimulai dari nomor urut 1. Frame berikutnya harus berurutan dan harus
berisi kenaikan 1 dari frame sebelumnya. Jika tidak, proses dekripsi berhenti dan melaporkan
kesalahan.

Struktur tubuh 492

AWS Encryption SDK Panduan Developerr

IV

Vektor inisialisasi (IV) untuk frame. SDK menggunakan metode deterministik untuk membangun
IV yang berbeda untuk setiap frame dalam pesan. Panjang panjang IV ditentukan oleh rangkaian
algoritma.

Panjang Konten Terenkripsi

Panjang konten terenkripsi. Ini adalah nilai 4-byte ditafsirkan sebagai 32-bit unsigned integer yang
menentukan jumlah byte yang berisi konten terenkripsi untuk frame.

Konten Terenkripsi

Konten terenkripsi (ciphertext) untuk frame, seperti yang dikembalikan oleh algoritma enkripsi.

Tag Otentikasi

Nilai otentikasi untuk frame. Ini digunakan untuk mengotentikasi seluruh frame.

Struktur footer

Ketika algoritma dengan penandatanganan digunakan, format pesan berisi footer. Footer pesan
berisi tanda tangan digital yang dihitung melalui header dan isi pesan. Tabel berikut menjelaskan
bidang yang membentuk footer. Byte ditambahkan dalam urutan yang ditunjukkan. Struktur footer
pesan sama dalam format pesan versi 1 dan 2.

Struktur Footer

Bidang Panjangnya, dalam byte

Signature Length 2

Signature Variabel. Sama dengan nilai yang ditentuka
n dalam 2 byte sebelumnya (Panjang Tanda
Tangan).

Panjang Tanda Tangan

Panjang tanda tangan. Ini adalah nilai 2-byte ditafsirkan sebagai 16-bit unsigned integer yang
menentukan jumlah byte yang berisi tanda tangan.

Struktur footer 493

AWS Encryption SDK Panduan Developerr

Tanda tangan

Tanda tangan.

AWS Encryption SDK contoh format pesan

Informasi di halaman ini adalah referensi untuk membangun pustaka enkripsi Anda sendiri yang
kompatibel dengan file AWS Encryption SDK. Jika Anda tidak membangun pustaka enkripsi
kompatibel Anda sendiri, Anda mungkin tidak memerlukan informasi ini.

Untuk menggunakan AWS Encryption SDK dalam salah satu bahasa pemrograman yang
didukung, lihatBahasa pemrograman.

Untuk spesifikasi yang mendefinisikan elemen AWS Encryption SDK implementasi yang tepat,
lihat AWS Encryption SDK Spesifikasi di GitHub.

Topik berikut menunjukkan contoh format AWS Encryption SDK pesan. Setiap contoh menunjukkan
byte mentah, dalam notasi heksadesimal, diikuti dengan deskripsi tentang apa yang diwakili oleh byte
tersebut.

Topik

• Data berbingkai (format pesan versi 1)

• Data berbingkai (format pesan versi 2)

• Data yang tidak dibingkai (format pesan versi 1)

Data berbingkai (format pesan versi 1)

Contoh berikut menunjukkan format pesan untuk data berbingkai dalam format pesan versi 1.

+--------+
| Header |
+--------+
01 Version (1.0)
80 Type (128, customer authenticated encrypted
 data)
0378 Algorithm ID (see Referensi algoritma)
6E7C0FBD 4DF4A999 717C22A2 DDFE1A27 Message ID (random 128-bit value)

Contoh format pesan 494

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK Panduan Developerr

008E AAD Length (142)
0004 AAD Key-Value Pair Count (4)
0005 AAD Key-Value Pair 1, Key Length (5)
30746869 73 AAD Key-Value Pair 1, Key ("0This")
0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")
0003 AAD Key-Value Pair 2, Key Length (3)
31616E AAD Key-Value Pair 2, Key ("1an")
000A AAD Key-Value Pair 2, Value Length (10)
656E6372 79774690 6F6E AAD Key-Value Pair 2, Value ("encryption")
0008 AAD Key-Value Pair 3, Key Length (8)
32636F6E 74657874 AAD Key-Value Pair 3, Key ("2context")
0007 AAD Key-Value Pair 3, Value Length (7)
6578616D 706C65 AAD Key-Value Pair 3, Value ("example")
0015 AAD Key-Value Pair 4, Key Length (21)
6177732D 63727970 746F2D70 75626C69 AAD Key-Value Pair 4, Key ("aws-crypto-
public-key")
632D6B65 79
0044 AAD Key-Value Pair 4, Value Length (68)
416A4173 7569326F 7430364C 4B77715A AAD Key-Value Pair 4, Value
 ("AjAsui2ot06LKwqZXDJnU/Aqc2vD+0OkpOZ1cc8Tg2qd7rs5aLTg7lvfUEW/86+/5w==")
58444A6E 552F4171 63327644 2B304F6B
704F5A31 63633854 67327164 37727335
614C5467 376C7666 5545572F 38362B2F
35773D3D
0002 EncryptedDataKeyCount (2)
0007 Encrypted Data Key 1, Key Provider ID Length
 (7)
6177732D 6B6D73 Encrypted Data Key 1, Key Provider ID ("aws-
kms")
004B Encrypted Data Key 1, Key Provider
 Information Length (75)
61726E3A 6177733A 6B6D733A 75732D77 Encrypted Data Key 1, Key Provider
 Information ("arn:aws:kms:us-west-2:111122223333:key/715c0818-5825-4245-
a755-138a6d9a11e6")
6573742D 323A3131 31313232 32323333
33333A6B 65792F37 31356330 3831382D
35383235 2D343234 352D6137 35352D31
33386136 64396131 316536
00A7 Encrypted Data Key 1, Encrypted Data Key
 Length (167)
01010200 7857A1C1 F7370545 4ECA7C83 Encrypted Data Key 1, Encrypted Data Key
956C4702 23DCE8D7 16C59679 973E3CED
02A4EF29 7F000000 7E307C06 092A8648

Data berbingkai (format pesan versi 1) 495

AWS Encryption SDK Panduan Developerr

86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040C3F F02C897B
7A12EB19 8BF2D802 0110803B 24003D1F
A5474FBC 392360B5 CB9997E0 6A17DE4C
A6BD7332 6BF86DAB 60D8CCB8 8295DBE9
4707E356 ADA3735A 7C52D778 B3135A47
9F224BF9 E67E87
0007 Encrypted Data Key 2, Key Provider ID Length
 (7)
6177732D 6B6D73 Encrypted Data Key 2, Key Provider ID ("aws-
kms")
004E Encrypted Data Key 2, Key Provider
 Information Length (78)
61726E3A 6177733A 6B6D733A 63612D63 Encrypted Data Key 2, Key Provider
 Information ("arn:aws:kms:ca-central-1:111122223333:key/9b13ca4b-afcc-46a8-aa47-
be3435b423ff")
656E7472 616C2D31 3A313131 31323232
32333333 333A6B65 792F3962 31336361
34622D61 6663632D 34366138 2D616134
372D6265 33343335 62343233 6666
00A7 Encrypted Data Key 2, Encrypted Data Key
 Length (167)
01010200 78FAFFFB D6DE06AF AC72F79B Encrypted Data Key 2, Encrypted Data Key
0E57BD87 3F60F4E6 FD196144 5A002C94
AF787150 69000000 7E307C06 092A8648
86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040C36 CD985E12
D218B674 5BBC6102 0110803B 0320E3CD
E470AA27 DEAB660B 3E0CE8E0 8B1A89E4
57DCC69B AAB1294F 21202C01 9A50D323
72EBAAFD E24E3ED8 7168E0FA DB40508F
556FBD58 9E621C
02 Content Type (2, framed data)
00000000 Reserved
0C IV Length (12)
00000100 Frame Length (256)
4ECBD5C0 9899CA65 923D2347 IV
0B896144 0CA27950 CA571201 4DA58029 Authentication Tag
+------+
| Body |
+------+
00000001 Frame 1, Sequence Number (1)

Data berbingkai (format pesan versi 1) 496

AWS Encryption SDK Panduan Developerr

6BD3FE9C ADBCB213 5B89E8F1 Frame 1, IV
1F6471E0 A51AF310 10FA9EF6 F0C76EDF Frame 1, Encrypted Content
F5AFA33C 7D2E8C6C 9C5D5175 A212AF8E
FBD9A0C3 C6E3FB59 C125DBF2 89AC7939
BDEE43A8 0F00F49E ACBBD8B2 1C785089
A90DB923 699A1495 C3B31B50 0A48A830
201E3AD9 1EA6DA14 7F6496DB 6BC104A4
DEB7F372 375ECB28 9BF84B6D 2863889F
CB80A167 9C361C4B 5EC07438 7A4822B4
A7D9D2CC 5150D414 AF75F509 FCE118BD
6D1E798B AEBA4CDB AD009E5F 1A571B77
0041BC78 3E5F2F41 8AF157FD 461E959A
BB732F27 D83DC36D CC9EBC05 00D87803
57F2BB80 066971C2 DEEA062F 4F36255D
E866C042 E1382369 12E9926B BA40E2FC
A820055F FB47E428 41876F14 3B6261D9
5262DB34 59F5D37E 76E46522 E8213640
04EE3CC5 379732B5 F56751FA 8E5F26AD Frame 1, Authentication Tag
00000002 Frame 2, Sequence Number (2)
F1140984 FF25F943 959BE514 Frame 2, IV
216C7C6A 2234F395 F0D2D9B9 304670BF Frame 2, Encrypted Content
A1042608 8A8BCB3F B58CF384 D72EC004
A41455B4 9A78BAC9 36E54E68 2709B7BD
A884C1E1 705FF696 E540D297 446A8285
23DFEE28 E74B225A 732F2C0C 27C6BDA2
7597C901 65EF3502 546575D4 6D5EBF22
1FF787AB 2E38FD77 125D129C 43D44B96
778D7CEE 3C36625F FF3A985C 76F7D320
ED70B1F3 79729B47 E7D9B5FC 02FCE9F5
C8760D55 7779520A 81D54F9B EC45219D
95941F7E 5CBAEAC8 CEC13B62 1464757D
AC65B6EF 08262D74 44670624 A3657F7F
2A57F1FD E7060503 AC37E197 2F297A84
DF1172C2 FA63CF54 E6E2B9B6 A86F582B
3B16F868 1BBC5E4D 0B6919B3 08D5ABCF
FECDC4A4 8577F08B 99D766A1 E5545670
A61F0A3B A3E45A84 4D151493 63ECA38F Frame 2, Authentication Tag
FFFFFFFF Final Frame, Sequence Number End
00000003 Final Frame, Sequence Number (3)
35F74F11 25410F01 DD9E04BF Final Frame, IV
0000008E Final Frame, Encrypted Content Length (142)
F7A53D37 2F467237 6FBD0B57 D1DFE830 Final Frame, Encrypted Content
B965AD1F A910AA5F 5EFFFFF4 BC7D431C
BA9FA7C4 B25AF82E 64A04E3A A0915526

Data berbingkai (format pesan versi 1) 497

AWS Encryption SDK Panduan Developerr

88859500 7096FABB 3ACAD32A 75CFED0C
4A4E52A3 8E41484D 270B7A0F ED61810C
3A043180 DF25E5C5 3676E449 0986557F
C051AD55 A437F6BC 139E9E55 6199FD60
6ADC017D BA41CDA4 C9F17A83 3823F9EC
B66B6A5A 80FDB433 8A48D6A4 21CB
811234FD 8D589683 51F6F39A 040B3E3B Final Frame, Authentication Tag
+--------+
| Footer |
+--------+
0066 Signature Length (102)
30640230 085C1D3C 63424E15 B2244448 Signature
639AED00 F7624854 F8CF2203 D7198A28
758B309F 5EFD9D5D 2E07AD0B 467B8317
5208B133 02301DF7 2DFC877A 66838028
3C6A7D5E 4F8B894E 83D98E7C E350F424
7E06808D 0FE79002 E24422B9 98A0D130
A13762FF 844D

Data berbingkai (format pesan versi 2)

Contoh berikut menunjukkan format pesan untuk data berbingkai dalam format pesan versi 2.

+--------+
| Header |
+--------+
02 Version (2.0)
0578 Algorithm ID (see Algorithms reference)
122747eb 21dfe39b 38631c61 7fad7340
cc621a30 32a11cc3 216d0204 fd148459 Message ID (random 256-bit value)
008e AAD Length (142)
0004 AAD Key-Value Pair Count (4)
0005 AAD Key-Value Pair 1, Key Length (5)
30546869 73 AAD Key-Value Pair 1, Key ("0This")
0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")
0003 AAD Key-Value Pair 2, Key Length (3)
31616e AAD Key-Value Pair 2, Key ("1an")
000a AAD Key-Value Pair 2, Value Length (10)
656e6372 79707469 6f6e AAD Key-Value Pair 2, Value ("encryption")
0008 AAD Key-Value Pair 3, Key Length (8)
32636f6e 74657874 AAD Key-Value Pair 3, Key ("2context")
0007 AAD Key-Value Pair 3, Value Length (7)

Data berbingkai (format pesan versi 2) 498

AWS Encryption SDK Panduan Developerr

6578616d 706c65 AAD Key-Value Pair 3, Value ("example")
0015 AAD Key-Value Pair 4, Key Length (21)
6177732d 63727970 746f2d70 75626c69 AAD Key-Value Pair 4, Key ("aws-crypto-
public-key")
632d6b65 79
0044 AAD Key-Value Pair 4, Value Length (68)
41746733 72703845 41345161 36706669 AAD Key-Value Pair 4, Value
 ("QXRnM3JwOEVBNFFhNnBmaTk3MUlTNTk3NHpOMnlZWE5vSmtwRHFPc0dIYkVaVDRqME5OMlFkRStmbTFVY01WdThnPT0=")
39373149 53353937 347a4e32 7959584e
6f4a6b70 44714f73 47486245 5a54346a
304e4e32 5164452b 666d3155 634d5675
38673d3d
0001 Encrypted Data Key Count (1)
0007 Encrypted Data Key 1, Key Provider ID Length
 (7)
6177732d 6b6d73 Encrypted Data Key 1, Key Provider ID ("aws-
kms")
004b Encrypted Data Key 1, Key Provider
 Information Length (75)
61726e3a 6177733a 6b6d733a 75732d77 Encrypted Data Key 1, Key
 Provider Information ("arn:aws:kms:us-west-2:658956600833:key/b3537ef1-
d8dc-4780-9f5a-55776cbb2f7f")
6573742d 323a3635 38393536 36303038
33333a6b 65792f62 33353337 6566312d
64386463 2d343738 302d3966 35612d35
35373736 63626232 663766
00a7 Encrypted Data Key 1, Encrypted Data Key
 Length (167)
01010100 7840f38c 275e3109 7416c107 Encrypted Data Key 1, Encrypted Data Key
29515057 1964ada3 ef1c21e9 4c8ba0bd
bc9d0fb4 14000000 7e307c06 092a8648
86f70d01 0706a06f 306d0201 00306806
092a8648 86f70d01 0701301e 06096086
48016503 04012e30 11040c39 32d75294
06063803 f8460802 0110803b 2a46bc23
413196d2 903bf1d7 3ed98fc8 a94ac6ed
e00ee216 74ec1349 12777577 7fa052a5
ba62e9e4 f2ac8df6 bcb1758f 2ce0fb21
cc9ee5c9 7203bb
02 Content Type (2, framed data)
00001000 Frame Length (4096)
05cd035b 29d5499d 4587570b 87502afe Algorithm Suite Data (key commitment)
634f7b2c c3df2aa9 88a10105 4a2c7687
76cb339f 2536741f 59a1c202 4f2594ab Authentication Tag

Data berbingkai (format pesan versi 2) 499

AWS Encryption SDK Panduan Developerr

+------+
| Body |
+------+
ffffffff Final Frame, Sequence Number End
00000001 Final Frame, Sequence Number (1)
00000000 00000000 00000001 Final Frame, IV
00000009 Final Frame, Encrypted Content Length (9)
fa6e39c6 02927399 3e Final Frame, Encrypted Content
f683a564 405d68db eeb0656c d57c9eb0 Final Frame, Authentication Tag
+--------+
| Footer |
+--------+
0067 Signature Length (103)
30650230 2a1647ad 98867925 c1712e8f Signature
ade70b3f 2a2bc3b8 50eb91ef 56cfdd18
967d91d8 42d92baf 357bba48 f636c7a0
869cade2 023100aa ae12d08f 8a0afe85
e5054803 110c9ed8 11b2e08a c4a052a9
074217ea 3b01b660 534ac921 bf091d12
3657e2b0 9368bd

Data yang tidak dibingkai (format pesan versi 1)

Contoh berikut menunjukkan format pesan untuk data nonframed.

Note

Bila memungkinkan, gunakan data berbingkai. AWS Encryption SDK Mendukung data
nonframed hanya untuk penggunaan lama. Beberapa implementasi bahasa masih AWS
Encryption SDK dapat menghasilkan ciphertext nonframed. Semua implementasi bahasa
yang didukung dapat mendekripsi ciphertext berbingkai dan nonframed.

+--------+
| Header |
+--------+
01 Version (1.0)
80 Type (128, customer authenticated encrypted
 data)
0378 Algorithm ID (see Referensi algoritma)
B8929B01 753D4A45 C0217F39 404F70FF Message ID (random 128-bit value)

Data yang tidak dibingkai (format pesan versi 1) 500

AWS Encryption SDK Panduan Developerr

008E AAD Length (142)
0004 AAD Key-Value Pair Count (4)
0005 AAD Key-Value Pair 1, Key Length (5)
30746869 73 AAD Key-Value Pair 1, Key ("0This")
0002 AAD Key-Value Pair 1, Value Length (2)
6973 AAD Key-Value Pair 1, Value ("is")
0003 AAD Key-Value Pair 2, Key Length (3)
31616E AAD Key-Value Pair 2, Key ("1an")
000A AAD Key-Value Pair 2, Value Length (10)
656E6372 79774690 6F6E AAD Key-Value Pair 2, Value ("encryption")
0008 AAD Key-Value Pair 3, Key Length (8)
32636F6E 74657874 AAD Key-Value Pair 3, Key ("2context")
0007 AAD Key-Value Pair 3, Value Length (7)
6578616D 706C65 AAD Key-Value Pair 3, Value ("example")
0015 AAD Key-Value Pair 4, Key Length (21)
6177732D 63727970 746F2D70 75626C69 AAD Key-Value Pair 4, Key ("aws-crypto-
public-key")
632D6B65 79
0044 AAD Key-Value Pair 4, Value Length (68)
41734738 67473949 6E4C5075 3136594B AAD Key-Value Pair 4, Value
 ("AsG8gG9InLPu16YKlqXTOD+nykG8YqHAhqecj8aXfD2e5B4gtVE73dZkyClA+rAMOQ==")
6C715854 4F442B6E 796B4738 59714841
68716563 6A386158 66443265 35423467
74564537 33645A6B 79436C41 2B72414D
4F513D3D
0002 Encrypted Data Key Count (2)
0007 Encrypted Data Key 1, Key Provider ID Length
 (7)
6177732D 6B6D73 Encrypted Data Key 1, Key Provider ID ("aws-
kms")
004B Encrypted Data Key 1, Key Provider
 Information Length (75)
61726E3A 6177733A 6B6D733A 75732D77 Encrypted Data Key 1, Key Provider
 Information ("arn:aws:kms:us-west-2:111122223333:key/715c0818-5825-4245-
a755-138a6d9a11e6")
6573742D 323A3131 31313232 32323333
33333A6B 65792F37 31356330 3831382D
35383235 2D343234 352D6137 35352D31
33386136 64396131 316536
00A7 Encrypted Data Key 1, Encrypted Data Key
 Length (167)
01010200 7857A1C1 F7370545 4ECA7C83 Encrypted Data Key 1, Encrypted Data Key
956C4702 23DCE8D7 16C59679 973E3CED
02A4EF29 7F000000 7E307C06 092A8648

Data yang tidak dibingkai (format pesan versi 1) 501

AWS Encryption SDK Panduan Developerr

86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040C28 4116449A
0F2A0383 659EF802 0110803B B23A8133
3A33605C 48840656 C38BCB1F 9CCE7369
E9A33EBE 33F46461 0591FECA 947262F3
418E1151 21311A75 E575ECC5 61A286E0
3E2DEBD5 CB005D
0007 Encrypted Data Key 2, Key Provider ID Length
 (7)
6177732D 6B6D73 Encrypted Data Key 2, Key Provider ID ("aws-
kms")
004E Encrypted Data Key 2, Key Provider
 Information Length (78)
61726E3A 6177733A 6B6D733A 63612D63 Encrypted Data Key 2, Key Provider
 Information ("arn:aws:kms:ca-central-1:111122223333:key/9b13ca4b-afcc-46a8-aa47-
be3435b423ff")
656E7472 616C2D31 3A313131 31323232
32333333 333A6B65 792F3962 31336361
34622D61 6663632D 34366138 2D616134
372D6265 33343335 62343233 6666
00A7 Encrypted Data Key 2, Encrypted Data Key
 Length (167)
01010200 78FAFFFB D6DE06AF AC72F79B Encrypted Data Key 2, Encrypted Data Key
0E57BD87 3F60F4E6 FD196144 5A002C94
AF787150 69000000 7E307C06 092A8648
86F70D01 0706A06F 306D0201 00306806
092A8648 86F70D01 0701301E 06096086
48016503 04012E30 11040CB2 A820D0CC
76616EF2 A6B30D02 0110803B 8073D0F1
FDD01BD9 B0979082 099FDBFC F7B13548
3CC686D7 F3CF7C7A CCC52639 122A1495
71F18A46 80E2C43F A34C0E58 11D05114
2A363C2A E11397
01 Content Type (1, nonframed data)
00000000 Reserved
0C IV Length (12)
00000000 Frame Length (0, nonframed data)
734C1BBE 032F7025 84CDA9D0 IV
2C82BB23 4CBF4AAB 8F5C6002 622E886C Authentication Tag
+------+
| Body |
+------+
D39DD3E5 915E0201 77A4AB11 IV

Data yang tidak dibingkai (format pesan versi 1) 502

AWS Encryption SDK Panduan Developerr

00000000 0000028E Encrypted Content Length (654)
E8B6F955 B5F22FE4 FD890224 4E1D5155 Encrypted Content
5871BA4C 93F78436 1085E4F8 D61ECE28
59455BD8 D76479DF C28D2E0B BDB3D5D3
E4159DFE C8A944B6 685643FC EA24122B
6766ECD5 E3F54653 DF205D30 0081D2D8
55FCDA5B 9F5318BC F4265B06 2FE7C741
C7D75BCC 10F05EA5 0E2F2F40 47A60344
ECE10AA7 559AF633 9DE2C21B 12AC8087
95FE9C58 C65329D1 377C4CD7 EA103EC1
31E4F48A 9B1CC047 EE5A0719 704211E5
B48A2068 8060DF60 B492A737 21B0DB21
C9B21A10 371E6179 78FAFB0B BAAEC3F4
9D86E334 701E1442 EA5DA288 64485077
54C0C231 AD43571A B9071925 609A4E59
B8178484 7EB73A4F AAE46B26 F5B374B8
12B0000C 8429F504 936B2492 AAF47E94
A5BA804F 7F190927 5D2DF651 B59D4C2F
A15D0551 DAEBA4AF 2060D0D5 CB1DA4E6
5E2034DB 4D19E7CD EEA6CF7E 549C86AC
46B2C979 AB84EE12 202FD6DF E7E3C09F
C2394012 AF20A97E 369BCBDA 62459D3E
C6FFB914 FEFD4DE5 88F5AFE1 98488557
1BABBAE4 BE55325E 4FB7E602 C1C04BEE
F3CB6B86 71666C06 6BF74E1B 0F881F31
B731839B CF711F6A 84CA95F5 958D3B44
E3862DF6 338E02B5 C345CFF8 A31D54F3
6920AA76 0BF8E903 552C5A04 917CCD11
D4E5DF5C 491EE86B 20C33FE1 5D21F0AD
6932E67C C64B3A26 B8988B25 CFA33E2B
63490741 3AB79D60 D8AEFBE9 2F48E25A
978A019C FE49EE0A 0E96BF0D D6074DDB
66DFF333 0E10226F 0A1B219C BE54E4C2
2C15100C 6A2AA3F1 88251874 FDC94F6B
9247EF61 3E7B7E0D 29F3AD89 FA14A29C
76E08E9B 9ADCDF8C C886D4FD A69F6CB4
E24FDE26 3044C856 BF08F051 1ADAD329
C4A46A1E B5AB72FE 096041F1 F3F3571B
2EAFD9CB B9EB8B83 AE05885A 8F2D2793
1E3305D9 0C9E2294 E8AD7E3B 8E4DEC96
6276C5F1 A3B7E51E 422D365D E4C0259C
50715406 822D1682 80B0F2E5 5C94
65B2E942 24BEEA6E A513F918 CCEC1DE3 Authentication Tag
+--------+

Data yang tidak dibingkai (format pesan versi 1) 503

AWS Encryption SDK Panduan Developerr

| Footer |
+--------+
0067 Signature Length (103)
30650230 7229DDF5 B86A5B64 54E4D627 Signature
CBE194F1 1CC0F8CF D27B7F8B F50658C0
BE84B355 3CED1721 A0BE2A1B 8E3F449E
1BEB8281 023100B2 0CB323EF 58A4ACE3
1559963B 889F72C3 B15D1700 5FB26E61
331F3614 BC407CEE B86A66FA CBF74D9E
34CB7E4B 363A38

Referensi data terautentikasi tambahan badan (AAD) untuk AWS
Encryption SDK

Informasi di halaman ini adalah referensi untuk membangun pustaka enkripsi Anda sendiri yang
kompatibel dengan file AWS Encryption SDK. Jika Anda tidak membangun pustaka enkripsi
kompatibel Anda sendiri, Anda mungkin tidak memerlukan informasi ini.

Untuk menggunakan AWS Encryption SDK dalam salah satu bahasa pemrograman yang
didukung, lihatBahasa pemrograman.

Untuk spesifikasi yang mendefinisikan elemen AWS Encryption SDK implementasi yang tepat,
lihat AWS Encryption SDK Spesifikasi di GitHub.

Anda harus memberikan data otentikasi tambahan (AAD) ke algoritma AES-GCM untuk setiap
operasi kriptografi. Ini berlaku untuk data tubuh berbingkai dan tidak berbingkai. Untuk informasi
selengkapnya tentang AAD dan cara penggunaannya dalam Galois/Counter Mode (GCM), lihat
Rekomendasi untuk Mode Operasi Sandi Blok: Galois/Counter Mode (GCM) dan GMAC.

Tabel berikut menjelaskan bidang yang membentuk tubuh AAD. Byte ditambahkan dalam urutan
yang ditunjukkan.

Struktur AAD Tubuh

Bidang Panjangnya, dalam byte

Message ID 16

Referensi tubuh AAD 504

https://github.com/awslabs/aws-encryption-sdk-specification/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

AWS Encryption SDK Panduan Developerr

Bidang Panjangnya, dalam byte

Body AAD Content Variabel. Lihat Konten Body AAD dalam daftar
berikut.

Sequence Number 4

Content Length 8

ID Pesan

Message IDNilai yang sama ditetapkan dalam header pesan.

Konten AAD Tubuh

Nilai yang dikodekan UTF-8 ditentukan oleh jenis data tubuh yang digunakan.

Untuk data nonframed, gunakan nilainya. AWSKMSEncryptionClient Single Block

Untuk frame reguler dalam data berbingkai, gunakan nilainyaAWSKMSEncryptionClient
Frame.

Untuk frame terakhir dalam data berbingkai, gunakan nilainyaAWSKMSEncryptionClient
Final Frame.

Nomor Urutan

Sebuah nilai 4-byte ditafsirkan sebagai 32-bit unsigned integer.

Untuk data berbingkai, ini adalah nomor urut bingkai.

Untuk data nonframed, gunakan nilai 1, dikodekan sebagai 4 byte 00 00 00 01 dalam notasi
heksadesimal.

Panjang Konten

Panjang, dalam byte, dari data plaintext yang disediakan untuk algoritma untuk enkripsi. Ini adalah
nilai 8-byte yang ditafsirkan sebagai integer unsigned 64-bit.

Referensi tubuh AAD 505

AWS Encryption SDK Panduan Developerr

AWS Encryption SDK referensi algoritma

Informasi di halaman ini adalah referensi untuk membangun pustaka enkripsi Anda sendiri yang
kompatibel dengan file AWS Encryption SDK. Jika Anda tidak membangun pustaka enkripsi
kompatibel Anda sendiri, Anda mungkin tidak memerlukan informasi ini.

Untuk menggunakan AWS Encryption SDK dalam salah satu bahasa pemrograman yang
didukung, lihatBahasa pemrograman.

Untuk spesifikasi yang mendefinisikan elemen AWS Encryption SDK implementasi yang tepat,
lihat AWS Encryption SDK Spesifikasi di GitHub.

Jika Anda membangun perpustakaan Anda sendiri yang dapat membaca dan menulis ciphertext
yang kompatibel dengan AWS Encryption SDK, Anda harus memahami bagaimana AWS Encryption
SDK mengimplementasikan suite algoritme yang didukung untuk mengenkripsi data mentah.

AWS Encryption SDK Mendukung suite algoritma berikut. Semua suite algoritma AES-GCM memiliki
vektor inisialisasi 12-byte dan tag otentikasi AES-GCM 16-byte. Rangkaian algoritme default
bervariasi sesuai dengan AWS Encryption SDK versi dan kebijakan komitmen kunci yang dipilih.
Untuk detailnya, lihat Kebijakan komitmen dan rangkaian algoritme.

AWS Encryption SDK Suite Algoritma

ID
Algoritma

Versi
format
pesan

Enkripsi
algoritme

Panjang
kunci
data (bit)

Algoritma
derivasi
kunci

Algoritma
tanda
tangan

Algoritma
komitmen
utama

Panjang
data
rangkaian
algoritma
(byte)

05 78 0x02 AES-
GCM

256 HKDF
dengan
SHA-512

ECDSA
dengan
P-384
dan
SHA-384

HKDF
dengan
SHA-512

32
(komitmen
utama)

Referensi algoritma 506

https://github.com/awslabs/aws-encryption-sdk-specification/

AWS Encryption SDK Panduan Developerr

ID
Algoritma

Versi
format
pesan

Enkripsi
algoritme

Panjang
kunci
data (bit)

Algoritma
derivasi
kunci

Algoritma
tanda
tangan

Algoritma
komitmen
utama

Panjang
data
rangkaian
algoritma
(byte)

04 78 0x02 AES-
GCM

256 HKDF
dengan
SHA-512

Tidak
ada

HKDF
dengan
SHA-512

32
(komitmen
utama)

03 78 0x01 AES-
GCM

256 HKDF
dengan
SHA-384

ECDSA
dengan
P-384
dan
SHA-384

Tidak
ada

N/A

03 46 0x01 AES-
GCM

192 HKDF
dengan
SHA-384

ECDSA
dengan
P-384
dan
SHA-384

Tidak
ada

N/A

02 14 0x01 AES-
GCM

128 HKDF
dengan
SHA-256

ECDSA
dengan
P-256
dan
SHA-256

Tidak
ada

N/A

01 78 0x01 AES-
GCM

256 HKDF
dengan
SHA-256

Tidak
ada

Tidak
ada

N/A

01 46 0x01 AES-
GCM

192 HKDF
dengan
SHA-256

Tidak
ada

Tidak
ada

N/A

Referensi algoritma 507

AWS Encryption SDK Panduan Developerr

ID
Algoritma

Versi
format
pesan

Enkripsi
algoritme

Panjang
kunci
data (bit)

Algoritma
derivasi
kunci

Algoritma
tanda
tangan

Algoritma
komitmen
utama

Panjang
data
rangkaian
algoritma
(byte)

01 14 0x01 AES-
GCM

128 HKDF
dengan
SHA-256

Tidak
ada

Tidak
ada

N/A

00 78 0x01 AES-
GCM

256 Tidak
ada

Tidak
ada

Tidak
ada

N/A

00 46 0x01 AES-
GCM

192 Tidak
ada

Tidak
ada

Tidak
ada

N/A

00 14 0x01 AES-
GCM

128 Tidak
ada

Tidak
ada

Tidak
ada

N/A

ID Algoritma

Nilai heksadesimal 2-byte yang secara unik mengidentifikasi implementasi algoritma. Nilai ini
disimpan di header pesan ciphertext.

Versi format pesan

Versi format pesan. Suite algoritma dengan komitmen utama menggunakan format pesan versi 2
(0x02). Suite algoritma tanpa komitmen kunci menggunakan format pesan versi 1 (0x01).

Panjang data rangkaian algoritma

Panjang dalam byte data khusus untuk suite algoritma. Bidang ini hanya didukung dalam
format pesan versi 2 (0x02). Dalam format pesan versi 2 (0x02), data ini muncul di Algorithm
suite data bidang header pesan. Rangkaian algoritma yang mendukung komitmen kunci
menggunakan 32 byte untuk string komitmen utama. Untuk informasi selengkapnya, lihat
Algoritma komitmen utama dalam daftar ini.

Panjang kunci data

Panjang kunci data dalam bit. AWS Encryption SDK Mendukung kunci 256-bit, 192-bit, dan 128-
bit. Kunci data dihasilkan oleh keyring atau kunci master.

Referensi algoritma 508

AWS Encryption SDK Panduan Developerr

Dalam beberapa implementasi, kunci data ini digunakan sebagai masukan ke fungsi derivasi
extract-and-expand kunci berbasis HMAC (HKDF). Output dari HKDF digunakan sebagai kunci
enkripsi data dalam algoritma enkripsi. Untuk informasi selengkapnya, lihat Algoritma derivasi
kunci dalam daftar ini.

Enkripsi algoritme

Nama dan mode algoritma enkripsi yang digunakan. Suite algoritma dalam AWS Encryption SDK
menggunakan algoritma enkripsi Advanced Encryption Standard (AES) dengan Galois/Counter
Mode (GCM).

Algoritma komitmen utama

Algoritma yang digunakan untuk menghitung string komitmen kunci. Output disimpan di
Algorithm suite data bidang header pesan dan digunakan untuk memvalidasi kunci data
untuk komitmen utama.

Untuk penjelasan teknis tentang menambahkan komitmen utama ke rangkaian algoritme, lihat
Key Committing AEADs in Cryptology ePrint Archive.

Algoritma derivasi kunci

Fungsi derivasi extract-and-expand kunci berbasis HMAC (HKDF) digunakan untuk menurunkan
kunci enkripsi data. AWS Encryption SDK Penggunaan HKDF didefinisikan dalam RFC 5869.

Suite algoritma tanpa komitmen kunci (ID algoritma 01xx —03xx)

• Fungsi hash yang digunakan adalah SHA-384 atau SHA-256, tergantung pada rangkaian
algoritma.

• Untuk langkah ekstrak:

• Tidak ada garam yang digunakan. Per RFC, garam diatur ke string nol. Panjang string
sama dengan panjang output fungsi hash, yaitu 48 byte untuk SHA-384 dan 32 byte untuk
SHA-256.

• Materi kunci input adalah kunci data dari keyring atau penyedia kunci master.

• Untuk langkah perluasan:

• Kunci pseudorandom input adalah output dari langkah ekstrak.

• Info input adalah gabungan dari ID algoritma dan ID pesan (dalam urutan itu).

• Panjang bahan kunci keluaran adalah panjang kunci Data. Output ini digunakan sebagai
kunci enkripsi data dalam algoritma enkripsi.

Suite algoritma dengan komitmen utama (ID algoritma 04xx dan05xx)

Referensi algoritma 509

https://eprint.iacr.org/2020/1153
https://tools.ietf.org/html/rfc5869

AWS Encryption SDK Panduan Developerr

• Fungsi hash yang digunakan adalah SHA-512.

• Untuk langkah ekstrak:

• Garam adalah nilai acak kriptografi 256-bit. Dalam format pesan versi 2 (0x02), nilai ini
disimpan di lapangan. MessageID

• Materi kunci awal adalah kunci data dari keyring atau penyedia kunci master.

• Untuk langkah perluasan:

• Kunci pseudorandom input adalah output dari langkah ekstrak.

• Label kuncinya adalah byte yang dikodekan UTF-8 dari DERIVEKEY string dalam urutan byte
endian besar.

• Info input adalah gabungan dari ID algoritma dan label kunci (dalam urutan itu).

• Panjang bahan kunci keluaran adalah panjang kunci Data. Output ini digunakan sebagai
kunci enkripsi data dalam algoritma enkripsi.

Versi format pesan

Versi format pesan yang digunakan dengan suite algoritma. Lihat perinciannya di Referensi format
pesan.

Algoritma tanda tangan

Algoritma tanda tangan yang digunakan untuk menghasilkan tanda tangan digital di atas header
dan body ciphertext. AWS Encryption SDK Menggunakan Elliptic Curve Digital Signature
Algorithm (ECDSA) dengan spesifikasi sebagai berikut:

• Kurva elips yang digunakan adalah kurva P-384 atau P-256, seperti yang ditentukan oleh ID
algoritma. Kurva ini didefinisikan dalam Digital Signature Standard (DSS) (FIPS PUB 186-4).

• Fungsi hash yang digunakan adalah SHA-384 (dengan kurva P-384) atau SHA-256 (dengan
kurva P-256).

AWS Encryption SDK referensi vektor inisialisasi

Informasi di halaman ini adalah referensi untuk membangun pustaka enkripsi Anda sendiri yang
kompatibel dengan file AWS Encryption SDK. Jika Anda tidak membangun pustaka enkripsi
kompatibel Anda sendiri, Anda mungkin tidak memerlukan informasi ini.

Untuk menggunakan AWS Encryption SDK dalam salah satu bahasa pemrograman yang
didukung, lihatBahasa pemrograman.

Referensi vektor inisialisasi 510

http://doi.org/10.6028/NIST.FIPS.186-4

AWS Encryption SDK Panduan Developerr

Untuk spesifikasi yang mendefinisikan elemen AWS Encryption SDK implementasi yang tepat,
lihat AWS Encryption SDK Spesifikasi di GitHub.

AWS Encryption SDK Menyediakan vektor inisialisasi (IVs) yang diperlukan oleh semua suite
algoritma yang didukung. SDK menggunakan nomor urut bingkai untuk membangun IV sehingga
tidak ada dua frame dalam pesan yang sama yang dapat memiliki IV yang sama.

Setiap 96-bit (12-byte) IV dibangun dari dua array byte besar-endian yang digabungkan dalam urutan
sebagai berikut:

• 64 bit: 0 (dicadangkan untuk penggunaan masa depan)

• 32 bit: Nomor urut bingkai. Untuk tag otentikasi header, nilai ini semua nol.

Sebelum pengenalan caching kunci data, AWS Encryption SDK selalu menggunakan kunci data baru
untuk mengenkripsi setiap pesan, dan itu menghasilkan semua IVs secara acak. Dihasilkan secara
acak aman IVs secara kriptografis karena kunci data tidak pernah digunakan kembali. Ketika SDK
memperkenalkan caching kunci data, yang dengan sengaja menggunakan kembali kunci data, kami
mengubah cara SDK menghasilkan. IVs

Menggunakan deterministik IVs yang tidak dapat diulang dalam pesan secara signifikan
meningkatkan jumlah pemanggilan yang dapat dieksekusi dengan aman di bawah satu kunci data.
Selain itu, kunci data yang di-cache selalu menggunakan rangkaian algoritma dengan fungsi derivasi
kunci. Menggunakan IV deterministik dengan fungsi derivasi kunci pseudo-acak untuk mendapatkan
kunci enkripsi dari kunci data memungkinkan untuk mengenkripsi 2 ^ 32 pesan tanpa melebihi AWS
Encryption SDK batas kriptografi.

AWS KMS Rincian teknis keyring hierarkis

Keyring AWS KMS Hierarkis menggunakan kunci data unqiue untuk mengenkripsi setiap pesan dan
mengenkripsi setiap kunci data dengan kunci pembungkus unik yang berasal dari kunci cabang aktif.
Ini menggunakan derivasi kunci dalam mode counter dengan fungsi pseudorandom dengan HMAC
SHA-256 untuk menurunkan kunci pembungkus 32 byte dengan input berikut.

• Garam acak 16 byte

• Kunci cabang aktif

• Nilai yang dikodekan UTF-8 untuk pengenal penyedia kunci "” aws-kms-hierarchy

AWS KMS Rincian teknis keyring hierarkis 511

https://github.com/awslabs/aws-encryption-sdk-specification/
https://en.wikipedia.org/wiki/Initialization_vector
https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
https://en.wikipedia.org/wiki/UTF-8

AWS Encryption SDK Panduan Developerr

Keyring Hierarkis menggunakan kunci pembungkus turunan untuk mengenkripsi salinan kunci data
teks biasa menggunakan AES-GCM-256 dengan tag otentikasi 16 byte dan input berikut.

• Kunci pembungkus turunan digunakan sebagai kunci sandi AES-GCM

• Kunci data digunakan sebagai pesan AES-GCM

• Vektor inisialisasi acak 12 byte (IV) digunakan sebagai AES-GCM IV

• Data otentikasi tambahan (AAD) yang berisi nilai serial berikut.

Nilai Panjang dalam byte Ditafsirkan sebagai

"aws-kms-hierarchy" 17 UTF-8 dikodekan

Pengidentifikasi kunci cabang Variabel UTF-8 dikodekan

Versi kunci cabang 16 UTF-8 dikodekan

Konteks enkripsi Variabel Pasangan nilai kunci yang
dikodekan UTF-8

AWS KMS Rincian teknis keyring hierarkis 512

AWS Encryption SDK Panduan Developerr

Riwayat dokumen untuk Panduan AWS Encryption SDK
Pengembang

Topik ini menjelaskan pembaruan yang signifikan untuk Panduan Pengembang AWS Encryption SDK
.

Topik

• Pembaruan terkini

• Pembaruan lebih awal

Pembaruan terkini

Tabel berikut menjelaskan perubahan signifikan pada dokumentasi ini sejak November 2017.
Selain perubahan besar yang tercantum di sini, kami juga sering memperbarui dokumentasi untuk
memperbaiki deskripsi dan contoh, serta membahas umpan balik yang Anda kirimkan kepada kami.
Untuk diberitahu tentang perubahan signifikan, berlangganan umpan RSS.

Perubahan Deskripsi Tanggal

Ketersediaan umum Menambahkan dokumenta
si untuk keyring AWS KMS
ECDH dan keyring ECDH
mentah.

Juni 17, 2024

AWS Encryption SDK for Java
versi 3.x

Mengintegrasikan AWS
Encryption SDK for Java
dengan perpustakaan
penyedia materi. Menambahk
an dukungan untuk keyrings
dan konteks enkripsi CMM
yang diperlukan.

6 Desember 2023

AWS Encryption SDK
untuk .NET versi 4.x

Menambahkan dukungan
untuk keyring AWS KMS
Hierarkis, CMM konteks

12 Oktober 2023

Pembaruan terkini 513

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/java.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html

AWS Encryption SDK Panduan Developerr

enkripsi yang diperlukan,
dan gantungan kunci RSA
asimetris. AWS KMS

Ketersediaan umum Memperkenalkan dukungan
untuk AWS Encryption SDK
untuk .NET.

Mei 17, 2022

Perubahan dokumentasi Ganti AWS Key Managemen
t Service istilah customer
master key (CMK) dengan
AWS KMS keydan kunci KMS.

Agustus 30, 2021

Ketersediaan umum Menambahkan dukungan
untuk AWS Key Managemen
t Service. (AWS KMS)
Kunci multi-wilayah. Tombol
Multi-Region adalah AWS
KMS kunci Wilayah AWS
yang berbeda yang dapat
digunakan secara bergantian
karena memiliki ID kunci dan
bahan kunci yang sama.

8 Juni 2021

Ketersediaan umum Ditambahkan dan diperbarui
dokumentasi tentang proses
dekripsi pesan ditingkatkan.

11 Mei 2021

Ketersediaan umum Dokumentasi yang ditambahk
an dan diperbarui untuk rilis
ketersediaan umum AWS
Enkripsi CLI versi 1.8. x untuk
mengganti AWS Enkripsi CLI
versi 1.7. x, dan AWS Enkripsi
CLI 2.1. x untuk mengganti
AWS Enkripsi CLI 2.0. x.

27 Oktober 2020

Pembaruan terkini 514

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/dot-net.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#master-key
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/configure.html#config-mrks
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html#digital-sigs
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html

AWS Encryption SDK Panduan Developerr

Ketersediaan umum Ditambahkan dan diperbaru
i dokumentasi untuk rilis
ketersediaan umum AWS
Encryption SDK versi 1.7.
x dan 2.0. x, termasuk
panduan praktik terbaik,
panduan migrasi, konsep
yang diperbarui, topik bahasa
pemrograman yang diperbarui,
referensi suite algoritme yang
diperbarui, referensi format
pesan yang diperbarui, dan
contoh format pesan baru.

24 September 2020

Ketersediaan umum Ditambahkan dan diperbaru
i dokumentasi untuk rilis
ketersediaan umum dari AWS
Encryption SDK for JavaScript.

1 Oktober 2019

Rilis pratinjau Dokumentasi yang ditambahk
an dan diperbarui dari rilis beta
publik dari AWS Encryption
SDK for JavaScript.

21 Juni 2019

Ketersediaan umum Ditambahkan dan diperbaru
i dokumentasi untuk rilis
ketersediaan umum dari AWS
Encryption SDK for C.

16 Mei 2019

Rilis pratinjau Ditambahkan dokumentasi
dari rilis pratinjau dari AWS
Encryption SDK for C.

5 Februari 2019

Rilis baru Menambahkan dokumenta
si antarmuka baris perintah
untuk file AWS Encryption
SDK.

20 November 2017

Pembaruan terkini 515

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/about-versions.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/best-practices.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/best-practices.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/migration-guide.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/concepts.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/programming-languages.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/algorithms-reference.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/message-format-examples.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/javascript.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/c-language.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/crypto-cli.html

AWS Encryption SDK Panduan Developerr

Pembaruan lebih awal

Tabel berikut menjelaskan perubahan signifikan pada Panduan AWS Encryption SDK Pengembang
sebelum November 2017.

Ubah Deskripsi Date

Rilis baru Menambahkan Caching kunci
data chapter untuk fitur baru.

Menambahkan the section
called “Referensi vektor
inisialisasi” topik yang
menjelaskan bahwa SDK
berubah dari menghasilkan
acak menjadi IVs membangun
deterministik. IVs

Menambahkan the section
called “Konsep” topik untuk
menjelaskan konsep,
termasuk manajer bahan
kriptografi baru.

Juli 31, 2017

Perbarui Memperluas Referensi format
pesan dokumentasi ke AWS
Encryption SDK referensi
 bagian baru.

Menambahkan bagian tentang
AWS Encryption SDK Suite
algoritma yang didukung.

Maret 21, 2017

Rilis baru AWS Encryption SDK
Sekarang mendukung bahasa
Python pemrograman,
selainJava.

Maret 21, 2017

Pembaruan lebih awal 516

AWS Encryption SDK Panduan Developerr

Ubah Deskripsi Date

Rilis awal Rilis awal dokumentasi AWS
Encryption SDK dan ini.

Maret 22, 2016

Pembaruan lebih awal 517

AWS Encryption SDK Panduan Developerr

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan
dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

dxviii

	AWS Encryption SDK
	Table of Contents
	Apa itu AWS Encryption SDK?
	Dikembangkan dalam repositori sumber terbuka
	Kompatibilitas dengan pustaka dan layanan enkripsi
	Support dan pemeliharaan
	Belajar lebih
	Mengirim umpan balik
	Konsep dalam AWS Encryption SDK
	Enkripsi amplop
	Kunci data
	Kunci pembungkus
	Gantungan kunci dan penyedia kunci utama
	Konteks enkripsi
	Pesan terenkripsi
	Suite algoritma
	Manajer materi kriptografi
	Enkripsi simetris dan asimetris
	Komitmen utama
	Kebijakan komitmen
	Tanda tangan digital

	Bagaimana cara AWS Encryption SDK kerjanya
	Bagaimana AWS Encryption SDK mengenkripsi data
	Bagaimana AWS Encryption SDK mendekripsi pesan terenkripsi

	Suite algoritma yang didukung di AWS Encryption SDK
	Direkomendasikan: AES-GCM dengan derivasi kunci, penandatanganan, dan komitmen utama
	Suite algoritma lain yang didukung

	Menggunakan AWS Encryption SDK dengan AWS KMS
	Praktik terbaik untuk AWS Encryption SDK
	Mengkonfigurasi AWS Encryption SDK
	Memilih bahasa pemrograman
	Memilih tombol pembungkus
	Menggunakan Multi-region AWS KMS keys
	Memilih rangkaian algoritme
	Membatasi kunci data terenkripsi
	Membuat filter penemuan
	Mengkonfigurasi konteks enkripsi yang diperlukan CMM
	Menetapkan kebijakan komitmen
	Bekerja dengan data streaming
	Menyembunyikan kunci data

	Toko-toko utama di AWS Encryption SDK
	Terminologi dan konsep toko kunci
	Menerapkan izin yang paling tidak diistimewakan
	Buat toko kunci
	Konfigurasikan tindakan penyimpanan kunci
	Konfigurasikan tindakan penyimpanan kunci Anda
	Konfigurasi statis
	Konfigurasi penemuan

	Buat kunci cabang aktif
	Putar kunci cabang aktif Anda

	Gantungan kunci
	Cara kerja gantungan kunci
	Kompatibilitas keyring
	Memvariasikan persyaratan untuk gantungan kunci enkripsi
	Gantungan Kunci yang Kompatibel dan Penyedia Kunci Utama

	AWS KMS gantungan kunci
	Izin yang diperlukan untuk keyrings AWS KMS
	Mengidentifikasi AWS KMS keys dalam AWS KMS keyring
	Membuat AWS KMS keyring
	Menggunakan AWS KMS keyring penemuan
	Menggunakan AWS KMS keyring penemuan regional

	AWS KMS Gantungan kunci hierarkis
	Cara kerjanya
	Prasyarat
	Izin yang diperlukan
	Pilih cache
	Cache default
	MultiThreaded cache
	StormTracking cache
	Cache bersama

	Buat keyring Hierarkis
	Buat keyring Hierarkis dengan ID kunci cabang statis
	Buat keyring Hierarkis dengan pemasok ID kunci cabang

	AWS KMS Gantungan kunci ECDH
	Izin yang diperlukan untuk gantungan kunci AWS KMS ECDH
	Membuat keyring AWS KMS ECDH
	Membuat keyring AWS KMS penemuan ECDH

	Gantungan kunci AES mentah
	Gantungan kunci RSA mentah
	Gantungan kunci ECDH mentah
	Membuat keyring ECDH mentah
	RawPrivateKeyToStaticPublicKey
	EphemeralPrivateKeyToStaticPublicKey
	PublicKeyDiscovery

	Multi-kunci

	AWS Encryption SDK bahasa pemrograman
	AWS Encryption SDK for C
	Instalasi AWS Encryption SDK for C
	Menggunakan AWS Encryption SDK for C
	Pola untuk mengenkripsi dan mendekripsi data
	Penghitungan referensi

	AWS Encryption SDK for C contoh
	Mengenkripsi dan mendekripsi string
	Enkripsi string
	Dekripsi string

	AWS Encryption SDK untuk .NET
	Instalasi AWS Encryption SDK untuk .NET
	Debugging AWS Encryption SDK untuk .NET
	AWS Encryption SDK untuk contoh.NET
	Mengenkripsi data di untuk .NET AWS Encryption SDK
	Mendekripsi dalam mode ketat di untuk.NET AWS Encryption SDK
	Mendekripsi dengan keyring penemuan di for .NET AWS Encryption SDK

	AWS Encryption SDK untuk Go
	Prasyarat
	Penginstalan

	AWS Encryption SDK for Java
	Prasyarat
	Penginstalan
	AWS Encryption SDK for Java contoh
	Mengenkripsi dan mendekripsi string
	Mengenkripsi dan mendekripsi aliran byte
	Mengenkripsi dan mendekripsi aliran byte dengan multi-keyring

	AWS Encryption SDK for JavaScript
	Kompatibilitas AWS Encryption SDK for JavaScript
	AWS Encryption SDK for JavaScript kompatibilitas
	Kompabilitas peramban

	Memasang AWS Encryption SDK for JavaScript
	Modul di AWS Encryption SDK for JavaScript
	Modul untuk JavaScript Node.js
	Modul untuk JavaScript Browser
	Modul untuk semua implementasi

	AWS Encryption SDK for JavaScript contoh
	Mengenkripsi data dengan keyring AWS KMS
	Mendekripsi data dengan keyring AWS KMS

	AWS Encryption SDK for Python
	Prasyarat
	Penginstalan
	AWS Encryption SDK for Python kode contoh
	Mengenkripsi dan mendekripsi string
	Mengenkripsi dan mendekripsi aliran byte

	AWS Encryption SDK untuk Rust
	Prasyarat
	Penginstalan
	AWS Encryption SDK untuk kode contoh Rust
	Mengenkripsi dan mendekripsi data di for Rust AWS Encryption SDK

	AWS Encryption SDK antarmuka baris perintah
	Menginstal antarmuka baris AWS Encryption SDK perintah
	Memasang prasyarat
	Menginstal dan memperbarui CLI AWS Enkripsi

	Cara menggunakan CLI AWS Enkripsi
	Cara mengenkripsi dan mendekripsi data
	Cara menentukan kunci pembungkus
	Membungkus atribut parameter kunci
	Cara menentukan beberapa tombol pembungkus

	Cara memberikan masukan
	Cara menentukan lokasi output
	Cara menggunakan konteks enkripsi
	Cara menentukan kebijakan komitmen
	Cara menyimpan parameter dalam file konfigurasi

	Contoh CLI AWS Enkripsi
	Mengenkripsi file
	Mendekripsi file
	Mengenkripsi semua file dalam direktori
	Mendekripsi semua file dalam direktori
	Mengenkripsi dan mendekripsi pada baris perintah
	Menggunakan beberapa kunci master
	Mengenkripsi dan mendekripsi dalam skrip
	Menggunakan caching kunci data

	AWS Encryption SDK Sintaks CLI dan referensi parameter
	AWS Sintaks CLI enkripsi
	AWS Parameter baris perintah CLI enkripsi
	Parameter lanjutan

	Versi CLI AWS Enkripsi
	Versi 1.8. x perubahan pada CLI AWS Enkripsi
	Versi 2.1. x perubahan pada CLI AWS Enkripsi
	Versi 1.9. x dan 2.2. x perubahan pada CLI AWS Enkripsi
	Versi 3.0. x perubahan pada CLI AWS Enkripsi

	Caching kunci data
	Cara menggunakan caching kunci data
	Menggunakan caching kunci data: Step-by-step
	Contoh caching kunci data: Enkripsi string

	Mengatur ambang keamanan cache
	Detail caching kunci data
	Cara kerja caching kunci data
	Enkripsi data tanpa caching
	Enkripsi data dengan caching

	Membuat cache bahan kriptografi
	Membuat manajer materi kriptografi caching
	Apa yang ada dalam entri cache kunci data?
	Konteks enkripsi: Cara memilih entri cache
	Apakah aplikasi saya menggunakan kunci data cache?

	Contoh caching kunci data
	Hasil cache lokal
	Kode contoh caching kunci data
	Produser
	Konsumen

	Contoh caching kunci data: template CloudFormation

	Versi dari AWS Encryption SDK
	C
	C #/.NET
	Antarmuka baris perintah (CLI)
	Java
	Go
	JavaScript
	Python
	Karat
	Detail versi
	Versi lebih awal dari 1.7. x
	Versi 1.7. x
	Versi 2.0. x
	Versi 2.2. x
	Versi 2.3. x

	Migrasi Anda AWS Encryption SDK
	Cara memigrasi dan menyebarkan AWS Encryption SDK
	Tahap 1: Perbarui aplikasi Anda ke yang terbaru 1. versi x
	Tahap 2: Perbarui aplikasi Anda ke versi terbaru

	Memperbarui penyedia kunci AWS KMS utama
	Migrasi ke mode ketat
	Migrasi ke mode penemuan

	Memperbarui AWS KMS keyrings
	Menetapkan kebijakan komitmen Anda
	Cara menetapkan kebijakan komitmen Anda

	Memecahkan masalah migrasi ke versi terbaru
	Objek yang tidak digunakan lagi atau dihapus
	Konflik konfigurasi: Kebijakan komitmen dan rangkaian algoritme
	Konflik konfigurasi: Kebijakan komitmen dan ciphertext
	Validasi komitmen utama gagal
	Kegagalan enkripsi lainnya
	Kegagalan dekripsi lainnya
	Pertimbangan rollback

	Pertanyaan umum
	Bagaimana AWS Encryption SDK bedanya dengan AWS SDKs?
	Apa AWS Encryption SDK bedanya dengan klien enkripsi Amazon S3?
	Algoritma kriptografi mana yang didukung oleh AWS Encryption SDK, dan mana yang merupakan default?
	Bagaimana vektor inisialisasi (IV) dihasilkan dan di mana disimpan?
	Bagaimana setiap kunci data dihasilkan, dienkripsi, dan didekripsi?
	Bagaimana cara melacak kunci data yang digunakan untuk mengenkripsi data saya?
	Bagaimana cara AWS Encryption SDK menyimpan kunci data terenkripsi dengan data terenkripsi mereka?
	Berapa banyak overhead yang ditambahkan format AWS Encryption SDK pesan ke data terenkripsi saya?
	Bisakah saya menggunakan penyedia kunci master saya sendiri?
	Dapatkah saya mengenkripsi data di bawah lebih dari satu kunci pembungkus?
	Tipe data apa yang dapat saya enkripsi dengan? AWS Encryption SDK
	Bagaimana cara AWS Encryption SDK mengenkripsi dan mendekripsi input/output (I/O) mengalir?

	AWS Encryption SDK referensi
	AWS Encryption SDK referensi format pesan
	Struktur header
	Struktur tubuh
	Data tidak dibingkai
	Data berbingkai

	Struktur footer

	AWS Encryption SDK contoh format pesan
	Data berbingkai (format pesan versi 1)
	Data berbingkai (format pesan versi 2)
	Data yang tidak dibingkai (format pesan versi 1)

	Referensi data terautentikasi tambahan badan (AAD) untuk AWS Encryption SDK
	AWS Encryption SDK referensi algoritma
	AWS Encryption SDK referensi vektor inisialisasi
	AWS KMS Rincian teknis keyring hierarkis

	Riwayat dokumen untuk Panduan AWS Encryption SDK Pengembang
	Pembaruan terkini
	Pembaruan lebih awal

	

