adws

Panduan Developer

AWS SDK Enkripsi Basis Data

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.



AWS SDK Enkripsi Basis Data Panduan Developer

AWS SDK Enkripsi Basis Data: Panduan Developer

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Merek dagang dan tampilan dagang Amazon tidak boleh digunakan sehubungan dengan

produk atau layanan apa pun yang bukan milik Amazon, dengan cara apa pun yang dapat
menyebabkan kebingungan antara para pelanggan, atau dengan cara apa pun yang menghina atau
mendiskreditkan Amazon. Semua merek dagang lain yang tidak dimiliki oleh Amazon merupakan hak

milik masing-masing pemiliknya, yang mungkin atau tidak terafiliasi, terkait dengan, atau disponsori
oleh Amazon.




AWS SDK Enkripsi Basis Data Panduan Developer

Table of Contents

Apa itu SDK Enkripsi AWS DatabasSe? ........ccociiiiiiiiiiiii et e e e e e e 1
Dikembangkan dalam repositori sumber terbuka ... 3
Support dan PEMENNArAAN ............uueiiiii e e e e e e e e e e e e ————— 3
Mengirim UMPan DAliK .......coooo e e e e e e e e e aaaan 3
[0 8 1ST= o PP 4

] (] o2 =T ] o[ o S 5
(0T T e = | = P 6
(U Tot I oT=T0 0] 01U [T | (U F= T 7
GaNTUNGAN KUNCI ....oeeiiiiiitecee e e e e e e e e e e e e e e e e e e e e e e e e e eeeesse s a e as 8
Tindakan Kriptografi .........cooooiiiiii e e e e e e e e 8
(DTS (] 0TS I =L (= o USRI 9
(00T 10 ST =T | ] 1 PRSP 10
Manajer materi Kriptografi .........ooooeimiiii e 11
Enkripsi simetris dan asimetris ........ooooiiiiiiiii e 11
KOMITMEN ULAMA ...t e e e e e e e e e e e e e e e e e aeeeeeeeeeennnnnes 12
Tanda tangan digital ..........cooooiiiiii e 12
(071 = I =T T= 1 0) V2= [P PPPPURTPUPPPPPIRt 14
Enkripsi dan tandatangani ...........oooooeeiiiiiii i 15
DeKripsi dan VETIfIKASH .....ccccoiiiiiiiie ettt 16
Suite algoritma yang AidUKUNG .........euueiiiiiee e e e e e e e e e e e e e e e e e e e e e e e eeaaaaees 17
Rangkaian algoritme default ..............oueeni e 20
AES-GCM tanpa tanda tangan digital ECDSA ... 20

Berinteraksi dengan AWS KIMS ... .t e e e e e e e aaaaaas 22

MengKonfIGUIasi SDK ...ttt a e e e e e e e e e e aaaaaaeeeteeeaaaaaaaa 24
Memilih bahasa PemMIrOgraman ............uuii i e e e e e e e et e e e e e eesaaaeaeaeeeens 24
Memilih tombol PEMDUNGKUS .........eiii e e e e e e e e e et 24
Membuat filter PENEMUAN ........oeieee e e e e e e e e e e e e e e e e e e e e e e eeeearanaaes 26
Bekerja dengan database multitenant ... 27
Membuat beacon yang ditandatangani ..............ooouuiiii i 28

LI oL (e T (e (o T U1 = o 1 = PP PUPPURRPRRR 36
Terminologi dan konsep tOKO KUNCIH .........oooiiiiiiii e eeeeenes 36
Menerapkan izin yang paling tidak diistimewakan ... 37
BUALE TOKO KUNCI ...t e e e et ettt ettt e e e e e e e e e e e eaeeeees 38
Konfigurasikan tindakan penyimpanan KUNCi ................uuuiiiiiiiiiiiieeiee e 39




AWS SDK Enkripsi Basis Data Panduan Developer

Konfigurasikan tindakan penyimpanan Kunci Anda ...............oooorimiiiiiiiiiiiiicceeeee e 40
Buatlah sebuah Cabang ..o 43
Putar kunci cabang aktif ANda ...........eeeiii e 47

(CF= a1 (0 aToF=Ta T (U o[t OO 49
Cara kerja gantungan KUNCI ............uuuiuuiiiiiiiiee e e e e e e e e e e e e e e e e e e eeeeeenenenaes 50
AWS KMS gantungan KUNCI .......cccoooiiiiiiiiieceeeeeeeeee et e e e e e e e e e e e e e e e e e e e e e as 51

Izin yang diperlukan untuk keyrings AWS KIMS ........oomiiiiie e 52

Mengidentifikasi AWS KMS keys dalam AWS KMS Keyring .......cccceeeeeeieeiiiiiiiiiiiiieceeceeeiiin, 52

Membuat AWS KIMS KEYIING ...t e e e e e e e e e e e e e s 54

Menggunakan Multi-region AWS KIMS KEYS .......ucciiiiiiiiii i 57

Menggunakan AWS KMS Keyring PENEMUAN ..........ccceeeeeiiiiiiiiieeeeeeeeeee s e e e e e e e e 59

Menggunakan AWS KMS keyring penemuan regional ...........ccccooeeeeiiiiiiiiiieeeeeeee e 61
AWS KMS Gantungan KuncCi hIierarkis ..o 64

(07 ] = B GGy =101 V2= [P PPPPPUPOPPUPUPPPIOt 66

=153 2= | = | P 67

4| Y= T Yo e [T =T o [ €= T o ISR 68

1] T = T 1R 68

Buat Keyring HIEIarkKis ........coooiiiiiiiie et e e e et e e e e e e aaaaas 78

Menggunakan keyring Hierarkis untuk enkripsi yang dapat dicari .............ccooevvviiiiieiniininnnnnnn. 84
AWS KMS Gantungan KuncCi ECDH ...t e e e e e e e eeeaaanaaes 88

Izin yang diperlukan untuk gantungan kunci AWS KMS ECDH ..., 89

Membuat keyring AWS KMS ECDH ... 90

Membuat keyring AWS KMS penemuan ECDH .........ccccooiiiiiiiiiiii e 93
Gantungan Kunci AES MENtah ..........uueeiiiiii e 96
Gantungan Kunci RSA MENah ...t s 98
Gantungan kunci ECDH MeNtah .........ouuiiiiiiiii et 102

Membuat keyring ECDH MeENtah .........oovmiiiiiiiiieee e 103
MUti-gantuNQan KUNCI ........coooiiiii e e e e et e e e e e e et e e e e e e eana e eeas 112

EnKripsi yang dapat diCari .............oiiiiiiiii e 117
Apakah beacon tepat untuk dataset Saya? ... 118
Skenario enkripsi yang dapat diCari .............oooiiiiiiiiiiiii e —————— 121
7<= o 0] o SRS 122

S TU =T = =1 o T £ PSS 123

SUAI MAJEMUK ...ttt e e e e e e e e e e e e eaeeaaaeeeeeeeeeessssnnnsannnns 125
LT =Y aTer=T = = o ] U = PP 126

Pertimbangan untuk database multitenant ...............cccooi i, 127




AWS SDK Enkripsi Basis Data Panduan Developer

MEMIIIN JENIS SUAK ...t e e e e et e e e e e e e et e e e e eeessaa e eeaeenees 128
Y =T o 1] T =T 0 =T T T £ PP 134
LY o 1] ] g g F=T g =TT U = | RSP 141
Mengkonfigurasi DEACON ............eeueiiiee e e e 141
Mengkonfigurasi beacon StaNdar .............cccoooiiiiiiiiii e 142
Mengkonfigurasi suar MajEMUK ..............ooiiiiiiiiiiii e e 152
(O] a1 (o] g (o] a1 i o U] =] H OO PP 162
Y =T aTo o 8 g F=1 ¢=T o I o 1= T= e o] o NN 167
LT 0 1T = T = | PR 170
Enkripsi yang dapat dicari untuk database multitenant ..................cccooiiiii 171
Menanyakan beacon dalam database multitenant .................cccoooiiii i, 174
AMazon DYNamoODB ... e 176
Enkripsi di sisi Klien dan SiSi SEIVEN ...........iiiiiiiee e e s 177
Bidang mana yang dienkripsi dan ditandatangani? ..............ccccooo i 179
EnKripsi nilai atribDut ....... .o e 180
Penandatanganan item ..........oooiiiiii i e e aaaaa 181
Enkripsi yang dapat dicari di DynamoDB ............cooouiiii e 181
Mengkonfigurasi indeks sekunder dengan beacon ... 181
Y =T o T T T o101 01U | T T O SPP 183
Memperbarui model data ANda ..........cooo oo aane 189
Tambahkan SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut baru
ENCRYPT_AND_STIGNSIGN_ONLY, dan ...ccoeiiiiiieieieeeeeeeet e e e e e e e e e e e e e e eeeeeeeneennnees 191
Hapus atribut Yang ada ...........e e 191
Ubah ENCRYPT_AND_SIGN atribut yang ada ke SIGN_ONLY atau
STIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT ..cceiiiieiiiieeieeeieiiieiinse e e e e e e e e e e e e e e e eeeas 192
Ubah STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut SIGN_ONLY atau yang
sudah ada ke ENCRYPT_AND_STGN ....ccouuiiiiiiiieeee ettt e et e e e e e e e e enaaas 193
Tambahkan DO_NOTHING atribut baru ............coooiimiii e 193
Ubah STIGN_ONLY atribut yang ada menjadi
STIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT ..cceiiiiiiiiieeeeeeeiiieiinse e e e e e e e e e e e e e e eeeeas 195
Ubah STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut yang ada menjadi
STGN _ONLY ittt e e et et e et et et ettt et e e e e et e e s e e e e e e e e eaeeaeeeeeeeeeeaearannnnnnnnnnn s 195
Bahasa PemrOgraman ...........cooi it a e e e e e e 196
N F V7= TSP 196
N E T ettt e et e e e e oot e e oo —————eeeeeeee e e e e e e e aaea———————taaaataaaaaaaaeaaaaaaanarrrraeees 232
RUSE ettt e e e e e e e e et e e e e et e a e aaeeea—— e aaeeeraaa. 248




AWS SDK Enkripsi Basis Data Panduan Developer

LA T 5= 1 o PSR 254
AWS SDK Enkripsi Database untuk dukungan versi DynamoDB .............cccccceeiiiiiiiiinnnnnnnn... 255

(07 = I (=15 = 1012 SRS PRPPPPPRR 256
0] 15T =T o R 259
Penyedia bahan Kriptografi ...........oeeeiiimiii e 264
Bahasa pemrOgraman .........ooouiiii i e e e e e e 295
Mengubah model data ANAa ..o 323
Pemecahan Masalah ... 328
Ganti nama Klien EnKripsi DynamoDB ............ouuuiiiiiiiiiei e 332
= 1= =Y 1= O REERRRRRRR 334
Format deskripsi Dahan ... 334
AWS KMS Rincian teknis keyring hierarkis ..., 338
Y72 1Y 2= Lo (0] U 1 =T o PSPPI 339
....................................................................................................................................................... ccexli

Vi



AWS SDK Enkripsi Basis Data Panduan Developer

Apa itu SDK Enkripsi AWS Database?

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

AWS Database Encryption SDK adalah sekumpulan pustaka perangkat lunak yang memungkinkan
Anda menyertakan enkripsi sisi klien dalam desain database Anda. AWS Database Encryption

SDK menyediakan solusi enkripsi tingkat rekaman. Anda menentukan bidang mana yang dienkripsi
dan bidang mana yang disertakan dalam tanda tangan yang memastikan keaslian data Anda.
Mengenkripsi data sensitif Anda saat transit dan diam membantu memastikan bahwa data teks biasa
Anda tidak tersedia untuk pihak ketiga mana pun, termasuk. AWS AWS Database Encryption SDK
disediakan secara gratis di bawah lisensi Apache 2.0.

Panduan pengembang ini memberikan gambaran konseptual SDK Enkripsi AWS Database, termasuk
pengenalan arsitekturnya, detail tentang cara melindungi data Anda, perbedaannya dari enkripsi

sisi server, dan panduan memilih komponen penting untuk aplikasi Anda untuk membantu Anda
memulai.

SDK Enkripsi AWS Database mendukung Amazon DynamoDB dengan enkripsi tingkat atribut.
SDK Enkripsi AWS Database memiliki manfaat sebagai berikut:
Dirancang khusus untuk aplikasi database

Anda tidak perlu menjadi ahli kriptografi untuk menggunakan AWS Database Encryption SDK.
Implementasi termasuk metode pembantu yang dirancang untuk bekerja dengan aplikasi yang
ada.

Setelah Anda membuat dan mengonfigurasi komponen yang diperlukan, klien enkripsi secara
transparan mengenkripsi dan menandatangani catatan Anda saat Anda menambahkannya ke
database, dan memverifikasi serta mendekripsi saat Anda mengambilnya.

Termasuk aman dan penandatanganan yang aman

SDK Enkripsi AWS Database mencakup implementasi aman yang mengenkripsi nilai bidang
di setiap catatan menggunakan kunci enkripsi data unik, lalu menandatangani catatan untuk
melindunginya dari perubahan yang tidak sah, seperti menambahkan atau menghapus bidang,
atau menukar nilai terenkripsi.




AWS SDK Enkripsi Basis Data Panduan Developer

Menggunakan materi kriptografis dari sumber mana pun

AWS Database Encryption SDK menggunakan keyrings untuk menghasilkan, mengenkripsi, dan
mendekripsi kunci enkripsi data unik yang melindungi catatan Anda. Keyrings menentukan kunci
pembungkus yang mengenkripsi kunci data tersebut.

Anda dapat menggunakan kunci pembungkus dari sumber apa pun, termasuk layanan kriptografi,
seperti AWS Key Management Service(AWS KMS) atau. AWS CloudHSM SDK Enkripsi AWS
Database tidak memerlukan layanan Akun AWS atau AWS layanan apa pun.

Support untuk caching materi kriptografi

AWS KMS Hierarchical keyring adalah solusi caching materi kriptografi yang mengurangi jumlah
AWS KMS panggilan dengan menggunakan kunci cabang yang AWS KMS dilindungi yang
disimpan dalam tabel Amazon DynamoDB, dan kemudian secara lokal menyimpan materi kunci
cabang yang digunakan dalam operasi enkripsi dan dekripsi. Ini memungkinkan Anda untuk
melindungi materi kriptografi Anda di bawah kunci KMS enkripsi simetris tanpa menelepon AWS
KMS setiap kali Anda mengenkripsi atau mendekripsi catatan. AWS KMS Hierarchical keyring
adalah pilihan yang baik untuk aplikasi yang perlu meminimalkan panggilan ke. AWS KMS

Enkripsi yang dapat dicari

Anda dapat merancang database yang dapat mencari catatan terenkripsi tanpa mendekripsi
seluruh database. Bergantung pada model ancaman dan persyaratan kueri, Anda dapat
menggunakan enkripsi yang dapat dicari untuk melakukan penelusuran yang sama persis atau
kueri kompleks yang lebih disesuaikan pada basis data terenkripsi Anda.

Support untuk skema database multitenant

SDK Enkripsi AWS Database memungkinkan Anda untuk melindungi data yang disimpan dalam
database dengan skema bersama dengan mengisolasi setiap penyewa dengan bahan enkripsi
yang berbeda. Jika Anda memiliki beberapa pengguna yang melakukan operasi enkripsi dalam
database Anda, gunakan salah satu AWS KMS keyrings untuk menyediakan setiap pengguna
dengan kunci yang berbeda untuk digunakan dalam operasi kriptografi mereka. Untuk informasi
selengkapnya, lihat Bekerja dengan database multitenant.

Support untuk pembaruan skema yang mulus

Saat Anda mengonfigurasi SDK Enkripsi AWS Database, Anda memberikan tindakan kriptografi
yang memberi tahu klien bidang mana yang akan dienkripsi dan ditandatangani, bidang mana
yang akan ditandatangani (tetapi tidak dienkripsi), dan mana yang harus diabaikan. Setelah Anda



https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS SDK Enkripsi Basis Data Panduan Developer

menggunakan AWS Database Encryption SDK untuk melindungi catatan Anda, Anda masih dapat
membuat perubahan pada model data Anda. Anda dapat memperbarui tindakan kriptografi Anda,
seperti menambahkan atau menghapus bidang terenkripsi, dalam satu penerapan.

Dikembangkan dalam repositori sumber terbuka

AWS Database Encryption SDK dikembangkan dalam repositori open-source pada. GitHub Anda
dapat menggunakan repositori ini untuk melihat kode, membaca dan mengirimkan masalah, dan
menemukan informasi yang spesifik untuk implementasi Anda.

SDK Enkripsi AWS Database untuk DynamoDB

» Repositori aws-database-encryption-sdk-dynamodb aktif GitHub mendukung versi terbaru SDK
AWS Enkripsi Database untuk DynamoDB di Java, .NET, dan Rust.

SDK Enkripsi AWS Database untuk DynamoDB adalah produk dari Dafny, bahasa yang sadar
verifikasi di mana Anda menulis spesifikasi, kode untuk mengimplementasikannya, dan bukti
untuk mengujinya. Hasilnya adalah pustaka yang mengimplementasikan fitur SDK Enkripsi AWS
Database untuk DynamoDB dalam kerangka kerja yang menjamin kebenaran fungsional.

Support dan pemeliharaan

SDK Enkripsi AWS Database menggunakan kebijakan pemeliharaan yang sama dengan yang
digunakan AWS SDK dan Tools, termasuk fase pembuatan versi dan siklus hidupnya. Sebagai
praktik terbaik, kami menyarankan Anda menggunakan SDK Enkripsi AWS Database versi terbaru
yang tersedia untuk implementasi database Anda, dan memutakhirkan saat versi baru dirilis.

Untuk informasi selengkapnya, lihat kebijakan pemeliharaan AWS SDKs dan Alat di Panduan
Referensi Alat AWS SDKs dan.

Mengirim umpan balik

Kami menyambut umpan balik Anda! Jika Anda memiliki pertanyaan atau komentar, atau masalah
yang perlu dilaporkan, silakan gunakan sumber daya berikut.

Jika Anda menemukan potensi kerentanan keamanan di SDK Enkripsi AWS Database, harap beri
tahu AWS keamanan. Jangan membuat GitHub masalah publik.

Dikembangkan dalam repositori sumber terbuka 3


https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/dafny-lang/dafny/blob/master/README.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://aws.amazon.com/security/vulnerability-reporting/
https://aws.amazon.com/security/vulnerability-reporting/

AWS SDK Enkripsi Basis Data Panduan Developer

Untuk memberikan umpan balik tentang dokumentasi ini, gunakan tautan umpan balik pada halaman
mana pun.

AWS Konsep SDK Enkripsi Database

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Topik ini menjelaskan konsep dan terminologi yang digunakan dalam AWS Database Encryption
SDK.

Untuk mempelajari bagaimana komponen SDK Enkripsi AWS Database berinteraksi, lihatCara kerja
SDK Enkripsi AWS Database.

Untuk mempelajari lebih lanjut tentang SDK Enkripsi AWS Database, lihat topik berikut.

 Pelajari cara SDK Enkripsi AWS Database menggunakan enkripsi amplop untuk melindungi data
Anda.

+ Pelajari tentang elemen enkripsi amplop: kunci data yang melindungi catatan Anda dan kunci
pembungkus yang melindungi kunci data Anda.

 Pelajari tentang gantungan kunci yang menentukan kunci pembungkus yang Anda gunakan.

 Pelajari tentang konteks enkripsi yang menambahkan integritas pada proses enkripsi Anda.

 Pelajari tentang deskripsi materi yang ditambahkan metode enkripsi ke catatan Anda.

 Pelajari tentang tindakan kriptografi yang memberi tahu SDK Enkripsi AWS Database bidang apa
yang harus dienkripsi dan ditandatangani.

Topik
« Enkripsi amplop

» Kunci data

« Kunci pembungkus

» Gantungan kunci

» Tindakan kriptografi

» Deskripsi materi

» Konteks enkripsi

Konsep 4



AWS SDK Enkripsi Basis Data Panduan Developer

* Manajer materi kriptografi

» Enkripsi simetris dan asimetris

» Komitmen utama

+ Tanda tangan digital

Enkripsi amplop

Keamanan data terenkripsi Anda sebagian bergantung pada perlindungan kunci data yang dapat
mendekripsi itu. Salah satu praktik terbaik yang diterima untuk melindungi kunci data adalah
mengenkripsinya. Untuk melakukan ini, Anda memerlukan kunci enkripsi lain, yang dikenal sebagai
kunci enkripsi kunci atau kunci pembungkus. Praktek menggunakan kunci pembungkus untuk
mengenkripsi kunci data dikenal sebagai enkripsi amplop.

Melindungi kunci data

AWS Database Encryption SDK mengenkripsi setiap bidang dengan kunci data yang unik.
Kemudian mengenkripsi setiap kunci data di bawah kunci pembungkus yang Anda tentukan. Ini
menyimpan kunci data terenkripsi dalam deskripsi materi.

Untuk menentukan kunci pembungkus Anda, Anda menggunakan keyring.

Stored
@ together in
your database

> o i
Encrypts :
Plaintext data key Plaintext field Encrypted field
&> 0 = @
Encrypts
Wrapping key Plaintext data key Encrypted data key

Mengenkripsi data yang sama di bawah beberapa kunci pembungkus

Anda dapat mengenkripsi kunci data dengan beberapa tombol pembungkus. Anda mungkin
ingin memberikan kunci pembungkus yang berbeda untuk pengguna yang berbeda, atau kunci
pembungkus dari jenis yang berbeda, atau di lokasi yang berbeda. Setiap kunci pembungkus

Enkripsi amplop 5



AWS SDK Enkripsi Basis Data Panduan Developer

mengenkripsi kunci data yang sama. AWS Database Encryption SDK menyimpan semua kunci
data terenkripsi bersama bidang terenkripsi dalam deskripsi material.

Untuk mendekripsi data, Anda harus menyediakan setidaknya satu kunci pembungkus yang dapat
mendekripsi kunci data terenkripsi.

Menggabungkan kekuatan dari beberapa algoritme

Untuk mengenkripsi data Anda, secara default, AWS Database Encryption SDK menggunakan
rangkaian algoritme dengan enkripsi simetris AES-GCM, fungsi derivasi kunci berbasis HMAC
(HKDF), dan penandatanganan ECDSA. Untuk mengenkripsi kunci data, Anda dapat menentukan
algoritma enkripsi simetris atau asimetris yang sesuai dengan kunci pembungkus Anda.

Secara umum, algoritma enkripsi kunci simetris lebih cepat dan menghasilkan ciphertext yang
lebih kecil daripada enkripsi kunci asimetris atau publik. Tetapi algoritma kunci publik memberikan
pemisahan peran yang melekat. Untuk menggabungkan kekuatan masing-masing, Anda dapat
mengenkripsi kunci data dengan enkripsi kunci publik.

Kami merekomendasikan menggunakan salah satu AWS KMS gantungan kunci bila
memungkinkan. Saat Anda menggunakan AWS KMS keyring, Anda dapat memilih untuk
menggabungkan kekuatan beberapa algoritma dengan menentukan RSA AWS KMS key asimetris
sebagai kunci pembungkus Anda. Anda juga dapat menggunakan kunci KMS enkripsi simetris.

Kunci data

Kunci data adalah kunci enkripsi yang digunakan SDK Enkripsi AWS Database untuk mengenkripsi
bidang dalam catatan yang ditandai ENCRYPT_AND_SIGN dalam tindakan kriptografi. Setiap kunci
data adalah array byte yang sesuai dengan persyaratan untuk kunci kriptografi. AWS Database
Encryption SDK menggunakan kunci data unik untuk mengenkripsi setiap atribut.

Anda tidak perlu menentukan, menghasilkan, mengimplementasikan, memperluas, melindungi, atau
menggunakan kunci data. SDK Enkripsi AWS Database berfungsi untuk Anda saat Anda memanggil
operasi enkripsi dan dekripsi.

Untuk melindungi kunci data Anda, AWS Database Encryption SDK mengenkripsi mereka di bawah
satu atau beberapa kunci enkripsi kunci yang dikenal sebagai kunci pembungkus. Setelah SDK
Enkripsi AWS Database menggunakan kunci data teks biasa Anda untuk mengenkripsi data Anda,
itu akan menghapusnya dari memori sesegera mungkin. Kemudian menyimpan kunci data terenkripsi
dalam deskripsi materi. Untuk detailnya, lihat Cara kerja SDK Enkripsi AWS Database.

Kunci data 6



AWS SDK Enkripsi Basis Data Panduan Developer

® Tip
Dalam SDK Enkripsi AWS Database, kami membedakan kunci data dari kunci enkripsi data.
Sebagai praktik terbaik, semua suite algoritme yang didukung menggunakan fungsi derivasi

kunci. Fungsi derivasi kunci mengambil kunci data sebagai input dan mengembalikan kunci
enkripsi data yang sebenarnya digunakan untuk mengenkripsi catatan Anda. Untuk alasan
ini, kita sering mengatakan bahwa data dienkripsi “di bawah” kunci data daripada “oleh” kunci
data.

Setiap kunci data terenkripsi mencakup metadata, termasuk pengidentifikasi kunci pembungkus yang
mengenkripsi itu. Metadata ini memungkinkan SDK Enkripsi AWS Database mengidentifikasi kunci
pembungkus yang valid saat mendekripsi.

Kunci pembungkus

Kunci pembungkus adalah kunci enkripsi kunci yang digunakan SDK Enkripsi AWS Database
untuk mengenkripsi kunci data yang mengenkripsi catatan Anda. Setiap kunci data dapat dienkripsi
di bawah satu atau lebih kunci pembungkus. Anda menentukan kunci pembungkus mana yang
digunakan untuk melindungi data Anda saat Anda mengonfigurasi keyring.

e

Encrypts

Wrapping key Plaintext data key Encrypted data key

AWS Database Encryption SDK mendukung beberapa kunci pembungkus yang umum digunakan,
seperti AWS Key Management Service(AWS KMS) kunci KMS enkripsi simetris (termasuk kunci
Multi-region) dan kunci KMS RSA asimetris, AWS KMS kunci mentah AES-GCM (Advanced
Encryption Standard/Galois Counter Mode), dan kunci RSA mentah. Kami merekomendasikan
menggunakan tombol KMS bila memungkinkan. Untuk memutuskan kunci pembungkus mana yang
harus Anda gunakan, lihat Memilih kunci pembungkus.

Saat Anda menggunakan enkripsi amplop, Anda perlu melindungi kunci pembungkus Anda dari
akses yang tidak sah. Anda dapat melakukan ini dengan salah satu cara berikut:

Kunci pembungkus 7


https://en.wikipedia.org/wiki/Key_derivation_function
https://en.wikipedia.org/wiki/Key_derivation_function
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/asymmetric-key-specs.html#key-spec-rsa
https://docs.aws.amazon.com/kms/latest/developerguide/asymmetric-key-specs.html#key-spec-rsa

AWS SDK Enkripsi Basis Data Panduan Developer

» Gunakan layanan yang dirancang untuk tujuan ini, seperti AWS Key Management Service (AWS
KMS).
» Gunakan modul keamanan perangkat keras (HSM) seperti yang ditawarkan oleh AWS CloudHSM.

« Gunakan alat dan layanan manajemen kunci lainnya.

Jika Anda tidak memiliki sistem manajemen kunci, kami sarankan AWS KMS. SDK Enkripsi AWS
Database terintegrasi AWS KMS untuk membantu Anda melindungi dan menggunakan kunci
pembungkus Anda.

Gantungan kunci

Untuk menentukan kunci pembungkus yang Anda gunakan untuk enkripsi dan dekripsi, Anda
menggunakan keyring. Anda dapat menggunakan keyrings yang disediakan oleh AWS Database
Encryption SDK atau mendesain implementasi Anda sendiri.

Sebuah keyring menghasilkan, mengenkripsi, dan mendekripsi kunci data. Ini juga menghasilkan
kunci MAC yang digunakan untuk menghitung Kode Otentikasi Pesan Berbasis Hash (HMACs)
dalam tanda tangan. Saat Anda menentukan keyring, Anda dapat menentukan kunci pembungkus
yang mengenkripsi kunci data Anda. Kebanyakan keyrings menentukan setidaknya satu

kunci pembungkus atau layanan yang menyediakan dan melindungi kunci pembungkus. Saat
mengenkripsi, AWS Database Encryption SDK menggunakan semua kunci pembungkus yang
ditentukan dalam keyring untuk mengenkripsi kunci data. Untuk bantuan dalam memilih dan
menggunakan keyrings yang didefinisikan oleh AWS Database Encryption SDK, lihat Menggunakan

keyrings.

Tindakan kriptografi

Tindakan kriptografi memberi tahu enkripsi tindakan mana yang harus dilakukan pada setiap bidang
dalam catatan.

Nilai tindakan kriptografi dapat berupa salah satu dari yang berikut:

» Enkripsi dan tandatangani — Enkripsi bidang. Sertakan bidang terenkripsi dalam tanda tangan.
» Hanya tanda tangan — Sertakan bidang di tanda tangan.

» Masuk dan sertakan dalam konteks enkripsi — Sertakan bidang dalam konteks tanda tangan dan
enkripsi.

Gantungan kunci 8


https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/

AWS SDK Enkripsi Basis Data Panduan Developer

Secara default, kunci partisi dan sortir adalah satu-satunya atribut yang disertakan dalam

konteks enkripsi. Anda dapat mempertimbangkan untuk mendefinisikan bidang tambahan
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT agar pemasok ID kunci cabang untuk keyring
AWS KMS Hierarkis Anda dapat mengidentifikasi kunci cabang mana yang diperlukan untuk
dekripsi dari konteks enkripsi. Untuk informasi selengkapnya, lihat pemasok ID kunci cabang.

(® Note

Untuk menggunakan tindakan STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
kriptografi, Anda harus menggunakan SDK Enkripsi AWS Database versi 3.3 atau yang
lebih baru. Terapkan versi baru ke semua pembaca sebelum memperbarui model data
Anda untuk disertakanSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

« Jangan melakukan apa-apa — Jangan mengenkripsi atau menyertakan bidang dalam tanda
tangan.

Untuk bidang apa pun yang dapat menyimpan data sensitif, gunakan Enkripsi dan tandatangani.
Untuk nilai kunci primer (misalnya, kunci partisi dan kunci sortir dalam tabel DynamoDB), gunakan
Sign only atau Sign dan sertakan dalam konteks enkripsi. Jika Anda menentukan Tanda dan
menyertakan atribut konteks enkripsi, maka atribut partisi dan sortir juga harus Tanda dan sertakan
dalam konteks enkripsi. Anda tidak perlu menentukan tindakan kriptografi untuk deskripsi materi.
SDK Enkripsi AWS Database secara otomatis menandatangani bidang tempat deskripsi materi
disimpan.

Pilih tindakan kriptografi Anda dengan hati-hati. Bila ragu, gunakan Enkripsi dan tanda tangan.
Setelah Anda menggunakan SDK Enkripsi AWS Database untuk melindungi catatan Anda,

Anda tidak dapat mengubah SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT bidang yang

ada ENCRYPT_AND_SIGNSIGN_ONLY, atau menjadiDO_NOTHING, atau mengubah tindakan
kriptografi yang ditetapkan ke bidang yang adaDO_NOTHING. Namun, Anda masih dapat membuat
perubahan lain pada model data Anda. Misalnya, Anda dapat menambahkan atau menghapus
bidang terenkripsi, dalam satu penerapan.

Deskripsi materi

Deskripsi materi berfungsi sebagai header untuk catatan terenkripsi. Saat Anda mengenkripsi dan
menandatangani bidang dengan SDK Enkripsi AWS Database, enkripsi mencatat deskripsi materi

Deskripsi materi 9



AWS SDK Enkripsi Basis Data Panduan Developer

saat merakit materi kriptografi dan menyimpan deskripsi materi di bidang baru (aws_dbe_head)
yang ditambahkan enkripsi ke catatan Anda.

Deskripsi materi adalah struktur data berformat portabel yang berisi salinan terenkripsi dari kunci

data dan informasi lainnya, seperti algoritma enkripsi, konteks enkripsi, dan instruksi enkripsi dan

penandatanganan. Enkripsi mencatat deskripsi materi saat merakit bahan kriptografi untuk enkripsi
dan penandatanganan. Kemudian, ketika perlu merakit bahan kriptografi untuk memverifikasi dan
mendekripsi suatu bidang, ia menggunakan deskripsi materi sebagai panduannya.

Menyimpan kunci data terenkripsi di samping bidang terenkripsi merampingkan operasi dekripsi
dan membebaskan Anda dari keharusan menyimpan dan mengelola kunci data terenkripsi secara
independen dari data yang mereka enkripsi.

Untuk informasi teknis tentang deskripsi materi, lihatFormat deskripsi bahan.

Konteks enkripsi

Untuk meningkatkan keamanan operasi kriptografi Anda, AWS Database Encryption SDK
menyertakan konteks enkripsi dalam semua permintaan untuk mengenkripsi dan menandatangani
catatan.

Konteks enkripsi adalah sekumpulan pasangan nama-nilai yang berisi data otentikasi tambahan
non-rahasia yang sewenang-wenang. AWS Database Encryption SDK menyertakan nama logis
untuk database Anda dan nilai kunci primer (misalnya, kunci partisi dan kunci sortir dalam tabel
DynamoDB) dalam konteks enkripsi. Saat Anda mengenkripsi dan menandatangani bidang, konteks
enkripsi terikat secara kriptografis ke catatan terenkripsi sehingga konteks enkripsi yang sama
diperlukan untuk mendekripsi bidang tersebut.

Jika Anda menggunakan AWS KMS keyring, SDK Enkripsi AWS Database juga menggunakan
konteks enkripsi untuk menyediakan data terautentikasi tambahan (AAD) dalam panggilan yang
dilakukan oleh keyring. AWS KMS

Setiap kali Anda menggunakan rangkaian algoritme default, manajer bahan kriptografi

(CMM) menambahkan pasangan nama-nilai ke konteks enkripsi yang terdiri dari nama yang
dicadangkanaws-crypto-public-key, dan nilai yang mewakili kunci verifikasi publik. Kunci
verifikasi publik disimpan dalam deskripsi materi.

Konteks enkripsi 10



AWS SDK Enkripsi Basis Data Panduan Developer

Manajer materi kriptografi

Manajer bahan kriptografi (CMM) merakit materi kriptografi yang digunakan untuk mengenkripsi,
mendekripsi, dan menandatangani data Anda. Setiap kali Anda menggunakan rangkaian algoritme
default, materi kriptografi mencakup teks biasa dan kunci data terenkripsi, kunci penandatanganan
simetris, dan kunci penandatanganan asimetris. Anda tidak pernah berinteraksi dengan CMM secara
langsung. Metode enkripsi dan dekripsi menanganinya untuk Anda.

Karena CMM bertindak sebagai penghubung antara SDK Enkripsi AWS Database dan keyring, ini
adalah titik ideal untuk penyesuaian dan ekstensi, seperti dukungan untuk penegakan kebijakan.
Anda dapat secara eksplisit menentukan CMM, tetapi itu tidak diperlukan. Saat Anda menentukan
keyring, AWS Database Encryption SDK akan membuat CMM default untuk Anda. CMM default
mendapatkan materi enkripsi atau dekripsi dari keyring yang Anda tentukan. Ini mungkin melibatkan
panggilan ke layanan kriptografi, seperti AWS Key Management Service(AWS KMS).

Enkripsi simetris dan asimetris

Enkripsi simetris menggunakan kunci yang sama untuk mengenkripsi dan mendekripsi data.

Enkripsi asimetris menggunakan data key pair yang terkait secara matematis. Satu kunci dalam
pasangan mengenkripsi data; hanya kunci lain dalam pasangan yang dapat mendekripsi data.

SDK Enkripsi AWS Database menggunakan enkripsi amplop. Ini mengenkripsi data Anda dengan
kunci data simetris. Ini mengenkripsi kunci data simetris dengan satu atau lebih tombol pembungkus
simetris atau asimetris. Ini menambahkan deskripsi material ke catatan yang mencakup setidaknya
satu salinan kunci data terenkripsi.

Mengenkripsi data Anda (enkripsi simetris)

Untuk mengenkripsi data Anda, AWS Database Encryption SDK menggunakan kunci data
simetris dan rangkaian algoritma yang menyertakan algoritma enkripsi simetris. Untuk
mendekripsi data, AWS Database Encryption SDK menggunakan kunci data yang sama dan
rangkaian algoritma yang sama.

Mengenkripsi kunci data Anda (enkripsi simetris atau asimetris)

Keyring yang Anda berikan ke operasi enkripsi dan dekripsi menentukan bagaimana kunci data
simetris dienkripsi dan didekripsi. Anda dapat memilih keyring yang menggunakan enkripsi
simetris, seperti AWS KMS keyring dengan kunci KMS enkripsi simetris, atau yang menggunakan
enkripsi asimetris, seperti AWS KMS keyring dengan kunci KMS RSA asimetris.

Manajer materi kriptografi 11


https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK Enkripsi Basis Data Panduan Developer

Komitmen utama

AWS Database Encryption SDK mendukung komitmen utama (kadang-kadang dikenal sebagai
ketahanan), properti keamanan yang memastikan bahwa setiap ciphertext dapat didekripsi hanya
untuk satu plaintext. Untuk melakukan ini, komitmen utama memastikan bahwa hanya kunci data
yang mengenkripsi catatan Anda yang akan digunakan untuk mendekripsi itu. SDK Enkripsi AWS
Database mencakup komitmen utama untuk semua operasi enkripsi dan dekripsi.

Sebagian besar cipher simetris modern (termasuk AES) mengenkripsi plaintext di bawah satu kunci
rahasia, seperti kunci data unik yang digunakan SDK Enkripsi AWS Database untuk mengenkripsi
setiap bidang teks biasa yang ditandai dalam catatan. ENCRYPT_AND_SIGN Mendekripsi catatan ini
dengan kunci data yang sama mengembalikan plaintext yang identik dengan aslinya. Mendekripsi
dengan kunci yang berbeda biasanya akan gagal. Meskipun sulit, secara teknis dimungkinkan untuk
mendekripsi ciphertext di bawah dua kunci yang berbeda. Dalam kasus yang jarang terjadi, adalah
layak untuk menemukan kunci yang sebagian dapat mendekripsi ciphertext menjadi teks biasa yang
berbeda, tetapi masih dapat dipahami.

AWS Database Encryption SDK selalu mengenkripsi setiap atribut di bawah satu kunci data
unik. Mungkin mengenkripsi kunci data itu di bawah beberapa kunci pembungkus, tetapi kunci
pembungkus selalu mengenkripsi kunci data yang sama. Meskipun demikian, catatan terenkripsi
yang canggih dan dibuat secara manual mungkin sebenarnya berisi kunci data yang berbeda,
masing-masing dienkripsi oleh kunci pembungkus yang berbeda. Misalnya, jika satu pengguna
mendekripsi catatan terenkripsi, ia mengembalikan 0x0 (false) sementara pengguna lain yang
mendekripsi catatan terenkripsi yang sama mendapat 0x1 (true).

Untuk mencegah skenario ini, AWS Database Encryption SDK menyertakan komitmen utama saat
mengenkripsi dan mendekripsi. Metode enkripsi secara kriptografis mengikat kunci data unik yang
menghasilkan ciphertext ke komitmen kunci, Hash Based Message Authentication Code (HMAC)
dihitung atas deskripsi material menggunakan derivasi dari kunci data. Kemudian menyimpan
komitmen utama dalam deskripsi materi. Saat mendekripsi catatan dengan komitmen utama, SDK
Enkripsi AWS Database memverifikasi bahwa kunci data adalah satu-satunya kunci untuk catatan
terenkripsi tersebut. Jika verifikasi kunci data gagal, operasi dekripsi gagal.

Tanda tangan digital

SDK Enkripsi AWS Database mengenkripsi data Anda menggunakan algoritma enkripsi yang
diautentikasi, AES-GCM, dan proses dekripsi memverifikasi integritas dan keaslian pesan terenkripsi
tanpa menggunakan tanda tangan digital. Tetapi karena AES-GCM menggunakan kunci simetris,
siapa pun yang dapat mendekripsi kunci data yang digunakan untuk mendekripsi ciphertext juga

Komitmen utama 12



AWS SDK Enkripsi Basis Data Panduan Developer

dapat secara manual membuat ciphertext terenkripsi baru, yang menyebabkan masalah keamanan
potensial. Misalnya, jika Anda menggunakan AWS KMS key sebagai kunci pembungkus, pengguna
dengan kms :Decrypt izin dapat membuat ciphertext terenkripsi tanpa menelepon. kms: Encrypt

Untuk menghindari masalah ini, rangkaian algoritme default menambahkan tanda tangan Elliptic
Curve Digital Signature Algorithm (ECDSA) ke catatan terenkripsi. Rangkaian algoritme default
mengenkripsi bidang dalam catatan Anda yang ditandai ENCRYPT_AND_SIGN menggunakan
algoritma enkripsi yang diautentikasi, AES-GCM. Kemudian, ia menghitung Kode Otentikasi Pesan

Berbasis Hash (HMACs) dan tanda tangan ECDSA asimetris atas bidang dalam catatan Anda yang
ditandai,, dan. ENCRYPT_AND_SIGN SIGN_ONLY SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
Proses dekripsi menggunakan tanda tangan untuk memverifikasi bahwa pengguna yang berwenang
mengenkripsi catatan.

Ketika rangkaian algoritme default digunakan, SDK Enkripsi AWS Database menghasilkan kunci
pribadi sementara dan public key pair untuk setiap record terenkripsi. SDK Enkripsi AWS Database
menyimpan kunci publik dalam deskripsi materi dan membuang kunci pribadi. Ini memastikan bahwa
tidak ada yang dapat membuat tanda tangan lain yang memverifikasi dengan kunci publik. Algoritma
mengikat kunci publik ke kunci data terenkripsi sebagai data otentikasi tambahan dalam deskripsi
materi, mencegah pengguna yang hanya dapat mendekripsi bidang dari mengubah kunci publik atau
memengaruhi verifikasi tanda tangan.

SDK Enkripsi AWS Database selalu menyertakan verifikasi HMAC. Tanda tangan digital ECDSA
diaktifkan secara default, tetapi tidak diperlukan. Jika pengguna yang mengenkripsi data dan
pengguna yang mendekripsi data sama-sama dipercaya, Anda dapat mempertimbangkan untuk
menggunakan rangkaian algoritme yang tidak menyertakan tanda tangan digital untuk meningkatkan
kinerja Anda. Untuk informasi selengkapnya tentang memilih rangkaian algoritme alternatif, lihat
Memilih rangkaian algoritma.

@ Note

Jika keyring tidak menggambarkan antara enkripsi dan dekripsi, tanda tangan digital tidak
memberikan nilai kriptografi.

AWS KMS keyrings, termasuk AWS KMS keyring RSA asimetris, dapat menggambarkan antara
enkripsi dan dekripsi berdasarkan kebijakan utama dan kebijakan IAM. AWS KMS

Karena sifat kriptografinya, gantungan kunci berikut tidak dapat menggambarkan antara enkripsi dan
dekripsi:

Tanda tangan digital 13



AWS SDK Enkripsi Basis Data Panduan Developer

« AWS KMS Gantungan kunci hierarkis

AWS KMS Gantungan kunci ECDH
« Gantungan kunci AES mentah
* Gantungan kunci RSA mentah

» Gantungan kunci ECDH mentah
Cara kerja SDK Enkripsi AWS Database

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

AWS Database Encryption SDK menyediakan pustaka enkripsi sisi klien yang dirancang khusus
untuk melindungi data yang Anda simpan dalam database. Pustakanya meliputi implementasi aman
yang dapat Anda perluas atau gunakan tanpa perubahan. Untuk informasi selengkapnya tentang
mendefinisikan dan menggunakan komponen kustom, lihat GitHub repositori untuk implementasi
database Anda.

Alur kerja di bagian ini menjelaskan cara SDK Enkripsi AWS Database mengenkripsi dan
menandatangani serta mendekripsi serta memverifikasi data dalam database Anda. Alur kerja ini
menjelaskan proses dasar menggunakan elemen abstrak dan fitur default. Untuk detail tentang
cara kerja SDK Enkripsi AWS Database dengan implementasi database Anda, lihat topik Apa yang
dienkripsi untuk database Anda.

AWS Database Encryption SDK menggunakan enkripsi amplop untuk melindungi data Anda.

Setiap catatan dienkripsi di bawah kunci data unik. Kunci data digunakan untuk mendapatkan kunci
enkripsi data unik untuk setiap bidang yang ditandai ENCRYPT_AND_SIGN dalam tindakan kriptografi
Anda. Kemudian, salinan kunci data dienkripsi oleh kunci pembungkus yang Anda tentukan. Untuk
mendekripsi catatan terenkripsi, AWS Database Encryption SDK menggunakan kunci pembungkus
yang Anda tentukan untuk mendekripsi setidaknya satu kunci data terenkripsi. Kemudian dapat
mendekripsi ciphertext dan mengembalikan entri plaintext.

Untuk informasi selengkapnya tentang istilah yang digunakan dalam SDK Enkripsi AWS Database,
lihatAWS Konsep SDK Enkripsi Database.

Cara kerjanya 14



AWS SDK Enkripsi Basis Data Panduan Developer

Enkripsi dan tandatangani

Pada intinya, AWS Database Encryption SDK adalah enkripsi rekaman yang mengenkripsi,
menandatangani, memverifikasi, dan mendekripsi catatan dalam database Anda. Dibutuhkan
informasi tentang catatan dan instruksi Anda tentang bidang mana yang akan dienkripsi dan
ditandatangani. Ini mendapatkan materi enkripsi, dan instruksi tentang cara menggunakannya, dari
manajer bahan kriptografi yang dikonfigurasi dari kunci pembungkus yang Anda tentukan.

Panduan berikut menjelaskan cara SDK Enkripsi AWS Database mengenkripsi dan menandatangani
entri data Anda.

1. Manajer bahan kriptografi menyediakan SDK Enkripsi AWS Database dengan kunci enkripsi data
unik: satu kunci data teks biasa, salinan kunci data yang dienkripsi oleh kunci pembungkus yang
ditentukan, dan kunci MAC.

® Note

Anda dapat mengenkripsi kunci data di bawah beberapa kunci pembungkus. Masing-
masing kunci pembungkus mengenkripsi salinan terpisah dari kunci data. AWS Database
Encryption SDK menyimpan semua kunci data terenkripsi dalam deskripsi material. AWS
Database Encryption SDK menambahkan field baru (aws_dbe_head) ke record yang
menyimpan deskripsi material.

Kunci MAC diturunkan untuk setiap salinan kunci data yang dienkripsi. Tombol MAC
tidak disimpan dalam deskripsi materi. Sebagai gantinya, metode dekripsi menggunakan
kunci pembungkus untuk mendapatkan kunci MAC lagi.

2. Metode enkripsi mengenkripsi setiap bidang yang ditandai seperti ENCRYPT_AND_SIGN dalam
tindakan kriptografi yang Anda tentukan.

3. Metode enkripsi berasal commitKey dari kunci data dan menggunakannya untuk menghasilkan
nilai komitmen kunci, dan kemudian membuang kunci data.

4. Metode enkripsi menambahkan deskripsi material ke catatan. Deskripsi materi berisi kunci data
terenkripsi dan informasi lain tentang catatan terenkripsi. Untuk daftar lengkap informasi yang
disertakan dalam deskripsi materi, lihat Format deskripsi materi.

5. Metode enkripsi menggunakan kunci MAC yang dikembalikan pada Langkah 1 untuk
menghitung nilai Kode Otentikasi Pesan Berbasis Hash (HMAC) di atas kanonikalisasi deskripsi
material, konteks enkripsi, dan setiap bidang yang ditandai ENCRYPT_AND_SIGNSIGN_ONLY,

Enkripsi dan tandatangani 15



AWS SDK Enkripsi Basis Data Panduan Developer

atau dalam tindakan kriptografi. STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Nilai HMAC
disimpan dalam bidang baru (aws_dbe_foot) yang ditambahkan metode enkripsi ke catatan.

Metode enkripsi menghitung tanda tangan ECDSA atas kanonikalisasi deskripsi material,
konteks enkripsi, dan setiap bidang yang ditandai ENCRYPT_AND_SIGNSIGN_ONLY, atau
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT dan menyimpan tanda tangan ECDSA di
lapangan. aws_dbe_foot

(@ Note
Tanda tangan ECDSA diaktifkan secara default, tetapi tidak diperlukan.

Metode enkripsi menyimpan catatan terenkripsi dan ditandatangani dalam database Anda

Dekripsi dan verifikasi

1.

Manajer bahan kriptografi (CMM) menyediakan metode dekripsi dengan bahan dekripsi yang
disimpan dalam deskripsi materi, termasuk kunci data teks biasa dan kunci MAC terkait.

«  CMM mendekripsi kunci data terenkripsi dengan kunci pembungkus di keyring yang
ditentukan dan mengembalikan kunci data plaintext.

Metode dekripsi membandingkan dan memverifikasi nilai komitmen utama dalam deskripsi
material.

Metode dekripsi memverifikasi tanda tangan di bidang tanda tangan.

Ini mengidentifikasi bidang mana yang ditandaiENCRYPT_AND_SIGN,SIGN_ONLY,
atau SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT dari daftar bidang tidak
diautentikasi yang diizinkan yang Anda tetapkan. Metode dekripsi menggunakan kunci

MAC yang dikembalikan pada Langkah 1 untuk menghitung ulang dan membandingkan
nilai HMAC untuk bidang yang ditandai,, atau. ENCRYPT_AND_SIGN SIGN_ONLY
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Kemudian, memverifikasi tanda tangan
ECDSA menggunakan kunci publik yang disimpan dalam konteks enkripsi.

Metode dekripsi menggunakan kunci data plaintext untuk mendekripsi setiap nilai yang ditandai.
ENCRYPT_AND_SIGN AWS Database Encryption SDK kemudian membuang kunci data
plaintext.

Metode dekripsi mengembalikan catatan plaintext.

Dekripsi dan verifikasi 16



AWS SDK Enkripsi Basis Data Panduan Developer

Rangkaian algoritme yang didukung di SDK Enkripsi AWS
Database

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Sebuah algoritma suite adalah kumpulan algoritma kriptografi dan nilai-nilai terkait. Sistem kriptografi
menggunakan implementasi algoritma untuk menghasilkan ciphertext.

SDK Enkripsi AWS Database menggunakan rangkaian algoritme untuk mengenkripsi dan

menandatangani bidang di database Anda. Semua suite algoritma yang didukung menggunakan

algoritma Advanced Encryption Standard (AES) dengan Galois/Counter Mode (GCM), yang dikenal
sebagai AES-GCM, untuk mengenkripsi data mentah. AWS Database Encryption SDK mendukung
kunci enkripsi 256-bit. Panjang tag otentikasi selalu 16 byte.

AWS Enkripsi Database SDK Algoritma Suites

Algoritme Enkripsi Panjang Algoritma Algoritma Algoritma Komitmen
algoritme kunci data derivasi tanda tanda utama
(dalam bit)  kunci tangan tangan
simetris asimetris
Default AES-GCM 256 HKDF HMAC- ECDSA HKDF
dengan SHA-384 dengan dengan
SHA-512 P-384 dan SHA-512
SHA-384
AES-GCM  AES-GCM 256 HKDF HMAC- Tidak ada HKDF
tanpa dengan SHA-384 dengan
tanda SHA-512 SHA-512
tangan
digital
ECDSA

Suite algoritma yang didukung



AWS SDK Enkripsi Basis Data Panduan Developer

Enkripsi algoritme

Nama dan mode algoritma enkripsi yang digunakan. Rangkaian algoritma dalam SDK Enkripsi
AWS Database menggunakan algoritma Advanced Encryption Standard (AES) dengan Galois/
Counter Mode (GCM).

Panjang kunci data

Panjang kunci data dalam bit. AWS Database Encryption SDK mendukung kunci data 256-bit.
Kunci data digunakan sebagai masukan ke fungsi derivasi extract-and-expand kunci berbasis
HMAC (HKDF). Output dari HKDF digunakan sebagai kunci enkripsi data dalam algoritma
enkripsi.

Algoritma derivasi kunci
Fungsi derivasi extract-and-expand kunci berbasis HMAC (HKDF) digunakan untuk menurunkan

kunci enkripsi data. AWS Database Encryption SDK menggunakan HKDF yang didefinisikan
dalam RFC 5869.

* Fungsi hash yang digunakan adalah SHA-512

* Untuk langkah ekstrak:
» Tidak ada garam yang digunakan. Per RFC, garam diatur ke string nol.
 Bahan kunci input adalah kunci data dari keyring.

* Untuk langkah perluasan:
+ Kunci pseudorandom input adalah output dari langkah ekstrak.

+ Label kuncinya adalah byte yang dikodekan UTF-8 dari DERIVEKEY string dalam urutan byte
endian besar.

* Info input adalah gabungan dari ID algoritma dan label kunci (dalam urutan itu).

» Panjang bahan kunci keluaran adalah panjang kunci Data. Output ini digunakan sebagai
kunci enkripsi data dalam algoritma enkripsi.

Algoritma tanda tangan simetris

Algoritma Hash Based Message Authentication Code (HMAC) digunakan untuk menghasilkan
tanda tangan simetris. Semua suite algoritma yang didukung termasuk verifikasi HMAC.

AWS Database Encryption SDK membuat serialisasi deskripsi material

dan semua bidang yang ditandaiENCRYPT_AND_SIGN,SIGN_ONLY, atau.
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Kemudian, ia menggunakan HMAC dengan
algoritma fungsi hash kriptografi (SHA-384) untuk menandatangani kanonikalisasi.

Suite algoritma yang didukung 18


https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

AWS SDK Enkripsi Basis Data Panduan Developer

Tanda tangan HMAC simetris disimpan di bidang baru (aws_dbe_foot) yang ditambahkan SDK
Enkripsi AWS Database ke catatan.

Algoritma tanda tangan asimetris
Algoritma tanda tangan digunakan untuk menghasilkan tanda tangan digital asimetris.

AWS Database Encryption SDK membuat serialisasi deskripsi material

dan semua bidang yang ditandaiENCRYPT_AND_SIGN,SIGN_ONLY, atau.
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Kemudian, ia menggunakan Elliptic
Curve Digital Signature Algorithm (ECDSA) dengan spesifikasi berikut untuk menandatangani
kanonikalisasi:

» Kurva elips yang digunakan adalah P-384, sebagaimana didefinisikan dalam Digital Signature
Standard (DSS) (FIPS PUB 186-4).

» Fungsi hash yang digunakan adalah SHA-384.

Tanda tangan ECDSA asimetris disimpan dengan tanda tangan HMAC simetris di lapangan.
aws_dbe_foot

Tanda tangan digital ECDSA disertakan secara default, tetapi tidak diperlukan.

Komitmen utama

Fungsi derivasi extract-and-expand kunci berbasis HMAC (HKDF) digunakan untuk menurunkan
kunci komit.

* Fungsi hash yang digunakan adalah SHA-512

* Untuk langkah ekstrak:
» Tidak ada garam yang digunakan. Per RFC, garam diatur ke string nol.
 Bahan kunci input adalah kunci data dari keyring.

« Untuk langkah perluasan:
» Kunci pseudorandom input adalah output dari langkah ekstrak.

 Info masukan adalah byte yang dikodekan UTF-8 dari COMMITKEY string dalam urutan byte
endian besar.

+ Panjang bahan kunci keluaran adalah 256 bit. Output ini digunakan sebagai kunci komit.

Kunci komit menghitung komitmen rekaman, hash 256-bit Hash Based Message Authentication
Code (HMAC) yang berbeda, di atas deskripsi materi. Untuk penjelasan teknis tentang
menambahkan komitmen utama ke rangkaian algoritme, lihat Key Committing AEADs in

Cryptology ePrint Archive.

Suite algoritma yang didukung 19


http://doi.org/10.6028/NIST.FIPS.186-4
http://doi.org/10.6028/NIST.FIPS.186-4
https://eprint.iacr.org/2020/1153

AWS SDK Enkripsi Basis Data Panduan Developer

Rangkaian algoritme default

Secara default, AWS Database Encryption SDK menggunakan rangkaian algoritma dengan AES-
GCM, fungsi derivasi extract-and-expand kunci berbasis HMAC (HKDF), verifikasi HMAC, tanda
tangan digital ECDSA, komitmen kunci, dan kunci enkripsi 256-bit.

Rangkaian algoritme default mencakup verifikasi HMAC (tanda tangan simetris) dan tanda tangan
digital ECDSA (tanda tangan asimetris). Tanda tangan ini disimpan di bidang baru (aws_dbe_foot)
yang ditambahkan SDK Enkripsi AWS Database ke catatan. Tanda tangan digital ECDSA sangat
berguna ketika kebijakan otorisasi memungkinkan satu set pengguna untuk mengenkripsi data dan
satu set pengguna yang berbeda untuk mendekripsi data.

Rangkaian algoritme default juga memperoleh komitmen utama — hash HMAC yang mengikat

kunci data ke catatan. Nilai komitmen utama adalah HMAC yang dihitung dari deskripsi material

dan kunci komit. Nilai komitmen utama kemudian disimpan dalam deskripsi materi. Komitmen

utama memastikan bahwa setiap ciphertext hanya mendekripsi menjadi satu teks biasa. Mereka
melakukan ini dengan memvalidasi kunci data yang digunakan sebagai input ke algoritma enkripsi.
Saat mengenkripsi, rangkaian algoritma memperoleh komitmen utama HMAC. Sebelum mendekripsi,
mereka memvalidasi bahwa kunci data menghasilkan komitmen kunci yang sama HMAC. Jika tidak,
panggilan dekripsi gagal.

AES-GCM tanpa tanda tangan digital ECDSA

Meskipun rangkaian algoritme default kemungkinan cocok untuk sebagian besar aplikasi, Anda dapat
memilih rangkaian algoritme alternatif. Misalnya, beberapa model kepercayaan akan dipenuhi oleh
rangkaian algoritma tanpa tanda tangan digital ECDSA. Gunakan suite ini hanya ketika pengguna
yang mengenkripsi data dan pengguna yang mendekripsi data sama-sama dipercaya.

Semua rangkaian algoritma SDK Enkripsi AWS Database menyertakan verifikasi HMAC (tanda
tangan simetris). Satu-satunya perbedaan, adalah bahwa rangkaian algoritma AES-GCM tanpa tanda
tangan digital ECDSA tidak memiliki tanda tangan asimetris yang memberikan lapisan keaslian dan
non-penolakan tambahan.

Misalnya, jika Anda memiliki beberapa kunci pembungkus di keyring,,, dan wrappingKeyA
wrappingKeyBwrappingKeyC, dan Anda mendekripsi rekaman menggunakanwrappingKeyA,
tanda tangan simetris HMAC memverifikasi bahwa catatan dienkripsi oleh pengguna dengan akses
ke. wrappingKeyA Jika Anda menggunakan rangkaian algoritme default, HMACs berikan verifikasi
yang samawrappingKeyA, dan juga menggunakan tanda tangan digital ECDSA untuk memastikan
catatan dienkripsi oleh pengguna dengan izin enkripsi untuk. wrappingKeyA

Rangkaian algoritme default 20



AWS SDK Enkripsi Basis Data Panduan Developer

Untuk memilih rangkaian algoritma AES-GCM tanpa tanda tangan digital, sertakan cuplikan berikut
dalam konfigurasi enkripsi Anda.

Java

Cuplikan berikut menentukan rangkaian algoritma AES-GCM tanpa tanda tangan digital ECDSA.
Untuk informasi selengkapnya, lihat the section called “Konfigurasi enkripsi”.

.algorithmSuiteId(
DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384)

C#/.NET

Cuplikan berikut menentukan rangkaian algoritma AES-GCM tanpa tanda tangan digital ECDSA.
Untuk informasi selengkapnya, lihat the section called “Konfigurasi enkripsi”.

AlgorithmSuiteld =
DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384

Rust

Cuplikan berikut menentukan rangkaian algoritma AES-GCM tanpa tanda tangan digital ECDSA.
Untuk informasi selengkapnya, lihat the section called “Konfigurasi enkripsi”.

.algorithm_suite_id(
DbeAlgorithmSuitelId: :AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)

AES-GCM tanpa tanda tangan digital ECDSA 21



AWS SDK Enkripsi Basis Data Panduan Developer

Menggunakan SDK Enkripsi AWS Database dengan AWS
KMS

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Untuk menggunakan AWS Database Encryption SDK, Anda perlu mengkonfigurasi keyring dan
menentukan satu atau beberapa kunci pembungkus. Jika Anda tidak memiliki infrastruktur utama,
sebaiknya gunakan AWS Key Management Service (AWS KMS).

AWS Database Encryption SDK mendukung dua jenis AWS KMS keyrings. AWS KMS Keyring
tradisional digunakan AWS KMS keysuntuk menghasilkan, mengenkripsi, dan mendekripsi kunci
data. Anda dapat menggunakan kunci simetris enkripsi (SYMMETRIC_DEFAULT) atau asimetris
RSA KMS. Karena SDK Enkripsi AWS Database mengenkripsi dan menandatangani setiap catatan
dengan kunci data unik, AWS KMS keyring harus memanggil AWS KMS setiap operasi enkripsi dan
dekripsi. Untuk aplikasi yang perlu meminimalkan jumlah panggilan ke AWS KMS, AWS Database
Encryption SDK juga mendukung keyring AWS KMS Hierarchical. Hierarchical keyring adalah solusi
caching materi kriptografi yang mengurangi jumlah AWS KMS panggilan dengan menggunakan kunci
cabang yang AWS KMS dilindungi yang disimpan dalam tabel Amazon DynamoDB, dan kemudian
secara lokal menyimpan materi kunci cabang yang digunakan dalam operasi enkripsi dan dekripsi.
Kami merekomendasikan menggunakan AWS KMS gantungan kunci bila memungkinkan.

Untuk berinteraksi dengan AWS KMS, AWS Database Encryption SDK memerlukan AWS KMS
modul. AWS SDK untuk Java

Untuk mempersiapkan untuk menggunakan AWS Database Encryption SDK dengan AWS KMS

1. Buat sebuah Akun AWS. Untuk mempelajari caranya, lihat Bagaimana cara membuat dan
mengaktifkan akun Amazon Web Services baru? di pusat AWS pengetahuan.

2. Buat enkripsi AWS KMS key simetris. Untuk bantuan, lihat Membuat Kunci di Panduan AWS Key
Management Service Pengembang.

® Tip
Untuk menggunakan AWS KMS key pemrograman, Anda memerlukan Nama
Sumber Daya Amazon (ARN) dari file. AWS KMS keyUntuk bantuan menemukan

22


https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS SDK Enkripsi Basis Data Panduan Developer

ARN dari sebuah AWS KMS key, lihat Menemukan ID Kunci dan ARN di Panduan
Pengembang.AWS Key Management Service

3. Hasilkan ID kunci akses dan kunci akses keamanan. Anda dapat menggunakan ID kunci akses
dan kunci akses rahasia untuk pengguna IAM atau Anda dapat menggunakan AWS Security
Token Service untuk membuat sesi baru dengan kredenal keamanan sementara yang mencakup
ID kunci akses, kunci akses rahasia, dan token sesi. Sebagai praktik keamanan terbaik, kami
menyarankan Anda menggunakan kredensil sementara alih-alih kredensil jangka panjang yang
terkait dengan pengguna IAM atau akun pengguna AWS (root) Anda.

Untuk membuat pengguna IAM dengan kunci akses, lihat Membuat Pengguna |IAM di Panduan
Pengguna IAM.

Untuk menghasilkan kredensil keamanan sementara, lihat Meminta kredensil keamanan
sementara di Panduan Pengguna IAM.

4. Tetapkan AWS kredensil Anda menggunakan instruksi di AWS SDK untuk Javadan ID kunci
akses dan kunci akses rahasia yang Anda buat di langkah 3. Jika Anda membuat kredensil
sementara, Anda juga perlu menentukan token sesi.

Prosedur ini memungkinkan AWS SDKs untuk menandatangani permintaan AWS untuk Anda.
Contoh kode dalam SDK Enkripsi AWS Database yang berinteraksi dengan AWS KMS asumsi
bahwa Anda telah menyelesaikan langkah ini.

23


https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html

AWS SDK Enkripsi Basis Data Panduan Developer

Mengkonfigurasi SDK Enkripsi AWS Database

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

AWS Database Encryption SDK dirancang agar mudah digunakan. Meskipun SDK Enkripsi AWS
Database memiliki beberapa opsi konfigurasi, nilai default dipilih dengan cermat agar praktis dan
aman untuk sebagian besar aplikasi. Namun, Anda mungkin perlu menyesuaikan konfigurasi untuk
meningkatkan kinerja atau menyertakan fitur khusus dalam desain Anda.

Topik

* Memilih bahasa pemrograman

» Memilih tombol pembungkus

» Membuat filter penemuan

» Bekerja dengan database multitenant

« Membuat beacon yang ditandatangani

Memilih bahasa pemrograman

AWS Database Encryption SDK untuk DynamoDB tersedia dalam beberapa bahasa pemrograman.

Implementasi bahasa dirancang untuk sepenuhnya dapat dioperasikan dan menawarkan fitur yang
sama, meskipun mereka mungkin diimplementasikan dengan cara yang berbeda. Biasanya, Anda
menggunakan perpustakaan yang kompatibel dengan aplikasi Anda.

Memilih tombol pembungkus

AWS Database Encryption SDK menghasilkan kunci data simetris yang unik untuk mengenkripsi
setiap bidang. Anda tidak perlu mengkonfigurasi, mengelola, atau menggunakan kunci data. AWS
Database Encryption SDK melakukannya untuk Anda.

Namun, Anda harus memilih satu atau lebih kunci pembungkus untuk mengenkripsi setiap kunci data.
AWS Database Encryption SDK mendukung AWS Key Management Service(AWS KMS) kunci KMS
enkripsi simetris dan kunci KMS RSA asimetris. Ini juga mendukung tombol simetris AES dan tombol

Memilih bahasa pemrograman 24


https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK Enkripsi Basis Data Panduan Developer

asimetris RSA yang Anda berikan dalam berbagai ukuran. Anda bertanggung jawab atas keamanan
dan daya tahan kunci pembungkus Anda, jadi kami sarankan Anda menggunakan kunci enkripsi
dalam modul keamanan perangkat keras atau layanan infrastruktur utama, seperti AWS KMS.

Untuk menentukan kunci pembungkus Anda untuk enkripsi dan dekripsi, Anda menggunakan
keyring. Bergantung pada jenis keyring yang Anda gunakan, Anda dapat menentukan satu

kunci pembungkus atau beberapa kunci pembungkus dari jenis yang sama atau berbeda. Jika

Anda menggunakan beberapa kunci pembungkus untuk membungkus kunci data, setiap kunci
pembungkus akan mengenkripsi salinan kunci data yang sama. Kunci data terenkripsi (satu per kunci
pembungkus) disimpan dalam deskripsi material yang disimpan di samping bidang terenkripsi. Untuk
mendekripsi data, AWS Database Encryption SDK harus terlebih dahulu menggunakan salah satu
kunci pembungkus Anda untuk mendekripsi kunci data terenkripsi.

Kami merekomendasikan menggunakan salah satu AWS KMS gantungan kunci bila memungkinkan.
AWS Database Encryption SDK menyediakan AWS KMS keyring dan keyring AWS KMS Hierarkis,
yang mengurangi jumlah panggilan yang dilakukan. AWS KMS Untuk menentukan AWS KMS key
dalam keyring, gunakan pengenal AWS KMS kunci yang didukung. Jika Anda menggunakan keyring
AWS KMS Hierarkis, Anda harus menentukan kunci ARN. Untuk detail tentang pengidentifikasi kunci
untuk AWS KMS kunci, lihat Pengidentifikasi Kunci di Panduan AWS Key Management Service
Pengembang.

» Saat Anda mengenkripsi dengan AWS KMS keyring, Anda dapat menentukan pengenal kunci yang
valid (ARN kunci, nama alias, alias ARN, atau ID kunci) untuk kunci KMS enkripsi simetris. Jika
Anda menggunakan kunci KMS RSA asimetris, Anda harus menentukan kunci ARN.

Jika Anda menentukan nama alias atau alias ARN untuk kunci KMS saat mengenkripsi, SDK

Enkripsi Database menyimpan ARN kunci yang saat ini terkait dengan alias tersebut; itu tidak
menyimpan alias. AWS Perubahan pada alias tidak memengaruhi kunci KMS yang digunakan
untuk mendekripsi kunci data Anda.

» Secara default, AWS KMS keyring mendekripsi catatan dalam mode ketat (di mana Anda
menentukan kunci KMS tertentu). Anda harus menggunakan ARN kunci AWS KMS keys untuk
mengidentifikasi dekripsi.

Saat Anda mengenkripsi dengan AWS KMS keyring, SDK Enkripsi AWS Database menyimpan
ARN kunci AWS KMS key dalam deskripsi materi dengan kunci data terenkripsi. Saat mendekripsi
dalam mode ketat, SDK Enkripsi AWS Database memverifikasi bahwa ARN kunci yang sama
muncul di keyring sebelum mencoba menggunakan kunci pembungkus untuk mendekripsi kunci
data terenkripsi. Jika Anda menggunakan pengenal kunci yang berbeda, SDK Enkripsi AWS

Memilih tombol pembungkus 25


https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS SDK Enkripsi Basis Data Panduan Developer

Database tidak akan mengenali atau menggunakan AWS KMS key, bahkan jika pengidentifikasi
merujuk ke kunci yang sama.

» Saat mendekripsi dalam mode penemuan, Anda tidak menentukan kunci pembungkus apa pun.
Pertama, AWS Database Encryption SDK mencoba untuk mendekripsi catatan dengan ARN kunci
yang disimpan dalam deskripsi material. Jika itu tidak berhasil, AWS Database Encryption SDK
meminta AWS KMS untuk mendekripsi catatan menggunakan kunci KMS yang mengenkripsi itu,
terlepas dari siapa yang memiliki atau memiliki akses ke kunci KMS itu.

Untuk menentukan kunci AES mentah atau key pair RSA mentah sebagai kunci pembungkus
dalam keyring, Anda harus menentukan namespace dan nama. Saat mendekripsi, Anda harus
menggunakan namespace dan nama yang sama persis untuk setiap kunci pembungkus mentah
seperti yang Anda gunakan saat mengenkripsi. Jika Anda menggunakan namespace atau nama
yang berbeda, SDK Enkripsi AWS Database tidak akan mengenali atau menggunakan kunci
pembungkus, meskipun materi kuncinya sama.

Membuat filter penemuan

Saat mendekripsi data yang dienkripsi dengan kunci KMS, ini adalah praktik terbaik untuk
mendekripsi dalam mode ketat, yaitu membatasi kunci pembungkus yang digunakan hanya untuk
yang Anda tentukan. Namun, jika perlu, Anda juga dapat mendekripsi dalam mode penemuan,

di mana Anda tidak menentukan kunci pembungkus apa pun. Dalam mode ini, AWS KMS dapat
mendekripsi kunci data terenkripsi menggunakan kunci KMS yang mengenkripsi itu, terlepas dari
siapa yang memiliki atau memiliki akses ke kunci KMS itu.

Jika Anda harus mendekripsi dalam mode penemuan, kami sarankan Anda selalu menggunakan filter
penemuan, yang membatasi kunci KMS yang dapat digunakan untuk yang ada di partisi dan yang
ditentukan Akun AWS . Filter penemuan adalah opsional, tetapi ini adalah praktik terbaik.

Gunakan tabel berikut untuk menentukan nilai partisi untuk filter penemuan Anda.

Wilayah Partition
Wilayah AWS aws

Wilayah Tiongkok aws-cn
AWS GovCloud (US) Regions aws-us-gov

Membuat filter penemuan 26


https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS SDK Enkripsi Basis Data Panduan Developer

Contoh berikut menunjukkan cara membuat filter penemuan. Sebelum menggunakan kode, ganti nilai
contoh dengan nilai yang valid untuk Anda Akun AWS dan partisi.

Java

// Create the discovery filter

DiscoveryFilter discoveryFilter = DiscoveryFilter.buildexr()
.partition("aws")
.accountIds(111122223333)
.build();

C#/ .NET

var discoveryFilter = new DiscoveryFilter

{

Partition = "aws",
AccountIds = 111122223333

};
Rust

// Create discovery filter

let discovery_filter = DiscoveryFilter::builder()
.partition("aws")
.account_ids(111122223333)
.build()?;

Bekerja dengan database multitenant

Dengan AWS Database Encryption SDK, Anda dapat mengonfigurasi enkripsi sisi klien untuk
database dengan skema bersama dengan mengisolasi setiap penyewa dengan bahan enkripsi
yang berbeda. Saat mempertimbangkan database multitenant, luangkan waktu untuk meninjau
persyaratan keamanan Anda dan bagaimana multitenansi dapat memengaruhi mereka. Misalnya,
menggunakan database multitenant dapat memengaruhi kemampuan Anda untuk menggabungkan
SDK Enkripsi AWS Database dengan solusi enkripsi sisi server lainnya.

Jika Anda memiliki beberapa pengguna yang melakukan operasi enkripsi dalam database Anda,
Anda dapat menggunakan salah satu AWS KMS keyring untuk menyediakan setiap pengguna
dengan kunci yang berbeda untuk digunakan dalam operasi kriptografi mereka. Mengelola kunci

Bekerja dengan database multitenant 27



AWS SDK Enkripsi Basis Data Panduan Developer

data untuk solusi enkripsi sisi klien multitenant bisa rumit. Kami merekomendasikan untuk mengatur
data Anda dengan penyewa bila memungkinkan. Jika penyewa diidentifikasi oleh nilai kunci primer
(misalnya, kunci partisi dalam tabel Amazon DynamoDB), maka mengelola kunci Anda lebih mudah.

Anda dapat menggunakan AWS KMS keyring untuk mengisolasi setiap penyewa dengan keyring
yang berbeda AWS KMS dan. AWS KMS keys Berdasarkan volume AWS KMS panggilan yang
dilakukan per penyewa, Anda mungkin ingin menggunakan keyring AWS KMS Hierarkis untuk
meminimalkan panggilan Anda. AWS KMSAWS KMS Hierarchical keyring adalah solusi caching
materi kriptografi yang mengurangi jumlah AWS KMS panggilan dengan menggunakan kunci cabang
yang AWS KMS dilindungi yang disimpan dalam tabel Amazon DynamoDB, dan kemudian secara
lokal menyimpan materi kunci cabang yang digunakan dalam operasi enkripsi dan dekripsi. Anda
harus menggunakan keyring AWS KMS Hierarkis untuk mengimplementasikan enkripsi yang dapat
dicari di database Anda.

Membuat beacon yang ditandatangani

SDK Enkripsi AWS Database menggunakan beacon standar dan suar majemuk untuk menyediakan
solusi enkripsi yang dapat dicari yang memungkinkan Anda mencari catatan terenkripsi tanpa
mendekripsi seluruh database yang ditanyakan. Namun, SDK Enkripsi AWS Database juga
mendukung suar bertanda tangan yang dapat dikonfigurasi sepenuhnya dari bidang bertanda teks
biasa. Signed beacon adalah jenis suar majemuk yang mengindeks dan melakukan kueri kompleks
pada dan bidang. STGN_ONLY SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Misalnya, jika Anda memiliki database multitenant, Anda mungkin ingin membuat suar bertanda
tangan yang memungkinkan Anda untuk menanyakan database Anda untuk catatan yang dienkripsi
oleh kunci penyewa tertentu. Untuk informasi selengkapnya, lihat Menanyakan beacon dalam

database multitenant.

Anda harus menggunakan keyring AWS KMS Hierarkis untuk membuat suar bertanda tangan.

Untuk mengonfigurasi suar yang ditandatangani, berikan nilai berikut.

Java
Konfigurasi suar majemuk

Contoh berikut mendefinisikan daftar bagian yang ditandatangani secara lokal dalam konfigurasi
suar yang ditandatangani.

Membuat beacon yang ditandatangani 28



AWS SDK Enkripsi Basis Data Panduan Developer

List<CompoundBeacon> compoundBeaconlList = new ArraylList<>();
CompoundBeacon exampleCompoundBeacon = CompoundBeacon.builder()
.name (" compoundBeaconName")
.split(".")
.signed(signedPartlList)
.constructors(constructorList)
.build();
compoundBeaconList.add(exampleCompoundBeacon);

Definisi versi suar

Contoh berikut mendefinisikan daftar bagian yang ditandatangani secara global dalam versi
beacon. Untuk informasi selengkapnya tentang mendefinisikan versi beacon, lihat Menggunakan

beacon.

List<BeaconVersion> beaconVersions = new ArraylList<>();
beaconVersions.add(

BeaconVersion.builder()
.standardBeacons(standardBeaconList)
.compoundBeacons (compoundBeaconList)
.signedParts(signedPartlList)

.version(l) // MUST be 1

.keyStore(keyStore)

.keySource(BeaconKeySource.builder()
.single(SingleKeyStore.builder()

.keyId(branchKeyId)
.cacheTTL(6000)
.build())
.build())
.build()
);
C#/ .NET

Lihat contoh kode lengkapnya: BeaconConfig.cs

Konfigurasi suar yang ditandatangani

Contoh berikut mendefinisikan daftar bagian yang ditandatangani secara lokal dalam konfigurasi
suar yang ditandatangani.

var compoundBeaconList = new List<CompoundBeacon>();

Membuat beacon yang ditandatangani 29


https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/complexexample/BeaconConfig.cs

AWS SDK Enkripsi Basis Data

Panduan Developer

var exampleCompoundBeacon = new CompoundBeacon

{
Name = "compoundBeaconName",
Split = ".",
Signed = signedPartlList,
Constructors = constructorlList
};

compoundBeaconList.Add(exampleCompoundBeacon);

Definisi versi suar

Contoh berikut mendefinisikan daftar bagian yang ditandatangani secara global dalam versi
beacon. Untuk informasi selengkapnya tentang mendefinisikan versi beacon, lihat Menggunakan

beacon.

var beaconVersions =

{
new BeaconVersion
{
StandardBeaco
CompoundBeaco
SignedParts =

new List<BeaconVersion>

ns = standardBeaconlList,
ns = compoundBeaconlList,
signedPartsList,

Version = 1, // MUST be 1
KeyStore = keyStore,

KeySource = new BeaconKeySource

{
Single =
{
KeyId

new SingleKeyStore

= branchKeyId,

CacheTTL = 6000

};

Anda dapat menentukan bagian yang ditandatangani dalam daftar yang ditentukan secara lokal atau
global. Kami merekomendasikan untuk menentukan bagian yang Anda tandatangani dalam daftar
global dalam versi suar bila memungkinkan. Dengan mendefinisikan bagian yang ditandatangani

secara global, Anda dapat menentukan setiap bagian sekali dan kemudian menggunakan kembali
bagian-bagian tersebut dalam beberapa konfigurasi suar majemuk. Jika Anda hanya ingin
menggunakan bagian yang ditandatangani sekali, Anda dapat mendefinisikannya dalam daftar lokal

Membuat beacon yang ditandatangani

30



AWS SDK Enkripsi Basis Data Panduan Developer

dalam konfigurasi suar yang ditandatangani. Anda dapat mereferensikan bagian lokal dan global
dalam daftar konstruktor Anda.

Jika Anda menentukan daftar bagian yang ditandatangani secara global, Anda harus memberikan
daftar bagian konstruktor yang mengidentifikasi semua kemungkinan cara suar yang ditandatangani
dapat merakit bidang dalam konfigurasi suar Anda.

(® Note

Untuk menentukan daftar bagian yang ditandatangani secara global, Anda harus
menggunakan SDK Enkripsi AWS Database versi 3.2 atau yang lebih baru. Terapkan versi
baru ke semua pembaca sebelum mendefinisikan bagian baru secara global.

Anda tidak dapat memperbarui konfigurasi suar yang ada untuk menentukan daftar bagian
yang ditandatangani secara global.

Nama suar
Nama yang Anda gunakan saat menanyakan suar.

Nama suar yang ditandatangani tidak bisa menjadi nama yang sama dengan bidang yang tidak
terenkripsi. Tidak ada dua suar yang dapat memiliki nama suar yang sama.

Karakter split

Karakter yang digunakan untuk memisahkan bagian-bagian yang membentuk suar yang
ditandatangani Anda.

Karakter split tidak dapat muncul dalam nilai plaintext dari salah satu bidang tempat suar yang
ditandatangani dibuat.

Daftar bagian yang ditandatangani
Mengidentifikasi bidang yang ditandatangani termasuk dalam suar yang ditandatangani.

Setiap bagian harus menyertakan nama, sumber, dan awalan. Sumbernya adalah
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT bidang SIGN_ONLY atau yang diidentifikasi
oleh bagian tersebut. Sumber harus berupa nama bidang atau indeks yang mengacu pada nilai
bidang bersarang. Jika nama bagian Anda mengidentifikasi sumber, Anda dapat menghilangkan
sumber dan SDK Enkripsi AWS Database akan secara otomatis menggunakan nama sebagai

Membuat beacon yang ditandatangani 31



AWS SDK Enkripsi Basis Data Panduan Developer

sumbernya. Kami merekomendasikan untuk menentukan sumber sebagai nama bagian bila
memungkinkan. Awalan dapat berupa string apa saja, tetapi harus unik. Tidak ada dua bagian
yang ditandatangani dalam suar bertanda tangan yang dapat memiliki awalan yang sama.
Sebaiknya gunakan nilai pendek yang membedakan bagian dari bagian lain yang dilayani oleh
suar majemuk.

Kami merekomendasikan untuk menentukan suku cadang Anda yang ditandatangani secara
global bila memungkinkan. Anda dapat mempertimbangkan untuk mendefinisikan bagian yang
ditandatangani secara lokal jika Anda hanya bermaksud menggunakannya dalam satu suar
majemuk. Bagian yang didefinisikan secara lokal tidak dapat memiliki awalan atau nama yang
sama dengan bagian yang didefinisikan secara global.

Java

List<SignedPart> signedPartlList = new ArraylList<>);
SignedPart signedPartExample = SignedPart.builder()
.name("signedFieldName")
.prefix("s-")
.build();
signedPartlList.add(signedPartExample);

C#/ .NET

var signedPartslList = new List<SignedPart>

{
new SignedPart { Name = "signedFieldNamel", Prefix = "S-" },
new SignedPart { Name = "signedFieldName2", Prefix = "SF-" }

};

Daftar konstruktor (Opsional)

Mengidentifikasi konstruktor yang menentukan berbagai cara agar bagian yang ditandatangani
dapat dirakit oleh suar yang ditandatangani.

Jika Anda tidak menentukan daftar konstruktor, AWS Database Encryption SDK akan merakit
beacon yang ditandatangani dengan konstruktor default berikut.

« Semua bagian yang ditandatangani dalam urutan mereka ditambahkan ke daftar bagian yang
ditandatangani

« Semua bagian diperlukan

Membuat beacon yang ditandatangani 32



AWS SDK Enkripsi Basis Data Panduan Developer

Konstruktor

Setiap konstruktor adalah daftar terurut dari bagian-bagian konstruktor yang mendefinisikan
satu cara bahwa suar yang ditandatangani dapat dirakit. Bagian konstruktor digabungkan
bersama dalam urutan mereka ditambahkan ke daftar, dengan setiap bagian dipisahkan oleh
karakter split yang ditentukan.

Setiap bagian konstruktor memberi nama bagian yang ditandatangani, dan

menentukan apakah bagian itu diperlukan atau opsional dalam konstruktor.

Misalnya, jika Anda ingin menanyakan suar yang ditandatangani padaField1l,, dan
Fieldl.Field2Fieldl.Field2.Field3, tandai dan Field3 sebagai opsional Field2
dan buat satu konstruktor.

Setiap konstruktor harus memiliki setidaknya satu bagian yang diperlukan. Sebaiknya buat
bagian pertama di setiap konstruktor yang diperlukan sehingga Anda dapat menggunakan
BEGINS_WITH operator dalam kueri Anda.

Konstruktor berhasil jika semua bagian yang diperlukan ada dalam catatan. Saat Anda menulis
catatan baru, suar yang ditandatangani menggunakan daftar konstruktor untuk menentukan
apakah suar dapat dirakit dari nilai yang diberikan. Ini mencoba untuk merakit suar dalam
urutan bahwa konstruktor ditambahkan ke daftar konstruktor, dan menggunakan konstruktor
pertama yang berhasil. Jika tidak ada konstruktor yang berhasil, suar tidak ditulis ke catatan.

Semua pembaca dan penulis harus menentukan urutan konstruktor yang sama untuk
memastikan bahwa hasil kueri mereka benar.

Gunakan prosedur berikut untuk menentukan daftar konstruktor Anda sendiri.

1.

Buat bagian konstruktor untuk setiap bagian yang ditandatangani untuk menentukan apakah
bagian itu diperlukan atau tidak.

Nama bagian konstruktor harus nama bidang yang ditandatangani.

Contoh berikut menunjukkan cara membuat bagian konstruktor untuk satu bidang
ditandatangani.

Java

ConstructorPart fieldlConstructorPart = ConstructorPart.builder()
.name("Fieldl")
.required(true)

Membuat beacon yang ditandatangani 33



AWS SDK Enkripsi Basis Data Panduan Developer

.build();

C#/ .NET

var fieldlConstructorPart = new ConstructorPart { Name = "Fieldl", Required
= true };

2. Buat konstruktor untuk setiap cara yang mungkin agar suar yang ditandatangani dapat dirakit
menggunakan bagian konstruktor yang Anda buat di Langkah 1.

Misalnya, jika Anda ingin menanyakan Fieldl.Field2.Field3
danField4.Field2.Field3, maka Anda harus membuat dua konstruktor. Fieldldan
keduanya Field4 dapat diperlukan karena mereka didefinisikan dalam dua konstruktor
terpisah.

Java

// Create a list for Fieldl.Field2.Field3 queries
List<ConstructorPart> fieldl23ConstructorPartlList = new ArraylList<>();
fieldl23ConstructorPartList.add(fieldlConstructorPart);
fieldl123ConstructorPartlList.add(field2ConstructorPart);
fieldl23ConstructorPartList.add(field3ConstructorPart);
Constructor fieldl23Constructor = Constructor.builder()
.parts(fieldl23ConstructorPartlList)
.build();
// Create a list for Field4.Field2.Fieldl queries
List<ConstructorPart> field421ConstructorPartList = new ArraylList<>();
field421ConstructorPartList.add(field4ConstructorPart);
field421ConstructorPartlList.add(field2ConstructorPart);
field421ConstructorPartList.add(fieldlConstructorPart);
Constructor field421Constructor = Constructor.builder()
.parts(field421ConstructorPartlList)
.build();

C#/ .NET

// Create a list for Fieldl.Field2.Field3 queries
var fieldl23ConstructorPartList = new Constructor

{

Parts = new List<ConstructorPart> { fieldlConstructorPart,
field2ConstructorPart, field3ConstructorPart }

¥

Membuat beacon yang ditandatangani 34



AWS SDK Enkripsi Basis Data Panduan Developer

// Create a list for Field4.Field2.Fieldl queries
var field421lConstructorPartlList = new Constructor
{
Parts = new List<ConstructorPart> { field4ConstructorPart,
field2ConstructorPart, fieldlConstructorPart }
I

3. Buat daftar konstruktor yang mencakup semua konstruktor yang Anda buat di Langkah 2.

Java

List<Constructor> constructorList = new ArraylList<>();
constructorList.add(field123Constructor)
constructorList.add(field421Constructor)

C#/.NET

var constructorList = new List<Constructor>

{
fieldl23Constructor,
field421Constructor
};

4. Tentukan constructorList kapan Anda membuat suar yang ditandatangani.

Membuat beacon yang ditandatangani 35



AWS SDK Enkripsi Basis Data Panduan Developer

Penyimpanan kunci dalam SDK Enkripsi AWS Database

Dalam SDK Enkripsi AWS Database, penyimpanan kunci adalah tabel Amazon DynamoDB yang
mempertahankan data hierarkis yang digunakan oleh keyring Hierarkis. AWS KMS Toko kunci
membantu mengurangi jumlah panggilan yang perlu Anda lakukan AWS KMS untuk melakukan
operasi kriptografi dengan keyring Hierarkis.

Penyimpanan kunci tetap ada dan mengelola kunci cabang yang digunakan keyring Hierarkis untuk
melakukan enkripsi amplop dan melindungi kunci enkripsi data. Key store menyimpan kunci cabang
aktif dan semua versi sebelumnya dari kunci cabang. Kunci cabang aktif adalah versi kunci cabang
terbaru. Keyring Hierarkis menggunakan kunci enkripsi data unik untuk setiap permintaan enkripsi
dan mengenkripsi setiap kunci enkripsi data dengan kunci pembungkus unik yang berasal dari kunci
cabang aktif. Keyring Hierarkis bergantung pada hierarki yang ditetapkan antara kunci cabang aktif
dan kunci pembungkus turunannya.

Terminologi dan konsep toko kunci

Toko kunci

Tabel DynamoDB yang mempertahankan data hierarkis, seperti kunci cabang dan kunci suar.

Kunci root

Kunci KMS enkripsi simetris yang menghasilkan dan melindungi kunci cabang dan kunci suar di
toko kunci Anda.

Kunci cabang

Kunci data yang digunakan kembali untuk mendapatkan kunci pembungkus unik untuk enkripsi
amplop. Anda dapat membuat beberapa kunci cabang dalam satu penyimpanan kunci, tetapi
setiap kunci cabang hanya dapat memiliki satu versi kunci cabang aktif pada satu waktu. Kunci
cabang aktif adalah versi kunci cabang terbaru.

Kunci cabang berasal dari AWS KMS keys menggunakan kms: GenerateDataKeyWithoutPlaintext

operasi.

Kunci pembungkus

Kunci data unik yang digunakan untuk mengenkripsi kunci enkripsi data yang digunakan dalam
operasi enkripsi.

Terminologi dan konsep toko kunci

36


https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK Enkripsi Basis Data Panduan Developer

Kunci pembungkus berasal dari kunci cabang. Untuk informasi selengkapnya tentang proses
derivasi kunci, lihat Detail teknis keyring AWS KMS hierarkis.

Kunci enkripsi data

Kunci data yang digunakan dalam operasi enkripsi. Keyring Hierarkis menggunakan kunci enkripsi
data unik untuk setiap permintaan enkripsi.

Kunci suar

Kunci data yang digunakan untuk menghasilkan beacon untuk enkripsi yang dapat dicari. Untuk
informasi selengkapnya, lihat Enkripsi yang dapat dicari.

Menerapkan izin yang paling tidak diistimewakan

Saat menggunakan penyimpanan kunci dan gantungan kunci AWS KMS Hierarkis, kami sarankan
Anda mengikuti prinsip hak istimewa paling sedikit dengan mendefinisikan peran berikut:

Administrator toko kunci

Administrator toko utama bertanggung jawab untuk membuat dan mengelola toko kunci dan kunci
cabang yang bertahan dan dilindungi. Administrator toko utama harus menjadi satu-satunya
pengguna dengan izin menulis ke tabel Amazon DynamoDB yang berfungsi sebagai toko kunci
Anda. Mereka harus menjadi satu-satunya pengguna dengan akses ke operasi administrator
istimewa, seperti CreateKeydan VersionKey. Anda hanya dapat melakukan operasi ini ketika
Anda mengonfigurasi tindakan penyimpanan kunci secara statis.

CreateKeyadalah operasi istimewa yang dapat menambahkan ARN kunci KMS baru ke daftar
izin toko kunci Anda. Kunci KMS ini dapat membuat kunci cabang aktif baru. Kami menyarankan
untuk membatasi akses ke operasi ini karena setelah kunci KMS ditambahkan ke toko kunci
cabang, itu tidak dapat dihapus.

Pengguna toko kunci

Dalam kebanyakan kasus penggunaan, pengguna key store hanya berinteraksi

dengan key store melalui keyring Hierarchical saat mereka mengenkripsi, mendekripsi,
menandatangani, dan memverifikasi data. Akibatnya, mereka hanya perlu izin baca ke

tabel Amazon DynamoDB yang berfungsi sebagai toko kunci Anda. Pengguna toko kunci
hanya perlu akses ke operasi penggunaan yang memungkinkan operasi kriptografi,
sepertiGetActiveBranchKey,GetBranchKeyVersion, danGetBeaconKey. Mereka tidak
memerlukan izin untuk membuat atau mengelola kunci cabang yang mereka gunakan.

Menerapkan izin yang paling tidak diistimewakan 37



AWS SDK Enkripsi Basis Data Panduan Developer

Anda dapat melakukan operasi penggunaan ketika tindakan penyimpanan kunci Anda
dikonfigurasi secara statis, atau ketika mereka dikonfigurasi untuk penemuan. Anda tidak dapat

melakukan operasi administrator (CreateKeydanVersionKey) ketika tindakan penyimpanan
kunci Anda dikonfigurasi untuk penemuan.

Jika administrator toko kunci cabang Anda mengizinkan daftar beberapa kunci KMS di toko
kunci cabang Anda, kami menyarankan agar pengguna toko kunci Anda mengonfigurasi
tindakan penyimpanan kunci mereka untuk ditemukan sehingga keyring Hierarkis mereka dapat
menggunakan beberapa kunci KMS.

Buat toko kunci

Sebelum Anda dapat membuat kunci cabang atau menggunakan keyring AWS KMS Hierarkis, Anda
harus membuat toko kunci Anda, tabel Amazon DynamoDB yang mengelola dan melindungi kunci
cabang Anda.

/A Important

Jangan hapus tabel DynamoDB yang mempertahankan kunci cabang Anda. Jika Anda
menghapus tabel ini, Anda tidak akan dapat mendekripsi data apa pun yang dienkripsi
menggunakan keyring Hierarkis.

Ikuti prosedur Buat tabel di Panduan Pengembang Amazon DynamoDB, menggunakan nilai string
yang diperlukan berikut untuk kunci partisi dan kunci sortir.

Kunci partisi Sortir kunci

Tabel dasar branch-key-id type

Nama toko kunci logis

Saat menamai tabel DynamoDB yang berfungsi sebagai penyimpanan kunci Anda, penting

untuk mempertimbangkan dengan cermat nama toko kunci logis yang akan Anda tentukan saat
mengonfigurasi tindakan penyimpanan kunci Anda. Nama penyimpanan kunci logis bertindak
sebagai pengidentifikasi untuk toko kunci Anda dan tidak dapat diubah setelah awalnya ditentukan

Buat toko kunci 38


https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS SDK Enkripsi Basis Data Panduan Developer

oleh pengguna pertama. Anda harus selalu menentukan nama penyimpanan kunci logis yang sama
dalam tindakan penyimpanan kunci Anda.

Harus ada one-to-one pemetaan antara nama tabel DynamoDB dan nama toko kunci logis. Nama
penyimpanan kunci logis terikat secara kriptografis ke semua data yang disimpan dalam tabel
untuk menyederhanakan operasi pemulihan DynamoDB. Meskipun nama toko kunci logis dapat
berbeda dari nama tabel DynamoDB Anda, kami sangat menyarankan untuk menentukan nama
tabel DynamoDB Anda sebagai nama toko kunci logis. Jika nama tabel Anda berubah setelah
memulihkan tabel DynamoDB Anda dari cadangan, nama penyimpanan kunci logis dapat dipetakan

ke nama tabel DynamoDB baru untuk memastikan bahwa keyring Hierarkis masih dapat mengakses

penyimpanan kunci Anda.

Jangan sertakan informasi rahasia atau sensitif dalam nama toko kunci logis Anda. Nama
penyimpanan kunci logis ditampilkan dalam teks biasa dalam AWS KMS CloudTrail peristiwa
sebagai. tablename

Langkah selanjutnya

1. the section called “Konfigurasikan tindakan penyimpanan kunci”

2. the section called “Buatlah sebuah cabang”
3. Buat keyring AWS KMS Hierarkis

Konfigurasikan tindakan penyimpanan kunci

Tindakan penyimpanan kunci menentukan operasi apa yang dapat dilakukan pengguna Anda dan
bagaimana keyring AWS KMS Hierarkis mereka menggunakan kunci KMS yang diizinkan terdaftar
di toko kunci Anda. AWS Database Encryption SDK mendukung konfigurasi tindakan penyimpanan
kunci berikut.

Statis

Saat Anda mengonfigurasi penyimpanan kunci secara statis, toko kunci hanya dapat
menggunakan kunci KMS yang terkait dengan ARN kunci KMS yang Anda berikan
kmsConfiguration saat Anda mengonfigurasi tindakan penyimpanan kunci Anda.
Pengecualian dilemparkan jika ARN kunci KMS yang berbeda ditemukan saat membuat,
membuat versi, atau mendapatkan kunci cabang.

Anda dapat menentukan kunci KMS Multi-wilayah di AndakmsConfiguration, tetapi seluruh
ARN kunci, termasuk wilayah, tetap ada di kunci cabang yang berasal dari kunci KMS. Anda tidak

Konfigurasikan tindakan penyimpanan kunci 39


https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK Enkripsi Basis Data Panduan Developer

dapat menentukan kunci di wilayah yang berbeda, Anda harus memberikan kunci multi-wilayah
yang sama persis agar nilainya cocok.

Saat Anda mengonfigurasi tindakan penyimpanan kunci secara statis, Anda dapat melakukan
operasi penggunaan (GetActiveBranchKey,GetBranchKeyVersion,GetBeaconKey) dan
operasi administratif (CreateKeydanVersionKey). CreateKeyadalah operasi istimewa yang
dapat menambahkan ARN kunci KMS baru ke daftar izin toko kunci Anda. Kunci KMS ini dapat
membuat kunci cabang aktif baru. Kami menyarankan untuk membatasi akses ke operasi ini
karena setelah kunci KMS ditambahkan ke toko kunci, itu tidak dapat dihapus.

Penemuan

Saat Anda mengonfigurasi tindakan penyimpanan kunci Anda untuk penemuan, toko kunci dapat
menggunakan AWS KMS key ARN apa pun yang diizinkan terdaftar di toko kunci Anda. Namun,
pengecualian dilemparkan ketika kunci KMS Multi-wilayah ditemui dan wilayah di ARN kunci tidak
cocok dengan wilayah klien yang digunakan. AWS KMS

Ketika Anda mengonfigurasi penyimpanan kunci untuk penemuan, Anda tidak dapat melakukan
operasi administratif, seperti CreateKey danVersionKey. Anda hanya dapat melakukan operasi
penggunaan yang mengaktifkan enkripsi, mendekripsi, menandatangani, dan memverifikasi
operasi. Untuk informasi selengkapnya, lihat the section called “Menerapkan izin yang paling tidak

diistimewakan”.

Konfigurasikan tindakan penyimpanan kunci Anda

Sebelum Anda mengonfigurasi tindakan penyimpanan kunci Anda, pastikan prasyarat berikut
terpenuhi.

» Tentukan operasi apa yang perlu Anda lakukan. Untuk informasi selengkapnya, lihat the section
called “Menerapkan izin yang paling tidak diistimewakan”.

 Pilih nama toko kunci logis

Harus ada one-to-one pemetaan antara nama tabel DynamoDB dan nama toko kunci logis. Nama
penyimpanan kunci logis terikat secara kriptografis ke semua data yang disimpan dalam tabel
untuk menyederhanakan operasi pemulihan DynamoDB, tidak dapat diubah setelah awalnya
ditentukan oleh pengguna pertama. Anda harus selalu menentukan nama penyimpanan kunci logis
yang sama dalam tindakan penyimpanan kunci Anda. Untuk informasi selengkapnya, lihat logical
key store name.

Konfigurasikan tindakan penyimpanan kunci Anda 40



AWS SDK Enkripsi Basis Data Panduan Developer

Konfigurasi statis

Contoh berikut secara statis mengkonfigurasi tindakan penyimpanan kunci. Anda harus menentukan
nama tabel DynamoDB yang berfungsi sebagai penyimpanan kunci Anda, nama logis untuk
penyimpanan kunci, dan ARN kunci KMS yang mengidentifikasi kunci KMS enkripsi simetris.

® Note

Hati-hati mempertimbangkan ARN kunci KMS yang Anda tentukan saat mengonfigurasi
layanan penyimpanan kunci Anda secara statis. CreateKeyOperasi menambahkan ARN
kunci KMS ke daftar izin toko kunci cabang Anda. Setelah kunci KMS ditambahkan ke toko
kunci cabang, itu tidak dapat dihapus.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
KeyStoreConfig.buildexr()
.ddbClient(DynamoDbClient.create())
.ddbTableName(keyStoreName)
.logicalKeyStoreName(logicalKeyStoreName)
.kmsClient(KmsClient.create())
.kmsConfiguration(KMSConfiguration.builder()
.kmsKeyArn(kmsKeyArn)
.build())
.build()).build();

C#/ NET

var kmsConfig = new KMSConfiguration { KmsKeyArn = kmsKeyArn };
var keystoreConfig = new KeyStoreConfig

{
KmsClient = new AmazonKeyManagementServiceClient(),
KmsConfiguration = kmsConfig,
DdbTableName = keyStoreName,
DdbClient = new AmazonDynamoDBClient(),
LogicalKeyStoreName = logicalKeyStoreName

};

var keystore = new KeyStore(keystoreConfig);

Konfigurasikan tindakan penyimpanan kunci Anda 41



AWS SDK Enkripsi Basis Data Panduan Developer

Rust

let sdk_config =

aws_

config::load_defaults(aws_config: :BehaviorVersion::latest()).await;

let key_store_config = KeyStoreConfig::builder()
.kms_client(aws_sdk_kms::Client: :new(&sdk_config))
.ddb_client(aws_sdk_dynamodb: :Client: :new(&sdk_config))
.ddb_table_name(key_store_name)
.logical_key_store_name(logical_key store_name)
.kms_configuration(KmsConfiguration: :KmsKeyArn(kms_key_arn.to_string()))
.build()?;

let keystore = keystore_client::Client::from_conf(key_store_config)?;

Konfigurasi penemuan

Contoh berikut mengonfigurasi tindakan penyimpanan kunci untuk penemuan. Anda harus
menentukan nama tabel DynamoDB yang berfungsi sebagai toko kunci Anda dan nama toko kunci

logis.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(

C#/ .NET

KeyStoreConfig.builder()
.ddbClient(DynamoDbClient.create())
.ddbTableName(keyStoreName)
.logicalKeyStoreName(logicalKeyStoreName)
.kmsClient(KmsClient.create())
.kmsConfiguration(KMSConfiguration.builder()

.discovery(Discovery.buildexr().build())
.build())
.build()).build();

var keystoreConfig = new KeyStoreConfig

{

KmsClient = new AmazonKeyManagementServiceClient(),

KmsConfiguration = new KMSConfiguration {Discovery = new Discovery()},
DdbTableName = keyStoreName,

DdbClient = new AmazonDynamoDBClient(),

Konfigurasikan tindakan penyimpanan kunci Anda 42



AWS SDK Enkripsi Basis Data Panduan Developer

LogicalKeyStoreName = logicalKeyStoreName
};

var keystore = new KeyStore(keystoreConfig);
Rust

let key_store_config = KeyStoreConfig::builder()
.kms_client(kms_client)
.ddb_client(ddb_client)
.ddb_table_name(key_store_name)
.logical_key_store_name(logical_key_store_name)

.kms_configuration(KmsConfiguration: :Discovery(Discovery: :builder().build()?))
.build()?;

Buat kunci cabang aktif

Kunci cabang adalah kunci data yang berasal dari AWS KMS key yang digunakan oleh keyring AWS
KMS Hierarkis untuk mengurangi jumlah panggilan yang dilakukan. AWS KMS Kunci cabang aktif
adalah versi kunci cabang terbaru. Keyring Hierarkis menghasilkan kunci data unik untuk setiap
permintaan enkripsi dan mengenkripsi setiap kunci data dengan kunci pembungkus unik yang
berasal dari kunci cabang aktif.

Untuk membuat kunci cabang aktif baru, Anda harus mengonfigurasi tindakan penyimpanan kunci
secara statis. CreateKeyadalah operasi istimewa yang menambahkan ARN kunci KMS yang
ditentukan dalam konfigurasi tindakan penyimpanan kunci Anda ke daftar izin toko kunci Anda.
Kemudian, kunci KMS digunakan untuk menghasilkan kunci cabang aktif baru. Kami menyarankan
untuk membatasi akses ke operasi ini karena setelah kunci KMS ditambahkan ke toko kunci, itu tidak
dapat dihapus.

Sebaiknya gunakan CreateKey operasi melalui antarmuka KeyStore Admin di bidang kontrol
aplikasi Anda. Pendekatan ini sejalan dengan praktik terbaik untuk manajemen kunci.

Jangan membuat kunci cabang di bidang data. Praktik ini dapat menghasilkan:

» Panggilan yang tidak perlu ke AWS KMS
+ Beberapa panggilan bersamaan ke AWS KMS dalam lingkungan konkurensi tinggi

+ Beberapa TransactWriteltems panggilan ke tabel DynamoDB backing.

Buatlah sebuah cabang 43



AWS SDK Enkripsi Basis Data Panduan Developer

CreateKeyOperasi ini mencakup pemeriksaan kondisi dalam TransactWriteItems panggilan
untuk mencegah penimpaan kunci cabang yang ada. Namun, membuat kunci di bidang data masih
dapat menyebabkan penggunaan sumber daya yang tidak efisien dan potensi masalah kinerja.

Anda dapat mengizinkan daftar satu kunci KMS di toko kunci Anda, atau Anda dapat mengizinkan
beberapa kunci KMS dengan memperbarui ARN kunci KMS yang Anda tentukan dalam konfigurasi
tindakan penyimpanan kunci Anda dan menelepon lagi. CreateKey Jika Anda mengizinkan
beberapa kunci KMS, pengguna toko kunci Anda harus mengonfigurasi tindakan penyimpanan kunci
mereka untuk penemuan sehingga mereka dapat menggunakan salah satu kunci yang diizinkan

di toko kunci yang dapat mereka akses. Untuk informasi selengkapnya, lihat the section called

“Konfigurasikan tindakan penyimpanan kunci”.

|zin yang diperlukan

Untuk membuat kunci cabang, Anda memerlukan ReEncrypt izin kms:
GenerateDataKeyWithoutPlaintext dan kms: pada kunci KMS yang ditentukan dalam tindakan
penyimpanan kunci Anda.

Buatlah sebuah cabang

Operasi berikut membuat kunci cabang aktif baru menggunakan kunci KMS yang Anda tentukan
dalam konfigurasi tindakan penyimpanan kunci Anda, dan menambahkan kunci cabang aktif ke tabel
DynamoDB yang berfungsi sebagai penyimpanan kunci Anda.

Saat Anda meneleponCreateKey, Anda dapat memilih untuk menentukan nilai opsional berikut.
* branchKeyIdentifier: mendefinisikan kustombranch-key-id.

Untuk membuat kustombranch-key-id, Anda juga harus menyertakan konteks enkripsi
tambahan dengan encryptionContext parameter.

« encryptionContext: mendefinisikan kumpulan opsional pasangan kunci-nilai non-rahasia yang
menyediakan data terautentikasi tambahan (AAD) dalam konteks enkripsi yang disertakan dalam
panggilan kms:. GenerateDataKeyWithoutPlaintext

Konteks enkripsi tambahan ini ditampilkan dengan aws-crypto-ec: awalan.

Java

final Map<String, String> additionalEncryptionContext =
Collections.singletonMap("Additional Encryption Context for",

Buatlah sebuah cabang 44


https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK Enkripsi Basis Data Panduan Developer

"custom branch key id");

final String BranchKey = keystore.CreateKey(
CreateKeyInput.builder()
.branchKeyIdentifier(custom-branch-key-id) //OPTIONAL
.encryptionContext(additionalEncryptionContext) //OPTIONAL

.build()).branchKeyIdentifier();

C#/.NET

var additionalEncryptionContext = new Dictionary<string, string>();
additionalEncryptionContext.Add("Additional Encryption Context for", "custom
branch key id");

var branchKeyId = keystore.CreateKey(new CreateKeyInput
{
BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL
EncryptionContext = additionalEncryptionContext // OPTIONAL
});

Rust

let additional_encryption_context = HashMap::from([

("Additional Encryption Context for".to_string(), "custom branch key
id".to_string())
1)

let branch_key_id = keystore.create_key()
.branch_key_identifier("custom-branch-key-id") // OPTIONAL
.encryption_context(additional_encryption_context) // OPTIONAL
.send()
.await?
.branch_key_identifier
.unwrap();

Pertama, CreateKey operasi menghasilkan nilai-nilai berikut.

* Versi 4 Universally Unique Identifier (UUID) untuk branch-key-id (kecuali Anda menentukan

kustom). branch-key-id

« UUID versi 4 untuk versi kunci cabang

Buatlah sebuah cabang 45


https://www.ietf.org/rfc/rfc4122.txt

AWS SDK Enkripsi Basis Data Panduan Developer

* A timestamp dalam format tanggal dan waktu ISO 8601 dalam Waktu Universal Terkoordinasi
(UTC).

Kemudian, CreateKey operasi memanggil kms: GenerateDataKeyWithoutPlaintext menggunakan
permintaan berikut.

{
"EncryptionContext": {
"branch-key-id" : "branch-key-id",
"type" : "type",
"create-time" : "timestamp",
"logical-key-store-name" : "the logical table name for your key store",
"kms-arn" : the KMS key ARN,
"hierarchy-version" : "1",
"aws-crypto-ec:contextKey": "contextValue"
},
"KeyId": "the KMS key ARN you specified in your key store actions",
"NumberOfBytes": "32"
}
@® Note

CreateKeyOperasi membuat kunci cabang aktif dan kunci suar, bahkan jika Anda belum
mengonfigurasi database Anda untuk enkripsi yang dapat dicari. Kedua kunci disimpan di
toko kunci Anda. Untuk informasi selengkapnya, lihat Menggunakan keyring hierarkis untuk

enkripsi yang dapat dicari.

Selanjutnya, CreateKey operasi memanggil kms: ReEncrypt untuk membuat catatan aktif untuk
kunci cabang dengan memperbarui konteks enkripsi.

Terakhir, CreateKey operasi memanggil ddb: TransactWriteltems untuk menulis item baru yang

akan mempertahankan kunci cabang dalam tabel yang Anda buat di Langkah 2. ltem memiliki atribut
berikut.

"branch-key-id" : branch-key-id,
"type" : "branch:ACTIVE",
" : the branch key returned by the GenerateDataKeyWithoutPlaintext call,

enc

Buatlah sebuah cabang 46


https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html

AWS SDK Enkripsi Basis Data Panduan Developer

"version": "branch:version:the branch key version UUID",
"create-time" : "timestamp",

"kms-arn" : "the KMS key ARN you specified in Step 1",
"hierarchy-version" : "1",

"aws-crypto-ec:contextKey": "contextValue"

Putar kunci cabang aktif Anda

Hanya ada satu versi aktif untuk setiap kunci cabang pada satu waktu. Biasanya, setiap versi kunci
cabang aktif digunakan untuk memenuhi beberapa permintaan. Tetapi Anda mengontrol sejauh mana
kunci cabang aktif digunakan kembali dan menentukan seberapa sering kunci cabang aktif diputar.

Kunci cabang tidak digunakan untuk mengenkripsi kunci data teks biasa. Mereka digunakan untuk
mendapatkan kunci pembungkus unik yang mengenkripsi kunci data teks biasa. Proses derivasi
kunci pembungkus menghasilkan kunci pembungkus 32 byte yang unik dengan 28 byte keacakan.

Ini berarti bahwa kunci cabang dapat memperoleh lebih dari 79 oktillion, atau 2 96, kunci pembungkus
unik sebelum keausan kriptografi terjadi. Meskipun risiko kelelahan yang sangat rendah ini, Anda
mungkin diminta untuk memutar kunci cabang aktif Anda karena aturan bisnis atau kontrak atau

peraturan pemerintah.

Versi aktif dari kunci cabang tetap aktif sampai Anda memutarnya. Versi sebelumnya dari kunci
cabang aktif tidak akan digunakan untuk melakukan operasi enkripsi dan tidak dapat digunakan untuk
mendapatkan kunci pembungkus baru, tetapi mereka masih dapat ditanyakan dan menyediakan
kunci pembungkus untuk mendekripsi kunci data yang mereka enkripsi saat aktif.

/A Warning

Menghapus kunci cabang di lingkungan pengujian tidak dapat diubah. Anda tidak dapat
memulihkan kunci cabang yang dihapus. Saat Anda menghapus dan membuat ulang kunci
cabang dengan ID yang sama di lingkungan pengujian, masalah berikut dapat terjadi:

» Materi dari pengujian sebelumnya mungkin tetap ada di cache

» Beberapa host pengujian atau utas mungkin mengenkripsi data menggunakan kunci
cabang yang dihapus

» Data yang dienkripsi dengan cabang yang dihapus tidak dapat didekripsi

Untuk mencegah kegagalan enkripsi dalam tes integrasi:

Putar kunci cabang aktif Anda 47



AWS SDK Enkripsi Basis Data Panduan Developer

» Setel ulang referensi keyring hierarkis sebelum membuat kunci cabang baru ATAU

* Gunakan kunci cabang unik IDs untuk setiap pengujian

|zin yang diperlukan

Untuk memutar kunci cabang, Anda memerlukan ReEncrypt izin kms:
GenerateDataKeyWithoutPlaintext dan kms: pada kunci KMS yang ditentukan dalam tindakan
penyimpanan kunci Anda.

Putar tombol cabang aktif

Gunakan VersionKey operasi untuk memutar kunci cabang aktif Anda. Saat Anda memutar kunci
cabang aktif, kunci cabang baru dibuat untuk menggantikan versi sebelumnya. branch-key-
idTidak berubah saat Anda memutar kunci cabang aktif. Anda harus menentukan branch-key-id
yang mengidentifikasi kunci cabang aktif saat ini ketika Anda meneleponVersionKey.

Java

keystore.VersionKey(
VersionKeyInput.builder()
.branchKeyIdentifier("branch-key-id")
.build()
);

C#/ .NET
keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});
Rust

keystore.version_key()
.branch_key_identifier(branch_key_id)
.send()
.await?;

Putar kunci cabang aktif Anda 48


https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS SDK Enkripsi Basis Data Panduan Developer

Gantungan kunci

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

AWS Database Encryption SDK menggunakan keyrings untuk melakukan enkripsi amplop. Keyrings
menghasilkan, mengenkripsi, dan mendekripsi kunci data. Keyrings menentukan sumber kunci data
unik yang melindungi setiap catatan terenkripsi, dan kunci pembungkus yang mengenkripsi kunci
data tersebut. Anda menentukan keyring saat mengenkripsi dan keyring yang sama atau berbeda
saat mendekripsi.

Anda dapat menggunakan setiap keyring satu per satu atau menggabungkan keyrings menjadi multi-

keyring. Meskipun sebagian besar keyrings dapat menghasilkan, mengenkripsi, dan mendekripsi
kunci data, Anda dapat membuat keyring yang hanya melakukan satu operasi tertentu, seperti
keyring yang hanya menghasilkan kunci data, dan menggunakan keyring tersebut dalam kombinasi
dengan yang lain.

Kami menyarankan Anda menggunakan keyring yang melindungi kunci pembungkus Anda dan
melakukan operasi kriptografi dalam batas aman, seperti AWS KMS keyring, yang menggunakan
AWS KMS keys yang tidak pernah meninggalkan () tidak terenkripsi. AWS Key Management

ServiceAWS KMS Anda juga dapat menulis keyring yang menggunakan kunci pembungkus yang
disimpan dalam modul keamanan perangkat keras Anda (HSMs) atau dilindungi oleh layanan kunci
utama lainnya.

Keyring Anda menentukan kunci pembungkus yang melindungi kunci data Anda, dan akhirnya, data
Anda. Gunakan kunci pembungkus paling aman yang praktis untuk tugas Anda. Bila memungkinkan
gunakan kunci pembungkus yang dilindungi oleh modul keamanan perangkat keras (HSM) atau
infrastruktur manajemen kunci, seperti kunci KMS in AWS Key Management Service(AWS KMS) atau
kunci enkripsi di. AWS CloudHSM

AWS Database Encryption SDK menyediakan beberapa konfigurasi keyrings dan keyring, dan
Anda dapat membuat keyring kustom Anda sendiri. Anda juga dapat membuat multi-keyring yang
menyertakan satu atau lebih gantungan kunci dari jenis yang sama atau berbeda.

Topik

» Cara kerja gantungan kunci

49


https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS SDK Enkripsi Basis Data Panduan Developer

« AWS KMS gantungan kunci
« AWS KMS Gantungan kunci hierarkis
 AWS KMS Gantungan kunci ECDH

» Gantungan kunci AES mentah

« Gantungan kunci RSA mentah

» Gantungan kunci ECDH mentah

« Multi-gantungan kunci

Cara kerja gantungan kunci

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Saat Anda mengenkripsi dan menandatangani bidang di database Anda, SDK Enkripsi AWS
Database meminta keyring untuk materi enkripsi. Keyring mengembalikan kunci data plaintext,
salinan kunci data yang dienkripsi oleh masing-masing kunci pembungkus di keyring, dan kunci MAC
yang terkait dengan kunci data. AWS Database Encryption SDK menggunakan kunci plaintext untuk
mengenkripsi data, dan kemudian menghapus kunci data plaintext dari memori sesegera mungkin.
Kemudian, AWS Database Encryption SDK menambahkan deskripsi material yang mencakup kunci
data terenkripsi dan informasi lainnya, seperti enkripsi dan instruksi penandatanganan. SDK Enkripsi
AWS Database menggunakan kunci MAC untuk menghitung Kode Otentikasi Pesan Berbasis

Hash (HMACs) melalui kanonikalisasi deskripsi materi dan semua bidang yang ditandai atau.
ENCRYPT_AND_SIGN SIGN_ONLY

Saat mendekripsi data, Anda dapat menggunakan keyring yang sama dengan yang Anda gunakan
untuk mengenkripsi data, atau yang lain. Untuk mendekripsi data, keyring dekripsi harus memiliki
akses ke setidaknya satu kunci pembungkus di keyring enkripsi.

AWS Database Encryption SDK meneruskan kunci data terenkripsi dari deskripsi material ke keyring,
dan meminta keyring untuk mendekripsi salah satu dari mereka. Keyring menggunakan kunci
pembungkusnya untuk mendekripsi salah satu kunci data terenkripsi dan mengembalikan kunci data
plaintext. AWS Database Encryption SDK menggunakan kunci data plaintext untuk mendekripsi data.
Jika tidak ada kunci pembungkus di keyring yang dapat mendekripsi salah satu kunci data terenkripsi,
operasi dekripsi gagal.

Cara kerja gantungan kunci 50



AWS SDK Enkripsi Basis Data Panduan Developer

Anda dapat menggunakan keyring tunggal atau juga menggabungkan keyrings dari jenis yang
sama atau jenis yang berbeda ke dalam multi-keyring. Saat Anda mengenkripsi data, multi-keyring
mengembalikan salinan kunci data yang dienkripsi oleh semua kunci pembungkus di semua
keyring yang terdiri dari multi-keyring dan kunci MAC yang terkait dengan kunci data. Anda dapat
mendekripsi data menggunakan keyring dengan salah satu tombol pembungkus di multi-keyring.

AWS KMS gantungan kunci

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

AWS KMS Keyring menggunakan enkripsi simetris atau RSA asimetris AWS KMS keysuntuk
menghasilkan, mengenkripsi, dan mendekripsi kunci data. AWS Key Management Service (AWS
KMS) melindungi kunci KMS Anda dan melakukan operasi kriptografi dalam batas FIPS. Kami
menyarankan Anda menggunakan AWS KMS keyring, atau keyring dengan properti keamanan
serupa, bila memungkinkan.

Anda juga dapat menggunakan kunci KMS Multi-wilayah simetris dalam keyring. AWS KMS Untuk
detail dan contoh selengkapnya menggunakan Multi-region AWS KMS keys, lihatMenggunakan Multi-
region AWS KMS keys. Untuk informasi tentang kunci Multi-region, lihat Menggunakan kunci Multi-
region di Panduan AWS Key Management Service Pengembang.

AWS KMS gantungan kunci dapat mencakup dua jenis kunci pembungkus:

» Kunci generator: Menghasilkan kunci data teks biasa dan mengenkripsinya. Sebuah keyring yang
mengenkripsi data harus memiliki satu kunci generator.

» Kunci tambahan: Mengenkripsi kunci data teks biasa yang dihasilkan oleh kunci generator. AWS
KMS keyrings dapat memiliki nol atau lebih tombol tambahan.

Anda harus memiliki kunci generator untuk mengenkripsi catatan. Ketika AWS KMS keyring hanya
memiliki satu AWS KMS kunci, kunci itu digunakan untuk menghasilkan dan mengenkripsi kunci data.

Seperti semua gantungan kunci, AWS KMS gantungan kunci dapat digunakan secara independen
atau dalam multi-keyring dengan gantungan kunci lain dari jenis yang sama atau berbeda.

Topik

AWS KMS gantungan kunci 51


https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS SDK Enkripsi Basis Data Panduan Developer

* |zin yang diperlukan untuk keyrings AWS KMS
* Mengidentifikasi AWS KMS keys dalam AWS KMS keyring
* Membuat AWS KMS keyring

+ Menggunakan Multi-region AWS KMS keys

* Menggunakan AWS KMS keyring penemuan

* Menggunakan AWS KMS keyring penemuan regional

|zin yang diperlukan untuk keyrings AWS KMS

SDK Enkripsi AWS Database tidak memerlukan Akun AWS dan tidak bergantung pada apa pun
Layanan AWS. Namun, untuk menggunakan AWS KMS keyring, Anda memerlukan izin minimum
Akun AWS dan berikut pada keyring Anda. AWS KMS keys

* Untuk mengenkripsi dengan AWS KMS keyring, Anda memerlukan GenerateDataKey izin kms:
pada kunci generator. Anda memerlukan izin KMS: Encrypt pada semua kunci tambahan di
keyring. AWS KMS

* Untuk mendekripsi dengan AWS KMS keyring, Anda memerlukan izin KMS: Decrypt pada
setidaknya satu kunci di keyring. AWS KMS

* Untuk mengenkripsi dengan multi-keyring yang terdiri dari AWS KMS keyrings, Anda memerlukan
GenerateDataKey izin kms: pada kunci generator di keyring generator. Anda memerlukan izin
KMS: Encrypt pada semua kunci lain di semua keyrings lainnya. AWS KMS

* Untuk mengenkripsi dengan AWS KMS keyring RSA asimetris, Anda tidak perlu kms:
GenerateDataKey atau KMS:Encrypt karena Anda harus menentukan materi kunci publik yang

ingin Anda gunakan untuk enkripsi saat Anda membuat keyring. Tidak ada AWS KMS panggilan
yang dilakukan saat mengenkripsi dengan keyring ini. Untuk mendekripsi dengan AWS KMS

keyring RSA asimetris, Anda memerlukan izin KMS: Dekripsi.

Untuk informasi selengkapnya tentang izin AWS KMS keys, lihat Otentikasi dan kontrol akses di

Panduan AWS Key Management Service Pengembang.

Mengidentifikasi AWS KMS keys dalam AWS KMS keyring

AWS KMS Keyring dapat mencakup satu atau lebih AWS KMS keys. Untuk menentukan AWS KMS
key dalam AWS KMS keyring, gunakan pengenal AWS KMS kunci yang didukung. Pengidentifikasi
kunci yang dapat Anda gunakan untuk mengidentifikasi AWS KMS key dalam keyring bervariasi

Izin yang diperlukan untuk keyrings AWS KMS 52


https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html

AWS SDK Enkripsi Basis Data Panduan Developer

dengan operasi dan implementasi bahasa. Untuk detail tentang pengidentifikasi kunci AWS KMS key,
lihat Pengidentifikasi Kunci di Panduan AWS Key Management Service Pengembang.

Sebagai praktik terbaik, gunakan pengenal kunci paling spesifik yang praktis untuk tugas Anda.

» Untuk mengenkripsi dengan AWS KMS keyring, Anda dapat menggunakan ID kunci, ARN kunci,
nama alias, atau alias ARN untuk mengenkripsi data.

® Note

Jika Anda menentukan nama alias atau alias ARN untuk kunci KMS dalam keyring enkripsi,
operasi enkripsi menyimpan ARN kunci yang saat ini terkait dengan alias dalam metadata
kunci data terenkripsi. Itu tidak menyimpan alias. Perubahan pada alias tidak memengaruhi
kunci KMS yang digunakan untuk mendekripsi kunci data terenkripsi Anda.

» Untuk mendekripsi dengan AWS KMS keyring, Anda harus menggunakan ARN kunci untuk
mengidentifikasi. AWS KMS keys Untuk detailnya, lihat Memilih tombol pembungkus.

« Dalam keyring yang digunakan untuk enkripsi dan dekripsi, Anda harus menggunakan ARN kunci
untuk mengidentifikasi. AWS KMS keys

Saat mendekripsi, AWS Database Encryption SDK mencari AWS KMS keyring untuk kunci AWS
KMS key yang dapat mendekripsi salah satu kunci data terenkripsi. Secara khusus, SDK Enkripsi
AWS Database menggunakan pola berikut untuk setiap kunci data terenkripsi dalam deskripsi
material.

» AWS Database Encryption SDK mendapatkan ARN kunci AWS KMS key yang mengenkripsi kunci
data dari metadata deskripsi material.

« AWS Database Encryption SDK mencari keyring dekripsi untuk ARN dengan kunci AWS KMS key
yang cocok.

» Jika menemukan ARN AWS KMS key dengan kunci yang cocok di keyring, SDK Enkripsi AWS
Database meminta AWS KMS untuk menggunakan kunci KMS untuk mendekripsi kunci data
terenkripsi.

 Jika tidak, ia melompat ke kunci data terenkripsi berikutnya, jika ada.

Mengidentifikasi AWS KMS keys dalam AWS KMS keyring 53


https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN

AWS SDK Enkripsi Basis Data Panduan Developer

Membuat AWS KMS keyring

Anda dapat mengonfigurasi setiap AWS KMS keyring dengan satu AWS KMS key atau beberapa
AWS KMS keys yang sama atau berbeda Akun AWS dan Wilayah AWS. AWS KMS key Harus

berupa kunci enkripsi simetris (SYMMETRIC_DEFAULT) atau kunci KMS RSA asimetris. Anda juga
dapat menggunakan enkripsi simetris Multi-region KMS key. Anda dapat menggunakan satu atau

lebih AWS KMS keyring dalam multi-keyring.

Anda dapat membuat AWS KMS keyring yang mengenkripsi dan mendekripsi data, atau Anda dapat
membuat AWS KMS gantungan kunci khusus untuk mengenkripsi atau mendekripsi. Saat Anda
membuat AWS KMS keyring untuk mengenkripsi data, Anda harus menentukan kunci generator,
AWS KMS key yang digunakan untuk menghasilkan kunci data plaintext dan mengenkripsinya. Kunci
data secara matematis tidak terkait dengan kunci KMS. Kemudian, jika Anda memilih, Anda dapat
menentukan tambahan AWS KMS keys yang mengenkripsi kunci data plaintext yang sama. Untuk
mendekripsi bidang terenkripsi yang dilindungi oleh keyring ini, keyring dekripsi yang Anda gunakan
harus menyertakan setidaknya satu dari yang ditentukan dalam keyring, atau tidak. AWS KMS keys
AWS KMS keys( AWS KMS Gantungan kunci tanpa AWS KMS keys dikenal sebagai gantungan
kunci AWS KMS penemuan.)

Semua kunci pembungkus dalam keyring enkripsi atau multi-keyring harus dapat mengenkripsi
kunci data. Jika ada kunci pembungkus gagal untuk mengenkripsi, metode enkripsi gagal.
Akibatnya, penelepon harus memiliki izin yang diperlukan untuk semua kunci di keyring. Jika Anda
menggunakan keyring penemuan untuk mengenkripsi data, sendiri atau dalam multi-keyring, operasi
enkripsi gagal.

Contoh berikut menggunakan CreateAwsKmsMrkMultiKeyring metode untuk membuat AWS
KMS keyring dengan kunci KMS enkripsi simetris. CreateAwsKmsMrkMultiKeyringMetode ini
secara otomatis membuat AWS KMS klien dan memastikan bahwa keyring akan menangani kunci
Single-region dan Multi-region dengan benar. Contoh-contoh ini menggunakan kunci ARNs untuk
mengidentifikasi kunci KMS. Untuk detailnya, lihat Mengidentifikasi AWS KMS keys dalam AWS KMS

keyring

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();

final CreateAwsKmsMrkMultiKeyringInput keyringInput =

CreateAwsKmsMrkMultiKeyringInput.builder()

Membuat AWS KMS keyring 54


https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS SDK Enkripsi Basis Data Panduan Developer

.generator(kmsKeyArn)
.build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

C#/ NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput

{

Generator = kmsKeyArn
};
var awsKmsMrkMultiKeyring =
matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Rust

let provider_config = MaterialProvidersConfig::buildexr().build()?;
let mat_prov = client::Client::from_conf(provider_config)?;
let kms_keyring = mat_prov

.create_aws_kms_mrk_multi_keyring()

.generator(kms_key_id)

.send()

.await?;

Contoh berikut menggunakan CreateAwsKmsRsaKeyring metode untuk membuat AWS KMS
keyring dengan kunci KMS RSA asimetris. Untuk membuat AWS KMS keyring RSA asimetris,
berikan nilai berikut.

 kmsClient: buat AWS KMS klien baru

+ kmsKeyID: kunci ARN yang mengidentifikasi kunci KMS RSA asimetris Anda

» publicKey: file PEM yang dikodekan UTF-8 yang mewakili kunci publik dari kunci yang Anda
kirimkan ByteBuffer kmsKeyID

* encryptionAlgorithm: algoritma enkripsi harus RSAES_OAEP_SHA_256 atau
RSAES_OAEP_SHA_1

Java

final MaterialProviders matProv = MaterialProviders.builder()

Membuat AWS KMS keyring 55



AWS SDK Enkripsi Basis Data Panduan Developer

.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
CreateAwsKmsRsaKeyringInput.builder()
.kmsClient(KmsClient.create())
.kmsKeyId(rsakMSKeyArn)
.publicKey(publicKey)
.encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
.build();
IKeyring awsKmsRsaKeyring =
matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

C#/.NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsRsaKeyringInput = new CreateAwsKmsRsaKeyringInput
{

KmsClient = new AmazonKeyManagementServiceClient(),

KmsKeyId = rsakMSKeyArn,

PublicKey = publicKey,

EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};
IKeyring awsKmsRsaKeyring =
matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let sdk_config =
aws_config::load_defaults(aws_config: :BehaviorVersion::latest()).await;
let kms_rsa_keyring = mpl
.create_aws_kms_rsa_keyring()
.kms_key_id(rsa_kms_key_arn)
.public_key(public_key)

.encryption_algorithm(aws_sdk_kms: :types::EncryptionAlgorithmSpec: :RsaesOaepSha256)
.kms_client(aws_sdk_kms::Client: :new(&sdk_config))
.send()
.await?;

Membuat AWS KMS keyring 56



AWS SDK Enkripsi Basis Data Panduan Developer

Menggunakan Multi-region AWS KMS keys

Anda dapat menggunakan Multi-region AWS KMS keys sebagai kunci pembungkus di SDK Enkripsi
AWS Database. Jika Anda mengenkripsi dengan kunci Multi-wilayah dalam satu Wilayah AWS, Anda
dapat mendekripsi menggunakan kunci Multi-wilayah terkait di yang berbeda. Wilayah AWS

Kunci KMS Multi-Region adalah satu AWS KMS keys set berbeda Wilayah AWS yang memiliki bahan
kunci dan ID kunci yang sama. Anda dapat menggunakan kunci terkait ini seolah-olah mereka adalah
kunci yang sama di Wilayah yang berbeda. Kunci Multi-Region mendukung pemulihan bencana
umum dan skenario pencadangan yang memerlukan enkripsi di satu Wilayah dan mendekripsi di
Wilayah yang berbeda tanpa melakukan panggilan lintas wilayah. AWS KMS Untuk informasi tentang
kunci Multi-region, lihat Menggunakan kunci Multi-region di Panduan AWS Key Management Service

Pengembang.

Untuk mendukung kunci Multi-region, AWS Database Encryption SDK menyertakan AWS KMS multi-
Region-aware keyrings. CreateAwsKmsMrkMultiKeyringMetode ini mendukung kunci Single-
region dan Multi-region.

» Untuk kunci wilayah Tunggal, multi-Region-aware simbol berperilaku seperti keyring wilayah
Tunggal AWS KMS . Ini mencoba untuk mendekripsi ciphertext hanya dengan kunci Single-
region yang mengenkripsi data. Untuk menyederhanakan pengalaman AWS KMS keyring Anda,
sebaiknya gunakan CreateAwsKmsMrkMultiKeyring metode ini setiap kali Anda menggunakan
kunci KMS enkripsi simetris.

* Untuk kunci Multi-region, multi-Region-aware simbol mencoba mendekripsi ciphertext dengan kunci
Multi-region yang sama yang mengenkripsi data atau dengan kunci Multi-region terkait di Wilayah
yang Anda tentukan.

Dalam multi-Region-aware gantungan kunci yang mengambil lebih dari satu kunci KMS, Anda dapat
menentukan beberapa kunci Single-region dan Multi-region. Namun, Anda hanya dapat menentukan
satu kunci dari setiap set kunci Multi-wilayah terkait. Jika Anda menentukan lebih dari satu pengenal
kunci dengan ID kunci yang sama, panggilan konstruktor gagal.

Contoh berikut membuat AWS KMS keyring dengan kunci KMS Multi-region. Contoh menentukan
kunci Multi-region sebagai kunci generator dan kunci Single-region sebagai kunci anak.

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())

Menggunakan Multi-region AWS KMS keys 57


https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS SDK Enkripsi Basis Data Panduan Developer

.build();
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
CreateAwsKmsMrkMultiKeyringInput.builder()
.generator(multiRegionKeyArn)
.kmsKeyIds(Collections.singletonList(kmsKeyArn))
.build();
IKeyring awsKmsMrkMultiKeyring =
matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

C#/ .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput

{

Generator = multiRegionKeyArn,
KmsKeyIds = new List<String> { kmsKeyArn }

};
var awsKmsMrkMultiKeyring =
matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let aws_kms_mrk_multi_keyring = mpl
.create_aws_kms_mrk_multi_keyring()
.generator(multiRegion_key_arn)
.kms_key_ids(vec![key_arn.to_string()])
.send()
.await?;

Saat Anda menggunakan AWS KMS gantungan kunci Multi-wilayah, Anda dapat mendekripsi
ciphertext dalam mode ketat atau mode temukan. Untuk mendekripsi ciphertext dalam mode ketat,
buat instance simbol multi-Region-aware dengan kunci ARN dari kunci Multi-region terkait di wilayah
yang Anda dekripsi ciphertext. Jika Anda menentukan kunci ARN dari kunci Multi-wilayah terkait di
Wilayah yang berbeda (misalnya, wilayah tempat catatan dienkripsi), multi-Region-aware simbol akan
membuat panggilan lintas wilayah untuk itu. AWS KMS key

Saat mendekripsi dalam mode ketat, multi-Region-aware simbol membutuhkan kunci ARN. Ini hanya
menerima satu ARN kunci dari setiap set kunci Multi-wilayah terkait.

Menggunakan Multi-region AWS KMS keys 58



AWS SDK Enkripsi Basis Data Panduan Developer

Anda juga dapat mendekripsi dalam mode penemuan dengan tombol AWS KMS Multi-wilayah.
Saat mendekripsi dalam mode penemuan, Anda tidak menentukan apa pun. AWS KMS keys(Untuk
informasi tentang gantungan kunci AWS KMS penemuan wilayah tunggal, lihatMenggunakan AWS
KMS keyring penemuan.)

Jika Anda dienkripsi dengan kunci Multi-region, multi-Region-aware simbol dalam mode penemuan
akan mencoba mendekripsi dengan menggunakan kunci Multi-wilayah terkait di Wilayah lokal.

Jika tidak ada; panggilan gagal. Dalam mode penemuan, SDK Enkripsi AWS Database tidak akan
mencoba panggilan lintas wilayah untuk kunci Multi-wilayah yang digunakan untuk enkripsi.

Menggunakan AWS KMS keyring penemuan

Saat mendekripsi, ini adalah praktik terbaik untuk menentukan kunci pembungkus yang dapat
digunakan SDK Enkripsi AWS Database. Untuk mengikuti praktik terbaik ini, gunakan keyring

AWS KMS dekripsi yang membatasi kunci AWS KMS pembungkus ke kunci yang Anda tentukan.
Namun, Anda juga dapat membuat keyring AWS KMS penemuan, yaitu AWS KMS keyring yang tidak
menentukan kunci pembungkus apa pun.

AWS Database Encryption SDK menyediakan keyring AWS KMS penemuan standar dan keyring
penemuan untuk AWS KMS kunci Multi-region. Untuk informasi tentang menggunakan kunci Multi-
region dengan AWS Database Encryption SDK, lihat. Menggunakan Multi-region AWS KMS keys

Karena tidak menentukan kunci pembungkus apa pun, keyring penemuan tidak dapat mengenkripsi
data. Jika Anda menggunakan keyring penemuan untuk mengenkripsi data, sendiri atau dalam multi-
keyring, operasi enkripsi gagal.

Saat mendekripsi, keyring penemuan memungkinkan SDK Enkripsi AWS Database meminta AWS
KMS untuk mendekripsi kunci data terenkripsi apa pun dengan menggunakan kunci yang dienkripsi,
terlepas dari siapa AWS KMS key yang memiliki atau memiliki akses ke sana. AWS KMS key
Panggilan hanya berhasil ketika penelepon memiliki kms : Decrypt izin pada. AWS KMS key

/A Important

Jika Anda menyertakan keyring AWS KMS penemuan dalam multi-keyring dekripsi, keyring
penemuan mengesampingkan semua batasan kunci KMS yang ditentukan oleh gantungan
kunci lain di multi-keyring. Multi-keyring berperilaku seperti keyring yang paling tidak
membatasi. Jika Anda menggunakan keyring penemuan untuk mengenkripsi data, sendiri
atau dalam multi-keyring, operasi enkripsi gagal

Menggunakan AWS KMS keyring penemuan 59



AWS SDK Enkripsi Basis Data Panduan Developer

AWS Database Encryption SDK menyediakan keyring AWS KMS penemuan untuk kenyamanan.
Namun, kami menyarankan Anda menggunakan keyring yang lebih terbatas bila memungkinkan
karena alasan berikut.

» Keaslian — Keyring AWS KMS penemuan dapat menggunakan apa pun AWS KMS key yang
digunakan untuk mengenkripsi kunci data dalam deskripsi materi, selama penelepon memiliki izin
untuk menggunakannya untuk mendekripsi. AWS KMS key Ini mungkin bukan AWS KMS key yang
ingin digunakan penelepon. Misalnya, salah satu kunci data terenkripsi mungkin telah dienkripsi di
bawah yang kurang aman AWS KMS key yang dapat digunakan siapa pun.

 Latensi dan kinerja — Keyring AWS KMS penemuan mungkin terlihat lebih lambat daripada keyring
lain karena SDK Enkripsi AWS Database mencoba mendekripsi semua kunci data terenkripsi,
termasuk yang dienkripsi oleh AWS KMS keys di lain Akun AWS dan Wilayah, dan AWS KMS keys
bahwa pemanggil tidak memiliki izin untuk digunakan untuk dekripsi.

Jika Anda menggunakan keyring penemuan, kami sarankan Anda menggunakan filter penemuan
untuk membatasi kunci KMS yang dapat digunakan untuk kunci yang ditentukan Akun AWS dan
partisi. Untuk bantuan menemukan ID akun dan partisi Anda, lihat Akun AWS Pengenal Anda dan
format ARN di. Referensi Umum AWS

Contoh kode berikut membuat instance keyring penemuan dengan filter AWS KMS penemuan yang
membatasi kunci KMS yang dapat digunakan SDK Enkripsi AWS Database untuk yang ada di partisi
dan akun contoh. aws 111122223333

Sebelum menggunakan kode ini, ganti contoh Akun AWS dan nilai partisi dengan nilai yang valid
untuk Anda Akun AWS dan partisi. Jika kunci KMS Anda berada di Wilayah Tiongkok, gunakan nilai
aws -cn partisi. Jika kunci KMS Anda masuk AWS GovCloud (US) Regions, gunakan nilai aws-us-
gov partisi. Untuk yang lainnya Wilayah AWS, gunakan nilai aws partisi.

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.buildexr()
.partition("aws")
.accountIds(111122223333)
.build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
= CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
.discoveryFilter(discoveryFilter)

Menggunakan AWS KMS keyring penemuan 60


https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS SDK Enkripsi Basis Data Panduan Developer

.build();
IKeyring decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

C#/.NET

// Create discovery filter
var discoveryFilter = new DiscoveryFilter
{
Partition = "aws",
AccountIds = 111122223333
};
// Create the discovery keyring
var createAwsKmsMrkDiscoveryMultiKeyringInput = new
CreateAwsKmsMrkDiscoveryMultiKeyringInput
{
DiscoveryFilter = discoveryFilter
};
var decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Rust

// Create discovery filter

let discovery_filter = DiscoveryFilter::builder()
.partition("aws")
.account_ids(111122223333)
.build()?;

// Create the discovery keyring

let decrypt_keyring = mpl
.create_aws_kms_mrk_discovery_multi_keyring()
.discovery_filter(discovery_filter)
.send()
.await?;

Menggunakan AWS KMS keyring penemuan regional

Keyring penemuan AWS KMS regional adalah keyring yang tidak menentukan kunci ARNs KMS.
Sebaliknya, ini memungkinkan SDK Enkripsi AWS Database untuk mendekripsi hanya menggunakan
kunci KMS pada khususnya. Wilayah AWS

Menggunakan AWS KMS keyring penemuan regional 61



AWS SDK Enkripsi Basis Data Panduan Developer

Saat mendekripsi dengan keyring penemuan AWS KMS regional, SDK Enkripsi AWS Database
mendekripsi kunci data terenkripsi yang dienkripsi di bawah kunci yang ditentukan. AWS KMS key
Wilayah AWS Agar berhasil, penelepon harus memiliki kms : Decrypt izin setidaknya satu dari yang
AWS KMS keys ditentukan Wilayah AWS yang mengenkripsi kunci data.

Seperti keyrings penemuan lainnya, keyring penemuan regional tidak berpengaruh pada enkripsi. Ini
hanya berfungsi saat mendekripsi bidang terenkripsi. Jika Anda menggunakan keyring penemuan
regional dalam multi-keyring yang digunakan untuk mengenkripsi dan mendekripsi, ini hanya efektif
saat mendekripsi. Jika Anda menggunakan keyring penemuan Multi-wilayah untuk mengenkripsi
data, sendiri atau dalam multi-keyring, operasi enkripsi gagal.

/A Important
Jika Anda menyertakan keyring penemuan AWS KMS regional dalam multi-keyring dekripsi,

keyring penemuan regional mengesampingkan semua batasan kunci KMS yang ditentukan
oleh gantungan kunci lain di multi-keyring. Multi-keyring berperilaku seperti keyring yang
paling tidak membatasi. Keyring AWS KMS penemuan tidak berpengaruh pada enkripsi saat
digunakan sendiri atau dalam multi-keyring.

Keyring penemuan regional di SDK Enkripsi AWS Database mencoba mendekripsi hanya dengan
kunci KMS di Wilayah yang ditentukan. Saat Anda menggunakan keyring penemuan, Anda
mengonfigurasi Wilayah pada AWS KMS klien. Implementasi SDK Enkripsi AWS Database ini tidak
memfilter kunci KMS menurut Wilayah, tetapi AWS KMS akan gagal dalam permintaan dekripsi untuk
kunci KMS di luar Wilayah yang ditentukan.

Jika Anda menggunakan keyring penemuan, sebaiknya gunakan filter penemuan untuk membatasi
kunci KMS yang digunakan dalam dekripsi ke kunci yang ditentukan dan partisi. Akun AWS

Misalnya, kode berikut membuat keyring penemuan AWS KMS regional dengan filter penemuan.
Keyring ini membatasi SDK Enkripsi AWS Database ke kunci KMS di akun 111122223333 di Wilayah
AS Barat (Oregon) (us-west-2).

Java

// Create the discovery filter

DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
.partition("aws")
.accountIds(111122223333)

Menggunakan AWS KMS keyring penemuan regional 62



AWS SDK Enkripsi Basis Data Panduan Developer

.build();

// Create the discovery keyring

CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput

= CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
.discoveryFilter(discoveryFilter)
.regions("us-west-2")
.build();

IKeyring decryptKeyring =

matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

C#/ .NET

// Create discovery filter
var discoveryFilter = new DiscoveryFilter
{
Partition = "aws",
AccountIds = 111122223333
};
// Create the discovery keyring
var createAwsKmsMrkDiscoveryMultiKeyringInput = new
CreateAwsKmsMrkDiscoveryMultiKeyringInput
{
DiscoveryFilter = discoveryFilter,
Regions = us-west-2
};
var decryptKeyring =
matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Rust

// Create discovery filter

let discovery_filter = DiscoveryFilter::buildex()
.partition("aws")
.account_ids(111122223333)
.build()?;

// Create the discovery keyring

let decrypt_keyring = mpl
.create_aws_kms_mrk_discovery_multi_keyring()
.discovery_filter(discovery_filter)
.regions(us-west-2)
.send()
.await?;

Menggunakan AWS KMS keyring penemuan regional 63



AWS SDK Enkripsi Basis Data Panduan Developer

AWS KMS Gantungan kunci hierarkis

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

(® Note

Mulai 24 Juli 2023, kunci cabang yang dibuat selama pratinjau pengembang tidak didukung.
Buat kunci cabang baru untuk terus menggunakan toko kunci yang Anda buat selama
pratinjau pengembang.

Dengan keyring AWS KMS Hierarkis, Anda dapat melindungi materi kriptografi Anda di bawah kunci
KMS enkripsi simetris tanpa menelepon AWS KMS setiap kali Anda mengenkripsi atau mendekripsi
catatan. Ini adalah pilihan yang baik untuk aplikasi yang perlu meminimalkan panggilan ke AWS
KMS, dan aplikasi yang dapat menggunakan kembali beberapa materi kriptografi tanpa melanggar
persyaratan keamanan mereka.

Hierarchical keyring adalah solusi caching materi kriptografi yang mengurangi jumlah AWS KMS
panggilan dengan menggunakan kunci cabang yang AWS KMS dilindungi yang disimpan dalam
tabel Amazon DynamoDB, dan kemudian secara lokal menyimpan materi kunci cabang yang
digunakan dalam operasi enkripsi dan dekripsi. Tabel DynamoDB berfungsi sebagai penyimpanan
kunci yang mengelola dan melindungi kunci cabang. Ini menyimpan kunci cabang aktif dan semua
versi sebelumnya dari kunci cabang. Kunci cabang aktif adalah versi kunci cabang terbaru. Keyring
Hierarkis menggunakan kunci enkripsi data unik untuk setiap permintaan enkripsi dan mengenkripsi
setiap kunci enkripsi data dengan kunci pembungkus unik yang berasal dari kunci cabang aktif.
Keyring Hierarkis tergantung pada hierarki yang ditetapkan antara kunci cabang aktif dan kunci
pembungkus turunannya.

Keyring Hierarkis biasanya menggunakan setiap versi kunci cabang untuk memenuhi beberapa
permintaan. Tetapi Anda mengontrol sejauh mana kunci cabang aktif digunakan kembali dan
menentukan seberapa sering kunci cabang aktif diputar. Versi aktif dari kunci cabang tetap aktif
sampai Anda memutarnya. Versi sebelumnya dari kunci cabang aktif tidak akan digunakan untuk
melakukan operasi enkripsi, tetapi masih dapat ditanyakan dan digunakan dalam operasi dekripsi.

Ketika Anda membuat instance keyring Hierarchical, itu membuat cache lokal. Anda menentukan
batas cache yang menentukan jumlah waktu maksimum materi kunci cabang disimpan dalam cache

AWS KMS Gantungan kunci hierarkis 64



AWS SDK Enkripsi Basis Data Panduan Developer

lokal sebelum kedaluwarsa dan dikeluarkan dari cache. Hierarchical keyring membuat satu AWS
KMS panggilan untuk mendekripsi kunci cabang dan merakit materi kunci cabang saat pertama kali

a branch-key-id ditentukan dalam suatu operasi. Kemudian, materi kunci cabang disimpan dalam
cache lokal dan digunakan kembali untuk semua operasi enkripsi dan dekripsi yang menentukan

itu branch-key-1id sampai batas cache berakhir. Menyimpan materi kunci cabang di cache lokal
mengurangi AWS KMS panggilan. Misalnya, pertimbangkan batas cache 15 menit. Jika Anda
melakukan 10.000 operasi enkripsi dalam batas cache tersebut, AWS KMS keyring tradisional perlu
melakukan 10.000 AWS KMS panggilan untuk memenuhi 10.000 operasi enkripsi. Jika Anda memiliki
satu aktifbranch-key-id, keyring Hierarkis hanya perlu membuat satu AWS KMS panggilan untuk
memenuhi 10.000 operasi enkripsi.

Cache lokal memisahkan bahan enkripsi dari bahan dekripsi. Materi enkripsi dirakit dari kunci cabang
aktif dan digunakan kembali untuk semua operasi enkripsi hingga batas cache berakhir. Materi
dekripsi dirakit dari ID kunci cabang dan versi yang diidentifikasi dalam metadata bidang terenkripsi,
dan digunakan kembali untuk semua operasi dekripsi yang terkait dengan ID kunci cabang dan versi
hingga batas cache berakhir. Cache lokal dapat menyimpan beberapa versi kunci cabang yang sama
pada satu waktu. Ketika cache lokal dikonfigurasi untuk menggunakan abranch key ID supplier, itu
juga dapat menyimpan materi kunci cabang dari beberapa kunci cabang aktif pada satu waktu.

(® Note

Semua penyebutan keyring Hierarkis dalam SDK Enkripsi AWS Database mengacu pada
keyring Hierarkis. AWS KMS

Topik

» Cara kerjanya

 Prasyarat

* Izin yang diperlukan

» Pilih cache

Buat keyring Hierarkis

« Menggunakan keyring Hierarkis untuk enkripsi yang dapat dicari

AWS KMS Gantungan kunci hierarkis 65



AWS SDK Enkripsi Basis Data Panduan Developer

Cara kerjanya

Panduan berikut menjelaskan bagaimana keyring Hierarkis merakit bahan enkripsi dan dekripsi, dan
panggilan berbeda yang dibuat oleh keyring untuk mengenkripsi dan mendekripsi operasi. Untuk
detail teknis tentang derivasi kunci pembungkus dan proses enkripsi kunci data plaintext, lihat Detail
teknis keyring AWS KMS hierarkis.

Enkripsi dan tandatangani

Panduan berikut menjelaskan bagaimana keyring Hierarkis merakit bahan enkripsi dan memperoleh
kunci pembungkus yang unik.

1. Metode enkripsi meminta keyring Hierarkis untuk materi enkripsi. Keyring menghasilkan kunci
data plaintext, lalu memeriksa untuk melihat apakah ada materi kunci cabang yang valid di cache
lokal untuk menghasilkan kunci pembungkus. Jika ada materi kunci cabang yang valid, keyring
dilanjutkan ke Langkah 4.

2. Jika tidak ada materi kunci cabang yang valid, keyring Hierarkis menanyakan penyimpanan
kunci untuk kunci cabang aktif.

a. Key store memanggil AWS KMS untuk mendekripsi kunci cabang aktif dan mengembalikan
kunci cabang aktif plaintext. Data yang mengidentifikasi kunci cabang aktif diserialisasi untuk
memberikan data otentikasi tambahan (AAD) dalam panggilan dekripsi ke. AWS KMS

b. Toko kunci mengembalikan kunci cabang plaintext dan data yang mengidentifikasinya,
seperti versi kunci cabang.

3. Hierarchical keyring merakit materi kunci cabang (kunci cabang plaintext dan versi kunci cabang)
dan menyimpan salinannya di cache lokal.

4. Keyring Hierarchical memperoleh kunci pembungkus unik dari kunci cabang plaintext dan garam
acak 16-byte. Ini menggunakan kunci pembungkus turunan untuk mengenkripsi salinan kunci
data teks biasa.

Metode enkripsi menggunakan bahan enkripsi untuk mengenkripsi dan menandatangani catatan.
Untuk informasi selengkapnya tentang cara catatan dienkripsi dan ditandatangani di SDK Enkripsi
AWS Database, lihat Mengenkripsi dan menandatangani.

Dekripsi dan verifikasi

Panduan berikut menjelaskan bagaimana keyring Hierarkis merakit bahan dekripsi dan mendekripsi
kunci data terenkripsi.

Cara kerjanya 66



AWS SDK Enkripsi Basis Data Panduan Developer

1.

Metode dekripsi mengidentifikasi kunci data terenkripsi dari bidang deskripsi material dari catatan
terenkripsi, dan meneruskannya ke keyring Hierarkis.

Hierarchical keyring deserialisasi data yang mengidentifikasi kunci data terenkripsi, termasuk
versi kunci cabang, garam 16-byte, dan informasi lain yang menjelaskan bagaimana kunci data
dienkripsi.

Untuk informasi selengkapnya, lihat AWS KMS Rincian teknis keyring hierarkis.

Keyring hierarkis memeriksa untuk melihat apakah ada materi kunci cabang yang valid di cache
lokal yang cocok dengan versi kunci cabang yang diidentifikasi pada Langkah 2. Jika ada materi
kunci cabang yang valid, keyring dilanjutkan ke Langkah 6.

Jika tidak ada materi kunci cabang yang valid, keyring Hierarkis menanyakan penyimpanan
kunci untuk kunci cabang yang cocok dengan versi kunci cabang yang diidentifikasi pada
Langkah 2.

a. Key store memanggil AWS KMS untuk mendekripsi kunci cabang dan mengembalikan kunci
cabang aktif plaintext. Data yang mengidentifikasi kunci cabang aktif diserialisasi untuk
memberikan data otentikasi tambahan (AAD) dalam panggilan dekripsi ke. AWS KMS

b. Toko kunci mengembalikan kunci cabang plaintext dan data yang mengidentifikasinya,
seperti versi kunci cabang.

Hierarchical keyring merakit materi kunci cabang (kunci cabang plaintext dan versi kunci cabang)
dan menyimpan salinannya di cache lokal.

Keyring Hierarchical menggunakan bahan kunci cabang yang dirakit dan garam 16-byte yang
diidentifikasi pada Langkah 2 untuk mereproduksi kunci pembungkus unik yang mengenkripsi
kunci data.

Keyring Hierarkis menggunakan kunci pembungkus yang direproduksi untuk mendekripsi kunci
data dan mengembalikan kunci data plaintext.

Metode dekripsi menggunakan bahan dekripsi dan kunci data teks biasa untuk mendekripsi dan
memverifikasi catatan. Untuk informasi selengkapnya tentang cara rekaman didekripsi dan diverifikasi
di SDK Enkripsi AWS Database, lihat Mendekripsi dan memuverifikasi.

Prasyarat

Sebelum Anda membuat dan menggunakan keyring Hierarkis, pastikan prasyarat berikut terpenuhi.

Prasyarat 67



AWS SDK Enkripsi Basis Data Panduan Developer

* Anda, atau administrator toko kunci Anda, telah membuat toko kunci dan membuat setidaknya satu
kunci cabang aktif.

» Anda telah mengonfigurasi tindakan penyimpanan utama Anda.

(® Note

Cara Anda mengonfigurasi tindakan penyimpanan kunci menentukan operasi apa yang
dapat Anda lakukan dan kunci KMS apa yang dapat digunakan oleh keyring Hierarkis.
Untuk informasi selengkapnya, lihat Tindakan penyimpanan kunci.

» Anda memiliki AWS KMS izin yang diperlukan untuk mengakses dan menggunakan kunci
penyimpanan dan cabang kunci. Untuk informasi selengkapnya, lihat the section called “Izin yang
diperlukan”.

« Anda telah meninjau jenis cache yang didukung dan mengonfigurasi jenis cache yang paling
sesuai dengan kebutuhan Anda. Untuk informasi selengkapnya, silakan lihat the section called
“Pilih cache”

|zin yang diperlukan

SDK Enkripsi AWS Database tidak memerlukan Akun AWS dan tidak bergantung pada apa pun
Layanan AWS. Namun, untuk menggunakan keyring Hierarkis, Anda memerlukan izin minimum Akun
AWS dan berikut pada enkripsi simetris di AWS KMS key toko kunci Anda.

« Untuk mengenkripsi dan mendekripsi data dengan keyring Hierarkis, Anda memerlukan KMS:
Decrypt.

* Untuk membuat dan memutar kunci cabang, Anda memerlukan kms:
GenerateDataKeyWithoutPlaintext dan kms:. ReEncrypt

Untuk informasi selengkapnya tentang mengontrol akses ke kunci cabang dan penyimpanan kunci
Anda, lihatthe section called “Menerapkan izin yang paling tidak diistimewakan”.

Pilih cache

Keyring Hierarkis mengurangi jumlah panggilan yang dilakukan AWS KMS dengan menyimpan
materi kunci cabang secara lokal yang digunakan dalam operasi enkripsi dan dekripsi. Sebelum Anda
membuat keyring Hierarkis Anda, Anda perlu memutuskan jenis cache yang ingin Anda gunakan.

I1zin yang diperlukan 68


https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS SDK Enkripsi Basis Data Panduan Developer

Anda dapat menggunakan cache default atau menyesuaikan cache agar sesuai dengan kebutuhan
Anda.

Keyring Hierarkis mendukung jenis cache berikut:

» the section called “Cache default”

» the section called “MultiThreaded tembolok”

« the section called “StormTracking tembolok”

» the section called “Cache bersama”

Cache default

Untuk sebagian besar pengguna, cache Default memenuhi persyaratan threading mereka. Cache
Default dirancang untuk mendukung lingkungan yang sangat multithreaded. Ketika entri materi

kunci cabang kedaluwarsa, cache Default mencegah beberapa utas memanggil AWS KMS dengan
memberi tahu satu utas bahwa entri materi kunci cabang akan kedaluwarsa 10 detik sebelumnya. Ini
memastikan bahwa hanya satu utas yang mengirimkan permintaan AWS KMS untuk menyegarkan
cache.

Default dan StormTracking cache mendukung model threading yang sama, tetapi Anda hanya perlu
menentukan kapasitas entri untuk menggunakan cache Default. Untuk kustomisasi cache yang lebih
terperinci, gunakan file. the section called “StormTracking tembolok”

Kecuali Anda ingin menyesuaikan jumlah entri materi kunci cabang yang dapat disimpan di cache
lokal, Anda tidak perlu menentukan jenis cache saat Anda membuat keyring Hierarkis. Jika Anda
tidak menentukan jenis cache, keyring Hierarkis menggunakan jenis cache Default dan menetapkan
kapasitas entri ke 1000.

Untuk menyesuaikan cache Default, tentukan nilai berikut:

+ Kapasitas entri: membatasi jumlah entri materi kunci cabang yang dapat disimpan di cache lokal.

Java

.cache(CacheType.builder()
.Default(DefaultCache.builder()
.entryCapacity(100)

.build())

Pilih cache 69



AWS SDK Enkripsi Basis Data Panduan Developer

C#/ .NET

CacheType defaultCache = new CacheType

{
Default = new DefaultCache{EntryCapacity = 100}

};
Rust

let cache: CacheType = CacheType: :Default(
DefaultCache: :builder()
.entry_capacity(100)
.build()?z,
)i

MultiThreaded tembolok

MultiThreaded Cache aman digunakan di lingkungan multithreaded, tetapi tidak menyediakan
fungsionalitas apa pun untuk meminimalkan atau panggilan Amazon AWS KMS DynamoDB.
Akibatnya, ketika entri materi kunci cabang kedaluwarsa, semua utas akan diberitahukan pada saat
yang sama. Ini dapat menghasilkan beberapa AWS KMS panggilan untuk menyegarkan cache.

Untuk menggunakan MultiThreaded cache, tentukan nilai berikut:

+ Kapasitas entri: membatasi jumlah entri materi kunci cabang yang dapat disimpan di cache lokal.

« Ukuran ekor pemangkasan entri: menentukan jumlah entri yang akan dipangkas jika kapasitas
masuk tercapai.

Java

.cache(CacheType.builder()
.MultiThreaded(MultiThreadedCache.buildexr()
.entryCapacity(100)
.entryPruningTailSize(1)

.build())

C#/ .NET

CacheType multithreadedCache = new CacheType

Pilih cache 70



AWS SDK Enkripsi Basis Data Panduan Developer

{

MultiThreaded = new MultiThreadedCache

{
EntryCapacity = 100,
EntryPruningTailSize = 1

};
Rust

CacheType: :MultiThreaded(

MultiThreadedCache: :buildex()
.entry_capacity(100)
.entry_pruning_tail_size(1)
.build()?)

StormTracking tembolok

StormTracking Cache dirancang untuk mendukung lingkungan yang sangat multithreaded. Ketika
entri materi kunci cabang kedaluwarsa, StormTracking cache mencegah beberapa utas memanggil
AWS KMS dengan memberi tahu satu utas bahwa entri materi kunci cabang akan kedaluwarsa
sebelumnya. Ini memastikan bahwa hanya satu utas yang mengirimkan permintaan AWS KMS untuk
menyegarkan cache.

Untuk menggunakan StormTracking cache, tentukan nilai berikut:
+ Kapasitas entri: membatasi jumlah entri materi kunci cabang yang dapat disimpan di cache lokal.

Nilai default: 1000 entri

« Ukuran ekor pemangkasan entri: menentukan jumlah entri bahan kunci cabang untuk dipangkas
sekaligus.

Nilai default: 1 entri
+ Masa tenggang: mendefinisikan jumlah detik sebelum kedaluwarsa bahwa upaya untuk
menyegarkan materi kunci cabang dilakukan.

Nilai default: 10 detik

+ Interval rahmat: mendefinisikan jumlah detik antara upaya untuk menyegarkan materi kunci
cabang.

Pilih cache 71



AWS SDK Enkripsi Basis Data

Panduan Developer

Nilai default: 1 detik

+ Fan out: mendefinisikan jumlah upaya simultan yang dapat dilakukan untuk menyegarkan materi
kunci cabang.

Nilai default: 20 upaya

* In flight time to live (TTL): mendefinisikan jumlah detik hingga upaya untuk menyegarkan materi
kunci cabang habis waktu. Setiap kali cache kembali NoSuchEntry sebagai respons terhadap

aGetCacheEntry, kunci cabang tersebut dianggap dalam penerbangan sampai kunci yang sama

ditulis dengan PutCache entri.

Nilai default: 10 detik

 Tidur: mendefinisikan jumlah detik bahwa sebuah utas harus tidur jika fanOut terlampaui.

Nilai default: 20 milidetik

Java

.cache(CacheType.builder()

C#/ .NET

.StormTracking(StormTrackingCache.buildex()

.entryCapacity(100)
.entryPruningTailSize(1)
.gracePeriod(10)
.graceInterval(1)
.fanOut(20)
.inFlightTTL(10)
.sleepMilli(20)
.build())

CacheType stormTrackingCache = new CacheType

{

StormTracking = new StormTrackingCache

{

EntryCapacity = 100,
EntryPruningTailSize = 1,
FanOut = 20,
GracelInterval =1,
GracePeriod = 10,

Pilih cache

72



AWS SDK Enkripsi Basis Data Panduan Developer

InFlightTTL = 10,
SleepMilli = 20

};
Rust

CacheType: :StormTracking(

StormTrackingCache: :builder()
.entry_capacity(100)
.entry_pruning_tail_size(1)
.grace_period(10)
.grace_interval(1)
.fan_out(20)
.in_flight_ttl(10)
.sleep_milli(20)

Lbuild()?)

Cache bersama

Secara default, keyring Hierarkis membuat cache lokal baru setiap kali Anda membuat instance
keyring. Namun, cache Bersama dapat membantu menghemat memori dengan memungkinkan Anda
berbagi cache di beberapa gantungan kunci Hierarkis. Daripada membuat cache materi kriptografi
baru untuk setiap keyring Hierarkis yang Anda buat instance, cache Bersama hanya menyimpan
satu cache dalam memori, yang dapat digunakan oleh semua gantungan kunci Hierarkis yang
mereferensikannya. Cache bersama membantu mengoptimalkan penggunaan memori dengan
menghindari duplikasi materi kriptografi di seluruh keyrings. Sebagai gantinya, gantungan kunci
Hierarkis dapat mengakses cache dasar yang sama, mengurangi jejak memori secara keseluruhan.

Saat Anda membuat cache Bersama, Anda masih menentukan jenis cache. Anda dapat
menentukanthe section called “Cache default’,the section called “MultiThreaded tembolok”, atau the
section called “StormTracking tembolok” sebagai jenis cache, atau mengganti cache kustom yang
kompatibel.

Partisi

Beberapa keyrings Hierarkis dapat menggunakan satu cache Bersama. Saat Anda membuat
keyring Hierarkis dengan cache Bersama, Anda dapat menentukan ID partisi opsional. ID

Pilih cache 73



AWS SDK Enkripsi Basis Data Panduan Developer

partisi membedakan keyring Hierarkis mana yang menulis ke cache. Jika dua keyrings hirarkis
mereferensikan ID partisi yang samalogical key store name, dan ID kunci cabang kedua keyrings
akan berbagi entri cache yang sama dalam cache. Jika Anda membuat dua gantungan kunci
Hierarkis dengan cache Bersama yang sama, tetapi partisi yang berbeda IDs, setiap keyring hanya
akan mengakses entri cache dari partisi yang ditunjuk sendiri dalam cache Bersama. Partisi bertindak
sebagai divisi logis dalam cache bersama, memungkinkan setiap keyring Hierarkis beroperasi secara
independen pada partisi yang ditunjuk sendiri, tanpa mengganggu data yang disimpan di partisi lain.

Jika Anda bermaksud untuk menggunakan kembali atau berbagi entri cache di partisi, Anda harus
menentukan ID partisi Anda sendiri. Saat Anda meneruskan ID partisi ke keyring Hierarkis Anda,
keyring dapat menggunakan kembali entri cache yang sudah ada di cache Bersama, daripada harus
mengambil dan mengotorisasi ulang materi kunci cabang lagi. Jika Anda tidak menentukan ID partisi,
ID partisi unik secara otomatis ditetapkan ke keyring setiap kali Anda membuat instance keyring
Hierarkis.

Prosedur berikut menunjukkan cara membuat cache Bersama dengan tipe cache Default dan
meneruskannya ke keyring Hierarkis.

1. Buat CryptographicMaterialsCache (CMC) menggunakan Material Providers Library
(MPL).

Java

// Instantiate the MPL
final MaterialProviders matProv =
MaterialProviders.buildex()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();

// Create a CacheType object for the Default cache
final CacheType cache =
CacheType.builder()
.Default(DefaultCache.builder().entryCapacity(100).build())
.build();

// Create a CMC using the default cache
final CreateCryptographicMaterialsCachelInput cryptographicMaterialsCachelnput =
CreateCryptographicMaterialsCachelInput.builder()
.cache(cache)
.build();

Pilih cache 74


https://github.com/aws/aws-cryptographic-material-providers-library

AWS SDK Enkripsi Basis Data Panduan Developer

final ICryptographicMaterialsCache sharedCryptographicMaterialsCache =
matProv.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

C#/ .NET

// Instantiate the MPL
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create a CacheType object for the Default cache
new CacheType { Default = new DefaultCache{EntryCapacity = 100} };

var cache

// Create a CMC using the default cache
var cryptographicMaterialsCacheInput = new
CreateCryptographicMaterialsCacheInput {Cache = cache};

var sharedCryptographicMaterialsCache =
materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCachelInput);

Rust

// Instantiate the MPL
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create a CacheType object for the default cache
let cache: CacheType = CacheType: :Default(
DefaultCache: :builder()
.entry_capacity(100)
.build()?z,
);

// Create a CMC using the default cache
let shared_cryptographic_materials_cache: CryptographicMaterialsCacheRef = mpl.
create_cryptographic_materials_cache()
.cache(cache)
.send()
.await?;

2. Buat CacheType objek untuk cache Bersama.

Lulus yang sharedCryptographicMaterialsCache Anda buat di Langkah 1 ke CacheType
objek baru.

Pilih cache 75



AWS SDK Enkripsi Basis Data Panduan Developer

Java

// Create a CacheType object for the sharedCryptographicMaterialsCache
final CacheType sharedCache =
CacheType.builder()
.Shared(sharedCryptographicMaterialsCache)
.build();

C#/ .NET

// Create a CacheType object for the sharedCryptographicMaterialsCache
var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache };

Rust

// Create a CacheType object for the shared_cryptographic_materials_cache
let shared_cache: CacheType =
CacheType: :Shared(shared_cryptographic_materials_cache);

3. Lewati sharedCache objek dari Langkah 2 ke keyring Hierarkis Anda.

Saat Anda membuat keyring Hierarkis dengan cache Bersama, Anda dapat secara opsional
menentukan entri partitionID untuk berbagi cache di beberapa gantungan kunci Hierarkis.
Jika Anda tidak menentukan ID partisi, keyring Hierarkis secara otomatis menetapkan keyring ID
partisi unik.

(® Note

Keyring Hierarkis Anda akan berbagi entri cache yang sama dalam cache Bersama jika
Anda membuat dua atau lebih keyrings yang mereferensikan ID partisi yang samalogical
key store name, dan ID kunci cabang. Jika Anda tidak ingin beberapa keyrings berbagi
entri cache yang sama, Anda harus menggunakan ID partisi unik untuk setiap keyring
Hierarkis.

Contoh berikut membuat keyring Hierarkis denganbranch key ID supplier, dan batas cache 600
detik. Untuk informasi selengkapnya tentang nilai yang ditentukan dalam konfigurasi keyring
Hierarkis berikut, lihat. the section called “Buat keyring Hierarkis”

Pilih cache 76



AWS SDK Enkripsi Basis Data Panduan Developer

Java

// Create the Hierarchical keyring
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
CreateAwsKmsHierarchicalKeyringInput.builder()

.keyStore(keystore)
.branchKeyIdSupplier(branchKeyIdSupplier)
.tt1lSeconds(600)
.cache(sharedCache)
.partitionID(partitionlID)
.build();

final IKeyring hierarchicalKeyring =

matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/ .NET

// Create the Hierarchical keyring
var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput

{
KeyStore = keystore,
BranchKeyIdSupplier = branchKeyIdSupplier,
Cache = sharedCache,
TtlSeconds = 600,
PartitionId = partitionID
};

var keyring =
materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Rust

// Create the Hierarchical keyring
let keyringl = mpl
.create_aws_kms_hierarchical_keyring()
.key_store(key_storel)
.branch_key_id(branch_key_id.clone())
// CryptographicMaterialsCacheRef is an Rc (Reference Counted), so if you
clone it to
// pass it to different Hierarchical Keyrings, it will still point to the
same
// underlying cache, and increment the reference count accordingly.
.cache(shared_cache.clone())

Pilih cache 77



AWS SDK Enkripsi Basis Data Panduan Developer

.ttl_seconds(600)
.partition_id(partition_id.clone())
.send()

.await?;

Buat keyring Hierarkis

Untuk membuat keyring Hierarkis, Anda harus memberikan nilai-nilai berikut:

+ Nama toko kunci

Nama tabel DynamoDB yang Anda, atau administrator toko utama Anda, dibuat untuk berfungsi
sebagai toko kunci Anda.

Batas waktu cache untuk hidup (TTL)

Jumlah waktu dalam hitungan detik entri materi kunci cabang dalam cache lokal dapat digunakan
sebelum kedaluwarsa. Batas cache TTL menentukan seberapa sering klien memanggil AWS KMS
untuk mengotorisasi penggunaan kunci cabang. Nilai ini harus lebih besar dari nol. Setelah batas
cache TTL berakhir, entri tidak pernah disajikan, dan akan diusir dari cache lokal.

+ Pengidentifikasi kunci cabang

Anda dapat mengonfigurasi secara statis branch-key-id yang mengidentifikasi satu kunci
cabang aktif di toko kunci Anda, atau memberikan pemasok ID kunci cabang.

Pemasok ID kunci cabang menggunakan bidang yang disimpan dalam konteks enkripsi untuk
menentukan kunci cabang mana yang diperlukan untuk mendekripsi catatan. Secara default,
hanya partisi dan kunci pengurutan yang disertakan dalam konteks enkripsi. Namun, Anda dapat
menggunakan tindakan SIGN_AND_INCLUDE_TIN_ENCRYPTION_CONTEXT kriptografi untuk
memasukkan bidang tambahan dalam konteks enkripsi.

Kami sangat menyarankan menggunakan pemasok ID kunci cabang untuk database
multitenant di mana setiap penyewa memiliki kunci cabang mereka sendiri. Anda dapat
menggunakan pemasok ID kunci cabang untuk membuat nama yang ramah IDs untuk kunci
cabang Anda agar mudah mengenali ID kunci cabang yang benar untuk penyewa tertentu.

Buat keyring Hierarkis 78



AWS SDK Enkripsi Basis Data Panduan Developer

Misalnya, nama ramah memungkinkan Anda merujuk ke kunci cabang sebagai tenantl
gantinyab3f61619-4d35-48ad-a275-050f87e15122.

Untuk operasi dekripsi, Anda dapat mengonfigurasi secara statis satu keyring Hierarkis untuk
membatasi dekripsi ke penyewa tunggal, atau Anda dapat menggunakan pemasok ID kunci
cabang untuk mengidentifikasi penyewa mana yang bertanggung jawab untuk mendekripsi catatan.

» (Opsional) Sebuah cache

Jika Anda ingin menyesuaikan jenis cache atau jumlah entri materi kunci cabang yang dapat
disimpan di cache lokal, tentukan jenis cache dan kapasitas entri saat Anda menginisialisasi
keyring.

Keyring Hierarkis mendukung jenis cache berikut: Default,, MultiThreaded StormTracking, dan
Shared. Untuk informasi selengkapnya dan contoh yang menunjukkan cara menentukan setiap
jenis cache, lihatthe section called “Pilih cache”.

Jika Anda tidak menentukan cache, keyring Hierarkis secara otomatis menggunakan jenis cache
Default dan menetapkan kapasitas entri ke 1000.

* (Opsional) Sebuah ID partisi

Jika Anda menentukanthe section called “Cache bersama”, Anda dapat secara opsional
menentukan ID partisi. ID partisi membedakan keyring Hierarkis mana yang menulis ke cache.
Jika Anda bermaksud untuk menggunakan kembali atau berbagi entri cache di partisi, Anda harus
menentukan ID partisi Anda sendiri. Anda dapat menentukan string apa pun untuk ID partisi.

Jika Anda tidak menentukan ID partisi, ID partisi unik secara otomatis ditetapkan ke keyring saat
pembuatan.

Untuk informasi selengkapnya, lihat Partitions.

® Note

Keyring Hierarkis Anda akan berbagi entri cache yang sama dalam cache Bersama jika
Anda membuat dua atau lebih keyrings yang mereferensikan ID partisi yang samalogical
key store name, dan ID kunci cabang. Jika Anda tidak ingin beberapa keyrings berbagi
entri cache yang sama, Anda harus menggunakan ID partisi unik untuk setiap keyring
Hierarkis.

* (Opsional) Daftar Token Hibah

Buat keyring Hierarkis 79



AWS SDK Enkripsi Basis Data Panduan Developer

Jika Anda mengontrol akses ke kunci KMS di keyring Hierarkis Anda dengan hibah, Anda harus
menyediakan semua token hibah yang diperlukan saat Anda menginisialisasi keyring.

Buat keyring Hierarkis dengan ID kunci cabang statis

Contoh berikut menunjukkan cara membuat keyring Hierarkis dengan ID kunci cabang statis, TTLthe
section called “Cache default”, dan batas cache 600 detik.

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
CreateAwsKmsHierarchicalKeyringInput.builder()
.keyStore(branchKeyStoreName)
.branchKeyId(branch-key-id)
.ttlSeconds(600)
.build();
final Keyring hierarchicalKeyring =
matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/.NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput

{
KeyStore = keystore,
BranchKeyIdSupplier = branchKeyIdSupplier,
TtlSeconds = 600

1

var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
.create_aws_kms_hierarchical_keyring()
.branch_key_id(branch_key_id)

Buat keyring Hierarkis 80


https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS SDK Enkripsi Basis Data Panduan Developer

.key_store(branch_key_store_name)
.ttl_seconds(600)

.send()

.await?;

Buat keyring Hierarkis dengan pemasok ID kunci cabang

Prosedur berikut menunjukkan cara membuat keyring Hierarkis dengan pemasok ID kunci cabang.

1. Buat pemasok ID kunci cabang

Contoh berikut membuat nama ramah untuk dua kunci cabang yang dibuat pada Langkah 1, dan
panggilan CreateDynamoDbEncryptionBranchKeyIdSupplier untuk membuat pemasok
ID kunci cabang dengan AWS Database Encryption SDK untuk klien DynamoDB.

Java

// Create friendly names for each branch-key-id

class ExampleBranchKeyIdSupplier implements IDynamoDbKeyBranchKeyIdSupplier {
private static String branchKeyIdForTenantl;
private static String branchKeyIdForTenant2;

public ExampleBranchKeyIdSupplier(String tenantlId, String tenant2Id) {
this.branchKeyIdForTenantl = tenantlId;
this.branchKeyIdForTenant2 = tenant2Id;
}
// Create the branch key ID supplier
final DynamoDbEncryption ddbEnc = DynamoDbEncryption.builder()
.DynamoDbEncryptionConfig(DynamoDbEncryptionConfig.buildexr().build())
.build();
final BranchKeyIdSupplier branchKeyIdSupplier =
ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
CreateDynamoDbEncryptionBranchKeyIdSupplierInput.buildex()
.ddbKeyBranchKeyIdSupplier(new ExampleBranchKeyIdSupplier(branch-
key-ID-tenantl, branch-key-ID-tenant2))
.build()).branchKeyIdSupplier();

C#/ .NET

// Create friendly names for each branch-key-id
class ExampleBranchKeyIdSupplier : DynamoDbKeyBranchKeyIdSupplierBase {

Buat keyring Hierarkis 81



AWS SDK Enkripsi Basis Data Panduan Developer

private String _branchKeyIdForTenantl;
private String _branchKeyIdForTenant2;

public ExampleBranchKeyIdSupplier(String tenantlId, String tenant2Id) {
this._branchKeyIdForTenantl = tenantlId;
this._branchKeyIdForTenant2 = tenant2Id;
}
// Create the branch key ID supplier
var ddbEnc = new DynamoDbEncryption(new DynamoDbEncryptionConfig());
var branchKeyIdSupplier = ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
new CreateDynamoDbEncryptionBranchKeyIdSupplierInput
{
DdbKeyBranchKeyIdSupplier = new ExampleBranchKeyIdSupplier(branch-key-
ID-tenantl, branch-key-ID-tenant2)
}) .BranchKeyIdSupplier;

Rust

// Create friendly names for each branch_key_id

pub struct ExampleBranchKeyIdSupplier {
branch_key_id_for_tenantl: String,
branch_key_id_for_tenant2: String,

impl ExampleBranchKeyIdSupplier {
pub fn new(tenantl_id: &str, tenant2_id: &str) -> Self {
Self {
branch_key_id_for_tenantl: tenantl_id.to_string(),
branch_key_id_for_tenant2: tenant2_id.to_string(),

// Create the branch key ID supplier

let dbesdk_config = DynamoDbEncryptionConfig::buildexr().build()?;

let dbesdk = dbesdk_client::Client::from_conf(dbesdk_config)?;

let supplier = ExampleBranchKeyIdSupplier::new(tenantl_branch_key_id,
tenant2_branch_key_id);

let branch_key_id_supplier = dbesdk
.create_dynamo_db_encryption_branch_key_id_supplier()
.ddb_key_branch_key_id_supplier(supplier)
.send()

Buat keyring Hierarkis 82



AWS SDK Enkripsi Basis Data Panduan Developer

.await?
.branch_key_id_supplier
.unwrap();

2. Buat keyring Hierarkis

Contoh berikut menginisialisasi keyring Hierarkis dengan pemasok ID kunci cabang yang dibuat
pada Langkah 1, batas cache TLL 600 detik, dan ukuran cache maksimum 1000.

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsHierarchicalKeyringInput keyringInput =

CreateAwsKmsHierarchicalKeyringInput.builder()

.keyStore(keystore)

.branchKeyIdSupplier(branchKeyIdSupplier)

.ttlSeconds(600)

.cache(CacheType.builder() //OPTIONAL
.Default(DefaultCache.builder()
.entryCapacity(100)

.build())
.build();
final Keyring hierarchicalKeyring =
matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/.NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{

KeyStore = keystore,

BranchKeyIdSupplier = branchKeyIdSupplier,

TtlSeconds = 600,

Cache = new CacheType

{

Default = new DefaultCache { EntryCapacity = 100 }

};

var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Buat keyring Hierarkis 83



AWS SDK Enkripsi Basis Data Panduan Developer

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
.create_aws_kms_hierarchical_keyring()
.branch_key_id_supplier(branch_key_id_supplier)
.key_store(key_store)
.ttl_seconds(600)
.send()
.await?;

Menggunakan keyring Hierarkis untuk enkripsi yang dapat dicari

Enkripsi yang dapat dicari memungkinkan Anda untuk mencari catatan terenkripsi tanpa mendekripsi
seluruh database. Ini dicapai dengan mengindeks nilai plaintext dari bidang terenkripsi dengan suar.
Untuk mengimplementasikan enkripsi yang dapat dicari, Anda harus menggunakan keyring Hierarkis.

CreateKeyOperasi penyimpanan kunci menghasilkan kunci cabang dan kunci suar. Kunci cabang
digunakan dalam enkripsi catatan dan operasi dekripsi. Kunci suar digunakan untuk menghasilkan
suar.

Kunci cabang dan kunci suar dilindungi oleh yang sama dengan AWS KMS key yang Anda tentukan
saat membuat layanan toko kunci Anda. Setelah panggilan CreateKey operasi AWS KMS untuk
menghasilkan kunci cabang, ia memanggil kms: GenerateDataKeyWithoutPlaintext kedua kalinya
untuk menghasilkan kunci suar menggunakan permintaan berikut.

{
"EncryptionContext": {
"branch-key-id" : "branch-key-id",
"type" : type,
"create-time" : "timestamp",
"logical-key-store-name" : "the logical table name for your key store",
"kms-arn" : the KMS key ARN,
"hierarchy-version" : 1

3,
"KeyId": "the KMS key ARN",

"NumberOfBytes": "32"

Menggunakan keyring Hierarkis untuk enkripsi yang dapat dicari 84


https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK Enkripsi Basis Data Panduan Developer

}

Setelah menghasilkan kedua kunci, CreateKey operasi memanggil ddb: TransactWriteltems untuk
menulis dua item baru yang akan mempertahankan kunci cabang dan kunci suar di toko kunci
cabang Anda.

Saat Anda mengonfigurasi suar standar, SDK Enkripsi AWS Database menanyakan penyimpanan
kunci untuk kunci suar. Kemudian, ia menggunakan fungsi derivasi extract-and-expand kunci
berbasis HMAC (HKDF) untuk menggabungkan kunci suar dengan nama suar standar untuk
membuat kunci HMAC untuk suar yang diberikan.

Tidak seperti kunci cabang, hanya ada satu versi kunci suar per branch-key-id di toko kunci.
Kunci suar tidak pernah diputar.

Mendefinisikan sumber kunci suar Anda

Saat Anda menentukan versi beacon untuk beacon standar dan gabungan Anda, Anda harus
mengidentifikasi kunci suar dan menentukan batas waktu cache untuk hidup (TTL) untuk materi kunci
suar. Materi kunci suar disimpan dalam cache lokal terpisah dari kunci cabang. Cuplikan berikut
menunjukkan bagaimana mendefinisikan untuk database penyewa keySource tunggal. Identifikasi
kunci suar Anda dengan yang branch-key-1id terkait dengannya.

Java

keySource(BeaconKeySource.builder()
.single(SingleKeyStore.buildexr()
.keyId(branch-key-id)
.cacheTTL(6000)
.build())
.build())

C#/.NET

KeySource = new BeaconKeySource
{
Single = new SingleKeyStore
{
KeyId = branch-key-id,
CacheTTL = 6000

Menggunakan keyring Hierarkis untuk enkripsi yang dapat dicari 85


https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html
https://en.wikipedia.org/wiki/HKDF

AWS SDK Enkripsi Basis Data Panduan Developer

}

Rust

.key_source(BeaconKeySource: :Single(

SingleKeyStore: :buildex()
// “keyld® references a beacon key.
// For every branch key we create in the keystore,
// we also create a beacon key.
// This beacon key is not the same as the branch key,
// but is created with the same ID as the branch key.
.key_id(branch_key_id)
.cache_ttl1(6000)
.build()?z,

))

Mendefinisikan sumber suar dalam database multitenant

Jika Anda memiliki database multitenant, Anda harus menentukan nilai-nilai berikut saat
mengkonfigurasi. keySource

keyFieldName

Mendefinisikan nama bidang yang menyimpan yang branch-key-id terkait dengan kunci
suar yang digunakan untuk menghasilkan suar untuk penyewa tertentu. keyFieldNameBisa
berupa string apa saja, tetapi harus unik untuk semua bidang lain di database Anda. Saat Anda
menulis catatan baru ke database Anda, branch-key-id yang mengidentifikasi kunci suar
yang digunakan untuk menghasilkan suar apa pun untuk catatan itu disimpan di bidang ini.
Anda harus menyertakan bidang ini dalam kueri suar Anda dan mengidentifikasi bahan kunci
suar yang sesuai yang diperlukan untuk menghitung ulang suar. Untuk informasi selengkapnya,
lihat Menanyakan beacon dalam database multitenant.

» CacheTTL

Jumlah waktu dalam hitungan detik entri bahan kunci suar dalam cache suar lokal dapat
digunakan sebelum kedaluwarsa. Nilai ini harus lebih besar dari nol. Ketika batas cache TTL
kedaluwarsa, entri diusir dari cache lokal.

* (Opsional) Sebuah cache

Menggunakan keyring Hierarkis untuk enkripsi yang dapat dicari 86



AWS SDK Enkripsi Basis Data Panduan Developer

Jika Anda ingin menyesuaikan jenis cache atau jumlah entri materi kunci cabang yang dapat
disimpan di cache lokal, tentukan jenis cache dan kapasitas entri saat Anda menginisialisasi
keyring.

Keyring Hierarkis mendukung jenis cache berikut: Default,, MultiThreaded StormTracking, dan
Shared. Untuk informasi selengkapnya dan contoh yang menunjukkan cara menentukan setiap
jenis cache, lihatthe section called “Pilih cache”.

Jika Anda tidak menentukan cache, keyring Hierarkis secara otomatis menggunakan jenis
cache Default dan menetapkan kapasitas entri ke 1000.

Contoh berikut membuat keyring Hierarkis dengan pemasok ID kunci cabang TLL batas cache
600 detik, dan kapasitas entri 1000.

Java

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
CreateAwsKmsHierarchicalKeyringInput.builder()
.keyStore(branchKeyStoreName)
.branchKeyIdSupplier(branchKeyIdSupplier)
.ttlSeconds(600)
.cache(CacheType.buildexr() //OPTIONAL
.Default(DefaultCache.builder()
.entryCapacity(1000)
.build())
.build();
final IKeyring hierarchicalKeyring =
matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C#/ .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{

KeyStore = keystore,

BranchKeyIdSupplier = branchKeyIdSupplier,

TtlSeconds = 600,

Cache = new CacheType

{

Menggunakan keyring Hierarkis untuk enkripsi yang dapat dicari 87



AWS SDK Enkripsi Basis Data Panduan Developer

Default = new DefaultCache { EntryCapacity = 1000 }
}
i

var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let provider_config = MaterialProvidersConfig::buildexr().build()?;
let mat_prov = client::Client::from_conf(provider_config)?;
let kms_keyring = mat_prov
.create_aws_kms_hierarchical_keyring()
.branch_key_id(branch_key_id)
.key_store(key_store)
.ttl_seconds(600)
.send()
.await?;

AWS KMS Gantungan kunci ECDH

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

/A Important

Gantungan kunci AWS KMS ECDH hanya tersedia dengan versi 1.5.0 atau yang lebih baru
dari Perpustakaan Penyedia Material.

Gantungan kunci AWS KMS ECDH menggunakan kesepakatan kunci asimetris AWS KMS
keysuntuk mendapatkan kunci pembungkus simetris bersama antara dua pihak. Pertama, keyring
menggunakan algoritma perjanjian kunci Elliptic Curve Diffie-Hellman (ECDH) untuk mendapatkan
rahasia bersama dari kunci pribadi di KMS key pair pengirim dan kunci publik penerima. Kemudian,
keyring menggunakan rahasia bersama untuk mendapatkan kunci pembungkus bersama yang
melindungi kunci enkripsi data Anda. Fungsi derivasi kunci yang digunakan SDK Enkripsi AWS
Database (KDF_CTR_HMAC_SHA384) untuk mendapatkan kunci pembungkus bersama sesuai
dengan rekomendasi NIST untuk derivasi kunci.

AWS KMS Gantungan kunci ECDH 88


https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS SDK Enkripsi Basis Data Panduan Developer

Fungsi derivasi kunci mengembalikan 64 byte bahan kunci. Untuk memastikan bahwa kedua belah
pihak menggunakan materi kunci yang benar, SDK Enkripsi AWS Database menggunakan 32
byte pertama sebagai kunci komitmen dan 32 byte terakhir sebagai kunci pembungkus bersama.
Saat mendekripsi, jika keyring tidak dapat mereproduksi kunci komitmen yang sama dan kunci
pembungkus bersama yang disimpan di bidang deskripsi material dari catatan terenkripsi, operasi
gagal. Misalnya, jika Anda mengenkripsi rekaman dengan keyring yang dikonfigurasi dengan
kunci pribadi Alice dan kunci publik Bob, keyring yang dikonfigurasi dengan kunci pribadi Bob dan
kunci publik Alice akan mereproduksi kunci komitmen yang sama dan kunci pembungkus bersama
dan dapat mendekripsi catatan. Jika kunci publik Bob bukan dari key pair KMS, maka Bob dapat
membuat keyring ECDH mentah untuk mendekripsi catatan.

Keyring AWS KMS ECDH mengenkripsi catatan dengan kunci simetris menggunakan AES-GCM.
Kunci data kemudian dienkripsi dengan kunci pembungkus bersama turunan menggunakan AES-
GCM. Setiap keyring AWS KMS ECDH hanya dapat memiliki satu kunci pembungkus bersama,
tetapi Anda dapat menyertakan beberapa gantungan kunci AWS KMS ECDH, sendiri atau dengan
gantungan kunci lainnya, dalam multi-keyring.

Topik

* |zin yang diperlukan untuk gantungan kunci AWS KMS ECDH
* Membuat keyring AWS KMS ECDH

* Membuat keyring AWS KMS penemuan ECDH

|zin yang diperlukan untuk gantungan kunci AWS KMS ECDH

SDK Enkripsi AWS Database tidak memerlukan AWS akun dan tidak bergantung pada AWS layanan
apa pun. Namun, untuk menggunakan keyring AWS KMS ECDH, Anda memerlukan AWS akun

dan izin minimum berikut pada keyring Anda. AWS KMS keys |zin bervariasi berdasarkan skema
perjanjian kunci yang Anda gunakan.

* Untuk mengenkripsi dan mendekripsi catatan menggunakan skema perjanjian
KmsPrivateKeyToStaticPublicKey kunci, Anda memerlukan kms: GetPublicKey dan kms:
DeriveSharedSecret pada key pair KMS asimetris pengirim. Jika Anda langsung memberikan
kunci publik yang dienkode DER pengirim saat membuat instance keyring, Anda hanya perlu
DeriveSharedSecret izin kms: pada key pair KMS asimetris pengirim.

+ Untuk mendekripsi catatan menggunakan skema perjanjian KmsPublicKeyDiscovery kunci,
Anda memerlukan GetPublicKey izin kms: DeriveSharedSecret dan kms: pada key pair KMS
asimetris yang ditentukan.

Izin yang diperlukan untuk gantungan kunci AWS KMS ECDH 89


https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS SDK Enkripsi Basis Data Panduan Developer

Membuat keyring AWS KMS ECDH

Untuk membuat keyring AWS KMS ECDH yang mengenkripsi dan mendekripsi data, Anda
harus menggunakan skema perjanjian kunci. KmsPrivateKeyToStaticPublicKey
Untuk menginisialisasi keyring AWS KMS ECDH dengan skema perjanjian
KmsPrivateKeyToStaticPublicKey kunci, berikan nilai-nilai berikut:

* ID Pengirim AWS KMS key

Harus mengidentifikasi asymmetric NIST recommended elliptic curve (ECC) KMS key pair dengan
nilai. KeyUsage KEY_AGREEMENT Kunci pribadi pengirim digunakan untuk mendapatkan rahasia
bersama.

* (Opsional) Kunci publik pengirim

Harus berupa kunci publik X.509 yang dikodekan DER, juga dikenal sebagai
SubjectPublicKeyInfo (SPKI), sebagaimana didefinisikan dalam RFC 5280.

AWS KMS GetPublicKeyOperasi mengembalikan kunci publik dari key pair KMS asimetris dalam
format yang dienkode DER yang diperlukan.

Untuk mengurangi jumlah AWS KMS panggilan yang dilakukan keyring Anda, Anda dapat
langsung memberikan kunci publik pengirim. Jika tidak ada nilai yang diberikan untuk kunci publik
pengirim, keyring akan memanggil AWS KMS untuk mengambil kunci publik pengirim.

» Kunci publik penerima

Anda harus memberikan kunci publik X.509 yang dikodekan DER penerima, juga dikenal sebagai
SubjectPublicKeyInfo (SPKI), sebagaimana didefinisikan dalam RFC 5280.

AWS KMS GetPublicKeyOperasi mengembalikan kunci publik dari key pair KMS asimetris dalam
format yang dienkode DER yang diperlukan.

» Spesifikasi kurva

Mengidentifikasi spesifikasi kurva elips dalam pasangan kunci yang ditentukan. Pasangan kunci
pengirim dan penerima harus memiliki spesifikasi kurva yang sama.

Nilai valid: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512
* (Opsional) Daftar Token Hibah

Membuat keyring AWS KMS ECDH 90


https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS SDK Enkripsi Basis Data Panduan Developer

Jika Anda mengontrol akses ke kunci KMS di keyring AWS KMS ECDH Anda dengan hibah, Anda
harus memberikan semua token hibah yang diperlukan saat Anda menginisialisasi keyring.

C#/.NET

Contoh berikut membuat keyring AWS KMS ECDH dengan kunci KMS pengirim, kunci publik
pengirim, dan kunci publik penerima. Contoh ini menggunakan senderPublicKey parameter
opsional untuk menyediakan kunci publik pengirim. Jika Anda tidak memberikan kunci publik
pengirim, keyring akan memanggil AWS KMS untuk mengambil kunci publik pengirim. Pasangan
kunci pengirim dan penerima berada di ECC_NIST_P256 kurva.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations
{
KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput
{
SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
SenderPublicKey = BobPublicKey,
RecipientPublicKey = AlicePublicKey

}
};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KmsClient = new AmazonKeyManagementServiceClient(),
KeyAgreementScheme = staticConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Membuat keyring AWS KMS ECDH 91


https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS SDK Enkripsi Basis Data Panduan Developer

Java

Contoh berikut membuat keyring AWS KMS ECDH dengan kunci KMS pengirim, kunci publik
pengirim, dan kunci publik penerima. Contoh ini menggunakan senderPublicKey parameter
opsional untuk menyediakan kunci publik pengirim. Jika Anda tidak memberikan kunci publik
pengirim, keyring akan memanggil AWS KMS untuk mengambil kunci publik pengirim. Pasangan
kunci pengirim dan penerima berada di ECC_NIST_P256 kurva.

// Retrieve public keys

// Must be DER-encoded X.509 public keys

ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab" ) ;
ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-

west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

// Create the AWS KMS ECDH static keyring
final CreateAwsKmsEcdhKeyringInput senderKeyringInput =
CreateAwsKmsEcdhKeyringInput.builder()
.kmsClient(KmsClient.create())
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
KmsEcdhStaticConfigurations.builder()
.KmsPrivateKeyToStaticPublicKey(
KmsPrivateKeyToStaticPublicKeyInput.builder()
.senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
.senderPublicKey(BobPublicKey)
.recipientPublicKey(AlicePublicKey)
.build()).build()).build();

Rust

Contoh berikut membuat keyring AWS KMS ECDH dengan kunci KMS pengirim, kunci publik
pengirim, dan kunci publik penerima. Contoh ini menggunakan sender_public_key parameter
opsional untuk menyediakan kunci publik pengirim. Jika Anda tidak memberikan kunci publik
pengirim, keyring akan memanggil AWS KMS untuk mengambil kunci publik pengirim.

// Retrieve public keys

// Must be DER-encoded X.509 keys

let public_key_file_content_sender =
std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_SENDER))?;

let parsed_public_key_file_content_sender = parse(public_key_file_content_sender)?;

Membuat keyring AWS KMS ECDH 92



AWS SDK Enkripsi Basis Data Panduan Developer

let public_key_sender_utf8_bytes = parsed_public_key_file_content_sender.contents();

let public_key_file_content_recipient =
std::fs::read_to_string(Path: :new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;

let parsed_public_key_file_content_recipient =
parse(public_key_file_content_recipient)?;

let public_key_recipient_utf8_bytes =
parsed_public_key_file_content_recipient.contents();

// Create KmsPrivateKeyToStaticPublicKeyInput
let kms_ecdh_static_configuration_input =
KmsPrivateKeyToStaticPublicKeyInput: :buildex()

.sender_kms_identifier(arn:aws:kms:us-

west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab)
// Must be a UTF8 DER-encoded X.509 public key
.sender_public_key(public_key_sender_utf8_bytes)
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let kms_ecdh_static_configuration =
KmsEcdhStaticConfigurations: :KmsPrivateKeyToStaticPublicKey(kms_ecdh_static_configuration_i

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH keyring

let kms_ecdh_keyring = mpl
.create_aws_kms_ecdh_keyring()
.kms_client(kms_client)
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(kms_ecdh_static_configuration)
.send()
.await?;

Membuat keyring AWS KMS penemuan ECDH

Saat mendekripsi, ini adalah praktik terbaik untuk menentukan kunci yang dapat digunakan SDK
Enkripsi AWS Database. Untuk mengikuti praktik terbaik ini, gunakan gantungan kunci AWS KMS
ECDH dengan skema perjanjian KmsPrivateKeyToStaticPublicKey kunci. Namun, Anda juga
dapat membuat keyring penemuan AWS KMS ECDH, yaitu keyring AWS KMS ECDH yang dapat

Membuat keyring AWS KMS penemuan ECDH 93



AWS SDK Enkripsi Basis Data Panduan Developer

mendekripsi catatan apa pun di mana kunci publik dari key pair KMS yang ditentukan cocok dengan
kunci publik penerima yang disimpan di bidang deskripsi material dari catatan terenkripsi.

/A Important

Ketika Anda mendekripsi catatan menggunakan skema perjanjian
KmsPublicKeyDiscovery kunci, Anda menerima semua kunci publik, terlepas dari siapa
yang memilikinya.

Untuk menginisialisasi keyring AWS KMS ECDH dengan skema perjanjian
KmsPublicKeyDiscovery kunci, berikan nilai-nilai berikut:

 AWS KMS key ID Penerima

Harus mengidentifikasi asymmetric NIST recommended elliptic curve (ECC) KMS key pair dengan
nilai. KeyUsage KEY_AGREEMENT

» Spesifikasi kurva
Mengidentifikasi spesifikasi kurva eliptik dalam key pair KMS penerima.

Nilai valid: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512
* (Opsional) Daftar Token Hibah

Jika Anda mengontrol akses ke kunci KMS di keyring AWS KMS ECDH Anda dengan hibah, Anda
harus memberikan semua token hibah yang diperlukan saat Anda menginisialisasi keyring.

C#/ .NET

Contoh berikut membuat keyring penemuan AWS KMS ECDH dengan key pair KMS pada kurva.
ECC_NIST_P256 Anda harus memiliki DeriveSharedSecret izin kms: GetPublicKey dan kms:
pada key pair KMS yang ditentukan. Keyring ini dapat mendekripsi catatan apa pun di mana kunci
publik dari key pair KMS yang ditentukan cocok dengan kunci publik penerima yang disimpan di
bidang deskripsi material dari catatan terenkripsi.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create the AWS KMS ECDH discovery keyring

Membuat keyring AWS KMS penemuan ECDH 94


https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS SDK Enkripsi Basis Data Panduan Developer

var discoveryConfiguration = new KmsEcdhStaticConfigurations

{
KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput
{
RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
}
};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KmsClient = new AmazonKeyManagementServiceClient(),
KeyAgreementScheme = discoveryConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

Contoh berikut membuat keyring penemuan AWS KMS ECDH dengan key pair KMS pada kurva.
ECC_NIST_P256 Anda harus memiliki DeriveSharedSecret izin kms: GetPublicKey dan kms:
pada key pair KMS yang ditentukan. Keyring ini dapat mendekripsi catatan apa pun di mana kunci
publik dari key pair KMS yang ditentukan cocok dengan kunci publik penerima yang disimpan di
bidang deskripsi material dari catatan terenkripsi.

// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput =
CreateAwsKmsEcdhKeyringInput.builder()
.kmsClient(KmsClient.create())
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
KmsEcdhStaticConfigurations.builder()
.KmsPublicKeyDiscovery(
KmsPublicKeyDiscoveryInput.buildexr()
.recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321") .build()
).build())
.build();

Rust

// Create KmsPublicKeyDiscoveryInput

Membuat keyring AWS KMS penemuan ECDH 95


https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS SDK Enkripsi Basis Data Panduan Developer

let kms_ecdh_discovery_static_configuration_input =
KmsPublicKeyDiscoveryInput::builder()
.recipient_kms_identifier(ecc_recipient_key_arn)
.build()?;

let kms_ecdh_discovery_static_configuration =
KmsEcdhStaticConfigurations: :KmsPublicKeyDiscovery(kms_ecdh_discovery_static_configuration_

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH discovery keyring

let kms_ecdh_discovery_keyring = mpl
.create_aws_kms_ecdh_keyring()
.kms_client(kms_client.clone())
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(kms_ecdh_discovery_static_configuration)
.send()
.await?;

Gantungan kunci AES mentah

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

SDK Enkripsi AWS Database memungkinkan Anda menggunakan kunci simetris AES yang Anda
berikan sebagai kunci pembungkus yang melindungi kunci data Anda. Anda perlu membuat,
menyimpan, dan melindungi materi utama, sebaiknya dalam modul keamanan perangkat keras
(HSM) atau sistem manajemen kunci. Gunakan keyring Raw AES saat Anda perlu memberikan kunci
pembungkus dan mengenkripsi kunci data secara lokal atau offline.

Raw AES keyring mengenkripsi data dengan menggunakan algoritma AES-GCM dan kunci
pembungkus yang Anda tentukan sebagai array byte. Anda hanya dapat menentukan satu kunci
pembungkus di setiap keyring Raw AES, tetapi Anda dapat menyertakan beberapa gantungan kunci
Raw AES, sendiri atau dengan gantungan kunci lainnya, dalam multi-keyring.

Ruang nama dan nama kunci

Gantungan kunci AES mentah 96



AWS SDK Enkripsi Basis Data Panduan Developer

Untuk mengidentifikasi kunci AES dalam keyring, keyring Raw AES menggunakan namespace
kunci dan nama kunci yang Anda berikan. Nilai-nilai ini bukan rahasia. Mereka muncul dalam
teks biasa dalam deskripsi materi yang ditambahkan SDK Enkripsi AWS Database ke catatan.
Sebaiknya gunakan namespace kunci HSM atau sistem manajemen kunci Anda dan nama kunci
yang mengidentifikasi kunci AES dalam sistem itu.

® Note

Namespace kunci dan nama kunci setara dengan kolom ID Penyedia (atau Penyedia) dan ID
Kunci di kolom. JceMasterKey

Jika Anda membuat keyring yang berbeda untuk mengenkripsi dan mendekripsi bidang tertentu,
namespace dan nilai nama sangat penting. Jika namespace kunci dan nama kunci dalam keyring
dekripsi bukan kecocokan yang tepat dan peka huruf besar/kecil untuk namespace kunci dan nama
kunci dalam keyring enkripsi, keyring dekripsi tidak digunakan, meskipun byte materi kunci identik.

Misalnya, Anda mungkin mendefinisikan keyring Raw AES dengan namespace HSM_@1 kunci dan
nama kunci. AES_256_012 Kemudian, Anda menggunakan keyring itu untuk mengenkripsi beberapa
data. Untuk mendekripsi data tersebut, buat keyring Raw AES dengan namespace kunci, nama
kunci, dan material kunci yang sama.

Contoh berikut menunjukkan cara membuat keyring Raw AES. AESWrappingKeyVariabel mewakili
materi utama yang Anda berikan.

Java

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder()
.keyName ("AES_256_012")
.keyNamespace("HSM_01")
.wrappingKey(AESWrappingKey)
.wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Gantungan kunci AES mentah 97



AWS SDK Enkripsi Basis Data

Panduan Developer

C#/.NET

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

// This example uses the key generator in Bouncy Castle to generate the key

material.
// In production, use key material from a secure source.
var aesWrappingKey = new

MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

// Create the keyring
var keyringInput = new CreateRawAesKeyringInput

{

KeyNamespace = keyNamespace,

KeyName = keyName,

WrappingKey = AESWrappingKey,

WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
};

var matProv = new MaterialProviders(new MaterialProvidersConfig());
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name("AES_256_012")
.key_namespace("HSM_01")
.wrapping_key(aes_key_bytes)
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle)
.send()
.await?;

Gantungan kunci RSA mentah

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan

pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Gantungan kunci RSA mentah

98



AWS SDK Enkripsi Basis Data Panduan Developer

Raw RSA keyring melakukan enkripsi asimetris dan dekripsi kunci data dalam memori lokal dengan
kunci publik dan pribadi RSA yang Anda berikan. Anda perlu membuat, menyimpan, dan melindungi
kunci pribadi, sebaiknya dalam modul keamanan perangkat keras (HSM) atau sistem manajemen
kunci. Fungsi enkripsi mengenkripsi kunci data di bawah kunci publik RSA. Fungsi dekripsi
mendekripsi kunci data menggunakan kunci pribadi. Anda dapat memilih dari antara beberapa mode
padding RSA.

Raw RSA keyring yang mengenkripsi dan mendekripsi harus menyertakan kunci publik asimetris
dan private key pair. Namun, Anda dapat mengenkripsi data dengan keyring Raw RSA yang hanya
memiliki kunci publik, dan Anda dapat mendekripsi data dengan keyring Raw RSA yang hanya
memiliki kunci pribadi. Anda dapat menyertakan keyring Raw RSA apa pun dalam multi-keyring. Jika
Anda mengonfigurasi keyring Raw RSA dengan kunci publik dan pribadi, pastikan bahwa mereka
adalah bagian dari key pair yang sama.

Raw RSA keyring setara dengan dan berinteraksi dengan JceMasterKeyin AWS Encryption SDK for
Java ketika mereka digunakan dengan kunci enkripsi asimetris RSA.

® Note

Raw RSA keyring tidak mendukung kunci KMS asimetris. Untuk menggunakan kunci KMS
RSA asimetris, buat keyring. AWS KMS

Ruang nama dan nama

Untuk mengidentifikasi materi kunci RSA dalam keyring, keyring Raw RSA menggunakan namespace
kunci dan nama kunci yang Anda berikan. Nilai-nilai ini bukan rahasia. Mereka muncul dalam

teks biasa dalam deskripsi materi yang ditambahkan SDK Enkripsi AWS Database ke catatan.
Sebaiknya gunakan namespace kunci dan nama kunci yang mengidentifikasi key pair RSA (atau
kunci privatnya) di HSM atau sistem manajemen kunci Anda.

(® Note

Namespace kunci dan nama kunci setara dengan kolom ID Penyedia (atau Penyedia) dan ID
Kunci di kolom. JceMasterKey

Jika Anda membuat keyring yang berbeda untuk mengenkripsi dan mendekripsi catatan yang
diberikan, namespace dan nilai nama sangat penting. Jika namespace kunci dan nama kunci dalam

Gantungan kunci RSA mentah 99


https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html

AWS SDK Enkripsi Basis Data Panduan Developer

keyring dekripsi bukan kecocokan yang tepat dan peka huruf besar/kecil untuk namespace kunci
dan nama kunci dalam keyring enkripsi, keyring dekripsi tidak digunakan, bahkan jika kunci tersebut
berasal dari key pair yang sama.

Namespace kunci dan nama kunci dari bahan kunci dalam enkripsi dan dekripsi keyrings harus
sama apakah keyring berisi kunci publik RSA, kunci pribadi RSA, atau kedua kunci dalam key

pair. Misalnya, Anda mengenkripsi data dengan keyring Raw RSA untuk kunci publik RSA dengan
namespace kunci dan nama HSM_@1 kunci. RSA_2048_06 Untuk mendekripsi data tersebut, buat
keyring Raw RSA dengan kunci pribadi (atau key pair), dan namespace dan nama kunci yang sama.

Mode bantalan

Anda harus menentukan mode padding untuk keyring Raw RSA yang digunakan untuk enkripsi dan
dekripsi, atau menggunakan fitur implementasi bahasa Anda yang menentukannya untuk Anda.

AWS Encryption SDK Mendukung mode padding berikut, tunduk pada kendala masing-masing
bahasa. Kami merekomendasikan mode padding OAEP, terutama OAEP dengan SHA-256 dan
dengan SHA-256 Padding. MGF1 Mode PKCS1padding hanya didukung untuk kompatibilitas
mundur.

* OAEP dengan SHA-1 dan MGF1 dengan SHA-1 Padding
* OAEP dengan SHA-256 dan dengan SHA-256 Padding MGF1
* OAEP dengan SHA-384 dan dengan Padding SHA-384 MGF1

* OAEP dengan SHA-512 dan dengan Padding SHA-512 MGF1
PKCS1 v1.5 Bantalan

Contoh Java berikut menunjukkan cara membuat keyring RSA Raw dengan kunci publik dan
pribadi dari key pair RSA dan OAEP dengan SHA-256 dan dengan mode padding SHA-256. MGF1
RSAPrivateKeyVariabel RSAPublicKey dan mewakili materi utama yang Anda berikan.

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder()
.keyName ("RSA_2048_06")
.keyNamespace("HSM_01")
.paddingScheme(PaddingScheme.0AEP_SHA256_MGF1)
.publicKey(RSAPublicKey)
.privateKey(RSAPrivateKey)

Gantungan kunci RSA mentah 100


https://tools.ietf.org/html/rfc8017#section-7.1
https://tools.ietf.org/html/rfc8017#section-7.2

AWS SDK Enkripsi Basis Data Panduan Developer

.build();

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

C#/.NET

var keyNamespace = "HSM_01";
var keyName = "RSA_2048 06";

// Get public and private keys from PEM files

var publicKey = new
MemoryStream(System.I0.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));

var privateKey = new
MemoryStream(System.I0.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));

// Create the keyring input
var keyringInput = new CreateRawRsaKeyringInput

{
KeyNamespace = keyNamespace,
KeyName = keyName,
PaddingScheme = PaddingScheme.0OAEP_SHA512_ MGF1,
PublicKey = publicKey,
PrivateKey = privateKey
};

// Create the keyring
var matProv = new MaterialProviders(new MaterialProvidersConfig());
var rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let raw_rsa_keyring = mpl
.create_raw_rsa_keyring()
.key_name("RSA_2048_06")
.key_namespace("HSM_01")
.padding_scheme(PaddingScheme: :0aepSha256Mgf1)
.public_key(RSA_public_key)
.private_key(RSA_private_key)
.send()

Gantungan kunci RSA mentah 101



AWS SDK Enkripsi Basis Data Panduan Developer

.await?;

Gantungan kunci ECDH mentah

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

/A Important

Raw ECDH keyring hanya tersedia dengan versi 1.5.0 dari Perpustakaan Penyedia Material.

Raw ECDH keyring menggunakan kurva elips pasangan kunci publik-pribadi yang Anda berikan
untuk mendapatkan kunci pembungkus bersama antara dua pihak. Pertama, keyring memperoleh
rahasia bersama menggunakan kunci pribadi pengirim, kunci publik penerima, dan algoritma
perjanjian kunci Elliptic Curve Diffie-Hellman (ECDH). Kemudian, keyring menggunakan rahasia
bersama untuk mendapatkan kunci pembungkus bersama yang melindungi kunci enkripsi data Anda.
Fungsi derivasi kunci yang digunakan SDK Enkripsi AWS Database (KDF_CTR_HMAC_SHA384)
untuk mendapatkan kunci pembungkus bersama sesuai dengan rekomendasi NIST untuk derivasi
kunci.

Fungsi derivasi kunci mengembalikan 64 byte bahan kunci. Untuk memastikan bahwa kedua belah
pihak menggunakan materi kunci yang benar, SDK Enkripsi AWS Database menggunakan 32
byte pertama sebagai kunci komitmen dan 32 byte terakhir sebagai kunci pembungkus bersama.
Saat mendekripsi, jika keyring tidak dapat mereproduksi kunci komitmen yang sama dan kunci
pembungkus bersama yang disimpan di bidang deskripsi material dari catatan terenkripsi, operasi
gagal. Misalnya, jika Anda mengenkripsi rekaman dengan keyring yang dikonfigurasi dengan kunci
pribadi Alice dan kunci publik Bob, keyring yang dikonfigurasi dengan kunci pribadi Bob dan kunci
publik Alice akan mereproduksi kunci komitmen yang sama dan kunci pembungkus bersama dan
dapat mendekripsi catatan. Jika kunci publik Bob berasal dari AWS KMS key pasangan, maka Bob
dapat membuat keyring AWS KMS ECDH untuk mendekripsi catatan.

Raw ECDH keyring mengenkripsi catatan dengan kunci simetris menggunakan AES-GCM. Kunci
data kemudian dienkripsi dengan kunci pembungkus bersama turunan menggunakan AES-GCM.
Setiap keyring ECDH Raw hanya dapat memiliki satu kunci pembungkus bersama, tetapi Anda

Gantungan kunci ECDH mentah 102


https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS SDK Enkripsi Basis Data Panduan Developer

dapat menyertakan beberapa gantungan kunci ECDH mentah, sendiri atau dengan gantungan kunci

lainnya, dalam multi-keyring.

Anda bertanggung jawab untuk membuat, menyimpan, dan melindungi kunci pribadi Anda, sebaiknya
dalam modul keamanan perangkat keras (HSM) atau sistem manajemen kunci. Pasangan kunci
pengirim dan penerima banyak berada pada kurva elips yang sama. AWS Database Encryption SDK
mendukung spesifikasi elips cuve berikut:

« ECC_NIST_P256

 ECC_NIST_P384

 ECC_NIST_P512

Membuat keyring ECDH mentah

Raw ECDH keyring mendukung tiga skema perjanjian
utama:RawPrivateKeyToStaticPublicKey,, dan.
EphemeralPrivateKeyToStaticPublicKey PublicKeyDiscovery Skema perjanjian utama
yang Anda pilih menentukan operasi kriptografi mana yang dapat Anda lakukan dan bagaimana
bahan kunci dirakit.

Topik

» RawPrivateKeyToStaticPublicKey

» EphemeralPrivateKeyToStaticPublicKey

» PublicKeyDiscovery

RawPrivateKeyToStaticPublicKey

Gunakan skema perjanjian RawPrivateKeyToStaticPublicKey kunci untuk mengonfigurasi
kunci pribadi pengirim dan kunci publik penerima secara statis di keyring. Skema perjanjian kunci ini
dapat mengenkripsi dan mendekripsi catatan.

Untuk menginisialisasi keyring ECDH mentah dengan skema perjanjian
RawPrivateKeyToStaticPublicKey kunci, berikan nilai-nilai berikut:

» Kunci pribadi pengirim

Membuat keyring ECDH mentah 103



AWS SDK Enkripsi Basis Data Panduan Developer

Anda harus memberikan kunci pribadi yang dikodekan PEM pengirim ( PrivateKeyInfo struktur
PKCS #8), seperti yang didefinisikan dalam RFC 5958.

* Kunci publik penerima

Anda harus memberikan kunci publik X.509 yang dikodekan DER penerima, juga dikenal sebagai
SubjectPublicKeyInfo (SPKI), sebagaimana didefinisikan dalam RFC 5280.

Anda dapat menentukan kunci publik dari perjanjian kunci asimetris KMS key pair atau kunci publik
dari key pair yang dihasilkan di luar. AWS

» Spesifikasi kurva

Mengidentifikasi spesifikasi kurva elips dalam pasangan kunci yang ditentukan. Pasangan kunci
pengirim dan penerima harus memiliki spesifikasi kurva yang sama.

Nilai valid: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C#/ .NET

// Instantiate material providers

var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var BobPrivateKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new bytel[] { });

// Create the Raw ECDH static keyring
var staticConfiguration = new RawEcdhStaticConfigurations()

{
RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput

{
SenderStaticPrivateKey = BobPrivateKey,
RecipientPublicKey = AlicePublicKey

}

};

var createKeyringInput = new CreateRawEcdhKeyringInput()

{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = staticConfiguration

I

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Membuat keyring ECDH mentah 104


https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS SDK Enkripsi Basis Data Panduan Developer

Java

Contoh Java berikut menggunakan skema perjanjian RawPrivateKeyToStaticPublicKey
kunci untuk secara statis mengkonfigurasi kunci pribadi pengirim dan kunci publik penerima.
Kedua pasangan kunci berada di ECC_NIST_P256 kurva

private static void StaticRawKeyring() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.buildex()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();

KeyPair senderKeys = GetRawEccKey();
KeyPair recipient = GetRawEccKey();

// Create the Raw ECDH static keyring
final CreateRawEcdhKeyringInput rawKeyringInput =
CreateRawEcdhKeyringInput.buildexr()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.RawPrivateKeyToStaticPublicKey/(
RawPrivateKeyToStaticPublicKeyInput.builder()
// Must be a PEM-encoded private key

.senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded()))
// Must be a DER-encoded X.509 public key

.recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded()))
.build()
)
.build()
).build();

final IKeyring staticKeyring =
materialProviders.CreateRawEcdhKeyring(rawKeyringInput);

}

Membuat keyring ECDH mentah 105



AWS SDK Enkripsi Basis Data Panduan Developer

Rust

Contoh Python berikut menggunakan skema perjanjian raw_ecdh_static_configuration
kunci untuk secara statis mengkonfigurasi kunci pribadi pengirim dan kunci publik penerima.
Kedua pasangan kunci harus berada pada kurva yang sama.

// Create keyring input
let raw_ecdh_static_configuration_input =
RawPrivateKeyToStaticPublicKeyInput: :buildexr()

// Must be a UTF8 PEM-encoded private key
.sender_static_private_key(private_key_sender_utf8_bytes)
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :RawPrivateKeyToStaticPublicKey(raw_ecdh_static_configuration_i

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH static keyring

let raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(raw_ecdh_static_configuration)
.send()
.await?;

EphemeralPrivateKeyToStaticPublicKey

Keyrings yang dikonfigurasi dengan skema perjanjian
EphemeralPrivateKeyToStaticPublicKey kunci membuat key pair baru secara lokal dan
mendapatkan kunci pembungkus bersama yang unik untuk setiap panggilan enkripsi.

Skema perjanjian kunci ini hanya dapat mengenkripsi catatan. Untuk mendekripsi catatan yang
dienkripsi dengan skema perjanjian EphemeralPrivateKeyToStaticPublicKey kunci, Anda
harus menggunakan skema perjanjian kunci penemuan yang dikonfigurasi dengan kunci publik
penerima yang sama. Untuk mendekripsi, Anda dapat menggunakan keyring ECDH mentah dengan
algoritma perjanjian PublicKeyDiscoverykunci, atau, jika kunci publik penerima berasal dari key

Membuat keyring ECDH mentah 106



AWS SDK Enkripsi Basis Data Panduan Developer

pair KMS perjanjian kunci asimetris, Anda dapat menggunakan keyring AWS KMS ECDH dengan
skema perjanjian kunci. KmsPublicKeyDiscovery

Untuk menginisialisasi keyring ECDH mentah dengan skema perjanjian
EphemeralPrivateKeyToStaticPublicKey kunci, berikan nilai-nilai berikut:

* Kunci publik penerima

Anda harus memberikan kunci publik X.509 yang dikodekan DER penerima, juga dikenal sebagai
SubjectPublicKeyInfo (SPKI), sebagaimana didefinisikan dalam RFC 5280.

Anda dapat menentukan kunci publik dari perjanjian kunci asimetris KMS key pair atau kunci publik
dari key pair yang dihasilkan di luar. AWS

» Spesifikasi kurva
Mengidentifikasi spesifikasi kurva elips dalam kunci publik yang ditentukan.

Pada enkripsi, keyring membuat key pair baru pada kurva yang ditentukan dan menggunakan
kunci pribadi baru dan kunci publik tertentu untuk mendapatkan kunci pembungkus bersama.

Nilai valid: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C#/.NET

Contoh berikut membuat keyring ECDH mentah dengan skema perjanjian
EphemeralPrivateKeyToStaticPublicKey kunci. Pada enkripsi, keyring akan membuat key
pair baru secara lokal pada kurva yang ditentukan. ECC_NIST_P256

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var AlicePublicKey = new MemoryStream(new bytel[] { });

// Create the Raw ECDH ephemeral keyring
var ephemeralConfiguration = new RawEcdhStaticConfigurations()
{
EphemeralPrivateKeyToStaticPublicKey = new
EphemeralPrivateKeyToStaticPublicKeyInput
{
RecipientPublicKey = AlicePublicKey
}
};

Membuat keyring ECDH mentah 107


https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS SDK Enkripsi Basis Data Panduan Developer

var createKeyringInput = new CreateRawEcdhKeyringInput()
{
CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = ephemeralConfiguration

};

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

Contoh berikut membuat keyring ECDH mentah dengan skema perjanjian
EphemeralPrivateKeyToStaticPublicKey kunci. Pada enkripsi, keyring akan membuat key
pair baru secara lokal pada kurva yang ditentukan. ECC_NIST_P256

private static void EphemeralRawEcdhKeyring() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

ByteBuffer recipientPublicKey = getPublicKeyBytes();

// Create the Raw ECDH ephemeral keyring
final CreateRawEcdhKeyringInput ephemerallnput =
CreateRawEcdhKeyringInput.buildexr()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.EphemeralPrivateKeyToStaticPublicKey(
EphemeralPrivateKeyToStaticPublicKeyInput.buildex()
.recipientPublicKey(recipientPublicKey)
.build()
)
.build()
).build();

final IKeyring ephemeralKeyring =
materialProviders.CreateRawEcdhKeyring(ephemerallnput);

}

Membuat keyring ECDH mentah 108



AWS SDK Enkripsi Basis Data Panduan Developer

Rust

Contoh berikut membuat keyring ECDH mentah dengan skema perjanjian
ephemeral_raw_ecdh_static_configuration kunci. Pada enkripsi, keyring akan membuat
key pair baru secara lokal pada kurva yang ditentukan.

// Create EphemeralPrivateKeyToStaticPublicKeyInput
let ephemeral_raw_ecdh_static_configuration_input =
EphemeralPrivateKeyToStaticPublicKeyInput: :buildex()
// Must be a UTF8 DER-encoded X.509 public key
.recipient_public_key(public_key_recipient_utf8_bytes)
.build()?;

let ephemeral_raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :EphemeralPrivateKeyToStaticPublicKey(ephemeral_raw_ecdh_static

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH ephemeral private key keyring

let ephemeral_raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(ephemeral_raw_ecdh_static_configuration)
.send()
.await?;

PublicKeyDiscovery

Saat mendekripsi, ini adalah praktik terbaik untuk menentukan kunci pembungkus yang dapat
digunakan SDK Enkripsi AWS Database. Untuk mengikuti praktik terbaik ini, gunakan keyring ECDH
yang menentukan kunci pribadi pengirim dan kunci publik penerima. Namun, Anda juga dapat
membuat keyring penemuan ECDH mentah, yaitu gantungan kunci ECDH mentah yang dapat
mendekripsi catatan apa pun di mana kunci publik kunci yang ditentukan cocok dengan kunci publik
penerima yang disimpan di bidang deskripsi materi dari catatan terenkripsi. Skema perjanjian kunci
ini hanya dapat mendekripsi catatan.

Membuat keyring ECDH mentah 109



AWS SDK Enkripsi Basis Data Panduan Developer

/A Important

Ketika Anda mendekripsi catatan menggunakan skema perjanjian PublicKeyDiscovery
kunci, Anda menerima semua kunci publik, terlepas dari siapa yang memilikinya.

Untuk menginisialisasi keyring ECDH mentah dengan skema perjanjian PublicKeyDiscovery
kunci, berikan nilai-nilai berikut:

» Kunci pribadi statis penerima

Anda harus memberikan kunci pribadi yang disandikan PEM penerima ( PrivateKeylnfo struktur
PKCS #8), seperti yang didefinisikan dalam RFC 5958.

» Spesifikasi kurva

Mengidentifikasi spesifikasi kurva elips dalam kunci pribadi yang ditentukan. Pasangan kunci
pengirim dan penerima harus memiliki spesifikasi kurva yang sama.

Nilai valid: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C#/ .NET

Contoh berikut membuat keyring ECDH mentah dengan skema perjanjian
PublicKeyDiscovery kunci. Gantungan kunci ini dapat mendekripsi catatan apa pun di
mana kunci publik dari kunci pribadi yang ditentukan cocok dengan kunci publik penerima yang
disimpan di bidang deskripsi materi dari catatan terenkripsi.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
var AlicePrivateKey = new MemoryStream(new byte[] { });

// Create the Raw ECDH discovery keyring
var discoveryConfiguration = new RawEcdhStaticConfigurations()

{
PublicKeyDiscovery = new PublicKeyDiscoveryInput
{
RecipientStaticPrivateKey = AlicePrivateKey
}
};

Membuat keyring ECDH mentah 110


https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2

AWS SDK Enkripsi Basis Data Panduan Developer

var createKeyringInput = new CreateRawEcdhKeyringInput()
{

CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
KeyAgreementScheme = discoveryConfiguration

i

var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

Contoh berikut membuat keyring ECDH mentah dengan skema perjanjian
PublicKeyDiscovery kunci. Gantungan kunci ini dapat mendekripsi catatan apa pun di
mana kunci publik dari kunci pribadi yang ditentukan cocok dengan kunci publik penerima yang
disimpan di bidang deskripsi materi dari catatan terenkripsi.

private static void RawEcdhDiscovery() {
// Instantiate material providers
final MaterialProviders materialProviders =
MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

KeyPair recipient = GetRawEccKey();

// Create the Raw ECDH discovery keyring
final CreateRawEcdhKeyringInput rawKeyringInput =
CreateRawEcdhKeyringInput.builder()
.curveSpec(ECDHCurveSpec.ECC_NIST_P256)
.KeyAgreementScheme(
RawEcdhStaticConfigurations.builder()
.PublicKeyDiscovery(
PublicKeyDiscoveryInput.builder()
// Must be a PEM-encoded private key

.recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded()))
.build()
)
.build()
).build();

final IKeyring publicKeyDiscovery =
materialProviders.CreateRawEcdhKeyring(rawKeyringInput);

Membuat keyring ECDH mentah 111



AWS SDK Enkripsi Basis Data Panduan Developer

}

Rust

Contoh berikut membuat keyring ECDH mentah dengan skema perjanjian
discovery_raw_ecdh_static_configuration kunci. Keyring ini dapat mendekripsi pesan
apa pun di mana kunci publik dari kunci pribadi yang ditentukan cocok dengan kunci publik
penerima yang disimpan pada ciphertext pesan.

// Create PublicKeyDiscoveryInput
let discovery_raw_ecdh_static_configuration_input =
PublicKeyDiscoveryInput::buildex()
// Must be a UTF8 PEM-encoded private key
.recipient_static_private_key(private_key_recipient_utf8_bytes)
.build()?;

let discovery_raw_ecdh_static_configuration =
RawEcdhStaticConfigurations: :PublicKeyDiscovery(discovery_raw_ecdh_static_configuration_ing

// Create raw ECDH discovery private key keyring

let discovery_raw_ecdh_keyring = mpl
.create_raw_ecdh_keyring()
.curve_spec(ecdh_curve_spec)
.key_agreement_scheme(discovery_raw_ecdh_static_configuration)
.send()
.await?;

Multi-gantungan kunci

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Anda dapat menggabungkan keyrings menjadi multi-keyring. Multi-keyring adalah keyring yang terdiri
dari satu atau lebih gantungan kunci individu dari jenis yang sama atau berbeda. Efeknya seperti
menggunakan beberapa gantungan kunci dalam satu seri. Bila Anda menggunakan multi-keyring
untuk mengenkripsi data, salah satu kunci pembungkus di salah satu keyrings nya dapat mendekripsi
data tersebut.

Multi-gantungan kunci 112



AWS SDK Enkripsi Basis Data Panduan Developer

Saat Anda membuat multi-keyring untuk mengenkripsi data, Anda menunjuk salah satu keyring
sebagai keyring generator. Semua gantungan kunci lainnya dikenal sebagai gantungan kunci anak.
Generator keyring menghasilkan dan mengenkripsi kunci data plaintext. Kemudian, semua kunci
pembungkus di semua keyring anak mengenkripsi kunci data teks biasa yang sama. Multi-keyring
mengembalikan kunci plaintext dan satu kunci data terenkripsi untuk setiap kunci pembungkus di
multi-keyring. Jika keyring generator adalah keyring KMS, kunci generator di AWS KMS keyring
menghasilkan dan mengenkripsi kunci plaintext. Kemudian, semua tambahan AWS KMS keys

di AWS KMS keyring, dan semua kunci pembungkus di semua keyring anak di multi-keyring,
mengenkripsi kunci plaintext yang sama.

Saat mendekripsi, AWS Database Encryption SDK menggunakan keyrings untuk mencoba
mendekripsi salah satu kunci data terenkripsi. Gantungan kunci dipanggil dalam urutan yang
ditentukan dalam multi-keyring. Pemrosesan berhenti segera setelah kunci apa pun di keyring apa
pun dapat mendekripsi kunci data terenkripsi.

Untuk membuat multi-keyring, pertama-tama buat instance keyrings anak. Dalam contoh ini, kami
menggunakan AWS KMS keyring dan keyring Raw AES, tetapi Anda dapat menggabungkan keyrings
yang didukung dalam multi-keyring.

Java

// 1. Create the raw AES keyring.

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateRawAesKeyringInput createRawAesKeyringInput =

CreateRawAesKeyringInput.builder()
.keyName ("AES_256_012")
.keyNamespace("HSM_01")
.wrappingKey(AESWrappingKey)
.wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6)
.build();

IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// 2. Create the AWS KMS keyring.
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
CreateAwsKmsMrkMultiKeyringInput.builder()
.generator(kmsKeyArn)
.build();
IKeyring awsKmsMrkMultiKeyring =
matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Multi-gantungan kunci 113



AWS SDK Enkripsi Basis Data Panduan Developer

C#/.NET

// 1. Create the raw AES keyring.
var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createRawAesKeyringInput = new CreateRawAesKeyringInput

{

KeyName = "keyName",

KeyNamespace = "myNamespaces",

WrappingKey = AESWrappingKey,

WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAGl6
};

var rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// 2. Create the AWS KMS keyring.
// We create a MRK multi keyring, as this interface also supports
// single-region KMS keys,
// and creates the KMS client for us automatically.
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput
{
Generator = keyArn
};
var awsKmsMrkMultiKeyring =
matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Rust

// 1. Create the raw AES keyring
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let raw_aes_keyring = mpl
.create_raw_aes_keyring()
.key_name("AES_256_012")
.key_namespace("HSM_01")
.wrapping_key(aes_key_ bytes)
.wrapping_alg(AesWrappingAlg: :AlgAes256GcmIv12Tagle6)
.send()
.await?;

// 2. Create the AWS KMS keyring

Multi-gantungan kunci 114



AWS SDK Enkripsi Basis Data Panduan Developer

let aws_kms_mrk_multi_keyring = mpl
.create_aws_kms_mrk_multi_keyring()
.generator(key_arn)
.send()
.await?;

Selanjutnya, buat multi-keyring dan tentukan keyring generatornya, jika ada. Dalam contoh ini, kami
membuat multi-keyring di mana keyring adalah AWS KMS keyring generator dan keyring AES adalah
keyring anak.

Java

CreateMultiKeyringInputKonstruktor Java memungkinkan Anda menentukan keyring
generator dan keyrings anak. createMultiKeyringInputObjek yang dihasilkan tidak dapat
diubah.

final CreateMultiKeyringInput createMultiKeyringInput =
CreateMultiKeyringInput.builder()
.generator(awsKmsMrkMultiKeyring)
.childKeyrings(Collections.singletonlList(rawAesKeyring))
.build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

C#/ .NET

CreateMultiKeyringInputKonstruktor.NET memungkinkan Anda menentukan keyring
generator dan keyrings anak. CreateMultiKeyringInputObjek yang dihasilkan tidak dapat
diubah.

var createMultiKeyringInput = new CreateMultiKeyringInput

Generator = awsKmsMrkMultiKeyring,
ChildKeyrings = new List<IKeyring> { rawAesKeyring }
};

var multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Rust

let multi_keyring = mpl
.create_multi_keyring()

Multi-gantungan kunci 115



AWS SDK Enkripsi Basis Data Panduan Developer

.generator(aws_kms_mrk_multi_keyring)
.child_keyrings(vec![raw_aes_keyring.clone()])
.send()

.await?;

Sekarang, Anda dapat menggunakan multi-keyring untuk mengenkripsi dan mendekripsi data.

Multi-gantungan kunci 116



AWS SDK Enkripsi Basis Data Panduan Developer

Enkripsi yang dapat dicari

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Enkripsi yang dapat dicari memungkinkan Anda untuk mencari catatan terenkripsi tanpa mendekripsi
seluruh database. Ini dilakukan dengan menggunakan beacon, yang membuat peta antara nilai
plaintext yang ditulis ke bidang dan nilai terenkripsi yang sebenarnya disimpan dalam database
Anda. AWS Database Encryption SDK menyimpan beacon di bidang baru yang ditambahkan ke
catatan. Bergantung pada jenis suar yang Anda gunakan, Anda dapat melakukan penelusuran
pencocokan persis atau kueri kompleks yang lebih disesuaikan pada data terenkripsi Anda.

® Note

Enkripsi yang dapat dicari dalam SDK Enkripsi AWS Database berbeda dari enkripsi simetris
yang dapat dicari yang didefinisikan dalam penelitian akademis, seperti enkripsi simetris yang

dapat dicari.

Beacon adalah tag Hash Based Message Authentication Code (HMAC) terpotong yang membuat
peta antara plaintext dan nilai terenkripsi bidang. Saat Anda menulis nilai baru ke bidang terenkripsi
yang dikonfigurasi untuk enkripsi yang dapat dicari, SDK Enkripsi AWS Database menghitung HMAC
di atas nilai teks biasa. Output HMAC ini adalah kecocokan satu-ke-satu (1:1) untuk nilai plaintext dari
bidang itu. Output HMAC terpotong sehingga beberapa nilai plaintext yang berbeda dipetakan ke tag
HMAC terpotong yang sama. Positif palsu ini membatasi kemampuan pengguna yang tidak sah untuk
mengidentifikasi informasi yang membedakan tentang nilai plaintext. Saat Anda menanyakan suar,
SDK Enkripsi AWS Database secara otomatis menyaring positif palsu ini dan mengembalikan hasil
teks biasa dari kueri Anda.

Jumlah rata-rata positif palsu yang dihasilkan untuk setiap suar ditentukan oleh panjang suar
yang tersisa setelah pemotongan. Untuk bantuan menentukan panjang suar yang sesuai untuk
implementasi Anda, lihat Menentukan panjang suar.

117


https://dl.acm.org/doi/10.1145/1180405.1180417
https://dl.acm.org/doi/10.1145/1180405.1180417
https://dl.acm.org/doi/10.1145/1180405.1180417

AWS SDK Enkripsi Basis Data Panduan Developer

® Note

Enkripsi yang dapat dicari dirancang untuk diimplementasikan dalam database baru yang
tidak terisi. Setiap suar yang dikonfigurasi dalam database yang ada hanya akan memetakan
catatan baru yang diunggah ke database, tidak ada cara bagi suar untuk memetakan data
yang ada.

Topik

» Apakah beacon tepat untuk dataset saya?

» Skenario enkripsi yang dapat dicari

Apakah beacon tepat untuk dataset saya?

Menggunakan beacon untuk melakukan kueri pada data terenkripsi mengurangi biaya kinerja
yang terkait dengan database terenkripsi sisi klien. Saat Anda menggunakan beacon, ada tradeoff
yang melekat antara seberapa efisien kueri Anda dan seberapa banyak informasi yang terungkap
tentang distribusi data Anda. Beacon tidak mengubah status lapangan yang dienkripsi. Saat Anda
mengenkripsi dan menandatangani bidang dengan AWS Database Encryption SDK, nilai plaintext
bidang tersebut tidak pernah terpapar ke database. Basis data menyimpan nilai bidang yang
dienkripsi secara acak.

Beacon disimpan di samping bidang terenkripsi tempat mereka dihitung. Ini berarti bahwa meskipun
pengguna yang tidak sah tidak dapat melihat nilai teks biasa dari bidang terenkripsi, mereka mungkin
dapat melakukan analisis statistik pada beacon untuk mempelajari lebih lanjut tentang distribusi
kumpulan data Anda, dan, dalam kasus ekstrim, mengidentifikasi nilai teks biasa yang dipetakan
oleh beacon. Cara Anda mengkonfigurasi beacon Anda dapat mengurangi risiko ini. Secara khusus,
memilih panjang suar yang tepat dapat membantu Anda menjaga kerahasiaan kumpulan data Anda.

Keamanan vs Kinerja

+ Semakin pendek panjang suar, semakin banyak keamanan yang dipertahankan.

« Semakin panjang panjang suar, semakin banyak kinerja yang dipertahankan.

Apakah beacon tepat untuk dataset saya? 118



AWS SDK Enkripsi Basis Data Panduan Developer

Enkripsi yang dapat dicari mungkin tidak dapat memberikan tingkat kinerja dan keamanan yang
diinginkan untuk semua kumpulan data. Tinjau model ancaman, persyaratan keamanan, dan
kebutuhan kinerja Anda sebelum mengonfigurasi suar apa pun.

Pertimbangkan persyaratan keunikan kumpulan data berikut saat Anda menentukan apakah enkripsi
yang dapat dicari tepat untuk kumpulan data Anda.

Distribusi

Jumlah keamanan yang dipertahankan oleh suar tergantung pada distribusi kumpulan data Anda.
Saat Anda mengonfigurasi bidang terenkripsi untuk enkripsi yang dapat dicari, SDK Enkripsi
AWS Database menghitung HMAC atas nilai teks biasa yang ditulis ke bidang tersebut. Semua
beacon yang dihitung untuk bidang tertentu dihitung menggunakan kunci yang sama, dengan
pengecualian database multitenant yang menggunakan kunci berbeda untuk setiap penyewa. Ini
berarti bahwa jika nilai plaintext yang sama ditulis ke bidang beberapa kali, tag HMAC yang sama
dibuat untuk setiap instance dari nilai plaintext tersebut.

Anda harus menghindari membangun beacon dari bidang yang berisi nilai yang sangat umum.
Misalnya, pertimbangkan database yang menyimpan alamat setiap penduduk negara bagian
lllinois. Jika Anda membangun suar dari City bidang terenkripsi, suar yang dihitung di atas
“Chicago” akan terwakili secara berlebihan karena persentase besar populasi lllinois yang tinggal
di Chicago. Bahkan jika pengguna yang tidak sah hanya dapat membaca nilai terenkripsi dan
nilai suar, mereka mungkin dapat mengidentifikasi catatan mana yang berisi data untuk penduduk
Chicago jika suar mempertahankan distribusi ini. Untuk meminimalkan jumlah informasi pembeda
yang terungkap tentang distribusi Anda, Anda harus memotong suar Anda dengan cukup.
Panjang suar yang diperlukan untuk menyembunyikan distribusi yang tidak merata ini memiliki
biaya kinerja yang signifikan yang mungkin tidak memenuhi kebutuhan aplikasi Anda.

Anda harus hati-hati menganalisis distribusi dataset Anda untuk menentukan berapa banyak
beacon Anda perlu dipotong. Panjang suar yang tersisa setelah pemotongan secara langsung
berkorelasi dengan jumlah informasi statistik yang dapat diidentifikasi tentang distribusi Anda.
Anda mungkin perlu memilih panjang suar yang lebih pendek untuk meminimalkan jumlah
informasi pembeda yang terungkap tentang kumpulan data Anda.

Dalam kasus ekstrim, Anda tidak dapat menghitung panjang suar untuk kumpulan data
terdistribusi tidak merata yang secara efektif menyeimbangkan kinerja dan keamanan. Misalnya,
Anda tidak boleh membuat suar dari bidang yang menyimpan hasil tes medis untuk penyakit
langka. Karena NEGATIVE hasil diharapkan secara signifikan lebih umum dalam kumpulan
data, POSITIVE hasil dapat dengan mudah diidentifikasi dengan seberapa jarang hasilnya.

Apakah beacon tepat untuk dataset saya? 119



AWS SDK Enkripsi Basis Data Panduan Developer

Sangat menantang untuk menyembunyikan distribusi ketika bidang hanya memiliki dua nilai yang
mungkin. Jika Anda menggunakan panjang suar yang cukup pendek untuk menyembunyikan
distribusi, semua nilai plaintext dipetakan ke tag HMAC yang sama. Jika Anda menggunakan
panjang suar yang lebih panjang, jelas beacon mana yang memetakan ke nilai teks biasa.
POSITIVE

Korelasi

Kami sangat menyarankan agar Anda menghindari pembuatan beacon yang berbeda dari bidang
dengan nilai yang berkorelasi. Beacon yang dibangun dari bidang berkorelasi memerlukan
panjang suar yang lebih pendek untuk meminimalkan jumlah informasi yang terungkap tentang
distribusi setiap kumpulan data ke pengguna yang tidak sah. Anda harus menganalisis kumpulan
data Anda dengan cermat, termasuk entropi dan distribusi gabungan dari nilai yang berkorelasi,
untuk menentukan berapa banyak beacon Anda perlu dipotong. Jika panjang suar yang dihasilkan
tidak memenuhi kebutuhan kinerja Anda, maka beacon mungkin tidak cocok untuk kumpulan data
Anda.

Misalnya, Anda tidak boleh membuat dua beacon terpisah dari City dan ZIPCode bidang karena
kode ZIP kemungkinan akan dikaitkan dengan hanya satu kota. Biasanya, positif palsu yang
dihasilkan oleh suar membatasi kemampuan pengguna yang tidak sah untuk mengidentifikasi
informasi yang membedakan tentang kumpulan data Anda. Tetapi korelasi antara ZIPCode
bidang City dan berarti bahwa pengguna yang tidak sah dapat dengan mudah mengidentifikasi
hasil mana yang positif palsu dan membedakan kode ZIP yang berbeda.

Anda juga harus menghindari pembuatan beacon dari bidang yang berisi nilai plaintext yang
sama. Misalnya, Anda tidak boleh membuat suar dari mobilePhone dan preferredPhone
bidang karena kemungkinan memiliki nilai yang sama. Jika Anda membuat beacon yang berbeda
dari kedua bidang, AWS Database Encryption SDK akan membuat beacon untuk setiap bidang
di bawah kunci yang berbeda. Ini menghasilkan dua tag HMAC yang berbeda untuk nilai plaintext
yang sama. Dua beacon yang berbeda tidak mungkin memiliki positif palsu yang sama dan
pengguna yang tidak sah mungkin dapat membedakan nomor telepon yang berbeda.

Bahkan jika kumpulan data Anda berisi bidang yang berkorelasi atau memiliki distribusi yang tidak
merata, Anda mungkin dapat membangun beacon yang menjaga kerahasiaan kumpulan data Anda
dengan menggunakan panjang suar yang lebih pendek. Namun, panjang suar tidak menjamin
bahwa setiap nilai unik dalam kumpulan data Anda akan menghasilkan sejumlah positif palsu yang
secara efektif meminimalkan jumlah informasi pembeda yang terungkap tentang kumpulan data
Anda. Panjang suar hanya memperkirakan jumlah rata-rata positif palsu yang dihasilkan. Semakin

Apakah beacon tepat untuk dataset saya? 120



AWS SDK Enkripsi Basis Data Panduan Developer

terdistribusi kumpulan data Anda secara tidak merata, panjang suar yang kurang efektif dalam
menentukan jumlah rata-rata positif palsu yang dihasilkan.

Pertimbangkan dengan cermat distribusi bidang tempat Anda membangun suar dan pertimbangkan
berapa banyak yang Anda perlukan untuk memotong panjang suar untuk memenuhi persyaratan
keamanan Anda. Topik-topik berikut dalam Bab ini mengasumsikan bahwa beacon Anda
didistribusikan secara seragam dan tidak mengandung data yang berkorelasi.

Skenario enkripsi yang dapat dicari

Contoh berikut menunjukkan solusi enkripsi yang dapat dicari sederhana. Dalam aplikasi, bidang
contoh yang digunakan dalam contoh ini mungkin tidak memenuhi rekomendasi keunikan distribusi
dan korelasi untuk beacon. Anda dapat menggunakan contoh ini untuk referensi saat Anda membaca
tentang konsep enkripsi yang dapat dicari di Bab ini.

Pertimbangkan database bernama Employees yang melacak data karyawan untuk perusahaan.
Setiap record dalam database berisi bidang yang disebut Employeeld LastName, FirstName, dan
Address. Setiap bidang dalam Employees database diidentifikasi oleh kunci utamaEmployeelID.

Berikut ini adalah contoh catatan plaintext dalam database.

{
"EmployeeID": 101,
"LastName": "Jones",
"FirstName": "Mary",
"Address": {
"Street": "123 Main",
"City": "Anytown",
"State": "OH",
"ZIPCode": 12345
}
}

Jika Anda menandai LastName dan FirstName bidang seperti ENCRYPT_AND_SIGN dalam
tindakan kriptografi Anda, nilai dalam bidang ini dienkripsi secara lokal sebelum diunggah ke
database. Data terenkripsi yang diunggah sepenuhnya acak, database tidak mengenali data ini
sebagai dilindungi. Itu hanya mendeteksi entri data yang khas. Ini berarti bahwa catatan yang
sebenarnya disimpan dalam database mungkin terlihat seperti berikut.

Skenario enkripsi yang dapat dicari 121



AWS SDK Enkripsi Basis Data Panduan Developer

"PersonID": 101,
"LastName": "1d76e94a2063578637d51371b363c9682bad926cbd",
"FirstName": "21d6d54b@aaabc411e9f9b34b6d53aa4ef3b0a3s”,
"Address": {

"Street": "123 Main",

"City": "Anytown",

"State": "OH",

"ZIPCode": 12345

Jika Anda perlu menanyakan database untuk kecocokan persis di LastName bidang, konfigurasikan
suar standar bernama LastNameuntuk memetakan nilai teks biasa yang ditulis ke LastName bidang
ke nilai terenkripsi yang disimpan dalam database.

Beacon ini menghitung HMACs dari nilai plaintext di lapangan. LastName Setiap output HMAC
terpotong sehingga tidak lagi cocok dengan nilai plaintext. Misalnya, hash lengkap dan hash
terpotong untuk Jones mungkin terlihat seperti berikut ini.

Hash lengkap
2324e9b404c68182562bb6ec761fccab306de527826a69468885e59dc36d0c3f824bdd44cab45526f
Hash terpotong

b35099d408c833

Setelah suar standar dikonfigurasi, Anda dapat melakukan pencarian kesetaraan di lapangan.
LastName Misalnya, jika Anda ingin mencariJones, gunakan LastNamesuar untuk melakukan kueri
berikut.

LastName = Jones

SDK Enkripsi AWS Database secara otomatis menyaring positif palsu dan mengembalikan hasil teks
biasa dari kueri Anda.

Beacon

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Beacon 122



AWS SDK Enkripsi Basis Data Panduan Developer

Beacon adalah tag Hash Based Message Authentication Code (HMAC) terpotong yang membuat
peta antara nilai plaintext yang ditulis ke bidang dan nilai terenkripsi yang sebenarnya disimpan
dalam database Anda. Beacon tidak mengubah status lapangan yang dienkripsi. Beacon menghitung
HMAC atas nilai plaintext bidang dan menyimpannya di samping nilai terenkripsi. Output HMAC ini
adalah kecocokan satu-ke-satu (1:1) untuk nilai plaintext dari bidang itu. Output HMAC terpotong
sehingga beberapa nilai plaintext yang berbeda dipetakan ke tag HMAC terpotong yang sama. Positif
palsu ini membatasi kemampuan pengguna yang tidak sah untuk mengidentifikasi informasi yang
membedakan tentang nilai plaintext.

Beacon hanya dapat dibangun dari bidang yang ditandaiENCRYPT_AND_SIGN,SIGN_ONLY, atau
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT dalam tindakan kriptografi Anda. Suar itu
sendiri tidak ditandatangani atau dienkripsi. Anda tidak dapat membangun suar dengan bidang yang
ditandai. DO_NOTHING

Jenis suar yang Anda konfigurasikan menentukan jenis kueri yang dapat Anda lakukan. Ada dua
jenis beacon yang mendukung enkripsi yang dapat dicari. Suar standar melakukan pencarian
kesetaraan. Compound beacon menggabungkan string plaintext literal dan beacon standar untuk
melakukan operasi database yang kompleks. Setelah Anda mengkonfigurasi beacon Anda, Anda
harus mengkonfigurasi indeks sekunder untuk setiap suar sebelum Anda dapat mencari di bidang
terenkripsi. Untuk informasi selengkapnya, lihat Mengkonfigurasi indeks sekunder dengan beacon.

Topik
» Suar standar

» Suar majemuk

Suar standar

Beacon standar adalah cara paling sederhana untuk menerapkan enkripsi yang dapat dicari di
database Anda. Mereka hanya dapat melakukan pencarian kesetaraan untuk satu bidang terenkripsi
atau virtual. Untuk mempelajari cara mengonfigurasi suar standar, lihat Mengonfigurasi suar standar.

Bidang tempat suar standar dibangun dari disebut sumber suar. Ini mengidentifikasi lokasi data yang
perlu dipetakan oleh suar. Sumber suar dapat berupa bidang terenkripsi atau bidang virtual. Sumber
suar di setiap suar standar harus unik. Anda tidak dapat mengonfigurasi dua beacon dengan sumber
suar yang sama.

Suar standar 123



AWS SDK Enkripsi Basis Data Panduan Developer

Beacon standar dapat digunakan untuk melakukan pencarian kesetaraan untuk bidang terenkripsi
atau virtual. Atau, mereka dapat digunakan untuk membangun suar majemuk untuk melakukan
operasi database yang lebih kompleks. Untuk membantu Anda mengatur dan mengelola beacon
standar, AWS Database Encryption SDK menyediakan gaya beacon opsional berikut yang
menentukan tujuan penggunaan suar standar. Untuk informasi selengkapnya lihat, Mendefinisikan

gaya suar.

Anda dapat membuat suar standar yang melakukan pencarian kesetaraan untuk satu bidang
terenkripsi, atau Anda dapat membuat suar standar yang melakukan pencarian kesetaraan pada
rangkaian beberapa,, dan bidang dengan membuat bidang virtual. ENCRYPT_AND_SIGN SIGN_ONLY
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Bidang virtual

Bidang virtual adalah bidang konseptual yang dibangun dari satu atau lebih bidang sumber.
Membuat bidang virtual tidak menulis bidang baru ke catatan Anda. Bidang virtual tidak secara
eksplisit disimpan dalam database Anda. Ini digunakan dalam konfigurasi suar standar untuk
memberikan instruksi suar tentang cara mengidentifikasi segmen tertentu dari bidang atau
menggabungkan beberapa bidang dalam catatan untuk melakukan kueri tertentu. Bidang virtual
membutuhkan setidaknya satu bidang terenkripsi.

(® Note

Contoh berikut menunjukkan jenis transformasi dan kueri yang dapat Anda lakukan
dengan bidang virtual. Dalam aplikasi, bidang contoh yang digunakan dalam contoh ini
mungkin tidak memenuhi rekomendasi keunikan distribusi dan korelasi untuk beacon.

Misalnya, jika Anda ingin melakukan pencarian kesetaraan pada rangkaian FirstName dan
LastName bidang, Anda dapat membuat salah satu bidang virtual berikut.

* NameTagBidang virtual, dibangun dari huruf pertama FirstName lapangan, diikuti oleh
LastName bidang, semuanya dalam huruf kecil. Bidang virtual ini memungkinkan Anda untuk
melakukan queryNameTag=mjones.

+ LastFirstBidang virtual, yang dibangun dari LastName lapangan, diikuti oleh
FirstName lapangan. Bidang virtual ini memungkinkan Anda untuk melakukan
queryLastFirst=JonesMary.

Suar standar 124



AWS SDK Enkripsi Basis Data Panduan Developer

Atau, jika Anda ingin melakukan pencarian kesetaraan pada segmen tertentu dari bidang
terenkripsi, buat bidang virtual yang mengidentifikasi segmen yang ingin Anda kueri.

Misalnya, jika Anda ingin menanyakan IPAddress bidang terenkripsi menggunakan tiga segmen
pertama dari alamat IP, buat bidang virtual berikut.

« IPSegmentBidang virtual, dibangun dariSegments(‘.’, @, 3).Bidang virtual ini
memungkinkan Anda untuk melakukan queryIPSegment=192.0. 2. Kueri mengembalikan
semua catatan dengan IPAddress nilai yang dimulai dengan “192.0.2".

Bidang virtual harus unik. Dua bidang virtual tidak dapat dibangun dari bidang sumber yang sama
persis.

Untuk bantuan mengonfigurasi bidang virtual dan beacon yang menggunakannya, lihat Membuat
bidang virtual.

Suar majemuk

Compound beacon membuat indeks yang meningkatkan kinerja kueri dan memungkinkan Anda
melakukan operasi database yang lebih kompleks. Anda dapat menggunakan suar majemuk untuk
menggabungkan string teks biasa literal dan suar standar untuk melakukan kueri kompleks pada
catatan terenkripsi, seperti menanyakan dua jenis rekaman yang berbeda dari satu indeks atau
menanyakan kombinasi bidang dengan kunci pengurutan. Untuk contoh solusi suar majemuk lainnya,
lihat Memilih jenis suar.

Suar majemuk dapat dibangun dari suar standar atau kombinasi beacon standar dan bidang yang
ditandatangani. Mereka dibangun dari daftar bagian. Semua suar majemuk harus menyertakan daftar
bagian terenkripsi yang mengidentifikasi ENCRYPT_AND_SIGN bidang yang termasuk dalam suar.
Setiap ENCRYPT_AND_SIGN bidang harus diidentifikasi dengan suar standar. Suar majemuk yang
lebih kompleks mungkin juga mencakup daftar bagian yang ditandatangani yang mengidentifikasi
teks biasa SIGN_ONLY atau STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT bidang yang
termasuk dalam suar, dan daftar bagian konstruktor yang mengidentifikasi semua kemungkinan cara

suar majemuk dapat merakit bidang.

(® Note

AWS Database Encryption SDK juga mendukung beacon bertanda tangan
yang dapat dikonfigurasi seluruhnya dari SIGN_ONLY plaintext dan field.
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Signed beacon adalah jenis

Suar majemuk 125



AWS SDK Enkripsi Basis Data Panduan Developer

suar majemuk yang mengindeks dan melakukan kueri kompleks pada bidang yang
ditandatangani, tetapi tidak dienkripsi. Untuk informasi selengkapnya, lihat Membuat beacon
yang ditandatangani.

Untuk bantuan mengonfigurasi suar majemuk, lihat Mengonfigurasi suar majemuk.

Cara Anda mengonfigurasi suar majemuk menentukan jenis kueri yang dapat dilakukannya.
Misalnya, Anda dapat membuat beberapa bagian terenkripsi dan ditandatangani opsional untuk
memungkinkan lebih banyak fleksibilitas dalam kueri Anda. Untuk informasi lebih lanjut tentang jenis
kueri yang dapat dilakukan oleh suar majemuk, lihat. Meminta suar

Merencanakan suar

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Beacon dirancang untuk diimplementasikan dalam database baru yang tidak berpenghuni. Setiap
suar yang dikonfigurasi dalam database yang ada hanya akan memetakan catatan baru yang ditulis
ke database. Beacon dihitung dari nilai plaintext bidang, setelah bidang dienkripsi, tidak ada cara bagi
beacon untuk memetakan data yang ada. Setelah Anda menulis catatan baru dengan suar, Anda
tidak dapat memperbarui konfigurasi suar. Namun, Anda dapat menambahkan beacon baru untuk
bidang baru yang Anda tambahkan ke catatan Anda.

Untuk menerapkan enkripsi yang dapat dicari, Anda harus menggunakan keyring AWS KMS

Hierarkis untuk menghasilkan, mengenkripsi, dan mendekripsi kunci data yang digunakan untuk
melindungi catatan Anda. Untuk informasi selengkapnya, lihat Menggunakan keyring Hierarkis untuk
enkripsi yang dapat dicari.

Sebelum Anda dapat mengonfigurasi beacon untuk enkripsi yang dapat dicari, Anda perlu meninjau
persyaratan enkripsi, pola akses database, dan model ancaman untuk menentukan solusi terbaik
untuk database Anda.

Jenis suar yang Anda konfigurasikan menentukan jenis kueri yang dapat Anda lakukan. Panjang
suar yang Anda tentukan dalam konfigurasi suar standar menentukan jumlah positif palsu yang
diharapkan yang dihasilkan untuk suar tertentu. Kami sangat menyarankan untuk mengidentifikasi

Merencanakan suar 126



AWS SDK Enkripsi Basis Data Panduan Developer

dan merencanakan jenis kueri yang perlu Anda lakukan sebelum mengonfigurasi beacon Anda.
Setelah Anda menggunakan suar, konfigurasi tidak dapat diperbarui.

Kami sangat menyarankan Anda meninjau dan menyelesaikan tugas-tugas berikut sebelum Anda
mengonfigurasi beacon apa pun.

» Tentukan apakah beacon tepat untuk kumpulan data Anda

« Pilih jenis suar

 Pilih panjang suar

e Pilih nama suar

Ingat persyaratan keunikan beacon berikut saat Anda merencanakan solusi enkripsi yang dapat
dicari untuk database Anda.

» Setiap suar standar harus memiliki sumber suar yang unik

Beberapa beacon standar tidak dapat dibangun dari bidang terenkripsi atau virtual yang sama.

Namun, suar standar tunggal dapat digunakan untuk membangun beberapa suar majemuk.

» Hindari membuat bidang virtual dengan bidang sumber yang tumpang tindih dengan beacon
standar yang ada

Membangun suar standar dari bidang virtual yang berisi bidang sumber yang digunakan untuk
membuat suar standar lain dapat mengurangi keamanan kedua beacon.

Untuk informasi selengkapnya, lihat Pertimbangan keamanan untuk bidang virtual.

Pertimbangan untuk database multitenant

Untuk menanyakan suar yang dikonfigurasi dalam database multitenant, Anda harus menyertakan
bidang yang menyimpan branch-key-1id terkait dengan penyewa yang mengenkripsi catatan
dalam kueri Anda. Anda menentukan bidang ini ketika Anda menentukan sumber kunci suar. Agar
kueri berhasil, nilai di bidang ini harus mengidentifikasi bahan kunci suar yang sesuai yang diperlukan
untuk menghitung ulang suar.

Sebelum Anda mengkonfigurasi beacon Anda, Anda harus memutuskan bagaimana Anda berencana
untuk memasukkan branch-key-id dalam kueri Anda. Untuk informasi selengkapnya tentang

Pertimbangan untuk database multitenant 127



AWS SDK Enkripsi Basis Data Panduan Developer

berbagai cara yang dapat Anda sertakan branch-key-id dalam kueri, lihatMenanyakan beacon

dalam database multitenant.

Memilih jenis suar

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Dengan enkripsi yang dapat dicari, Anda dapat mencari catatan terenkripsi dengan memetakan nilai
teks biasa di bidang terenkripsi dengan suar. Jenis suar yang Anda konfigurasikan menentukan jenis
kueri yang dapat Anda lakukan.

Kami sangat menyarankan untuk mengidentifikasi dan merencanakan jenis kueri yang perlu Anda
lakukan sebelum mengonfigurasi beacon Anda. Setelah Anda mengkonfigurasi beacon Anda, Anda
harus mengkonfigurasi indeks sekunder untuk setiap suar sebelum Anda dapat mencari di bidang
terenkripsi. Untuk informasi selengkapnya, lihat Mengkonfigurasi indeks sekunder dengan beacon.

Beacon membuat peta antara nilai plaintext yang ditulis ke bidang dan nilai terenkripsi yang
sebenarnya disimpan dalam database Anda. Anda tidak dapat membandingkan nilai dari dua beacon
standar, bahkan jika mereka mengandung plaintext dasar yang sama. Dua beacon standar akan
menghasilkan dua tag HMAC yang berbeda untuk nilai plaintext yang sama. Akibatnya, beacon
standar tidak dapat melakukan kueri berikut.

* beaconl = beacon2

 beaconl IN (beaconZ2)

value IN (beaconl, beacon2, ...)

CONTAINS(beaconl, beaconZ2)

Anda hanya dapat melakukan kueri di atas jika Anda membandingkan bagian yang ditandatangani
dari suar majemuk, dengan pengecualian CONTAINS operator, yang dapat Anda gunakan dengan

suar majemuk untuk mengidentifikasi seluruh nilai bidang terenkripsi atau ditandatangani yang berisi
suar rakitan. Ketika Anda membandingkan bagian yang ditandatangani, Anda dapat secara opsional
menyertakan awalan dari bagian terenkripsi, tetapi Anda tidak dapat menyertakan nilai terenkripsi

bidang. Untuk informasi selengkapnya tentang jenis kueri yang dapat dilakukan oleh beacon standar

dan gabungan, lihat Menanyakan suar.

Memilih jenis suar 128



AWS SDK Enkripsi Basis Data Panduan Developer

Pertimbangkan solusi enkripsi yang dapat dicari berikut saat Anda meninjau pola akses database
Anda. Contoh berikut menentukan suar mana yang akan dikonfigurasi untuk memenuhi persyaratan
enkripsi dan kueri yang berbeda.

Beacon standar

Beacon standar hanya dapat melakukan pencarian kesetaraan. Anda dapat menggunakan beacon
standar untuk melakukan kueri berikut.

Kueri satu bidang terenkripsi

Jika Anda ingin mengidentifikasi catatan yang berisi nilai tertentu untuk bidang terenkripsi, buat suar
standar.

Contoh

Untuk contoh berikut, pertimbangkan database bernama UnitInspection yang melacak

data inspeksi untuk fasilitas produksi. Setiap catatan dalam database berisi bidang yang
disebutwork_id,inspection_date,inspector_id_last4, danunit. ID inspektur lengkap
adalah angka antara 0—999.999.999. Namun, untuk memastikan bahwa kumpulan data
didistribusikan secara merata, inspector_id_last4 satu-satunya menyimpan empat digit
terakhir dari ID inspektur. Setiap bidang dalam database diidentifikasi oleh kunci utamawork_id.
unitBidang inspector_id_last4 dan ditandai ENCRYPT_AND_SIGN dalam tindakan kriptografi.

Berikut ini adalah contoh entri plaintext dalam database. UnitInspection

{
"work_id": "1lc7fcff3-6e74-41a8-b7f7-925dc@39830b",
"inspection_date": 2023-06-07,
"inspector_id_last4": 8744,
"unit": 229304973450

}

Kueri satu bidang terenkripsi dalam catatan

Jika inspector_id_last4 bidang perlu dienkripsi, tetapi Anda masih memerlukan kueri
untuk kecocokan yang tepat, buat suar standar dari bidang tersebut. inspector_id_last4
Kemudian, gunakan suar standar untuk membuat indeks sekunder. Anda dapat menggunakan
indeks sekunder ini untuk kueri pada bidang terenkripsi. inspector_id_last4

Untuk bantuan mengonfigurasi suar standar, lihat Mengonfigurasi suar standar.

Memilih jenis suar 129



AWS SDK Enkripsi Basis Data Panduan Developer

Kueri bidang virtual

Bidang virtual adalah bidang konseptual yang dibangun dari satu atau lebih bidang sumber. Jika
Anda ingin melakukan pencarian kesetaraan untuk segmen tertentu dari bidang terenkripsi, atau
melakukan pencarian kesetaraan pada rangkaian beberapa bidang, buat suar standar dari bidang
virtual. Semua bidang virtual harus menyertakan setidaknya satu bidang sumber terenkripsi.

Contoh

Contoh berikut membuat bidang virtual untuk Employees database. Berikut ini adalah contoh
catatan plaintext dalam database. Employees

{
"EmployeeID": 101,
"SSN": 000-00-0000,
"LastName": "Jones",
"FirstName": "Mary",
"Address": {
"Street": "123 Main",
"City": "Anytown",
"State": "OH",
"ZIPCode": 12345
}
}

Kueri segmen bidang terenkripsi
Untuk contoh ini, SSN bidang dienkripsi.

Jika Anda ingin menanyakan SSN bidang menggunakan empat digit terakhir dari nomor jaminan
sosial, buat bidang virtual yang mengidentifikasi segmen yang ingin Anda kueri.

Last4SSNBidang virtual, dibangun dari Suffix(4) memungkinkan Anda untuk
queryLast4SSN=0000. Gunakan bidang virtual ini untuk membangun suar standar. Kemudian,
gunakan suar standar untuk membuat indeks sekunder. Anda dapat menggunakan indeks
sekunder ini untuk kueri pada bidang virtual. Kueri ini mengembalikan semua catatan dengan SSN
nilai yang berakhir dengan empat digit terakhir yang Anda tentukan.

Memilih jenis suar 130



AWS SDK Enkripsi Basis Data Panduan Developer

Kueri penggabungan beberapa bidang

(® Note

Contoh berikut menunjukkan jenis transformasi dan kueri yang dapat Anda lakukan
dengan bidang virtual. Dalam aplikasi, bidang contoh yang digunakan dalam contoh ini
mungkin tidak memenuhi rekomendasi keunikan distribusi dan korelasi untuk beacon.

Jika Anda ingin melakukan pencarian kesetaraan pada rangkaian FirstName dan bidang,
Anda dapat membuat LastName bidang virtual, dibangun dari huruf pertama NameTag bidang,
diikuti oleh FirstName bidang, semuanya dalam LastName huruf kecil. Gunakan bidang virtual
ini untuk membangun suar standar. Kemudian, gunakan suar standar untuk membuat indeks
sekunder. Anda dapat menggunakan indeks sekunder ini untuk kueri NameTag=mjones pada
bidang virtual.

Setidaknya salah satu bidang sumber harus dienkripsi. Entah FirstName atau LastName bisa
dienkripsi, atau keduanya bisa dienkripsi. Setiap bidang sumber teks biasa harus ditandai sebagai
SIGN_ONLY atau SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT dalam tindakan kriptografi
Anda.

Untuk bantuan mengonfigurasi bidang virtual dan beacon yang menggunakannya, lihat Membuat
bidang virtual.

Suar majemuk

Compound beacon membuat indeks dari string plaintext literal dan beacon standar untuk melakukan

operasi database yang kompleks. Anda dapat menggunakan suar majemuk untuk melakukan kueri
berikut.

Kueri kombinasi bidang terenkripsi pada satu indeks

Jika Anda perlu menanyakan kombinasi bidang terenkripsi pada satu indeks, buat suar majemuk
yang menggabungkan beacon standar individual yang dibangun untuk setiap bidang terenkripsi untuk
membentuk indeks tunggal.

Setelah mengonfigurasi suar majemuk, Anda dapat membuat indeks sekunder yang menentukan
suar majemuk sebagai kunci partisi untuk melakukan kueri pencocokan persis atau dengan kunci
pengurutan untuk melakukan kueri yang lebih kompleks. Indeks sekunder yang menentukan suar

Memilih jenis suar 131



AWS SDK Enkripsi Basis Data Panduan Developer

majemuk sebagai kunci pengurutan dapat melakukan kueri pencocokan persis dan kueri kompleks
yang lebih disesuaikan.

Contoh

Untuk contoh berikut, pertimbangkan database bernama UnitInspection yang melacak

data inspeksi untuk fasilitas produksi. Setiap catatan dalam database berisi bidang yang
disebutwork_id,inspection_date,inspector_id_last4, danunit. ID inspektur lengkap
adalah angka antara 0—999.999.999. Namun, untuk memastikan bahwa kumpulan data
didistribusikan secara merata, inspector_id_last4 satu-satunya menyimpan empat digit
terakhir dari ID inspektur. Setiap bidang dalam database diidentifikasi oleh kunci utamawork_id.
unitBidang inspector_id_last4 dan ditandai ENCRYPT_AND_SIGN dalam tindakan kriptografi.

Berikut ini adalah contoh entri plaintext dalam database. UnitInspection

{
"work_id": "1lc7fcff3-6e74-41a8-b7f7-925dc@39830b",
"inspection_date": 2023-06-07,
"inspector_id_last4": 8744,
"unit": 229304973450

}

Lakukan pencarian kesetaraan pada kombinasi bidang terenkripsi

Jika Anda ingin menanyakan UnitInspection database untuk pencocokan yang
tepatinspector_id_last4.unit, pertama-tama buat beacon standar yang berbeda untuk
bidang inspector_id_last4 danunit. Kemudian, buat suar majemuk dari dua suar standar.

Setelah Anda mengkonfigurasi suar majemuk, buat indeks sekunder yang menentukan suar
majemuk sebagai kunci partisi. Gunakan indeks sekunder ini untuk menanyakan kecocokan yang
tepat padainspector_id_last4.unit. Misalnya, Anda dapat menanyakan suar ini untuk
menemukan daftar inspeksi yang dilakukan inspektur untuk unit tertentu.

Lakukan kueri kompleks pada kombinasi bidang terenkripsi

Jika Anda ingin menanyakan UnitInspection database pada inspector_id_last4
daninspector_id_last4.unit, pertama buat beacon standar yang berbeda untuk
inspector_id_last4 dan unit bidang. Kemudian, buat suar majemuk dari dua suar standar.

Setelah Anda mengkonfigurasi suar majemuk, buat indeks sekunder yang menentukan
suar majemuk sebagai kunci pengurutan. Gunakan indeks sekunder ini untuk menanyakan

Memilih jenis suar 132



AWS SDK Enkripsi Basis Data Panduan Developer

UnitInspection database untuk entri yang dimulai dengan inspektur tertentu atau
kueri database untuk daftar semua unit dalam rentang ID unit tertentu yang diperiksa
oleh inspektur tertentu. Anda juga dapat melakukan pencarian kecocokan tepat
padainspector_id_last4.unit.

Untuk bantuan mengonfigurasi suar majemuk, lihat Mengonfigurasi suar majemuk.

Kueri kombinasi bidang terenkripsi dan teks biasa pada satu indeks

Jika Anda perlu menanyakan kombinasi bidang terenkripsi dan teks biasa pada satu indeks,

buat suar majemuk yang menggabungkan beacon standar individu dan bidang teks biasa untuk
membentuk indeks tunggal. Bidang plaintext yang digunakan untuk membangun suar majemuk
harus ditandai SIGN_ONLY atau STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT dalam tindakan
kriptografi Anda.

Setelah mengonfigurasi suar majemuk, Anda dapat membuat indeks sekunder yang menentukan
suar majemuk sebagai kunci partisi untuk melakukan kueri pencocokan persis atau dengan kunci
pengurutan untuk melakukan kueri yang lebih kompleks. Indeks sekunder yang menentukan suar
majemuk sebagai kunci pengurutan dapat melakukan kueri pencocokan persis dan kueri kompleks
yang lebih disesuaikan.

Contoh

Untuk contoh berikut, pertimbangkan database bernama UnitInspection yang melacak

data inspeksi untuk fasilitas produksi. Setiap catatan dalam database berisi bidang yang
disebutwork_id,inspection_date,inspector_id_last4, danunit. ID inspektur lengkap
adalah angka antara 0—999.999.999. Namun, untuk memastikan bahwa kumpulan data
didistribusikan secara merata, inspector_id_last4 satu-satunya menyimpan empat digit
terakhir dari ID inspektur. Setiap bidang dalam database diidentifikasi oleh kunci utamawork_id.
unitBidang inspector_id_last4 dan ditandai ENCRYPT_AND_SIGN dalam tindakan kriptografi.

Berikut ini adalah contoh entri plaintext dalam database. UnitInspection

{
"work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
"inspection_date": 2023-06-07,
"inspector_id_last4": 8744,
"unit": 229304973450

}

Memilih jenis suar 133



AWS SDK Enkripsi Basis Data Panduan Developer

Lakukan pencarian kesetaraan pada kombinasi bidang

Jika Anda ingin menanyakan UnitInspection database untuk inspeksi yang dilakukan

oleh inspektur tertentu pada tanggal tertentu, pertama-tama buat suar standar untuk bidang
tersebut. inspector_id_last4 inspector_id_last4Bidang ditandai ENCRYPT_AND_SIGN
dalam tindakan kriptografi. Semua bagian terenkripsi memerlukan suar standar mereka

sendiri. inspection_dateBidang ditandai SIGN_ONLY dan tidak memerlukan suar

standar. Selanjutnya, buat suar majemuk dari inspection_date lapangan dan suar
inspector_id_last4 standar.

Setelah Anda mengkonfigurasi suar majemuk, buat indeks sekunder yang menentukan suar
majemuk sebagai kunci partisi. Gunakan indeks sekunder ini untuk menanyakan database untuk
catatan dengan kecocokan persis dengan inspektur dan tanggal inspeksi tertentu. Misalnya, Anda
dapat menanyakan database untuk daftar semua inspeksi yang 8744 dilakukan oleh inspektur
yang ID-nya berakhir pada tanggal tertentu.

Lakukan kueri kompleks pada kombinasi bidang

Jika Anda ingin menanyakan database untuk inspeksi yang dilakukan dalam inspection_date
rentang, atau kueri database untuk inspeksi yang dilakukan pada tertentu yang
inspection_date dibatasi oleh inspector_id_last4 atauinspector_id_last4.unit,
pertama-tama buat beacon standar yang berbeda untuk bidang dan. inspector_id_last4
unit Kemudian, buat suar majemuk dari inspection_date bidang plaintext dan dua beacon
standar.

Setelah Anda mengkonfigurasi suar majemuk, buat indeks sekunder yang menentukan suar
majemuk sebagai kunci pengurutan. Gunakan indeks sekunder ini untuk melakukan kueri untuk
inspeksi yang dilakukan pada tanggal tertentu oleh inspektur tertentu. Misalnya, Anda dapat
menanyakan database untuk daftar semua unit yang diperiksa pada tanggal yang sama. Atau,
Anda dapat menanyakan database untuk daftar semua inspeksi yang dilakukan pada unit tertentu
di antara rentang tanggal inspeksi tertentu.

Untuk bantuan mengonfigurasi suar majemuk, lihat Mengonfigurasi suar majemuk.

Memilih panjang suar

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Memilih panjang suar 134



AWS SDK Enkripsi Basis Data Panduan Developer

Saat Anda menulis nilai baru ke bidang terenkripsi yang dikonfigurasi untuk enkripsi yang dapat
dicari, SDK Enkripsi AWS Database menghitung HMAC di atas nilai teks biasa. Output HMAC

ini adalah kecocokan satu-ke-satu (1:1) untuk nilai plaintext dari bidang itu. Output HMAC
terpotong sehingga beberapa nilai plaintext yang berbeda dipetakan ke tag HMAC terpotong yang
sama. Tabrakan ini, atau positif palsu, membatasi kemampuan pengguna yang tidak sah untuk
mengidentifikasi informasi yang membedakan tentang nilai plaintext.

Jumlah rata-rata positif palsu yang dihasilkan untuk setiap suar ditentukan oleh panjang suar yang
tersisa setelah pemotongan. Anda hanya perlu menentukan panjang suar saat mengonfigurasi suar
standar. Suar majemuk menggunakan panjang suar dari suar standar tempat mereka dibangun.

Beacon tidak mengubah status lapangan yang dienkripsi. Namun, ketika Anda menggunakan
beacon, ada tradeoff yang melekat antara seberapa efisien kueri Anda dan seberapa banyak
informasi yang terungkap tentang distribusi data Anda.

Tujuan enkripsi yang dapat dicari adalah untuk mengurangi biaya kinerja yang terkait dengan
database terenkripsi sisi klien dengan menggunakan beacon untuk melakukan kueri pada data
terenkripsi. Beacon disimpan di samping bidang terenkripsi tempat mereka dihitung. Ini berarti bahwa
mereka dapat mengungkapkan informasi yang membedakan tentang distribusi dataset Anda. Dalam
kasus ekstrim, pengguna yang tidak sah mungkin dapat menganalisis informasi yang diungkapkan
tentang distribusi Anda dan menggunakannya untuk mengidentifikasi nilai plaintext bidang. Memilih
panjang suar yang tepat dapat membantu mengurangi risiko ini dan menjaga kerahasiaan distribusi
Anda.

Tinjau model ancaman Anda untuk menentukan tingkat keamanan yang Anda butuhkan. Misalnya,
semakin banyak individu yang memiliki akses ke database Anda, tetapi tidak memiliki akses ke data
teks biasa, semakin Anda mungkin ingin melindungi kerahasiaan distribusi kumpulan data Anda.
Untuk meningkatkan kerahasiaan, suar perlu menghasilkan lebih banyak positif palsu. Peningkatan
kerahasiaan menghasilkan kinerja kueri yang berkurang.

Keamanan vs Kinerja

« Panjang suar yang terlalu panjang menghasilkan terlalu sedikit positif palsu dan mungkin
mengungkapkan informasi yang membedakan tentang distribusi kumpulan data Anda.

» Panjang suar yang terlalu pendek menghasilkan terlalu banyak positif palsu dan meningkatkan
biaya kinerja kueri karena memerlukan pemindaian database yang lebih luas.

Saat menentukan panjang suar yang sesuai untuk solusi Anda, Anda harus menemukan panjang
yang cukup menjaga keamanan data Anda tanpa memengaruhi kinerja kueri Anda lebih dari

Memilih panjang suar 135



AWS SDK Enkripsi Basis Data Panduan Developer

yang mutlak diperlukan. Jumlah keamanan yang dipertahankan oleh suar tergantung pada
distribusi kumpulan data Anda dan korelasi bidang tempat beacon Anda dibangun. Topik berikut
mengasumsikan bahwa beacon Anda didistribusikan secara seragam dan tidak mengandung data
yang berkorelasi.

Topik

* Menghitung panjang suar

e Contoh

Menghitung panjang suar

Panjang suar didefinisikan dalam bit dan mengacu pada jumlah bit tag HMAC yang disimpan setelah
pemotongan. Panjang suar yang direkomendasikan bervariasi tergantung pada distribusi kumpulan
data, keberadaan nilai yang berkorelasi, dan persyaratan keamanan dan kinerja spesifik Anda.

Jika kumpulan data Anda terdistribusi secara seragam, Anda dapat menggunakan persamaan

dan prosedur berikut untuk membantu mengidentifikasi panjang suar terbaik untuk implementasi
Anda. Persamaan ini hanya memperkirakan jumlah rata-rata positif palsu yang akan dihasilkan suar,
mereka tidak menjamin bahwa setiap nilai unik dalam kumpulan data Anda akan menghasilkan
sejumlah positif palsu tertentu.

® Note

Efektivitas persamaan ini tergantung pada distribusi dataset Anda. Jika kumpulan data Anda
tidak terdistribusi secara seragam, lihat. Apakah beacon tepat untuk dataset saya?

Secara umum, semakin jauh dataset Anda dari distribusi yang seragam, semakin Anda perlu
mempersingkat panjang suar Anda.

Perkirakan populasi

Populasi adalah jumlah nilai unik yang diharapkan di bidang tempat suar standar Anda
dibangun, itu bukan jumlah total nilai yang diharapkan yang disimpan di lapangan. Misalnya,
pertimbangkan Room bidang terenkripsi yang mengidentifikasi lokasi rapat karyawan.
RoomBidang ini diharapkan menyimpan 100.000 nilai total, tetapi hanya ada 50 kamar berbeda
yang dapat dipesan karyawan untuk rapat. Ini berarti bahwa populasinya adalah 50 karena
hanya ada 50 kemungkinan nilai unik yang dapat disimpan di Room lapangan.

Memilih panjang suar 136



AWS SDK Enkripsi Basis Data Panduan Developer

® Note

Jika suar standar Anda dibangun dari bidang virtual, populasi yang digunakan untuk
menghitung panjang suar adalah jumlah kombinasi unik yang dibuat oleh bidang virtual.

Saat memperkirakan populasi Anda, pastikan untuk mempertimbangkan proyeksi pertumbuhan
kumpulan data. Setelah Anda menulis catatan baru dengan suar, Anda tidak dapat memperbarui
panjang suar. Tinjau model ancaman Anda dan solusi database yang ada untuk membuat
perkiraan jumlah nilai unik yang Anda harapkan untuk disimpan dalam lima tahun ke depan.

Populasi Anda tidak perlu tepat. Pertama, identifikasi jumlah nilai unik dalam database Anda
saat ini, atau perkirakan jumlah nilai unik yang Anda harapkan untuk disimpan di tahun pertama.
Selanjutnya, gunakan pertanyaan-pertanyaan berikut untuk membantu Anda menentukan
proyeksi pertumbuhan nilai-nilai unik selama lima tahun ke depan.

» Apakah Anda mengharapkan nilai unik dikalikan dengan 107?
» Apakah Anda mengharapkan nilai unik dikalikan dengan 100?
» Apakah Anda mengharapkan nilai unik dikalikan dengan 10007?

Perbedaan antara 50.000 dan 60.000 nilai unik tidak signifikan dan keduanya akan
menghasilkan panjang suar yang direkomendasikan yang sama. Namun, perbedaan
antara 50.000 dan 500.000 nilai unik akan berdampak signifikan pada panjang suar yang
direkomendasikan.

Pertimbangkan untuk meninjau data publik tentang frekuensi tipe data umum, seperti kode

pos atau nama belakang. Misalnya, ada 41,707 kode pos di Amerika Serikat. Populasi yang
Anda gunakan harus proporsional dengan database Anda sendiri. Jika ZIPCode bidang dalam
database Anda menyertakan data dari seluruh Amerika Serikat, maka Anda dapat menentukan
populasi Anda sebagai 41.707, bahkan jika bidang ZIPCode tersebut saat ini tidak memiliki
41.707 nilai unik. Jika ZIPCode bidang dalam database Anda hanya menyertakan data dari satu
status, dan hanya akan menyertakan data dari satu status, maka Anda dapat mendefinisikan
populasi Anda sebagai jumlah total kode pos dalam status tersebut, bukan 41.704.

2. Hitung rentang yang disarankan untuk jumlah tabrakan yang diharapkan

Memilih panjang suar 137



AWS SDK Enkripsi Basis Data Panduan Developer

Untuk menentukan panjang suar yang sesuai untuk bidang tertentu, Anda harus terlebih dahulu
mengidentifikasi rentang yang sesuai untuk jumlah tabrakan yang diharapkan. Jumlah tabrakan
yang diharapkan mewakili jumlah rata-rata yang diharapkan dari nilai plaintext unik yang
dipetakan ke tag HMAC tertentu. Jumlah positif palsu yang diharapkan untuk satu nilai plaintext
unik adalah satu kurang dari jumlah tabrakan yang diharapkan.

Kami merekomendasikan bahwa jumlah tabrakan yang diharapkan lebih besar dari atau sama
dengan dua, dan kurang dari akar kuadrat populasi Anda. Persamaan berikut hanya berfungsi
jika populasi Anda memiliki 16 atau lebih nilai unik.

2 < number of collisions < V(Population)

Jika jumlah tabrakan kurang dari dua, suar akan menghasilkan terlalu sedikit positif palsu. Kami
merekomendasikan dua sebagai jumlah minimum tabrakan yang diharapkan karena itu berarti,
rata-rata, setiap nilai unik di lapangan akan menghasilkan setidaknya satu positif palsu dengan
memetakan ke satu nilai unik lainnya.

3. Hitung rentang yang disarankan untuk panjang suar

Setelah mengidentifikasi jumlah minimum dan maksimum tabrakan yang diharapkan, gunakan
persamaan berikut untuk mengidentifikasi rentang panjang suar yang sesuai.

number of collisions = Population * 2-(Peacon length)

Pertama, selesaikan panjang suar di mana jumlah tabrakan yang diharapkan sama dengan dua
(jumlah minimum tabrakan yang diharapkan).

2 = population * 2-(beacon length)

Kemudian, selesaikan panjang suar di mana jumlah tabrakan yang diharapkan sama dengan
akar kuadrat populasi Anda (jumlah maksimum tabrakan yang diharapkan yang disarankan).

V(Population) = Population * 27 (Peacon length)

Kami merekomendasikan untuk membulatkan output yang dihasilkan oleh persamaan ini ke
panjang suar yang lebih pendek. Misalnya, jika persamaan menghasilkan panjang suar 15,6,
kami sarankan untuk membulatkan nilai itu menjadi 15 bit alih-alih membulatkan hingga 16 bit.

Memilih panjang suar 138



AWS SDK Enkripsi Basis Data Panduan Developer

4.

Pilih panjang suar

Persamaan ini hanya mengidentifikasi rentang panjang suar yang direkomendasikan untuk
bidang Anda. Sebaiknya gunakan panjang suar yang lebih pendek untuk menjaga keamanan
kumpulan data Anda bila memungkinkan. Namun, panjang suar yang sebenarnya Anda gunakan
ditentukan oleh model ancaman Anda. Pertimbangkan persyaratan kinerja Anda saat Anda
meninjau model ancaman Anda untuk menentukan panjang suar terbaik untuk bidang Anda.

Menggunakan panjang suar yang lebih pendek mengurangi kinerja kueri, sementara
menggunakan panjang suar yang lebih panjang mengurangi keamanan. Secara umum, jika
kumpulan data Anda tidak terdistribusi secara merata, atau jika Anda membuat suar yang
berbeda dari bidang yang berkorelasi, Anda perlu menggunakan panjang suar yang lebih pendek
untuk meminimalkan jumlah informasi yang diungkapkan tentang distribusi kumpulan data Anda.

Jika Anda meninjau model ancaman Anda dan memutuskan bahwa informasi pembeda apa pun
yang diungkapkan tentang distribusi bidang tidak menimbulkan ancaman terhadap keamanan
Anda secara keseluruhan, Anda dapat memilih untuk menggunakan panjang suar yang lebih
panjang dari rentang yang disarankan yang Anda hitung. Misalnya, jika Anda menghitung
rentang panjang suar yang disarankan untuk bidang sebagai 9-16 bit, Anda dapat memilih untuk
menggunakan panjang suar 24 bit untuk menghindari kehilangan kinerja.

Pilih panjang suar Anda dengan hati-hati. Setelah Anda menulis catatan baru dengan suar, Anda
tidak dapat memperbarui panjang suar.

Contoh

Pertimbangkan database yang menandai unit bidang seperti ENCRYPT_AND_SIGN dalam tindakan
kriptografi. Untuk mengkonfigurasi suar standar untuk unit bidang, kita perlu menentukan jumlah

positif palsu dan panjang suar yang diharapkan untuk bidang tersebut. unit

1.

Perkirakan populasi

Setelah meninjau model ancaman kami dan solusi database saat ini, kami berharap unit
bidang tersebut pada akhirnya memiliki 100.000 nilai unik.

Ini berarti bahwa Populasi = 100.000.

Hitung rentang yang disarankan untuk jumlah tabrakan yang diharapkan.

Untuk contoh ini, jumlah tabrakan yang diharapkan harus antara 2-316.

Memilih panjang suar 139



AWS SDK Enkripsi Basis Data Panduan Developer

2 < number of collisions < v(Population)

N
IA

number of collisions < V(100,000)

number of collisions < 316

N
IA

3. Hitung kisaran yang disarankan untuk panjang suar.
Untuk contoh ini, panjang suar harus antara 9-16 bit.

number of collisions = Population * 27 (Peacon length)

a. Hitung panjang suar di mana jumlah tabrakan yang diharapkan sama dengan minimum yang
diidentifikasi pada Langkah 2.

2 = 100,000 * 2 (beacon length)

Panjang suar = 15,6, atau 15 bit

b. Hitung panjang suar di mana jumlah tabrakan yang diharapkan sama dengan maksimum
yang diidentifikasi pada Langkah 2.

316 = 100,000 * 2—(beacon length)

Panjang suar = 8,3, atau 8 bit

4. Tentukan panjang suar yang sesuai dengan persyaratan keamanan dan kinerja Anda.

Untuk setiap bit di bawah 15, biaya kinerja dan keamanan berlipat ganda.

+ 16 bit
+ Rata-rata, setiap nilai unik akan dipetakan ke 1,5 unit lainnya.

« Keamanan: dua catatan dengan tag HMAC terpotong yang sama 66% kemungkinan
memiliki nilai plaintext yang sama.

 Kinerja: kueri akan mengambil 15 catatan untuk setiap 10 catatan yang sebenarnya Anda
minta.

+ 14 bit

Memilih panjang suar 140



AWS SDK Enkripsi Basis Data Panduan Developer

» Rata-rata, setiap nilai unik akan dipetakan menjadi 6,1 unit lainnya.

« Keamanan: dua catatan dengan tag HMAC terpotong yang sama adalah 33% kemungkinan
memiliki nilai plaintext yang sama.

 Kinerja: kueri akan mengambil 30 catatan untuk setiap 10 catatan yang sebenarnya Anda
minta.

Memilih nama suar

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Setiap suar diidentifikasi dengan nama suar yang unik. Setelah suar dikonfigurasi, nama suar adalah
nama yang Anda gunakan saat menanyakan bidang terenkripsi. Nama suar dapat berupa nama
yang sama dengan bidang terenkripsi atau bidang virtual, tetapi tidak bisa nama yang sama dengan

bidang yang tidak terenkripsi. Dua beacon yang berbeda tidak dapat memiliki nama suar yang sama.

Untuk contoh yang mendemonstrasikan cara memberi nama dan mengkonfigurasi beacon, lihat

Mengkonfigurasi beacon.

Penamaan suar standar

Saat menamai suar standar, kami sangat menyarankan agar nama suar Anda diselesaikan ke

sumber suar bila memungkinkan. Ini berarti bahwa nama suar dan nama bidang terenkripsi atau
virtual tempat suar standar Anda dibangun adalah sama. Misalnya, jika Anda membuat suar standar
untuk bidang terenkripsi bernamalLastName, nama suar Anda juga harus. LastName

Ketika nama suar Anda sama dengan sumber suar, Anda dapat menghilangkan sumber suar dari
konfigurasi Anda dan SDK Enkripsi AWS Database akan secara otomatis menggunakan nama suar
sebagai sumber suar.

Mengkonfigurasi beacon

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Memilih nama suar 141



AWS SDK Enkripsi Basis Data Panduan Developer

Ada dua jenis beacon yang mendukung enkripsi yang dapat dicari. Beacon standar melakukan
pencarian kesetaraan. Mereka adalah cara paling sederhana untuk menerapkan enkripsi yang dapat
dicari di database Anda. Compound beacon menggabungkan string plaintext literal dan beacon
standar untuk melakukan kueri yang lebih kompleks.

Beacon dirancang untuk diimplementasikan dalam database baru yang tidak berpenghuni. Setiap
suar yang dikonfigurasi dalam database yang ada hanya akan memetakan catatan baru yang ditulis
ke database. Beacon dihitung dari nilai plaintext bidang, setelah bidang dienkripsi, tidak ada cara bagi
beacon untuk memetakan data yang ada. Setelah Anda menulis catatan baru dengan suar, Anda
tidak dapat memperbarui konfigurasi suar. Namun, Anda dapat menambahkan beacon baru untuk
bidang baru yang Anda tambahkan ke catatan Anda.

Setelah menentukan pola akses Anda, mengonfigurasi beacon harus menjadi langkah kedua dalam
implementasi database Anda. Kemudian, setelah Anda mengkonfigurasi semua beacon Anda, Anda
perlu membuat keyring AWS KMS Hierarkis, menentukan versi suar, mengonfigurasi indeks sekunder

untuk setiap suar, menentukan tindakan kriptografi Anda, dan mengkonfigurasi database dan klien

SDK Enkripsi Database Anda. AWS Untuk informasi selengkapnya, lihat Menggunakan beacon.

Untuk membuatnya lebih mudah untuk menentukan versi beacon, kami sarankan membuat daftar
untuk beacon standar dan majemuk. Tambahkan setiap suar yang Anda buat ke daftar suar standar
atau gabungan masing-masing saat Anda mengonfigurasinya.

Topik

» Mengkonfigurasi beacon standar

» Mengkonfigurasi suar majemuk

« Contoh konfigurasi

Mengkonfigurasi beacon standar

Beacon standar adalah cara paling sederhana untuk mengimplementasikan enkripsi yang dapat
dicari di database Anda. Mereka hanya dapat melakukan pencarian kesetaraan untuk satu bidang
terenkripsi atau virtual.

Contoh sintaks konfigurasi

Java

List<StandardBeacon> standardBeaconlList = new ArraylList<>();

Mengkonfigurasi beacon standar 142



AWS SDK Enkripsi Basis Data Panduan Developer

StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
.name("beaconName")
.length(beaconLengthInBits)
Lbuild();

standardBeaconList.add(exampleStandardBeacon);

C#/.NET

var standardBeaconList = new List<StandardBeacon>();
StandardBeacon exampleStandardBeacon = new StandardBeacon

{

Name = "beaconName",
Length = 10
lig

standardBeaconList.Add(exampleStandardBeacon);

Rust

let standard_beacon_list = vec![

StandardBeacon: :buildexr().name("beacon_name").length(beacon_length_in_bits).build()?,

Untuk mengkonfigurasi suar standar, berikan nilai berikut.
Nama suar
Nama yang Anda gunakan saat menanyakan bidang terenkripsi.

Nama suar dapat berupa nama yang sama dengan bidang terenkripsi atau bidang virtual, tetapi
tidak bisa nama yang sama dengan bidang yang tidak terenkripsi. Kami sangat menyarankan
untuk menggunakan nama bidang terenkripsi atau bidang virtual tempat suar standar Anda
dibangun kapan pun memungkinkan. Dua beacon yang berbeda tidak dapat memiliki nama suar
yang sama. Untuk bantuan menentukan nama beacon terbaik untuk implementasi Anda, lihat

Memilih nama suar.

Panjang suar

Jumlah bit dari nilai hash beacon yang disimpan setelah pemotongan.

Mengkonfigurasi beacon standar 143



AWS SDK Enkripsi Basis Data Panduan Developer

Panjang suar menentukan jumlah rata-rata positif palsu yang dihasilkan oleh suar yang diberikan.
Untuk informasi selengkapnya dan membantu menentukan panjang suar yang sesuai untuk
implementasi Anda, lihat Menentukan panjang suar.

Sumber suar (Opsional)
Bidang tempat suar standar dibangun.

Sumber suar harus berupa nama bidang atau indeks yang mengacu pada nilai bidang bersarang.
Ketika nama suar Anda sama dengan sumber suar, Anda dapat menghilangkan sumber suar dari
konfigurasi Anda dan SDK Enkripsi AWS Database akan secara otomatis menggunakan nama
suar sebagai sumber suar.

Membuat bidang virtual

Untuk membuat bidang virtual, Anda harus memberikan nama untuk bidang virtual dan daftar bidang
sumber. Urutan yang Anda tambahkan bidang sumber ke daftar bagian virtual menentukan urutan
penggabungannya untuk membangun bidang virtual. Contoh berikut menggabungkan dua bidang
sumber secara keseluruhan untuk membuat bidang virtual.

@ Note

Kami menyarankan untuk memverifikasi bahwa bidang virtual Anda menghasilkan hasil yang
diharapkan sebelum Anda mengisi database Anda. Untuk informasi selengkapnya, lihat
Menguiji output suar.

Java

Lihat contoh kode lengkapnya: VirtualBeaconSearchableEncryptionExample.java

List<VirtualPart> virtualPartlList = new ArraylList<>();
virtualPartList.add(sourceFieldl);
virtualPartlList.add(sourceField2);

VirtualField virtualFieldName = VirtualField.builder()
.name("virtualFieldName")
.parts(virtualPartlList)
.build();

List<VirtualField> virtualFieldList = new ArraylList<>();

Mengkonfigurasi beacon standar 144


https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/VirtualBeaconSearchableEncryptionExample.java

AWS SDK Enkripsi Basis Data Panduan Developer

virtualFieldList.add(virtualFieldName);

C#/.NET

Lihat contoh kode lengkapnya: VirtualBeaconSearchableEncryptionExample.cs

var virtualPartlList = new List<VirtualPart> { sourceFieldl, sourceField2 };
var virtualFieldName = new VirtualField
Name = "virtualFieldName",
Parts = virtualPartList
13
var virtualFieldList = new List<VirtualField> { virtualFieldName };

Rust

Lihat contoh kode lengkap: virtual_beacon_searchable_encryption.rs

let virtual_part_list = vec![source_field one, source_field two];

let state_and_has_test_result_field = VirtualField::builder()
.name("virtual_field_name")
.parts(virtual_part_list)
.build()?;

let virtual_field_list = vec![virtual_field _name];

Untuk membuat bidang virtual dengan segmen tertentu dari bidang sumber, Anda harus menentukan
transformasi itu sebelum menambahkan bidang sumber ke daftar bagian virtual Anda.

Pertimbangan keamanan untuk bidang virtual

Beacon tidak mengubah status lapangan yang dienkripsi. Namun, ketika Anda menggunakan
beacon, ada tradeoff yang melekat antara seberapa efisien kueri Anda dan seberapa banyak
informasi yang terungkap tentang distribusi data Anda. Cara Anda mengonfigurasi suar Anda
menentukan tingkat keamanan yang dipertahankan oleh suar itu.

Hindari membuat bidang virtual dengan bidang sumber yang tumpang tindih dengan beacon standar
yang ada. Membuat bidang virtual yang menyertakan bidang sumber yang telah digunakan untuk

Mengkonfigurasi beacon standar 145


https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/VirtualBeaconSearchableEncryptionExample.cs
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/virtual_beacon_searchable_encryption.rs

AWS SDK Enkripsi Basis Data Panduan Developer

membuat suar standar dapat mengurangi tingkat keamanan untuk kedua beacon. Sejauh mana
keamanan berkurang tergantung pada tingkat entropi yang ditambahkan oleh bidang sumber
tambahan. Tingkat entropi ditentukan oleh distribusi nilai unik di bidang sumber tambahan dan jumlah
bit yang disumbangkan oleh bidang sumber tambahan pada ukuran keseluruhan bidang virtual.

Anda dapat menggunakan populasi dan panjang suar untuk menentukan apakah bidang sumber
untuk bidang virtual menjaga keamanan kumpulan data Anda. Populasi adalah jumlah nilai unik yang
diharapkan dalam suatu bidang. Populasi Anda tidak perlu tepat. Untuk bantuan memperkirakan
populasi suatu bidang, lihat Memperkirakan populasi.

Pertimbangkan contoh berikut saat Anda meninjau keamanan bidang virtual Anda.

- Beacon1 dibangun dari. FieldA FieldAmemiliki populasi lebih besar dari 2 (Panang Beaconty

* Beacon2 dibangun dariVirtualField, yang dibangun dari,FieldA,FieldB, FieldC dan.
FieldD Bersama-samaFieldB,FieldC,, dan FieldD memiliki populasi lebih besar dari 2 N

Beacon2 menjaga keamanan Beacon1 dan Beacon2 jika pernyataan berikut benar:

N = (Beaconl length)/2

and

N > (Beacon2 length)/2

Mendefinisikan gaya suar

Beacon standar dapat digunakan untuk melakukan pencarian kesetaraan untuk bidang terenkripsi
atau virtual. Atau, mereka dapat digunakan untuk membangun suar majemuk untuk melakukan
operasi database yang lebih kompleks. Untuk membantu Anda mengatur dan mengelola beacon
standar, AWS Database Encryption SDK menyediakan gaya beacon opsional berikut yang
menentukan tujuan penggunaan suar standar.

(® Note

Untuk menentukan gaya suar, Anda harus menggunakan SDK Enkripsi AWS Database versi
3.2 atau yang lebih baru. Terapkan versi baru ke semua pembaca sebelum menambahkan
gaya suar ke konfigurasi suar Anda.

Mengkonfigurasi beacon standar 146



AWS SDK Enkripsi Basis Data

Panduan Developer

PartOnly

Sebuah beacon standar didefinisikan sebagai hanya PartOnly dapat digunakan untuk
mendefinisikan bagian terenkripsi dari suar majemuk. Anda tidak dapat langsung menanyakan

suar PartOnly standar.

Java

List<StandardBeacon> standardBeaconList = new ArraylList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()

.name("beaconName")
.length(beaconLengthInBits)
.style(
BeaconStyle.builder()
.partOnly(PartOnly.buildexr().build())
.build()
)
.build();
standardBeaconlList.add(exampleStandardBeacon);

C #/.NET

new StandardBeacon

{
Name = "beaconName",
Length = beaconLengthInBits,
Style = new BeaconStyle
{

PartOnly = new PartOnly()

}

}

Rust

StandardBeacon: :builder()
.name("beacon_name")
.length(beacon_length_in_bits)

.style(BeaconStyle: :PartOnly(PartOnly: :builder().build()?))

.build()?

Mengkonfigurasi beacon standar

147



AWS SDK Enkripsi Basis Data Panduan Developer

Shared

Secara default, setiap suar standar menghasilkan kunci HMAC unik untuk perhitungan suar.
Akibatnya, Anda tidak dapat melakukan pencarian kesetaraan pada bidang terenkripsi dari dua
suar standar terpisah. Sebuah suar standar didefinisikan sebagai Shared menggunakan kunci
HMAC dari suar standar lain untuk perhitungannya.

Misalnya, jika Anda perlu membandingkan beaconl bidang dengan beacon2 bidang,
tentukan beacon2 sebagai Shared suar yang menggunakan kunci HMAC dari beaconl untuk
perhitungannya.

@ Note

Pertimbangkan kebutuhan keamanan dan kinerja Anda sebelum mengonfigurasi
Shared beacon apa pun. Sharedbeacon dapat meningkatkan jumlah informasi statistik
yang dapat diidentifikasi tentang distribusi dataset Anda. Misalnya, mereka mungkin
mengungkapkan bidang bersama mana yang berisi nilai plaintext yang sama.

Java

List<StandardBeacon> standardBeaconlList = new ArraylList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
.name("beacon2")
.length(beaconLengthInBits)
.style(
BeaconStyle.builder()
.shared(Shared.builder().other("beaconli").build())
.build()
)
.build();
standardBeaconList.add(exampleStandardBeacon);

C #/.NET

new StandardBeacon
{
Name = "beacon2",
Length = beaconLengthInBits,
Style = new BeaconStyle
{

Mengkonfigurasi beacon standar 148



AWS SDK Enkripsi Basis Data Panduan Developer

Shared = new Shared { Other = "beaconl" }

Rust

StandardBeacon: :builder()
.name("beacon2")
.length(beacon_length_in_bits)
.style(BeaconStyle: :Shared(
Shared: :builder().othexr("beaconl").build()?,

)
.build()?

AsSet

Secara default, jika nilai bidang adalah satu set, SDK Enkripsi AWS Database menghitung
satu suar standar untuk set tersebut. Akibatnya, Anda tidak dapat melakukan kueri di
CONTAINS(a, :value) mana a adalah bidang terenkripsi. Sebuah suar standar didefinisikan
sebagai AsSet menghitung nilai beacon standar individu untuk setiap elemen individu dari
himpunan dan menyimpan nilai beacon dalam item sebagai satu set. Ini memungkinkan SDK
Enkripsi AWS Database untuk melakukan kueriCONTAINS(a, :value).

Untuk menentukan suar AsSet standar, elemen dalam himpunan harus dari populasi yang sama
sehingga mereka semua dapat menggunakan panjang suar yang sama. Set beacon mungkin
memiliki elemen lebih sedikit daripada set plaintext jika ada tabrakan saat menghitung nilai
beacon.

(® Note

Pertimbangkan kebutuhan keamanan dan kinerja Anda sebelum mengonfigurasi AsSet
beacon apa pun. AsSetbeacon dapat meningkatkan jumlah informasi statistik yang dapat
diidentifikasi tentang distribusi dataset Anda. Misalnya, mereka mungkin mengungkapkan
ukuran set plaintext.

Java

List<StandardBeacon> standardBeaconlList = new ArraylList<>();

Mengkonfigurasi beacon standar 149



AWS SDK Enkripsi Basis Data

Panduan Developer

StandardBeacon exampleStandardBeacon = StandardBeacon.builder()

.name("beaconName")
.length(beaconLengthInBits)
.style(
BeaconStyle.builder()
.asSet(AsSet.builder().build())
.build()
)
.build();
standardBeaconlList.add(exampleStandardBeacon);

C #/NET

new StandardBeacon

{
Name = "beaconName",
Length = beaconLengthInBits,
Style = new BeaconStyle
{

AsSet = new AsSet()

}

}

Rust

StandardBeacon: :builder()
.name("beacon_name")
.length(beacon_length_in_bits)

.style(BeaconStyle: :AsSet(AsSet::builder().build()?))

.build()?

SharedSet

Sebuah beacon standar didefinisikan sebagai SharedSet menggabungkan Shared dan AsSet
fungsi sehingga Anda dapat melakukan pencarian kesetaraan pada nilai terenkripsi dari set dan
bidang. Ini memungkinkan SDK Enkripsi AWS Database untuk melakukan kueri CONTAINS(a,

b) di mana a kumpulan terenkripsi dan b merupakan bidang terenkripsi.

Mengkonfigurasi beacon standar

150



AWS SDK Enkripsi Basis Data Panduan Developer

® Note

Pertimbangkan kebutuhan keamanan dan kinerja Anda sebelum mengonfigurasi Shared
beacon apa pun. SharedSetbeacon dapat meningkatkan jumlah informasi statistik

yang dapat diidentifikasi tentang distribusi dataset Anda. Misalnya, mereka mungkin
mengungkapkan ukuran set teks biasa atau bidang bersama mana yang berisi nilai
plaintext yang sama.

Java

List<StandardBeacon> standardBeaconlList = new ArraylList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.buildexr()
.name("beacon2")
.length(beaconLengthInBits)
.style(
BeaconStyle.buildex()
.sharedSet(SharedSet.builder().other("beaconli").build())
.build()
)
.build();
standardBeaconList.add(exampleStandardBeacon);

C #/.NET

new StandardBeacon

{
Name = "beacon2",
Length = beaconLengthInBits,
Style = new BeaconStyle
{

SharedSet = new SharedSet { Other = "beaconl" }

}

}

Rust

StandardBeacon: :buildex()
.name("beacon2")
.length(beacon_length_in_bits)
.style(BeaconStyle: :SharedSet(

Mengkonfigurasi beacon standar 151



AWS SDK Enkripsi Basis Data Panduan Developer

SharedSet: :builder().other("beaconl").build()?,

)
.build()?

Mengkonfigurasi suar majemuk

Compound beacon menggabungkan string plaintext literal dan beacon standar untuk

melakukan operasi database yang kompleks, seperti menanyakan dua jenis rekaman

yang berbeda dari indeks tunggal atau menanyakan kombinasi bidang dengan kunci

pengurutan. Suar majemuk dapat dibangun dariENCRYPT_AND_SIGN,SIGN_ONLY, dan
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT ladang. Anda harus membuat suar standar untuk
setiap bidang terenkripsi yang termasuk dalam suar majemuk.

@ Note

Sebaiknya verifikasi bahwa suar majemuk Anda menghasilkan hasil yang diharapkan
sebelum Anda mengisi basis data Anda. Untuk informasi selengkapnya, lihat Menguiji output

suar.

Contoh sintaks konfigurasi

Java
Konfigurasi suar majemuk

Contoh berikut mendefinisikan daftar bagian terenkripsi dan ditandatangani secara lokal dalam
konfigurasi suar majemuk.

List<CompoundBeacon> compoundBeaconList = new ArraylList<>();
CompoundBeacon exampleCompoundBeacon = CompoundBeacon.builder()
.name (" compoundBeaconName")
.split(".")
.encrypted(encryptedPartlList)
.signed(signedPartList)
.constructors(constructorlList)
.build();
compoundBeaconList.add(exampleCompoundBeacon);

Definisi versi suar

Mengkonfigurasi suar majemuk 152



AWS SDK Enkripsi Basis Data Panduan Developer

Contoh berikut mendefinisikan daftar bagian terenkripsi dan ditandatangani secara global
dalam versi beacon. Untuk informasi selengkapnya tentang mendefinisikan versi beacon, lihat

Menggunakan beacon.

List<BeaconVersion> beaconVersions = new ArraylList<>();
beaconVersions.add(

BeaconVersion.builder()
.standardBeacons(standardBeaconList)
.compoundBeacons (compoundBeaconList)
.encryptedParts(encryptedPartlList)
.signedParts(signedPartlList)
.version(1l) // MUST be 1
.keyStore(keyStore)
.keySource(BeaconKeySource.builder()

.single(SingleKeyStore.builder()

.keyId(branchKeyId)
.cacheTTL(6000)
.build())
.build())
.build()
)i
C#/ .NET

Lihat contoh kode lengkapnya: BeaconConfig.cs

Konfigurasi suar majemuk

Contoh berikut mendefinisikan daftar bagian terenkripsi dan ditandatangani secara lokal dalam
konfigurasi suar majemuk.

var compoundBeaconList = new List<CompoundBeacon>();
var exampleCompoundBeacon = new CompoundBeacon

{
Name = "compoundBeaconName",
Split = ".",
Encrypted = encryptedPartlList,
Signed = signedPartList,
Constructors = constructorlList
b

compoundBeaconList.Add(exampleCompoundBeacon);

Definisi versi suar

Mengkonfigurasi suar majemuk

153


https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/complexexample/BeaconConfig.cs

AWS SDK Enkripsi Basis Data Panduan Developer

Contoh berikut mendefinisikan daftar bagian terenkripsi dan ditandatangani secara global
dalam versi beacon. Untuk informasi selengkapnya tentang mendefinisikan versi beacon, lihat
Menggunakan beacon.

var beaconVersions = new List<BeaconVersion>

{

new BeaconVersion

{

StandardBeacons = standardBeaconList,
CompoundBeacons = compoundBeaconlList,
EncryptedParts = encryptedPartsList,
SignedParts = signedPartslList,
Version = 1, // MUST be 1

KeyStore = keyStore,

KeySource = new BeaconKeySource

{
Single = new SingleKeyStore

{
KeyId = branchKeyId,
CacheTTL = 6000

};
Rust

Lihat contoh kode lengkap: beacon_config.rs

Konfigurasi suar majemuk

Contoh berikut mendefinisikan daftar bagian terenkripsi dan ditandatangani secara lokal dalam
konfigurasi suar majemuk.

let compound_beacon_list = vec![
CompoundBeacon: :builder()

.name (" compound_beacon_name")
.split(".")
.encrypted(encrypted_parts_list)
.signed(signed_parts_list)
.constructors(constructor_list)
.build()?

Mengkonfigurasi suar majemuk 154


https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/complexexample/beacon_config.rs

AWS SDK Enkripsi Basis Data Panduan Developer

Definisi versi suar

Contoh berikut mendefinisikan daftar bagian terenkripsi dan ditandatangani secara global
dalam versi beacon. Untuk informasi selengkapnya tentang mendefinisikan versi beacon, lihat
Menggunakan beacon.

let beacon_versions = BeaconVersion: :builder()
.standard_beacons(standard_beacon_list)
.compound_beacons(compound_beacon_list)
.encrypted_parts(encrypted_parts_list)
.signed_parts(signed_parts_list)
.version(1l) // MUST be 1
.key_store(key_store.clone())
.key_source(BeaconKeySource: :Single(
SingleKeyStore: :builder()
.key_id(branch_key_id)
.cache_tt1(6000)
.build()?z,
))
Lbuild()?;
let beacon_versions = vec![beacon_versions];

Anda dapat menentukan bagian terenkripsi dan bagian yang ditandatangani dalam daftar yang

ditentukan secara lokal atau global. Kami merekomendasikan untuk menentukan bagian terenkripsi
dan ditandatangani Anda dalam daftar global dalam versi suar bila memungkinkan. Dengan
mendefinisikan bagian terenkripsi dan ditandatangani secara global, Anda dapat menentukan
setiap bagian sekali dan kemudian menggunakan kembali bagian-bagian tersebut dalam

beberapa konfigurasi suar majemuk. Jika Anda hanya ingin menggunakan bagian terenkripsi atau
ditandatangani sekali, Anda dapat mendefinisikannya dalam daftar lokal dalam konfigurasi suar
majemuk. Anda dapat mereferensikan bagian lokal dan global dalam daftar konstruktor Anda.

Jika Anda menentukan daftar bagian terenkripsi dan ditandatangani secara global, Anda harus
memberikan daftar bagian konstruktor yang mengidentifikasi semua kemungkinan cara suar
majemuk dapat merakit bidang dalam konfigurasi suar majemuk Anda.

(® Note

Untuk menentukan daftar bagian terenkripsi dan ditandatangani secara global, Anda harus
menggunakan SDK Enkripsi AWS Database versi 3.2 atau yang lebih baru. Terapkan versi
baru ke semua pembaca sebelum mendefinisikan bagian baru secara global.

Mengkonfigurasi suar majemuk 155



AWS SDK Enkripsi Basis Data Panduan Developer

Anda tidak dapat memperbarui konfigurasi suar yang ada untuk menentukan daftar bagian
terenkripsi dan ditandatangani secara global.

Untuk mengkonfigurasi suar majemuk, berikan nilai berikut.

Nama suar

Nama yang Anda gunakan saat menanyakan bidang terenkripsi.

Nama suar dapat berupa nama yang sama dengan bidang terenkripsi atau bidang virtual, tetapi
tidak bisa nama yang sama dengan bidang yang tidak terenkripsi. Tidak ada dua suar yang
dapat memiliki nama suar yang sama. Untuk bantuan menentukan nama beacon terbaik untuk
implementasi Anda, lihat Memilih nama suar.

Karakter split

Karakter yang digunakan untuk memisahkan bagian-bagian yang membentuk suar majemuk
Anda.

Karakter split tidak dapat muncul dalam nilai plaintext dari salah satu bidang tempat suar majemuk
dibangun.

Daftar bagian terenkripsi

Mengidentifikasi ENCRYPT_AND_SIGN bidang yang termasuk dalam suar majemuk.

Setiap bagian harus menyertakan nama dan awalan. Nama bagian harus merupakan nama

suar standar yang dibangun dari bidang terenkripsi. Awalan dapat berupa string apa saja, tetapi
harus unik. Bagian terenkripsi tidak dapat memiliki awalan yang sama dengan bagian yang
ditandatangani. Sebaiknya gunakan nilai pendek yang membedakan bagian dari bagian lain yang
dilayani oleh suar majemuk.

Kami merekomendasikan untuk menentukan bagian terenkripsi Anda secara global bila
memungkinkan. Anda dapat mempertimbangkan untuk mendefinisikan bagian terenkripsi secara
lokal jika Anda hanya bermaksud menggunakannya dalam satu suar majemuk. Bagian terenkripsi
yang didefinisikan secara lokal tidak dapat memiliki awalan atau nama yang sama dengan bagian
terenkripsi yang didefinisikan secara global.

Java

List<EncryptedPart> encryptedPartList = new ArraylList<>);
EncryptedPart encryptedPartExample = EncryptedPart.builder()

Mengkonfigurasi suar majemuk 156



AWS SDK Enkripsi Basis Data

Panduan Developer

.name("standardBeaconName")

.prefix("E-")

.build();
encryptedPartlList.add(encryptedPartExample);

C#/ .NET

var encryptedPartList = new List<EncryptedPart>();
var encryptedPartExample = new EncryptedPart
{
Name = "compoundBeaconName",
Prefix = "E-"
};
encryptedPartlList.Add(encryptedPartExample);

Rust

let encrypted_parts_list = vec![
EncryptedPart: :buildexr()
.name("standard_beacon_name")
.prefix("E-")
.build()?
iy

Daftar bagian yang ditandatangani

Mengidentifikasi bidang yang ditandatangani termasuk dalam suar majemuk.

(® Note

Bagian yang ditandatangani adalah opsional. Anda dapat mengonfigurasi suar majemuk

yang tidak mereferensikan bagian yang ditandatangani.

Setiap bagian harus menyertakan nama, sumber, dan awalan. Sumbernya adalah

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT bidang SIGN_ONLY atau yang diidentifikasi

oleh bagian tersebut. Sumber harus berupa nama bidang atau indeks yang mengacu pada nilai

bidang bersarang. Jika nama bagian Anda mengidentifikasi sumber, Anda dapat menghilangkan
sumber dan SDK Enkripsi AWS Database akan secara otomatis menggunakan nama sebagai

Mengkonfigurasi suar majemuk

157



AWS SDK Enkripsi Basis Data Panduan Developer

sumbernya. Kami merekomendasikan untuk menentukan sumber sebagai nama bagian

bila memungkinkan. Awalan dapat berupa string apa saja, tetapi harus unik. Bagian yang
ditandatangani tidak dapat memiliki awalan yang sama dengan bagian terenkripsi. Sebaiknya
gunakan nilai pendek yang membedakan bagian dari bagian lain yang dilayani oleh suar
majemuk.

Kami merekomendasikan untuk menentukan suku cadang Anda yang ditandatangani secara
global bila memungkinkan. Anda dapat mempertimbangkan untuk mendefinisikan bagian yang
ditandatangani secara lokal jika Anda hanya bermaksud menggunakannya dalam satu suar
majemuk. Bagian yang ditandatangani secara lokal tidak dapat memiliki awalan atau nama yang
sama dengan bagian ditandatangani yang ditentukan secara global.

Java

List<SignedPart> signedPartlList = new ArraylList<>);
SignedPart signedPartExample = SignedPart.builder()

.name("signedFieldName")

.prefix("S-")

.build();
signedPartlList.add(signedPartExample);

C#/ .NET

var signedPartsList = new List<SignedPart>

{
new SignedPart { Name = "signedFieldNamel", Prefix = "S-" },
new SignedPart { Name = "signedFieldName2", Prefix "SF-" }

¥

Rust

let signed_parts_list = vec![
SignedPart: :buildex()
.name("signed_field_name_1")
.prefix("s-")
.build()?z,

SignedPart: :buildex()
.name("signed_field_name_2")
.prefix("SF-")

.build()?,
iF

Mengkonfigurasi suar majemuk 158



AWS SDK Enkripsi Basis Data Panduan Developer

Daftar konstruktor

Mengidentifikasi konstruktor yang menentukan cara berbeda bahwa bagian terenkripsi dan
ditandatangani dapat dirakit oleh suar majemuk. Anda dapat mereferensikan bagian lokal dan
global dalam daftar konstruktor Anda.

Jika Anda membangun suar majemuk Anda dari bagian terenkripsi dan ditandatangani yang
didefinisikan secara global, Anda harus memberikan daftar konstruktor.

Jika Anda tidak menggunakan bagian terenkripsi atau ditandatangani yang didefinisikan secara
global untuk membangun suar majemuk Anda, daftar konstruktor bersifat opsional. Jika Anda
tidak menentukan daftar konstruktor, AWS Database Encryption SDK merakit suar majemuk
dengan konstruktor default berikut.

« Semua bagian yang ditandatangani dalam urutan mereka ditambahkan ke daftar bagian yang
ditandatangani

« Semua bagian terenkripsi dalam urutan mereka ditambahkan ke daftar bagian terenkripsi
« Semua bagian diperlukan

Konstruktor

Setiap konstruktor adalah daftar terurut dari bagian-bagian konstruktor yang mendefinisikan
satu cara bahwa suar majemuk dapat dirakit. Bagian konstruktor digabungkan bersama dalam
urutan mereka ditambahkan ke daftar, dengan setiap bagian dipisahkan oleh karakter split
yang ditentukan.

Setiap bagian konstruktor menamai bagian terenkripsi atau bagian yang ditandatangani,
dan menentukan apakah bagian itu diperlukan atau opsional dalam konstruktor.

Misalnya, jika Anda ingin menanyakan suar majemuk padaField1l,, dan
Fieldl.Field2Fieldl.Field2.Field3, tandai dan Field3 sebagai opsional Field2
dan buat satu konstruktor.

Setiap konstruktor harus memiliki setidaknya satu bagian yang diperlukan. Sebaiknya buat
bagian pertama di setiap konstruktor yang diperlukan sehingga Anda dapat menggunakan
BEGINS_WITH operator dalam kueri Anda.

Konstruktor berhasil jika semua bagian yang diperlukan ada dalam catatan. Saat Anda menulis
catatan baru, suar majemuk menggunakan daftar konstruktor untuk menentukan apakah suar
dapat dirakit dari nilai yang diberikan. Ini mencoba untuk merakit suar dalam urutan bahwa
konstruktor ditambahkan ke daftar konstruktor, dan menggunakan konstruktor pertama yang
berhasil. Jika tidak ada konstruktor yang berhasil, suar tidak ditulis ke catatan.

Mengkonfigurasi suar majemuk 159



AWS SDK Enkripsi Basis Data Panduan Developer

Semua pembaca dan penulis harus menentukan urutan konstruktor yang sama untuk
memastikan bahwa hasil kueri mereka benar.

Gunakan prosedur berikut untuk menentukan daftar konstruktor Anda sendiri.

1. Buat bagian konstruktor untuk setiap bagian terenkripsi dan bagian yang ditandatangani
untuk menentukan apakah bagian itu diperlukan atau tidak.

Nama bagian konstruktor harus nama suar standar atau bidang bertanda tangan yang
diwakilinya.

Java

ConstructorPart fieldlConstructorPart = ConstructorPart.builder()
.name("Fieldl")
.required(true)
.build();

C#/ .NET

var fieldlConstructorPart = new ConstructorPart { Name = "Fieldl", Required
= true };

Rust

let field_1_constructor_part = ConstructorPart::builder()
.name("field_1")
.required(true)
.build()?;

2. Buat konstruktor untuk setiap cara yang mungkin bahwa suar majemuk dapat dirakit
menggunakan bagian konstruktor yang Anda buat di Langkah 1.

Misalnya, jika Anda ingin menanyakan Fieldl.Field2.Field3
danField4.Field2.Field3, maka Anda harus membuat dua konstruktor. Fieldldan
keduanya Field4 dapat diperlukan karena mereka didefinisikan dalam dua konstruktor
terpisah.

Java

// Create a list for Fieldl.Field2.Field3 queries
List<ConstructorPart> fieldl23ConstructorPartList = new ArraylList<>();

Mengkonfigurasi suar majemuk 160



AWS SDK Enkripsi Basis Data Panduan Developer

fieldl23ConstructorPartList.add(fieldlConstructorPart);
fieldl23ConstructorPartList.add(field2ConstructorPart);
fieldl23ConstructorPartList.add(field3ConstructorPart);
Constructor fieldl23Constructor = Constructor.builder()
.parts(fieldl23ConstructorPartList)
.build();
// Create a list for Field4.Field2.Fieldl queries
List<ConstructorPart> field421ConstructorPartlList = new ArraylList<>();
field421ConstructorPartlList.add(field4ConstructorPart);
field421ConstructorPartList.add(field2ConstructorPart);
field421ConstructorPartlList.add(fieldlConstructorPart);
Constructor field42lConstructor = Constructor.builder()
.parts(field421ConstructorPartList)
.build();

C#/ .NET

// Create a list for Fieldl.Field2.Field3 queries
var fieldl23ConstructorPartlList = new Constructor
{
Parts = new List<ConstructorPart> { fieldlConstructorPart,
field2ConstructorPart, field3ConstructorPart }
b7
// Create a list for Field4.Field2.Fieldl queries
var field421ConstructorPartlList = new Constructor
{
Parts = new List<ConstructorPart> { field4ConstructorPart,
field2ConstructorPart, fieldlConstructorPart }

};

// Create a list for fieldl.field2.field3 queries
let fieldl_field2_field3_constructor = Constructor::builder()
.parts(vec![
fieldl_constructor_part,
field2_constroctor_part.clone(),
field3_constructor_part,
D)
.build()?;

// Create a list for field4.field2.fieldl queries
let field4_field2_fieldl_constructor = Constructor::builder()

Mengkonfigurasi suar majemuk 161



AWS SDK Enkripsi Basis Data

Panduan Developer

.parts(vec![
field4_constructor_part,
field2_constroctor_part.clone(),
fieldl_constructor_part,

ip)
.build()?;

3. Buat daftar konstruktor yang mencakup semua konstruktor yang Anda buat di Langkah 2.

Java

List<Constructor> constructorList = new ArraylList<>();
constructorlList.add(fieldl123Constructor)
constructorList.add(field421Constructor)

C#/ .NET

var constructorList = new List<Constructor>

{
fieldl23Constructor,
field421Constructor

};
Rust

let constructor_list = vec![
fieldl_field2_field3_constructor,
field4_field2_fieldl_constructor,
s

4. Tentukan constructorlList kapan Anda membuat suar majemuk Anda.

Contoh konfigurasi

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan

pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Contoh konfigurasi

162



AWS SDK Enkripsi Basis Data Panduan Developer

Contoh berikut menunjukkan cara mengkonfigurasi beacon standar dan majemuk. Konfigurasi
berikut tidak memberikan panjang suar. Untuk bantuan menentukan panjang suar yang sesuai untuk
konfigurasi Anda, lihat Memilih panjang suar.

Untuk melihat contoh kode lengkap yang menunjukkan cara mengkonfigurasi dan menggunakan
beacon, lihat contoh enkripsi Java, .NET, dan Rust yang dapat dicari di repositori -dynamodb aktif.
aws-database-encryption-sdk GitHub

Topik

 Beacon standar

» Suar majemuk

Beacon standar

Jika Anda ingin menanyakan inspector_id_last4 bidang untuk kecocokan persis, buat suar
standar menggunakan konfigurasi berikut.

Java

List<StandardBeacon> standardBeaconlList = new ArraylList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
.name("inspector_id_last4")
.length(beaconLengthInBits)
.build();
standardBeaconList.add(exampleStandardBeacon);

C#/ .NET

var standardBeaconList = new List<StandardBeacon>>);
StandardBeacon exampleStandardBeacon = new StandardBeacon

{

Name = "inspector_id_last4",
Length = 10
}i?

standardBeaconList.Add(exampleStandardBeacon);

Rust

let last4_beacon = StandardBeacon: :builder()

Contoh konfigurasi 163


https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/

AWS SDK Enkripsi Basis Data Panduan Developer

.name("inspector_id_last4")
.length(10)
.build()?;

let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;

let standard_beacon_list = vec![last4_beacon, unit_beacon];

Suar majemuk

Jika Anda ingin menanyakan UnitInspection database inspector_id_last4
daninspector_id_last4.unit, buat suar majemuk dengan konfigurasi berikut. Suar majemuk ini
hanya membutuhkan bagian terenkripsi.

Java

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
List<StandardBeacon> standardBeaconlList = new ArraylList<>);
StandardBeacon inspectorBeacon = StandardBeacon.builder()
.name("inspector_id_last4")
.length(beaconLengthInBits)
.build();
standardBeaconList.add(inspectorBeacon);

StandardBeacon unitBeacon = StandardBeacon.builder()
.name("unit")
.length(beaconLengthInBits)
.build();

standardBeaconList.add(unitBeacon);

// 2. Define the encrypted parts.
List<EncryptedPart> encryptedPartList = new ArraylList<>);

// Each encrypted part needs a name and prefix
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
EncryptedPart encryptedPartInspector = EncryptedPart.builder()
.name("inspector_id_last4")
.prefix("I-")
.build();

Contoh konfigurasi 164



AWS SDK Enkripsi Basis Data Panduan Developer

encryptedPartList.add(encryptedPartInspector);

EncryptedPart encryptedPartUnit = EncryptedPart.builder()
.name("unit")
.prefix("U-")
.build();

encryptedPartList.add(encryptedPartUnit);

// 3. Create the compound beacon.
// This compound beacon only requires a name, split character,
// and list of encrypted parts
CompoundBeacon inspectorUnitBeacon = CompoundBeacon.buildexr()
.name("inspectorUnitBeacon")
.split(".")
.sensitive(encryptedPartlList)
.build();

C#/ .NET

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
StandardBeacon inspectorBeacon = new StandardBeacon
{
Name = "inspector_id_last4",
Length = 10
b7
standardBeaconList.Add(inspectorBeacon);
StandardBeacon unitBeacon = new StandardBeacon
{
Name = "unit",
Length = 30
b7

standardBeaconList.Add(unitBeacon);

// 2. Define the encrypted parts.
var last4EncryptedPart = new EncryptedPart

// Each encrypted part needs a name and prefix
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
var last4EncryptedPart = new EncryptedPart
{

Contoh konfigurasi 165



AWS SDK Enkripsi Basis Data Panduan Developer

Name = "inspector_id_last4",
Prefix = "I-"
i
encryptedPartlList.Add(last4EncryptedPart);

var unitEncryptedPart = new EncryptedPart
{
Name = "unit",
Prefix = "U-"
I
encryptedPartList.Add(unitEncryptedPart);

// 3. Create the compound beacon.

// This compound beacon only requires a name, split character,
// and list of encrypted parts

var compoundBeaconList = new List<CompoundBeacon>>);

var inspectorCompoundBeacon = new CompoundBeacon

{
Name = "inspector_id_last4",
Split = ".",
Encrypted = encryptedPartlList
};

compoundBeaconList.Add(inspectorCompoundBeacon);

Rust

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
let last4_beacon = StandardBeacon::builder()

.name("inspector_id_last4")

.length(10)

.build()?;

let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;
let standard_beacon_list = vec![last4_beacon, unit_beacon];

// 2. Define the encrypted parts.
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
let encrypted_parts_list = vec![
EncryptedPart: :builder()

Contoh konfigurasi 166



AWS SDK Enkripsi Basis Data Panduan Developer

.name("inspector_id_last4")
.prefix("I-")
.build()?,
EncryptedPart::builder().name("unit").prefix("U-").build()?,
1;

// 3. Create the compound beacon
// This compound beacon only requires a name, split character,
// and list of encrypted parts
let compound_beacon_list = vec![CompoundBeacon: :buildex()
.name("last4UnitCompound")
.split(".")
.encrypted(encrypted_parts_list)
.build()?];

Menggunakan beacon

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Beacon memungkinkan Anda untuk mencari catatan terenkripsi tanpa mendekripsi seluruh database
yang sedang ditanyakan. Beacon dirancang untuk diimplementasikan dalam database baru yang
tidak berpenghuni. Setiap suar yang dikonfigurasi dalam database yang ada hanya akan memetakan
catatan baru yang ditulis ke database. Beacon dihitung dari nilai plaintext bidang, setelah bidang
dienkripsi, tidak ada cara bagi beacon untuk memetakan data yang ada. Setelah Anda menulis
catatan baru dengan suar, Anda tidak dapat memperbarui konfigurasi suar. Namun, Anda dapat
menambahkan menambahkan beacon baru untuk bidang baru yang Anda tambahkan ke catatan
Anda.

Setelah Anda mengkonfigurasi beacon Anda, Anda harus menyelesaikan langkah-langkah berikut
sebelum Anda mulai mengisi database Anda dan melakukan query pada beacon Anda.

1. Buat keyring AWS KMS Hierarkis

Untuk menggunakan enkripsi yang dapat dicari, Anda harus menggunakan keyring AWS KMS
Hierarkis untuk menghasilkan, mengenkripsi, dan mendekripsi kunci data yang digunakan untuk
melindungi catatan Anda.

Menggunakan beacon 167



AWS SDK Enkripsi Basis Data Panduan Developer

Setelah Anda mengkonfigurasi beacon Anda, kumpulkan prasyarat keyring Hierarkis dan buat
keyring Hierarkis Anda.

Untuk detail selengkapnya tentang mengapa keyring Hierarkis diperlukan, lihat Menggunakan
keyring Hierarkis untuk enkripsi yang dapat dicari.

Tentukan versi beacon

Tentukan keyStorekeySource, daftar semua suar standar yang Anda konfigurasikan, daftar
semua suar majemuk yang Anda konfigurasikan, daftar bagian terenkripsi, daftar bagian yang

ditandatangani, dan versi suar. Anda harus menentukan 1 untuk versi beacon. Untuk panduan
tentang mendefinisikan AndakeySource, lihatMendefinisikan sumber kunci suar Anda.

Contoh Java berikut mendefinisikan versi beacon untuk database penyewa tunggal. Untuk
bantuan mendefinisikan versi beacon untuk database multitenant, lihat Enkripsi yang dapat dicari
untuk database multitenant.

Java

List<BeaconVersion> beaconVersions = new ArraylList<>();
beaconVersions.add(

BeaconVersion.builder()
.standardBeacons(standardBeaconList)
.compoundBeacons(compoundBeaconList)
.encryptedParts(encryptedPartslList)
.signedParts(signedPartslList)
.version(1l) // MUST be 1
.keyStore(keyStore)
.keySource(BeaconKeySource.builder()

.single(SingleKeyStore.builder()
.keyId(branchKeyId)
.cacheTTL(6000)
.build())
.build())
.build()
)i

Menggunakan beacon 168



AWS SDK Enkripsi Basis Data

Panduan Developer

C#/.NET

var beaconVersions = new List<BeaconVersion>

{

new BeaconVersion

{

I

Rust

let beacon_version = BeaconVersion: :buildexr()
.standard_beacons(standard_beacon_list)
.compound_beacons(compound_beacon_list)

StandardBeacons

CompoundBeacons

SignedParts = signedPartslList,
Version = 1, // MUST be 1
KeyStore = branchKeyStoreName,
KeySource = new BeaconKeySource
{
Single = new SingleKeyStore
{
KeyId = branch-key-id,
CacheTTL = 6000

.version(1l) // MUST be 1
.key_store(key_store.clone())

.key_source(BeaconKeySource: :Single(

)

SingleKeyStore: :builder()

// “keyld' references a beacon key.

// For every branch key we create in the keystore,
// we also create a beacon key.

// This beacon key is not the same as the branch key,
// but is created with the same ID as the branch key.

.key_id(branch_key_id)
.cache_tt1(6000)
.build()?,

.build()?;

standardBeaconlList,
compoundBeaconlList,
EncryptedParts = encryptedPartsList,

Menggunakan beacon

169



AWS SDK Enkripsi Basis Data Panduan Developer

let beacon_versions = vec![beacon_version];

3. Konfigurasikan indeks sekunder

Setelah Anda mengkonfigurasi beacon Anda, Anda harus mengkonfigurasi indeks sekunder
yang mencerminkan setiap suar sebelum Anda dapat mencari di bidang terenkripsi. Untuk
informasi selengkapnya, lihat Mengkonfigurasi indeks sekunder dengan beacon.

4. Tentukan tindakan kriptografi Anda

Semua bidang yang digunakan untuk membangun suar standar harus ditandai.
ENCRYPT_AND_SIGN Semua bidang lain yang digunakan untuk membangun beacon harus
ditandai atau. SIGN_ONLY SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

5. Konfigurasikan klien SDK Enkripsi AWS Database

Untuk mengonfigurasi klien SDK Enkripsi AWS Database yang melindungi item tabel di tabel
DynamoDB Anda, lihat pustaka enkripsi sisi klien Java untuk DynamoDB.

Meminta suar

Jenis suar yang Anda konfigurasikan menentukan jenis kueri yang dapat Anda lakukan. Beacon
standar menggunakan ekspresi filter untuk melakukan pencarian kesetaraan. Compound beacon
menggabungkan string plaintext literal dan beacon standar untuk melakukan kueri kompleks. Saat
Anda menanyakan data terenkripsi, Anda mencari nama suar.

Anda tidak dapat membandingkan nilai dari dua beacon standar, bahkan jika mereka mengandung
plaintext dasar yang sama. Dua beacon standar akan menghasilkan dua tag HMAC yang berbeda
untuk nilai plaintext yang sama. Akibatnya, beacon standar tidak dapat melakukan kueri berikut.

* beaconl = beacon2

« beaconl IN (beacon2)

value IN (beaconl, beacon2, ...)

CONTAINS(beaconl, beaconZ2)

Compound beacon dapat melakukan query berikut.

 BEGINS_WITH(a), di mana a mencerminkan seluruh nilai bidang tempat suar majemuk rakitan
dimulai. Anda tidak dapat menggunakan BEGINS_WITH operator untuk mengidentifikasi nilai yang

Meminta suar 170



AWS SDK Enkripsi Basis Data Panduan Developer

dimulai dengan substring tertentu. Namun, Anda dapat menggunakanBEGINS_WITH(S_ ), di mana
S_ mencerminkan awalan untuk bagian yang dimulai dengan suar majemuk rakitan.

* CONTAINS(a), di mana a mencerminkan seluruh nilai bidang yang terkandung dalam suar
majemuk rakitan. Anda tidak dapat menggunakan CONTAINS operator untuk mengidentifikasi
catatan yang berisi substring tertentu atau nilai dalam satu set.

Misalnya, Anda tidak dapat melakukan CONTAINS(path, "a" kueri yang a mencerminkan nilai
dalam satu set.

» Anda dapat membandingkan bagian yang ditandatangani dari suar majemuk. Saat

membandingkan bagian yang ditandatangani, Anda dapat menambahkan awalan bagian
terenkripsi secara opsional ke satu atau beberapa bagian yang ditandatangani, tetapi Anda tidak

dapat menyertakan nilai bidang terenkripsi dalam kueri apa pun.

Misalnya, Anda dapat membandingkan bagian yang ditandatangani dan kueri pada
signedFieldl = signedField2 atauvalue IN (signedFieldl, signedField2, ...).

Anda juga dapat membandingkan bagian yang ditandatangani dan awalan dari bagian terenkripsi
dengan kueri pada. signedFieldl.A_ = signedField2.B_

« field BETWEEN a AND b, di mana a dan b merupakan bagian yang ditandatangani. Anda
secara opsional dapat menambahkan awalan dari bagian terenkripsi ke satu atau beberapa bagian
yang ditandatangani, tetapi Anda tidak dapat menyertakan nilai bidang terenkripsi dalam kueri apa
pun.

Anda harus menyertakan awalan untuk setiap bagian yang Anda sertakan dalam kueri pada

suar majemuk. Misalnya, jika Anda membuat suar majemuk,, dari dua bidangcompoundBeacon,
encryptedField dansignedField, Anda harus menyertakan awalan yang dikonfigurasi untuk
dua bagian tersebut saat Anda menanyakan suar.

compoundBeacon = E_encryptedFieldValue.S_signedFieldValue

Enkripsi yang dapat dicari untuk database multitenant

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Enkripsi yang dapat dicari untuk database multitenant 171



AWS SDK Enkripsi Basis Data Panduan Developer

Untuk mengimplementasikan enkripsi yang dapat dicari di database Anda, Anda harus menggunakan
keyring AWS KMS Hierarkis. Keyring AWS KMS Hierarkis menghasilkan, mengenkripsi, dan
mendekripsi kunci data yang digunakan untuk melindungi catatan Anda. Ini juga menciptakan kunci
suar yang digunakan untuk menghasilkan suar. Saat menggunakan keyring AWS KMS Hierarkis
dengan database multitenant, ada kunci cabang dan kunci suar yang berbeda untuk setiap penyewa.
Untuk menanyakan data terenkripsi dalam database multitenant, Anda harus mengidentifikasi

bahan kunci suar yang digunakan untuk menghasilkan suar yang Anda kueri. Untuk informasi
selengkapnya, lihat the section called “Menggunakan keyring Hierarkis untuk enkripsi yang dapat
dicari”.

Saat Anda menentukan versi beacon untuk database multitenant, tentukan daftar semua beacon
standar yang Anda konfigurasikan, daftar semua suar majemuk yang Anda konfigurasikan, versi suar,
dan a. keySource Anda harus mendefinisikan sumber kunci suar Anda sebagaiMultiKeyStore,
dan menyertakankeyFieldName, waktu cache untuk hidup untuk cache kunci suar lokal, dan ukuran
cache maksimum untuk cache kunci suar lokal.

Jika Anda mengonfigurasi suar yang ditandatangani, mereka harus disertakan dalam
suar Anda. compoundBeaconList Signed beacon adalah jenis suar majemuk
yang mengindeks dan melakukan kueri kompleks pada dan bidang. STGN_ONLY
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Java

List<BeaconVersion> beaconVersions = new ArraylList<>();
beaconVersions.add(

BeaconVersion.builder()
.standardBeacons(standardBeaconList)
.compoundBeacons(compoundBeaconList)
.version(l) // MUST be 1
.keyStore(branchKeyStoreName)
.keySource(BeaconKeySource.builder()

.multi(MultiKeyStore.builder()
.keyFieldName(keyField)
.cacheTTL(6000)
.maxCacheSize(10)

.build())

.build())
.build()
);

Enkripsi yang dapat dicari untuk database multitenant 172



AWS SDK Enkripsi Basis Data

Panduan Developer

C#/.NET

var beaconVersions = new List<BeaconVersion>

{

new BeaconVersion

{

StandardBeacons = standardBeaconList,
CompoundBeacons = compoundBeaconlList,
EncryptedParts = encryptedPartsList,
SignedParts = signedPartslList,
Version = 1, // MUST be 1

KeyStore = branchKeyStoreName,
KeySource = new BeaconKeySource

{

Multi = new MultiKeyStore
{
KeyId = branch-key-id,
CacheTTL = 6000,
MaxCacheSize = 10

};

Rust

let beacon_version = BeaconVersion: :builder()
.standard_beacons(standard_beacon_list)
.compound_beacons(compound_beacon_list)
.version(1l) // MUST be 1
.key_store(key_store.clone())
.key_source(BeaconKeySource: :Multi(
MultiKeyStore: :buildex()
// “keyld® references a beacon key.
// For every branch key we create in the keystore,
// we also create a beacon key.
// This beacon key is not the same as the branch key,
// but is created with the same ID as the branch key.
.key_id(branch_key_id)
.cache_tt1(6000)
.max_cache_size(10)
.build()?z,
))

Enkripsi yang dapat dicari untuk database multitenant

173



AWS SDK Enkripsi Basis Data Panduan Developer

.build()?;
let beacon_versions = vec![beacon_version];
keyFieldName

keyFieldNameMendefinisikan nama bidang yang menyimpan yang branch-key-id terkait
dengan kunci suar yang digunakan untuk menghasilkan suar untuk penyewa tertentu.

Saat Anda menulis catatan baru ke database Anda, branch-key-id yang mengidentifikasi kunci
suar yang digunakan untuk menghasilkan suar apa pun untuk catatan itu disimpan di bidang ini.

Secara default, keyField adalah bidang konseptual yang tidak secara eksplisit disimpan dalam
database Anda. SDK Enkripsi AWS Database mengidentifikasi branch-key-1id dari kunci

data terenkripsi dalam deskripsi material dan menyimpan nilai dalam konseptual keyField
untuk Anda referensikan di suar majemuk dan suar bertanda tangan. Karena deskripsi materi
ditandatangani, konseptual keyField dianggap sebagai bagian yang ditandatangani.

Anda juga dapat memasukkan keyField dalam tindakan kriptografi Anda sebagai SIGN_ONLY
atau STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT bidang untuk secara eksplisit
menyimpan bidang dalam database Anda. Jika Anda melakukan ini, Anda harus secara manual
memasukkan branch-key-id dalam keyField setiap kali Anda menulis catatan ke database
Anda.

Menanyakan beacon dalam database multitenant

Untuk menanyakan suar, Anda harus menyertakan kueri keyField dalam kueri Anda untuk
mengidentifikasi bahan kunci suar yang sesuai yang diperlukan untuk menghitung ulang suar.

Anda harus menentukan yang branch-key-1id terkait dengan kunci suar yang digunakan untuk
menghasilkan suar untuk catatan. Anda tidak dapat menentukan nama ramah yang mengidentifikasi
penyewa branch-key-id di pemasok ID kunci cabang. Anda dapat memasukkan keyField dalam
kueri Anda dengan cara berikut.

Suar majemuk

Apakah Anda secara eksplisit menyimpan keyField dalam catatan Anda atau tidak, Anda
dapat memasukkan keyField langsung ke dalam suar majemuk Anda sebagai bagian yang
ditandatangani. Bagian yang keyField ditandatangani harus diperlukan.

Menanyakan beacon dalam database multitenant 174



AWS SDK Enkripsi Basis Data Panduan Developer

Misalnya, jika Anda ingin membangun suar majemuk,, dari dua bidangcompoundBeacon,
encryptedField dansignedField, Anda juga harus menyertakan keyField sebagai
bagian yang ditandatangani. Hal ini memungkinkan Anda untuk melakukan query berikut
padacompoundBeacon.

compoundBeacon = E_encryptedFieldValue.S_signedFieldValue.K_branch-key-id

Suar yang ditandatangani

AWS Database Encryption SDK menggunakan beacon standar dan gabungan untuk
menyediakan solusi enkripsi yang dapat dicari. Beacon ini harus menyertakan setidaknya
satu bidang terenkripsi. Namun, AWS Database Encryption SDK juga mendukung beacon
bertanda tangan yang dapat dikonfigurasi seluruhnya dari SIGN_ONLY plaintext dan field.
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Beacon yang ditandatangani dapat dibangun dari satu bagian. Apakah Anda secara eksplisit
menyimpan keyField dalam catatan Anda atau tidak, Anda dapat membuat suar yang
ditandatangani dari keyField dan menggunakannya untuk membuat kueri gabungan yang
menggabungkan kueri pada suar yang keyField ditandatangani dengan kueri di salah satu
beacon Anda yang lain. Misalnya, Anda dapat melakukan kueri berikut.

keyField = K_branch-key-id AND compoundBeacon =
E_encryptedFieldValue.S_signedFieldValue

Untuk bantuan mengonfigurasi suar bertanda tangan, lihat Membuat beacon yang ditandatangani

Query langsung pada keyField

Jika Anda menentukan keyField dalam tindakan kriptografi Anda dan secara eksplisit
menyimpan bidang dalam catatan Anda, Anda dapat membuat kueri gabungan yang
menggabungkan kueri pada suar Anda dengan kueri di file. keyField Anda dapat memilih untuk
menanyakan langsung keyField jika Anda ingin menanyakan suar standar. Misalnya, Anda
dapat melakukan kueri berikut.

keyField = branch-key-id AND standardBeacon = S_standardBeaconValue

Menanyakan beacon dalam database multitenant 175



AWS SDK Enkripsi Basis Data Panduan Developer

AWS SDK Enkripsi Database untuk DynamoDB

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

SDK Enkripsi AWS Database untuk DynamoDB adalah pustaka perangkat lunak yang

memungkinkan Anda menyertakan enkripsi sisi klien dalam desain Amazon DynamoDB Anda. SDK
Enkripsi AWS Database untuk DynamoDB menyediakan enkripsi tingkat atribut dan memungkinkan
Anda menentukan item mana yang akan dienkripsi dan item mana yang akan disertakan dalam tanda
tangan yang memastikan keaslian data Anda. Mengenkripsi data sensitif Anda saat transit dan diam
membantu memastikan bahwa data teks biasa Anda tidak tersedia untuk pihak ketiga mana pun,
termasuk. AWS

(® Note
SDK Enkripsi AWS Database tidak mendukung PartiQL.

Dalam DynamoDB, tabel adalah koleksi item. Setiap item adalah koleksi atribut. Tiap atribut memiliki
nama dan nilai. SDK Enkripsi AWS Database untuk DynamoDB mengenkripsi nilai atribut. Kemudian,
DynamoDB Encryption Client menghitung tanda tangan atas atribut. Anda menentukan nilai atribut
mana yang akan dienkripsi dan mana yang akan disertakan dalam tanda tangan dalam tindakan

kriptografi.

Topik dalam Bab ini memberikan gambaran umum tentang SDK Enkripsi AWS Database untuk
DynamoDB, termasuk bidang mana yang dienkripsi, panduan tentang instalasi dan konfigurasi klien,
dan contoh Java untuk membantu Anda memulai.

Topik

» Enkripsi di sisi klien dan sisi server

* Bidang mana yang dienkripsi dan ditandatangani?

» Enkripsi yang dapat dicari di DynamoDB

* Memperbarui model data Anda

* AWS SDK Enkripsi Database untuk DynamoDB bahasa pemrograman yang tersedia

» Klien Enkripsi DynamoDB Legacy

176


https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.TablesItemsAttributes

AWS SDK Enkripsi Basis Data Panduan Developer

Enkripsi di sisi klien dan sisi server

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

SDK Enkripsi AWS Database untuk DynamoDB mendukung enkripsi sisi klien, tempat Anda
mengenkripsi data tabel sebelum mengirimkannya ke database. Namun, DynamoDB menyediakan
fitur enkripsi saat istirahat di sisi server yang secara transparan mengenkripsi tabel Anda ketika
ditahan ke disk dan mendekripsinya ketika Anda mengakses tabel.

Alat-alat yang Anda pilih bergantung pada sensitivitas data Anda dan persyaratan keamanan aplikasi
Anda. Anda dapat menggunakan SDK Enkripsi AWS Database untuk DynamoDB dan enkripsi saat
istirahat. Ketika Anda mengirim item yang dienkripsi dan ditandatangani ke DynamoDB, DynamoDB
tidak mengenali item sebagai dilindungi. DynamoDB hanya mendeteksi item tabel khas dengan nilai-
nilai atribut biner.

Enkripsi sisi server saat istirahat

DynamoDB mendukung enkripsi saat istirahat, sebuah fitur enkripsi di sisi server yang mana
DynamoDB secara transparan mengenkripsi tabel Anda untuk Anda ketika tabel bertahan untuk disk,
dan mendekripsinya ketika Anda mengakses data tabel.

Saat Anda menggunakan AWS SDK untuk berinteraksi dengan DynamoDB, secara default, data
Anda dienkripsi saat transit melalui koneksi HTTPS, didekripsi di titik akhir DynamoDB, dan kemudian
dienkripsi ulang sebelum disimpan di DynamoDB.

» Enkripsi secara default. DynamoDB secara transparan mengenkripsi dan mendekripsi semua tabel
saat ditulis. Tidak ada pilihan untuk mengaktifkan atau menonaktifkan enkripsi saat istirahat.

+ DynamoDB membuat dan mengelola kunci kriptografi.Kunci unik untuk setiap tabel dilindungi
oleh AWS KMS keyyang tidak pernah meninggalkan AWS Key Management Service(AWS
KMS) tidak terenkripsi. Secara default, DynamoDB menggunakan Kunci milik AWSdi akun
layanan DynamoDB, tetapi Anda dapat memilih atau kunci Kunci yang dikelola AWSyang dikelola

pelanggan di akun Anda untuk melindungi sebagian atau semua tabel Anda.

« Semua data tabel dienkripsi pada disk.Ketika tabel yang dienkripsi disimpan ke disk, DynamoDB
mengenkripsi semua data tabel, termasuk kunci primer serta indeks sekunder lokal dan global.

Jika tabel Anda memiliki kunci sortir, beberapa kunci sortir yang menandai batas kisaran disimpan
dalam plaintext dalam metadata tabel.

Enkripsi di sisi klien dan sisi server 177


https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.SecondaryIndexes

AWS SDK Enkripsi Basis Data Panduan Developer

+ Objek yang terkait dengan tabel juga dienkripsi. Enkripsi saat istirahat melindungi DynamoDB
Streams, tabel global, dan cadangan setiap kali ditulis untuk media tahan lama.

 Item Anda didekripsi saat Anda mengaksesnya.Ketika Anda mengakses tabel, DynamoDB
mendekripsi bagian dari tabel yang mencakup item target Anda, dan mengembalikan item plaintext
untuk Anda.

AWS SDK Enkripsi Database untuk DynamoDB

Enkripsi sisi klien memberikan end-to-end perlindungan untuk data Anda, dalam perjalanan dan saat
istirahat, dari sumbernya ke penyimpanan di DynamoDB. Data plaintext Anda tidak pernah diekspos
ke pihak ketiga mana pun, termasuk. AWS Anda dapat menggunakan SDK Enkripsi AWS Database
untuk DynamoDB dengan tabel DynamoDB baru, atau Anda dapat memigrasikan tabel Amazon
DynamoDB yang ada ke versi terbaru SDK Enkripsi Database untuk DynamoDB. AWS

« Data Anda dilindungi saat transit dan saat istirahat. Itu tidak pernah diekspos ke pihak ketiga mana
pun, termasuk AWS.

» Anda dapat menandatangani ltem tabel Anda. Anda dapat mengarahkan SDK Enkripsi AWS
Database untuk DynamoDB untuk menghitung tanda tangan atas semua atau sebagian item tabel,
termasuk atribut kunci utama. Tanda tangan ini memungkinkan Anda untuk mendeteksi perubahan
yang tidak sah pada item secara keseluruhan, termasuk menambahkan atau menghapus atribut,
atau menukar nilai atribut.

* Anda menentukan bagaimana data Anda dilindungi dengan memilih keyring. Keyring Anda
menentukan kunci pembungkus yang melindungi kunci data Anda, dan akhirnya, data Anda.

Gunakan kunci pembungkus paling aman yang praktis untuk tugas Anda.

» SDK Enkripsi AWS Database untuk DynamoDB tidak mengenkripsi seluruh tabel. Anda memilih
atribut mana yang dienkripsi dalam item Anda. SDK Enkripsi AWS Database untuk DynamoDB
tidak mengenkripsi seluruh item. Ini tidak mengenkripsi nama atribut, atau nama atau nilai atribut
kunci utama (kunci partisi dan kunci sortir).

AWS Encryption SDK

Jika Anda mengenkripsi data yang Anda simpan di DynamoDB, kami merekomendasikan SDK
Enkripsi Database AWS untuk DynamoDB.

AWS Encryption SDK adalah pustaka enkripsi di sisi klien yang membantu Anda untuk mengenkripsi
dan mendekripsi data generik. Meskipun dapat melindungi semua jenis data, ia tidak dirancang
untuk bekerja dengan data terstruktur, seperti catatan basis data. Tidak seperti SDK Enkripsi AWS

Enkripsi di sisi klien dan sisi server 178


https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BackupRestore.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/

AWS SDK Enkripsi Basis Data Panduan Developer

Database untuk DynamoDB, AWS Encryption SDK tidak dapat memberikan pemeriksaan integritas
tingkat item dan tidak memiliki logika untuk mengenali atribut atau mencegah enkripsi kunci utama.

Jika Anda menggunakan AWS Encryption SDK untuk mengenkripsi elemen apa pun dari tabel Anda,
ingatlah bahwa itu tidak kompatibel dengan SDK Enkripsi AWS Database untuk DynamoDB. Anda
tidak dapat mengenkripsi dengan satu pustaka dan mendekripsinya dengan pustaka yang lain.

Bidang mana yang dienkripsi dan ditandatangani?

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

SDK Enkripsi AWS Database untuk DynamoDB adalah pustaka enkripsi sisi klien yang dirancang
khusus untuk aplikasi Amazon DynamoDB. Amazon DynamoDB menyimpan data dalam tabel, yang
merupakan kumpulan item. Setiap item adalah koleksi atribut. Tiap atribut memiliki nama dan nilai.
SDK Enkripsi AWS Database untuk DynamoDB mengenkripsi nilai atribut. Kemudian, DynamoDB
Encryption Client menghitung tanda tangan atas atribut. Anda dapat menentukan nilai atribut untuk
dienkripsi dan yang disertakan dalam tanda tangan.

Enkripsi melindungi kerahasiaan nilai atribut. Penandatanganan menyediakan integritas semua
atribut yang ditandatangani dan hubungan satu sama lain, dan menyediakan autentikasi. Hal ini
memungkinkan Anda untuk mendeteksi perubahan yang tidak sah pada item secara keseluruhan,
termasuk menambahkan atau menghapus atribut, atau mengganti satu nilai terenkripsi dengan yang
lain.

Dalam item terenkripsi, beberapa data tetap dalam teks biasa, termasuk nama tabel, semua nama
atribut, nilai atribut yang tidak Anda enkripsi, nama dan nilai atribut kunci primer (kunci partisi dan
kunci sortir), dan jenis atribut. Jangan menyimpan data sensitif dalam bidang ini.

Untuk informasi selengkapnya tentang cara kerja SDK Enkripsi AWS Database untuk DynamoDB,
lihat. Cara kerja SDK Enkripsi AWS Database

(® Note

Semua penyebutan tindakan atribut dalam AWS Database Encryption SDK untuk topik
DynamoDB mengacu pada tindakan kriptografi.

Bidang mana yang dienkripsi dan ditandatangani? 179


https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.TablesItemsAttributes

AWS SDK Enkripsi Basis Data Panduan Developer

Topik

 Enkripsi nilai atribut

« Penandatanganan item

Enkripsi nilai atribut

SDK Enkripsi AWS Database untuk DynamoDB mengenkripsi nilai (tetapi bukan nama atau jenis
atribut) atribut yang Anda tentukan. Untuk menentukan nilai atribut yang dienkripsi, gunakan tindakan
atribut.

Sebagai contoh, item ini termasuk atribut example dan test.

'example': 'data',
'test': 'test-value',

Jika Anda mengenkripsi atribut example, tetapi tidak mengenkripsi atribut test, hasilnya terlihat
seperti berikut ini. Nilai atribut example yang dienkripsi adalah data biner, bukan string.

"example': Binary(b"'b\x933\x9a+s\xfl\xd6a\xc5\xd5\x1aZ\xed\xd6\xce\xe9X\xfO@T\xcb\x9fY
A\X9F\xF3\xc9C\x83\r\xbb\\"),
'test': 'test-value'

Atribut kunci primer - kunci partisi dan kunci sortir-dari setiap item harus tetap dalam plaintext karena
DynamoDB menggunakannya untuk menemukan item dalam tabel. Atribut itu harus ditandatangani,
tapi tidak dienkripsi.

SDK Enkripsi AWS Database untuk DynamoDB mengidentifikasi atribut kunci utama untuk Anda dan
memastikan bahwa nilainya ditandatangani, tetapi tidak dienkripsi. Dan, jika Anda mengidentifikasi
kunci utama Anda dan kemudian mencoba untuk mengenkripsinya, klien akan melemparkan
pengecualian.

Klien menyimpan deskripsi materi dalam atribut baru (aws_dbe_head) yang ditambahkan ke item.
Deskripsi materi menjelaskan bagaimana item dienkripsi dan ditandatangani. Klien menggunakan

informasi ini untuk memverifikasi dan mendekripsi item. Bidang yang menyimpan deskripsi materi
tidak dienkripsi.

Enkripsi nilai atribut 180



AWS SDK Enkripsi Basis Data Panduan Developer

Penandatanganan item

Setelah mengenkripsi nilai atribut yang ditentukan, SDK Enkripsi AWS

Database untuk DynamoDB menghitung Kode Otentikasi Pesan Berbasis

Hash (HMACs) dan tanda tangan digital atas kanonikalisasi deskripsi materi,

konteks enkripsi, dan setiap bidang yang ditandai, atau dalam tindakan atribut.
ENCRYPT_AND_SIGNSIGN_ONLYSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Tanda tangan
ECDSA diaktifkan secara default, tetapi tidak diperlukan. Klien menyimpan HMACs dan tanda tangan
dalam atribut baru (aws_dbe_foot) yang ditambahkan ke item.

Enkripsi yang dapat dicari di DynamoDB

Untuk mengonfigurasi tabel Amazon DynamoDB Anda untuk enkripsi yang dapat dicari, Anda harus
menggunakan AWS KMS keyring Hierarkis untuk menghasilkan, mengenkripsi, dan mendekripsi
kunci data yang digunakan untuk melindungi item Anda. Anda juga harus menyertakan konfigurasi
enkripsi tabel Anda. SearchConfig

(® Note

Jika Anda menggunakan pustaka enkripsi sisi klien Java untuk DynamoDB, Anda harus
menggunakan SDK Enkripsi AWS Database tingkat rendah untuk DynamoDB API untuk
mengenkripsi, menandatangani, memverifikasi, dan mendekripsi item tabel Anda. DynamoDB
Enhanced Client dan DynamoDBItemEncryptor level yang lebih rendah tidak mendukung
enkripsi yang dapat dicari.

Topik

* Mengkonfigurasi indeks sekunder dengan beacon

* Menguji output suar

Mengkonfigurasi indeks sekunder dengan beacon

Setelah Anda mengkonfigurasi beacon Anda, Anda harus mengkonfigurasi indeks sekunder yang

mencerminkan setiap suar sebelum Anda dapat mencari pada atribut terenkripsi.

Saat Anda mengonfigurasi suar standar atau gabungan, SDK Enkripsi AWS Database menambahkan
aws_dbe_b_ awalan ke nama suar sehingga server dapat dengan mudah mengidentifikasi beacon.

Penandatanganan item 181



AWS SDK Enkripsi Basis Data Panduan Developer

Misalnya, jika Anda menamai suar majemukcompoundBeacon, nama suar lengkapnya sebenarnya.
aws_dbe_b_compoundBeacon Jika Anda ingin mengonfigurasi indeks sekunder yang menyertakan
suar standar atau majemuk, Anda harus menyertakan aws_dbe_b_ awalan saat mengidentifikasi
nama suar.

Partisi dan sortir kunci

Anda tidak dapat mengenkripsi nilai kunci primer. Kunci partisi dan sortir Anda harus
ditandatangani. Nilai kunci primer Anda tidak bisa menjadi suar standar atau majemuk.

Nilai kunci utama Anda harusSIGN_ONLY, kecuali Anda menentukan
STIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut apa pun, maka atribut partisi dan sortir
juga harusSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Nilai kunci utama Anda dapat ditandatangani beacon. Jika Anda mengonfigurasi beacon bertanda
tangan yang berbeda untuk setiap nilai kunci utama, Anda harus menentukan nama atribut yang
mengidentifikasi nilai kunci primer sebagai nama suar yang ditandatangani. Namun, SDK Enkripsi
AWS Database tidak menambahkan aws_dbe_b_ awalan ke beacon yang ditandatangani.
Bahkan jika Anda mengonfigurasi beacon bertanda tangan yang berbeda untuk nilai kunci

utama Anda, Anda hanya perlu menentukan nama atribut untuk nilai kunci primer saat Anda
mengonfigurasi indeks sekunder.

Indeks sekunder lokal

Kunci sortir untuk indeks sekunder lokal dapat berupa suar.

Jika Anda menentukan suar untuk kunci sortir, tipenya harus String. Jika Anda menentukan
standar atau suar majemuk untuk kunci sortir, Anda harus menyertakan aws_dbe_b_ awalan
saat Anda menentukan nama suar. Jika Anda menentukan suar yang ditandatangani, tentukan
nama suar tanpa awalan apa pun.

Indeks sekunder global

Kunci partisi dan sortir untuk indeks sekunder global dapat berupa beacon.

Jika Anda menentukan suar untuk partisi atau kunci sortir, jenisnya harus String. Jika

Anda menentukan standar atau suar majemuk untuk kunci sortir, Anda harus menyertakan
aws_dbe_b_ awalan saat Anda menentukan nama suar. Jika Anda menentukan suar yang
ditandatangani, tentukan nama suar tanpa awalan apa pun.

Mengkonfigurasi indeks sekunder dengan beacon 182


https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html

AWS SDK Enkripsi Basis Data Panduan Developer

Proyeksi atribut

Proyeksi adalah kumpulan atribut yang disalin dari tabel ke indeks sekunder. Kunci partisi dan
kunci urutan tabel selalu diproyeksikan ke dalam indeks; Anda dapat memproyeksikan atribut lain
untuk mendukung persyaratan kueri aplikasi Anda. DynamoDB menyediakan tiga opsi berbeda
untuk proyeksi KEYS_ONLY atribut:,, dan. INCLUDE ALL

Jika Anda menggunakan proyeksi atribut INCLUDE untuk mencari pada suar, Anda harus
menentukan nama untuk semua atribut yang suar dibangun dari dan nama suar dengan
awalan. aws_dbe_b_ Misalnya, jika Anda mengkonfigurasi suar majemuk,compoundBeacon,
dari,fieldl, dan field2field3, Anda harus menentukanaws_dbe_b_compoundBeacon,,
fieldlfield2, dan field3 dalam proyeksi.

Indeks sekunder global hanya dapat menggunakan atribut yang ditentukan secara eksplisit dalam
proyeksi, tetapi indeks sekunder lokal dapat menggunakan atribut apa pun.
Menguiji output suar

Jika Anda mengonfigurasi suar majemuk atau membuat beacon menggunakan bidang virtual,
sebaiknya verifikasi bahwa beacon ini menghasilkan output yang diharapkan sebelum mengisi tabel
DynamoDB Anda.

AWS Database Encryption SDK menyediakan DynamoDbEncryptionTransforms layanan untuk
membantu Anda memecahkan masalah bidang virtual dan output suar gabungan.

Menguiji bidang virtual

Cuplikan berikut membuat item pengujian, mendefinisikan DynamoDbEncryptionTransforms
layanan dengan konfigurasi enkripsi tabel DynamoDB, dan menunjukkan cara menggunakan
ResolveAttributes untuk memverifikasi bahwa bidang virtual menghasilkan output yang
diharapkan.

Java

Lihat contoh kode lengkapnya: VirtualBeaconSearchableEncryptionExample.java

// Create test items
final PutItemRequest itemWithHasTestResultPutRequest = PutItemRequest.builder()
.tableName(ddbTableName)

Menguji output suar 183


https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html#GSI.Projections
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/VirtualBeaconSearchableEncryptionExample.java

AWS SDK Enkripsi Basis Data Panduan Developer

.item(itemWithHasTestResult)
.build();

final PutItemResponse itemWithHasTestResultPutResponse
ddb.putItem(itemWithHasTestResultPutRequest);

final PutItemRequest itemWithNoHasTestResultPutRequest = PutItemRequest.builder()
.tableName(ddbTableName)
.item(itemWithNoHasTestResult)
.build();

final PutItemResponse itemWithNoHasTestResultPutResponse =
ddb.putItem(itemWithNoHasTestResultPutRequest);

// Define the DynamoDbEncryptionTransforms service
final DynamoDbEncryptionTransforms trans = DynamoDbEncryptionTransforms.builder()
.DynamoDbTablesEncryptionConfig(encryptionConfig).build();

// Verify configuration
final ResolveAttributesInput resolvelnput = ResolveAttributesInput.builder()
.TableName(ddbTableName)
.Item(itemWithHasTestResult)
.Version(1)
.build();
final ResolveAttributesOutput resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that VirtualFields has the expected value
Map<String, String> vf = new HashMap<>();

vf.put("stateAndHasTestResult", "CAt");
assert resolveOutput.VirtualFields().equals(vf);

C#/ .NET

Lihat contoh kode lengkapnya: VirtualBeaconSearchableEncryptionExample.cs.

// Create item with hasTestResult=true
var itemWithHasTestResult = new Dictionary<String, AttributeValue>
{
["customer_id"] = new AttributeValue("ABC-123"),
["create_time"] = new AttributeValue { N = "1681495205" 1},
["state"] = new AttributeValue("CA"),
["hasTestResult"] = new AttributeValue { BOOL = true }
I

Menguji output suar 184


https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/VirtualBeaconSearchableEncryptionExample.cs

AWS SDK Enkripsi Basis Data Panduan Developer

// Create item with hasTestResult=false
var itemWithNoHasTestResult = new Dictionary<String, AttributeValue>
{
["customer_id"] = new AttributeValue("DEF-456"),
["create_time"] = new AttributeValue { N = "1681495205" 1},
["state"] = new AttributeValue("CA"),
["hasTestResult"] = new AttributeValue { BOOL = false }
I

// Define the DynamoDbEncryptionTransforms service
var trans = new DynamoDbEncryptionTransforms(encryptionConfig);

// Verify configuration
var resolveInput = new ResolveAttributesInput

{
TableName = ddbTableName,
Item = itemWithHasTestResult,
Version = 1

};

var resolveOutput = trans.ResolveAttributes(resolveInput);
// Verify that VirtualFields has the expected value

Debug.Assert(resolveOutput.VirtualFields.Count == 1);
Debug.Assert(resolveOutput.VirtualFields["stateAndHasTestResult"] == "CAt");

Rust

Lihat contoh kode lengkap: virtual_beacon_searchable_encryption.rs.

// Create item with hasTestResult=true
let item_with_has_test_result = HashMap::from([

(
"customer_id".to_string(),
AttributeValue::S("ABC-123".to_string()),
),
(
"create_time".to_string(),
AttributeValue: :N("1681495205".to_string()),
),

("state".to_string(), AttributeValue::S("CA".to_string())),
("hasTestResult".to_string(), AttributeValue::Bool(true)),
1)

// Create item with hasTestResult=false

Menguji output suar 185


https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/virtual_beacon_searchable_encryption.rs

AWS SDK Enkripsi Basis Data Panduan Developer

let item_with_no_has_test_result = HashMap::from([

(
"customer_id".to_string(),
AttributeValue::S("DEF-456".to_string()),
),
(
"create_time".to_string(),
AttributeValue::N("1681495205" .to_string()),
),

("state".to_string(), AttributeValue::S("CA".to_string())),
("hasTestResult".to_string(), AttributeValue::Bool(false)),
1);

// Define the transform service
let trans = transform_client::Client::from_conf(encryption_config.clone())?;

// Verify the configuration

let resolve_output = trans
.resolve_attributes()
.table_name(ddb_table_name)
.item(item_with_has_test_result.clone())
.version(1)
.send()
.await?;

// Verify that VirtualFields has the expected value

let virtual_fields = resolve_output.virtual_fields.unwrap();
assert_eq!(virtual_fields.len(), 1);
assert_eq!(virtual_fields["stateAndHasTestResult"], "CAt");

Menguiji suar majemuk

Cuplikan berikut membuat item uji, mendefinisikan DynamoDbEncryptionTransforms layanan
dengan konfigurasi enkripsi tabel DynamoDB, dan menunjukkan cara menggunakan untuk
memverifikasi bahwa suar majemuk menghasilkan output yang ResolveAttributes diharapkan.

Java

Lihat contoh kode lengkapnya: CompoundBeaconSearchableEncryptionExample.java

// Create an item with both attributes used in the compound beacon.
final HashMap<String, AttributeValue> item = new HashMap<>();

Menguji output suar 186


https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/CompoundBeaconSearchableEncryptionExample.java

AWS SDK Enkripsi Basis Data Panduan Developer

item.put("work_id", AttributeValue.builder().s("9ce39272-8068-4efd-a211-
cd162ad65d4c") .build());

item.put("inspection_date", AttributeValue.builder().s("2023-06-13").build());
item.put("inspector_id_last4", AttributeValue.builder().s("5678").build());
item.put("unit", AttributeValue.builder().s("©11899988199").build());

// Define the DynamoDbEncryptionTransforms service

final DynamoDbEncryptionTransforms trans = DynamoDbEncryptionTransforms.builder()

.DynamoDbTablesEncryptionConfig(encryptionConfig).build();

// Verify configuration
final ResolveAttributesInput resolvelnput = ResolveAttributesInput.builder()
.TableName(ddbTableName)
.Item(item)
.Version(1)
.build();

final ResolveAttributesOutput resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that CompoundBeacons has the expected value

Map<String, String> cbs = new HashMap<>();

cbs.put("last4UnitCompound", "L-5678.U-011899988199");

assert resolveOutput.CompoundBeacons().equals(cbs);

// Note : the compound beacon actually stored in the table is not
"L-5678.U-011899988199"

// but rather something like "L-abc.U-123", as both parts are EncryptedParts

// and therefore the text is replaced by the associated beacon

C#/.NET

Lihat contoh kode lengkapnya: CompoundBeaconSearchableEncryptionExample.cs

// Create an item with both attributes used in the compound beacon
var item = new Dictionary<String, AttributeValue>

{
["work_id"] = new AttributeValue("9ce39272-8068-4efd-a211-cdl162ad65d4c"),
["inspection_date"] = new AttributeValue("2023-06-13"),
["inspector_id_last4"] = new AttributeValue("5678"),
["unit"] = new AttributeValue("011899988199")

};

// Define the DynamoDbEncryptionTransforms service
var trans = new DynamoDbEncryptionTransforms(encryptionConfig);

Menguji output suar

187


https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/CompoundBeaconSearchableEncryptionExample.cs

AWS SDK Enkripsi Basis Data Panduan Developer

// Verify configuration
var resolveInput = new ResolveAttributesInput

{
TableName = ddbTableName,
Item = item,
Version = 1

};

var resolveOutput = trans.ResolveAttributes(resolvelnput);

// Verify that CompoundBeacons has the expected value

Debug.Assert(resolveOutput.CompoundBeacons.Count == 1);

Debug.Assert(resolveOutput.CompoundBeacons["last4UnitCompound"] ==
"L-5678.U-011899988199");

// Note : the compound beacon actually stored in the table is not
"L-5678.U-011899988199"

// but rather something like "L-abc.U-123", as both parts are EncryptedParts

// and therefore the text is replaced by the associated beacon

Rust

Lihat contoh kode lengkap: compound_beacon_searchable_encryption.rs

// Create an item with both attributes used in the compound beacon
let item = HashMap::from([

(
"work_id".to_string(),
AttributeValue::5("9ce39272-8068-4efd-a211-cd162ad65d4c" .to_string()),
),
(
"inspection_date".to_string(),
AttributeValue::S("2023-06-13".to_string()),
),
(
"inspector_id_last4".to_string(),
AttributeValue::S("5678".to_string()),
),
(
"unit".to_string(),
AttributeValue::5("011899988199".to_string()),
),

1);

// Define the transforms service

Menguji output suar 188


https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/compound_beacon_searchable_encryption.rs

AWS SDK Enkripsi Basis Data Panduan Developer

let trans = transform_client::Client::from_conf(encryption_config.clone())?;

// Verify configuration

let resolve_output = trans
.resolve_attributes()
.table_name(ddb_table_name)
.item(item.clone())
.version(1)
.send()
.await?;

// Verify that CompoundBeacons has the expected value
Dlet compound_beacons = resolve_output.compound_beacons.unwrap();
assert_eq! (compound_beacons.len(), 1);
assert_eq!(
compound_beacons["last4UnitCompound"],
"L-5678.U-011899988199"
);
// but rather something like "L-abc.U-123", as both parts are EncryptedParts
// and therefore the text is replaced by the associated beacon

Memperbarui model data Anda

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Saat mengonfigurasi SDK Enkripsi AWS Database untuk DynamoDB, Anda memberikan tindakan
atribut. Pada enkripsi, AWS Database Encryption SDK menggunakan tindakan atribut untuk
mengidentifikasi atribut mana yang akan dienkripsi dan ditandatangani, atribut mana yang akan
ditandatangani (tetapi tidak mengenkripsi), dan mana yang harus diabaikan. Anda juga menentukan
atribut unsigned yang diizinkan untuk secara eksplisit memberi tahu klien atribut mana yang
dikecualikan dari tanda tangan. Saat mendekripsi, SDK Enkripsi AWS Database menggunakan
atribut unsigned yang diizinkan yang Anda tetapkan untuk mengidentifikasi atribut mana yang tidak
disertakan dalam tanda tangan. Tindakan atribut tidak disimpan dalam item terenkripsi dan SDK
Enkripsi AWS Database tidak memperbarui tindakan atribut Anda secara otomatis.

Pilih tindakan atribut Anda dengan hati-hati. Bila ragu, gunakan Enkripsi dan tanda tangan.
Setelah Anda menggunakan AWS Database Encryption SDK untuk melindungi item Anda, Anda

Memperbarui model data Anda 189



AWS SDK Enkripsi Basis Data Panduan Developer

tidak dapat mengubah SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut yang ada
ENCRYPT_AND_SIGNSIGN_ONLY, atau keDO_NOTHING. Namun, Anda dapat dengan aman
melakukan perubahan berikut.

» Tambahkan STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut baru
ENCRYPT_AND_SIGNSIGN_ONLY, dan

* Hapus atribut yang ada

* Ubah ENCRYPT_AND_SIGN atribut yang ada ke SIGN_ONLY atau
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

* Ubah SIGN_AND_TINCLUDE_IN_ENCRYPTION_CONTEXT atribut SIGN_ONLY atau yang sudah ada
ke ENCRYPT_AND_SIGN

 Tambahkan DO_NOTHING atribut baru

» Ubah SIGN_ONLY atribut yang ada menjadi SIGN_AND_TINCLUDE_IN_ENCRYPTION_CONTEXT

* Ubah SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut yang ada menjadi SIGN_ONLY

Pertimbangan untuk enkripsi yang dapat dicari

Sebelum Anda memperbarui model data Anda, pertimbangkan dengan cermat bagaimana
pembaruan Anda dapat memengaruhi beacon apa pun yang Anda buat dari atribut. Setelah Anda
menulis catatan baru dengan suar, Anda tidak dapat memperbarui konfigurasi suar. Anda tidak dapat
memperbarui tindakan atribut yang terkait dengan atribut yang Anda gunakan untuk membangun
beacon. Jika Anda menghapus atribut yang ada dan suar terkait, Anda tidak akan dapat menanyakan
catatan yang ada menggunakan suar itu. Anda dapat membuat beacon baru untuk bidang baru yang
ditambahkan ke rekaman, tetapi Anda tidak dapat memperbarui beacon yang ada untuk menyertakan
bidang baru.

Pertimbangan untuk atribut STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Secara default, kunci partisi dan sortir adalah satu-satunya atribut yang disertakan dalam

konteks enkripsi. Anda dapat mempertimbangkan untuk mendefinisikan bidang tambahan
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT agar pemasok ID kunci cabang untuk keyring
AWS KMS Hierarkis Anda dapat mengidentifikasi kunci cabang mana yang diperlukan untuk dekripsi
dari konteks enkripsi. Untuk informasi selengkapnya, lihat pemasok ID kunci cabang. Jika Anda
menentukan SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut apa pun, maka atribut partisi
dan sortir juga harusSTGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Memperbarui model data Anda 190



AWS SDK Enkripsi Basis Data Panduan Developer

® Note

Untuk menggunakan tindakan STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT kriptografi,
Anda harus menggunakan SDK Enkripsi AWS Database versi 3.3 atau yang lebih baru.
Terapkan versi baru ke semua pembaca sebelum memperbarui model data Anda untuk
disertakanSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Tambahkan SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut baru
ENCRYPT_AND_SIGNSIGN_ONLY, dan

Untuk menambahkan atribut baru ENCRYPT_AND_SIGNSIGN_ONLY, atau
STIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut, tentukan atribut baru dalam tindakan
atribut Anda.

Anda tidak dapat menghapus DO_NOTHING atribut yang ada dan menambahkannya kembali
sebagaiENCRYPT_AND_SIGN,SIGN_ONLY, atau SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
atribut.

Menggunakan kelas data beranotasi

Jika Anda mendefinisikan tindakan atribut Anda dengan aTableSchema, tambahkan atribut
baru ke kelas data beranotasi Anda. Jika Anda tidak menentukan anotasi tindakan atribut untuk
atribut baru, klien akan mengenkripsi dan menandatangani atribut baru secara default (kecuali
atribut adalah bagian dari kunci utama). Jika Anda hanya ingin menandatangani atribut baru,
Anda harus menambahkan atribut baru dengan @DynamoDBEncryptionSignOnly atau
@DynamoDBEncryptionSignAndIncludeInEncryptionContext anotasi.

Menggunakan model objek

Jika Anda secara manual mendefinisikan tindakan atribut Anda, tambahkan atribut baru ke
tindakan atribut dalam model objek Anda dan tentukan ENCRYPT_AND_SIGNSIGN_ONLY,, atau
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT sebagai tindakan atribut.

Hapus atribut yang ada

Jika Anda memutuskan bahwa Anda tidak lagi memerlukan atribut, Anda dapat berhenti menulis data
ke atribut tersebut atau Anda dapat secara resmi menghapusnya dari tindakan atribut Anda. Ketika
Anda berhenti menulis data baru ke atribut, atribut masih muncul dalam tindakan atribut Anda. Ini

Tambahkan SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut baru 191
ENCRYPT_AND_SIGNSIGN_ONLY, dan



AWS SDK Enkripsi Basis Data Panduan Developer

dapat membantu jika Anda perlu mulai menggunakan atribut lagi di masa mendatang. Menghapus
atribut secara formal dari tindakan atribut Anda tidak menghapusnya dari kumpulan data Anda.
Dataset Anda akan tetap berisi item yang menyertakan atribut itu.

Untuk menghapus DO_NOTHING atributENCRYPT_AND_SIGN,, SIGN_ONLY atau yang sudah ada
secara resmi, perbarui tindakan atribut Anda. STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Jika Anda menghapus DO_NOTHING atribut, Anda tidak boleh menghapus atribut tersebut dari atribut
yang tidak ditandatangani yang diizinkan. Bahkan jika Anda tidak lagi menulis nilai baru ke atribut itu,

klien masih perlu tahu bahwa atribut tersebut tidak ditandatangani untuk membaca item yang ada
yang berisi atribut.

Menggunakan kelas data beranotasi

Jika Anda mendefinisikan tindakan atribut Anda dengan aTableSchema, hapus atribut dari kelas
data beranotasi Anda.

Menggunakan model objek

Jika Anda secara manual mendefinisikan tindakan atribut Anda, hapus atribut dari tindakan atribut
dalam model objek Anda.

Ubah ENCRYPT_AND_SIGN atribut yang ada ke SIGN_ONLY atau
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Untuk mengubah ENCRYPT_AND_SIGN atribut yang ada ke SIGN_ONLY
atauSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, Anda harus memperbarui tindakan atribut
Anda. Setelah Anda menerapkan pembaruan, klien akan dapat memverifikasi dan mendekripsi nilai

yang ada yang ditulis ke atribut, tetapi hanya akan menandatangani nilai baru yang ditulis ke atribut.

(® Note

Pertimbangkan persyaratan keamanan Anda dengan cermat sebelum

mengubah ENCRYPT_AND_SIGN atribut yang ada ke STGN_ONLY
atauSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Atribut apa pun yang dapat
menyimpan data sensitif harus dienkripsi.

Menggunakan kelas data beranotasi

Ubah ENCRYPT_AND_SIGN atribut yang ada ke SIGN_ONLY atau
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

192



AWS SDK Enkripsi Basis Data Panduan Developer

Jika Anda mendefinisikan tindakan atribut dengan aTableSchema, perbarui

atribut yang ada untuk menyertakan @DynamoDBEncryptionSignOnly atau
@DynamoDBEncryptionSignAndIncludeInEncryptionContext anotasi dalam kelas data
beranotasi Anda.

Menggunakan model objek

Jika Anda menentukan tindakan atribut secara manual, perbarui tindakan atribut
yang terkait dengan atribut yang ada dari ENCRYPT_AND_STIGN ke SIGN_ONLY atau
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT dalam model objek Anda.

Ubah SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut
SIGN_ONLY atau yang sudah ada ke ENCRYPT_AND_SIGN

Untuk mengubah atribut STGN_ONLY atau SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut
yang adaENCRYPT_AND_SIGN, Anda harus memperbarui tindakan atribut Anda. Setelah Anda
menyebarkan pembaruan, klien akan dapat memverifikasi nilai yang ada yang ditulis ke atribut, dan
akan mengenkripsi dan menandatangani nilai baru yang ditulis ke atribut.

Menggunakan kelas data beranotasi

Jika Anda menentukan tindakan atribut Anda dengan aTableSchema, hapus
@DynamoDBEncryptionSignOnly atau
@DynamoDBEncryptionSignAndIncludeInEncryptionContext anotasi dari atribut yang ada.

Menggunakan model objek

Jika Anda menentukan tindakan atribut secara manual, perbarui tindakan atribut yang terkait
dengan atribut dari SIGN_ONLY atau STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT ke
ENCRYPT_AND_SIGN dalam model objek Anda.

Tambahkan DO_NOTHING atribut baru

Untuk mengurangi risiko kesalahan saat menambahkan DO_NOTHING atribut baru, sebaiknya
tentukan awalan yang berbeda saat menamai DO_NOTHING atribut Anda, lalu gunakan awalan
tersebut untuk menentukan atribut unsigned yang diizinkan.

Anda tidak dapat menghapus SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut yang ada
ENCRYPT_AND_SIGNSIGN_ONLY,, atau dari kelas data beranotasi dan kemudian menambahkan

Ubah STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut SIGN_ONLY atau yang sudah ada ke 193
ENCRYPT_AND_SIGN



AWS SDK Enkripsi Basis Data Panduan Developer

atribut kembali sebagai DO_NOTHING atribut. Anda hanya dapat menambahkan DO_NOTHING atribut
yang sama sekali baru.

Langkah-langkah yang Anda ambil untuk menambahkan DO_NOTHING atribut baru bergantung pada
apakah Anda menetapkan atribut unsigned yang diizinkan secara eksplisit dalam daftar atau dengan
awalan.

Menggunakan awalan atribut unsigned yang diizinkan

Jika Anda mendefinisikan tindakan atribut Anda dengan aTableSchema, tambahkan DO_NOTHING
atribut baru ke kelas data beranotasi Anda dengan anotasi@DynamoDBEncryptionDoNothing.
Jika Anda menentukan tindakan atribut secara manual, perbarui tindakan atribut Anda untuk
menyertakan atribut baru. Pastikan untuk secara eksplisit mengkonfigurasi atribut baru dengan
tindakan DO_NOTHING atribut. Anda harus menyertakan awalan berbeda yang sama dalam nama
atribut baru.

Menggunakan daftar atribut unsigned yang diizinkan
1. Tambahkan DO_NOTHING atribut baru ke daftar atribut unsigned yang diizinkan dan terapkan

daftar yang diperbarui.
2. Terapkan perubahan dari Langkah 1.

Anda tidak dapat melanjutkan ke Langkah 3 sampai perubahan telah menyebar ke semua host
yang perlu membaca data ini.

3. Tambahkan DO_NOTHING atribut baru ke tindakan atribut Anda.

a. Jika Anda mendefinisikan tindakan atribut Anda dengan aTableSchema,
tambahkan DO_NOTHING atribut baru ke kelas data beranotasi Anda dengan
anotasi@DynamoDBEncryptionDoNothing.

b. Jika Anda menentukan tindakan atribut secara manual, perbarui tindakan atribut Anda untuk
menyertakan atribut baru. Pastikan untuk secara eksplisit mengkonfigurasi atribut baru
dengan tindakan DO_NOTHING atribut.

4. Terapkan perubahan dari Langkah 3.

Tambahkan DO_NOTHING atribut baru 194



AWS SDK Enkripsi Basis Data Panduan Developer

Ubah SIGN_ONLY atribut yang ada menjadi
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Untuk mengubah SIGN_ONLY atribut yang adaSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT,
Anda harus memperbarui tindakan atribut Anda. Setelah Anda menyebarkan pembaruan, klien akan
dapat memverifikasi nilai yang ada yang ditulis ke atribut, dan akan terus menandatangani nilai baru
yang ditulis ke atribut. Nilai baru yang ditulis ke atribut akan disertakan dalam konteks enkripsi.

Jika Anda menentukan STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut apa pun, maka
atribut partisi dan sortir juga harusSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Menggunakan kelas data beranotasi

Jika Anda menentukan tindakan atribut Anda dengan aTableSchema, perbarui
tindakan atribut yang terkait dengan atribut dari @ynamoDBEncryptionSignOnly
ke@DynamoDBEncryptionSignAndIncludeInEncryptionContext.

Menggunakan model objek

Jika Anda menentukan tindakan atribut secara manual, perbarui tindakan atribut yang terkait dengan
atribut dari STGN_ONLY ke SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT dalam model objek
Anda.

Ubah SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut yang ada
menjadi SIGN_ONLY

Untuk mengubah STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut yang adaSIGN_ONLY,

Anda harus memperbarui tindakan atribut Anda. Setelah Anda menyebarkan pembaruan, klien akan
dapat memverifikasi nilai yang ada yang ditulis ke atribut, dan akan terus menandatangani nilai baru
yang ditulis ke atribut. Nilai baru yang ditulis ke atribut tidak akan disertakan dalam konteks enkripsi.

Sebelum mengubah STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut yang
adaSIGN_ONLY, pertimbangkan dengan cermat bagaimana pembaruan Anda dapat memengaruhi
fungsionalitas pemasok ID kunci cabang Anda.

Menggunakan kelas data beranotasi

Jika Anda menentukan tindakan atribut Anda dengan aTableSchema, perbarui tindakan atribut yang
terkait dengan atribut dari @ynamoDBEncryptionSignAndIncludeInEncryptionContext
ke@DynamoDBEncryptionSignOnly.

Ubah SIGN_ONLY atribut yang ada menjadi STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 195



AWS SDK Enkripsi Basis Data Panduan Developer

Menggunakan model objek

Jika Anda menentukan tindakan atribut secara manual, perbarui tindakan atribut yang terkait dengan
atribut dari STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT ke SIGN_ONLY dalam model objek
Anda.

AWS SDK Enkripsi Database untuk DynamoDB bahasa
pemrograman yang tersedia

SDK Enkripsi AWS Database untuk DynamoDB tersedia untuk bahasa pemrograman berikut.
Pustaka spesifik-bahasa bervariasi, tetapi implementasi yang dihasilkan dapat dioperasikan.

Anda dapat mengenkripsi dengan satu implementasi bahasa dan mendekripsi dengan yang lain.
Interoperabilitas mungkin tunduk pada kendala bahasa. Jika demikian, kendala ini dijelaskan dalam
topik tentang implementasi bahasa.

Topik
« Java

« NET
* Rust

Java

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Topik ini menjelaskan cara menginstal dan menggunakan versi 3. x dari pustaka enkripsi sisi klien
Java untuk DynamoDB. Untuk detail tentang pemrograman dengan AWS Database Encryption SDK
untuk DynamoDB, lihat contoh Java di aws-database-encryption-sdk repositori -dynamodb aktif.
GitHub

(® Note

Topik berikut fokus pada versi 3. x dari pustaka enkripsi sisi klien Java untuk DynamoDB.
Pustaka enkripsi sisi klien kami diubah nhamanya menjadi AWS Database Encryption SDK.
AWS Database Encryption SDK terus mendukung versi Klien Enkripsi DynamoDB lama.

Bahasa pemrograman 196


https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples

AWS SDK Enkripsi Basis Data Panduan Developer

Topik
 Prasyarat
» Penginstalan

* Menggunakan pustaka enkripsi sisi klien Java untuk DynamoDB

* Contoh Java

» Konfigurasikan tabel DynamoDB yang ada untuk menggunakan SDK Enkripsi Database untuk
AWS DynamoDB

* Migrasi ke versi 3.x pustaka enkripsi sisi klien Java untuk DynamoDB

Prasyarat

Sebelum Anda menginstal versi 3. x dari pustaka enkripsi sisi klien Java untuk DynamoDB, pastikan
Anda memiliki prasyarat berikut.

Lingkungan pengembangan Java

Anda akan membutuhkan Java 8 atau yang lebih baru. Di situs web Oracle, buka Unduhan Java
SE, kemudian unduh dan instal Java SE Development Kit (JDK).

Jika Anda menggunakan Oracle JDK, Anda juga harus mengunduh dan menginstal File Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy.

AWS SDK for Java 2.x

SDK Enkripsi AWS Database untuk DynamoDB memerlukan modul DynamoDB Enhanced Client
dari modul. AWS SDK for Java 2.x Anda dapat menginstal seluruh SDK atau modul ini saja.

Untuk informasi tentang memperbarui versi Anda AWS SDK untuk Java, lihat Memigrasi dari versi
1.x ke 2.x. AWS SDK untuk Java

Tersedia melalui Apache Maven. AWS SDK untuk Java Anda dapat mendeklarasikan
ketergantungan untuk keseluruhan AWS SDK untuk Java, atau hanya modul. dynamodb-
enhanced

Instal AWS SDK untuk Java menggunakan Apache Maven

* Untuk mengimpor keseluruhan AWS SDK untuk Java sebagai dependensi, deklarasikan dalam
file Anda. pom.xml

Java 197


https://www.oracle.com/java/technologies/downloads/
https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project

AWS SDK Enkripsi Basis Data Panduan Developer

* Untuk membuat dependensi hanya untuk modul Amazon DynamoDB AWS SDK
untuk Java di, ikuti petunjuk untuk menentukan modul tertentu. Atur groupId ke
software.amazon.awssdk dan artifactID kedynamodb-enhanced.

® Note

Jika Anda menggunakan AWS KMS keyring atau keyring AWS KMS Hierarchical,
Anda juga perlu membuat dependensi untuk modul. AWS KMS Atur groupId ke
software.amazon.awssdk dan artifactID kekms.

Penginstalan

Anda dapat menginstal versi 3. x dari pustaka enkripsi sisi klien Java untuk DynamoDB dengan cara
berikut.

Menggunakan Apache Maven

Amazon DynamoDB Encryption Client untuk Java tersedia melalui Apache Maven dengan definisi
dependensi berikut.

<dependency>
<groupld>software.amazon.cryptography</groupId>
<artifactId>aws-database-encryption-sdk-dynamodb</artifactId>
<version>version-number</version>

</dependency>

Menggunakan Gradle Kotlin

Anda dapat menggunakan Gradle untuk mendeklarasikan dependensi pada Klien Enkripsi
Amazon DynamoDB untuk Java dengan menambahkan yang berikut ini ke bagian dependensi
proyek Gradle Anda.

implementation("software.amazon.cryptography:aws-database-encryption-sdk-
dynamodb:version-number")

Secara manual

Untuk menginstal pustaka enkripsi sisi klien Java untuk DynamoDB, kloning atau unduh repositori

-dynamodb. aws-database-encryption-sdk GitHub

Java 198


https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies
https://maven.apache.org/
https://gradle.org/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/

AWS SDK Enkripsi Basis Data Panduan Developer

Setelah Anda menginstal SDK, mulailah dengan melihat kode contoh dalam panduan ini dan contoh
Java di repositori aws-database-encryption-sdk -dynamodb aktif. GitHub

Menggunakan pustaka enkripsi sisi klien Java untuk DynamoDB

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Topik ini menjelaskan beberapa fungsi dan kelas pembantu di versi 3. x dari pustaka enkripsi sisi
klien Java untuk DynamoDB.

Untuk detail tentang pemrograman dengan pustaka enkripsi sisi klien Java untuk DynamoDB, lihat
contoh Java, contoh Java di repositori -dynamodb aktif. aws-database-encryption-sdk GitHub
Topik

* Enkriptor item

Tindakan atribut dalam SDK Enkripsi AWS Database untuk DynamoDB

» Konfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB

Memperbarui item dengan SDK Enkripsi AWS Database

Mendekripsi set yang ditandatangani

Enkriptor item

Pada intinya, AWS Database Encryption SDK untuk DynamoDB adalah enkripsi item. Anda dapat
menggunakan versi 3. x pustaka enkripsi sisi klien Java untuk DynamoDB untuk mengenkripsi,
menandatangani, memverifikasi, dan mendekripsi item tabel DynamoDB Anda dengan cara berikut.

Klien yang Ditingkatkan DynamoDB

Anda dapat mengkonfigurasi DynamoDB Enhanced Client dengan untuk secara otomatis
mengenkripsi dan menandatangani item sisi klien dengan DynamoDbEncryptionInterceptor
permintaan DynamoDB Anda. PutItem Dengan DynamoDB Enhanced Client, Anda dapat
menentukan tindakan atribut Anda menggunakan kelas data beranotasi. Sebaiknya gunakan
DynamoDB Enhanced Client bila memungkinkan.

DynamoDB Enhanced Client tidak mendukung enkripsi yang dapat dicari.

Java 199


https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean

AWS SDK Enkripsi Basis Data Panduan Developer

(@ Note
SDK Enkripsi AWS Database tidak mendukung anotasi pada atribut bersarang.

APl DynamoDB tingkat rendah

Anda dapat mengonfigurasi APl DynamoDB tingkat rendah dengan untuk secara otomatis

mengenkripsi dan menandatangani item DynamoDbEncryptionInterceptor sisi klien dengan
permintaan DynamoDB Anda. PutItem

Anda harus menggunakan API DynamoDB tingkat rendah untuk menggunakan enkripsi yang
dapat dicari.

Tingkat yang lebih rendah DynamoDbItemEncryptor

Tingkat yang lebih rendah DynamoDbItemEncryptor secara langsung mengenkripsi dan
menandatangani atau mendekripsi dan memverifikasi item tabel Anda tanpa memanggil
DynamoDB. Itu tidak membuat DynamoDB atau PutItem permintaanGetItem. Misalnya,
Anda dapat menggunakan level yang lebih rendah DynamoDbItemEncryptor untuk langsung
mendekripsi dan memverifikasi item DynamoDB yang telah Anda ambil.

Tingkat yang lebih rendah DynamoDbItemEncryptor tidak mendukung enkripsi yang dapat
dicari.

Tindakan atribut dalam SDK Enkripsi AWS Database untuk DynamoDB

Tindakan atribut menentukan nilai atribut mana yang dienkripsi dan ditandatangani, yang hanya

ditandatangani, yang ditandatangani dan disertakan dalam konteks enkripsi, dan mana yang
diabaikan.

® Note

Untuk menggunakan tindakan STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT kriptografi,
Anda harus menggunakan SDK Enkripsi AWS Database versi 3.3 atau yang lebih baru.
Terapkan versi baru ke semua pembaca sebelum memperbarui model data Anda untuk
disertakanSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Java

200


https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html

AWS SDK Enkripsi Basis Data Panduan Developer

Jika Anda menggunakan APl DynamoDB tingkat rendah atau level yang DynamoDbItemEncryptor
lebih rendah, Anda harus menentukan tindakan atribut secara manual. Jika Anda menggunakan
DynamoDB Enhanced Client, Anda dapat menentukan tindakan atribut secara manual, atau

Anda dapat menggunakan kelas data beranotasi untuk menghasilkan. TableSchema Untuk
menyederhanakan proses konfigurasi, kami sarankan menggunakan kelas data beranotasi. Bila Anda
menggunakan kelas data beranotasi, Anda hanya perlu memodelkan objek Anda sekali.

(@ Note

Setelah menentukan tindakan atribut, Anda harus menentukan atribut mana yang
dikecualikan dari tanda tangan. Untuk mempermudah menambahkan atribut unsigned baru di
masa mendatang, sebaiknya pilih awalan yang berbeda (seperti ": “) untuk mengidentifikasi
atribut unsigned Anda. Sertakan awalan ini dalam nama atribut untuk semua atribut yang

ditandai DO_NOTHING saat Anda menentukan skema DynamoDB dan tindakan atribut.

Gunakan kelas data beranotasi

Gunakan kelas data beranotasi untuk menentukan tindakan atribut Anda dengan DynamoDB
Enhanced Client dan. DynamoDbEncryptionInterceptor SDK Enkripsi AWS Database untuk

DynamoDB menggunakan anotasi atribut DynamoDB standar yang menentukan jenis atribut untuk

menentukan cara melindungi atribut. Secara default, semua atribut dienkripsi dan ditandatangani
kecuali kunci utama, yang ditandatangani tetapi tidak dienkripsi.

(® Note

Untuk menggunakan tindakan STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT kriptografi,
Anda harus menggunakan SDK Enkripsi AWS Database versi 3.3 atau yang lebih baru.
Terapkan versi baru ke semua pembaca sebelum memperbarui model data Anda untuk
disertakanSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Lihat SimpleClass.java di repositori aws-database-encryption-sdk -dynamodb untuk panduan GitHub

lebih lanjut tentang anotasi DynamoDB Enhanced Client.

Secara default, atribut kunci primer ditandatangani tetapi tidak dienkripsi (SIGN_ONLY) dan
semua atribut lainnya dienkripsi dan ditandatangani (). ENCRYPT_AND_SIGN Jika Anda
mendefinisikan atribut apa pun sebagaiSTIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT,
maka atribut partisi dan sortir juga harusSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Java 201


https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/enhanced/dynamodb/mapper/annotations/package-summary.html
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java

AWS SDK Enkripsi Basis Data Panduan Developer

Untuk menentukan pengecualian, gunakan anotasi enkripsi yang ditentukan dalam
pustaka enkripsi sisi klien Java untuk DynamoDB. Misalnya, jika Anda ingin atribut
tertentu hanya ditandatangani, gunakan @DynamoDbEncryptionSignOnly anotasi.
Jika Anda ingin atribut tertentu ditandatangani dan disertakan dalam konteks enkripsi,
gunakan@DynamoDbEncryptionSignAndIncludeInEncryptionContext. Jika
Anda ingin atribut tertentu tidak ditandatangani atau dienkripsi (DO_NOTHING), gunakan
anotasi@DynamoDbEncryptionDoNothing.

@ Note
SDK Enkripsi AWS Database tidak mendukung anotasi pada atribut bersarang.

Contoh berikut menunjukkan anotasi yang digunakan untuk
mendefinisikanENCRYPT_AND_SIGN,SIGN_ONLY, dan DO_NOTHING atribut

tindakan. Untuk contoh yang menunjukkan anotasi yang digunakan untuk
mendefinisikanSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, lihat SimpleClass4.java.

@DynamoDbBean
public class SimpleClass {

private String partitionKey;
private int sortKey;

private String attributel;
private String attribute2;
private String attribute3;

@DynamoDbPartitionKey
@DynamoDbAttribute(value = "partition_key")
public String getPartitionKey() {

return this.partitionKey;

}

public void setPartitionKey(String partitionKey) {
this.partitionKey = partitionKey;

}

@DynamoDbSortKey
@DynamoDbAttribute(value = "sort_key")
public int getSortKey() {

return this.sortKey;

Java 202


https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS SDK Enkripsi Basis Data Panduan Developer

}

public void setSortKey(int sortKey) {
this.sortKey = sortKey;

public String getAttributel() {
return this.attributel;

public void setAttributel(String attributel) {
this.attributel = attributel;

@DynamoDbEncryptionSignOnly
public String getAttribute2() {
return this.attribute2;

public void setAttribute2(String attribute2) {
this.attribute2 = attribute?2;

@DynamoDbEncryptionDoNothing
public String getAttribute3() {
return this.attribute3;

@DynamoDbAttribute(value = ":attribute3")
public void setAttribute3(String attribute3) {
this.attribute3 = attribute3;

Gunakan kelas data beranotasi Anda untuk membuat TableSchema seperti yang ditunjukkan dalam
cuplikan berikut.

final TableSchema<SimpleClass> tableSchema = TableSchema.fromBean(SimpleClass.class);

Java 203



AWS SDK Enkripsi Basis Data Panduan Developer

Tentukan tindakan atribut Anda secara manual

Untuk menentukan tindakan atribut secara manual, buat Map objek di mana pasangan nama-nilai
mewakili nama atribut dan tindakan yang ditentukan.

Tentukan ENCRYPT_AND_SIGN untuk mengenkripsi dan menandatangani atribut.

Tentukan SIGN_ONLY untuk menandatangani, tetapi tidak mengenkripsi, atribut. Tentukan
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT untuk menandatangani atribut dan sertakan
dalam konteks enkripsi. Anda tidak dapat mengenkripsi atribut tanpa menandatanganinya juga.
Tentukan DO_NOTHING untuk mengabaikan atribut.

Partisi dan atribut sortir harus salah satu STGN_ONLY
atauSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Jika Anda mendefinisikan atribut apa pun
sebagaiSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, maka atribut partisi dan sortir juga
harusSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

(@ Note

Untuk menggunakan tindakan STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT kriptografi,
Anda harus menggunakan SDK Enkripsi AWS Database versi 3.3 atau yang lebih baru.
Terapkan versi baru ke semua pembaca sebelum memperbarui model data Anda untuk
disertakanSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be signed
attributeActionsOnEncrypt.put("partition_key",
CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
// The sort attribute must be signed
attributeActionsOnEncrypt.put("sort_key",
CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
attributeActionsOnEncrypt.put("attributel"”, CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute3",
CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
attributeActionsOnEncrypt.put(":attributes4", CryptoAction.DO_NOTHING);

Java 204



AWS SDK Enkripsi Basis Data Panduan Developer

Konfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB

Bila Anda menggunakan AWS Database Encryption SDK, Anda harus secara eksplisit menentukan
konfigurasi enkripsi untuk tabel DynamoDB Anda. Nilai yang diperlukan dalam konfigurasi enkripsi
Anda bergantung pada apakah Anda mendefinisikan tindakan atribut secara manual atau dengan
kelas data beranotasi.

Cuplikan berikut mendefinisikan konfigurasi enkripsi tabel DynamoDB menggunakan DynamoDB
Enhanced Client, TableSchemadan mengizinkan atribut unsigned yang ditentukan oleh awalan yang
berbeda.

final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
HashMap<>();
tableConfigs.put(ddbTableName,
DynamoDbEnhancedTableEncryptionConfig.builder()
.logicalTableName(ddbTableName)
.keyring(kmsKeyring)
.allowedUnsignedAttributePrefix(unsignedAttrPrefix)
.schemaOnEncrypt(tableSchema)
// Optional: only required if you use beacons
.search(SearchConfig.builder()
.writeVersion(1l) // MUST be 1
.versions(beaconVersions)
.build())
.build());

Nama tabel logis
Sebuah nama tabel logis untuk tabel DynamoDB Anda.

Nama tabel logis terikat secara kriptografis ke semua data yang disimpan dalam tabel untuk
menyederhanakan operasi pemulihan DynamoDB. Kami sangat menyarankan untuk menentukan
nama tabel DynamoDB Anda sebagai nama tabel logis saat Anda pertama kali menentukan
konfigurasi enkripsi Anda. Anda harus selalu menentukan nama tabel logis yang sama. Agar
dekripsi berhasil, nama tabel logis harus sesuai dengan nama yang ditentukan pada enkripsi. Jika
nama tabel DynamoDB Anda berubah setelah memulihkan tabel DynamoDB Anda dari cadangan,
nama tabel logis memastikan bahwa operasi dekripsi masih mengenali tabel.

Atribut yang tidak ditandatangani yang diizinkan

Atribut yang ditandai DO_NOTHING dalam tindakan atribut Anda.

Java 205


https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK Enkripsi Basis Data Panduan Developer

Atribut unsigned yang diizinkan memberi tahu klien atribut mana yang dikecualikan dari tanda
tangan. Klien mengasumsikan bahwa semua atribut lainnya termasuk dalam tanda tangan.
Kemudian, saat mendekripsi catatan, klien menentukan atribut mana yang perlu diverifikasi dan
mana yang harus diabaikan dari atribut unsigned yang diizinkan yang Anda tentukan. Anda tidak
dapat menghapus atribut dari atribut yang tidak ditandatangani yang diizinkan.

Anda dapat menentukan atribut unsigned yang diizinkan secara eksplisit dengan membuat

array yang mencantumkan semua atribut Anda. DO_NOTHING Anda juga dapat menentukan
awalan yang berbeda saat menamai DO_NOTHING atribut Anda dan menggunakan awalan untuk
memberi tahu klien atribut mana yang tidak ditandatangani. Kami sangat menyarankan untuk
menentukan awalan yang berbeda karena menyederhanakan proses penambahan DO_NOTHING
atribut baru di masa depan. Untuk informasi selengkapnya, lihat Memperbarui model data Anda.

Jika Anda tidak menentukan awalan untuk semua DO_NOTHING atribut, Anda dapat
mengonfigurasi allowedUnsignedAttributes array yang secara eksplisit mencantumkan
semua atribut yang diharapkan klien tidak ditandatangani saat bertemu dengan mereka pada
dekripsi. Anda hanya harus secara eksplisit mendefinisikan atribut unsigned yang diizinkan jika
benar-benar diperlukan.

Konfigurasi Pencarian (Opsional)

SearchConfigMendefinisikan versi beacon.

SearchConfigHarus ditentukan untuk menggunakan enkripsi yang dapat dicari atau suar yang

ditandatangani.

Suite Algoritma (Opsional)

algorithmSuiteIdMendefinisikan algoritma mana yang sesuai dengan AWS Database
Encryption SDK yang digunakan.

Kecuali Anda secara eksplisit menentukan rangkaian algoritme alternatif, SDK Enkripsi AWS
Database menggunakan rangkaian algoritme default. Rangkaian algoritma default menggunakan
algoritma AES-GCM dengan derivasi kunci, tanda tangan digital, dan komitmen kunci. Meskipun
rangkaian algoritme default kemungkinan cocok untuk sebagian besar aplikasi, Anda dapat

memilih rangkaian algoritma alternatif. Misalnya, beberapa model kepercayaan akan dipenuhi
oleh rangkaian algoritma tanpa tanda tangan digital. Untuk informasi tentang rangkaian algoritme
yang didukung SDK Enkripsi AWS Database, lihatRangkaian algoritme yang didukung di SDK
Enkripsi AWS Database.

Java

206



AWS SDK Enkripsi Basis Data Panduan Developer

Untuk memilih rangkaian algoritma AES-GCM tanpa tanda tangan digital ECDSA, sertakan
cuplikan berikut dalam konfigurasi enkripsi tabel Anda.

.algorithmSuiteId(
DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384)

Memperbarui item dengan SDK Enkripsi AWS Database

SDK Enkripsi AWS Database tidak mendukung ddb: Updateltem untuk item yang telah dienkripsi
atau ditandatangani. Untuk memperbarui item terenkripsi atau ditandatangani, Anda harus
menggunakan ddb:. Putltem Saat Anda menentukan kunci utama yang sama dengan item yang ada
dalam PutItem permintaan Anda, item baru sepenuhnya menggantikan item yang ada. Anda juga
dapat menggunakan CLOBBER untuk menghapus dan mengganti semua atribut yang disimpan
setelah memperbarui item Anda.

Mendekripsi set yang ditandatangani

Di SDK Enkripsi AWS Database versi 3.0.0 dan 3.1.0, jika Anda menentukan atribut tipe set
sebagaiSIGN_ONLY, nilai himpunan akan dikanonikalisasi dalam urutan yang disediakan. DynamoDB
tidak mempertahankan urutan set. Akibatnya, ada kemungkinan validasi tanda tangan dari item yang
berisi set akan gagal. Validasi tanda tangan gagal ketika nilai set dikembalikan dalam urutan yang
berbeda dari yang diberikan ke SDK Enkripsi AWS Database, meskipun atribut set berisi nilai yang
sama.

(@ Note

Versi 3.1.1 dan yang lebih baru dari AWS Database Encryption SDK mengkanonikalisasikan
nilai semua atribut tipe set, sehingga nilai dibaca dalam urutan yang sama dengan yang
ditulis ke DynamoDB.

Jika validasi tanda tangan gagal, operasi dekripsi gagal dan mengembalikan pesan kesalahan
berikut.

software.amazon.cryptography.dbencryptionsdk.structuredencryption.model. StructuredEncrypti
onException: Tidak ada tag penerima yang cocok.

Java 207


https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapperConfig.SaveBehavior.html#CLOBBER
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.SetTypes

AWS SDK Enkripsi Basis Data Panduan Developer

Jika Anda menerima pesan kesalahan di atas, dan yakin bahwa item yang Anda coba

dekripsi menyertakan set yang ditandatangani menggunakan versi 3.0.0 atau 3.1.0, lihat
DecryptWithPermutedirektori repositori aws-database-encryption-sdk -dynamodb-java untuk detail
tentang cara berhasil memvalidasi set. GitHub

Contoh Java

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Contoh berikut menunjukkan cara menggunakan pustaka enkripsi sisi klien Java untuk DynamoDB
untuk melindungi item tabel dalam aplikasi Anda. Anda dapat menemukan lebih banyak contoh (dan
berkontribusi sendiri) di contoh Java di repositori aws-database-encryption-sdk -dynamodb di. GitHub

Contoh berikut menunjukkan cara mengonfigurasi pustaka enkripsi sisi klien Java untuk DynamoDB
dalam tabel Amazon DynamoDB baru yang tidak terisi. Jika Anda ingin mengonfigurasi tabel Amazon
DynamoDB yang ada untuk enkripsi sisi klien, lihat. Tambahkan versi 3.x ke tabel yang ada

Topik

« Menggunakan klien yang disempurnakan DynamoDB

« Menggunakan APl DynamoDB tingkat rendah

« Menggunakan level yang lebih rendah DynamoDbltemEncryptor

Menggunakan klien yang disempurnakan DynamoDB

Contoh berikut menunjukkan cara menggunakan DynamoDB Enhanced Client
DynamoDbEncryptionInterceptor dan dengan keyring untuk mengenkripsi item tabel
DynamoDB AWS KMS sebagai bagian dari panggilan APl DynamoDB Anda.

Anda dapat menggunakan keyring apa pun yang didukung dengan DynamoDB Enhanced Client,
tetapi sebaiknya gunakan salah AWS KMS satu gantungan kunci bila memungkinkan.

(® Note

DynamoDB Enhanced Client tidak mendukung enkripsi yang dapat dicari. Gunakan
DynamoDbEncryptionInterceptor dengan APl DynamoDB tingkat rendah untuk
menggunakan enkripsi yang dapat dicari.

Java 208


https://github.com/aws/aws-database-encryption-sdk-dynamodb-java/tree/v3.1.1/DecryptWithPermute
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples

AWS SDK Enkripsi Basis Data Panduan Developer

Lihat contoh kode lengkapnya: EnhancedPutGetExample.java

Langkah 1: Buat AWS KMS keyring

Contoh berikut digunakan CreateAwsKmsMrkMultiKeyring untuk membuat AWS KMS
keyring dengan kunci KMS enkripsi simetris. CreateAwsKmsMrkMultiKeyringMetode ini
memastikan bahwa keyring akan menangani tombol Single-region dan Multi-region dengan benar.

final MaterialProviders matProv = MaterialProviders.builder()

.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
CreateAwsKmsMrkMultiKeyringInput.builder()
.generator(kmsKeyId)
.build();

final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Langkah 2: Buat skema tabel dari kelas data beranotasi
Contoh berikut menggunakan kelas data beranotasi untuk membuat. TableSchema

Contoh ini mengasumsikan bahwa kelas data beranotasi dan tindakan atribut didefinisikan
menggunakan .java. SimpleClass Untuk panduan selengkapnya tentang menganotasi tindakan
atribut Anda, lihat. Gunakan kelas data beranotasi

® Note
SDK Enkripsi AWS Database tidak mendukung anotasi pada atribut bersarang.

final TableSchema<SimpleClass> schemaOnEncrypt =
TableSchema.fromBean(SimpleClass.class);

Langkah 3: Tentukan atribut mana yang dikecualikan dari tanda tangan

Contoh berikut mengasumsikan bahwa semua DO_NOTHING atribut berbagi awalan yang
berbeda ":“, dan menggunakan awalan untuk menentukan atribut unsigned yang diizinkan. Klien
mengasumsikan bahwa nama atribut apa pun dengan awalan ":" dikecualikan dari tanda tangan.
Untuk informasi selengkapnya, lihat Allowed unsigned attributes.

Java 209


https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/EnhancedPutGetExample.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html

AWS SDK Enkripsi Basis Data Panduan Developer

final String unsignedAttrPrefix = ":";

Langkah 4: Buat konfigurasi enkripsi

Contoh berikut mendefinisikan tableConfigs Peta yang mewakili konfigurasi enkripsi untuk
tabel DynamoDB.

Contoh ini menentukan nama tabel DynamoDB sebagai nama tabel logis. Kami sangat
menyarankan untuk menentukan nama tabel DynamoDB Anda sebagai nhama tabel logis saat
Anda pertama kali menentukan konfigurasi enkripsi Anda. Untuk informasi selengkapnya, lihat
Konfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB.

® Note

Untuk menggunakan enkripsi yang dapat dicari atau suar yang ditandatangani, Anda juga
harus menyertakan SearchConfigdalam konfigurasi enkripsi Anda.

final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
HashMap<>();
tableConfigs.put(ddbTableName,
DynamoDbEnhancedTableEncryptionConfig.buildexr()
.logicalTableName(ddbTableName)
.keyring(kmsKeyring)
.allowedUnsignedAttributePrefix(unsignedAttrPrefix)
.schemaOnEncrypt(tableSchema)
.build());

Langkah 5: Menciptakan DynamoDbEncryptionInterceptor

Contoh berikut membuat yang baru DynamoDbEncryptionInterceptor dengan
tableConfigs dari Langkah 4.

final DynamoDbEncryptionInterceptor interceptor =
DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptox(
CreateDynamoDbEncryptionInterceptorInput.builder()
.tableEncryptionConfigs(tableConfigs)
.build()
);

Java 210



AWS SDK Enkripsi Basis Data Panduan Developer

Langkah 6: Buat klien AWS SDK DynamoDB baru

Contoh berikut membuat klien AWS SDK DynamoDB baru menggunakan intexceptor dari
Langkah 5.

final DynamoDbClient ddb = DynamoDbClient.buildexr()
.overrideConfiguration(
ClientOverrideConfiguration.builder()
.addExecutionInterceptor(interceptor)
.build())
.build();

Langkah 7: Buat DynamoDB Enhanced Client dan buat tabel

Contoh berikut membuat DynamoDB Enhanced Client menggunakan klien AWS SDK DynamoDB
yang dibuat pada Langkah 6 dan membuat tabel menggunakan class data beranotasi.

final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.buildexr()
.dynamoDbClient(ddb)
.build();
final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
tableSchema);

Langkah 8: Enkripsi dan tandatangani item tabel

Contoh berikut menempatkan item ke dalam tabel DynamoDB menggunakan DynamoDB
Enhanced Client. Item dienkripsi dan ditandatangani sisi klien sebelum dikirim ke DynamoDB.

final SimpleClass item = new SimpleClass();
item.setPartitionKey("EnhancedPutGetExample");
item.setSortKey(0);
item.setAttributel("encrypt and sign me!");
item.setAttribute2("sign me!");
item.setAttribute3("ignore me!");

table.putItem(item);

Java 211



AWS SDK Enkripsi Basis Data Panduan Developer

Menggunakan APl DynamoDB tingkat rendah

Contoh berikut menunjukkan cara menggunakan API DynamoDB tingkat rendah dengan keyring
untuk secara otomatis mengenkripsi dan menandatangani item sisi klien dengan AWS KMS
permintaan DynamoDB Anda. PutItem

Anda dapat menggunakan keyring apa pun yang didukung, tetapi kami sarankan menggunakan salah
satu AWS KMS gantungan kunci bila memungkinkan.

Lihat contoh kode lengkapnya: BasicPutGetExample.java

Langkah 1: Buat AWS KMS keyring

Contoh berikut digunakan CreateAwsKmsMrkMultiKeyring untuk membuat AWS KMS
keyring dengan kunci KMS enkripsi simetris. CreateAwsKmsMrkMultiKeyringMetode ini
memastikan bahwa keyring akan menangani tombol Single-region dan Multi-region dengan benar.

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
CreateAwsKmsMrkMultiKeyringInput.builder()
.generator(kmsKeyId)
.build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Langkah 2: Konfigurasikan tindakan atribut Anda

Contoh berikut mendefinisikan attributeActionsOnEncrypt Peta yang mewakili tindakan
atribut sampel untuk item tabel.

@ Note

Contoh berikut tidak mendefinisikan atribut apa pun
sebagaiSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Jika Anda menentukan
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut apa pun, maka atribut partisi
dan sortir juga harusSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be SIGN_ONLY

Java 212


https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/BasicPutGetExample.java

AWS SDK Enkripsi Basis Data Panduan Developer

attributeActionsOnEncrypt.put("partition_key", CryptoAction.SIGN_ONLY);

// The sort attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("sort_key", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attributel"”, CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put(":attribute3", CryptoAction.DO_NOTHING);

Langkah 3: Tentukan atribut mana yang dikecualikan dari tanda tangan

Contoh berikut mengasumsikan bahwa semua DO_NOTHING atribut berbagi awalan yang
berbeda ":“, dan menggunakan awalan untuk menentukan atribut unsigned yang diizinkan. Klien
mengasumsikan bahwa nama atribut apa pun dengan awalan ":" dikecualikan dari tanda tangan.
Untuk informasi selengkapnya, lihat Allowed unsigned attributes.

final String unsignedAttrPrefix = ":";

Langkah 4: Tentukan konfigurasi enkripsi tabel DynamoDB

Contoh berikut mendefinisikan tableConfigs Peta yang mewakili konfigurasi enkripsi untuk
tabel DynamoDB ini.

Contoh ini menentukan nama tabel DynamoDB sebagai nama tabel logis. Kami sangat
menyarankan untuk menentukan nama tabel DynamoDB Anda sebagai nama tabel logis saat
Anda pertama kali menentukan konfigurasi enkripsi Anda. Untuk informasi selengkapnya, lihat
Konfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB.

(® Note

Untuk menggunakan enkripsi yang dapat dicari atau suar yang ditandatangani, Anda juga
harus menyertakan SearchConfigdalam konfigurasi enkripsi Anda.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
.logicalTableName(ddbTableName)
.partitionKeyName("partition_key")
.sortKeyName("sort_key")
.attributeActionsOnEncrypt(attributeActionsOnEncrypt)
.keyring(kmsKeyring)
.allowedUnsignedAttributePrefix(unsignedAttrPrefix)
.build();

Java

213



AWS SDK Enkripsi Basis Data Panduan Developer

tableConfigs.put(ddbTableName, config);

Langkah 5: Buat DynamoDbEncryptionInterceptor

Contoh berikut menciptakan DynamoDbEncryptionInterceptor menggunakan
tableConfigs dari Langkah 4.

DynamoDbEncryptionInterceptor interceptor = DynamoDbEncryptionInterceptor.builder()
.config(DynamoDbTablesEncryptionConfig.builder()
.tableEncryptionConfigs(tableConfigs)
.build())
.build();

Langkah 6: Buat klien AWS SDK DynamoDB baru

Contoh berikut membuat klien AWS SDK DynamoDB baru menggunakan interceptor dari
Langkah 5.

final DynamoDbClient ddb = DynamoDbClient.buildexr()
.overrideConfiguration(
ClientOverrideConfiguration.builder()
.addExecutionInterceptor(interceptor)
.build())
.build();

Langkah 7: Enkripsi dan tandatangani item tabel DynamoDB

Contoh berikut mendefinisikan item Peta yang mewakili item tabel sampel dan menempatkan
item dalam tabel DynamoDB. Item dienkripsi dan ditandatangani sisi klien sebelum dikirim ke
DynamoDB.

final HashMap<String, AttributeValue> item = new HashMap<>();
item.put("partition_key", AttributeValue.builder().s("BasicPutGetExample").build());
item.put("sort_key", AttributeValue.builder().n("@").build());
item.put("attributel", AttributeValue.builder().s("encrypt and sign me!").build());
item.put("attribute2", AttributeValue.builder().s("sign me!").build());
item.put(":attribute3", AttributeValue.builder().s("ignore me!").build());

final PutItemRequest putRequest = PutItemRequest.builder()
.tableName(ddbTableName)
.item(item)
.build();

Java 214



AWS SDK Enkripsi Basis Data Panduan Developer

final PutItemResponse putResponse = ddb.putItem(putRequest);

Menggunakan level yang lebih rendah DynamoDbltemEncryptor

Contoh berikut menunjukkan cara menggunakan level yang lebih rendah DynamoDbItemEncryptor
dengan AWS KMS keyring untuk langsung mengenkripsi dan menandatangani item tabel.
DynamoDbItemEncryptorltu tidak menempatkan item di tabel DynamoDB Anda.

Anda dapat menggunakan keyring apa pun yang didukung dengan DynamoDB Enhanced Client,
tetapi sebaiknya gunakan salah AWS KMS satu gantungan kunci bila memungkinkan.

(® Note

Tingkat yang lebih rendah DynamoDbItemEncryptor tidak mendukung enkripsi yang dapat
dicari. Gunakan DynamoDbEncryptionInterceptor dengan API DynamoDB tingkat
rendah untuk menggunakan enkripsi yang dapat dicari.

Lihat contoh kode lengkapnya: ItemEncryptDecryptExample.java

Langkah 1: Buat AWS KMS keyring

Contoh berikut digunakan CreateAwsKmsMrkMultiKeyring untuk membuat AWS KMS
keyring dengan kunci KMS enkripsi simetris. CreateAwsKmsMrkMultiKeyringMetode ini
memastikan bahwa keyring akan menangani tombol Single-region dan Multi-region dengan benar.

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.buildexr().build())
.build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
CreateAwsKmsMrkMultiKeyringInput.builder()
.generator(kmsKeyId)
.build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Langkah 2: Konfigurasikan tindakan atribut Anda

Contoh berikut mendefinisikan attributeActionsOnEncrypt Peta yang mewakili tindakan
atribut sampel untuk item tabel.

Java 215


https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/itemencryptor/ItemEncryptDecryptExample.java

AWS SDK Enkripsi Basis Data Panduan Developer

® Note

Contoh berikut tidak mendefinisikan atribut apa pun
sebagaiSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Jika Anda menentukan
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut apa pun, maka atribut partisi
dan sortir juga harusSTGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("partition_key", CryptoAction.SIGN_ONLY);

// The sort attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("sort_key", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attributel", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put(":attribute3", CryptoAction.DO_NOTHING);

Langkah 3: Tentukan atribut mana yang dikecualikan dari tanda tangan

Contoh berikut mengasumsikan bahwa semua DO_NOTHING atribut berbagi awalan yang
berbeda ":“, dan menggunakan awalan untuk menentukan atribut unsigned yang diizinkan. Klien
mengasumsikan bahwa nama atribut apa pun dengan awalan ":" dikecualikan dari tanda tangan.
Untuk informasi selengkapnya, lihat Allowed unsigned attributes.

final String unsignedAttrPrefix = ":";

Langkah 4: Tentukan DynamoDbItemEncryptor konfigurasi

Contoh berikut mendefinisikan konfigurasi untuk. DynamoDbItemEncryptor

Contoh ini menentukan nama tabel DynamoDB sebagai nama tabel logis. Kami sangat
menyarankan untuk menentukan nama tabel DynamoDB Anda sebagai nama tabel logis saat
Anda pertama kali menentukan konfigurasi enkripsi Anda. Untuk informasi selengkapnya, lihat
Konfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB.

final DynamoDbItemEncryptorConfig config = DynamoDbItemEncryptorConfig.builder()
.logicalTableName(ddbTableName)
.partitionKeyName("partition_key")
.sortKeyName("sort_key")
.attributeActionsOnEncrypt(attributeActionsOnEncrypt)

Java

216



AWS SDK Enkripsi Basis Data Panduan Developer

.keyring(kmsKeyring)
.allowedUnsignedAttributePrefix(unsignedAttrPrefix)
.build();

Langkah 5: Buat DynamoDbItemEncryptor

Contoh berikut membuat baru DynamoDbItemEncryptor menggunakan config dari Langkah
4.

final DynamoDbItemEncryptor itemEncryptor = DynamoDbItemEncryptor.builder()
.DynamoDbItemEncryptorConfig(config)
.build();

Langkah 6: Langsung mengenkripsi dan menandatangani item tabel

Contoh berikut langsung mengenkripsi dan menandatangani item menggunakan.
DynamoDbItemEncryptor DynamoDbItemEncryptorltu tidak menempatkan item di tabel
DynamoDB Anda.

final Map<String, AttributeValue> originalltem = new HashMap<>();
originalItem.put("partition_key",
AttributeValue.builder().s("ItemEncryptDecryptExample").build());
originallItem.put("sort_key", AttributeValue.buildexr().n("0").build());
originallItem.put("attributel”, AttributeValue.builder().s("encrypt and sign
me!").build());

originalltem.put("attribute2", AttributeValue.builder().s("sign me!").build());
originallItem.put(":attribute3", AttributeValue.builder().s("ignore me!").build());

final Map<String, AttributeValue> encryptedItem = itemEncryptor.EncryptItem(
EncryptItemInput.builder()
.plaintextItem(originalItem)
.build()
).encryptedItem();

Konfigurasikan tabel DynamoDB yang ada untuk menggunakan SDK Enkripsi
Database untuk AWS DynamoDB

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Java 217



AWS SDK Enkripsi Basis Data Panduan Developer

Dengan versi 3. x dari pustaka enkripsi sisi klien Java untuk DynamoDB, Anda dapat mengonfigurasi
tabel Amazon DynamoDB yang ada untuk enkripsi sisi klien. Topik ini memberikan panduan tentang
tiga langkah yang harus Anda ambil untuk menambahkan versi 3. x ke tabel DynamoDB yang sudah
ada dan terisi.

Prasyarat

Versi 3. x dari pustaka enkripsi sisi klien Java untuk DynamoDB memerlukan DynamoDB Enhanced
Client yang disediakan di. AWS SDK for Java 2.x Jika Anda masih menggunakan Dynamo
DBMapper, Anda harus bermigrasi ke untuk menggunakan DynamoDB AWS SDK for Java 2.x
Enhanced Client.

Ikuti petunjuk untuk bermigrasi dari versi 1.x ke 2.x dari file. AWS SDK untuk Java

Kemudian, ikuti petunjuk untuk Memulai menggunakan DynamoDB Enhanced Client API.

Sebelum mengkonfigurasi tabel Anda untuk menggunakan pustaka enkripsi sisi klien Java untuk
DynamoDB, Anda perlu membuat TableSchemamenggunakan kelas data beranotasi dan membuat
klien yang disempurnakan.

Langkah 1: Bersiaplah untuk membaca dan menulis item terenkripsi

Selesaikan langkah-langkah berikut untuk mempersiapkan klien SDK Enkripsi AWS Database
Anda untuk membaca dan menulis item terenkripsi. Setelah Anda menerapkan perubahan berikut,
klien Anda akan terus membaca dan menulis item teks biasa. Ini tidak akan mengenkripsi atau
menandatangani item baru yang ditulis ke tabel, tetapi akan dapat mendekripsi item terenkripsi
segera setelah muncul. Perubahan ini mempersiapkan klien untuk mulai mengenkripsi item baru.
Perubahan berikut harus diterapkan ke setiap pembaca sebelum Anda melanjutkan ke langkah
berikutnya.

1. Tentukan tindakan atribut Anda

Perbarui kelas data beranotasi Anda untuk menyertakan tindakan atribut yang menentukan nilai
atribut mana yang akan dienkripsi dan ditandatangani, yang hanya akan ditandatangani, dan
mana yang akan diabaikan.

Lihat SimpleClass.java di repositori aws-database-encryption-sdk -dynamodb untuk panduan
GitHub lebih lanjut tentang anotasi DynamoDB Enhanced Client.

Secara default, atribut kunci primer ditandatangani tetapi tidak dienkripsi (SIGN_ONLY)
dan semua atribut lainnya dienkripsi dan ditandatangani (). ENCRYPT_AND_SIGN Untuk

Java 218


https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java

AWS SDK Enkripsi Basis Data Panduan Developer

menentukan pengecualian, gunakan anotasi enkripsi yang ditentukan dalam pustaka
enkripsi sisi klien Java untuk DynamoDB. Misalnya, jika Anda ingin atribut tertentu
ditandatangani hanya gunakan @DynamoDbEncryptionSignOnly anotasi. Jika Anda
ingin atribut tertentu ditandatangani dan disertakan dalam konteks enkripsi, gunakan
@DynamoDbEncryptionSignAndIncludeInEncryptionContext anotasi. Jika
Anda ingin atribut tertentu tidak ditandatangani atau dienkripsi (DO_NOTHING), gunakan
anotasi@DynamoDbEncryptionDoNothing.

(@ Note

Jika Anda menentukan STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut apa
pun, maka atribut partisi dan sortir juga
harusSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Untuk contoh yang menunjukkan anotasi yang digunakan untuk
mendefinisikanSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, lihat
SimpleClass4.java.

Misalnya anotasi, lihatGunakan kelas data beranotasi.

2. Tentukan atribut mana yang akan dikecualikan dari tanda tangan

Contoh berikut mengasumsikan bahwa semua DO_NOTHING atribut berbagi awalan yang berbeda
":% dan menggunakan awalan untuk menentukan atribut unsigned yang diizinkan. Klien akan
menganggap bahwa nama atribut apa pun dengan awalan : " dikecualikan dari tanda tangan.
Untuk informasi selengkapnya, lihat Allowed unsigned attributes.

final String unsignedAttrPrefix = ":";

3. Buat keyring

Contoh berikut membuat AWS KMS keyring. AWS KMS Keyring menggunakan enkripsi simetris
atau RSA asimetris AWS KMS keys untuk menghasilkan, mengenkripsi, dan mendekripsi kunci
data.

Contoh ini digunakan CreateMrkMultiKeyring untuk membuat AWS KMS keyring dengan
kunci KMS enkripsi simetris. CreateAwsKmsMrkMultiKeyringMetode ini memastikan bahwa
keyring akan menangani tombol Single-region dan Multi-region dengan benar.

final MaterialProviders matProv = MaterialProviders.builder()

Java 219


https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS SDK Enkripsi Basis Data Panduan Developer

.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
CreateAwsKmsMrkMultiKeyringInput.builder()
.generator(kmsKeyId)
.build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

4. Tentukan konfigurasi enkripsi tabel DynamoDB

Contoh berikut mendefinisikan tableConfigs Peta yang mewakili konfigurasi enkripsi untuk
tabel DynamoDB ini.

Contoh ini menentukan nama tabel DynamoDB sebagai nama tabel logis. Kami sangat
menyarankan untuk menentukan nama tabel DynamoDB Anda sebagai nama tabel logis saat
Anda pertama kali menentukan konfigurasi enkripsi Anda. Untuk informasi selengkapnya, lihat
Konfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB.

Anda harus menentukan FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT sebagai
plaintext override. Kebijakan ini terus membaca dan menulis item teks biasa, membaca item
terenkripsi, dan mempersiapkan klien untuk menulis item terenkripsi.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()

.logicalTableName(ddbTableName)

.partitionKeyName("partition_key")

.sortKeyName("sort_key")

.schemaOnEncrypt(tableSchema)

.keyring(kmsKeyring)

.allowedUnsignedAttributePrefix(unsignedAttrPrefix)

.plaintextOverride(PlaintextOverride.FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT)

.build();
tableConfigs.put(ddbTableName, config);

5. Buat DynamoDbEncryptionInterceptor

Contoh berikut menciptakan DynamoDbEncryptionInterceptor menggunakan
tableConfigs dari Langkah 3.

DynamoDbEncryptionInterceptor interceptor = DynamoDbEncryptionInterceptor.builder()

Java 220



AWS SDK Enkripsi Basis Data Panduan Developer

.config(DynamoDbTablesEncryptionConfig.builder()
.tableEncryptionConfigs(tableConfigs)
.build())

.build();

Langkah 2: Tulis item terenkripsi dan ditandatangani

Perbarui kebijakan plaintext dalam DynamoDbEncryptionInterceptor konfigurasi Anda untuk
memungkinkan klien menulis item terenkripsi dan ditandatangani. Setelah Anda menerapkan
perubahan berikut, klien akan mengenkripsi dan menandatangani item baru berdasarkan tindakan
atribut yang Anda konfigurasikan di Langkah 1. Klien akan dapat membaca item teks biasa dan item
terenkripsi dan ditandatangani.

Sebelum Anda melanjutkan ke Langkah 3, Anda harus mengenkripsi dan menandatangani semua
item plaintext yang ada di tabel Anda. Tidak ada metrik atau kueri tunggal yang dapat Anda jalankan
untuk mengenkripsi item plaintext yang ada dengan cepat. Gunakan proses yang paling masuk

akal untuk sistem Anda. Misalnya, Anda dapat menggunakan proses asinkron yang memindai tabel
secara perlahan dan menulis ulang item menggunakan tindakan atribut dan konfigurasi enkripsi yang
Anda tentukan. Untuk mengidentifikasi item plaintext dalam tabel Anda, kami sarankan memindai
semua item yang tidak berisi aws_dbe_head dan aws_dbe_foot atribut yang ditambahkan SDK
Enkripsi AWS Database ke item saat dienkripsi dan ditandatangani.

Contoh berikut memperbarui konfigurasi enkripsi tabel dari Langkah 1. Anda harus memperbarui
penggantian plaintext dengan. FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT Kebijakan
ini terus membaca item teks biasa, tetapi juga membaca dan menulis item terenkripsi. Buat yang baru
DynamoDbEncryptionInterceptor menggunakan yang diperbaruitableConfigs.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()

.logicalTableName(ddbTableName)

.partitionKeyName("partition_key")

.sortKeyName("sort_key")

.schemaOnEncrypt(tableSchema)

.keyring(kmsKeyring)

.allowedUnsignedAttributePrefix(unsignedAttrPrefix)

.plaintextOverride(PlaintextOverride.FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT)
.build();
tableConfigs.put(ddbTableName, config);

Java 221



AWS SDK Enkripsi Basis Data Panduan Developer

Langkah 3: Hanya baca item terenkripsi dan ditandatangani

Setelah Anda mengenkripsi dan menandatangani semua item Anda, perbarui penggantian plaintext
dalam DynamoDbEncryptionInterceptor konfigurasi Anda untuk hanya mengizinkan klien
membaca dan menulis item terenkripsi dan ditandatangani. Setelah Anda menerapkan perubahan
berikut, klien akan mengenkripsi dan menandatangani item baru berdasarkan tindakan atribut

yang Anda konfigurasikan di Langkah 1. Klien hanya akan dapat membaca item terenkripsi dan
ditandatangani.

Contoh berikut memperbarui konfigurasi enkripsi tabel dari Langkah 2. Anda dapat memperbarui
penggantian plaintext dengan FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT atau
menghapus kebijakan plaintext dari konfigurasi Anda. Klien hanya membaca dan menulis item
terenkripsi dan ditandatangani secara default. Buat yang baru DynamoDbEncryptionInterceptor
menggunakan yang diperbaruitableConfigs.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()

.logicalTableName(ddbTableName)

.partitionKeyName("partition_key")

.sortKeyName("sort_key")

.schemaOnEncrypt(tableSchema)

.keyring(kmsKeyring)

.allowedUnsignedAttributePrefix(unsignedAttrPrefix)

// Optional: you can also remove the plaintext policy from your configuration

.plaintextOverride(PlaintextOverride.FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT)
.build();
tableConfigs.put(ddbTableName, config);

Migrasi ke versi 3.x pustaka enkripsi sisi klien Java untuk DynamoDB

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Versi 3. x dari pustaka enkripsi sisi klien Java untuk DynamoDB adalah penulisan ulang utama dari
2. basis kode x. Ini mencakup banyak pembaruan, seperti format data terstruktur baru, dukungan
multitenancy yang ditingkatkan, perubahan skema yang mulus, dan dukungan enkripsi yang dapat
dicari. Topik ini memberikan panduan tentang cara memigrasikan kode Anda ke versi 3. x.

Java 222



AWS SDK Enkripsi Basis Data Panduan Developer

Migrasi dari versi 1.x ke 2.x

Migrasi ke versi 2. x sebelum Anda bermigrasi ke versi 3. x. Versi 2. x mengubah simbol untuk
Penyedia Terbaru dari MostRecentProvider keCachingMostRecentProvider. Jika saat
ini Anda menggunakan versi 1. x dari pustaka enkripsi sisi klien Java untuk DynamoDB dengan
MostRecentProvider simbol, Anda harus memperbarui nama simbol dalam kode Anda ke.
CachingMostRecentProvider Untuk informasi selengkapnya, lihat Pembaruan ke Penyedia

Terbaru.
Migrasi dari versi 2.x ke 3.x

Prosedur berikut menjelaskan cara memigrasikan kode Anda dari versi 2. x ke versi 3. x dari pustaka
enkripsi sisi klien Java untuk DynamoDB.

Langkah 1. Bersiaplah untuk membaca item dalam format baru

Selesaikan langkah-langkah berikut untuk mempersiapkan klien SDK Enkripsi AWS Database Anda
untuk membaca item dalam format baru. Setelah Anda menerapkan perubahan berikut, klien Anda
akan terus berperilaku dengan cara yang sama seperti di versi 2. x. Klien Anda akan terus membaca
dan menulis item dalam versi 2. x format, tetapi perubahan ini mempersiapkan klien untuk membaca
item dalam format baru.

Perbarui AWS SDK untuk Java ke versi 2.x

Versi 3. x dari pustaka enkripsi sisi klien Java untuk DynamoDB memerlukan DynamoDB
Enhanced Client. DynamoDB Enhanced Client menggantikan Dynamo yang digunakan dalam
DBMapper versi sebelumnya. Untuk menggunakan klien yang disempurnakan, Anda harus
menggunakan AWS SDK for Java 2.x.

Ikuti petunjuk untuk bermigrasi dari versi 1.x ke 2.x. AWS SDK untuk Java

Untuk informasi lebih lanjut tentang AWS SDK for Java 2.x modul apa yang diperlukan,
lihatPrasyarat.

Konfigurasikan klien Anda untuk membaca item yang dienkripsi oleh versi lama

Prosedur berikut memberikan gambaran tentang langkah-langkah yang ditunjukkan dalam contoh
kode di bawah ini.

1. Buat keyring.

Java 223


https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html

AWS SDK Enkripsi Basis Data Panduan Developer

Keyrings dan manajer bahan kriptografi menggantikan penyedia bahan kriptografi yang
digunakan dalam versi sebelumnya dari pustaka enkripsi sisi klien Java untuk DynamoDB.

/A Important

Kunci pembungkus yang Anda tentukan saat membuat keyring harus berupa kunci
pembungkus yang sama yang Anda gunakan dengan penyedia bahan kriptografi
Anda di versi 2. x.

Buat skema tabel di atas kelas beranotasi Anda.

Langkah ini mendefinisikan tindakan atribut yang akan digunakan ketika Anda mulai menulis
item dalam format baru.

Untuk panduan tentang penggunaan DynamoDB Enhanced Client baru, lihat Menghasilkan
TableSchema a di AWS SDK untuk Java Panduan Pengembang.

Contoh berikut mengasumsikan Anda memperbarui kelas beranotasi Anda dari versi 2. x
menggunakan anotasi tindakan atribut baru. Untuk panduan selengkapnya tentang anotasi
tindakan atribut Anda, lihat. Gunakan kelas data beranotasi

(® Note

Jika Anda menentukan SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
atribut apa pun, maka atribut partisi dan sortir juga
harusSTIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Untuk contoh yang menunjukkan anotasi yang digunakan untuk
mendefinisikanSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, lihat
SimpleClass4.java.

Tentukan atribut mana yang dikecualikan dari tanda tangan.

Konfigurasikan peta eksplisit tindakan atribut yang dikonfigurasi di kelas model versi 2.x
Anda.

Langkah ini mendefinisikan tindakan atribut yang digunakan untuk menulis item dalam format
lama.

Konfigurasikan yang DynamoDBEncryptor Anda gunakan di versi 2. x dari pustaka enkripsi
sisi klien Java untuk DynamoDB.

Java

224


https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS SDK Enkripsi Basis Data Panduan Developer

6.

7
8.
9

Konfigurasikan perilaku lama.
Buat aDynamoDbEncryptionInterceptor.
Buat klien AWS SDK DynamoDB baru.

Buat DynamoDBEnhancedClient dan buat tabel dengan kelas model Anda.

Untuk informasi selengkapnya tentang DynamoDB Enhanced Client, lihat membuat klien

yang disempurnakan.

public class MigrationExampleStepl {

public static void MigrationStepl(String kmsKeyId, String ddbTableName, int

sortReadValue) {

// 1. Create a Keyring.

// This example creates an AWS KMS Keyring that specifies the

// same kmsKeyId previously used in the version 2.x configuration.

// It uses the 'CreateMrkMultiKeyring' method to create the

// keyring, so that the keyring can correctly handle both single

// region and Multi-Region KMS Keys.

// Note that this example uses the AWS SDK for Java v2 KMS client.

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsMrkMultiKeyringInput keyringInput =

CreateAwsKmsMrkMultiKeyringInput.builder()

.generator(kmsKeyId)
.build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

// 2. Create a Table Schema over your annotated class.

// For guidance on using the new attribute actions

// annotations, see SimpleClass.java in the

// aws-database-encryption-sdk-dynamodb GitHub repository.

// All primary key attributes must be signed but not encrypted
// and by default all non-primary key attributes

// are encrypted and signed (ENCRYPT_AND_SIGN).

// If you want a particular non-primary key attribute to be signed but
// not encrypted, use the 'DynamoDbEncryptionSignOnly' annotation.
// If you want a particular attribute to be neither signed nor encrypted

// (DO_NOTHING), use the 'DynamoDbEncryptionDoNothing' annotation.
final TableSchema<SimpleClass> schemaOnEncrypt =

TableSchema.fromBean(SimpleClass.class);

Java

225


https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS SDK Enkripsi Basis Data Panduan Developer

// 3.
//
//

//
final

// b
//
final

Define which attributes the client should expect to be excluded

from the signature when reading items.

This value represents all unsigned attributes across the entire
dataset.

List<String> allowedUnsignedAttributes = Arrays.aslList("attribute3");

Configure an explicit map of the attribute actions configured
in your version 2.x modeled class.
Map<String, CryptoAction> legacyActions = new HashMap<>();

legacyActions.put("partition_key", CryptoAction.SIGN_ONLY);
legacyActions.put("sort_key", CryptoAction.SIGN_ONLY);
legacyActions.put("attributel", CryptoAction.ENCRYPT_AND_SIGN);
legacyActions.put("attribute2", CryptoAction.SIGN_ONLY);
legacyActions.put("attribute3", CryptoAction.DO_NOTHING);

// 5. Configure the DynamoDBEncryptor that you used in version 2.x.
final AWSKMS kmsClient = AWSKMSClientBuilder.defaultClient();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kmsClient,
kmsKeyId);
final DynamoDBEncryptor oldEncryptor = DynamoDBEncryptor.getInstance(cmp);
// 6. Configure the legacy behavior.
// Input the DynamoDBEncryptor and attribute actions created in
// the previous steps. For Legacy Policy, use
// 'FORCE_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT'. This policy continues to
read
// and write items using the old format, but will be able to read
// items written in the new format as soon as they appear.
final LegacyOverride legacyOverride = LegacyOverride
.builder()
.encryptor(oldEncryptor)
.policy(LegacyPolicy.FORCE_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT)
.attributeActionsOnEncrypt(legacyActions)
.build();
// 7. Create a DynamoDbEncryptionInterceptor with the above configuration.
final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
HashMap<>();
tableConfigs.put(ddbTableName,
DynamoDbEnhancedTableEncryptionConfig.builder()
.logicalTableName(ddbTableName)
.keyring(kmsKeyring)
.allowedUnsignedAttributes(allowedUnsignedAttributes)
Java 226



AWS SDK Enkripsi Basis Data Panduan Developer

.schemaOnEncrypt(tableSchema)
.legacyOverride(legacyOverride)
.build());
final DynamoDbEncryptionInterceptor interceptor =
DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
CreateDynamoDbEncryptionInterceptorInput.buildexr()
.tableEncryptionConfigs(tableConfigs)
Lbuild()
);

// 8. Create a new AWS SDK DynamoDb client using the
// interceptor from Step 7.
final DynamoDbClient ddb = DynamoDbClient.builder()
.overrideConfiguration(
ClientOverrideConfiguration.builder()
.addExecutionInterceptor(interceptor)
.build())
.build();

// 9. Create the DynamoDbEnhancedClient using the AWS SDK DynamoDb client

// created in Step 8, and create a table with your modeled class.

final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.buildex()
.dynamoDbClient(ddb)
Lbuild();

final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
tableSchema);
}

Langkah 2. Tulis item dalam format baru

Setelah Anda menerapkan perubahan dari Langkah 1 ke semua pembaca, selesaikan langkah-
langkah berikut untuk mengonfigurasi klien SDK Enkripsi AWS Database Anda untuk menulis item
dalam format baru. Setelah Anda menerapkan perubahan berikut, klien Anda akan melanjutkan
membaca item dalam format lama dan mulai menulis dan membaca item dalam format baru.

Prosedur berikut memberikan gambaran tentang langkah-langkah yang ditunjukkan dalam contoh
kode di bawah ini.

1. Lanjutkan mengonfigurasi keyring, skema tabel, tindakan atribut

lamaallowedUnsignedAttributes, dan DynamoDBEncxryptor seperti yang Anda lakukan di
Langkah 1.

Java 227



AWS SDK Enkripsi Basis Data Panduan Developer

2.

3
4.
5

Perbarui perilaku lama Anda untuk hanya menulis item baru menggunakan format baru.
Buat DynamoDbEncryptionInterceptor

Buat klien AWS SDK DynamoDB baru.

Buat DynamoDBEnhancedClient dan buat tabel dengan kelas model Anda.

Untuk informasi selengkapnya tentang DynamoDB Enhanced Client, lihat membuat klien yang
disempurnakan.

public class MigrationExampleStep2 {

public static void MigrationStep2(String kmsKeyId, String ddbTableName, int
sortReadValue) {
// 1. Continue to configure your keyring, table schema, legacy
// attribute actions, allowedUnsignedAttributes, and
// DynamoDBEncryptor as you did in Step 1.
final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
CreateAwsKmsMrkMultiKeyringInput.builder()
.generator(kmsKeyId)
.build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

final TableSchema<SimpleClass> schemaOnEncrypt =
TableSchema.fromBean(SimpleClass.class);

final List<String> allowedUnsignedAttributes = Arrays.aslList("attribute3");

final Map<String, CryptoAction> legacyActions = new HashMap<>();
legacyActions.put("partition_key", CryptoAction.SIGN_ONLY);
legacyActions.put("sort_key", CryptoAction.SIGN_ONLY);
legacyActions.put("attributel", CryptoAction.ENCRYPT_AND_SIGN);
legacyActions.put("attribute2", CryptoAction.SIGN_ONLY);
legacyActions.put("attribute3", CryptoAction.DO_NOTHING);

final AWSKMS kmsClient = AWSKMSClientBuilder.defaultClient();

final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kmsClient,
kmsKeyId);

final DynamoDBEncryptor oldEncryptor = DynamoDBEncryptor.getInstance(cmp);

Java 228


https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS SDK Enkripsi Basis Data Panduan Developer

// 2. Update your legacy behavior to only write new items using the new
// format.
// For Legacy Policy, use 'FORBID_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT'. This
policy
// continues to read items in both formats, but will only write items
// using the new format.
final LegacyOverride legacyOverride = LegacyOverride
.builder()
.encryptor(oldEncryptor)
.policy(LegacyPolicy.FORBID_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT)
.attributeActionsOnEncrypt(legacyActions)
.build();
// 3. Create a DynamoDbEncryptionInterceptor with the above configuration.
final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
HashMap<>();
tableConfigs.put(ddbTableName,
DynamoDbEnhancedTableEncryptionConfig.buildexr ()
.logicalTableName(ddbTableName)
.keyring(kmsKeyring)
.allowedUnsignedAttributes(allowedUnsignedAttributes)
.schemaOnEncrypt(tableSchema)
.legacyOverride(legacyOverride)
.build());
final DynamoDbEncryptionInterceptor interceptor =
DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptoxr(
CreateDynamoDbEncryptionInterceptorInput.builder()
.tableEncryptionConfigs(tableConfigs)
Lbuild()
);
// 4. Create a new AWS SDK DynamoDb client using the
// interceptor from Step 3.
final DynamoDbClient ddb = DynamoDbClient.buildexr()
.overrideConfiguration(
ClientOverrideConfiguration.builder()
.addExecutionInterceptor(interceptor)
.build())
.build();
// 5. Create the DynamoDbEnhancedClient using the AWS SDK DynamoDb Client
created
// in Step 4, and create a table with your modeled class.
final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.buildex()
Java 229



AWS SDK Enkripsi Basis Data Panduan Developer

.dynamoDbClient(ddb)
Lbuild();
final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
tableSchema);

}

Setelah menerapkan perubahan Langkah 2, Anda harus mengenkripsi ulang semua item lama di

tabel Anda dengan format baru sebelum Anda dapat melanjutkan ke Langkah 3. Tidak ada metrik
atau kueri tunggal yang dapat Anda jalankan untuk mengenkripsi item yang ada dengan cepat.
Gunakan proses yang paling masuk akal untuk sistem Anda. Misalnya, Anda dapat menggunakan
proses asinkron yang memindai tabel secara perlahan dan menulis ulang item menggunakan
tindakan atribut baru dan konfigurasi enkripsi yang Anda tentukan.

Langkah 3. Hanya membaca dan menulis item dalam format baru

Setelah mengenkripsi ulang semua item dalam tabel Anda dengan format baru, Anda dapat
menghapus perilaku lama dari konfigurasi Anda. Selesaikan langkah-langkah berikut untuk
mengonfigurasi klien Anda agar hanya membaca dan menulis item dalam format baru.

Prosedur berikut memberikan gambaran tentang langkah-langkah yang ditunjukkan dalam contoh
kode di bawah ini.

1. Lanjutkan mengkonfigurasi keyring Anda, skema tabel, dan allowedUnsignedAttributes

seperti yang Anda lakukan di Langkah 1. Hapus tindakan atribut lama dan

DynamoDBEncryptor dari konfigurasi Anda.
2. Buat aDynamoDbEncryptionInterceptor.
3. Buat klien AWS SDK DynamoDB baru.

4. Buat DynamoDBEnhancedClient dan buat tabel dengan kelas model Anda.

Untuk informasi selengkapnya tentang DynamoDB Enhanced Client, lihat membuat klien yang
disempurnakan.

public class MigrationExampleStep3 {

public static void MigrationStep3(String kmsKeyId, String ddbTableName, int
sortReadValue) {
// 1. Continue to configure your keyring, table schema,
// and allowedUnsignedAttributes as you did in Step 1.

Java 230


https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS SDK Enkripsi Basis Data Panduan Developer

// Do not include the configurations for the DynamoDBEncryptor or

// the legacy attribute actions.

final MaterialProviders matProv = MaterialProviders.builder()
.MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
.build();

final CreateAwsKmsMrkMultiKeyringInput keyringInput =

CreateAwsKmsMrkMultiKeyringInput.builder()

.generator(kmsKeyId)
.build();

final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

final TableSchema<SimpleClass> schemaOnEncrypt =
TableSchema.fromBean(SimpleClass.class);

final List<String> allowedUnsignedAttributes = Arrays.aslList("attribute3");

// 3. Create a DynamoDbEncryptionInterceptor with the above configuration.
// Do not configure any legacy behavior.
final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
HashMap<>();
tableConfigs.put(ddbTableName,
DynamoDbEnhancedTableEncryptionConfig.builder()
.logicalTableName(ddbTableName)
.keyring(kmsKeyring)
.allowedUnsignedAttributes(allowedUnsignedAttributes)
.schemaOnEncrypt(tableSchema)
.build());
final DynamoDbEncryptionInterceptor interceptor =
DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptox(
CreateDynamoDbEncryptionInterceptorInput.builder()
.tableEncryptionConfigs(tableConfigs)
Lbuild()
);

// 4. Create a new AWS SDK DynamoDb client using the
// interceptor from Step 3.
final DynamoDbClient ddb = DynamoDbClient.buildexr()
.overrideConfiguration(
ClientOverrideConfiguration.builder()
.addExecutionInterceptor(interceptor)
.build())
.build();

Java 231



AWS SDK Enkripsi Basis Data Panduan Developer

// 5. Create the DynamoDbEnhancedClient using the AWS SDK Client

// created in Step 4, and create a table with your modeled class.

final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
.dynamoDbClient(ddb)
.build();

final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
tableSchema);
}

NET

Topik ini menjelaskan cara menginstal dan menggunakan versi 3. x dari pustaka enkripsi sisi

klien .NET untuk DynamoDB. Untuk detail tentang pemrograman dengan AWS Database Encryption
SDK untuk DynamoDB, lihat contoh.NET di aws-database-encryption-sdk repositori -dynamodb aktif.
GitHub

Pustaka enkripsi sisi klien .NET untuk DynamoDB adalah untuk pengembang yang menulis aplikasi
dalam C # dan bahasa pemrograman.NET lainnya. Hal ini didukung di Windows, macQOS, dan Linux.

Semua implementasi bahasa pemrograman SDK Enkripsi AWS Database untuk DynamoDB dapat
dioperasikan. Namun, SDK untuk .NET tidak mendukung nilai kosong untuk tipe data daftar atau
peta. Ini berarti bahwa jika Anda menggunakan pustaka enkripsi sisi klien Java untuk DynamoDB
untuk menulis item yang berisi nilai kosong untuk daftar atau tipe data peta, Anda tidak dapat
mendekripsi dan membaca item tersebut menggunakan pustaka enkripsi sisi klien .NET untuk
DynamoDB.

Topik

* Menginstal pustaka enkripsi sisi klien .NET untuk DynamoDB

« Debugging dengan .NET

* Menggunakan pustaka enkripsi sisi klien .NET untuk DynamoDB

« NET contoh

» Konfigurasikan tabel DynamoDB yang ada untuk menggunakan SDK Enkripsi Database untuk
AWS DynamoDB

NET 232


https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/

AWS SDK Enkripsi Basis Data Panduan Developer

Menginstal pustaka enkripsi sisi klien .NET untuk DynamoDB

Pustaka enkripsi sisi klien .NET untuk DynamoDB tersedia sebagai AWS.Cryptography.
DbEncryptionSDK. DynamoDbpaket di NuGet. Untuk detail tentang menginstal dan membangun
perpustakaan, lihat file. NET README.md di repositori -dynamodb. aws-database-encryption-sdk
Pustaka enkripsi sisi klien .NET untuk DynamoDB memerlukan SDK untuk .NET bahkan jika Anda
tidak menggunakan kunci (). AWS Key Management Service AWS KMS SDK untuk .NET Itu diinstal
dengan NuGet paket.

Versi 3. x dari pustaka enkripsi sisi klien .NET untuk DynamoDB mendukung .NET 6.0 dan .NET
Framework net48 dan yang lebih baru.

Debugging dengan .NET

Pustaka enkripsi sisi klien .NET untuk DynamoDB tidak menghasilkan log apa pun. Pengecualian di
pustaka enkripsi sisi klien .NET untuk DynamoDB menghasilkan pesan pengecualian, tetapi tidak ada
jejak tumpukan.

Untuk membantu Anda men-debug, pastikan untuk mengaktifkan login. SDK untuk .NET Log dan
pesan kesalahan dari SDK untuk .NET dapat membantu Anda membedakan kesalahan yang timbul
SDK untuk .NET dari yang ada di pustaka enkripsi sisi klien .NET untuk DynamoDB. Untuk bantuan
terkait SDK untuk .NET logging, lihat AWSLoggingdi Panduan AWS SDK untuk .NET Pengembang.
(Untuk melihat topiknya, perluas bagian konten Open to view .NET Framework.)

Menggunakan pustaka enkripsi sisi klien .NET untuk DynamoDB

Topik ini menjelaskan beberapa fungsi dan kelas pembantu di versi 3. x dari pustaka enkripsi sisi
klien .NET untuk DynamoDB.

Untuk detail tentang pemrograman dengan pustaka enkripsi sisi klien .NET untuk DynamoDB, lihat
contoh.NET di repositori -dynamodb aktif. aws-database-encryption-sdk GitHub

Topik

» Enkriptor item

» Tindakan atribut dalam SDK Enkripsi AWS Database untuk DynamoDB

» Konfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB

» Memperbarui item dengan AWS Database Encryption SDK

NET 233


https://www.nuget.org/packages/AWS.Cryptography.DbEncryptionSDK.DynamoDb/
https://www.nuget.org/packages/AWS.Cryptography.DbEncryptionSDK.DynamoDb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/DynamoDbEncryption/runtimes/net/README.md
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-config-other.html#config-setting-awslogging
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/

AWS SDK Enkripsi Basis Data Panduan Developer

Enkriptor item

Pada intinya, AWS Database Encryption SDK untuk DynamoDB adalah enkripsi item. Anda dapat
menggunakan versi 3. x dari pustaka enkripsi sisi klien .NET untuk DynamoDB untuk mengenkripsi,
menandatangani, memverifikasi, dan mendekripsi item tabel DynamoDB Anda dengan cara berikut.

SDK Enkripsi AWS Database tingkat rendah untuk DynamoDB API

Anda dapat menggunakan konfigurasi enkripsi tabel untuk membuat klien DynamoDB yang
secara otomatis mengenkripsi dan menandatangani item sisi klien dengan permintaan DynamoDB
Anda. PutItem Anda dapat menggunakan klien ini secara langsung, atau Anda dapat membuat
model dokumen atau model persistensi objek.

Anda harus menggunakan SDK Enkripsi AWS Database tingkat rendah untuk DynamoDB API
untuk menggunakan enkripsi yang dapat dicari.

Tingkat yang lebih rendah DynamoDbItemEncryptor

Tingkat yang lebih rendah DynamoDbItemEncryptor secara langsung mengenkripsi dan
menandatangani atau mendekripsi dan memverifikasi item tabel Anda tanpa memanggil
DynamoDB. Itu tidak membuat DynamoDB atau PutItem permintaanGetItem. Misalnya,

Anda dapat menggunakan level yang lebih rendah DynamoDbItemEncryptor untuk langsung
mendekripsi dan memverifikasi item DynamoDB yang telah Anda ambil. Jika Anda menggunakan
tingkat yang lebih rendahDynamoDbItemEncryptor, sebaiknya gunakan model pemrograman
tingkat rendah yang SDK untuk .NET disediakan untuk berkomunikasi dengan DynamoDB.

Tingkat yang lebih rendah DynamoDbItemEncryptor tidak mendukung enkripsi yang dapat
dicari.

Tindakan atribut dalam SDK Enkripsi AWS Database untuk DynamoDB

Tindakan atribut menentukan nilai atribut mana yang dienkripsi dan ditandatangani, yang hanya
ditandatangani, yang ditandatangani dan disertakan dalam konteks enkripsi, dan mana yang
diabaikan.

Untuk menentukan tindakan atribut dengan klien.NET, tentukan tindakan atribut secara manual
menggunakan model objek. Tentukan tindakan atribut Anda dengan membuat Dictionary objek di
mana pasangan nama-nilai mewakili nama atribut dan tindakan yang ditentukan.

Tentukan ENCRYPT_AND_SIGN untuk mengenkripsi dan menandatangani atribut.
Tentukan SIGN_ONLY untuk menandatangani, tetapi tidak mengenkripsi, atribut. Tentukan

.NET 234


https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-document
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-object-persistence
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-low-level
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-low-level

AWS SDK Enkripsi Basis Data Panduan Developer

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT untuk menandatangani atribut dan sertakan
dalam konteks enkripsi. Anda tidak dapat mengenkripsi atribut tanpa menandatanganinya juga.
Tentukan DO_NOTHING untuk mengabaikan atribut.

Partisi dan atribut sortir harus salah satu STGN_ONLY
atauSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Jika Anda mendefinisikan atribut apa pun
sebagaiSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, maka atribut partisi dan sortir juga
harusSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

(® Note

Setelah menentukan tindakan atribut, Anda harus menentukan atribut mana yang
dikecualikan dari tanda tangan. Untuk mempermudah menambahkan atribut unsigned baru di
masa mendatang, sebaiknya pilih awalan yang berbeda (seperti ": “) untuk mengidentifikasi
atribut unsigned Anda. Sertakan awalan ini dalam nama atribut untuk semua atribut yang

ditandai DO_NOTHING saat Anda menentukan skema DynamoDB dan tindakan atribut.

Model objek berikut menunjukkan cara menentukanENCRYPT_AND_SIGN,,
SIGN_ONLYSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, dan DO_NOTHING atribut tindakan
dengan klien.NET. Contoh ini menggunakan awalan ":" untuk mengidentifikasi DO_NOTHING atribut.

(® Note

Untuk menggunakan tindakan STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT kriptografi,
Anda harus menggunakan SDK Enkripsi AWS Database versi 3.3 atau yang lebih baru.
Terapkan versi baru ke semua pembaca sebelum memperbarui model data Anda untuk
disertakanSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>
{
["partition_key"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, // The
partition attribute must be signed
["sort_key"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, // The sort
attribute must be signed
["attributel"] = CryptoAction.ENCRYPT_AND_SIGN,
["attribute2"] = CryptoAction.SIGN_ONLY,
["attribute3"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT,

NET 235



AWS SDK Enkripsi Basis Data Panduan Developer

[":attribute4"] = CryptoAction.DO_NOTHING
13

Konfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB

Bila Anda menggunakan AWS Database Encryption SDK, Anda harus secara eksplisit menentukan
konfigurasi enkripsi untuk tabel DynamoDB Anda. Nilai yang diperlukan dalam konfigurasi enkripsi
Anda bergantung pada apakah Anda mendefinisikan tindakan atribut secara manual atau dengan
kelas data beranotasi.

Cuplikan berikut mendefinisikan konfigurasi enkripsi tabel DynamoDB menggunakan SDK AWS
Enkripsi Database tingkat rendah untuk DynamoDB API| dan mengizinkan atribut unsigned yang
ditentukan oleh awalan yang berbeda.

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
LogicalTableName = ddbTableName,
PartitionKeyName = "partition_key",
SortKeyName = "sort_key",
AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
Keyring = kmsKeyring,
AllowedUnsignedAttributePrefix = unsignAttrPrefix,
// Optional: SearchConfig only required if you use beacons
Search = new SearchConfig
{
WriteVersion = 1, // MUST be 1
Versions = beaconVersions

13
tableConfigs.Add(ddbTableName, config);

Nama tabel logis
Sebuah nama tabel logis untuk tabel DynamoDB Anda.

Nama tabel logis terikat secara kriptografis ke semua data yang disimpan dalam tabel untuk
menyederhanakan operasi pemulihan DynamoDB. Kami sangat menyarankan untuk menentukan
nama tabel DynamoDB Anda sebagai nama tabel logis saat Anda pertama kali menentukan
konfigurasi enkripsi Anda. Anda harus selalu menentukan nama tabel logis yang sama. Agar

NET 236



AWS SDK Enkripsi Basis Data Panduan Developer

Atri

dekripsi berhasil, nama tabel logis harus sesuai dengan nama yang ditentukan pada enkripsi. Jika
nama tabel DynamoDB Anda berubah setelah memulihkan tabel DynamoDB Anda dari cadangan,
nama tabel logis memastikan bahwa operasi dekripsi masih mengenali tabel.

but yang tidak ditandatangani yang diizinkan
Atribut yang ditandai DO_NOTHING dalam tindakan atribut Anda.

Atribut unsigned yang diizinkan memberi tahu klien atribut mana yang dikecualikan dari tanda
tangan. Klien mengasumsikan bahwa semua atribut lainnya termasuk dalam tanda tangan.
Kemudian, saat mendekripsi catatan, klien menentukan atribut mana yang perlu diverifikasi dan
mana yang harus diabaikan dari atribut unsigned yang diizinkan yang Anda tentukan. Anda tidak
dapat menghapus atribut dari atribut yang tidak ditandatangani yang diizinkan.

Anda dapat menentukan atribut unsigned yang diizinkan secara eksplisit dengan membuat

array yang mencantumkan semua atribut Anda. DO_NOTHING Anda juga dapat menentukan
awalan yang berbeda saat menamai DO_NOTHING atribut Anda dan menggunakan awalan untuk
memberi tahu klien atribut mana yang tidak ditandatangani. Kami sangat menyarankan untuk
menentukan awalan yang berbeda karena menyederhanakan proses penambahan DO_NOTHING
atribut baru di masa depan. Untuk informasi selengkapnya, lihat Memperbarui model data Anda.

Jika Anda tidak menentukan awalan untuk semua DO_NOTHING atribut, Anda dapat
mengonfigurasi allowedUnsignedAttributes array yang secara eksplisit mencantumkan
semua atribut yang diharapkan klien tidak ditandatangani saat bertemu dengan mereka pada
dekripsi. Anda hanya harus secara eksplisit mendefinisikan atribut unsigned yang diizinkan jika
benar-benar diperlukan.

Konfigurasi Pencarian (Opsional)

SearchConfigMendefinisikan versi beacon.

SearchConfigHarus ditentukan untuk menggunakan enkripsi yang dapat dicari atau suar yang
ditandatangani.

Suite Algoritma (Opsional)

algorithmSuiteIdMendefinisikan algoritma mana yang sesuai dengan AWS Database
Encryption SDK yang digunakan.

Kecuali Anda secara eksplisit menentukan rangkaian algoritme alternatif, SDK Enkripsi AWS
Database menggunakan rangkaian algoritme default. Rangkaian algoritme default menggunakan

.NET

237


https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK Enkripsi Basis Data Panduan Developer

algoritma AES-GCM dengan derivasi kunci, tanda tangan digital, dan komitmen kunci. Meskipun

rangkaian algoritme default kemungkinan cocok untuk sebagian besar aplikasi, Anda dapat
memilih rangkaian algoritme alternatif. Misalnya, beberapa model kepercayaan akan dipenuhi
oleh rangkaian algoritma tanpa tanda tangan digital. Untuk informasi tentang rangkaian algoritme
yang didukung SDK Enkripsi AWS Database, lihatRangkaian algoritme yang didukung di SDK
Enkripsi AWS Database.

Untuk memilih rangkaian algoritma AES-GCM tanpa tanda tangan digital ECDSA, sertakan
cuplikan berikut dalam konfigurasi enkripsi tabel Anda.

AlgorithmSuitelId =
DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384
Memperbarui item dengan AWS Database Encryption SDK

SDK Enkripsi AWS Database tidak mendukung ddb: Updateltem untuk item yang menyertakan atribut
terenkripsi atau ditandatangani. Untuk memperbarui atribut terenkripsi atau ditandatangani, Anda

harus menggunakan ddb:. Putltem Saat Anda menentukan kunci utama yang sama dengan item
yang ada dalam PutItem permintaan Anda, item baru sepenuhnya menggantikan item yang ada.
Anda juga dapat menggunakan CLOBBER untuk menghapus dan mengganti semua atribut yang
disimpan setelah memperbarui item Anda.

.NET contoh

Contoh berikut menunjukkan cara menggunakan pustaka enkripsi sisi klien .NET untuk DynamoDB
untuk melindungi item tabel dalam aplikasi Anda. Untuk menemukan lebih banyak contoh (dan
berkontribusi sendiri), lihat contoh.NET di repositori aws-database-encryption-sdk -dynamodb di.
GitHub

Contoh berikut menunjukkan cara mengonfigurasi pustaka enkripsi sisi klien .NET untuk DynamoDB
dalam tabel Amazon DynamoDB baru yang tidak terisi. Jika Anda ingin mengonfigurasi tabel Amazon
DynamoDB yang ada untuk enkripsi sisi klien, lihat. Tambahkan versi 3.x ke tabel yang ada

Topik
» Menggunakan SDK Enkripsi AWS Database tingkat rendah untuk DynamoDB API

« Menggunakan level yang lebih rendah DynamoDbltemEncryptor

NET 238


https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapperConfig.SaveBehavior.html#CLOBBER
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/net/src

AWS SDK Enkripsi Basis Data Panduan Developer

Menggunakan SDK Enkripsi AWS Database tingkat rendah untuk DynamoDB API

Contoh berikut menunjukkan cara menggunakan SDK Enkripsi AWS Database tingkat rendah
untuk DynamoDB API dengan AWS KMS keyring untuk secara otomatis mengenkripsi dan
menandatangani item sisi klien dengan permintaan DynamoDB Anda. PutItem

Anda dapat menggunakan keyring apa pun yang didukung, tetapi kami sarankan menggunakan salah
satu AWS KMS gantungan kunci bila memungkinkan.

Lihat contoh kode lengkapnya: BasicPutGetExample.cs

Langkah 1: Buat AWS KMS keyring

Contoh berikut digunakan CreateAwsKmsMrkMultiKeyring untuk membuat AWS KMS
keyring dengan kunci KMS enkripsi simetris. CreateAwsKmsMrkMultiKeyringMetode ini
memastikan bahwa keyring akan menangani tombol Single-region dan Multi-region dengan benar.

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Langkah 2: Konfigurasikan tindakan atribut Anda

Contoh berikut mendefinisikan attributeActionsOnEncrypt Kamus yang mewakili tindakan
atribut sampel untuk item tabel.

® Note

Contoh berikut tidak mendefinisikan atribut apa pun
sebagaiSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Jika Anda menentukan
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut apa pun, maka atribut partisi
dan sortir juga harusSTGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>
{
["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
SIGN_ONLY
["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
["attributel"] = CryptoAction.ENCRYPT_AND_SIGN,

NET 239


https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/BasicPutGetExample.cs

AWS SDK Enkripsi Basis Data Panduan Developer

["attribute2"] = CryptoAction.SIGN_ONLY,
[":attribute3"] = CryptoAction.DO_NOTHING
i

Langkah 3: Tentukan atribut mana yang dikecualikan dari tanda tangan

Contoh berikut mengasumsikan bahwa semua DO_NOTHING atribut berbagi awalan yang
berbeda ":“, dan menggunakan awalan untuk menentukan atribut unsigned yang diizinkan. Klien
mengasumsikan bahwa nama atribut apa pun dengan awalan ":" dikecualikan dari tanda tangan.
Untuk informasi selengkapnya, lihat Allowed unsigned attributes.

const String unsignAttrPrefix = ":";

Langkah 4: Tentukan konfigurasi enkripsi tabel DynamoDB

Contoh berikut mendefinisikan tableConfigs Peta yang mewakili konfigurasi enkripsi untuk
tabel DynamoDB ini.

Contoh ini menentukan nama tabel DynamoDB sebagai nama tabel logis. Kami sangat

menyarankan untuk menentukan nama tabel DynamoDB Anda sebagai nama tabel logis saat
Anda pertama kali menentukan konfigurasi enkripsi Anda. Untuk informasi selengkapnya, lihat
Konfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB.

(@ Note

Untuk menggunakan enkripsi yang dapat dicari atau suar yang ditandatangani, Anda juga

harus menyertakan SearchConfigdalam konfigurasi enkripsi Anda.

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =

new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{

LogicalTableName ddbTableName,

PartitionKeyName = "partition_key",

SortKeyName = "sort_key",

AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
Keyring = kmsKeyring,

AllowedUnsignedAttributePrefix = unsignAttrPrefix

NET

240



AWS SDK Enkripsi Basis Data Panduan Developer

tableConfigs.Add(ddbTableName, config);

Langkah 5: Buat klien AWS SDK DynamoDB baru

Contoh berikut membuat klien AWS SDK DynamoDB baru menggunakan
TableEncryptionConfigs dari Langkah 4.

var ddb = new Client.DynamoDbClient(
new DynamoDbTablesEncryptionConfig { TableEncryptionConfigs = tableConfigs });

Langkah 6: Enkripsi dan tandatangani item tabel DynamoDB

Contoh berikut mendefinisikan item Kamus yang mewakili item tabel sampel dan menempatkan
item dalam tabel DynamoDB. Item dienkripsi dan ditandatangani sisi klien sebelum dikirim ke
DynamoDB.

var item = new Dictionary<String, AttributeValue>

{
["partition_key"] = new AttributeValue("BasicPutGetExample"),
["sort_key"] = new AttributeValue { N = "@" },
["attributel"] = new AttributeValue("encrypt and sign me!"),
["attribute2"] = new AttributeValue("sign me!"),
[":attribute3"] = new AttributeValue("ignore me!'")

I

PutItemRequest putRequest = new PutItemRequest

{
TableName = ddbTableName,
Item = item

I

PutItemResponse putResponse = await ddb.PutItemAsync(putRequest);

Menggunakan level yang lebih rendah DynamoDbItemEncryptor

Contoh berikut menunjukkan cara menggunakan level yang lebih rendah DynamoDbItemEncryptor
dengan AWS KMS keyring untuk langsung mengenkripsi dan menandatangani item tabel.
DynamoDbItemEncryptorltu tidak menempatkan item di tabel DynamoDB Anda.

Anda dapat menggunakan keyring apa pun yang didukung dengan DynamoDB Enhanced Client,
tetapi sebaiknya gunakan salah AWS KMS satu gantungan kunci bila memungkinkan.

.NET 241



AWS SDK Enkripsi Basis Data Panduan Developer

® Note

Tingkat yang lebih rendah DynamoDbItemEncryptor tidak mendukung enkripsi yang dapat
dicari. Gunakan SDK Enkripsi AWS Database tingkat rendah untuk DynamoDB API untuk
menggunakan enkripsi yang dapat dicari.

Lihat contoh kode lengkapnya: ItemEncryptDecryptExample.cs

Langkah 1: Buat AWS KMS keyring

Contoh berikut digunakan CreateAwsKmsMrkMultiKeyring untuk membuat AWS KMS
keyring dengan kunci KMS enkripsi simetris. CreateAwsKmsMrkMultiKeyringMetode ini
memastikan bahwa keyring akan menangani tombol Single-region dan Multi-region dengan benar.

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Langkah 2: Konfigurasikan tindakan atribut Anda

Contoh berikut mendefinisikan attributeActionsOnEncrypt Kamus yang mewakili tindakan
atribut sampel untuk item tabel.

® Note

Contoh berikut tidak mendefinisikan atribut apa pun
sebagaiSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Jika Anda menentukan
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut apa pun, maka atribut partisi
dan sortir juga harusSTGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<String, CryptoAction>
{
["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
SIGN_ONLY
["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
["attributel"] = CryptoAction.ENCRYPT_AND_SIGN,
["attribute2"] = CryptoAction.SIGN_ONLY,

.NET 242


https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/itemencryptor/ItemEncryptDecryptExample.cs

AWS SDK Enkripsi Basis Data Panduan Developer

[":attribute3"] = CryptoAction.DO_NOTHING
i

Langkah 3: Tentukan atribut mana yang dikecualikan dari tanda tangan

Contoh berikut mengasumsikan bahwa semua DO_NOTHING atribut berbagi awalan yang
berbeda ":“, dan menggunakan awalan untuk menentukan atribut unsigned yang diizinkan. Klien
mengasumsikan bahwa nama atribut apa pun dengan awalan ":" dikecualikan dari tanda tangan.
Untuk informasi selengkapnya, lihat Allowed unsigned attributes.

String unsignAttrPrefix = ":";

Langkah 4: Tentukan DynamoDbItemEncryptor konfigurasi
Contoh berikut mendefinisikan konfigurasi untuk. DynamoDbItemEncryptor

Contoh ini menentukan nama tabel DynamoDB sebagai nama tabel logis. Kami sangat

menyarankan untuk menentukan nama tabel DynamoDB Anda sebagai nama tabel logis saat
Anda pertama kali menentukan konfigurasi enkripsi Anda. Untuk informasi selengkapnya, lihat
Konfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB.

var config = new DynamoDbItemEncryptorConfig

{

LogicalTableName ddbTableName,
PartitionKeyName = "partition_key",
SortKeyName = "sort_key",
AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
Keyring = kmsKeyring,
AllowedUnsignedAttributePrefix = unsignAttrPrefix
};

Langkah 5: Buat DynamoDbItemEncryptor

Contoh berikut membuat baru DynamoDbItemEncryptor menggunakan config dari Langkah
4.

var itemEncryptor = new DynamoDbItemEncryptor(config);

.NET 243



AWS SDK Enkripsi Basis Data Panduan Developer

Langkah 6: Langsung mengenkripsi dan menandatangani item tabel

Contoh berikut langsung mengenkripsi dan menandatangani item menggunakan.
DynamoDbItemEncryptor DynamoDbItemEncryptorltu tidak menempatkan item di tabel
DynamoDB Anda.

var originalltem = new Dictionary<String, AttributeValue>

{
["partition_key"] = new AttributeValue("ItemEncryptDecryptExample"),
["sort_key"] = new AttributeValue { N = "@" },
["attributel"] = new AttributeValue("encrypt and sign me!"),
["attribute2"] = new AttributeValue("sign me!"),
[":attribute3"] = new AttributeValue("ignore me!")

i

var encryptedItem = itemEncryptor.EncryptItem(
new EncryptItemInput { PlaintextItem = originalltem }
).EncryptedItem;

Konfigurasikan tabel DynamoDB yang ada untuk menggunakan SDK Enkripsi
Database untuk AWS DynamoDB

Dengan versi 3. x dari pustaka enkripsi sisi klien .NET untuk DynamoDB, Anda dapat mengonfigurasi
tabel Amazon DynamoDB yang ada untuk enkripsi sisi klien. Topik ini memberikan panduan tentang

tiga langkah yang harus Anda ambil untuk menambahkan versi 3. x ke tabel DynamoDB yang sudah
ada dan terisi.

Langkah 1: Bersiaplah untuk membaca dan menulis item terenkripsi

Selesaikan langkah-langkah berikut untuk mempersiapkan klien SDK Enkripsi AWS Database
Anda untuk membaca dan menulis item terenkripsi. Setelah Anda menerapkan perubahan berikut,
klien Anda akan terus membaca dan menulis item teks biasa. Ini tidak akan mengenkripsi atau
menandatangani item baru yang ditulis ke tabel, tetapi akan dapat mendekripsi item terenkripsi
segera setelah muncul. Perubahan ini mempersiapkan klien untuk mulai mengenkripsi item baru.
Perubahan berikut harus diterapkan ke setiap pembaca sebelum Anda melanjutkan ke langkah
berikutnya.

.NET 244



AWS SDK Enkripsi Basis Data Panduan Developer

1. Tentukan tindakan atribut Anda

Buat model objek untuk menentukan nilai atribut mana yang akan dienkripsi dan ditandatangani,
yang hanya akan ditandatangani, dan mana yang akan diabaikan.

Secara default, atribut kunci primer ditandatangani tetapi tidak dienkripsi (SIGN_ONLY) dan
semua atribut lainnya dienkripsi dan ditandatangani (). ENCRYPT_AND_SIGN

Tentukan ENCRYPT_AND_SIGN untuk mengenkripsi dan menandatangani atribut.

Tentukan STIGN_ONLY untuk menandatangani, tetapi tidak mengenkripsi, atribut. Tentukan
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT untuk menandatangani dan atribut

dan sertakan dalam konteks enkripsi. Anda tidak dapat mengenkripsi atribut tanpa
menandatanganinya juga. Tentukan DO_NOTHING untuk mengabaikan atribut. Untuk informasi
selengkapnya, lihat Tindakan atribut dalam SDK Enkripsi AWS Database untuk DynamoDB.

(@ Note

Jika Anda menentukan STGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut apa
pun, maka atribut partisi dan sortir juga
harusSTIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>
{
["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
SIGN_ONLY
["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
["attributel"] = CryptoAction.ENCRYPT_AND_SIGN,
["attribute2"] = CryptoAction.SIGN_ONLY,
[":attribute3"] = CryptoAction.DO_NOTHING
I

2. Tentukan atribut mana yang akan dikecualikan dari tanda tangan

Contoh berikut mengasumsikan bahwa semua DO_NOTHING atribut berbagi awalan yang berbeda
":“ dan menggunakan awalan untuk menentukan atribut unsigned yang diizinkan. Klien akan
menganggap bahwa nama atribut apa pun dengan awalan : " dikecualikan dari tanda tangan.

Untuk informasi selengkapnya, lihat Allowed unsigned attributes.

const String unsignAttrPrefix = ":";

.NET 245



AWS SDK Enkripsi Basis Data Panduan Developer

3. Buat keyring

Contoh berikut membuat AWS KMS keyring. AWS KMS Keyring menggunakan enkripsi simetris

atau RSA asimetris AWS KMS keys untuk menghasilkan, mengenkripsi, dan mendekripsi kunci
data.

Contoh ini digunakan CreateMrkMultiKeyring untuk membuat AWS KMS keyring dengan
kunci KMS enkripsi simetris. CreateAwsKmsMrkMultiKeyringMetode ini memastikan bahwa
keyring akan menangani tombol Single-region dan Multi-region dengan benar.

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

4. Tentukan konfigurasi enkripsi tabel DynamoDB

Contoh berikut mendefinisikan tableConfigs Peta yang mewakili konfigurasi enkripsi untuk
tabel DynamoDB ini.

Contoh ini menentukan nama tabel DynamoDB sebagai nama tabel logis. Kami sangat
menyarankan untuk menentukan nama tabel DynamoDB Anda sebagai nhama tabel logis saat
Anda pertama kali menentukan konfigurasi enkripsi Anda.

Anda harus menentukan FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT sebagai
penggantian plaintext. Kebijakan ini terus membaca dan menulis item teks biasa, membaca item
terenkripsi, dan mempersiapkan klien untuk menulis item terenkripsi.

Untuk informasi selengkapnya tentang nilai yang disertakan dalam konfigurasi enkripsi tabel,
lihatKonfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB.

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =

new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{

LogicalTableName = ddbTableName,

PartitionKeyName = "partition_key",

SortKeyName = "sort_key",

AttributeActionsOnEncrypt = attributeActionsOnEncrypt,

Keyring = kmsKeyring,

AllowedUnsignedAttributePrefix = unsignAttrPrefix,

PlaintextOverride = FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT

.NET 246



AWS SDK Enkripsi Basis Data Panduan Developer

tableConfigs.Add(ddbTableName, config);

5. Buat klien AWS SDK DynamoDB baru

contoh berikut membuat klien AWS SDK DynamoDB baru menggunakan
TableEncryptionConfigs dari Langkah 4.

var ddb = new Client.DynamoDbClient(
new DynamoDbTablesEncryptionConfig { TableEncryptionConfigs = tableConfigs });

Langkah 2: Tulis item terenkripsi dan ditandatangani

Perbarui kebijakan plaintext dalam konfigurasi enkripsi tabel Anda untuk memungkinkan klien menulis
item terenkripsi dan ditandatangani. Setelah Anda menerapkan perubahan berikut, klien akan
mengenkripsi dan menandatangani item baru berdasarkan tindakan atribut yang Anda konfigurasikan
di Langkah 1. Klien akan dapat membaca item teks biasa dan item terenkripsi dan ditandatangani.

Sebelum Anda melanjutkan ke Langkah 3, Anda harus mengenkripsi dan menandatangani semua
item plaintext yang ada di tabel Anda. Tidak ada metrik atau kueri tunggal yang dapat Anda jalankan
untuk mengenkripsi item plaintext yang ada dengan cepat. Gunakan proses yang paling masuk

akal untuk sistem Anda. Misalnya, Anda dapat menggunakan proses asinkron yang memindai tabel
secara perlahan dan menulis ulang item menggunakan tindakan atribut dan konfigurasi enkripsi yang
Anda tentukan. Untuk mengidentifikasi item plaintext dalam tabel Anda, kami sarankan memindai
semua item yang tidak berisi aws_dbe_head dan aws_dbe_foot atribut yang ditambahkan SDK
Enkripsi AWS Database ke item saat dienkripsi dan ditandatangani.

Contoh berikut memperbarui konfigurasi enkripsi tabel dari Langkah 1. Anda harus memperbarui
penggantian plaintext dengan. FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT Kebijakan
ini terus membaca item teks biasa, tetapi juga membaca dan menulis item terenkripsi. Buat klien
AWS SDK DynamoDB baru menggunakan yang diperbarui. TableEncryptionConfigs

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =

new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{

LogicalTableName = ddbTableName,

PartitionKeyName = "partition_key",

SortKeyName = "sort_key",

AttributeActionsOnEncrypt = attributeActionsOnEncrypt,

.NET 247



AWS SDK Enkripsi Basis Data Panduan Developer

Keyring = kmsKeyring,
AllowedUnsignedAttributePrefix = unsignAttrPrefix,
PlaintextOverride = FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT

13
tableConfigs.Add(ddbTableName, config);

Langkah 3: Hanya baca item terenkripsi dan ditandatangani

Setelah Anda mengenkripsi dan menandatangani semua item Anda, perbarui penggantian plaintext
dalam konfigurasi enkripsi tabel Anda untuk hanya mengizinkan klien membaca dan menulis

item terenkripsi dan ditandatangani. Setelah Anda menerapkan perubahan berikut, klien akan
mengenkripsi dan menandatangani item baru berdasarkan tindakan atribut yang Anda konfigurasikan
di Langkah 1. Klien hanya akan dapat membaca item terenkripsi dan ditandatangani.

Contoh berikut memperbarui konfigurasi enkripsi tabel dari Langkah 2. Anda dapat memperbarui
penggantian plaintext dengan FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT atau
menghapus kebijakan plaintext dari konfigurasi Anda. Klien hanya membaca dan menulis item
terenkripsi dan ditandatangani secara default. Buat klien AWS SDK DynamoDB baru menggunakan
yang diperbarui. TableEncryptionConfigs

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig

{

LogicalTableName = ddbTableName,
PartitionKeyName = "partition_key",
SortKeyName = "sort_key",
AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
Keyring = kmsKeyring,
AllowedUnsignedAttributePrefix = unsignAttrPrefix,
// Optional: you can also remove the plaintext policy from your configuration
PlaintextOverride = FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT
};
tableConfigs.Add(ddbTableName, config);

Rust

Topik ini menjelaskan cara menginstal dan menggunakan versi 1. x dari pustaka enkripsi sisi klien
Rust untuk DynamoDB. Untuk detail tentang pemrograman dengan AWS Database Encryption SDK
untuk DynamoDB, lihat contoh Rust di aws-database-encryption-sdk repositori -dynamodb aktif.
GitHub

Rust 248


https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/

AWS SDK Enkripsi Basis Data Panduan Developer

Semua implementasi bahasa pemrograman SDK Enkripsi AWS Database untuk DynamoDB dapat
dioperasikan.

Topik

 Prasyarat
» Penginstalan

* Menggunakan pustaka enkripsi sisi klien Rust untuk DynamoDB

Prasyarat

Sebelum Anda menginstal pustaka enkripsi sisi klien Rust untuk DynamoDB, pastikan Anda memiliki
prasyarat berikut.

Instal Rust dan Cargo
Instal rilis stabil Rust saat ini menggunakan rustup.

Untuk informasi lebih lanjut tentang mengunduh dan menginstal rustup, lihat prosedur instalasi di
The Cargo Book.

Penginstalan

Pustaka enkripsi sisi klien Rust untuk DynamoDB tersedia sebagai peti di Crates.io. aws-db-esdk
Untuk detail tentang menginstal dan membangun perpustakaan, lihat file README.md di repositori -
dynamodb. aws-database-encryption-sdk GitHub

Secara manual

Untuk menginstal pustaka enkripsi sisi klien Rust untuk DynamoDB, kloning atau unduh repositori
-dynamodb. aws-database-encryption-sdk GitHub

Pasang versi terbaru

Jalankan perintah Cargo berikut di direktori proyek Anda:

cargo add aws-db-esdk

Atau tambahkan baris berikut ke Cargo.toml Anda:

Rust 249


https://www.rust-lang.org/
https://rustup.rs/
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://crates.io/crates/aws-db-esdk
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/

AWS SDK Enkripsi Basis Data Panduan Developer

aws-db-esdk = "<version>"

Menggunakan pustaka enkripsi sisi klien Rust untuk DynamoDB

Topik ini menjelaskan beberapa fungsi dan kelas pembantu di versi 1. x dari pustaka enkripsi sisi
klien Rust untuk DynamoDB.

Untuk detail tentang pemrograman dengan pustaka enkripsi sisi klien Rust untuk DynamoDB, lihat
contoh Rust di repositori -dynamodb aktif. aws-database-encryption-sdk GitHub

Topik
* Enkriptor item
» Tindakan atribut dalam SDK Enkripsi AWS Database untuk DynamoDB

» Konfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB

* Memperbarui item dengan SDK Enkripsi AWS Database

Enkriptor item

Pada intinya, AWS Database Encryption SDK untuk DynamoDB adalah enkripsi item. Anda dapat
menggunakan versi 1. x dari pustaka enkripsi sisi klien Rust untuk DynamoDB untuk mengenkripsi,
menandatangani, memverifikasi, dan mendekripsi item tabel DynamoDB Anda dengan cara berikut.

SDK Enkripsi AWS Database tingkat rendah untuk DynamoDB API

Anda dapat menggunakan konfigurasi enkripsi tabel untuk membuat klien DynamoDB yang
secara otomatis mengenkripsi dan menandatangani item sisi klien dengan permintaan DynamoDB
Anda. PutItem

Anda harus menggunakan SDK Enkripsi AWS Database tingkat rendah untuk DynamoDB API
untuk menggunakan enkripsi yang dapat dicari.

Untuk contoh yang mendemonstrasikan cara menggunakan SDK Enkripsi AWS Database tingkat
rendah untuk DynamoDB API, lihat basic_get_put_example.rs di repositori -dynamodb pada. aws-
database-encryption-sdk GitHub

Tingkat yang lebih rendah DynamoDbItemEncryptor

Tingkat yang lebih rendah DynamoDbItemEncryptor secara langsung mengenkripsi dan
menandatangani atau mendekripsi dan memverifikasi item tabel Anda tanpa memanggil

Rust 250


https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/basic_get_put_example.rs
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/basic_get_put_example.rs

AWS SDK Enkripsi Basis Data Panduan Developer

DynamoDB. Itu tidak membuat DynamoDB atau PutItem permintaanGetItem. Misalnya,
Anda dapat menggunakan level yang lebih rendah DynamoDbItemEncryptor untuk langsung
mendekripsi dan memverifikasi item DynamoDB yang telah Anda ambil.

Tingkat yang lebih rendah DynamoDbItemEncryptor tidak mendukung enkripsi yang dapat
dicari.

Untuk contoh yang menunjukkan cara menggunakan level yang lebih rendah, lihat
DynamoDbItemEncryptor item_encrypt _decrypt.rs di repositori -dynamodb pada. aws-
database-encryption-sdk GitHub

Tindakan atribut dalam SDK Enkripsi AWS Database untuk DynamoDB

Tindakan atribut menentukan nilai atribut mana yang dienkripsi dan ditandatangani, yang hanya

ditandatangani, yang ditandatangani dan disertakan dalam konteks enkripsi, dan mana yang
diabaikan.

Untuk menentukan tindakan atribut dengan klien Rust, tentukan tindakan atribut secara manual
menggunakan model objek. Tentukan tindakan atribut Anda dengan membuat HashMap objek di
mana pasangan nama-nilai mewakili nama atribut dan tindakan yang ditentukan.

Tentukan ENCRYPT_AND_SIGN untuk mengenkripsi dan menandatangani atribut.

Tentukan STIGN_ONLY untuk menandatangani, tetapi tidak mengenkripsi, atribut. Tentukan
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT untuk menandatangani atribut dan sertakan
dalam konteks enkripsi. Anda tidak dapat mengenkripsi atribut tanpa menandatanganinya juga.
Tentukan DO_NOTHING untuk mengabaikan atribut.

Partisi dan atribut sortir harus salah satu STGN_ONLY
atauSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Jika Anda mendefinisikan atribut apa pun
sebagaiSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, maka atribut partisi dan sortir juga
harusSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

® Note

Setelah menentukan tindakan atribut, Anda harus menentukan atribut mana yang
dikecualikan dari tanda tangan. Untuk mempermudah menambahkan atribut baru yang tidak

ditandatangani di masa mendatang, sebaiknya pilih awalan yang berbeda (seperti ": “) untuk
mengidentifikasi atribut unsigned Anda. Sertakan awalan ini dalam nama atribut untuk semua

Rust 251


https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/itemencryptor/item_encrypt_decrypt.rs

AWS SDK Enkripsi Basis Data Panduan Developer

atribut yang ditandai DO_NOTHING saat Anda menentukan skema DynamoDB dan tindakan
atribut.

Model objek berikut menunjukkan cara menentukanENCRYPT_AND_SIGN,,
SIGN_ONLYSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, dan DO_NOTHING atribut tindakan
dengan klien Rust. Contoh ini menggunakan awalan ":" untuk mengidentifikasi DO_NOTHING atribut.

let attribute_actions_on_encrypt = HashMap::from([
("partition_key".to_string(), CryptoAction::SignOnly),
("sort_key".to_string(), CryptoAction::SignOnly),
("attributel".to_string(), CryptoAction::EncryptAndSign),
("attribute2".to_string(), CryptoAction::SignOnly),
(":attribute3".to_string(), CryptoAction::DoNothing),

1);

Konfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB

Bila Anda menggunakan AWS Database Encryption SDK, Anda harus secara eksplisit menentukan
konfigurasi enkripsi untuk tabel DynamoDB Anda. Nilai yang diperlukan dalam konfigurasi enkripsi
Anda bergantung pada apakah Anda mendefinisikan tindakan atribut secara manual atau dengan
kelas data beranotasi.

Cuplikan berikut mendefinisikan konfigurasi enkripsi tabel DynamoDB menggunakan SDK AWS
Enkripsi Database tingkat rendah untuk DynamoDB API dan mengizinkan atribut unsigned yang
ditentukan oleh awalan yang berbeda.

let table_config = DynamoDbTableEncryptionConfig::buildexr()
.logical_table_name(ddb_table_name)
.partition_key_name("partition_key")
.sort_key_name("sort_key")
.attribute_actions_on_encrypt(attribute_actions_on_encrypt)
.keyring(kms_keyring)
.allowed_unsigned_attribute_prefix(UNSIGNED_ATTR_PREFIX)
// Specifying an algorithm suite is optional
.algorithm_suite_id(

DbeAlgorithmSuitelId: :AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,

)
Lbuild()?;

let table_configs = DynamoDbTablesEncryptionConfig::builder()

Rust 252



AWS SDK Enkripsi Basis Data Panduan Developer

.table_encryption_configs(HashMap: :from([(ddb_table_name.to_string(),
table_config)]))
.build()?;

Nama tabel logis
Sebuah nama tabel logis untuk tabel DynamoDB Anda.

Nama tabel logis terikat secara kriptografis ke semua data yang disimpan dalam tabel untuk
menyederhanakan operasi pemulihan DynamoDB. Kami sangat menyarankan untuk menentukan
nama tabel DynamoDB Anda sebagai nama tabel logis saat Anda pertama kali menentukan
konfigurasi enkripsi Anda. Anda harus selalu menentukan nama tabel logis yang sama. Agar
dekripsi berhasil, nama tabel logis harus sesuai dengan nama yang ditentukan pada enkripsi. Jika
nama tabel DynamoDB Anda berubah setelah memulihkan tabel DynamoDB Anda dari cadangan,
nama tabel logis memastikan bahwa operasi dekripsi masih mengenali tabel.

Atribut yang tidak ditandatangani yang diizinkan
Atribut yang ditandai DO_NOTHING dalam tindakan atribut Anda.

Atribut unsigned yang diizinkan memberi tahu klien atribut mana yang dikecualikan dari tanda
tangan. Klien mengasumsikan bahwa semua atribut lainnya termasuk dalam tanda tangan.
Kemudian, saat mendekripsi catatan, klien menentukan atribut mana yang perlu diverifikasi dan
mana yang harus diabaikan dari atribut unsigned yang diizinkan yang Anda tentukan. Anda tidak
dapat menghapus atribut dari atribut yang tidak ditandatangani yang diizinkan.

Anda dapat menentukan atribut unsigned yang diizinkan secara eksplisit dengan membuat

array yang mencantumkan semua atribut Anda. DO_NOTHING Anda juga dapat menentukan
awalan yang berbeda saat menamai DO_NOTHING atribut Anda dan menggunakan awalan untuk
memberi tahu klien atribut mana yang tidak ditandatangani. Kami sangat menyarankan untuk
menentukan awalan yang berbeda karena menyederhanakan proses penambahan DO_NOTHING
atribut baru di masa depan. Untuk informasi selengkapnya, lihat Memperbarui model data Anda.

Jika Anda tidak menentukan awalan untuk semua DO_NOTHING atribut, Anda dapat
mengonfigurasi allowedUnsignedAttributes array yang secara eksplisit mencantumkan
semua atribut yang diharapkan klien tidak ditandatangani saat bertemu dengan mereka pada
dekripsi. Anda hanya harus secara eksplisit mendefinisikan atribut unsigned yang diizinkan jika
benar-benar diperlukan.

Konfigurasi Pencarian (Opsional)

SearchConfigMendefinisikan versi beacon.

Rust 253


https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK Enkripsi Basis Data Panduan Developer

SearchConfigHarus ditentukan untuk menggunakan enkripsi yang dapat dicari atau suar yang
ditandatangani.

Suite Algoritma (Opsional)

algorithmSuiteIdMendefinisikan algoritma mana yang sesuai dengan AWS Database
Encryption SDK yang digunakan.

Kecuali Anda secara eksplisit menentukan rangkaian algoritme alternatif, SDK Enkripsi AWS
Database menggunakan rangkaian algoritme default. Rangkaian algoritme default menggunakan
algoritma AES-GCM dengan derivasi kunci, tanda tangan digital, dan komitmen kunci. Meskipun
rangkaian algoritme default kemungkinan cocok untuk sebagian besar aplikasi, Anda dapat
memilih rangkaian algoritme alternatif. Misalnya, beberapa model kepercayaan akan dipenuhi
oleh rangkaian algoritma tanpa tanda tangan digital. Untuk informasi tentang rangkaian algoritme
yang didukung SDK Enkripsi AWS Database, lihatRangkaian algoritme yang didukung di SDK
Enkripsi AWS Database.

Untuk memilih rangkaian algoritma AES-GCM tanpa tanda tangan digital ECDSA, sertakan
cuplikan berikut dalam konfigurasi enkripsi tabel Anda.

.algorithm_suite_id(
DbeAlgorithmSuitelId: :AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)

Memperbarui item dengan SDK Enkripsi AWS Database

SDK Enkripsi AWS Database tidak mendukung ddb: Updateltem untuk item yang menyertakan atribut
terenkripsi atau ditandatangani. Untuk memperbarui atribut terenkripsi atau ditandatangani, Anda
harus menggunakan ddb:. Putltem Saat Anda menentukan kunci utama yang sama dengan item
yang ada dalam PutItem permintaan Anda, item baru sepenuhnya menggantikan item yang ada.

Klien Enkripsi DynamoDB Legacy

Pada tanggal 9 Juni 2023, pustaka enkripsi sisi klien kami diubah namanya menjadi Database
Encryption SDK. AWS AWS Database Encryption SDK terus mendukung versi Klien Enkripsi
DynamoDB lama. Untuk informasi selengkapnya tentang berbagai bagian pustaka enkripsi sisi klien
yang berubah dengan penggantian nama, lihat. Ganti nama Klien Enkripsi Amazon DynamoDB

Untuk bermigrasi ke versi terbaru pustaka enkripsi sisi klien Java untuk DynamoDB, lihat. Migrasi ke
versi 3.Xx

Warisan 254


https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

AWS SDK Enkripsi Basis Data Panduan Developer

Topik

AWS SDK Enkripsi Database untuk dukungan versi DynamoDB

Cara kerja DynamoDB Encryption Client

Konsep Amazon DynamoDB Encryption Client

Penyedia bahan kriptografi

Bahasa pemrograman Amazon DynamoDB Encryption Client yang tersedia

Mengubah model data Anda

Memecahkan masalah dalam aplikasi DynamoDB Encryption Client Anda

AWS SDK Enkripsi Database untuk dukungan versi DynamoDB

Topik di Bab Legacy memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption
Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.

Tabel berikut mencantumkan bahasa dan versi yang mendukung enkripsi sisi klien di Amazon

DynamoDB.

Bahasa pemrograman Versi Fase siklus hidup versi utama
SDK

Java Versi 1. x End-of-Support fase, efektif
Juli 2022

Java Versi 2. x Ketersediaan Umum (GA)

Java Versi 3. x Ketersediaan Umum (GA)

Python Versi 1. x End-of-Support fase, efektif
Juli 2022

Python Versi 2. x End-of-Support fase, efektif
Juli 2022

Python Versi 3. x Ketersediaan Umum (GA)

AWS SDK Enkripsi Database untuk dukungan versi DynamoDB 255


https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS SDK Enkripsi Basis Data Panduan Developer

Cara kerja DynamoDB Encryption Client

® Note

Pustaka enkripsi sisi klien kami diubah namanya menjadi AWS Database Encryption SDK.
Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption
Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.

Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi

DynamoDB.

DynamoDB Encryption Client dirancang khusus untuk melindungi data yang Anda simpan di
DynamoDB. Pustakanya meliputi implementasi aman yang dapat Anda perluas atau gunakan tanpa
perubahan. Dan, sebagian besar elemennya diwakili oleh elemen abstrak sehingga Anda dapat
membuat dan menggunakan komponen kustom yang kompatibel.

Mengenkripsi dan menandatangani item tabel

Mesin utama dari DynamoDB Encryption Client adalah enkriptor item yang mengenkripsi,
menandatangani, memverifikasi, dan mendekripsi item tabel. la menerima informasi tentang item
tabel Anda dan memberi perintah tentang item mana yang perlu dienkripsi dan ditandatangani. la
menerima materi enkripsi, dan memberi perintah tentang cara menggunakannya, dari penyedia
materi kriptografis yang Anda pilih dan konfigurasikan.

Diagram berikut menunjukkan garis besar proses ini.

Cara kerjanya 256



AWS SDK Enkripsi Basis Data

Panduan Developer

Plaintext
ltem

.

Attribute Actions

ENCRYPT_AND_SIGN
SIGN_ONLY
DO_NOTHING

Item Encryptor

DynamoDB
Encryption Context

Table Name
Primary Key

Og

Get Encryption
Materials

P

-

Y

Encrypted &
Signed Item t

-

~

Cryptographic
Material
Provider (CMP)

/

Untuk mengenkripsi dan menandatangani item tabel, DynamoDB Encryption Client memerlukan:

+ Informasi tentang tabel. la mendapatkan informasi tentang tabel dari konteks enkripsi DynamoDB
yang Anda berikan. Beberapa pembantu mendapatkan informasi yang diperlukan dari DynamoDB
dan membuat konteks enkripsi DynamoDB untuk Anda.

(® Note

Konteks enkripsi DynamoDB dalam Klien Enkripsi DynamoDB tidak terkait dengan konteks
enkripsi di () dan. AWS Key Management Service AWS KMS AWS Encryption SDK

» Atribut mana yang akan dienkripsi dan ditandatangani. la mendapatkan informasi ini dari tindakan

atribut yang Anda berikan.

» Materi enkripsi, termasuk enkripsi dan kunci penandatanganan. la mendapatkannya dari penyedia
materi kriptografis (CMP) yang Anda pilih dan konfigurasikan.

Cara kerjanya

257



AWS SDK Enkripsi Basis Data Panduan Developer

* Instruksi untuk mengenkripsi dan menandatangani item. CMP menambahkan instruksi untuk
menggunakan materi enkripsi, termasuk algoritma enkripsi dan penandatanganan, ke deskripsi
material aktual.

Enkriptor item menggunakan semua elemen ini untuk mengenkripsi dan menandatangani item.

Enkriptor item juga menambahkan dua atribut untuk item: atribut deskripsi materi yang berisi instruksi

enkripsi dan penandatanganan (deskripsi materi aktual), dan atribut yang berisi tanda tangan. Anda
dapat berinteraksi dengan enkriptor item secara langsung, atau menggunakan fitur pembantu yang
berinteraksi dengan enkriptor item untuk Anda untuk menerapkan perilaku default yang aman.

Hasilnya adalah item DynamoDB yang mengandung data yang dienkripsi dan ditandatangani.
Memverifikasi dan mendekripsi item tabel

Komponen ini juga bekerja sama untuk memverifikasi dan mendekripsi item Anda, seperti yang
ditunjukkan dalam diagram berikut.

Encrypted &
Signed Item t

.

Item Encryptor

Attribute Actions YP / \

ENCRYPT_AND_SIGN > l Get Decryption

SIGN_ONLY Materials .

DO_NOTHING o —> Cryptographic
o T | Material

DynamoDB #

Provider (CMP)

Encryption Context

Table Name
Primary Key

. /

Y

Plaintext
Item

Cara kerjanya 258



AWS SDK Enkripsi Basis Data Panduan Developer

Untuk memverifikasi dan mendekripsi item, DynamoDB Encryption Client membutuhkan komponen
yang sama, komponen dengan konfigurasi yang sama, atau komponen yang dirancang khusus untuk
mendekripsi item, sebagai berikut:

 Informasi tentang tabel dari konteks enkripsi DynamoDB.

 Atribut mana yang harus diverifikasi dan didekripsi. la mendapatkannya dari tindakan atribut.

+ Materi dekripsi, termasuk kunci verifikasi dan dekripsi, dari penyedia materi kriptografis (CMP) yang
Anda pilih dan konfigurasikan.

Item terenkripsi tidak termasuk catatan CMP yang digunakan untuk mengenkripsinya. Anda harus
menyediakan CMP yang sama, CMP dengan konfigurasi yang sama, atau CMP yang dirancang
untuk mendekripsi item.

 Informasi tentang cara item dienkripsi dan ditandatangani, termasuk algoritma enkripsi dan
penandatanganan. Klien mendapatkannya dari atribut deskripsi materi dalam item.

Enkriptor item menggunakan semua elemen ini untuk memverifikasi dan mendekripsi item. la juga
menghapus deskripsi materi dan atribut tanda tangan. Hasilnya adalah item DynamoDB plaintext.

Konsep Amazon DynamoDB Encryption Client

® Note

Pustaka enkripsi sisi klien kami diubah namanya menjadi AWS Database Encryption SDK.
Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption
Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.

Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi

DynamoDB.

Topik ini menjelaskan konsep dan terminologi yang digunakan dalam Amazon DynamoDB Encryption
Client.

Untuk mempelajari bagaimana komponen DynamoDB Encryption Client berinteraksi, lihat Cara kerja
DynamoDB Encryption Client.

Topik
» Penyedia materi kriptografis (CMP)

Konsep 259



AWS SDK Enkripsi Basis Data Panduan Developer

» Enkriptor item

* Tindakan atribut

» Deskripsi materi

» Konteks enkripsi DynamoDB

» Penyimpanan penyedia

Penyedia materi kriptografis (CMP)

Saat mengimplementasikan DynamoDB Encryption Client, salah satu tugas pertama Anda adalah
memilih penyedia materi kriptografis (CMP) (juga dikenal sebagai penyedia materi enkripsi). Pilihan

Anda menentukan sebagian besar aspek lain dalam implementasinya.

Penyedia materi kriptografis (CMP) mengumpulkan, menyusun, dan mengembalikan materi
kriptografis yang digunakan enkriptor item untuk mengenkripsi dan menandatangani item tabel Anda.

CMP menentukan algoritma enkripsi yang digunakan serta cara menghasilkan dan melindungi kunci
enkripsi dan penandatanganan.

CMP berinteraksi dengan enkriptor item. Enkriptor item meminta materi enkripsi atau dekripsi dari
CMP, dan CMP mengembalikannya ke enkriptor item. Kemudian, enkriptor item menggunakan materi
kriptografis untuk mengenkripsi dan menandatangani, atau memverifikasi dan mendekripsi, item.

Anda menentukan CMP saat Anda mengonfigurasi klien. Anda dapat membuat CMP kustom yang
kompatibel, atau menggunakan salah satu dari banyak CMPs di perpustakaan. Sebagian besar
CMPs tersedia untuk beberapa bahasa pemrograman.

Enkriptor item

Enkriptor item adalah komponen dengan tingkat yang lebih rendah yang melakukan operasi
kriptografis untuk DynamoDB Encryption Client. la meminta materi kriptografis dari penyedia materi
kriptografis (CMP), kemudian menggunakan materi yang dikembalikan CMP untuk mengenkripsi dan
menandatangani, atau memverifikasi dan mendekripsi, item tabel Anda.

Anda dapat berinteraksi dengan enkriptor item secara langsung atau menggunakan bantuan yang
disediakan pustaka Anda. Sebagai contoh, DynamoDB Encryption Client untuk Java mencakup
kelas bantuan AttributeEncryptor yang dapat Anda gunakan dengan DynamoDBMapper, alih-
alih berinteraksi secara langsung dengan enkriptor item DynamoDBEncryptor. Pustaka Python
mencakup kelas bantuan EncryptedTable, EncryptedClient, dan EncryptedResource yang
berinteraksi dengan enkriptor item untuk Anda.

Konsep 260



AWS SDK Enkripsi Basis Data Panduan Developer

Tindakan atribut

Tindakan atribut memberitahukan kepada enkriptor item tentang tindakan mana yang perlu dilakukan
pada setiap atribut item.

Nilai tindakan atribut dapat menjadi berupa salah satu dari yang berikut:

» Enkripsi dan tanda tangan — Enkripsi nilai atribut. Sertakan atribut (nama dan nilai) dalam tanda
tangan item.

* Hanya tanda tangan — Sertakan atribut dalam tanda tangan item.

« Jangan lakukan apa pun — Jangan enkripsi atau tanda tangani atribut.

Untuk semua atribut yang dapat menyimpan data sensitif, gunakan Enkripsi dan tanda tangan.
Untuk atribut kunci utama (kunci partisi dan kunci penyortiran), gunakan Hanya tanda tangan. Atribut
deskripsi materi dan atribut tanda tangan tidak ditandatangani atau dienkripsi. Anda tidak perlu
menentukan tindakan atribut untuk atribut ini.

Pilin tindakan atribut Anda dengan hati-hati. Bila ragu, gunakan Enkripsi dan tanda tangan. Begitu
Anda menggunakan DynamoDB Encryption Client untuk melindungi item tabel Anda, Anda tidak
dapat mengubah tindakan untuk atribut tanpa menimbulkan risiko kesalahan validasi tanda tangan.
Untuk detailnya, lihat Mengubah model data Anda.

/A Warning

Jangan mengenkripsi atribut kunci utama. Atribut tersebut harus tetap dalam plaintext
sehingga DynamoDB dapat menemukan item tanpa memindai keseluruhan tabel.

Jika konteks enkripsi DynamoDB mengidentifikasi atribut kunci utama Anda, klien akan menyebabkan
kesalahan jika Anda mencoba mengenkripsinya.

Teknik yang Anda gunakan untuk menentukan tindakan atribut berbeda untuk setiap bahasa
pemrograman. Ini mungkin juga spesifik untuk kelas bantuan yang Anda gunakan.

Untuk informasi lebih lanjut, lihat dokumentasi untuk bahasa pemrograman Anda.

Konsep 261



AWS SDK Enkripsi Basis Data Panduan Developer

Deskripsi materi

Deskripsi materi untuk item tabel terenkripsi terdiri atas informasi, seperti algoritma enkripsi,
tentang bagaimana item tabel dienkripsi dan ditandatangani. Penyedia materi kriptografis (CMP)

mencatat deskripsi materi saat menyusun materi kriptografis untuk enkripsi dan penandatanganan.
Kemudian, ketika perlu menyusun materi kriptografis untuk memverifikasi dan mendekripsi item, ia
menggunakan deskripsi materi sebagai panduan.

Pada DynamoDB Encryption Client, deskripsi materi mengacu pada tiga elemen terkait:

Deskripsi materi yang diminta

Beberapa penyedia materi kriptografi (CMPs) memungkinkan Anda menentukan opsi lanjutan,

seperti algoritma enkripsi. Untuk menunjukkan pilihan Anda, Anda menambahkan pasangan

nama-nilai ke properti deskripsi materi dari konteks enkripsi DynamoDB dalam permintaan Anda

untuk mengenkripsi item tabel. Elemen ini dikenal sebagai deskripsi materi yang diminta. Nilai
yang valid dalam deskripsi materi yang diminta didefinisikan oleh CMP yang Anda pilih.

(® Note

Karena deskripsi materi dapat menimpa nilai default yang aman, kami sarankan Anda

menghilangkan deskripsi materi yang diminta kecuali jika Anda memiliki alasan kuat untuk

menggunakannya.

Deskripsi materi aktual

Deskripsi materi yang dikembalikan oleh penyedia bahan kriptografi (CMPs) dikenal sebagai

deskripsi materi yang sebenarnya. Ini menggambarkan nilai-nilai aktual yang digunakan CMP

ketika menyusun materi kriptografis. Biasanya terdiri atas deskripsi materi yang diminta, jika ada,

dengan penambahan dan perubahan.

Atribut deskripsi materi

Klien menyimpan deskripsi materi aktual dalam atribut deskripsi materi item yang dienkripsi.
Nama atribut deskripsi materi adalah amzn-ddb-map-desc dan nilainya adalah deskripsi
materi aktual. Klien menggunakan nilai dalam atribut deskripsi materi untuk memverifikasi dan
mendekripsi item.

Konsep

262



AWS SDK Enkripsi Basis Data Panduan Developer

Konteks enkripsi DynamoDB

Konteks enkripsi DynamoDB menyediakan informasi tentang tabel dan item untuk penyedia materi
kriptografis (CMP). Dalam implementasi lanjutan, konteks enkripsi DynamoDB dapat mencakup
deskripsi materi yang diminta.

Ketika Anda mengenkripsi item tabel, konteks enkripsi DynamoDB secara kriptografis terikat dengan
nilai-nilai atribut terenkripsi. Ketika Anda mendekripsi, jika konteks enkripsi DynamoDB tidak sama
persis dalam hal penulisan huruf besar-kecil dengan konteks enkripsi DynamoDB yang digunakan
untuk mengenkripsi, operasi dekripsi gagal. Jika Anda berinteraksi dengan enkriptor item secara
langsung, Anda harus menyediakan konteks enkripsi DynamoDB ketika Anda memanggil metode
enkripsi atau dekripsi. Kebanyakan bantuan membuat konteks enkripsi DynamoDB untuk Anda.

(® Note

Konteks enkripsi DynamoDB dalam Klien Enkripsi DynamoDB tidak terkait dengan konteks
enkripsi di () dan. AWS Key Management Service AWS KMS AWS Encryption SDK

Konteks enkripsi DynamoDB dapat mencakup bidang berikut. Semua bidang dan nilai bersifat
opsional.

* Nama tabel
* Nama kunci partisi

* Nama kunci penyortiran

Atribut pasangan nama-nilai

» Deskripsi materi yang diminta

Penyimpanan penyedia

Toko penyedia adalah komponen yang mengembalikan penyedia bahan kriptografi (CMPs). Toko
penyedia dapat membuat CMPs atau mendapatkannya dari sumber lain, seperti toko penyedia lain.
Toko penyedia menyimpan versi CMPs yang dibuatnya dalam penyimpanan persisten di mana setiap
CMP yang disimpan diidentifikasi dengan nama material pemohon dan nomor versi.

Penyedia Terbaru di Klien Enkripsi DynamoDB mendapatkannya CMPs dari toko penyedia, tetapi

Anda dapat menggunakan toko penyedia untuk CMPs memasok ke komponen apa pun. Setiap

Konsep 263



AWS SDK Enkripsi Basis Data Panduan Developer

Penyedia Terbaru dikaitkan dengan satu toko penyedia, tetapi toko penyedia dapat memasok CMPs
ke banyak pemohon di beberapa host.

Toko penyedia membuat versi baru sesuai permintaan, dan mengembalikan versi baru dan yang
sudah ada. CMPs Penyimpanan penyedia ini juga mengembalikan nomor versi terbaru untuk nama
materi tertentu. Hal ini memungkinkan peminta tahu kapan penyimpanan penyedia memiliki versi
baru dari CMP yang dapat diminta.

Klien Enkripsi DynamoDB mencakup MetaStore, yang merupakan toko penyedia yang membuat
CMPs Dibungkus dengan kunci yang disimpan di DynamoDB dan dienkripsi dengan menggunakan
Klien Enkripsi DynamoDB internal.

Pelajari lebih lanjut:

« Penyimpanan penyedia: Java, Python
+ MetaStore: Jawa, Python

Penyedia bahan kriptografi

® Note

Pustaka enkripsi sisi klien kami diubah namanya menjadi AWS Database Encryption SDK.
Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption
Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.

Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi

DynamoDB.

Salah satu keputusan terpenting yang Anda buat saat menggunakan DynamoDB Encryption

Client adalah memilih penyedia bahan kriptografi (CMP). CMP merakit dan mengembalikan

bahan kriptografi untuk enkriptor item. Hal ini juga menentukan bagaimana kunci enkripsi dan
penandatanganan dihasilkan, apakah bahan kunci baru dihasilkan untuk setiap item atau digunakan
kembali, serta algoritma enkripsi dan penandatanganan yang digunakan.

Anda dapat memilih CMP dari implementasi yang disediakan di pustaka DynamoDB Encryption Client
atau membangun CMP kustom yang kompatibel. Pilihan CMP Anda mungkin juga tergantung pada
bahasa pemrograman yang Anda gunakan.

Penyedia bahan kriptografi 264


https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/store/ProviderStore.html
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/src/dynamodb_encryption_sdk/material_providers/store/__init__.py
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/store/MetaStore.html
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/materials_providers/metastore.html#module-dynamodb_encryption_sdk.material_providers.store.meta

AWS SDK Enkripsi Basis Data Panduan Developer

Topik ini menjelaskan yang paling umum CMPs dan menawarkan beberapa saran untuk membantu
Anda memilih yang terbaik untuk aplikasi Anda.

Penyedia Bahan KMS Langsung

Penyedia Bahan KMS Langsung melindungi item tabel Anda di bawah item AWS KMS keyyang
tidak pernah meninggalkan AWS Key Management Service(AWS KMS) tidak terenkripsi. Aplikasi
Anda tidak harus menghasilkan atau mengelola bahan kriptografi apa pun. Karena menggunakan

AWS KMS key untuk menghasilkan enkripsi unik dan kunci penandatanganan untuk setiap item,
penyedia ini memanggil AWS KMS setiap kali mengenkripsi atau mendekripsi item.

Jika Anda menggunakan AWS KMS dan satu AWS KMS panggilan per transaksi praktis untuk
aplikasi Anda, penyedia ini adalah pilihan yang baik.

Untuk detailnya, lihat Penyedia Bahan KMS Langsung.

Penyedia Bahan Terbungkus (CMP Terbungkus)

Penyedia Bahan Terbungkus (CMP Terbungkus) memungkinkan Anda menghasilkan dan
mengelola kunci pembungkus dan penandatanganan di luar DynamoDB Encryption Client.

CMP Terbungkus menghasilkan kunci enkripsi yang unik untuk setiap item. Kemudian itu
menggunakan kunci pembungkus (atau pembuka bungkus) dan penandatanganan yang
Anda berikan. Dengan demikian, Anda menentukan bagaimana kunci pembungkus dan
penandatanganan dihasilkan dan apakah mereka itu unik untuk setiap item atau digunakan
kembali. Wrapped CMP adalah alternatif yang aman untuk Direct KMS Provider untuk aplikasi
yang tidak menggunakan AWS KMS dan dapat mengelola materi kriptografi dengan aman.

Untuk detailnya, lihat Penyedia Materi Terbungkus.

Penyedia Terbaru

Penyedia Terbaru adalah penyedia bahan kriptografi (CMP) yang dirancang untuk bekerja dengan
toko penyedia. Itu didapat CMPs dari toko penyedia, dan mendapatkan materi kriptografi yang
dikembalikan dari toko. CMPs Penyedia Terbaru biasanya menggunakan setiap CMP untuk

memenuhi beberapa permintaan untuk bahan kriptografi, tetapi Anda dapat menggunakan
fitur dari toko penyedia untuk mengendalikan sejauh mana bahan akan digunakan kembali,
menentukan seberapa sering CMP dirotasi, dan bahkan mengubah jenis CMP yang digunakan
tanpa mengubah Penyedia Terbaru.

Penyedia bahan kriptografi 265


https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK Enkripsi Basis Data Panduan Developer

Anda dapat menggunakan Penyedia Terbaru dengan toko penyedia yang kompatibel. Klien
Enkripsi DynamoDB mencakup, MetaStore yang merupakan toko penyedia yang mengembalikan
Wrapped. CMPs

Penyedia Terbaru adalah pilihan yang baik untuk aplikasi yang perlu meminimalkan panggilan

ke sumber kriptografi mereka, dan aplikasi yang dapat menggunakan kembali beberapa bahan
kriptografi tanpa melanggar persyaratan keamanan mereka. Misalnya, ini memungkinkan Anda
untuk melindungi materi kriptografi Anda di bawah AWS KMS keyin AWS Key Management
Service(AWS KMS) tanpa menelepon AWS KMS setiap kali Anda mengenkripsi atau mendekripsi
item.

Untuk detailnya, lihat Penyedia Terbaru.

Penyedia Bahan Statis

Penyedia Bahan Statis dirancang untuk pengujian, proof-of-concept demonstrasi, dan
kompatibilitas lama. Penyedia ini tidak menghasilkan bahan kriptografi yang unik untuk setiap
item. la mengembalikan enkripsi dan kunci penandatanganan yang sama yang Anda berikan, dan
kunci-kunci tersebut digunakan langsung untuk mengenkripsi, mendekripsi, dan menandatangani
item tabel Anda.

® Note

Penyedia Statis Asimetris di pustaka Java bukan penyedia statis. Penyedia ini

hanya memasok konstruktor alternatif untuk CMP Terbungkus. Hal ini aman untuk
penggunaan produksi, tetapi Anda harus menggunakan CMP Terbungkus langsung bila
memungkinkan.

Topik
* Penyedia Bahan KMS Langsung

» Penyedia Materi Terbungkus

» Penyedia Terbaru

» Penyedia Materi Statis

Penyedia bahan kriptografi 266


https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/AsymmetricStaticProvider.html

AWS SDK Enkripsi Basis Data Panduan Developer

Penyedia Bahan KMS Langsung

(® Note

Pustaka enkripsi sisi klien kami diubah nhamanya menjadi AWS Database Encryption SDK.

Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption
Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.
Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi

DynamoDB.

Penyedia Bahan KMS Langsung (Penyedia KMS Langsung) melindungi item tabel Anda di bawah
item AWS KMS keyyang tidak pernah meninggalkan AWS Key Management Service(AWS KMS)
tidak terenkripsi. Penyedia bahan kriptografi ini mengembalikan kunci enkripsi yang unik dan kunci

penandatanganan untuk setiap item tabel. Untuk melakukannya, ia memanggil AWS KMS setiap kali
Anda mengenkripsi atau mendekripsi item.

Jika Anda memproses item DynamoDB pada frekuensi tinggi dan skala besar, Anda mungkin
melebihi batas, menyebabkan AWS KMS requests-per-secondpenundaan pemrosesan. Jika Anda
perlu melebihi batas, buat kasing di AWS Dukungan Pusat. Anda juga dapat mempertimbangkan
untuk menggunakan penyedia bahan kriptografi dengan penggunaan kembali kunci secara terbatas,
seperti Penyedia Terbaru.

Untuk menggunakan Penyedia KMS Langsung, penelepon harus memiliki Akun AWS, setidaknya
satu AWS KMS key, dan izin untuk memanggil GenerateDataKeydan mendekripsi operasi pada.
AWS KMS key AWS KMS key Harus berupa kunci enkripsi simetris; Klien Enkripsi DynamoDB tidak
mendukung enkripsi asimetris. Jika Anda menggunakan tabel global DynamoDB, Anda mungkin ingin
menentukan kunci multi-Wilayah AWS KMS. Untuk detailnya, lihat Cara menggunakannya.

(® Note

Saat Anda menggunakan Penyedia KMS Langsung, nama dan nilai atribut kunci utama Anda
muncul dalam teks biasa dalam konteks AWS KMS enkripsi dan AWS CloudTrail log operasi
terkait. AWS KMS Namun, DynamoDB Encryption Client tidak pernah mengekspos plaintext

dari nilai-nilai atribut terenkripsi.

Penyedia bahan kriptografi 267


https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context

AWS SDK Enkripsi Basis Data Panduan Developer

Direct KMS Provider adalah salah satu dari beberapa penyedia materi kriptografi (CMPs) yang
didukung oleh Klien Enkripsi DynamoDB. Untuk informasi tentang yang lain CMPs, lihatPenyedia
bahan kriptografi.

Misalnya kode, lihat:

« Java: AwsKmsEncryptedltem

» Python:, aws-kms-encrypted-tableaws-kms-encrypted-item

Topik

» Cara menggunakannya

» Cara kerjanya

Cara menggunakannya

Untuk membuat Penyedia KMS Langsung, gunakan parameter ID kunci untuk menentukan kunci
KMS enkripsi simetris di akun Anda. Nilai parameter ID kunci dapat berupa ID kunci, ARN kunci,
nama alias, atau alias ARN dari. AWS KMS key Untuk detail tentang pengidentifikasi kunci, lihat
Pengidentifikasi kunci dalam Panduan Developer AWS Key Management Service .

Penyedia KMS Langsung memerlukan kunci KMS enkripsi simetris. Anda tidak dapat menggunakan
kunci KMS asimetris. Namun, Anda dapat menggunakan kunci KMS Multi-wilayah, kunci KMS
dengan bahan kunci yang diimpor, atau kunci KMS di toko kunci khusus. Anda harus memiliki

izin kms: GenerateDataKey dan kms:Decrypt pada kunci KMS. Dengan demikian, Anda harus
menggunakan kunci yang dikelola pelanggan, bukan kunci KMS yang AWS dikelola atau AWS
dimiliki.

Klien Enkripsi DynamoDB untuk Python menentukan Wilayah untuk AWS KMS memanggil dari
Wilayah dalam nilai parameter ID kunci, jika termasuk satu. Jika tidak, ia menggunakan Wilayah di
AWS KMS klien, jika Anda menentukan satu, atau Wilayah yang Anda konfigurasikan di AWS SDK
untuk Python (Boto3). Untuk informasi tentang pemilihan Wilayah dengan Python, lihat Konfigurasi di
AWS SDK for Python (Boto3) API Referensi.

Klien Enkripsi DynamoDB untuk Java menentukan Wilayah untuk AWS KMS memanggil dari
Wilayah di AWS KMS klien, jika klien yang Anda tentukan menyertakan Wilayah. Jika tidak, ia akan
menggunakan Wilayah yang Anda konfigurasi di AWS SDK untuk Java. Untuk informasi tentang
pemilihan Wilayah di AWS SDK untuk Java, lihat Wilayah AWS seleksi di Panduan AWS SDK untuk
Java Pengembang.

Penyedia bahan kriptografi 268


https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_item.py
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_table.py
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html

AWS SDK Enkripsi Basis Data Panduan Developer

Java

// Replace the example key ARN and Region with valid values for your application

final String keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab’
final String region = 'us-west-2'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Python

Contoh berikut menggunakan kunci ARN untuk menentukan. AWS KMS key Jika pengenal kunci
Anda tidak menyertakan Wilayah AWS, Klien Enkripsi DynamoDB mendapatkan Wilayah dari sesi
Botocore yang dikonfigurasi, jika ada, atau dari default Boto.

# Replace the example key ID with a valid value

kms_key = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key)

Jika Anda menggunakan tabel global Amazon DynamoDB, sebaiknya enkripsi data Anda di bawah
kunci Multi-wilayah. AWS KMS Kunci Multi-Region berbeda Wilayah AWS yang dapat digunakan
secara bergantian karena memiliki ID kunci dan bahan kunci yang sama. AWS KMS keys Untuk
detailnya, lihat Menggunakan kunci multi-Wilayah dalam Panduan Developer AWS Key Management
Service .

(® Note

Jika Anda menggunakan tabel global versi 2017.11.29, Anda harus menetapkan tindakan
atribut agar bidang replikasi yang dicadangkan tidak dienkripsi atau ditandatangani. Untuk
detailnya, lihat Masalah dengan tabel global versi lama.

Untuk menggunakan kunci multi-Wilayah dengan DynamoDB Encryption Client, buat kunci multi-
Wilayah dan replikasi ke Wilayah di mana aplikasi Anda berjalan. Kemudian konfigurasi Penyedia
Langsung KMS untuk menggunakan kunci multi-Wilayah di wilayah di mana klien DynamoDB
Encryption Client memanggil AWS KMS.

Penyedia bahan kriptografi 269


https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V1.html

AWS SDK Enkripsi Basis Data Panduan Developer

Contoh berikut mengonfigurasi DynamoDB Encryption Client untuk mengenkripsi data di Wilayah
AS Timur (N. Virginia) (us-east-1) dan mendekripsi di Wilayah AS Barat (Oregon) (us-west-2)
menggunakan kunci multi-Wilayah.

Java

Dalam contoh ini, Klien Enkripsi DynamoDB mendapatkan Wilayah untuk AWS KMS memanggil
dari Wilayah di klien. AWS KMS Nilai keyArn mengidentifikasi kunci multi-Wilayah dalam Wilayah
yang sama.

// Encrypt in us-east-1

// Replace the example key ARN and Region with valid values for your application
final String usEastKey = 'arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcdl12ab34cd56ef1234567890ab'

final String region = 'us-east-1'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, usEastKey);

// Decrypt in us-west-2

// Replace the example key ARN and Region with valid values for your application
final String usWestKey = 'arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcdl2ab34cd56ef1234567890ab

final String region = 'us-west-2'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, usWestKey);

Python

Dalam contoh ini, Klien Enkripsi DynamoDB mendapatkan Wilayah untuk AWS KMS memanggil
dari Wilayah di ARN kunci.

# Encrypt in us-east-1

# Replace the example key ID with a valid value

us_east_key = 'arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab’

kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=us_east_key)

Penyedia bahan kriptografi 270



AWS SDK Enkripsi Basis Data Panduan Developer

# Decrypt in us-west-2

# Replace the example key ID with a valid value

us_west_key = 'arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab’

kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=us_west_key)

Cara kerjanya

Penyedia KMS Langsung mengembalikan kunci enkripsi dan penandatanganan yang dilindungi oleh
AWS KMS key yang Anda tentukan, seperti yang ditunjukkan pada diagram berikut.

Direct KMS Provider

Direct KMS Provider
Iltem encryptor

Application

G teDatak _derive- Encryption ke
‘ KMS key ID +[ s ev] Plaintext data key- derive » _Sigr":i\frfwi key /

Encrypted data key —» | Encrypted data key
Encryption algorithms

r 1

KMS Key 1D ‘

KMS P

AWS KMS key

* Untuk menghasilkan materi enkripsi, Penyedia KMS Langsung meminta AWS KMS untuk membuat
kunci data unik untuk setiap item menggunakan AWS KMS key yang Anda tentukan. Penyedia

ini mendapatkan kunci enkripsi dan penandatanganan untuk item dari salinan plaintext dari kunci
data, kemudian mengembalikan kunci enkripsi dan penandatanganan, bersama dengan kunci data
terenkripsi, yang disimpan dalam atribut deskripsi bahan item tersebut.

Enkriptor item menggunakan kunci enkripsi dan penandatanganan serta membuangnya dari
memori secepat mungkin. Hanya salinan terenkripsi dari kunci data dari lokasi mereka diambil yang
disimpan dalam item yang dienkripsi.

Penyedia bahan kriptografi 271


https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys

AWS SDK Enkripsi Basis Data Panduan Developer

» Untuk menghasilkan materi dekripsi, Penyedia KMS Langsung meminta AWS KMS
untuk mendekripsi kunci data terenkripsi. Kemudian, ia mendapatkan verifikasi dan kunci
penandatanganan dari kunci data plaintext, dan mengembalikan mereka ke enkriptor item.

Enkriptor item memverifikasi item dan, jika verifikasi berhasil, mendekripsi nilai terenkripsi.
Kemudian, ia menghapus kunci dari memori sesegera mungkin.

Dapatkan bahan enkripsi

Bagian ini menjelaskan secara detail input, output, dan pemrosesan Penyedia KMS Langsung ketika
menerima permintaan bahan enkripsi dari enkriptor item.

Input (dari aplikasi)

* ID kunci dari sebuah AWS KMS key.

Input (dari enkriptor item)

« Konteks enkripsi DynamoDB

Output (untuk enkriptor item)

» Kunci enkripsi (plaintext)
* Kunci penandatanganan

« Dalam deskripsi bahan aktual: Nilai-nilai ini disimpan dalam atribut deskripsi bahan yang
ditambahkan klien ke item.

« amzn-ddb-env-key: Kunci data yang dikodekan Base64 dienkripsi oleh AWS KMS key
» amzn-ddb-env-alg: Algoritma enkripsi, secara default AES/256

« amzn-ddb-sig-alg: Algoritma penandatanganan, secara default, Hmac /256 SHA256

« amzn-ddb-wrap-alg: km

Pengolahan

1. Penyedia KMS Langsung mengirimkan AWS KMS permintaan untuk menggunakan yang
ditentukan AWS KMS key untuk menghasilkan kunci data unik untuk item tersebut. Operasi
mengembalikan kunci plaintext dan salinan yang dienkripsi di bawah file. AWS KMS key Hal ini
dikenal sebagai bahan kunci awal.

Penyedia bahan kriptografi 272


https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://en.wikipedia.org/wiki/HMAC
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html

AWS SDK Enkripsi Basis Data Panduan Developer

Permintaan tersebut mencakup nilai-nilai berikut dalam plaintext pada konteks enkripsi AWS
KMS. Nilai-nilai non-rahasia ini secara kriptografi terikat pada objek terenkripsi, sehingga konteks
enkripsi yang sama diperlukan pada dekripsi. Anda dapat menggunakan nilai-nilai ini untuk
mengidentifikasi panggilan ke AWS KMS dalam AWS CloudTrail log.

» amzn-ddb-env-alg — Algoritma enkripsi, secara default AES/256
« amzn-ddb-sig-alg — Algoritma penandatanganan, secara default Hmac /256 SHA256
* (Opsional) aws-kms-table - table name

* (Opsional) partition key name - partition key value (nilai biner adalah Base64-
dikodekan)

* (Opsional) sort key name - sort key value (nilai biner adalah Base64-dikodekan)

Direct KMS Provider mendapatkan nilai untuk konteks AWS KMS enkripsi dari konteks enkripsi
DynamoDB untuk item tersebut. Jika konteks enkripsi DynamoDB tidak menyertakan nilai, seperti
nama tabel, pasangan nama-nilai itu dihilangkan dari konteks enkripsi. AWS KMS

2. Penyedia KMS Langsung mendapat kunci enkripsi simetris dan kunci penandatanganan dari kunci
data. Secara default, ia menggunakan Secure Hash Algorithm (SHA) 256 dan Fungsi Derivasi
Kunci RFC5869 berbasis HMAC untuk mendapatkan kunci enkripsi simetris AES 256-bit dan kunci
penandatanganan HMAC-SHA-256 256-bit.

3. Penyedia KMS Langsung mengembalikan output ke enkriptor item.

4. Enkriptor item menggunakan kunci enkripsi untuk mengenkripsi atribut yang ditentukan dan kunci
penandatanganan untuk menandatanganinya, menggunakan algoritma yang ditentukan dalam
deskripsi bahan yang aktual. la akan menghapus kunci plaintext dari memori sesegera mungkin.

Dapatkan materi dekripsi

Bagian ini menjelaskan secara detail input, output, dan pemrosesan Penyedia KMS Langsung ketika
menerima permintaan bahan dekripsi dari enkriptor item.

Input (dari aplikasi)
* ID kunci dari sebuah AWS KMS key.

Nilai ID kunci dapat berupa ID kunci, kunci ARN, nama alias atau alias ARN dari. AWS KMS key
Nilai apa pun yang tidak disertakan dalam ID kunci, seperti Wilayah, harus tersedia di profil AWS
bernama. Kunci ARN menyediakan semua nilai yang AWS KMS dibutuhkan.

Penyedia bahan kriptografi 273


https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/kms/latest/developerguide/monitoring-overview.html
https://en.wikipedia.org/wiki/SHA-2
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles

AWS SDK Enkripsi Basis Data Panduan Developer

Input (dari enkriptor item)

 Salinan konteks enkripsi DynamoDB yang berisi konten atribut deskripsi materi.

Output (untuk enkriptor item)

» Kunci enkripsi (plaintext)

» Kunci penandatanganan

Pengolahan
1. Penyedia KMS Langsung mendapatkan kunci data terenkripsi dari atribut deskripsi material dalam
item yang dienkripsi.

2. la meminta AWS KMS untuk menggunakan yang ditentukan AWS KMS key untuk mendekripsi
kunci data terenkripsi. Operasi mengembalikan kunci plaintext.

Permintaan ini harus menggunakan konteks enkripsi AWS KMS yang digunakan untuk membuat
dan mengenkripsi kunci data.

+ aws-kms-table — table name

* partition key name— partition key value (nilai biner adalah Base64-dikodekan)
* (Opsional) sort key name - sort key value (nilai biner adalah Base64-dikodekan)

« amzn-ddb-env-alg — Algoritma enkripsi, secara default AES/256

« amzn-ddb-sig-alg — Algoritma penandatanganan, secara default Hmac /256 SHA256

3. Penyedia KMS Langsung menggunakan Secure Hash Algorithm (SHA) 256 dan Fungsi Derivasi
Kunci RFC5869 berbasis HMAC untuk mendapatkan kunci enkripsi simetris AES 256-bit dan kunci
penandatanganan HMAC-SHA-256 256-bit dari kunci data.

4. Penyedia KMS Langsung mengembalikan output ke enkriptor item.

5. Enkriptor item menggunakan kunci penandatanganan untuk memverifikasi item. Jika berhasil,
ia menggunakan kunci enkripsi simetris untuk mendekripsi nilai atribut terenkripsi. Operasi ini
menggunakan algoritma enkripsi dan penandatanganan yang ditentukan dalam deskripsi bahan
aktual. Enkriptor item akan menghapus kunci plaintext dari memori sesegera mungkin.

Penyedia bahan kriptografi 274


https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://en.wikipedia.org/wiki/SHA-2
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

AWS SDK Enkripsi Basis Data Panduan Developer

Penyedia Materi Terbungkus

(® Note

Pustaka enkripsi sisi klien kami diubah nhamanya menjadi AWS Database Encryption SDK.

Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption
Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.
Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi

DynamoDB.

Penyedia Bahan Terbungkus (Wrapped CMP) memungkinkan Anda menggunakan kunci
pembungkus dan penandatanganan dari sumber mana pun dengan DynamoDB Encryption
Client. CMP yang Dibungkus tidak bergantung pada AWS layanan apa pun. Namun, Anda harus
menghasilkan dan mengelola kunci pembungkus dan penandatanganan di luar klien, termasuk
menyediakan kunci yang benar untuk memverifikasi dan mendekripsi item.

Wrapped CMP menghasilkan kunci enkripsi item yang unik untuk setiap item. CMP ini membungkus
kunci enkripsi item dengan kunci pembungkus yang Anda masukkan dan menyimpan kunci enkripsi
item terbungkus dalam atribut deskripsi materi item. Karena Anda memasukkan kunci pembungkus

dan penandatangan, Anda menentukan bagaimana kunci pembungkus dan penandatanganan
dihasilkan dan apakah kunci itu unik untuk setiap item atau digunakan kembali.

Wrapped CMP adalah implementasi yang aman dan pilihan yang baik untuk aplikasi yang dapat
mengelola materi kriptografis.

Wrapped CMP adalah salah satu dari beberapa penyedia bahan kriptografi (CMPs) yang didukung

oleh Klien Enkripsi DynamoDB. Untuk informasi tentang yang lain CMPs, lihatPenyedia bahan
kriptografi.

Misalnya kode, lihat:

» Java: AsymmetricEncryptedltem

» Python:, wrapped-rsa-encrypted-tablewrapped-symmetric-encrypted-table

Topik

» Cara menggunakannya

Penyedia bahan kriptografi 275


https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AsymmetricEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/wrapped_symmetric_encrypted_table.py
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/wrapped_rsa_encrypted_table.py

AWS SDK Enkripsi Basis Data Panduan Developer

» Cara kerjanya

Cara menggunakannya

Untuk membuat Wrapped CMP, tentukan kunci pembungkus (diperlukan saat enkripsi), kunci
pembuka pembungkus (diperlukan saat dekripsi), dan kunci penandatanganan. Anda harus
menyediakan kunci ketika Anda mengenkripsi dan mendekripsi item.

Kunci pembungkus, pembuka pembungkus, dan penandatanganan dapat berupa kunci simetris atau
pasangan kunci asimetris.

Java

// This example uses asymmetric wrapping and signing key pairs
final KeyPair wrappingKeys = ...
final KeyPair signingKeys = ...

final WrappedMaterialsProvider cmp =
new WrappedMaterialsProvider(wrappingKeys.getPublic(),
wrappingKeys.getPrivate(),
signingKeys);

Python

# This example uses symmetric wrapping and signing keys
wrapping_key
signing_key

wrapped_cmp = WrappedCryptographicMaterialsProvider(
wrapping_key=wrapping_key,
unwrapping_key=wrapping_key,
signing_key=signing_key

Cara kerjanya

Wrapped CMP menghasilkan kunci enkripsi item baru untuk setiap item. CMP ini menggunakan
kunci pembungkus, pembuka pembungkus, dan penandatanganan yang Anda berikan, seperti yang
ditunjukkan dalam diagram berikut.

Penyedia bahan kriptografi 276



AWS SDK Enkripsi Basis Data Panduan Developer

Wrapped CMP Item encryptor
Application [Generate encryption key} » Plaintext encryption key
iwrap key
Wrapping key »Wrapped encryption key » Wrapped encryption key
Unwrapping key
Signing key »| Signing key

Encryption algorithms

Dapatkan materi enkripsi

Bagian ini menjelaskan secara terperinci input, output, dan pengolahan Penyedia Materi Terbungkus
(Wrapped CMP) ketika menerima permintaan materi enkripsi.

Input (dari aplikasi)

» Kunci pembungkus: Sebuah kunci simetris Standar Enkripsi Lanjutan (AES), atau kunci publik
RSA. Diperlukan jika ada nilai atribut yang dienkripsi. Jika tidak, itu bersifat opsional dan diabaikan.

* Kunci pembuka pembungkus: Opsional dan diabaikan.

* Kunci penandatanganan

Input (dari enkriptor item)

» Konteks enkripsi DynamoDB

Output (untuk enkriptor item):

» Kunci enkripsi item plaintext
» Kunci penandatanganan (tidak berubah)

+ Deskripsi materi aktual: Nilai-nilai ini disimpan dalam atribut deskripsi materi yang ditambahkan
klien ke item.

* amzn-ddb-env-key: Kunci enkripsi item terbungkus yang didekodekan Base64

+ amzn-ddb-env-alg: Algoritma enkripsi yang digunakan untuk mengenkripsi item. Defaultnya
adalah AES-256-CBC.

Penyedia bahan kriptografi 277


https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

AWS SDK Enkripsi Basis Data Panduan Developer

« amzn-ddb-wrap-alg: Algoritma pembungkus yang digunakan Wrapped CMP untuk
membungkus kunci enkripsi item. Jika kunci pembungkus adalah kunci AES, kuncinya dibungkus
menggunakan AES-Keywrap tanpa pad sebagaimana didefinisikan dalam RFC 3394. Jika kunci
pembungkus adalah kunci RSA, kunci dienkripsi dengan menggunakan RSA OAEP dengan
padding. MGF1

Pengolahan

Saat mengenkripsi item, Anda memasukkan kunci pembungkus dan kunci penandatanganan. Kunci
pembuka pembungkus bersifat opsional dan diabaikan.

1.
2.

Wrapped CMP menghasilkan kunci enkripsi item simetris yang unik untuk setiap item tabel.

CMP ini menggunakan kunci pembungkus yang Anda tentukan untuk membungkus kunci enkripsi
item. Kemudian, ia menghapusnya dari memori sesegera mungkin.

. la mengembalikan kunci enkripsi item plaintext, kunci penandatanganan yang Anda berikan, dan

deskripsi materi aktual yang mencakup kunci enkripsi item terbungkus, serta algoritma enkripsi
dan pembungkus.

. Enkriptor item menggunakan kunci enkripsi plaintext untuk mengenkripsi item. la menggunakan

kunci penandatanganan yang Anda masukkan untuk menandatangani item. Kemudian, ia
menghapus kunci plaintext dari memori sesegera mungkin. la menyalin bidang dalam deskripsi
materi aktual, termasuk kunci enkripsi terbungkus (amzn-ddb-env-key), ke atribut deskripsi
materi item.

Dapatkan materi dekripsi

Bagian ini menjelaskan secara terperinci input, output, dan pengolahan Penyedia Materi Terbungkus
(Wrapped CMP) ketika menerima permintaan materi dekripsi.

Input (dari aplikasi)

Kunci pembungkus: Opsional dan diabaikan.

Kunci pembuka pembungkus: Kunci simetris Standar Enkripsi Lanjutan (AES) yang sama atau

kunci privat RSA yang sesuai dengan kunci publik RSA yang digunakan untuk mengenkripsi.
Diperlukan jika ada nilai atribut yang dienkripsi. Jika tidak, itu bersifat opsional dan diabaikan.

Kunci penandatanganan

Penyedia bahan kriptografi 278


https://tools.ietf.org/html/rfc3394.html
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

AWS SDK Enkripsi Basis Data Panduan Developer

Input (dari enkriptor item)

 Salinan konteks enkripsi DynamoDB yang berisi konten atribut deskripsi materi.

Output (untuk enkriptor item)

« Kunci enkripsi item plaintext

» Kunci penandatanganan (tidak berubah)

Pengolahan

Ketika Anda mendekripsi item, Anda memasukkan kunci pembuka pembungkus dan kunci
penandatanganan. Kunci pembuka pembungkus bersifat opsional dan diabaikan.

1. Wrapped CMP mendapatkan kunci enkripsi item terbungkus dari atribut deskripsi materi dari item.

2. la menggunakan kunci pembuka pembungkus dan algoritma untuk membuka bungkus kunci
enkripsi item.

3. la mengembalikan kunci enkripsi item plaintext, kunci penandatanganan, serta algoritma enkripsi
dan penandatanganan ke enkriptor item.

4. Enkriptor item menggunakan kunci penandatanganan untuk memverifikasi item. Jika berhasil,
ia menggunakan kunci enkripsi item untuk mendekripsi item. Kemudian, ia menghapus kunci
plaintext dari memori sesegera mungkin.

Penyedia Terbaru

(@ Note

Pustaka enkripsi sisi klien kami diubah nhamanya menjadi AWS Database Encryption SDK.
Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption
Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.

Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi

DynamoDB.

Penyedia Terbaru adalah penyedia bahan kriptografi (CMP) yang dirancang untuk bekerja dengan
toko penyedia. Itu didapat CMPs dari toko penyedia, dan mendapatkan materi kriptografi yang

Penyedia bahan kriptografi 279



AWS SDK Enkripsi Basis Data Panduan Developer

dikembalikan dari toko. CMPs la biasanya menggunakan setiap CMP untuk memenuhi beberapa
permintaan untuk bahan kriptografi. Namun, Anda dapat menggunakan fitur dari toko penyedia untuk
mengendalikan sejauh mana bahan akan digunakan kembali, menentukan seberapa sering CMP
dirotasi, dan bahkan mengubah jenis CMP yang digunakan tanpa mengubah Penyedia Terbaru.

® Note

Kode yang terkait dengan simbol MostRecentProvider untuk Penyedia Terbaru mungkin
menyimpan bahan kriptografi dalam memori untuk seumur hidup proses. Kode ini mungkin
membuat pemanggil dapat menggunakan tombol yang tidak lagi diotorisasi untuk digunakan.
Simbol MostRecentProvider tidak lagi digunakan di versi terdukung yang lebih lama

dari DynamoDB Encryption Client dan dihapus dari versi 2.0.0. Simbol ini digantikan oleh
simbol CachingMostRecentProvider. Untuk detail selengkapnya, lihat Pembaruan untuk
Penyedia Terbaru.

Penyedia Terbaru adalah pilihan yang baik untuk aplikasi yang perlu meminimalkan panggilan ke
toko penyedia dan sumber kriptografi mereka, serta aplikasi yang dapat menggunakan kembali
beberapa bahan kriptografi tanpa melanggar persyaratan keamanan mereka. Misalnya, ini
memungkinkan Anda untuk melindungi materi kriptografi Anda di bawah AWS KMS keyin AWS Key
Management Service(AWS KMS) tanpa menelepon AWS KMS setiap kali Anda mengenkripsi atau
mendekripsi item.

Toko penyedia yang Anda pilih menentukan jenis CMPs yang digunakan Penyedia Terbaru dan
seberapa sering mendapatkan CMP baru. Anda dapat menggunakan toko penyedia yang kompatibel
dengan Penyedia Terbaru, termasuk toko penyedia kustom yang Anda desain.

Klien Enkripsi DynamoDB menyertakan MetaStoreyang membuat dan mengembalikan Penyedia
Bahan Terbungkus (Dibungkus). CMPs MetaStore Menyimpan beberapa versi Wrapped CMPs yang
dihasilkannya dalam tabel DynamoDB internal dan melindunginya dengan enkripsi sisi klien oleh
instance internal Klien Enkripsi DynamoDB.

Anda dapat mengonfigurasi MetaStore untuk menggunakan semua jenis CMP internal untuk
melindungi materi dalam tabel, termasuk Penyedia KMS Langsung yang menghasilkan materi
kriptografi yang dilindungi oleh Anda AWS KMS key, CMP Wrapped yang menggunakan kunci
pembungkus dan penandatanganan yang Anda berikan, atau CMP kustom yang kompatibel yang

Anda desain.

Misalnya kode, lihat:

Penyedia bahan kriptografi 280


https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK Enkripsi Basis Data Panduan Developer

» Java: MostRecentEncryptedltem

» Python: most_recent_provider_encrypted_table

Topik

« Cara menggunakannya

» Cara kerjanya

* Pembaruan untuk Penyedia Terbaru

Cara menggunakannya

Untuk membuat Penyedia Terbaru, Anda perlu membuat dan mengonfigurasi toko penyedia,
kemudian membuat Penyedia Terbaru yang menggunakan toko penyedia.

Contoh berikut menunjukkan cara membuat Penyedia Terbaru yang menggunakan MetaStore dan
melindungi versi dalam tabel DynamoDB internalnya dengan materi kriptografi dari Penyedia KMS
Langsung. Contoh-contoh ini menggunakan simbol CachingMostRecentProvider.

Setiap Penyedia Terbaru memiliki nama yang mengidentifikasinya CMPs dalam MetaStore tabel,
pengaturan time-to-live(TTL), dan pengaturan ukuran cache yang menentukan berapa banyak entri
yang dapat disimpan cache. Contoh ini mengatur ukuran cache hingga 1000 entri dan TTL selama 60
detik.

Java

// Set the name for MetaStore's internal table
final String keyTableName = 'metaStoreTable'

// Set the Region and AWS KMS key

final String region = 'us-west-2'

final String keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

// Set the TTL and cache size
final long ttlInMillis = 60000;
final long cacheSize = 1000;

// Name that identifies the MetaStore's CMPs in the provider store
final String materialName = 'testMRP'

Penyedia bahan kriptografi 281


https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/MostRecentEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/most_recent_provider_encrypted_table.py

AWS SDK Enkripsi Basis Data Panduan Developer

// Create an internal DynamoDB client for the MetaStore
final AmazonDynamoDB ddb =
AmazonDynamoDBClientBuilder.standard().withRegion(region).build();

// Create an internal Direct KMS Provider for the MetaStore

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();

final DirectKmsMaterialProvider kmsProv = new DirectKmsMaterialProvider(kms,
keyArn);

// Create an item encryptor for the MetaStore,
// including the Direct KMS Provider
final DynamoDBEncryptor keyEncryptor = DynamoDBEncryptor.getInstance(kmsProv);

// Create the MetaStore
final MetaStore metaStore = new MetaStore(ddb, keyTableName, keyEncryptor);

//Create the Most Recent Provider
final CachingMostRecentProvider cmp = new CachingMostRecentProvider(metaStore,
materialName, ttlInMillis, cacheSize);

Python

# Designate an AWS KMS key
kms_key_id = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab’

# Set the name for MetaStore's internal table
meta_table_name = 'metaStoreTable'

# Name that identifies the MetaStore's CMPs in the provider store
material_name = 'testMRP'

# Create an internal DynamoDB table resource for the MetaStore
meta_table = boto3.resource('dynamodb').Table(meta_table_name)

# Create an internal Direct KMS Provider for the MetaStore
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

# Create the MetaStore with the Direct KMS Provider
meta_store = MetaStore(

table=meta_table,

materials_provider=kms_cmp

Penyedia bahan kriptografi 282



AWS SDK Enkripsi Basis Data Panduan Developer

# Create a Most Recent Provider using the MetaStore
# Sets the TTL (in seconds) and cache size (# entries)
most_recent_cmp = MostRecentProvider(
provider_store=meta_store,
material_name=material_name,
version_ttl1=60.0,
cache_size=1000

Cara kerjanya

Penyedia Terbaru didapat CMPs dari toko penyedia. Kemudian, penyedia ini menggunakan CMP
untuk menghasilkan bahan kriptografi yang dikembalikan ke enkriptor item.

Tentang Penyedia Terbaru

Penyedia Terbaru mendapatkan penyedia bahan kriptografi (CMP) dari penyimpanan penyedia.
Kemudian, penyedia ini menggunakan CMP untuk menghasilkan bahan kriptografi yang akan
dikembalikan. Setiap Penyedia Terbaru dikaitkan dengan satu toko penyedia, tetapi toko penyedia
dapat memasok CMPs ke beberapa penyedia di beberapa host.

Penyedia Terbaru dapat digunakan dengan CMP yang kompatibel dari toko penyedia. la meminta
bahan enkripsi atau dekripsi dari CMP dan mengembalikan output ke enkriptor item. la tidak
melakukan operasi kriptografis apa pun.

Untuk meminta CMP dari toko penyedia, Penyedia Terbaru memasok nama bahan dan versi CMP
yang ada yang hendak digunakan. Untuk bahan enkripsi, Penyedia Terbaru selalu meminta versi
maksimum (“terbaru”). Untuk bahan dekripsi, ia meminta versi CMP yang digunakan untuk membuat
bahan enkripsi, seperti yang ditunjukkan dalam diagram berikut.

Penyedia bahan kriptografi 283



AWS SDK Enkripsi Basis Data Panduan Developer

Iltem encryptor Cryptographic
materials

Get cryptographic
materials

Most Recent Provider

Get
) cryptographic
Geta CMP ‘ materials
CMP

| Cache

Get or create CMP:
Name, Version

Provider store

Penyedia Terbaru menyimpan versi CMPs yang dikembalikan oleh toko penyedia dalam cache Last
Recent Used (LRU) lokal di memori. Cache memungkinkan Penyedia Terbaru untuk mendapatkan
CMPs yang dibutuhkan tanpa memanggil toko penyedia untuk setiap item. Anda dapat menghapus
cache sesuai permintaan.

Penyedia Terbaru menggunakan time-to-livenilai yang dapat dikonfigurasi yang dapat Anda
sesuaikan berdasarkan karakteristik aplikasi Anda.

Tentang MetaStore

Anda dapat menggunakan Penyedia Terbaru dengan toko penyedia apa pun, termasuk toko
penyedia kustom yang kompatibel. Klien Enkripsi DynamoDB mencakup MetaStore, implementasi
aman yang dapat Anda konfigurasi dan sesuaikan.

A MetaStoreadalah toko penyedia yang membuat dan mengembalikan Wrapped CMPs yang
dikonfigurasi dengan kunci pembungkus, membuka kunci, dan kunci penandatanganan yang
diperlukan Wrapped. CMPs A MetaStore adalah opsi aman untuk Penyedia Terbaru karena Wrapped
CMPs selalu menghasilkan kunci enkripsi item unik untuk setiap item. Hanya kunci pembungkus yang
melindungi kunci enkripsi item dan tombol penandatanganan digunakan kembali.

Diagram berikut menunjukkan komponen MetaStore dan bagaimana berinteraksi dengan Penyedia
Terbaru.

Penyedia bahan kriptografi 284



AWS SDK Enkripsi Basis Data Panduan Developer

Most Recent Provider

Mame, Version |

'
MetaStore

7 N
Get or create material:
Mame, Version

—>[ Create wrapped CMP

N A
- ; Encrypt material Get cryptographic material
‘--._____ _ g R .
Mame, Version | Item  —

Encryptor Internal CMP

\‘__Internal DB

MetaStore Menghasilkan Wrapped CMPs, dan kemudian menyimpannya (dalam bentuk terenkripsi)
dalam tabel DynamoDB internal. Kunci partisi adalah nama dari bahan Penyedia Terbaru; kunci
pengurutan nomor versinya. Bahan-bahan dalam tabel dilindungi oleh DynamoDB Encryption Client
internal, termasuk enkriptor item dan penyedia bahan kriptografi (CMP) internal.

Anda dapat menggunakan semua jenis CMP internal di Anda MetaStore, termasuk Penyedia KMS
Langsung, CMP Terbungkus dengan materi kriptografi yang Anda berikan, atau CMP kustom yang
kompatibel. Jika CMP internal Anda MetaStore adalah Penyedia KMS Langsung, kunci pembungkus
dan penandatanganan yang dapat digunakan kembali dilindungi di bawah in (). AWS KMS keyAWS
Key Management ServiceAWS KMS MetaStore Panggilan AWS KMS setiap kali menambahkan versi

CMP baru ke tabel internalnya atau mendapatkan versi CMP dari tabel internalnya.
Menetapkan time-to-live nilai

Anda dapat menetapkan nilai time-to-live (TTL) untuk setiap Penyedia Terbaru yang Anda buat.
Secara umum, gunakan nilai TTL terendah yang praktis untuk aplikasi Anda.

Penggunaan nilai TTL berubah dalam simbol CachingMostRecentProvider untuk Penyedia
Terbaru.

Penyedia bahan kriptografi 285


https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS SDK Enkripsi Basis Data Panduan Developer

® Note

Simbol MostRecentProvider untuk Penyedia Terbaru tidak lagi digunakan di versi
terdukung yang lebih lama dari DynamoDB Encryption Client dan dihapus dari versi 2.0.0.
Simbol ini digantikan oleh simbol CachingMostRecentProvider. Kami menyarankan agar
Anda memperbarui kode sesegera mungkin. Untuk detail selengkapnya, lihat Pembaruan
untuk Penyedia Terbaru.

CachingMostRecentProvider

Parameter CachingMostRecentProvider menggunakan nilai TTL dalam dua cara yang
berbeda.

TTL menentukan seberapa sering Penyedia Terbaru memeriksa toko penyedia untuk versi baru
CMP. Jika versi baru tersedia, Penyedia Terbaru menggantikan CMP dan menyegarkan bahan
kriptografinya. Jika tidak, ia akan terus menggunakan CMP dan bahan kriptografi saat ini.

TTL menentukan berapa lama CMPs cache dapat digunakan. Sebelum ia menggunakan CMP
cache untuk enkripsi, Penyedia Terbaru mengevaluasi waktu dalam cache. Jika waktu cache
CMP melebihi TTL, CMP dikosongkan dari cache dan Penyedia Terbaru mendapat CMP versi
paling baru dari toko penyedianya.

MostRecentProvider

Di MostRecentProvider, TTL menentukan seberapa sering Penyedia Terbaru memeriksa toko

penyedia untuk versi baru CMP. Jika versi baru tersedia, Penyedia Terbaru menggantikan CMP

dan menyegarkan bahan kriptografinya. Jika tidak, ia akan terus menggunakan CMP dan bahan
kriptografi saat ini.

TTL tidak menentukan seberapa sering versi CMP baru dibuat. Anda membuat versi CMP baru

dengan memutar bahan kriptografi.

Nilai TTL yang ideal bervariasi dengan aplikasi dan tujuan latensi dan ketersediaannya. TTL yang

lebih rendah meningkatkan profil keamanan Anda dengan mengurangi waktu untuk menyimpan

bahan kriptografi di dalam memori. Selain itu, TTL lebih rendah menyegarkan informasi penting lebih

sering. Misalnya, jika CMP internal Anda adalah Penyedia KMS Langsung, itu memverifikasi lebih

sering bahwa penelepon masih berwenang untuk menggunakan. AWS KMS key

Penyedia bahan kriptografi 286



AWS SDK Enkripsi Basis Data Panduan Developer

Jika TTL terlalu singkat, panggilan berulang ke toko penyedia dapat meningkatkan biaya dan
menyebabkan toko penyedia Anda untuk membatasi permintaan dari aplikasi Anda dan aplikasi lain
yang juga menggunakan akun layanan Anda. Anda juga dapat memperoleh manfaat dari koordinasi
TTL dengan tingkat di mana Anda memutar bahan kriptografi.

Selama penguijian, variasikan ukuran TTL dan cache di bawah beban kerja yang berbeda sampai
Anda menemukan konfigurasi yang pas untuk aplikasi Anda serta standar keamanan dan performa
Anda.

Memutar bahan kriptografi

Ketika Penyedia Terbaru membutuhkan bahan enkripsi, ia selalu menggunakan versi terbaru dari
CMP yang dikenalnya. Frekuensi yang diperiksa untuk versi yang lebih baru ditentukan oleh nilai
time-to-live(TTL) yang Anda tetapkan saat Anda mengonfigurasi Penyedia Terbaru.

Ketika TTL kedaluwarsa, Penyedia Terbaru memeriksa toko penyedia untuk versi CMP lebih baru.
Jika ada yang tersedia, Provider Terbaru mendapatkannya dan menggantikan CMP dalam cache-
nya. la menggunakan CMP ini dan bahan kriptografi sampai menemukan bahwa toko penyedia
memiliki versi yang lebih baru.

Untuk memberi tahu toko penyedia untuk membuat versi baru dari CMP untuk Penyedia Terbaru,
panggil operasi Buat Penyedia Baru toko penyedia dengan nama bahan Penyedia Terbaru. Toko
penyedia membuat CMP baru dan menyimpan salinan terenkripsi dalam penyimpanan internal
dengan nomor versi yang lebih besar. (Hal ini juga mengembalikan CMP, tetapi Anda dapat
membuangnya.) Akibatnya, lain kali Penyedia Terbaru menanyakan toko penyedia untuk nomor versi
maksimumnya CMPs, ia mendapatkan nomor versi baru yang lebih besar, dan menggunakannya
dalam permintaan berikutnya ke toko untuk melihat apakah versi baru CMP telah dibuat.

Anda dapat menjadwalkan panggilan Buat Penyedia Baru berdasarkan waktu, jumlah item atau
atribut yang diproses, atau metrik lain yang masuk akal untuk aplikasi Anda.

Dapatkan bahan enkripsi

Penyedia Terbaru menggunakan proses berikut, ditunjukkan dalam diagram ini, untuk mendapatkan
bahan enkripsi yang kembali ke enkriptor item. Output bergantung pada jenis CMP yang
dikembalikan toko penyedia. Penyedia Terbaru dapat menggunakan toko penyedia yang kompatibel,
termasuk MetaStore yang disertakan dalam Klien Enkripsi DynamoDB.

Penyedia bahan kriptografi 287



AWS SDK Enkripsi Basis Data

Panduan Developer

Item encryptor

Cryptographic
materials

Get cryptographic
materials

Most Recent Provider

|
Get

‘ Get a CMP \

cryptographic
materials

CMP |4 —

—»

Cache

J

Get or create CMP:
Name, Version

!

Provider store

S —

'\__‘______-__./

‘ d Q
MName, Version #

Create new CMP
(version++)

Saat Anda membuat Penyedia Terbaru menggunakan CachingMostRecentProvidersimbol,
Anda menentukan toko penyedia, nama untuk Penyedia Terbaru, dan nilai time-to-live(TTL). Anda
juga dapat secara opsional menentukan ukuran cache, yang menentukan jumlah maksimum bahan

kriptografi yang dapat ditempatkan di cache.

Ketika enkriptor item meminta Penyedia Terbaru untuk bahan enkripsi, Penyedia Terbaru dimulai

dengan mencari cache untuk versi terbaru dari CMP.

» Jika ia menemukan versi terbaru CMP dalam cache dan CMP tidak melebihi nilai TTL, Penyedia
Terbaru menggunakan CMP untuk menghasilkan bahan enkripsi. Kemudian, ia mengembalikan
bahan enkripsi ke enkriptor item. Operasi ini tidak memerlukan panggilan ke toko penyedia.

» Jika versi terbaru dari CMP tidak berada dalam cache, atau jika berada dalam cache tetapi telah
melebihi nilai TTL, Penyedia Terbaru meminta CMP dari toko penyedia. Permintaan tersebut

mencakup nama bahan Penyedia Terbaru dan nomor versi maksimum yang diketahui.

Penyedia bahan kriptografi

288



AWS SDK Enkripsi Basis Data Panduan Developer

1. Toko penyedia mengembalikan CMP dari penyimpanan tetap. Jika toko penyedia adalah a
MetaStore, ia mendapatkan CMP Wrapped terenkripsi dari tabel DynamoDB internalnya dengan
menggunakan nama materi Penyedia Terbaru sebagai kunci partisi dan nomor versi sebagai
kunci pengurutan. MetaStore Menggunakan enkripsi item internal dan CMP internal untuk
mendekripsi CMP Wrapped. Kemudian, ia mengembalikan CMP plaintext ke Penyedia Terbaru.
Jika CMP internal adalah Penyedia KMS Langsung, langkah ini mencakup panggilan ke AWS
Key Management Service (AWS KMS).

2. CMP menambahkan bidang amzn-ddb-meta-id ke deskripsi bahan aktual. Nilainya adalah
nama bahan dan versi CMP dalam tabel internalnya. Toko penyedia mengembalikan CMP ke

Penyedia Terbaru.
3. Penyedia Terbaru menyimpan cache CMP dalam memori.

4. Penyedia Terbaru menggunakan CMP untuk menghasilkan bahan enkripsi. Kemudian, ia
mengembalikan bahan enkripsi ke enkriptor item.

Dapatkan bahan dekripsi

Ketika enkriptor item meminta Penyedia Terbaru untuk bahan dekripsi, Penyedia Terbaru

menggunakan proses berikut untuk mendapatkan dan mengembalikannya.

1.

Penyedia Terbaru meminta toko penyedia untuk nomor versi bahan kriptografi yang digunakan
untuk mengenkripsi item. la meneruskan deskripsi bahan aktual dari atribut deskripsi bahan dari

item.

. Toko penyedia mendapatkan nomor versi CMP pengenkripsi dari bidang amzn-ddb-meta-id di

deskripsi bahan aktual dan mengembalikannya ke Penyedia Terbaru.

. Penyedia Terbaru mencari cache untuk versi CMP yang digunakan untuk mengenkripsi dan

menandatangani item.

Jika menemukan versi CMP yang cocok ada di cache dan CMP belum melebihi nilai time-to-live
(TTL), Penyedia Terbaru menggunakan CMP untuk menghasilkan bahan dekripsi. Kemudian, ia
mengembalikan bahan dekripsi ke enkriptor item. Operasi ini tidak memerlukan panggilan ke toko
penyedia atau CMP lainnya.

Jika versi CMP yang cocok tidak ada dalam cache-nya, atau jika cache AWS KMS key telah
melebihi nilai TTL-nya, Penyedia Terbaru meminta CMP dari toko penyedianya. la mengirimkan
nama bahan dan nomor versi CMP pengenkripsi dalam permintaan.

Penyedia bahan kriptografi 289


https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK Enkripsi Basis Data Panduan Developer

1. Toko penyedia mencari penyimpanan tetap untuk CMP dengan menggunakan nama Penyedia
Terbaru sebagai kunci partisi dan nomor versi sebagai kunci pengurutan.

 Jika nama dan nomor versi tidak berada dalam penyimpanan tetap, toko penyedia akan
memunculkan pengecualian. Jika toko penyedia digunakan untuk menghasilkan CMP, CMP
harus disimpan dalam penyimpanan tetap, kecuali jika itu sengaja dihapus.

« Jika CMP dengan nama yang cocok dan nomor versi berada dalam penyimpanan tetap toko
penyedia, toko penyedia mengembalikan CMP yang ditentukan untuk Penyedia Terbaru.

Jika toko penyedia adalah a MetaStore, ia mendapatkan CMP terenkripsi dari tabel
DynamoDB-nya. Kemudian, ia menggunakan bahan kriptografi dari CMP internal untuk
mendekripsi CMP terenkripsi sebelum mengembalikan CMP ke Penyedia Terbaru. Jika CMP
internal adalah Penyedia KMS Langsung, langkah ini mencakup panggilan ke AWS Key
Management Service (AWS KMS).

2. Penyedia Terbaru menyimpan cache CMP dalam memori.

3. Penyedia Terbaru menggunakan CMP untuk menghasilkan bahan dekripsi. Kemudian, ia
mengembalikan bahan dekripsi ke enkriptor item.

Pembaruan untuk Penyedia Terbaru

Simbol untuk Penyedia Terbaru diubah dari MostRecentProvider ke
CachingMostRecentProvider.

® Note

Simbol MostRecentProvider, yang mewakili Penyedia Terbaru, tidak lagi digunakan
dalam versi 1.15 DynamoDB Encryption Client untuk Java dan versi 1.3 DynamoDB
DynamoDB Encryption Client untuk Python dan dihapus dari versi 2.0.0 DynamoDB
Encryption Client di kedua implementasi bahasa. Sebagai gantinya, gunakan
CachingMostRecentProvider.

CachingMostRecentProvider menerapkan perubahan berikut:

* CachingMostRecentProviderSecara berkala menghapus materi kriptografi dari memori ketika
waktu mereka dalam memori melebihi nilai yang dikonfigurasi time-to-live (TTL).

Penyedia bahan kriptografi 290


https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK Enkripsi Basis Data Panduan Developer

MostRecentProvider mungkin menyimpan bahan kriptografi dalam memori selama masa
proses. Akibatnya, Penyedia Terbaru mungkin tidak menyadari perubahan otorisasi. la mungkin
menggunakan kunci enkripsi setelah izin pemanggil untuk menggunakannya dicabut.

Jika Anda tidak dapat memperbarui ke versi baru ini, Anda bisa mendapatkan efek yang sama
dengan secara berkala memanggil metode clear () pada cache. Metode ini secara manual
membuang isi cache dan membutuhkan Penyedia Terbaru untuk meminta CMP baru dan bahan
kriptografi baru.

* CachingMostRecentProvider juga mencakup pengaturan ukuran cache yang memberi Anda
lebih banyak kontrol atas cache.

Untuk memperbarui ke CachingMostRecentProvider, Anda harus mengubah nama simbol
dalam kode Anda. Dalam semua hal lainnya, CachingMostRecentProvider kompatibel mundur
sepenuhnya dengan MostRecentProvider. Anda tidak perlu mengenkripsi ulang item tabel.

Namun, CachingMostRecentProvider menghasilkan lebih banyak panggilan ke infrastruktur
kunci yang mendasarinya. Ini memanggil toko penyedia setidaknya sekali dalam setiap interval time-
to-live (TTL). Aplikasi dengan banyak aktif CMPs (karena rotasi yang sering) atau aplikasi dengan
armada besar kemungkinan besar sensitif terhadap perubahan ini.

Sebelum merilis kode yang diperbarui, uji secara menyeluruh untuk memastikan bahwa panggilan
yang lebih sering tidak mengganggu aplikasi Anda atau menyebabkan pembatasan oleh layanan
tempat penyedia Anda bergantung, seperti AWS Key Management Service () atau AWS KMS
Amazon DynamoDB. Untuk mengurangi masalah kinerja apa pun, sesuaikan ukuran cache dan
ukuran CachingMostRecentProvider berdasarkan karakteristik kinerja yang Anda amati. time-to-
live Untuk panduan, lihat Menetapkan time-to-live nilai.

Penyedia Materi Statis

(® Note

Pustaka enkripsi sisi klien kami diubah namanya menjadi AWS Database Encryption SDK.
Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption
Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.

Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi

DynamoDB.

Penyedia bahan kriptografi 291



AWS SDK Enkripsi Basis Data Panduan Developer

Penyedia Bahan Statis (CMP Statis) adalah penyedia bahan kriptografi (CMP) yang sangat
sederhana yang ditujukan untuk pengujian, proof-of-concept demonstrasi, dan kompatibilitas warisan.

Untuk menggunakan Static CMP guna mengenkripsi item tabel, Anda menyediakan kunci enkripsi
simetris Standar Enkripsi Lanjutan (AES) dan kunci penandatanganan atau pasangan kunci. Anda
harus menyediakan kunci yang sama untuk mendekripsi item yang dienkripsi. Static CMP tidak
melakukan operasi kriptografis apa pun. Sebaliknya, Static CMP meneruskan kunci enkripsi yang
Anda sediakan ke enkriptor item tanpa perubahan. Enkriptor item mengenkripsi item secara langsung

dengan kunci enkripsi. Kemudian, ia menggunakan kunci penandatanganan secara langsung untuk
menandatanganinya.

Karena Static CMP tidak menghasilkan materi kriptografis yang unik, semua item tabel yang
Anda proses dienkripsi dengan kunci enkripsi yang sama dan ditandatangani dengan kunci
penandatanganan yang sama. Ketika Anda menggunakan kunci yang sama untuk mengenkripsi
nilai atribut pada banyak item atau menggunakan kunci yang sama atau pasangan kunci untuk
menandatangani semua item, ada risiko Anda melebihi batas kriptografis kunci.

® Note

Penyedia Statis Asimetris di pustaka Java bukan penyedia statis. Itu hanya memasok
konstruktor alternatif untuk Wrapped CMP. Penyedia ini aman untuk penggunaan produksi,
tetapi Anda harus menggunakan Wrapped CMP secara langsung bila memungkinkan.

CMP Statis adalah salah satu dari beberapa penyedia bahan kriptografi (CMPs) yang didukung oleh
Klien Enkripsi DynamoDB. Untuk informasi tentang yang lain CMPs, lihatPenyedia bahan kriptografi.

Misalnya kode, lihat:

« Java: SymmetricEncryptedltem

Topik

« Cara menggunakannya

» Cara kerjanya

Penyedia bahan kriptografi 292


https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/AsymmetricStaticProvider.html
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/SymmetricEncryptedItem.java

AWS SDK Enkripsi Basis Data Panduan Developer

Cara menggunakannya

Untuk membuat penyedia statis, masukkan kunci enkripsi atau pasangan kunci dan kunci

penandatanganan atau pasangan kunci. Anda perlu menyediakan materi kunci untuk mengenkripsi

dan mendekripsi item tabel.

Java

// To encrypt

SecretKey cek = ...; // Encryption key

SecretKey macKey = ...; // Signing key

EncryptionMaterialsProvider provider = new SymmetricStaticProvider(cek, macKey);

// To decrypt

SecretKey cek = ...; // Encryption key

SecretKey macKey = ...; // Verification key

EncryptionMaterialsProvider provider = new SymmetricStaticProvider(cek, macKey);

Python

# You can provide encryption materials, decryption materials, or both
encrypt_keys = EncryptionMaterials(

encryption_key = ...,

signing_key = ...

decrypt_keys = DecryptionMaterials(
decryption_key = ...,
verification_key = ...

static_cmp = StaticCryptographicMaterialsProvider(
encryption_materials=encrypt_keys
decryption_materials=decrypt_keys

Cara kerjanya

Provider Statis meneruskan enkripsi dan kunci penandatanganan yang Anda masukkan ke enkriptor

item, di mana kunci itu digunakan secara langsung untuk mengenkripsi dan menandatangani item

Penyedia bahan kriptografi

293



AWS SDK Enkripsi Basis Data Panduan Developer

tabel Anda. Kecuali Anda menyediakan kunci yang berbeda untuk setiap item, kunci yang sama
digunakan untuk setiap item.

Static CMP
| |

Application — | » AESencryption key - > ltem encryptor
Signing key/pair

Dapatkan materi enkripsi

Bagian ini menjelaskan secara terperinci input, output, dan pengolahan Penyedia Materi Statis (Static
CMP) ketika menerima permintaan materi enkripsi.

Input (dari aplikasi)

* Kunci enkripsi — Harus berupa kunci simetris, seperti kunci Standar Enkripsi Lanjutan (AES).

« Kunci penandatanganan — Bisa berupa kunci simetris atau pasangan kunci asimetris.

Input (dari enkriptor item)

« Konteks enkripsi DynamoDB

Output (untuk enkriptor item)

» Kunci enkripsi diteruskan sebagai input.
» Kunci penandatanganan diteruskan sebagai input.

» Deskripsi materi aktual: Deskripsi materi yang diminta, jika ada, tanpa perubahan.

Dapatkan materi dekripsi

Bagian ini menjelaskan secara terperinci input, output, dan pengolahan Penyedia Materi Statis (Static
CMP) ketika menerima permintaan materi dekripsi.

Meskipun mencakup metode berbeda untuk mendapatkan materi enkripsi dan mendapatkan materi
dekripsi, perilakunya sama.

Penyedia bahan kriptografi 294


https://tools.ietf.org/html/rfc3394.html

AWS SDK Enkripsi Basis Data Panduan Developer

Input (dari aplikasi)

» Kunci enkripsi — Harus berupa kunci simetris, seperti kunci Standar Enkripsi Lanjutan (AES).

« Kunci penandatanganan — Bisa berupa kunci simetris atau pasangan kunci asimetris.

Input (dari enkriptor item)

» Konteks enkripsi DynamoDB (tidak digunakan)

Output (untuk enkriptor item)

» Kunci enkripsi diteruskan sebagai input.

» Kunci penandatanganan diteruskan sebagai input.
Bahasa pemrograman Amazon DynamoDB Encryption Client yang tersedia

® Note

Pustaka enkripsi sisi klien kami diubah namanya menjadi AWS Database Encryption SDK.
Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption
Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.

Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi

DynamoDB.

Amazon DynamoDB Encryption Client tersedia dalam bahasa pemrograman berikut. Pustaka
spesifik-bahasa bervariasi, tetapi implementasi yang dihasilkan dapat dioperasikan. Misalnya, Anda
dapat mengenkripsi (dan menandatangani) item dengan klien Java dan mendekripsi item dengan
klien Python.

Untuk informasi lebih lanjut, lihat topik terkait.

Topik

» Amazon DynamoDB Encryption Client untuk Java

« DynamoDB Encryption Client untuk Python

Bahasa pemrograman 295


https://tools.ietf.org/html/rfc3394.html

AWS SDK Enkripsi Basis Data Panduan Developer

Amazon DynamoDB Encryption Client untuk Java

® Note

Pustaka enkripsi sisi klien kami diubah namanya menjadi AWS Database Encryption SDK.
Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption
Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.

Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi

DynamoDB.

Topik ini menjelaskan cara menginstal dan menggunakan Amazon DynamoDB Encryption Client
untuk Java. Untuk detail tentang pemrograman dengan Klien Enkripsi DynamoDB, lihat contoh Java,
contoh di repositori GitHubaktif, dan aws-dynamodb-encryption-java Javadoc untuk Klien Enkripsi
DynamoDB.

® Note

Versi 1. x. x dari Klien Enkripsi DynamoDB untuk Java sedang end-of-support dalam fase
efektif Juli 2022. Tingkatkan ke versi yang lebih baru sesegera mungkin.

Topik
* Prasyarat

» Penginstalan
* Menggunakan Amazon DynamoDB Encryption Client untuk Java

» Contoh kode untuk DynamoDB Encryption Client untuk Java

Prasyarat

Sebelum Anda menginstal Amazon DynamoDB Encryption Client untuk Java, pastikan Anda memiliki
prasyarat berikut.

Lingkungan pengembangan Java

Anda akan membutuhkan Java 8 atau yang lebih baru. Di situs web Oracle, buka Unduhan Java
SE, kemudian unduh dan instal Java SE Development Kit (JDK).

Bahasa pemrograman 296


https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/
https://www.oracle.com/java/technologies/downloads/
https://www.oracle.com/java/technologies/downloads/

AWS SDK Enkripsi Basis Data Panduan Developer

Jika Anda menggunakan Oracle JDK, Anda juga harus mengunduh dan menginstal File Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy.

AWS SDK untuk Java

Klien Enkripsi DynamoDB memerlukan modul DynamoDB bahkan jika aplikasi Anda tidak
berinteraksi dengan DynamoDB. AWS SDK untuk Java Anda dapat menginstal seluruh SDK atau
modul ini saja. Jika Anda menggunakan Maven, tambahkan aws-java-sdk-dynamodb ke file
pom. xml Anda.

Untuk informasi selengkapnya tentang menginstal dan mengonfigurasi AWS SDK untuk Java,
lihat AWS SDK untuk Java.

Penginstalan
Anda dapat menginstal Amazon DynamoDB Encryption Client untuk Java dengan cara berikut.
Secara manual

Untuk menginstal Klien Enkripsi Amazon DynamoDB untuk Java, kloning atau unduh repositori.
aws-dynamodb-encryption-java GitHub

Menggunakan Apache Maven

Amazon DynamoDB Encryption Client untuk Java tersedia melalui Apache Maven dengan definisi
dependensi berikut.

<dependency>
<groupId>com.amazonaws</groupIld>
<artifactId>aws-dynamodb-encryption-java</artifactId>
<version>version-number</version>

</dependency>

Setelah Anda menginstal SDK, mulailah dengan melihat kode contoh dalam panduan ini dan
DynamoDB Encryption Client Javadoc aktif. GitHub

Menggunakan Amazon DynamoDB Encryption Client untuk Java

(® Note

Pustaka enkripsi sisi klien kami diubah namanya menjadi AWS Database Encryption SDK.
Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption

Bahasa pemrograman 297


http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/getting-started.html
https://github.com/aws/aws-dynamodb-encryption-java/
https://maven.apache.org/
https://aws.github.io/aws-dynamodb-encryption-java/

AWS SDK Enkripsi Basis Data Panduan Developer

Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.
Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi

DynamoDB.

Topik ini menjelaskan beberapa fitur DynamoDB Encryption Client di Java yang mungkin tidak
ditemukan dalam implementasi bahasa pemrograman lainnya.

Untuk detail tentang pemrograman dengan Klien Enkripsi DynamoDB, lihat contoh Java, contoh

di aws-dynamodb-encryption-java repository aktif, dan Javadoc untuk Klien Enkripsi
DynamoDB. GitHub

Topik
« Enkripsi item: AttributeEncryptor dan Dynamo DBEncryptor

» Mengonfigurasi perilaku penyimpanan

* Tindakan atribut di Java

* Menimpa nama tabel

Enkripsi item: AttributeEncryptor dan Dynamo DBEncryptor

Klien Enkripsi DynamoDB di Java memiliki dua enkripsi item: Dynamo tingkat rendah dan.
DBEncryptor AttributeEncryptor

AttributeEncryptorlini adalah kelas pembantu yang membantu Anda menggunakan Dynamo
DBMapper di AWS SDK untuk Java dengan di Klien Enkripsi DynamoDB. DynamoDB Encryptor
Saat Anda menggunakan AttributeEncryptor dengan DynamoDBMapper, item tersebut secara
transparan mengenkripsi dan menandatangani item Anda saat Anda menyimpannya. Item ini juga
secara transparan memverifikasi dan mendekripsi item Anda ketika Anda memuatnya.

Mengonfigurasi perilaku penyimpanan

Anda dapat menggunakan AttributeEncryptor dan DynamoDBMapper untuk menambah atau
mengganti item tabel dengan atribut yang ditandatangani saja atau dienkripsi dan ditandatangani.
Untuk tugas-tugas ini, kami sarankan Anda mengonfigurasinya untuk menggunakan perilaku
penyimpanan PUT, seperti yang ditunjukkan dalam contoh berikut. Jika tidak, Anda mungkin tidak
dapat mendekripsi data.

Bahasa pemrograman 298


https://aws.github.io/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html

AWS SDK Enkripsi Basis Data Panduan Developer

DynamoDBMapperConfig mapperConfig =
DynamoDBMapperConfig.builder().withSaveBehavior(SaveBehavior.PUT).build();
DynamoDBMapper mapper = new DynamoDBMapper(ddb, mapperConfig, new
AttributeEncryptor(encryptor));

Jika Anda menggunakan perilaku penyimpanan default, yang hanya memperbarui atribut yang
dimodelkan dalam item tabel, atribut yang tidak dimodelkan tidak disertakan dalam tanda tangan, dan
tidak diubah oleh penulisan tabel. Akibatnya, pada pembacaan semua atribut nanti, tanda tangan
tidak akan memvalidasi, karena tidak menyertakan atribut yang tidak dimodelkan.

Anda juga dapat menggunakan perilaku penyimpanan CLOBBER. Perilaku ini identik dengan perilaku
penyimpanan PUT kecuali pada bagian perilaku ini menonaktifkan penguncian optimis dan menimpa
item dalam tabel.

Untuk mencegah kesalahan tanda tangan, Klien Enkripsi DynamoDB melempar pengecualian
runtime jika AttributeEncryptor digunakan dengan DynamoDBMapper yang tidak dikonfigurasi
dengan perilaku penyimpanan atau. CLOBBER PUT

Untuk melihat kode ini digunakan dalam contoh, lihat Menggunakan Dynamo DBMapper dan

AwsKmsEncryptedObjectcontoh.java di aws-dynamodb-encryption-java repositori di. GitHub

Tindakan atribut di Java

Tindakan atribut menentukan mana nilai atribut yang dienkripsi dan ditandatangani, mana
yang hanya ditandatangani, dan mana yang diabaikan. Metode yang Anda gunakan untuk
menentukan tindakan atribut tergantung pada apakah Anda menggunakan DynamoDBMapper
danAttributeEncryptor, atau Dynamo tingkat yang lebih rendah. DBEncryptor

/A Important

Setelah Anda menggunakan tindakan atribut untuk mengenkripsi item tabel Anda,
menambahkan atau menghapus atribut dari model data Anda dapat menyebabkan kesalahan
validasi tanda tangan yang mencegah Anda mendekripsi data Anda. Untuk penjelasan detail,
lihat Mengubah model data Anda.

Tindakan atribut untuk Dynamo DBMapper

Saat Anda menggunakan DynamoDBMapper dan AttributeEncryptor, Anda menggunakan
anotasi untuk menentukan tindakan atribut. DynamoDB Encryption Client menggunakan anotasi

Bahasa pemrograman 299


https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedObject.java
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Annotations.html

AWS SDK Enkripsi Basis Data Panduan Developer

atribut DynamoDB standar yang menentukan jenis atribut untuk menentukan cara melindungi atribut.
Secara default, semua atribut dienkripsi dan ditandatangani kecuali kunci utama, yang ditandatangani
tetapi tidak dienkripsi.

(@ Note

Jangan mengenkripsi nilai atribut dengan anotasi DBVersion Atribut @Dynamo, meskipun
Anda dapat (dan harus) menandatanganinya. Jika dilakukan, syarat yang menggunakan nilai
tersebut akan memiliki efek yang tidak diinginkan.

// Attributes are encrypted and signed
@DynamoDBAttribute(attributeName="Description")

// Partition keys are signed but not encrypted
@DynamoDBHashKey(attributeName="Title")

// Sort keys are signed but not encrypted
@DynamoDBRangeKey(attributeName="Author")

Untuk menentukan pengecualian, gunakan anotasi enkripsi yang didefinisikan dalam DynamoDB
Encryption Client untuk Java. Jika Anda menentukannya di tingkat kelas, pengecualian itu menjadi
nilai default untuk kelas tersebut.

// Sign only
@DoNotEncrypt

// Do nothing; not encrypted or signed
@DoNotTouch

Sebagai contoh, anotasi ini menandatangani tetapi tidak mengenkripsi atribut PublicationYear,
dan tidak mengenkripsi atau menandatangani nilai atribut ISBN.

// Sign only (override the default)
@DoNotEncrypt
@DynamoDBAttribute(attributeName="PublicationYear")

// Do nothing (override the default)
@DoNotTouch
@DynamoDBAttribute(attributeName="ISBN")

Bahasa pemrograman 300


https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Annotations.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.OptimisticLocking.html

AWS SDK Enkripsi Basis Data Panduan Developer

Tindakan atribut untuk Dynamo DBEncryptor

Untuk menentukan tindakan atribut saat Anda menggunakan Dynamo DBEncryptor secara langsung,
buat HashMap objek di mana pasangan nama-nilai mewakili nama atribut dan tindakan yang
ditentukan.

Nilai-nilai yang valid adalah untuk tindakan atribut yang didefinisikan dalam jenis EncryptionFlags
yang disebutkan. Anda dapat menggunakan ENCRYPT dan SIGN secara bersamaan, menggunakan
SIGN saja, atau tidak menggunakan keduanya. Namun, jika Anda menggunakan ENCRYPT saja,
DynamoDB Encryption Client menyebabkan kesalahan. Anda tidak dapat mengenkripsi atribut yang
tidak Anda tanda tangani.

ENCRYPT
SIGN

/A Warning

Jangan mengenkripsi atribut kunci utama. Atribut tersebut harus tetap dalam plaintext
sehingga DynamoDB dapat menemukan item tanpa memindai keseluruhan tabel.

Jika Anda menentukan kunci utama dalam konteks enkripsi dan kemudian menetapkan ENCRYPT
dalam tindakan atribut untuk atribut kunci utama, DynamoDB Encryption Client membuat
pengecualian.

Misalnya, kode Java berikut membuat sebuah actions HashMap yang mengenkripsi dan
menandatangani semua atribut dalam item. record Pengecualiannya adalah atribut kunci partisi
dan kunci penyortiran, yang ditandatangani tetapi tidak dienkripsi, dan atribut test, yang tidak
ditandatangani atau dienkripsi.

final EnumSet<EncryptionFlags> signOnly = EnumSet.of (EncryptionFlags.SIGN);

final EnumSet<EncryptionFlags> encryptAndSign = EnumSet.of(EncryptionFlags.ENCRYPT,
EncryptionFlags.SIGN);

final Map<String, Set<EncryptionFlags>> actions = new HashMap<>();

for (final String attributeName : record.keySet()) {
switch (attributeName) {
case partitionKeyName: // no break; falls through to next case
case sortKeyName:

Bahasa pemrograman 301


https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html

AWS SDK Enkripsi Basis Data Panduan Developer

// Partition and sort keys must not be encrypted, but should be signed
actions.put(attributeName, signOnly);
break;
case "test":
// Don't encrypt or sign
break;
default:
// Encrypt and sign everything else
actions.put(attributeName, encryptAndSign);
break;

Kemudian, ketika Anda memanggil metode encryptRecord DynamoDBEncryptor, tentukan peta

sebagai nilai parameter attributeFlags. Sebagai contoh, panggilan untuk encryptRecord ini
menggunakan peta actions.

// Encrypt the plaintext record
final Map<String, AttributeValue> encrypted_record = encryptor.encryptRecord(record,
actions, encryptionContext);

Menimpa nama tabel

Pada DynamoDB Encryption Client, nama tabel DynamoDB adalah elemen konteks enkripsi

DynamoDB yang diteruskan ke metode enkripsi dan dekripsi. Ketika Anda mengenkripsi atau
menandatangani item tabel, konteks enkripsi DynamoDB, termasuk nama tabel, secara kriptografis
terikat pada ciphertext. Jika konteks enkripsi DynamoDB yang diteruskan ke metode dekripsi tidak
cocok dengan konteks enkripsi DynamoDB yang diteruskan ke metode enkripsi, operasi dekripsi

gagal.

Kadang-kadang, nama tabel berubah, seperti ketika Anda membuat cadangan tabel atau melakukan
point-in-time pemulihan. Ketika Anda mendekripsi atau memverifikasi tanda tangan item ini, Anda
harus menggunakan konteks enkripsi DynamoDB yang sama yang digunakan untuk mengenkripsi
dan menandatangani item, termasuk nama tabel asli. Nama tabel saat ini tidak diperlukan.

Saat Anda menggunakan DynamoDBEncryptor, Anda menyusun konteks enkripsi DynamoDB
secara manual. Namun, jika Anda menggunakan DynamoDBMapper, AttributeEncryptor
membuat konteks enkripsi DynamoDB untuk Anda, termasuk nama tabel saat ini. Untuk
memerintahkan AttributeEncryptor agar membuat konteks enkripsi dengan nama tabel yang
berbeda, gunakan EncryptionContextOverrideOperator.

Bahasa pemrograman 302


https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html#encryptRecord-java.util.Map-java.util.Map-com.amazonaws.services.dynamodbv2.datamodeling.encryption.EncryptionContext-
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/PointInTimeRecovery.html

AWS SDK Enkripsi Basis Data Panduan Developer

Sebagai contoh, kode berikut menciptakan instans penyedia materi kriptografis

(CMP) dan DynamoDBEncryptor. Kemudian kode itu memanggil metode
setEncryptionContextOverrideOperator pada DynamoDBEncryptor. Kode itu
menggunakan operator overrideEncryptionContextTableName, yang menimpa satu nama
tabel. Ketika dikonfigurasi dengan cara ini, AttributeEncryptor membuat konteks enkripsi
DynamoDB yang mencakup newTableName menggantikan oldTableName. Untuk contoh lengkap,
lihat EncryptionContextOverridesWithDynamoDBMapper.java.

final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);
final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp);

encryptor.setEncryptionContextOverrideOperator(EncryptionContextOperators.overrideEncryptionCor
oldTableName, newTableName));

Ketika Anda memanggil metode beban pada DynamoDBMapper, yang mendekripsi dan
memverifikasi item, Anda menentukan nama tabel asli.

mapper.load(itemClass, DynamoDBMapperConfig.builder()

.withTableNameOverride(DynamoDBMapperConfig.TableNameOverride.withTableNameReplacement(oldTabl
.build());

Anda juga dapat menggunakan operator overrideEncryptionContextTableNameUsingMap,
yang menimpa beberapa nama tabel.

Operator penimpa nama tabel biasanya digunakan ketika mendekripsi data dan memverifikasi tanda
tangan. Namun, Anda dapat menggunakannya untuk menetapkan nama tabel dalam konteks enkripsi
DynamoDB dengan nilai yang berbeda saat mengenkripsi dan menandatangani.

Jangan gunakan operator penimpa nama tabel jika Anda menggunakan DynamoDBEncryptor.
Sebaliknya, buatlah konteks enkripsi dengan nama tabel asli dan kirimkan ke metode dekripsi.

Contoh kode untuk DynamoDB Encryption Client untuk Java

(® Note

Pustaka enkripsi sisi klien kami diubah nhamanya menjadi AWS Database Encryption SDK.
Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption
Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.

Bahasa pemrograman 303


https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/EncryptionContextOverridesWithDynamoDBMapper.java

AWS SDK Enkripsi Basis Data Panduan Developer

Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi
DynamoDB.

Contoh berikut menunjukkan cara menggunakan DynamoDB Encryption Client untuk Java guna
melindungi item tabel DynamoDB dalam aplikasi Anda. Anda dapat menemukan lebih banyak contoh
(dan berkontribusi sendiri) di direktori contoh aws-dynamodb-encryption-javarepositori di. GitHub

Topik

« Menggunakan Dynamo DBEncryptor

» Menggunakan Dynamo DBMapper

Menggunakan Dynamo DBEncryptor

Contoh ini menunjukkan cara menggunakan Dynamo tingkat rendah DBEncryptor dengan Direct
KMS Provider. Penyedia KMS Langsung menghasilkan dan melindungi materi kriptografinya di
bawah AWS KMS keyin AWS Key Management Service (AWS KMS) yang Anda tentukan.

Anda dapat menggunakan penyedia materi kriptografi (CMP) yang kompatibel
denganDynamoDBEncryptor, dan Anda dapat menggunakan Penyedia KMS Langsung dengan
dan. DynamoDBMapper AttributeEncryptor

Lihat contoh kode lengkapnya: AwsKmsEncryptedltem.java

Langkah 1: Buat Penyedia KMS Langsung

Buat instance AWS KMS klien dengan wilayah yang ditentukan. Kemudian, gunakan instance
klien untuk membuat instance Penyedia KMS Langsung dengan pilihan AWS KMS key Anda.

Contoh ini menggunakan Amazon Resource Name (ARN) untuk mengidentifikasi AWS KMS key,
tetapi Anda dapat menggunakan pengidentifikasi kunci yang valid.

final String keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
final String region = "us-west-2";

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Bahasa pemrograman 304


https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedItem.java
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS SDK Enkripsi Basis Data Panduan Developer

Langkah 2: Buat item

Contoh ini mendefinisikan record HashMap yang mewakili item tabel sampel.

final String partitionKeyName = "partition_attribute";
final String sortKeyName = "sort_attribute";

final Map<String, AttributeValue> record = new HashMap<>();
record.put(partitionKeyName, new AttributeValue().withS("valuel"));
record.put(sortkKeyName, new AttributeValue().withN("55"));

record.put("example", new AttributeValue().withS("data"));

record.put("numbers", new AttributeValue().withN("99"));

record.put("binary", new AttributeValue().withB(ByteBuffer.wrap(new byte[]1{0x00,
0x01, 0x02})));

record.put("test", new AttributeValue().withS("test-value"));

Langkah 3: Buat Dynamo DBEncryptor

Buat instans DynamoDBEncryptor dengan Penyedia KMS Langsung.
final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp);

Langkah 4: Buat konteks enkripsi DynamoDB

Konteks enkripsi DynamoDB berisi informasi tentang struktur tabel dan bagaimana
tabel itu dienkripsi dan ditandatangani. Jika Anda menggunakan DynamoDBMapper,
AttributeEncryptor membuat konteks enkripsi untuk Anda.

final String tableName = "testTable";

final EncryptionContext encryptionContext = new EncryptionContext.Builder()
.withTableName(tableName)
.withHashKeyName(partitionKeyName)
.withRangeKeyName(sortKeyName)
.build();

Langkah 5: Buat objek tindakan atribut

Tindakan atribut menentukan mana atribut item yang dienkripsi dan ditandatangani, mana yang
hanya ditandatangani, dan mana yang tidak dienkripsi dan ditandatangani.

Di Java, untuk menentukan tindakan atribut, Anda membuat HashMap nama atribut dan
pasangan EncryptionFlags nilai.

Bahasa pemrograman 305



AWS SDK Enkripsi Basis Data Panduan Developer

Misalnya, kode Java berikut membuat actions HashMap yang mengenkripsi dan
menandatangani semua atribut dalam recoxrd item, kecuali untuk kunci partisi dan atribut kunci
sortir, yang ditandatangani, tetapi tidak dienkripsi, dan test atribut, yang tidak ditandatangani
atau dienkripsi.

final EnumSet<EncryptionFlags> signOnly = EnumSet.of (EncryptionFlags.SIGN);

final EnumSet<EncryptionFlags> encryptAndSign = EnumSet.of(EncryptionFlags.ENCRYPT,
EncryptionFlags.SIGN);

final Map<String, Set<EncryptionFlags>> actions = new HashMap<>();

for (final String attributeName : record.keySet()) {
switch (attributeName) {

case partitionKeyName: // fall through to the next case

case sortKeyName:
// Partition and sort keys must not be encrypted, but should be signed
actions.put(attributeName, signOnly);
break;

case "test":
// Neither encrypted nor signed
break;

default:
// Encrypt and sign all other attributes
actions.put(attributeName, encryptAndSign);
break;

Langkah 6: Enkripsi dan tanda tangani item

Untuk mengenkripsi dan menandatangani item tabel, panggil metode encryptRecord pada
instans DynamoDBEncryptozr. Tentukan item tabel (record), tindakan atribut (actions), dan
konteks enkripsi (encryptionContext).

final Map<String, AttributeValue> encrypted_record = encryptor.encryptRecord(record,
actions, encryptionContext);

Langkah 7: Masukkan item ke dalam tabel DynamoDB

Akhirnya, letakkan item yang dienkripsi dan ditandatangani ke dalam tabel DynamoDB.

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();
ddb.putItem(tableName, encrypted_record);

Bahasa pemrograman 306



AWS SDK Enkripsi Basis Data Panduan Developer

Menggunakan Dynamo DBMapper

Contoh berikut menunjukkan kepada Anda cara menggunakan kelas bantuan DynamoDB Mapper
dengan Penyedia KMS Langsung. Penyedia KMS Langsung menghasilkan dan melindungi materi
kriptografinya di bawah AWS KMS keyin AWS Key Management Service (AWS KMS) yang Anda
tentukan.

Anda dapat menggunakan penyedia materi kriptografis (CMP) yang kompatibel dengan
DynamoDBMapper, dan Anda dapat menggunakan Penyedia KMS Langsung dengan
DynamoDBEncryptor yang tingkatnya lebih rendah.

Lihat contoh kode lengkapnya: AwsKmsEncryptedObject.java

Langkah 1: Buat Penyedia KMS Langsung

Buat instance AWS KMS klien dengan wilayah yang ditentukan. Kemudian, gunakan instance
klien untuk membuat instance Penyedia KMS Langsung dengan pilihan AWS KMS key Anda.

Contoh ini menggunakan Amazon Resource Name (ARN) untuk mengidentifikasi AWS KMS key,
tetapi Anda dapat menggunakan pengidentifikasi kunci yang valid.

final String keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
final String region = "us-west-2";

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Langkah 2: Buat DynamoDB Encryptor dan Dynamo DBMapper

Gunakan Penyedia KMS Langsung yang Anda buat di langkah sebelumnya untuk membuat
instans DynamoDB Encryptor. Anda perlu membuat instans bagi DynamoDB Encryptor yang
tingkatnya lebih rendah untuk menggunakan DynamoDB Mapper.

Berikutnya, membuat sebuah instans dari database DynamoDB Anda dan konfigurasi mapper,
dan menggunakannya untuk membuat sebuah instance dari DynamoDB Mapper.

/A Important

Saat menggunakan DynamoDBMapper untuk menambah atau mengedit item yang
ditandatangani (atau dienkripsi dan ditandatangani), atur konfigurasinya untuk
menggunakan perilaku penympanan, seperti PUT, yang mencakup semua atribut, seperti

Bahasa pemrograman 307


https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedObject.java
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS SDK Enkripsi Basis Data Panduan Developer

yang ditunjukkan dalam contoh berikut. Jika tidak, Anda mungkin tidak dapat mendekripsi
data.

final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp)
final AmazonDynamoDB ddb =
AmazonDynamoDBClientBuilder.standard().withRegion(region).build();

DynamoDBMapperConfig mapperConfig =
DynamoDBMapperConfig.builder().withSaveBehavior(SaveBehavior.PUT).build();
DynamoDBMapper mapper = new DynamoDBMapper(ddb, mapperConfig, new
AttributeEncryptor(encryptor));

Langkah 3: Tentukan tabel DynamoDB Anda

Selanjutnya, tentukan tabel DynamoDB Anda. Gunakan anotasi untuk menentukan tindakan
atribut. Contoh ini membuat tabel DynamoDB, ExampleTable, dan kelas DataPoJo yang
mewakili item tabel.

Dalam tabel contoh ini, atribut kunci utama akan ditandatangani tetapi tidak dienkripsi. Hal ini
berlaku untuk partition_attribute, yang dianotasikan dengan @DynamoDBHashKey, dan
sort_attribute, yang dianotasikan dengan @DynamoDBRangeKey.

Atribut yang dianotasikan dengan @DynamoDBAttribute, seperti some numbers, akan
dienkripsi dan ditandatangani. Pengecualiannya mencakup atribut yang menggunakan anotasi
enkripsi @oNotEncrypt (hanya ditandatangani) atau @oNotTouch (jangan dienkripsi

atau ditandatangani) yang didefinisikan oleh DynamoDB Encryption Client. Sebagai contoh,
karena atribut 1leave me memiliki anotasi @oNotTouch, atribut ini tidak akan dienkripsi atau
ditandatangani.

@DynamoDBTable(tableName = "ExampleTable")
public static final class DataPoJo {
private String partitionAttribute;
private int sortAttribute;
private String example;
private long someNumbers;
private byte[] someBinary;
private String leaveMe;

@DynamoDBHashKey(attributeName = "partition_attribute")
public String getPartitionAttribute() {

Bahasa pemrograman 308



AWS SDK Enkripsi Basis Data Panduan Developer

return partitionAttribute;

public void setPartitionAttribute(String partitionAttribute) {
this.partitionAttribute = partitionAttribute;

@DynamoDBRangeKey(attributeName = "sort_attribute")
public int getSortAttribute() {
return sortAttribute;

public void setSortAttribute(int sortAttribute) {
this.sortAttribute = sortAttribute;

@DynamoDBAttribute(attributeName = "example")
public String getExample() {
return example;

public void setExample(String example) {
this.example = example;

@DynamoDBAttribute(attributeName = "some numbers")
public long getSomeNumbers() {
return someNumbers;

public void setSomeNumbers(long someNumbers) {
this.someNumbers = someNumbers;

@DynamoDBAttribute(attributeName = "and some binary")
public byte[] getSomeBinary() {
return someBinary;

public void setSomeBinary(byte[] someBinary) {
this.someBinary = someBinary;

}

@DynamoDBAttribute(attributeName = "leave me")

Bahasa pemrograman 309



AWS SDK Enkripsi Basis Data Panduan Developer

@DoNotTouch
public String getlLeaveMe() {
return leaveMe;

public void setlLeaveMe(String leaveMe) {
this.leaveMe = leaveMe;

@Override
public String toString() {
return "DataPoJo [partitionAttribute=" + partitionAttribute + ", sortAttribute="
+ sortAttribute + ", example=" + example + ", someNumbers=" + someNumbers
+ ", someBinary=" + Arrays.toString(someBinary) + ", leaveMe=" + leaveMe +
"1
}

Langkah 4: Enkripsi dan simpan item tabel

Sekarang, ketika Anda membuat item tabel dan menggunakan DynamoDB Mapper untuk
menyimpannya, item secara otomatis dienkripsi dan ditandatangani sebelum ditambahkan ke
tabel.

Contoh ini mendefinisikan item tabel yang disebut record. Sebelum disimpan dalam tabel,
atributnya dienkripsi dan ditandatangani berdasarkan anotasi di kelas DataPoJo. Dalam hal ini,
semua atribut kecuali PartitionAttribute, SortAttribute, dan LeaveMe dienkripsi dan
ditandatangani. PartitionAttribute dan SortAttributes hanya ditandatangani. Atribut
LeaveMe tidak dienkripsi atau ditandatangani.

Untuk mengenkripsi dan menandatangani item record, dan kemudian menambahkannya ke
ExampleTable, panggil metode save kelas DynamoDBMapper. Karena DynamoDB Mapper
Anda dikonfigurasi untuk menggunakan perilaku penyimpanan PUT, item tersebut menggantikan
semua item dengan kunci utama yang sama, bukan memperbaruinya. Hal ini memastikan tanda
tangan cocok dan Anda dapat mendekripsi item ketika Anda mendapatkannya dari tabel.

DataPoJo record = new DataPoJo();
record.setPartitionAttribute("is this");
record.setSortAttribute(55);
record.setExample("data");
record.setSomeNumbers(99);

Bahasa pemrograman 310



AWS SDK Enkripsi Basis Data Panduan Developer

record.setSomeBinary(new byte[]{0x00, 0x01, 0x02});
record.setlLeaveMe("alone");

mapper.save(record);

DynamoDB Encryption Client untuk Python

(@ Note

Pustaka enkripsi sisi klien kami diubah nhamanya menjadi AWS Database Encryption SDK.
Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption
Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.

Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi

DynamoDB.

Topik ini menjelaskan cara menginstal dan menggunakan DynamoDB Encryption Client untuk
Python. Anda dapat menemukan kode di aws-dynamodb-encryption-pythonrepositori GitHub,
termasuk kode sampel lengkap dan teruji untuk membantu Anda memulai.

(@ Note

Versi 1. x. x dan 2. x. x dari Klien Enkripsi DynamoDB untuk Python sedang end-of-support
dalam fase efektif Juli 2022. Tingkatkan ke versi yang lebih baru sesegera mungkin.

Topik
* Prasyarat

» Penginstalan
* Menggunakan DynamoDB Encryption Client untuk Python

» Contoh kode untuk DynamoDB Encryption Client untuk Python

Prasyarat

Sebelum Anda menginstal Amazon DynamoDB Encryption Client untuk Python, pastikan Anda
memiliki prasyarat berikut.

Bahasa pemrograman 311


https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples

AWS SDK Enkripsi Basis Data Panduan Developer

Versi Python yang didukung

Python 3.8 atau yang lebih baru diperlukan oleh Klien Enkripsi Amazon DynamoDB untuk Python
versi 3.3.0 dan yang lebih baru. Untuk mengunduh Python, lihat Unduh Python.

Versi sebelumnya dari Amazon DynamoDB Encryption Client untuk Python mendukung Python
2.7 dan Python 3.4 dan yang lebih baru, tetapi kami menyarankan Anda menggunakan versi
terbaru dari DynamoDB Encryption Client.

Alat instalasi pip untuk Python
Python 3.6 dan yang lebih baru menyertakan pip, meskipun Anda mungkin ingin

memutakhirkannya. Untuk informasi selengkapnya tentang meningkatkan atau menginstal pip,
lihat Instalasi dalam dokumentasi pip.

Penginstalan

Gunakan pip untuk menginstal Amazon DynamoDB Encryption Client, seperti yang ditunjukkan dalam
contoh berikut.

Pasang versi terbaru

pip install dynamodb-encryption-sdk

Untuk detail lebih lanjut tentang menggunakan pip untuk menginstal dan meng-upgrade paket, lihat
Menginstal Paket.

DynamoDB Encryption Client memerlukan pustaka kriptografi di semua platform. Semua versi pip
menginstal dan membangun kriptografi pada pip. Windows 8.1 dan versi lebih baru menginstal dan
membangun kriptografi di Linux. Jika Anda menggunakan versi sebelumnya dari pip dan lingkungan
Linux Anda tidak memiliki alat yang diperlukan untuk membangun pustaka kriptografi, Anda perlu
menginstalnya. Untuk informasi selengkapnya, lihat Membangun kriptografi di Linux.

Anda bisa mendapatkan versi pengembangan terbaru dari DynamoDB Encryption Client dari aws-
dynamodb-encryption-pythonrepositori. GitHub

Setelah Anda menginstal DynamoDB Encryption Client, mulailah dengan melihat kode contoh Python
dalam panduan ini.

Bahasa pemrograman 312


https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installation/
https://packaging.python.org/tutorials/installing-packages/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/installation/#building-cryptography-on-linux
https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/

AWS SDK Enkripsi Basis Data Panduan Developer

Menggunakan DynamoDB Encryption Client untuk Python

@ Note

Pustaka enkripsi sisi klien kami diubah nhamanya menjadi AWS Database Encryption SDK.
Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption
Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.

Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi

DynamoDB.

Topik ini menjelaskan beberapa fitur DynamoDB Encryption Client untuk Python yang mungkin
tidak ditemukan dalam implementasi bahasa pemrograman lainnya. Fitur-fitur ini dirancang untuk
membuatnya lebih mudah untuk menggunakan DynamoDB Encryption Client dengan cara yang
paling aman. Jika Anda tidak memiliki kasus penggunaan yang tidak biasa, kami sarankan Anda
menggunakannya.

Untuk detail tentang pemrograman dengan Klien Enkripsi DynamoDB, lihat contoh Python dalam
panduan ini, contoh di repositori GitHub aktif, dan dokumentasi Python aws-dynamodb-encryption-
python untuk Klien Enkripsi DynamoDB.

Topik

» Kelas pembantu klien

» Tablelnfo kelas

« Tindakan atribut di Python

Kelas pembantu klien

DynamoDB Encryption Client untuk Python termasuk beberapa kelas pembantu klien yang
mencerminkan kelas-kelas Boto 3 untuk DynamoDB. Kelas-kelas pembantu ini dirancang untuk
membuatnya lebih mudah untuk menambahkan enkripsi dan penandatanganan ke aplikasi
DynamoDB yang ada dan menghindari masalah yang paling umum, sebagai berikut:

* Mencegah Anda mengenkripsi kunci utama dalam item Anda, baik dengan menambahkan tindakan
penggantian untuk kunci utama ke AttributeActionsobjek, atau dengan melempar pengecualian
jika AttributeActions objek Anda secara eksplisit memberi tahu klien untuk mengenkripsi
kunci utama. Jika tindakan default di objek AttributeActions Anda adalah DO_NOTHING,

Bahasa pemrograman 313


https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/
https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/
https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples

AWS SDK Enkripsi Basis Data Panduan Developer

kelas pembantu klien menggunakan tindakan tersebut untuk kunci primer. Jika tidak, mereka
menggunakan SIGN_ONLY.

» Buat Tablelnfo objek dan isi konteks enkripsi DynamoDB berdasarkan panggilan ke DynamoDB.

Ini membantu untuk memastikan bahwa konteks enkripsi DynamoDB Anda akurat dan klien dapat
mengidentifikasi kunci utama.

* Metode Support, seperti put_item dan get_item, yang secara transparan mengenkripsi dan
mendekripsi tabel item ketika Anda menulis atau membaca dari tabel DynamoDB. Hanya metode
update_item yang tidak didukung.

Anda dapat menggunakan kelas pembantu klien,alih-alih berinteraksi langsung dengan enkriptor item

yang tingkatnya lebih rendah. Gunakan kelas-kelas ini kecuali Anda perlu mengatur opsi lanjutan
dalam enkriptor item.

Kelas pembantu klien meliputi:

» EncryptedTableuntuk aplikasi yang menggunakan sumber daya Tabel di DynamoDB untuk
memproses satu tabel pada satu waktu.

» EncryptedResourceuntuk aplikasi yang menggunakan kelas Service Resource di DynamoDB untuk
pemrosesan batch.

» EncryptedClientuntuk aplikasi yang menggunakan klien tingkat rendah di DynamoDB.

Untuk menggunakan kelas pembantu klien, pemanggil harus memiliki izin untuk memanggil operasi
DynamoDB pada tabel target DescribeTable.

Tablelnfo kelas

TablelnfoKelas adalah kelas pembantu yang mewakili tabel DynamoDB, lengkap dengan bidang
untuk kunci utama dan indeks sekunder. Ini membantu Anda untuk mendapatkan informasi akurat
dan real-time tentang tabel.

Jika Anda menggunakankelas pembantu klien, itu menciptakan dan menggunakan objek TableInfo
untuk Anda. Jika tidak, Anda dapat membuat satu secara eksplisit. Sebagai contoh, lihat Gunakan
enkriptor item.

Ketika Anda memanggil refresh_indexed_attributes metode pada TableInfo objek, itu
mengisi nilai properti objek dengan memanggil operasi DynamoDB DescribeTable. Kueri tabel
jauh lebih dapat diandalkan daripada nama indeks hard-coding. Kelas TableInfo juga mencakup

Bahasa pemrograman 314


https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/table.html#module-dynamodb_encryption_sdk.encrypted.table
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#table
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/resource.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#service-resource
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/client.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#client
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/tools/structures.html#dynamodb_encryption_sdk.structures.TableInfo
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS SDK Enkripsi Basis Data Panduan Developer

sebuah properti encryption_context_values yang menyediakan nilai-nilai yang diperlukan
untuk konteks enkripsi DynamoDB.

Untuk menggunakan refresh_indexed_attributes metode ini, pemanggil harus memiliki izin
untuk memanggil operasi DescribeTableDynamoDB pada tabel target.

Tindakan atribut di Python

Tindakan atribut memberitahukan kepada enkriptor item tentang tindakan yang dilakukan pada setiap
atribut item. Untuk menentukan tindakan atribut di Python, buat objek AttributeActions dengan
tindakan default dan pengecualian untuk atribut tertentu. Nilai-nilai yang valid adalah untuk tindakan
atribut yang didefinisikan dalam jenis CryptoAction yang disebutkan.

/A Important

Setelah Anda menggunakan tindakan atribut untuk mengenkripsi item tabel Anda,
menambahkan atau menghapus atribut dari model data Anda dapat menyebabkan kesalahan
validasi tanda tangan yang mencegah Anda mendekripsi data Anda. Untuk penjelasan detail,
lihat Mengubah model data Anda.

DO_NOTHING = 0
SIGN_ONLY = 1
ENCRYPT_AND_SIGN = 2

Misalnya, objek AttributeActions ini menetapkan ENCRYPT_AND_SIGN sebagai default untuk
semua atribut, dan menentukan pengecualian untuk atribut ISBN dan PublicationYear.

actions = AttributeActions(
default_action=CryptoAction.ENCRYPT_AND_SIGN,
attribute_actions={
"ISBN': CryptoAction.DO_NOTHING,
'PublicationYear': CryptoAction.SIGN_ONLY

Jika Anda menggunakan sebuah kelas pembantu klien, Anda tidak perlu menentukan tindakan atribut

untuk atribut kunci primer. Kelas pembantu klien mencegah Anda mengenkripsi kunci utama Anda.

Bahasa pemrograman 315


https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS SDK Enkripsi Basis Data Panduan Developer

Jika Anda tidak menggunakan kelas pembantu klien dan tindakan default adalah
ENCRYPT_AND_SIGN, Anda harus menentukan tindakan untuk kunci primer. Tindakan yang
direkomendasikan untuk kunci primer adalah SIGN_ONLY. Untuk mempermudahnya, gunakan
metode set_index_keys, yang menggunakan SIGN_ONLY untuk kunci primer, atau
DO_NOTHING, ketika itu adalah tindakan default.

/A Warning

Jangan mengenkripsi atribut kunci utama. Atribut tersebut harus tetap dalam plaintext
sehingga DynamoDB dapat menemukan item tanpa memindai keseluruhan tabel.

actions = AttributeActions(
default_action=CryptoAction.ENCRYPT_AND_SIGN,
)

actions.set_index_keys(*table_info.protected_index_keys())

Contoh kode untuk DynamoDB Encryption Client untuk Python

(® Note

Pustaka enkripsi sisi klien kami diubah namanya menjadi AWS Database Encryption SDK.
Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption
Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.

Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi

DynamoDB.

Contoh berikut menunjukkan cara menggunakan DynamoDB Encryption Client untuk Python guna
melindungi data DynamoDB dalam aplikasi Anda. Anda dapat menemukan lebih banyak contoh (dan
berkontribusi sendiri) di direktori contoh aws-dynamodb-encryption-pythonrepositori di. GitHub

Topik

» Gunakan kelas pembantu EncryptedTable klien

» Gunakan enkriptor item

Bahasa pemrograman 316


https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples

AWS SDK Enkripsi Basis Data Panduan Developer

Gunakan kelas pembantu EncryptedTable klien

Contoh berikut menunjukkan cara menggunakan Provider KMS Langsungdengan kelas pembantu
klien EncryptedTable. Contoh ini menggunakan penyedia bahan kriptografi yang sama

seperti contoh Gunakan enkriptor item berikut. Namun, contoh tersebut menggunakan kelas
EncryptedTable alih-alih berinteraksi langsung dengan enkriptor item yang tingkatnya lebih
rendah.

Dengan membandingkan contoh-contoh ini, Anda dapat melihat pekerjaan yang kelas pembantu
klien untuk Anda. Hal ini mencakup pembuatan konteks enkripsi DynamoDB dan memastikan atribut
kunci primer selalu ditandatangani, tetapi tidak pernah dienkripsi. Untuk membuat konteks enkripsi
dan menemukan kunci utama, kelas pembantu klien memanggil operasi DynamoDB DescribeTable.
Untuk menjalankan kode ini, Anda harus memiliki izin untuk memanggil operasi ini.

Lihat contoh kode lengkap: aws_kms_encrypted_table.py

Langkah 1: Buat Tabel

Mulailah dengan membuat sebuah instans dari tabel DynamoDB standar dengan nama tabel.

table_name="'test-table'
table = boto3.resource('dynamodb').Table(table_name)

Langkah 2: Buat penyedia bahan kriptografi

Buat instans penyedia bahan kriptografi (CMP) yang Anda pilih.

Contoh ini menggunakan Penyedia KMS Langsung, tetapi Anda dapat menggunakan CMP
mana pun yang kompatibel. Untuk membuat Penyedia KMS Langsung, tentukan. AWS KMS key
Contoh ini menggunakan Amazon Resource Name (ARN) dari AWS KMS key, tetapi Anda dapat
menggunakan pengidentifikasi kunci yang valid.

kms_key_id="arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890@ab"
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

Langkah 3: Buat objek tindakan atribut

Tindakan atribut memberitahukan kepada enkriptor item tentang tindakan yang dilakukan
pada setiap atribut item. Objek AttributeActions dalam contoh ini mengenkripsi dan
menandatangani semua item kecuali untuk atribut test, yang diabaikan.

Bahasa pemrograman 317


https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_table.py
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS SDK Enkripsi Basis Data Panduan Developer

Jangan tentukan tindakan atribut untuk atribut kunci primer saat Anda menggunakan kelas
pembantu klien. Kelas EncryptedTable menandatangani, tetapi tidak pernah mengenkripsi,
atribut kunci utama.

actions = AttributeActions(
default_action=CryptoAction.ENCRYPT_AND_SIGN,
attribute_actions={'test': CryptoAction.DO_NOTHING}

Langkah 4: Buat tabel terenkripsi

Membuat tabel dienkripsi menggunakan tabel standar, Penyedia KMS Langsung, dan tindakan
atribut. Langkah ini melengkapi konfigurasi.

encrypted_table = EncryptedTable(
table=table,
materials_provider=kms_cmp,
attribute_actions=actions

Langkah 5: Masukkan item plaintext ke dalam tabel

Ketika Anda memanggil metode put_itemdi encrypted_table, item tabel Anda secara
transparan dienkripsi, ditandatangani, dan ditambahkan ke tabel DynamoDB Anda.

Pertama, tentukan item tabel.

plaintext_item = {

'partition_attribute': 'valuel',
'sort_attribute': 55
'example': 'data’,

'numbers': 99,
'binary': Binary(b'\x00\x01\x02'),
'test': 'test-value'

Lalu, taruh di tabel.

encrypted_table.put_item(Item=plaintext_item)

Bahasa pemrograman 318



AWS SDK Enkripsi Basis Data Panduan Developer

Untuk mendapatkan item dari daftar tabel DynamoDB dalam bentuk terenkripsi, panggil metode
get_itemdi objek table. Untuk mendapatkan item didekripsi, panggil metode get_item di objek
encrypted_table.

Gunakan enkriptor item

Contoh ini menunjukkan kepada Anda bagaimana untuk berinteraksi langsung dengan enkriptor
item di DynamoDB Encryption Client ketika mengenkripsi item tabel, alih-alih menggunakan kelas
pembantu klien yang berinteraksi dengan enkriptor item untuk Anda.

Bila Anda menggunakan teknik ini, Anda membuat konteks enkripsi DynamoDB dan konfigurasi
objek (CryptoConfig) secara manual. Anda juga mengenkripsi item dalam satu panggilan dan
menempatkannya dalam tabel DynamoDB Anda dalam panggilan terpisah. Hal ini memungkinkan
Anda untuk menyesuaikan panggilan put_item Anda dan menggunakan DynamoDB Encryption
Client untuk mengenkripsi dan menandatangani data terstruktur yang tidak pernah dikirim ke
DynamoDB.

Contoh ini menggunakan Penyedia KMS Langsung, tetapi Anda dapat menggunakan CMP
kompatibel.

Lihat contoh kode lengkap: aws_kms_encrypted_table.py

Langkah 1: Buat Tabel

Mulailah dengan membuat sebuah instans dari sumber daya tabel DynamoDB standar dengan
nama tabel.

table_name="'test-table'
table = boto3.resource('dynamodb').Table(table_name)

Langkah 2: Buat penyedia bahan kriptografi

Buat instans penyedia bahan kriptografi (CMP) yang Anda pilih.

Contoh ini menggunakan Penyedia KMS Langsung, tetapi Anda dapat menggunakan CMP
mana pun yang kompatibel. Untuk membuat Penyedia KMS Langsung, tentukan. AWS KMS key
Contoh ini menggunakan Amazon Resource Name (ARN) dari AWS KMS key, tetapi Anda dapat
menggunakan pengidentifikasi kunci yang valid.

kms_key_id="arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

Bahasa pemrograman 319


https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_item.py
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS SDK Enkripsi Basis Data Panduan Developer

kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

Langkah 3: Gunakan Tablelnfo kelas pembantu

Untuk mendapatkan informasi tentang tabel dari DynamoDB, buat instance dari Tablelnfokelas
helper. Apabila Anda bekerja secara langsung dengan enkriptor item, Anda perlu membuat
instans TableInfo dan memanggil metodenya. Kelas pembantu klien melakukan ini untuk Anda.

refresh_indexed_attributesMetode TableInfo menggunakan operasi
DescribeTableDynamoDB untuk mendapatkan informasi real-time dan akurat tentang tabel. Ini
termasuk kunci primer dan indeks sekunder lokal dan global. Pemanggil perlu memiliki izin untuk

memanggil DescribeTable.

table_info = TableInfo(name=table_name)
table_info.refresh_indexed_attributes(table.meta.client)

Langkah 4: Buat konteks enkripsi DynamoDB

Konteks enkripsi DynamoDB berisi informasi tentang struktur tabel dan bagaimana tabel itu
dienkripsi dan ditandatangani. Contoh ini menciptakan konteks enkripsi DynamoDB secara
eksplisit, karena berinteraksi dengan enkriptor item. Kelas pembantu klien membuat konteks
enkripsi DynamoDB untuk Anda.

Untuk mendapatkan kunci partisi dan kunci sortir, Anda dapat menggunakan properti kelas
Tablelnfopembantu.

index_key = {
'partition_attribute': 'valuel',
'sort_attribute': 55

encryption_context = EncryptionContext(
table_name=table_name,
partition_key_name=table_info.primary_index.partition,
sort_key_name=table_info.primary_index.sort,
attributes=dict_to_ddb(index_key)

Langkah 5: Buat objek tindakan atribut

Tindakan atribut memberitahukan kepada enkriptor item tentang tindakan yang dilakukan
pada setiap atribut item. Objek AttributeActions dalam contoh ini mengenkripsi dan

Bahasa pemrograman 320


https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS SDK Enkripsi Basis Data Panduan Developer

menandatangani semua item kecuali atribut kunci utama, yang ditandatangani, tetapi tidak
dienkripsi, dan atribut test, yang diabaikan.

Ketika Anda berinteraksi langsung dengan item enkripsi dan tindakan default Anda adalah
ENCRYPT_AND_SIGN, Anda harus menentukan tindakan alternatif untuk kunci primer. Anda dapat
menggunakan metode set_index_keys, yang menggunakan SIGN_ONLY untuk kunci primer,
atau menggunakan DO_NOTHING jika itu adalah tindakan default.

Untuk menentukan kunci utama, contoh ini menggunakan kunci indeks dalam Tablelnfoobijek,
yang diisi oleh panggilan ke DynamoDB. Teknik ini lebih aman daripada nama kunci primer hard-
coding.

actions = AttributeActions(
default_action=CryptoAction.ENCRYPT_AND_SIGN,
attribute_actions={'test': CryptoAction.DO_NOTHING}

)

actions.set_index_keys(*table_info.protected_index_keys())

Langkah 6: Buat konfigurasi untuk item

Untuk mengonfigurasi Klien Enkripsi DynamoDB, gunakan objek yang baru saja Anda buat dalam
CryptoConfigkonfigurasi untuk item tabel. Kelas pembantu klien membuat CryptoConfig untuk
Anda.

crypto_config = CryptoConfig(
materials_provider=kms_cmp,
encryption_context=encryption_context,
attribute_actions=actions

Langkah 7: Enkripsi item

Langkah ini mengenkripsi dan menandai item, tetapi tidak memasukkannya ke dalam tabel
DynamoDB.

Ketika Anda menggunakan kelas pembantu klien, item Anda secara transparan dienkripsi dan
ditandatangani, dan kemudian ditambahkan ke tabel DynamoDB Anda ketika Anda memanggil
metode put_item kelas pembantu. Ketika Anda menggunakan item enkripsi secara langsung,
enkripsi dan tindakan independen.

Pertama, buat item plaintext.

Bahasa pemrograman 321


https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/config.html

AWS SDK Enkripsi Basis Data Panduan Developer

plaintext_item = {

'partition_attribute': 'valuel',
'sort_key': 55,
'example': 'data’,

'numbers': 99,
'binary': Binary(b'\x00\x01\x02'),
'"test': 'test-value'

Kemudian, enkripsi dan tanda tangani. Metode encrypt_python_item memerlukan objek

konfigurasi CryptoConfig.

encrypted_item = encrypt_python_item(plaintext_item, crypto_config)

Langkah 8: Masukkan item ke dalam tabel DynamoDB

Akhirnya, letakkan item yang dienkripsi dan ditandatangani ke dalam tabel DynamoDB.

table.put_item(Item=encrypted_item)

Untuk melihat item yang dienkripsi, panggil metode get_item pada objek table asli, bukan
dari objek encrypted_table. Iltem didapatkan dari tabel DynamoDB tanpa memverifikasi dan
mendekripsinya.

encrypted_item = table.get_item(Key=partition_key)['Item']

Gambar berikut menunjukkan bagian dari contoh item tabel yang dienkripsi dan ditandatangani.

Nilai atribut terenkripsi adalah data biner. Nama dan nilai atribut kunci primer
(partition_attribute dan sort_attribute) dan atribut test tetap dalam plaintext. Output
juga menunjukkan atribut yang berisi tanda tangan (*amzn-ddb-map-sig*) dan atribut deskripsi

materi (*amzn-ddb-map-desc*).

Bahasa pemrograman 322



AWS SDK Enkripsi Basis Data Panduan Developer

{

'*amzn-ddb-map-desc*': Binary(b'\x00\x00\x00\x00\x00\x00\x00\x10amzn-ddb-env-a_
\x00\x00\x00\xe@AQEBAHhA84WNXJEJdBbBBY1RUFcZZK2j7xwheUyLoL28nQ
+OFAAAAH4WTAYIK0ZIhvcNAQCGoG8wbQIBADBoBgkghkiGOweBBWEWHEYJYIZIAWUDBAEUMBEEDPeFBydmc
izY1OROCAM7WAKEGEL/N/bgTmHI=\x00\x00\x00\x17amzn-ddb-map-signingAlg\x00\x080\x00\nHmn:
\x00\x00\x00\x11/CBC/PKCS5Padding\x00\x00\x00\x10amzn-ddb-sig-alg\x00\x08\x00\xeeHr
\x00\x00\x00\xefaws-kms-ec-attr\xee\xee\xeo\xe6*keys*"),

"*amzn-ddb-map-sig*': Binary(b"\xd3\xc6\xc7\n\xb7#\x13\xd1Y\xea\xe4. | *\xbd\xdf"

"binary': Binary(b'!"\xc5\x92\xd7\x13\x1d\xe8Bs\x9b\x7f\xa8\x8e\x9c\xcf\x10\x1¢

'example': Binary(b"'b\x933\x9a+s\xf1l\xd6a\xc5\xd5\x1laz\xed\xd6\xce\xeaX\xfoT\>

‘numbers': Binary(b'\xd5\xa@\\d\xcc\x85\xf5\xle\xb9-f!\xb9\xb8\x8a\x1laT\xbaqg\x

"partition_attribute': 'valuel’,

'sort_attribute': 55,

"test': 'test-value'

Mengubah model data Anda

(® Note

Pustaka enkripsi sisi klien kami diubah namanya menjadi AWS Database Encryption SDK.
Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption
Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.

Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi

DynamoDB.

Setiap kali mengenkripsi atau mendekripsi item, Anda perlu memberikan tindakan atribut yang
memberi tahu DynamoDB Encryption Client atribut mana yang perlu dienkripsi dan ditandatangani,
atribut mana yang perlu ditanandatangani (tapi tidak dienkripsi), dan mana yang diabaikan.

Atribut tindakan tidak disimpan dalam item yang dienkripsi dan DynamoDB Encryption Client tidak
memperbarui tindakan atribut Anda secara otomatis.

/A Important

Klien Enkripsi DynamoDB tidak mendukung enkripsi data tabel DynamoDB yang sudah ada
dan tidak terenkripsi.

Setiap kali Anda mengubah model data Anda, yaitu, ketika Anda menambahkan atau menghapus
atribut dari item tabel Anda, Anda berisiko mendapatkan masalah. Jika tindakan atribut yang Anda

Mengubah model data Anda 323



AWS SDK Enkripsi Basis Data Panduan Developer

tentukan tidak mencakup semua atribut dalam item, item tersebut mungkin tidak dienkripsi dan
ditandatangani sesuai keinginan Anda. Lebih penting lagi, jika tindakan atribut yang Anda berikan
saat mendekripsi item berbeda dari tindakan atribut yang Anda berikan saat mengenkripsi item,
verifikasi tanda tangan mungkin gagal.

Sebagai contoh, jika tindakan atribut yang digunakan untuk mengenkripsi item memberitahu untuk
menandatangani atribut test, tanda tangan dalam item akan mencakup atribut test. Namun,
jika tindakan atribut yang digunakan untuk mendekripsi item tidak memperhitungkan atribut test,
verifikasi akan gagal karena klien akan mencoba untuk memverifikasi tanda tangan yang tidak
termasuk atribut test.

Ini adalah masalah ketika beberapa aplikasi membaca dan menulis item DynamoDB sama karena
DynamoDB Encryption Client harus menghitung tanda tangan yang sama untuk item di semua
aplikasi. Ini juga masalah untuk aplikasi terdistribusi karena perubahan dalam tindakan atribut harus
menyebar ke semua host. Bahkan jika tabel DynamoDB Anda diakses oleh satu host dalam satu
proses, membangun proses praktek terbaik akan membantu mencegah kesalahan jika proyek pernah
menjadi lebih kompleks.

Untuk menghindari kesalahan validasi tanda tangan yang mencegah Anda membaca item tabel
Anda, gunakan panduan berikut.

* Menambahkan atribut — Jika atribut baru mengubah tindakan atribut Anda, sepenuhnya men-
deploy perubahan tindakan atribut sebelum menyertakan atribut baru dalam item.

« Menghapus atribut — Jika Anda berhenti menggunakan atribut dalam item Anda, jangan
mengubah tindakan atribut Anda.

* Mengubah tindakan - Setelah Anda telah menggunakan konfigurasi tindakan atribut untuk
mengenkripsi item tabel Anda, Anda tidak dapat dengan aman mengubah tindakan default atau
tindakan untuk atribut yang ada tanpa mereenkripsi setiap item dalam tabel Anda.

Kesalahan validasi tanda tangan bisa sangat sulit diatasi, jadi pendekatan terbaik adalah
mencegahnya.

Topik

» Menambahkan atribut

* Menghapus atribut

Mengubah model data Anda 324



AWS SDK Enkripsi Basis Data Panduan Developer

Menambahkan atribut

Saat menambahkan atribut baru ke item tabel, Anda mungkin perlu mengubah tindakan atribut Anda.
Untuk mencegah kesalahan validasi tanda tangan, sebaiknya Anda menerapkan perubahan ini dalam
proses dua tahap. Verifikasi bahwa tahap pertama selesai sebelum memulai tahap kedua.

1. Ubah tindakan atribut di semua aplikasi yang membaca atau menulis ke tabel. Deploy perubahan
ini dan konfirmasi bahwa pembaruan telah disebarkan ke semua host tujuan.

2. Tulis nilai ke atribut baru dalam item tabel Anda.

Pendekatan dua tahap ini memastikan bahwa semua aplikasi dan host memiliki tindakan atribut
yang sama, dan akan menghitung tanda tangan yang sama, sebelum menemui atribut baru.

Hal ini penting bahkan ketika tindakan untuk atribut adalah Jangan lakukan apa-apa (jangan
mengenkripsi atau menandatangani), karena default untuk beberapa enkriptor adalah mengenkripsi
dan menandatangani.

Contoh berikut menunjukkan kode untuk tahap pertama dalam proses ini. Atribut item baru
ditambahkan, 1ink, yang menyimpan link ke item tabel lain. Karena link ini harus tetap dalam teks
biasa, contoh menetapkan itu tindakan tanda-saja. Setelah sepenuhnya men-deploy perubahan ini
dan kemudian memverifikasi bahwa semua aplikasi dan host memiliki tindakan atribut baru, Anda
dapat mulai menggunakan atribut 1ink dalam item tabel Anda.

Java DynamoDB Mapper

Saat menggunakan DynamoDB Mapper dan AttributeEncryptor secara default, semua
atribut dienkripsi dan ditandatangani kecuali kunci utama, yang ditandatangani tetapi tidak
dienkripsi. Untuk menentukan tindakan tanda-saja, gunakan anotasi @doNotEncrypt.

Contoh ini menggunakan anotasi @doNotEncrypt untuk atribut 1ink baru.

@DynamoDBTable(tableName = "ExampleTable")
public static final class DataPoJo {
private String partitionAttribute;
private int sortAttribute;
private String link;

@DynamoDBHashKey(attributeName = "partition_attribute")
public String getPartitionAttribute() {
return partitionAttribute;

Mengubah model data Anda 325



AWS SDK Enkripsi Basis Data Panduan Developer

}

public void setPartitionAttribute(String partitionAttribute) {
this.partitionAttribute = partitionAttribute;
}

@DynamoDBRangeKey(attributeName = "sort_attribute")
public int getSortAttribute() {
return sortAttribute;

public void setSortAttribute(int sortAttribute) {
this.sortAttribute = sortAttribute;

@DynamoDBAttribute(attributeName = "link")
@DoNotEncrypt
public String getLink() {

return link;

public void setLink(String link) {
this.link = link;

@Override
public String toString() {
return "DataPoJo [partitionAttribute=" + partitionAttribute + ",
sortAttribute=" + sortAttribute + ",
link=" + link + "]";

Java DynamoDB encryptor

Dalam enkriptor DynamoDB di level yang lebih rendah, Anda mesti menetapkan tindakan

untuk setiap atribut. Contoh ini menggunakan pernyataan switch yang mana default adalah
encryptAndSign dan pengecualian dispesifikasikan untuk kunci partisi, kunci penyortiran, dan
atribut 1ink baru. Dalam contoh ini, jika kode atribut tautan tidak sepenuhnya di-deploy sebelum
digunakan, atribut tautan akan dienkripsi dan ditandatangani oleh beberapa aplikasi, tetapi hanya
ditandatangani oleh orang lain.

for (final String attributeName : record.keySet()) {

Mengubah model data Anda 326



AWS SDK Enkripsi Basis Data Panduan Developer

switch (attributeName) {

case partitionKeyName:
// fall through to the next case

case sortKeyName:
// partition and sort keys must be signed, but not encrypted
actions.put(attributeName, signOnly);
break;

case "link":
// only signed
actions.put(attributeName, signOnly);
break;

default:
// Encrypt and sign all other attributes
actions.put(attributeName, encryptAndSign);
break;

Python

Dalam DynamoDB Encryption Client untuk Python, Anda dapat menentukan tindakan default
untuk semua atribut dan kemudian menentukan pengecualian.

Jika Anda menggunakan sebuah kelas pembantu klien Python, Anda tidak perlu menentukan
tindakan atribut untuk atribut kunci primer. Kelas pembantu klien mencegah Anda mengenkripsi
kunci utama Anda. Namun, jika Anda tidak menggunakan kelas pembantu klien, Anda harus
mengatur tindakan SIGN_ONLY pada kunci partisi dan kunci sortir Anda. Jika Anda secara tidak
sengaja mengenkripsi kunci partisi atau sortir Anda, Anda tidak akan dapat memulihkan data
tanpa pemindaian tabel lengkap.

Contoh ini menentukan pengecualian untuk atribut 1ink baru, yang mendapat tindakan
SIGN_ONLY.

actions = AttributeActions(
default_action=CryptoAction.ENCRYPT_AND_SIGN,
attribute_actions={
'example': CryptoAction.DO_NOTHING,
'link': CryptoAction.SIGN_ONLY

Mengubah model data Anda 327



AWS SDK Enkripsi Basis Data Panduan Developer

Menghapus atribut

Jika Anda tidak lagi membutuhkan atribut dalam item yang telah dienkripsi dengan DynamoDB
Encryption Client, Anda dapat berhenti menggunakan atribut. Namun, jangan menghapus atau
mengubah tindakan untuk atribut tersebut. Jika Anda melakukannya, dan kemudian menemukan item
dengan atribut itu, tanda tangan yang dihitung untuk item tidak akan cocok dengan tanda tangan asili,
dan validasi tanda tangan akan gagal.

Meskipun Anda mungkin tergoda untuk menghapus semua jejak atribut dari kode Anda, tambahkan
komentar bahwa item tidak lagi digunakan, alih-alih menghapusnya. Bahkan jika Anda melakukan
pemindaian tabel secara penuh untuk menghapus semua instans atribut, item yang dienkripsi dengan
atribut yang mungkin disembunyikan atau dalam proses di suatu tempat di konfigurasi Anda.

Memecahkan masalah dalam aplikasi DynamoDB Encryption Client Anda

(® Note

Pustaka enkripsi sisi klien kami diubah nhamanya menjadi AWS Database Encryption SDK.
Topik berikut memberikan informasi tentang versi 1. x —2. x dari DynamoDB Encryption

Client untuk Java dan versi 1. x —3. x dari Klien Enkripsi DynamoDB untuk Python.
Untuk informasi selengkapnya, lihat SDK Enkripsi AWS Database untuk dukungan versi

DynamoDB.

Bagian ini menjelaskan masalah yang mungkin Anda alami saat menggunakan DynamoDB
Encryption Client dan menawarkan saran-saran untuk menyelesaikannya.

Untuk memberikan umpan balik tentang Klien Enkripsi DynamoDB, ajukan masalah di aws-
dynamodb-encryption-javaatau repositori. aws-dynamodb-encryption-python GitHub

Untuk memberikan umpan balik tentang dokumentasi ini, gunakan tautan umpan balik pada halaman
mana pun.

Topik
» Akses ditolak

 Verifikasi tanda tangan gagal

» Masalah dengan tabel global versi lama

 Kinerja yang buruk dari Penyedia Terbaru

Pemecahan Masalah 328


https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-python/

AWS SDK Enkripsi Basis Data Panduan Developer

Akses ditolak

Masalah: Aplikasi Anda ditolak aksesnya ke sumber daya yang dibutuhkan.

Saranan: Pelajari tentang izin yang diperlukan dan tambahkan izin tersebut ke konteks keamanan di
mana aplikasi Anda dijalankan.

Detall

Untuk menjalankan aplikasi yang menggunakan pustaka DynamoDB Encryption Client, pemanggil
harus memiliki izin untuk menggunakan komponennya. Jika tidak, aksesnya ke elemen yang
dibutuhkan akan ditolak.

* DynamoDB Encryption Client tidak memerlukan akun Amazon Web Services (AWS) atau
tergantung pada layanan AWS mana pun. Namun, jika aplikasi Anda menggunakan AWS, Anda
memerlukan Akun AWS dan pengguna yang memiliki izin untuk menggunakan akun tersebut.

* DynamoDB Encryption Client tidak memerlukan Amazon DynamoDB. Namun, Jika aplikasi
yang menggunakan klien membuat tabel DynamoDB, menempatkan item ke dalam tabel,
atau mendapatkan item dari tabel, pemanggil harus memiliki izin untuk menggunakan operasi
DynamoDB yang diperlukan dalam Anda. Akun AWS Untuk detailnya, lihat topik kontrol akses di
Panduan Developer Amazon DynamoDB.

 Jika aplikasi Anda menggunakan class client helper di DynamoDB Encryption Client untuk Python,
pemanggil harus memiliki izin untuk memanggil operasi DynamoDB. DescribeTable

+ Klien Enkripsi DynamoDB tidak AWS Key Management Service memerlukan (). AWS KMS Namun,
jika aplikasi Anda menggunakan Penyedia Materi KMS Langsung, atau menggunakan Penyedia

Terbaru dengan toko penyedia yang menggunakan AWS KMS, penelepon harus memiliki izin
untuk menggunakan AWS KMS GenerateDataKeydan Mendekripsi operasi.

Verifikasi tanda tangan gagal

Masalah: ltem tidak dapat didekripsi karena verifikasi tanda tangan gagal. Iltem juga mungkin tidak
dienkripsi dan ditandatangani sesuai keinginan Anda.

Saranan: Pastikan bahwa tindakan atribut yang Anda berikan mencakup semua atribut dalam item.
Saat mendekripsi item, pastikan untuk memberikan tindakan atribut yang sesuai dengan tindakan
yang digunakan untuk mengenkripsi item.

Detail

Pemecahan Masalah 329


https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/access-control-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS SDK Enkripsi Basis Data Panduan Developer

Tindakan atribut yang Anda berikan memberi tahu DynamoDB Encryption Client atribut mana yang

perlu dienkripsi dan ditandatangani, atribut mana yang perlu ditanandatangani (tapi tidak dienkripsi),
dan mana yang diabaikan.

Jika tindakan atribut yang Anda tentukan tidak mencakup semua atribut dalam item, item mungkin
tidak dienkripsi dan ditandatangani sesuai keinginan Anda. Jika tindakan atribut yang Anda berikan
saat mendekripsi item berbeda dari tindakan atribut yang Anda berikan saat mengenkripsi item,
verifikasi tanda tangan mungkin gagal. Ini adalah masalah khusus untuk aplikasi terdistribusi di mana
tindakan atribut baru mungkin tidak disebarkan ke semua host.

Kesalahan validasi tanda tangan sulit untuk diselesaikan. Untuk membantu mencegahnya, lakukan
tindakan pencegahan ekstra saat mengubah model data Anda. Untuk detailnya, lihat Mengubah
model data Anda.

Masalah dengan tabel global versi lama

Masalah: Iltem dalam tabel global Amazon DynamoDB versi lama tidak dapat didekripsi karena
verifikasi tanda tangan gagal.

Saran: Tetapkan tindakan atribut agar bidang replikasi yang dicadangkan tidak dienkripsi atau
ditandatangani.

Detall

Anda dapat menggunakan Klien Enkripsi DynamoDB dengan tabel global DynamoDB. Kami
menyarankan Anda menggunakan tabel global dengan kunci KMS Multi-wilayah dan mereplikasi
kunci KMS ke semua Wilayah AWS tempat tabel global direplikasi.

Dimulai dengan tabel global versi 2019.11.21, Anda dapat menggunakan tabel global dengan Klien

Enkripsi DynamoDB tanpa konfigurasi khusus. Namun, jika Anda menggunakan tabel global versi
2017.11.29, Anda harus memastikan bahwa bidang replikasi yang dicadangkan tidak dienkripsi atau
ditandatangani.

Jika Anda menggunakan tabel global versi 2017.11.29, Anda harus mengatur tindakan atribut untuk
atribut berikut DO_NOTHING di @DoNotTouchJava atau Python.

* aws:rep:deleting
* aws:rep:updatetime

« aws:rep:updateregion

Pemecahan Masalah 330


https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V2.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V1.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V1.html

AWS SDK Enkripsi Basis Data Panduan Developer

Jika Anda menggunakan versi lain dari tabel global, tidak ada tindakan yang diperlukan.
Kinerja yang buruk dari Penyedia Terbaru

Masalah: Aplikasi Anda kurang responsif, terutama setelah diperbarui ke versi DynamoDB Encryption
Client yang lebih baru.

Saran: Sesuaikan time-to-live nilai dan ukuran cache.
Detail

Penyedia Terbaru dirancang untuk meningkatkan kinerja aplikasi yang menggunakan DynamoDB
Encryption Client dengan mengizinkan penggunaan kembali secara terbatas materi kriptografis.
Bila Anda mengonfigurasi Penyedia Terbaru untuk aplikasi Anda, Anda harus menyeimbangkan
peningkatan kinerja dengan masalah keamanan yang timbul dari caching dan penggunaan kembali.

Dalam versi yang lebih baru dari DynamoDB Encryption Client, time-to-live nilai (TTL) menentukan
berapa lama penyedia materi kriptografi cache () dapat digunakan. CMPs TTL juga menentukan
seberapa sering Penyedia Terbaru memeriksa versi baru dari CMP.

Jika TTL terlalu lama, aplikasi Anda mungkin melanggar aturan bisnis atau standar keamanan Anda.
Jika TTL terlalu singkat, panggilan berulang ke toko penyedia dapat menyebabkan toko penyedia
Anda untuk membatasi permintaan dari aplikasi Anda dan aplikasi lain yang juga menggunakan
akun layanan Anda. Untuk mengatasi masalah ini, sesuaikan TTL dan ukuran cache ke nilai yang
memenuhi sasaran latensi dan ketersediaan Anda serta sesuai dengan standar keamanan Anda.
Untuk detailnya, lihat Menetapkan time-to-live nilai.

Pemecahan Masalah 331



AWS SDK Enkripsi Basis Data Panduan Developer

Ganti nama Klien Enkripsi Amazon DynamoDB

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Pada tanggal 9 Juni 2023, pustaka enkripsi sisi klien kami diubah namanya menjadi Database
Encryption SDK. AWS SDK Enkripsi AWS Database kompatibel dengan Amazon DynamoDB. Itu
dapat mendekripsi dan membaca item yang dienkripsi oleh Klien Enkripsi DynamoDB lama. Untuk
informasi selengkapnya tentang versi Klien Enkripsi DynamoDB lama, lihat. AWS SDK Enkripsi
Database untuk dukungan versi DynamoDB

AWS Database Encryption SDK menyediakan versi 3. x dari pustaka enkripsi sisi klien Java untuk
DynamoDB, yang merupakan penulisan ulang utama Klien Enkripsi DynamoDB untuk Java. Ini
mencakup banyak pembaruan, seperti format data terstruktur baru, dukungan multitenancy yang
ditingkatkan, perubahan skema yang mulus, dan dukungan enkripsi yang dapat dicari.

Untuk mempelajari lebih lanjut tentang fitur baru yang diperkenalkan dengan AWS Database
Encryption SDK, lihat topik berikut.

Enkripsi yang dapat dicari

Anda dapat merancang database yang dapat mencari catatan terenkripsi tanpa mendekripsi
seluruh database. Bergantung pada model ancaman dan persyaratan kueri, Anda dapat
menggunakan enkripsi yang dapat dicari untuk melakukan penelusuran yang sama persis atau
kueri kompleks yang lebih disesuaikan pada catatan terenkripsi Anda.

Gantungan kunci

AWS Database Encryption SDK menggunakan keyrings untuk melakukan enkripsi amplop.
Keyrings menghasilkan, mengenkripsi, dan mendekripsi kunci data yang melindungi catatan
Anda. AWS Database Encryption SDK mendukung AWS KMS keyrings yang menggunakan
enkripsi simetris atau RSA asimetris AWS KMS keysuntuk melindungi kunci data Anda, dan
gantungan kunci AWS KMS hirarkis yang memungkinkan Anda melindungi materi kriptografi
Anda di bawah kunci KMS enkripsi simetris tanpa menelepon setiap kali Anda mengenkripsi atau
mendekripsi catatan. AWS KMS Anda juga dapat menentukan bahan kunci Anda sendiri dengan
gantungan kunci Raw AES dan gantungan kunci Raw RSA.

332


https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS SDK Enkripsi Basis Data Panduan Developer

Perubahan skema yang mulus

Saat Anda mengonfigurasi SDK Enkripsi AWS Database, Anda memberikan tindakan kriptografi
yang memberi tahu klien bidang mana yang akan dienkripsi dan ditandatangani, bidang mana
yang akan ditandatangani (tetapi tidak dienkripsi), dan mana yang harus diabaikan. Setelah Anda
menggunakan AWS Database Encryption SDK untuk melindungi catatan Anda, Anda masih dapat
membuat perubahan pada model data Anda. Anda dapat memperbarui tindakan kriptografi Anda,
seperti menambahkan atau menghapus bidang terenkripsi, dalam satu penerapan.

Konfigurasikan tabel DynamoDB yang ada untuk enkripsi sisi klien

Versi lama dari Klien Enkripsi DynamoDB dirancang untuk diimplementasikan dalam tabel
baru yang tidak terisi. Dengan SDK Enkripsi AWS Database untuk DynamoDB, Anda dapat
memigrasikan tabel Amazon DynamoDB yang ada ke versi 3. x dari pustaka enkripsi sisi klien
Java untuk DynamoDB.

333



AWS SDK Enkripsi Basis Data Panduan Developer

Referensi

Pustaka enkripsi sisi klien kami diubah namanya menjadi SDK Enkripsi AWS Database. Panduan
pengembang ini masih memberikan informasi tentang Klien Enkripsi DynamoDB.

Topik berikut memberikan rincian teknis untuk AWS Database Encryption SDK.

Format deskripsi bahan

Deskripsi materi berfungsi sebagai header untuk catatan terenkripsi. Saat Anda mengenkripsi dan

menandatangani bidang dengan SDK Enkripsi AWS Database, enkripsi mencatat deskripsi materi
saat merakit materi kriptografi dan menyimpan deskripsi materi di bidang baru (aws_dbe_head)
yang ditambahkan enkripsi ke catatan Anda. Deskripsi materi adalah struktur data berformat
portabel yang berisi kunci data terenkripsi dan informasi tentang bagaimana catatan dienkripsi
dan ditandatangani. Tabel berikut menjelaskan nilai-nilai yang membentuk deskripsi material. Byte
ditambahkan dalam urutan yang ditunjukkan.

Nilai Panjangnya dalam byte
Version 1

Signatures Enabled 1

Record ID 32

Encrypt Legend Variabel

Encryption Context Length 2

277 Variabel

Encrypted Data Key Count 1

Encrypted Data Keys Variabel

Record Commitment 1

Format deskripsi bahan 334



AWS SDK Enkripsi Basis Data Panduan Developer

Versi

Versi format aws_dbe_head bidang ini.

Tanda Tangan Diaktifkan

Mengkodekan apakah tanda tangan digital ECDSA diaktifkan untuk catatan ini.

Nilai byte Arti
0x01 Tanda tangan digital ECDSA diaktifkan
(default)
0x00 Tanda tangan digital ECDSA dinonaktifkan
Rekam ID

Nilai 256-bit yang dihasilkan secara acak yang mengidentifikasi catatan. ID Rekaman:
* Mengidentifikasi catatan terenkripsi secara unik.
» Mengikat deskripsi material ke catatan terenkripsi.

Enkripsi Legenda

Deskripsi serial bidang yang diautentikasi dienkripsi. Encrypt Legend digunakan untuk
menentukan bidang apa metode dekripsi harus mencoba untuk mendekripsi.

Nilai byte Arti
0x65 ENCRYPT_AND_SIGN
0x73 SIGN_ONLY

Encrypt Legend diserialisasikan sebagai berikut:
1. Secara leksikografis dengan urutan byte yang mewakili jalur kanonik mereka.

2. Untuk setiap bidang, secara berurutan, tambahkan salah satu nilai byte yang ditentukan di atas
untuk menunjukkan apakah bidang itu harus dienkripsi.

Format deskripsi bahan 335



AWS SDK Enkripsi Basis Data Panduan Developer

Panjang Konteks Enkripsi

Panjang konteks enkripsi. Ini adalah nilai 2-byte yang ditafsirkan sebagai integer unsigned 16-bit.
Panjang maksimum adalah 65.535 byte.

Konteks Enkripsi
Satu set pasangan nama-nilai yang berisi data otentikasi tambahan yang arbitrer dan non-rahasia.

Ketika tanda tangan digital ECDSA diaktifkan, konteks enkripsi berisi pasangan kunci-nilai.
{"aws-crypto-footer-ecdsa-key": Qtxt} Qtxtmewakili titik kurva elips yang Q
dikompresi menurut SEC 1 versi 2.0 dan kemudian dikodekan base64.

Hitungan Kunci Data Terenkripsi

Jumlah kunci data terenkripsi. Ini adalah nilai 1-byte ditafsirkan sebagai 8-bit unsigned integer
yang menentukan jumlah kunci data terenkripsi. Jumlah maksimum kunci data terenkripsi di setiap
catatan adalah 255.

Kunci Data Terenkripsi

Urutan kunci data terenkripsi. Panjang urutan ditentukan oleh jumlah kunci data terenkripsi dan
panjang masing-masing. Urutan berisi setidaknya satu kunci data terenkripsi.

Tabel berikut menjelaskan bidang yang membentuk setiap kunci data terenkripsi. Byte
ditambahkan dalam urutan yang ditunjukkan.

Struktur Kunci Data Terenkripsi

Bidang Panjangnya dalam byte
Key Provider ID Length 2
Key Provider ID Variabel. Sama dengan nilai yang ditentuka

n dalam 2 byte sebelumnya (Panjang ID
Penyedia Kunci).

Key Provider Information Length 2

Key Provider Information Variabel. Sama dengan nilai yang ditentukan

dalam 2 byte sebelumnya (Panjang Informasi
Penyedia Kunci).

Format deskripsi bahan 336


https://www.secg.org/sec1-v2.pdf

AWS SDK Enkripsi Basis Data Panduan Developer

Bidang Panjangnya dalam byte

Encrypted Data Key Length 2

Encrypted Data Key Variabel. Sama dengan nilai yang ditentuka
n dalam 2 byte sebelumnya (Panjang Kunci
Data Terenkripsi).

Panjang ID Penyedia Kunci

Panjang pengenal penyedia kunci. Ini adalah nilai 2-byte yang ditafsirkan sebagai integer
unsigned 16-bit yang menentukan jumlah byte yang berisi ID penyedia kunci.

ID Penyedia Kunci

Pengidentifikasi penyedia kunci. Ini digunakan untuk menunjukkan penyedia kunci data
terenkripsi dan dimaksudkan untuk dapat diperluas.

Panjang Informasi Penyedia Kunci
Panjang informasi penyedia kunci. Ini adalah nilai 2-byte yang ditafsirkan sebagai integer

unsigned 16-bit yang menentukan jumlah byte yang berisi informasi penyedia kunci.

Informasi Penyedia Utama
Informasi penyedia utama. Itu ditentukan oleh penyedia kunci.

Bila Anda menggunakan AWS KMS keyring, nilai ini berisi Amazon Resource Name (ARN)
dari. AWS KMS key

Panjang Kunci Data Terenkripsi
Panjang kunci data terenkripsi. Ini adalah nilai 2-byte ditafsirkan sebagai 16-bit unsigned
integer yang menentukan jumlah byte yang berisi kunci data terenkripsi.

Kunci Data Terenkripsi

Kunci data terenkripsi. Ini adalah kunci data yang dienkripsi oleh penyedia kunci.

Rekam Komitmen

Hash 256-bit Hash Based Message Authentication Code (HMAC) yang berbeda dihitung atas
semua byte deskripsi material sebelumnya menggunakan kunci komit.

Format deskripsi bahan 337



AWS SDK Enkripsi Basis Data Panduan Developer

AWS KMS Rincian teknis keyring hierarkis

Keyring AWS KMS Hierarkis menggunakan kunci data ungiue untuk mengenkripsi setiap bidang dan

mengenkripsi setiap kunci data dengan kunci pembungkus unik yang berasal dari kunci cabang aktif.
Ini menggunakan derivasi kunci dalam mode counter dengan fungsi pseudorandom dengan HMAC
SHA-256 untuk menurunkan kunci pembungkus 32 byte dengan input berikut.

« Garam acak 16 byte

* Kunci cabang aktif

* Nilai yang dikodekan UTF-8 untuk pengenal penyedia kunci "’ aws-kms-hierarchy

Keyring Hierarkis menggunakan kunci pembungkus turunan untuk mengenkripsi salinan kunci data
teks biasa menggunakan AES-GCM-256 dengan tag otentikasi 16 byte dan input berikut.

» Kunci pembungkus turunan digunakan sebagai kunci sandi AES-GCM
« Kunci data digunakan sebagai pesan AES-GCM
» Vektor inisialisasi acak 12 byte (IV) digunakan sebagai AES-GCM |V

+ Data otentikasi tambahan (AAD) yang berisi nilai serial berikut.

Nilai Panjangnya dalam byte Ditafsirkan sebagai
"aws-kms-hierarchy" 17 UTF-8 dikodekan
Pengidentifikasi kunci cabang  Variabel UTF-8 dikodekan

Versi kunci cabang 16 UTF-8 dikodekan

Konteks enkripsi Variabel Pasangan nilai kunci yang

dikodekan UTF-8

AWS KMS Rincian teknis keyring hierarkis 338


https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
https://en.wikipedia.org/wiki/UTF-8

AWS SDK Enkripsi Basis Data Panduan Developer

Riwayat dokumen untuk Panduan Pengembang SDK
Enkripsi AWS Database

Tabel berikut menjelaskan perubahan signifikan pada dokumentasi ini. Selain perubahan besar
ini, kami juga sering memperbarui dokumentasi untuk memperbaiki deskripsi dan contoh, serta
membahas umpan balik yang Anda kirimkan kepada kami. Untuk diberitahu tentang perubahan
signifikan, berlangganan umpan RSS.

Perubahan Deskripsi Tanggal

Fitur baru Menambahkan dokumenta Juni 17, 2024
si untuk keyring AWS KMS
ECDH dan keyring ECDH
mentah.

Rilis Ketersediaan Umum (GA)  Memperkenalkan dukungan Januari 17, 2024
untuk pustaka enkripsi sisi
klien .NET untuk DynamoDB.

Rilis Ketersediaan Umum (GA)  Diperbarui dokumentasi untuk  Juli 24, 2023
rilis GA versi 3. x dari pustaka

enkripsi sisi klien Java untuk
DynamoDB.

/A Warning

Kunci cabang yang
dibuat selama rilis
pratinjau pengembang
tidak lagi didukung.

Rebrand dari DynamoDB Pustaka enkripsi sisi klien 9 Juni 2023
Encryption Client diubah namanya menjadi AWS
Database Encryption SDK.

339


https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-net.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-java.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html

AWS SDK Enkripsi Basis Data

Panduan Developer

Rilis pratinjau

Perubahan dokumentasi

Fitur baru

Contoh baru

Dukungan Python

Rilis awal

Ditambahkan dan diperbaru

I dokumentasi untuk versi 3.

x dari pustaka enkripsi sisi
klien Java untuk DynamoDB,
yang mencakup format data
terstruktur baru, dukungan
multitenancy yang ditingkat
kan, perubahan skema yang
mulus, dan dukungan enkripsi
yang dapat dicari.

Ganti AWS Key Managemen

t Service istilah customer
master key (CMK) dengan
AWS KMS keydan kunci KMS.

Menambahkan dukungan
untuk AWS Key Managemen
t Service (AWS KMS) kunci
Multi-wilayah. Tombol
Multi-Region adalah AWS
KMS kunci Wilayah AWS
yang berbeda yang dapat
digunakan secara bergantian
karena memiliki ID kunci dan
bahan kunci yang sama.

Ditambahkan contoh
menggunakan Dynamo
DBMapper di Java.

Dukungan tambahan untuk
Python, selain Java.

Rilis awal dokumentasi ini.

9 Juni 2023

Agustus 30, 2021

8 Juni 2021

6 September 2018

2 Mei 2018

2 Mei 2018

340


https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/direct-kms-provider.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/direct-kms-provider.html#provider-kms-how-to-use
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/java-examples.html#java-example-dynamodb-mapper
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/python.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/

AWS SDK Enkripsi Basis Data Panduan Developer

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan
dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

ccexli



	AWS SDK Enkripsi Basis Data
	Table of Contents
	Apa itu SDK Enkripsi AWS Database?
	Dikembangkan dalam repositori sumber terbuka
	Support dan pemeliharaan
	Mengirim umpan balik
	AWS Konsep SDK Enkripsi Database
	Enkripsi amplop
	Kunci data
	Kunci pembungkus
	Gantungan kunci
	Tindakan kriptografi
	Deskripsi materi
	Konteks enkripsi
	Manajer materi kriptografi
	Enkripsi simetris dan asimetris
	Komitmen utama
	Tanda tangan digital

	Cara kerja SDK Enkripsi AWS Database
	Enkripsi dan tandatangani
	Dekripsi dan verifikasi

	Rangkaian algoritme yang didukung di SDK Enkripsi AWS Database
	Rangkaian algoritme default
	AES-GCM tanpa tanda tangan digital ECDSA


	Menggunakan SDK Enkripsi AWS Database dengan AWS KMS
	Mengkonfigurasi SDK Enkripsi AWS Database
	Memilih bahasa pemrograman
	Memilih tombol pembungkus
	Membuat filter penemuan
	Bekerja dengan database multitenant
	Membuat beacon yang ditandatangani

	Penyimpanan kunci dalam SDK Enkripsi AWS Database
	Terminologi dan konsep toko kunci
	Menerapkan izin yang paling tidak diistimewakan
	Buat toko kunci
	Konfigurasikan tindakan penyimpanan kunci
	Konfigurasikan tindakan penyimpanan kunci Anda
	Konfigurasi statis
	Konfigurasi penemuan


	Buat kunci cabang aktif
	Putar kunci cabang aktif Anda

	Gantungan kunci
	Cara kerja gantungan kunci
	AWS KMS gantungan kunci
	Izin yang diperlukan untuk keyrings AWS KMS
	Mengidentifikasi AWS KMS keys dalam AWS KMS keyring
	Membuat AWS KMS keyring
	Menggunakan Multi-region AWS KMS keys
	Menggunakan AWS KMS keyring penemuan
	Menggunakan AWS KMS keyring penemuan regional

	AWS KMS Gantungan kunci hierarkis
	Cara kerjanya
	Prasyarat
	Izin yang diperlukan
	Pilih cache
	Cache default
	MultiThreaded tembolok
	StormTracking tembolok
	Cache bersama

	Buat keyring Hierarkis
	Buat keyring Hierarkis dengan ID kunci cabang statis
	Buat keyring Hierarkis dengan pemasok ID kunci cabang

	Menggunakan keyring Hierarkis untuk enkripsi yang dapat dicari
	Mendefinisikan sumber kunci suar Anda


	AWS KMS Gantungan kunci ECDH
	Izin yang diperlukan untuk gantungan kunci AWS KMS ECDH
	Membuat keyring AWS KMS ECDH
	Membuat keyring AWS KMS penemuan ECDH

	Gantungan kunci AES mentah
	Gantungan kunci RSA mentah
	Gantungan kunci ECDH mentah
	Membuat keyring ECDH mentah
	RawPrivateKeyToStaticPublicKey
	EphemeralPrivateKeyToStaticPublicKey
	PublicKeyDiscovery


	Multi-gantungan kunci

	Enkripsi yang dapat dicari
	Apakah beacon tepat untuk dataset saya?
	Skenario enkripsi yang dapat dicari
	Beacon
	Suar standar
	Suar majemuk

	Merencanakan suar
	Pertimbangan untuk database multitenant
	Memilih jenis suar
	Beacon standar
	Kueri satu bidang terenkripsi
	Contoh

	Kueri bidang virtual
	Contoh


	Suar majemuk
	Kueri kombinasi bidang terenkripsi pada satu indeks
	Contoh

	Kueri kombinasi bidang terenkripsi dan teks biasa pada satu indeks
	Contoh



	Memilih panjang suar
	Menghitung panjang suar
	Contoh

	Memilih nama suar

	Mengkonfigurasi beacon
	Mengkonfigurasi beacon standar
	Contoh sintaks konfigurasi
	Membuat bidang virtual
	Pertimbangan keamanan untuk bidang virtual

	Mendefinisikan gaya suar

	Mengkonfigurasi suar majemuk
	Contoh sintaks konfigurasi

	Contoh konfigurasi
	Beacon standar
	Suar majemuk


	Menggunakan beacon
	Meminta suar

	Enkripsi yang dapat dicari untuk database multitenant
	Menanyakan beacon dalam database multitenant


	AWS SDK Enkripsi Database untuk DynamoDB
	Enkripsi di sisi klien dan sisi server
	Bidang mana yang dienkripsi dan ditandatangani?
	Enkripsi nilai atribut
	Penandatanganan item

	Enkripsi yang dapat dicari di DynamoDB
	Mengkonfigurasi indeks sekunder dengan beacon
	Menguji output suar
	Menguji bidang virtual
	Menguji suar majemuk


	Memperbarui model data Anda
	Tambahkan SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut baru ENCRYPT_AND_SIGNSIGN_ONLY, dan
	Hapus atribut yang ada
	Ubah ENCRYPT_AND_SIGN atribut yang ada ke SIGN_ONLY atau SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
	Ubah SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut SIGN_ONLY atau yang sudah ada ke ENCRYPT_AND_SIGN
	Tambahkan DO_NOTHING atribut baru
	Ubah SIGN_ONLY atribut yang ada menjadi SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
	Ubah SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atribut yang ada menjadi SIGN_ONLY

	AWS SDK Enkripsi Database untuk DynamoDB bahasa pemrograman yang tersedia
	Java
	Prasyarat
	Penginstalan
	Menggunakan pustaka enkripsi sisi klien Java untuk DynamoDB
	Enkriptor item
	Tindakan atribut dalam SDK Enkripsi AWS Database untuk DynamoDB
	Gunakan kelas data beranotasi
	Tentukan tindakan atribut Anda secara manual

	Konfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB
	Memperbarui item dengan SDK Enkripsi AWS Database
	Mendekripsi set yang ditandatangani

	Contoh Java
	Menggunakan klien yang disempurnakan DynamoDB
	Menggunakan API DynamoDB tingkat rendah
	Menggunakan level yang lebih rendah DynamoDbItemEncryptor

	Konfigurasikan tabel DynamoDB yang ada untuk menggunakan SDK Enkripsi Database untuk AWS DynamoDB
	Langkah 1: Bersiaplah untuk membaca dan menulis item terenkripsi
	Langkah 2: Tulis item terenkripsi dan ditandatangani
	Langkah 3: Hanya baca item terenkripsi dan ditandatangani

	Migrasi ke versi 3.x pustaka enkripsi sisi klien Java untuk DynamoDB
	Migrasi dari versi 1.x ke 2.x
	Migrasi dari versi 2.x ke 3.x
	Langkah 1. Bersiaplah untuk membaca item dalam format baru
	Langkah 2. Tulis item dalam format baru
	Langkah 3. Hanya membaca dan menulis item dalam format baru



	.NET
	Menginstal pustaka enkripsi sisi klien .NET untuk DynamoDB
	Debugging dengan .NET
	Menggunakan pustaka enkripsi sisi klien .NET untuk DynamoDB
	Enkriptor item
	Tindakan atribut dalam SDK Enkripsi AWS Database untuk DynamoDB
	Konfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB
	Memperbarui item dengan AWS Database Encryption SDK

	.NET contoh
	Menggunakan SDK Enkripsi AWS Database tingkat rendah untuk DynamoDB API
	Menggunakan level yang lebih rendah DynamoDbItemEncryptor

	Konfigurasikan tabel DynamoDB yang ada untuk menggunakan SDK Enkripsi Database untuk AWS DynamoDB
	Langkah 1: Bersiaplah untuk membaca dan menulis item terenkripsi
	Langkah 2: Tulis item terenkripsi dan ditandatangani
	Langkah 3: Hanya baca item terenkripsi dan ditandatangani


	Rust
	Prasyarat
	Penginstalan
	Menggunakan pustaka enkripsi sisi klien Rust untuk DynamoDB
	Enkriptor item
	Tindakan atribut dalam SDK Enkripsi AWS Database untuk DynamoDB
	Konfigurasi enkripsi dalam SDK Enkripsi AWS Database untuk DynamoDB
	Memperbarui item dengan SDK Enkripsi AWS Database



	Klien Enkripsi DynamoDB Legacy
	AWS SDK Enkripsi Database untuk dukungan versi DynamoDB
	Cara kerja DynamoDB Encryption Client
	Konsep Amazon DynamoDB Encryption Client
	Penyedia materi kriptografis (CMP)
	Enkriptor item
	Tindakan atribut
	Deskripsi materi
	Konteks enkripsi DynamoDB
	Penyimpanan penyedia

	Penyedia bahan kriptografi
	Penyedia Bahan KMS Langsung
	Cara menggunakannya
	Cara kerjanya
	Dapatkan bahan enkripsi
	Dapatkan materi dekripsi


	Penyedia Materi Terbungkus
	Cara menggunakannya
	Cara kerjanya
	Dapatkan materi enkripsi
	Dapatkan materi dekripsi


	Penyedia Terbaru
	Cara menggunakannya
	Cara kerjanya
	Tentang Penyedia Terbaru
	Tentang MetaStore
	Menetapkan time-to-live nilai
	Memutar bahan kriptografi
	Dapatkan bahan enkripsi
	Dapatkan bahan dekripsi

	Pembaruan untuk Penyedia Terbaru

	Penyedia Materi Statis
	Cara menggunakannya
	Cara kerjanya
	Dapatkan materi enkripsi
	Dapatkan materi dekripsi



	Bahasa pemrograman Amazon DynamoDB Encryption Client yang tersedia
	Amazon DynamoDB Encryption Client untuk Java
	Prasyarat
	Penginstalan
	Menggunakan Amazon DynamoDB Encryption Client untuk Java
	Enkripsi item: AttributeEncryptor dan Dynamo DBEncryptor
	Mengonfigurasi perilaku penyimpanan
	Tindakan atribut di Java
	Tindakan atribut untuk Dynamo DBMapper
	Tindakan atribut untuk Dynamo DBEncryptor

	Menimpa nama tabel

	Contoh kode untuk DynamoDB Encryption Client untuk Java
	Menggunakan Dynamo DBEncryptor
	Menggunakan Dynamo DBMapper


	DynamoDB Encryption Client untuk Python
	Prasyarat
	Penginstalan
	Menggunakan DynamoDB Encryption Client untuk Python
	Kelas pembantu klien
	TableInfo kelas
	Tindakan atribut di Python

	Contoh kode untuk DynamoDB Encryption Client untuk Python
	Gunakan kelas pembantu EncryptedTable klien
	Gunakan enkriptor item



	Mengubah model data Anda
	Menambahkan atribut
	Menghapus atribut

	Memecahkan masalah dalam aplikasi DynamoDB Encryption Client Anda
	Akses ditolak
	Verifikasi tanda tangan gagal
	Masalah dengan tabel global versi lama
	Kinerja yang buruk dari Penyedia Terbaru



	Ganti nama Klien Enkripsi Amazon DynamoDB
	Referensi
	Format deskripsi bahan
	AWS KMS Rincian teknis keyring hierarkis

	Riwayat dokumen untuk Panduan Pengembang SDK Enkripsi AWS Database
	

