Class: Aws::CleanRoomsML::Client

Inherits:
Seahorse::Client::Base show all
Includes:
Aws::ClientStubs
Defined in:
gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb

Overview

An API client for CleanRoomsML. To construct a client, you need to configure a :region and :credentials.

client = Aws::CleanRoomsML::Client.new(
  region: region_name,
  credentials: credentials,
  # ...
)

For details on configuring region and credentials see the developer guide.

See #initialize for a full list of supported configuration options.

Instance Attribute Summary

Attributes inherited from Seahorse::Client::Base

#config, #handlers

API Operations collapse

Instance Method Summary collapse

Methods included from Aws::ClientStubs

#api_requests, #stub_data, #stub_responses

Methods inherited from Seahorse::Client::Base

add_plugin, api, clear_plugins, define, new, #operation_names, plugins, remove_plugin, set_api, set_plugins

Methods included from Seahorse::Client::HandlerBuilder

#handle, #handle_request, #handle_response

Constructor Details

#initialize(options) ⇒ Client

Returns a new instance of Client.

Parameters:

  • options (Hash)

Options Hash (options):

  • :plugins (Array<Seahorse::Client::Plugin>) — default: []]

    A list of plugins to apply to the client. Each plugin is either a class name or an instance of a plugin class.

  • :credentials (required, Aws::CredentialProvider)

    Your AWS credentials used for authentication. This can be any class that includes and implements Aws::CredentialProvider, or instance of any one of the following classes:

    • Aws::Credentials - Used for configuring static, non-refreshing credentials.

    • Aws::SharedCredentials - Used for loading static credentials from a shared file, such as ~/.aws/config.

    • Aws::AssumeRoleCredentials - Used when you need to assume a role.

    • Aws::AssumeRoleWebIdentityCredentials - Used when you need to assume a role after providing credentials via the web.

    • Aws::SSOCredentials - Used for loading credentials from AWS SSO using an access token generated from aws login.

    • Aws::ProcessCredentials - Used for loading credentials from a process that outputs to stdout.

    • Aws::InstanceProfileCredentials - Used for loading credentials from an EC2 IMDS on an EC2 instance.

    • Aws::ECSCredentials - Used for loading credentials from instances running in ECS.

    • Aws::CognitoIdentityCredentials - Used for loading credentials from the Cognito Identity service.

    When :credentials are not configured directly, the following locations will be searched for credentials:

    • Aws.config[:credentials]

    • The :access_key_id, :secret_access_key, :session_token, and :account_id options.

    • ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY'], ENV['AWS_SESSION_TOKEN'], and ENV['AWS_ACCOUNT_ID'].

    • ~/.aws/credentials

    • ~/.aws/config

    • EC2/ECS IMDS instance profile - When used by default, the timeouts are very aggressive. Construct and pass an instance of Aws::InstanceProfileCredentials or Aws::ECSCredentials to enable retries and extended timeouts. Instance profile credential fetching can be disabled by setting ENV['AWS_EC2_METADATA_DISABLED'] to true.

  • :region (required, String)

    The AWS region to connect to. The configured :region is used to determine the service :endpoint. When not passed, a default :region is searched for in the following locations:

    • Aws.config[:region]
    • ENV['AWS_REGION']
    • ENV['AMAZON_REGION']
    • ENV['AWS_DEFAULT_REGION']
    • ~/.aws/credentials
    • ~/.aws/config
  • :access_key_id (String)
  • :account_id (String)
  • :active_endpoint_cache (Boolean) — default: false

    When set to true, a thread polling for endpoints will be running in the background every 60 secs (default). Defaults to false.

  • :adaptive_retry_wait_to_fill (Boolean) — default: true

    Used only in adaptive retry mode. When true, the request will sleep until there is sufficent client side capacity to retry the request. When false, the request will raise a RetryCapacityNotAvailableError and will not retry instead of sleeping.

  • :auth_scheme_preference (Array<String>)

    A list of preferred authentication schemes to use when making a request. Supported values are: sigv4, sigv4a, httpBearerAuth, and noAuth. When set using ENV['AWS_AUTH_SCHEME_PREFERENCE'] or in shared config as auth_scheme_preference, the value should be a comma-separated list.

  • :client_side_monitoring (Boolean) — default: false

    When true, client-side metrics will be collected for all API requests from this client.

  • :client_side_monitoring_client_id (String) — default: ""

    Allows you to provide an identifier for this client which will be attached to all generated client side metrics. Defaults to an empty string.

  • :client_side_monitoring_host (String) — default: "127.0.0.1"

    Allows you to specify the DNS hostname or IPv4 or IPv6 address that the client side monitoring agent is running on, where client metrics will be published via UDP.

  • :client_side_monitoring_port (Integer) — default: 31000

    Required for publishing client metrics. The port that the client side monitoring agent is running on, where client metrics will be published via UDP.

  • :client_side_monitoring_publisher (Aws::ClientSideMonitoring::Publisher) — default: Aws::ClientSideMonitoring::Publisher

    Allows you to provide a custom client-side monitoring publisher class. By default, will use the Client Side Monitoring Agent Publisher.

  • :convert_params (Boolean) — default: true

    When true, an attempt is made to coerce request parameters into the required types.

  • :correct_clock_skew (Boolean) — default: true

    Used only in standard and adaptive retry modes. Specifies whether to apply a clock skew correction and retry requests with skewed client clocks.

  • :defaults_mode (String) — default: "legacy"

    See DefaultsModeConfiguration for a list of the accepted modes and the configuration defaults that are included.

  • :disable_host_prefix_injection (Boolean) — default: false

    When true, the SDK will not prepend the modeled host prefix to the endpoint.

  • :disable_request_compression (Boolean) — default: false

    When set to 'true' the request body will not be compressed for supported operations.

  • :endpoint (String, URI::HTTPS, URI::HTTP)

    Normally you should not configure the :endpoint option directly. This is normally constructed from the :region option. Configuring :endpoint is normally reserved for connecting to test or custom endpoints. The endpoint should be a URI formatted like:

    'http://example.com'
    'https://example.com'
    'http://example.com:123'
    
  • :endpoint_cache_max_entries (Integer) — default: 1000

    Used for the maximum size limit of the LRU cache storing endpoints data for endpoint discovery enabled operations. Defaults to 1000.

  • :endpoint_cache_max_threads (Integer) — default: 10

    Used for the maximum threads in use for polling endpoints to be cached, defaults to 10.

  • :endpoint_cache_poll_interval (Integer) — default: 60

    When :endpoint_discovery and :active_endpoint_cache is enabled, Use this option to config the time interval in seconds for making requests fetching endpoints information. Defaults to 60 sec.

  • :endpoint_discovery (Boolean) — default: false

    When set to true, endpoint discovery will be enabled for operations when available.

  • :ignore_configured_endpoint_urls (Boolean)

    Setting to true disables use of endpoint URLs provided via environment variables and the shared configuration file.

  • :log_formatter (Aws::Log::Formatter) — default: Aws::Log::Formatter.default

    The log formatter.

  • :log_level (Symbol) — default: :info

    The log level to send messages to the :logger at.

  • :logger (Logger)

    The Logger instance to send log messages to. If this option is not set, logging will be disabled.

  • :max_attempts (Integer) — default: 3

    An integer representing the maximum number attempts that will be made for a single request, including the initial attempt. For example, setting this value to 5 will result in a request being retried up to 4 times. Used in standard and adaptive retry modes.

  • :profile (String) — default: "default"

    Used when loading credentials from the shared credentials file at HOME/.aws/credentials. When not specified, 'default' is used.

  • :request_checksum_calculation (String) — default: "when_supported"

    Determines when a checksum will be calculated for request payloads. Values are:

    • when_supported - (default) When set, a checksum will be calculated for all request payloads of operations modeled with the httpChecksum trait where requestChecksumRequired is true and/or a requestAlgorithmMember is modeled.
    • when_required - When set, a checksum will only be calculated for request payloads of operations modeled with the httpChecksum trait where requestChecksumRequired is true or where a requestAlgorithmMember is modeled and supplied.
  • :request_min_compression_size_bytes (Integer) — default: 10240

    The minimum size in bytes that triggers compression for request bodies. The value must be non-negative integer value between 0 and 10485780 bytes inclusive.

  • :response_checksum_validation (String) — default: "when_supported"

    Determines when checksum validation will be performed on response payloads. Values are:

    • when_supported - (default) When set, checksum validation is performed on all response payloads of operations modeled with the httpChecksum trait where responseAlgorithms is modeled, except when no modeled checksum algorithms are supported.
    • when_required - When set, checksum validation is not performed on response payloads of operations unless the checksum algorithm is supported and the requestValidationModeMember member is set to ENABLED.
  • :retry_backoff (Proc)

    A proc or lambda used for backoff. Defaults to 2**retries * retry_base_delay. This option is only used in the legacy retry mode.

  • :retry_base_delay (Float) — default: 0.3

    The base delay in seconds used by the default backoff function. This option is only used in the legacy retry mode.

  • :retry_jitter (Symbol) — default: :none

    A delay randomiser function used by the default backoff function. Some predefined functions can be referenced by name - :none, :equal, :full, otherwise a Proc that takes and returns a number. This option is only used in the legacy retry mode.

    @see https://www.awsarchitectureblog.com/2015/03/backoff.html

  • :retry_limit (Integer) — default: 3

    The maximum number of times to retry failed requests. Only ~ 500 level server errors and certain ~ 400 level client errors are retried. Generally, these are throttling errors, data checksum errors, networking errors, timeout errors, auth errors, endpoint discovery, and errors from expired credentials. This option is only used in the legacy retry mode.

  • :retry_max_delay (Integer) — default: 0

    The maximum number of seconds to delay between retries (0 for no limit) used by the default backoff function. This option is only used in the legacy retry mode.

  • :retry_mode (String) — default: "legacy"

    Specifies which retry algorithm to use. Values are:

    • legacy - The pre-existing retry behavior. This is default value if no retry mode is provided.

    • standard - A standardized set of retry rules across the AWS SDKs. This includes support for retry quotas, which limit the number of unsuccessful retries a client can make.

    • adaptive - An experimental retry mode that includes all the functionality of standard mode along with automatic client side throttling. This is a provisional mode that may change behavior in the future.

  • :sdk_ua_app_id (String)

    A unique and opaque application ID that is appended to the User-Agent header as app/sdk_ua_app_id. It should have a maximum length of 50. This variable is sourced from environment variable AWS_SDK_UA_APP_ID or the shared config profile attribute sdk_ua_app_id.

  • :secret_access_key (String)
  • :session_token (String)
  • :sigv4a_signing_region_set (Array)

    A list of regions that should be signed with SigV4a signing. When not passed, a default :sigv4a_signing_region_set is searched for in the following locations:

    • Aws.config[:sigv4a_signing_region_set]
    • ENV['AWS_SIGV4A_SIGNING_REGION_SET']
    • ~/.aws/config
  • :stub_responses (Boolean) — default: false

    Causes the client to return stubbed responses. By default fake responses are generated and returned. You can specify the response data to return or errors to raise by calling Aws::ClientStubs#stub_responses. See Aws::ClientStubs for more information.

    Please note When response stubbing is enabled, no HTTP requests are made, and retries are disabled.

  • :telemetry_provider (Aws::Telemetry::TelemetryProviderBase) — default: Aws::Telemetry::NoOpTelemetryProvider

    Allows you to provide a telemetry provider, which is used to emit telemetry data. By default, uses NoOpTelemetryProvider which will not record or emit any telemetry data. The SDK supports the following telemetry providers:

    • OpenTelemetry (OTel) - To use the OTel provider, install and require the opentelemetry-sdk gem and then, pass in an instance of a Aws::Telemetry::OTelProvider for telemetry provider.
  • :token_provider (Aws::TokenProvider)

    Your Bearer token used for authentication. This can be any class that includes and implements Aws::TokenProvider, or instance of any one of the following classes:

    • Aws::StaticTokenProvider - Used for configuring static, non-refreshing tokens.

    • Aws::SSOTokenProvider - Used for loading tokens from AWS SSO using an access token generated from aws login.

    When :token_provider is not configured directly, the Aws::TokenProviderChain will be used to search for tokens configured for your profile in shared configuration files.

  • :use_dualstack_endpoint (Boolean)

    When set to true, dualstack enabled endpoints (with .aws TLD) will be used if available.

  • :use_fips_endpoint (Boolean)

    When set to true, fips compatible endpoints will be used if available. When a fips region is used, the region is normalized and this config is set to true.

  • :validate_params (Boolean) — default: true

    When true, request parameters are validated before sending the request.

  • :endpoint_provider (Aws::CleanRoomsML::EndpointProvider)

    The endpoint provider used to resolve endpoints. Any object that responds to #resolve_endpoint(parameters) where parameters is a Struct similar to Aws::CleanRoomsML::EndpointParameters.

  • :http_continue_timeout (Float) — default: 1

    The number of seconds to wait for a 100-continue response before sending the request body. This option has no effect unless the request has "Expect" header set to "100-continue". Defaults to nil which disables this behaviour. This value can safely be set per request on the session.

  • :http_idle_timeout (Float) — default: 5

    The number of seconds a connection is allowed to sit idle before it is considered stale. Stale connections are closed and removed from the pool before making a request.

  • :http_open_timeout (Float) — default: 15

    The default number of seconds to wait for response data. This value can safely be set per-request on the session.

  • :http_proxy (URI::HTTP, String)

    A proxy to send requests through. Formatted like 'http://proxy.com:123'.

  • :http_read_timeout (Float) — default: 60

    The default number of seconds to wait for response data. This value can safely be set per-request on the session.

  • :http_wire_trace (Boolean) — default: false

    When true, HTTP debug output will be sent to the :logger.

  • :on_chunk_received (Proc)

    When a Proc object is provided, it will be used as callback when each chunk of the response body is received. It provides three arguments: the chunk, the number of bytes received, and the total number of bytes in the response (or nil if the server did not send a content-length).

  • :on_chunk_sent (Proc)

    When a Proc object is provided, it will be used as callback when each chunk of the request body is sent. It provides three arguments: the chunk, the number of bytes read from the body, and the total number of bytes in the body.

  • :raise_response_errors (Boolean) — default: true

    When true, response errors are raised.

  • :ssl_ca_bundle (String)

    Full path to the SSL certificate authority bundle file that should be used when verifying peer certificates. If you do not pass :ssl_ca_bundle or :ssl_ca_directory the the system default will be used if available.

  • :ssl_ca_directory (String)

    Full path of the directory that contains the unbundled SSL certificate authority files for verifying peer certificates. If you do not pass :ssl_ca_bundle or :ssl_ca_directory the the system default will be used if available.

  • :ssl_ca_store (String)

    Sets the X509::Store to verify peer certificate.

  • :ssl_cert (OpenSSL::X509::Certificate)

    Sets a client certificate when creating http connections.

  • :ssl_key (OpenSSL::PKey)

    Sets a client key when creating http connections.

  • :ssl_timeout (Float)

    Sets the SSL timeout in seconds

  • :ssl_verify_peer (Boolean) — default: true

    When true, SSL peer certificates are verified when establishing a connection.



473
474
475
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 473

def initialize(*args)
  super
end

Instance Method Details

#cancel_trained_model(params = {}) ⇒ Struct

Submits a request to cancel the trained model job.

Examples:

Request syntax with placeholder values


resp = client.cancel_trained_model({
  membership_identifier: "UUID", # required
  trained_model_arn: "TrainedModelArn", # required
  version_identifier: "UUID",
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :membership_identifier (required, String)

    The membership ID of the trained model job that you want to cancel.

  • :trained_model_arn (required, String)

    The Amazon Resource Name (ARN) of the trained model job that you want to cancel.

  • :version_identifier (String)

    The version identifier of the trained model to cancel. This parameter allows you to specify which version of the trained model you want to cancel when multiple versions exist.

    If versionIdentifier is not specified, the base model will be cancelled.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



510
511
512
513
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 510

def cancel_trained_model(params = {}, options = {})
  req = build_request(:cancel_trained_model, params)
  req.send_request(options)
end

#cancel_trained_model_inference_job(params = {}) ⇒ Struct

Submits a request to cancel a trained model inference job.

Examples:

Request syntax with placeholder values


resp = client.cancel_trained_model_inference_job({
  membership_identifier: "UUID", # required
  trained_model_inference_job_arn: "TrainedModelInferenceJobArn", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :membership_identifier (required, String)

    The membership ID of the trained model inference job that you want to cancel.

  • :trained_model_inference_job_arn (required, String)

    The Amazon Resource Name (ARN) of the trained model inference job that you want to cancel.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



538
539
540
541
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 538

def cancel_trained_model_inference_job(params = {}, options = {})
  req = build_request(:cancel_trained_model_inference_job, params)
  req.send_request(options)
end

#create_audience_model(params = {}) ⇒ Types::CreateAudienceModelResponse

Defines the information necessary to create an audience model. An audience model is a machine learning model that Clean Rooms ML trains to measure similarity between users. Clean Rooms ML manages training and storing the audience model. The audience model can be used in multiple calls to the StartAudienceGenerationJob API.

Examples:

Request syntax with placeholder values


resp = client.create_audience_model({
  training_data_start_time: Time.now,
  training_data_end_time: Time.now,
  name: "NameString", # required
  training_dataset_arn: "TrainingDatasetArn", # required
  kms_key_arn: "KmsKeyArn",
  tags: {
    "TagKey" => "TagValue",
  },
  description: "ResourceDescription",
})

Response structure


resp.audience_model_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :training_data_start_time (Time, DateTime, Date, Integer, String)

    The start date and time of the training window.

  • :training_data_end_time (Time, DateTime, Date, Integer, String)

    The end date and time of the training window.

  • :name (required, String)

    The name of the audience model resource.

  • :training_dataset_arn (required, String)

    The Amazon Resource Name (ARN) of the training dataset for this audience model.

  • :kms_key_arn (String)

    The Amazon Resource Name (ARN) of the KMS key. This key is used to encrypt and decrypt customer-owned data in the trained ML model and the associated data.

  • :tags (Hash<String,String>)

    The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

    The following basic restrictions apply to tags:

    • Maximum number of tags per resource - 50.

    • For each resource, each tag key must be unique, and each tag key can have only one value.

    • Maximum key length - 128 Unicode characters in UTF-8.

    • Maximum value length - 256 Unicode characters in UTF-8.

    • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.

    • Tag keys and values are case sensitive.

    • Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

  • :description (String)

    The description of the audience model.

Returns:

See Also:



628
629
630
631
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 628

def create_audience_model(params = {}, options = {})
  req = build_request(:create_audience_model, params)
  req.send_request(options)
end

#create_configured_audience_model(params = {}) ⇒ Types::CreateConfiguredAudienceModelResponse

Defines the information necessary to create a configured audience model.

Examples:

Request syntax with placeholder values


resp = client.create_configured_audience_model({
  name: "NameString", # required
  audience_model_arn: "AudienceModelArn", # required
  output_config: { # required
    destination: { # required
      s3_destination: { # required
        s3_uri: "S3Path", # required
      },
    },
    role_arn: "IamRoleArn", # required
  },
  description: "ResourceDescription",
  shared_audience_metrics: ["ALL"], # required, accepts ALL, NONE
  min_matching_seed_size: 1,
  audience_size_config: {
    audience_size_type: "ABSOLUTE", # required, accepts ABSOLUTE, PERCENTAGE
    audience_size_bins: [1], # required
  },
  tags: {
    "TagKey" => "TagValue",
  },
  child_resource_tag_on_create_policy: "FROM_PARENT_RESOURCE", # accepts FROM_PARENT_RESOURCE, NONE
})

Response structure


resp.configured_audience_model_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    The name of the configured audience model.

  • :audience_model_arn (required, String)

    The Amazon Resource Name (ARN) of the audience model to use for the configured audience model.

  • :output_config (required, Types::ConfiguredAudienceModelOutputConfig)

    Configure the Amazon S3 location and IAM Role for audiences created using this configured audience model. Each audience will have a unique location. The IAM Role must have s3:PutObject permission on the destination Amazon S3 location. If the destination is protected with Amazon S3 KMS-SSE, then the Role must also have the required KMS permissions.

  • :description (String)

    The description of the configured audience model.

  • :shared_audience_metrics (required, Array<String>)

    Whether audience metrics are shared.

  • :min_matching_seed_size (Integer)

    The minimum number of users from the seed audience that must match with users in the training data of the audience model. The default value is 500.

  • :audience_size_config (Types::AudienceSizeConfig)

    Configure the list of output sizes of audiences that can be created using this configured audience model. A request to StartAudienceGenerationJob that uses this configured audience model must have an audienceSize selected from this list. You can use the ABSOLUTE AudienceSize to configure out audience sizes using the count of identifiers in the output. You can use the Percentage AudienceSize to configure sizes in the range 1-100 percent.

  • :tags (Hash<String,String>)

    The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

    The following basic restrictions apply to tags:

    • Maximum number of tags per resource - 50.

    • For each resource, each tag key must be unique, and each tag key can have only one value.

    • Maximum key length - 128 Unicode characters in UTF-8.

    • Maximum value length - 256 Unicode characters in UTF-8.

    • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.

    • Tag keys and values are case sensitive.

    • Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

  • :child_resource_tag_on_create_policy (String)

    Configure how the service tags audience generation jobs created using this configured audience model. If you specify NONE, the tags from the StartAudienceGenerationJob request determine the tags of the audience generation job. If you specify FROM_PARENT_RESOURCE, the audience generation job inherits the tags from the configured audience model, by default. Tags in the StartAudienceGenerationJob will override the default.

    When the client is in a different account than the configured audience model, the tags from the client are never applied to a resource in the caller's account.

Returns:

See Also:



754
755
756
757
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 754

def create_configured_audience_model(params = {}, options = {})
  req = build_request(:create_configured_audience_model, params)
  req.send_request(options)
end

#create_configured_model_algorithm(params = {}) ⇒ Types::CreateConfiguredModelAlgorithmResponse

Creates a configured model algorithm using a container image stored in an ECR repository.

Examples:

Request syntax with placeholder values


resp = client.create_configured_model_algorithm({
  name: "NameString", # required
  description: "ResourceDescription",
  role_arn: "IamRoleArn", # required
  training_container_config: {
    image_uri: "AlgorithmImage", # required
    entrypoint: ["ContainerEntrypointString"],
    arguments: ["ContainerArgument"],
    metric_definitions: [
      {
        name: "MetricName", # required
        regex: "MetricRegex", # required
      },
    ],
  },
  inference_container_config: {
    image_uri: "AlgorithmImage", # required
  },
  tags: {
    "TagKey" => "TagValue",
  },
  kms_key_arn: "KmsKeyArn",
})

Response structure


resp.configured_model_algorithm_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    The name of the configured model algorithm.

  • :description (String)

    The description of the configured model algorithm.

  • :role_arn (required, String)

    The Amazon Resource Name (ARN) of the role that is used to access the repository.

  • :training_container_config (Types::ContainerConfig)

    Configuration information for the training container, including entrypoints and arguments.

  • :inference_container_config (Types::InferenceContainerConfig)

    Configuration information for the inference container that is used when you run an inference job on a configured model algorithm.

  • :tags (Hash<String,String>)

    The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

    The following basic restrictions apply to tags:

    • Maximum number of tags per resource - 50.

    • For each resource, each tag key must be unique, and each tag key can have only one value.

    • Maximum key length - 128 Unicode characters in UTF-8.

    • Maximum value length - 256 Unicode characters in UTF-8.

    • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.

    • Tag keys and values are case sensitive.

    • Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

  • :kms_key_arn (String)

    The Amazon Resource Name (ARN) of the KMS key. This key is used to encrypt and decrypt customer-owned data in the configured ML model algorithm and associated data.

Returns:

See Also:



855
856
857
858
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 855

def create_configured_model_algorithm(params = {}, options = {})
  req = build_request(:create_configured_model_algorithm, params)
  req.send_request(options)
end

#create_configured_model_algorithm_association(params = {}) ⇒ Types::CreateConfiguredModelAlgorithmAssociationResponse

Associates a configured model algorithm to a collaboration for use by any member of the collaboration.

Examples:

Request syntax with placeholder values


resp = client.create_configured_model_algorithm_association({
  membership_identifier: "UUID", # required
  configured_model_algorithm_arn: "ConfiguredModelAlgorithmArn", # required
  name: "NameString", # required
  description: "ResourceDescription",
  privacy_configuration: {
    policies: { # required
      trained_models: {
        container_logs: [
          {
            allowed_account_ids: ["String"], # required
            filter_pattern: "LogsConfigurationPolicyFilterPatternString",
            log_type: "ALL", # accepts ALL, ERROR_SUMMARY
            log_redaction_configuration: {
              entities_to_redact: ["ALL_PERSONALLY_IDENTIFIABLE_INFORMATION"], # required, accepts ALL_PERSONALLY_IDENTIFIABLE_INFORMATION, NUMBERS, CUSTOM
              custom_entity_config: {
                custom_data_identifiers: ["CustomDataIdentifier"], # required
              },
            },
          },
        ],
        container_metrics: {
          noise_level: "HIGH", # required, accepts HIGH, MEDIUM, LOW, NONE
        },
        max_artifact_size: {
          unit: "GB", # required, accepts GB
          value: 1.0, # required
        },
      },
      trained_model_exports: {
        max_size: { # required
          unit: "GB", # required, accepts GB
          value: 1.0, # required
        },
        files_to_export: ["MODEL"], # required, accepts MODEL, OUTPUT
      },
      trained_model_inference_jobs: {
        container_logs: [
          {
            allowed_account_ids: ["String"], # required
            filter_pattern: "LogsConfigurationPolicyFilterPatternString",
            log_type: "ALL", # accepts ALL, ERROR_SUMMARY
            log_redaction_configuration: {
              entities_to_redact: ["ALL_PERSONALLY_IDENTIFIABLE_INFORMATION"], # required, accepts ALL_PERSONALLY_IDENTIFIABLE_INFORMATION, NUMBERS, CUSTOM
              custom_entity_config: {
                custom_data_identifiers: ["CustomDataIdentifier"], # required
              },
            },
          },
        ],
        max_output_size: {
          unit: "GB", # required, accepts GB
          value: 1.0, # required
        },
      },
    },
  },
  tags: {
    "TagKey" => "TagValue",
  },
})

Response structure


resp.configured_model_algorithm_association_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :membership_identifier (required, String)

    The membership ID of the member who is associating this configured model algorithm.

  • :configured_model_algorithm_arn (required, String)

    The Amazon Resource Name (ARN) of the configured model algorithm that you want to associate.

  • :name (required, String)

    The name of the configured model algorithm association.

  • :description (String)

    The description of the configured model algorithm association.

  • :privacy_configuration (Types::PrivacyConfiguration)

    Specifies the privacy configuration information for the configured model algorithm association. This information includes the maximum data size that can be exported.

  • :tags (Hash<String,String>)

    The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

    The following basic restrictions apply to tags:

    • Maximum number of tags per resource - 50.

    • For each resource, each tag key must be unique, and each tag key can have only one value.

    • Maximum key length - 128 Unicode characters in UTF-8.

    • Maximum value length - 256 Unicode characters in UTF-8.

    • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.

    • Tag keys and values are case sensitive.

    • Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

Returns:

See Also:



990
991
992
993
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 990

def create_configured_model_algorithm_association(params = {}, options = {})
  req = build_request(:create_configured_model_algorithm_association, params)
  req.send_request(options)
end

#create_ml_input_channel(params = {}) ⇒ Types::CreateMLInputChannelResponse

Provides the information to create an ML input channel. An ML input channel is the result of a query that can be used for ML modeling.

Examples:

Request syntax with placeholder values


resp = client.create_ml_input_channel({
  membership_identifier: "UUID", # required
  configured_model_algorithm_associations: ["ConfiguredModelAlgorithmAssociationArn"], # required
  input_channel: { # required
    data_source: { # required
      protected_query_input_parameters: {
        sql_parameters: { # required
          query_string: "ProtectedQuerySQLParametersQueryStringString",
          analysis_template_arn: "AnalysisTemplateArn",
          parameters: {
            "ParameterName" => "ParameterValue",
          },
        },
        compute_configuration: {
          worker: {
            type: "CR.1X", # accepts CR.1X, CR.4X
            number: 1,
            properties: {
              spark: {
                "SparkPropertyKey" => "SparkPropertyValue",
              },
            },
          },
        },
        result_format: "CSV", # accepts CSV, PARQUET
      },
    },
    role_arn: "IamRoleArn", # required
  },
  name: "NameString", # required
  retention_in_days: 1, # required
  description: "ResourceDescription",
  kms_key_arn: "KmsKeyArn",
  tags: {
    "TagKey" => "TagValue",
  },
})

Response structure


resp.ml_input_channel_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :membership_identifier (required, String)

    The membership ID of the member that is creating the ML input channel.

  • :configured_model_algorithm_associations (required, Array<String>)

    The associated configured model algorithms that are necessary to create this ML input channel.

  • :input_channel (required, Types::InputChannel)

    The input data that is used to create this ML input channel.

  • :name (required, String)

    The name of the ML input channel.

  • :retention_in_days (required, Integer)

    The number of days that the data in the ML input channel is retained.

  • :description (String)

    The description of the ML input channel.

  • :kms_key_arn (String)

    The Amazon Resource Name (ARN) of the KMS key that is used to access the input channel.

  • :tags (Hash<String,String>)

    The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

    The following basic restrictions apply to tags:

    • Maximum number of tags per resource - 50.

    • For each resource, each tag key must be unique, and each tag key can have only one value.

    • Maximum key length - 128 Unicode characters in UTF-8.

    • Maximum value length - 256 Unicode characters in UTF-8.

    • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.

    • Tag keys and values are case sensitive.

    • Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

Returns:

See Also:



1105
1106
1107
1108
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1105

def create_ml_input_channel(params = {}, options = {})
  req = build_request(:create_ml_input_channel, params)
  req.send_request(options)
end

#create_trained_model(params = {}) ⇒ Types::CreateTrainedModelResponse

Creates a trained model from an associated configured model algorithm using data from any member of the collaboration.

Examples:

Request syntax with placeholder values


resp = client.create_trained_model({
  membership_identifier: "UUID", # required
  name: "NameString", # required
  configured_model_algorithm_association_arn: "ConfiguredModelAlgorithmAssociationArn", # required
  hyperparameters: {
    "HyperParametersKeyString" => "HyperParametersValueString",
  },
  environment: {
    "EnvironmentKeyString" => "EnvironmentValueString",
  },
  resource_config: { # required
    instance_count: 1,
    instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p4d.24xlarge, ml.p4de.24xlarge, ml.p5.48xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5n.xlarge, ml.c5n.2xlarge, ml.c5n.4xlarge, ml.c5n.9xlarge, ml.c5n.18xlarge, ml.g5.xlarge, ml.g5.2xlarge, ml.g5.4xlarge, ml.g5.8xlarge, ml.g5.16xlarge, ml.g5.12xlarge, ml.g5.24xlarge, ml.g5.48xlarge, ml.trn1.2xlarge, ml.trn1.32xlarge, ml.trn1n.32xlarge, ml.m6i.large, ml.m6i.xlarge, ml.m6i.2xlarge, ml.m6i.4xlarge, ml.m6i.8xlarge, ml.m6i.12xlarge, ml.m6i.16xlarge, ml.m6i.24xlarge, ml.m6i.32xlarge, ml.c6i.xlarge, ml.c6i.2xlarge, ml.c6i.8xlarge, ml.c6i.4xlarge, ml.c6i.12xlarge, ml.c6i.16xlarge, ml.c6i.24xlarge, ml.c6i.32xlarge, ml.r5d.large, ml.r5d.xlarge, ml.r5d.2xlarge, ml.r5d.4xlarge, ml.r5d.8xlarge, ml.r5d.12xlarge, ml.r5d.16xlarge, ml.r5d.24xlarge, ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge, ml.c7i.large, ml.c7i.xlarge, ml.c7i.2xlarge, ml.c7i.4xlarge, ml.c7i.8xlarge, ml.c7i.12xlarge, ml.c7i.16xlarge, ml.c7i.24xlarge, ml.c7i.48xlarge, ml.m7i.large, ml.m7i.xlarge, ml.m7i.2xlarge, ml.m7i.4xlarge, ml.m7i.8xlarge, ml.m7i.12xlarge, ml.m7i.16xlarge, ml.m7i.24xlarge, ml.m7i.48xlarge, ml.r7i.large, ml.r7i.xlarge, ml.r7i.2xlarge, ml.r7i.4xlarge, ml.r7i.8xlarge, ml.r7i.12xlarge, ml.r7i.16xlarge, ml.r7i.24xlarge, ml.r7i.48xlarge, ml.g6.xlarge, ml.g6.2xlarge, ml.g6.4xlarge, ml.g6.8xlarge, ml.g6.12xlarge, ml.g6.16xlarge, ml.g6.24xlarge, ml.g6.48xlarge, ml.g6e.xlarge, ml.g6e.2xlarge, ml.g6e.4xlarge, ml.g6e.8xlarge, ml.g6e.12xlarge, ml.g6e.16xlarge, ml.g6e.24xlarge, ml.g6e.48xlarge, ml.p5en.48xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge
    volume_size_in_gb: 1, # required
  },
  stopping_condition: {
    max_runtime_in_seconds: 1,
  },
  incremental_training_data_channels: [
    {
      trained_model_arn: "TrainedModelArn", # required
      version_identifier: "UUID",
      channel_name: "ModelTrainingDataChannelName", # required
    },
  ],
  data_channels: [ # required
    {
      ml_input_channel_arn: "MLInputChannelArn", # required
      channel_name: "ModelTrainingDataChannelName", # required
      s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
    },
  ],
  training_input_mode: "File", # accepts File, FastFile, Pipe
  description: "ResourceDescription",
  kms_key_arn: "KmsKeyArn",
  tags: {
    "TagKey" => "TagValue",
  },
})

Response structure


resp.trained_model_arn #=> String
resp.version_identifier #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :membership_identifier (required, String)

    The membership ID of the member that is creating the trained model.

  • :name (required, String)

    The name of the trained model.

  • :configured_model_algorithm_association_arn (required, String)

    The associated configured model algorithm used to train this model.

  • :hyperparameters (Hash<String,String>)

    Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process.

  • :environment (Hash<String,String>)

    The environment variables to set in the Docker container.

  • :resource_config (required, Types::ResourceConfig)

    Information about the EC2 resources that are used to train this model.

  • :stopping_condition (Types::StoppingCondition)

    The criteria that is used to stop model training.

  • :incremental_training_data_channels (Array<Types::IncrementalTrainingDataChannel>)

    Specifies the incremental training data channels for the trained model.

    Incremental training allows you to create a new trained model with updates without retraining from scratch. You can specify up to one incremental training data channel that references a previously trained model and its version.

    Limit: Maximum of 20 channels total (including both incrementalTrainingDataChannels and dataChannels).

  • :data_channels (required, Array<Types::ModelTrainingDataChannel>)

    Defines the data channels that are used as input for the trained model request.

    Limit: Maximum of 20 channels total (including both dataChannels and incrementalTrainingDataChannels).

  • :training_input_mode (String)

    The input mode for accessing the training data. This parameter determines how the training data is made available to the training algorithm. Valid values are:

    • File - The training data is downloaded to the training instance and made available as files.

    • FastFile - The training data is streamed directly from Amazon S3 to the training algorithm, providing faster access for large datasets.

    • Pipe - The training data is streamed to the training algorithm using named pipes, which can improve performance for certain algorithms.

  • :description (String)

    The description of the trained model.

  • :kms_key_arn (String)

    The Amazon Resource Name (ARN) of the KMS key. This key is used to encrypt and decrypt customer-owned data in the trained ML model and the associated data.

  • :tags (Hash<String,String>)

    The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

    The following basic restrictions apply to tags:

    • Maximum number of tags per resource - 50.

    • For each resource, each tag key must be unique, and each tag key can have only one value.

    • Maximum key length - 128 Unicode characters in UTF-8.

    • Maximum value length - 256 Unicode characters in UTF-8.

    • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.

    • Tag keys and values are case sensitive.

    • Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

Returns:

See Also:



1266
1267
1268
1269
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1266

def create_trained_model(params = {}, options = {})
  req = build_request(:create_trained_model, params)
  req.send_request(options)
end

#create_training_dataset(params = {}) ⇒ Types::CreateTrainingDatasetResponse

Defines the information necessary to create a training dataset. In Clean Rooms ML, the TrainingDataset is metadata that points to a Glue table, which is read only during AudienceModel creation.

Examples:

Request syntax with placeholder values


resp = client.create_training_dataset({
  name: "NameString", # required
  role_arn: "IamRoleArn", # required
  training_data: [ # required
    {
      type: "INTERACTIONS", # required, accepts INTERACTIONS
      input_config: { # required
        schema: [ # required
          {
            column_name: "ColumnName", # required
            column_types: ["USER_ID"], # required, accepts USER_ID, ITEM_ID, TIMESTAMP, CATEGORICAL_FEATURE, NUMERICAL_FEATURE
          },
        ],
        data_source: { # required
          glue_data_source: { # required
            table_name: "GlueTableName", # required
            database_name: "GlueDatabaseName", # required
            catalog_id: "AccountId",
          },
        },
      },
    },
  ],
  tags: {
    "TagKey" => "TagValue",
  },
  description: "ResourceDescription",
})

Response structure


resp.training_dataset_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    The name of the training dataset. This name must be unique in your account and region.

  • :role_arn (required, String)

    The ARN of the IAM role that Clean Rooms ML can assume to read the data referred to in the dataSource field of each dataset.

    Passing a role across AWS accounts is not allowed. If you pass a role that isn't in your account, you get an AccessDeniedException error.

  • :training_data (required, Array<Types::Dataset>)

    An array of information that lists the Dataset objects, which specifies the dataset type and details on its location and schema. You must provide a role that has read access to these tables.

  • :tags (Hash<String,String>)

    The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

    The following basic restrictions apply to tags:

    • Maximum number of tags per resource - 50.

    • For each resource, each tag key must be unique, and each tag key can have only one value.

    • Maximum key length - 128 Unicode characters in UTF-8.

    • Maximum value length - 256 Unicode characters in UTF-8.

    • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.

    • Tag keys and values are case sensitive.

    • Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

  • :description (String)

    The description of the training dataset.

Returns:

See Also:



1369
1370
1371
1372
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1369

def create_training_dataset(params = {}, options = {})
  req = build_request(:create_training_dataset, params)
  req.send_request(options)
end

#delete_audience_generation_job(params = {}) ⇒ Struct

Deletes the specified audience generation job, and removes all data associated with the job.

Examples:

Request syntax with placeholder values


resp = client.delete_audience_generation_job({
  audience_generation_job_arn: "AudienceGenerationJobArn", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :audience_generation_job_arn (required, String)

    The Amazon Resource Name (ARN) of the audience generation job that you want to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



1393
1394
1395
1396
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1393

def delete_audience_generation_job(params = {}, options = {})
  req = build_request(:delete_audience_generation_job, params)
  req.send_request(options)
end

#delete_audience_model(params = {}) ⇒ Struct

Specifies an audience model that you want to delete. You can't delete an audience model if there are any configured audience models that depend on the audience model.

Examples:

Request syntax with placeholder values


resp = client.delete_audience_model({
  audience_model_arn: "AudienceModelArn", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :audience_model_arn (required, String)

    The Amazon Resource Name (ARN) of the audience model that you want to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



1418
1419
1420
1421
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1418

def delete_audience_model(params = {}, options = {})
  req = build_request(:delete_audience_model, params)
  req.send_request(options)
end

#delete_configured_audience_model(params = {}) ⇒ Struct

Deletes the specified configured audience model. You can't delete a configured audience model if there are any lookalike models that use the configured audience model. If you delete a configured audience model, it will be removed from any collaborations that it is associated to.

Examples:

Request syntax with placeholder values


resp = client.delete_configured_audience_model({
  configured_audience_model_arn: "ConfiguredAudienceModelArn", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :configured_audience_model_arn (required, String)

    The Amazon Resource Name (ARN) of the configured audience model that you want to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



1445
1446
1447
1448
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1445

def delete_configured_audience_model(params = {}, options = {})
  req = build_request(:delete_configured_audience_model, params)
  req.send_request(options)
end

#delete_configured_audience_model_policy(params = {}) ⇒ Struct

Deletes the specified configured audience model policy.

Examples:

Request syntax with placeholder values


resp = client.delete_configured_audience_model_policy({
  configured_audience_model_arn: "ConfiguredAudienceModelArn", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :configured_audience_model_arn (required, String)

    The Amazon Resource Name (ARN) of the configured audience model policy that you want to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



1468
1469
1470
1471
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1468

def delete_configured_audience_model_policy(params = {}, options = {})
  req = build_request(:delete_configured_audience_model_policy, params)
  req.send_request(options)
end

#delete_configured_model_algorithm(params = {}) ⇒ Struct

Deletes a configured model algorithm.

Examples:

Request syntax with placeholder values


resp = client.delete_configured_model_algorithm({
  configured_model_algorithm_arn: "ConfiguredModelAlgorithmArn", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :configured_model_algorithm_arn (required, String)

    The Amazon Resource Name (ARN) of the configured model algorithm that you want to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



1491
1492
1493
1494
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1491

def delete_configured_model_algorithm(params = {}, options = {})
  req = build_request(:delete_configured_model_algorithm, params)
  req.send_request(options)
end

#delete_configured_model_algorithm_association(params = {}) ⇒ Struct

Deletes a configured model algorithm association.

Examples:

Request syntax with placeholder values


resp = client.delete_configured_model_algorithm_association({
  configured_model_algorithm_association_arn: "ConfiguredModelAlgorithmAssociationArn", # required
  membership_identifier: "UUID", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :configured_model_algorithm_association_arn (required, String)

    The Amazon Resource Name (ARN) of the configured model algorithm association that you want to delete.

  • :membership_identifier (required, String)

    The membership ID of the member that is deleting the configured model algorithm association.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



1519
1520
1521
1522
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1519

def delete_configured_model_algorithm_association(params = {}, options = {})
  req = build_request(:delete_configured_model_algorithm_association, params)
  req.send_request(options)
end

#delete_ml_configuration(params = {}) ⇒ Struct

Deletes a ML modeling configuration.

Examples:

Request syntax with placeholder values


resp = client.delete_ml_configuration({
  membership_identifier: "UUID", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :membership_identifier (required, String)

    The membership ID of the of the member that is deleting the ML modeling configuration.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



1542
1543
1544
1545
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1542

def delete_ml_configuration(params = {}, options = {})
  req = build_request(:delete_ml_configuration, params)
  req.send_request(options)
end

#delete_ml_input_channel_data(params = {}) ⇒ Struct

Provides the information necessary to delete an ML input channel.

Examples:

Request syntax with placeholder values


resp = client.delete_ml_input_channel_data({
  ml_input_channel_arn: "MLInputChannelArn", # required
  membership_identifier: "UUID", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :ml_input_channel_arn (required, String)

    The Amazon Resource Name (ARN) of the ML input channel that you want to delete.

  • :membership_identifier (required, String)

    The membership ID of the membership that contains the ML input channel you want to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



1570
1571
1572
1573
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1570

def delete_ml_input_channel_data(params = {}, options = {})
  req = build_request(:delete_ml_input_channel_data, params)
  req.send_request(options)
end

#delete_trained_model_output(params = {}) ⇒ Struct

Deletes the model artifacts stored by the service.

Examples:

Request syntax with placeholder values


resp = client.delete_trained_model_output({
  trained_model_arn: "TrainedModelArn", # required
  membership_identifier: "UUID", # required
  version_identifier: "UUID",
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :trained_model_arn (required, String)

    The Amazon Resource Name (ARN) of the trained model whose output you want to delete.

  • :membership_identifier (required, String)

    The membership ID of the member that is deleting the trained model output.

  • :version_identifier (String)

    The version identifier of the trained model to delete. If not specified, the operation will delete the base version of the trained model. When specified, only the particular version will be deleted.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



1604
1605
1606
1607
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1604

def delete_trained_model_output(params = {}, options = {})
  req = build_request(:delete_trained_model_output, params)
  req.send_request(options)
end

#delete_training_dataset(params = {}) ⇒ Struct

Specifies a training dataset that you want to delete. You can't delete a training dataset if there are any audience models that depend on the training dataset. In Clean Rooms ML, the TrainingDataset is metadata that points to a Glue table, which is read only during AudienceModel creation. This action deletes the metadata.

Examples:

Request syntax with placeholder values


resp = client.delete_training_dataset({
  training_dataset_arn: "TrainingDatasetArn", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :training_dataset_arn (required, String)

    The Amazon Resource Name (ARN) of the training dataset that you want to delete.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



1631
1632
1633
1634
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1631

def delete_training_dataset(params = {}, options = {})
  req = build_request(:delete_training_dataset, params)
  req.send_request(options)
end

#get_audience_generation_job(params = {}) ⇒ Types::GetAudienceGenerationJobResponse

Returns information about an audience generation job.

Examples:

Request syntax with placeholder values


resp = client.get_audience_generation_job({
  audience_generation_job_arn: "AudienceGenerationJobArn", # required
})

Response structure


resp.create_time #=> Time
resp.update_time #=> Time
resp.audience_generation_job_arn #=> String
resp.name #=> String
resp.description #=> String
resp.status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "DELETE_PENDING", "DELETE_IN_PROGRESS", "DELETE_FAILED"
resp.status_details.status_code #=> String
resp.status_details.message #=> String
resp.configured_audience_model_arn #=> String
resp.seed_audience.data_source.s3_uri #=> String
resp.seed_audience.role_arn #=> String
resp.seed_audience.sql_parameters.query_string #=> String
resp.seed_audience.sql_parameters.analysis_template_arn #=> String
resp.seed_audience.sql_parameters.parameters #=> Hash
resp.seed_audience.sql_parameters.parameters["ParameterName"] #=> String
resp.seed_audience.sql_compute_configuration.worker.type #=> String, one of "CR.1X", "CR.4X"
resp.seed_audience.sql_compute_configuration.worker.number #=> Integer
resp.seed_audience.sql_compute_configuration.worker.properties.spark #=> Hash
resp.seed_audience.sql_compute_configuration.worker.properties.spark["SparkPropertyKey"] #=> String
resp.include_seed_in_output #=> Boolean
resp.collaboration_id #=> String
resp.metrics.relevance_metrics #=> Array
resp.metrics.relevance_metrics[0].audience_size.type #=> String, one of "ABSOLUTE", "PERCENTAGE"
resp.metrics.relevance_metrics[0].audience_size.value #=> Integer
resp.metrics.relevance_metrics[0].score #=> Float
resp.metrics.recall_metric #=> Float
resp.started_by #=> String
resp.tags #=> Hash
resp.tags["TagKey"] #=> String
resp.protected_query_identifier #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :audience_generation_job_arn (required, String)

    The Amazon Resource Name (ARN) of the audience generation job that you are interested in.

Returns:

See Also:



1703
1704
1705
1706
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1703

def get_audience_generation_job(params = {}, options = {})
  req = build_request(:get_audience_generation_job, params)
  req.send_request(options)
end

#get_audience_model(params = {}) ⇒ Types::GetAudienceModelResponse

Returns information about an audience model

Examples:

Request syntax with placeholder values


resp = client.get_audience_model({
  audience_model_arn: "AudienceModelArn", # required
})

Response structure


resp.create_time #=> Time
resp.update_time #=> Time
resp.training_data_start_time #=> Time
resp.training_data_end_time #=> Time
resp.audience_model_arn #=> String
resp.name #=> String
resp.training_dataset_arn #=> String
resp.status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "DELETE_PENDING", "DELETE_IN_PROGRESS", "DELETE_FAILED"
resp.status_details.status_code #=> String
resp.status_details.message #=> String
resp.kms_key_arn #=> String
resp.tags #=> Hash
resp.tags["TagKey"] #=> String
resp.description #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :audience_model_arn (required, String)

    The Amazon Resource Name (ARN) of the audience model that you are interested in.

Returns:

See Also:



1756
1757
1758
1759
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1756

def get_audience_model(params = {}, options = {})
  req = build_request(:get_audience_model, params)
  req.send_request(options)
end

#get_collaboration_configured_model_algorithm_association(params = {}) ⇒ Types::GetCollaborationConfiguredModelAlgorithmAssociationResponse

Returns information about the configured model algorithm association in a collaboration.

Examples:

Request syntax with placeholder values


resp = client.get_collaboration_configured_model_algorithm_association({
  configured_model_algorithm_association_arn: "ConfiguredModelAlgorithmAssociationArn", # required
  collaboration_identifier: "UUID", # required
})

Response structure


resp.create_time #=> Time
resp.update_time #=> Time
resp.configured_model_algorithm_association_arn #=> String
resp.membership_identifier #=> String
resp.collaboration_identifier #=> String
resp.configured_model_algorithm_arn #=> String
resp.name #=> String
resp.description #=> String
resp. #=> String
resp.privacy_configuration.policies.trained_models.container_logs #=> Array
resp.privacy_configuration.policies.trained_models.container_logs[0]. #=> Array
resp.privacy_configuration.policies.trained_models.container_logs[0].[0] #=> String
resp.privacy_configuration.policies.trained_models.container_logs[0].filter_pattern #=> String
resp.privacy_configuration.policies.trained_models.container_logs[0].log_type #=> String, one of "ALL", "ERROR_SUMMARY"
resp.privacy_configuration.policies.trained_models.container_logs[0].log_redaction_configuration.entities_to_redact #=> Array
resp.privacy_configuration.policies.trained_models.container_logs[0].log_redaction_configuration.entities_to_redact[0] #=> String, one of "ALL_PERSONALLY_IDENTIFIABLE_INFORMATION", "NUMBERS", "CUSTOM"
resp.privacy_configuration.policies.trained_models.container_logs[0].log_redaction_configuration.custom_entity_config.custom_data_identifiers #=> Array
resp.privacy_configuration.policies.trained_models.container_logs[0].log_redaction_configuration.custom_entity_config.custom_data_identifiers[0] #=> String
resp.privacy_configuration.policies.trained_models.container_metrics.noise_level #=> String, one of "HIGH", "MEDIUM", "LOW", "NONE"
resp.privacy_configuration.policies.trained_models.max_artifact_size.unit #=> String, one of "GB"
resp.privacy_configuration.policies.trained_models.max_artifact_size.value #=> Float
resp.privacy_configuration.policies.trained_model_exports.max_size.unit #=> String, one of "GB"
resp.privacy_configuration.policies.trained_model_exports.max_size.value #=> Float
resp.privacy_configuration.policies.trained_model_exports.files_to_export #=> Array
resp.privacy_configuration.policies.trained_model_exports.files_to_export[0] #=> String, one of "MODEL", "OUTPUT"
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs #=> Array
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0]. #=> Array
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0].[0] #=> String
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0].filter_pattern #=> String
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0].log_type #=> String, one of "ALL", "ERROR_SUMMARY"
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0].log_redaction_configuration.entities_to_redact #=> Array
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0].log_redaction_configuration.entities_to_redact[0] #=> String, one of "ALL_PERSONALLY_IDENTIFIABLE_INFORMATION", "NUMBERS", "CUSTOM"
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0].log_redaction_configuration.custom_entity_config.custom_data_identifiers #=> Array
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0].log_redaction_configuration.custom_entity_config.custom_data_identifiers[0] #=> String
resp.privacy_configuration.policies.trained_model_inference_jobs.max_output_size.unit #=> String, one of "GB"
resp.privacy_configuration.policies.trained_model_inference_jobs.max_output_size.value #=> Float

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :configured_model_algorithm_association_arn (required, String)

    The Amazon Resource Name (ARN) of the configured model algorithm association that you want to return information about.

  • :collaboration_identifier (required, String)

    The collaboration ID for the collaboration that contains the configured model algorithm association that you want to return information about.

Returns:

See Also:



1836
1837
1838
1839
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1836

def get_collaboration_configured_model_algorithm_association(params = {}, options = {})
  req = build_request(:get_collaboration_configured_model_algorithm_association, params)
  req.send_request(options)
end

#get_collaboration_ml_input_channel(params = {}) ⇒ Types::GetCollaborationMLInputChannelResponse

Returns information about a specific ML input channel in a collaboration.

Examples:

Request syntax with placeholder values


resp = client.get_collaboration_ml_input_channel({
  ml_input_channel_arn: "MLInputChannelArn", # required
  collaboration_identifier: "UUID", # required
})

Response structure


resp.membership_identifier #=> String
resp.collaboration_identifier #=> String
resp.ml_input_channel_arn #=> String
resp.name #=> String
resp.configured_model_algorithm_associations #=> Array
resp.configured_model_algorithm_associations[0] #=> String
resp.status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "DELETE_PENDING", "DELETE_IN_PROGRESS", "DELETE_FAILED", "INACTIVE"
resp.status_details.status_code #=> String
resp.status_details.message #=> String
resp.retention_in_days #=> Integer
resp.number_of_records #=> Integer
resp.privacy_budgets.access_budgets #=> Array
resp.privacy_budgets.access_budgets[0].resource_arn #=> String
resp.privacy_budgets.access_budgets[0].details #=> Array
resp.privacy_budgets.access_budgets[0].details[0].start_time #=> Time
resp.privacy_budgets.access_budgets[0].details[0].end_time #=> Time
resp.privacy_budgets.access_budgets[0].details[0].remaining_budget #=> Integer
resp.privacy_budgets.access_budgets[0].details[0].budget #=> Integer
resp.privacy_budgets.access_budgets[0].details[0].budget_type #=> String, one of "CALENDAR_DAY", "CALENDAR_MONTH", "CALENDAR_WEEK", "LIFETIME"
resp.privacy_budgets.access_budgets[0].details[0].auto_refresh #=> String, one of "ENABLED", "DISABLED"
resp.privacy_budgets.access_budgets[0].aggregate_remaining_budget #=> Integer
resp.description #=> String
resp.synthetic_data_configuration.synthetic_data_parameters.epsilon #=> Float
resp.synthetic_data_configuration.synthetic_data_parameters.max_membership_inference_attack_score #=> Float
resp.synthetic_data_configuration.synthetic_data_parameters.column_classification.column_mapping #=> Array
resp.synthetic_data_configuration.synthetic_data_parameters.column_classification.column_mapping[0].column_name #=> String
resp.synthetic_data_configuration.synthetic_data_parameters.column_classification.column_mapping[0].column_type #=> String, one of "CATEGORICAL", "NUMERICAL"
resp.synthetic_data_configuration.synthetic_data_parameters.column_classification.column_mapping[0].is_predictive_value #=> Boolean
resp.synthetic_data_configuration.synthetic_data_evaluation_scores.data_privacy_scores.membership_inference_attack_scores #=> Array
resp.synthetic_data_configuration.synthetic_data_evaluation_scores.data_privacy_scores.membership_inference_attack_scores[0].attack_version #=> String, one of "DISTANCE_TO_CLOSEST_RECORD_V1"
resp.synthetic_data_configuration.synthetic_data_evaluation_scores.data_privacy_scores.membership_inference_attack_scores[0].score #=> Float
resp.create_time #=> Time
resp.update_time #=> Time
resp. #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :ml_input_channel_arn (required, String)

    The Amazon Resource Name (ARN) of the ML input channel that you want to get.

  • :collaboration_identifier (required, String)

    The collaboration ID of the collaboration that contains the ML input channel that you want to get.

Returns:

See Also:



1918
1919
1920
1921
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 1918

def get_collaboration_ml_input_channel(params = {}, options = {})
  req = build_request(:get_collaboration_ml_input_channel, params)
  req.send_request(options)
end

#get_collaboration_trained_model(params = {}) ⇒ Types::GetCollaborationTrainedModelResponse

Returns information about a trained model in a collaboration.

Examples:

Request syntax with placeholder values


resp = client.get_collaboration_trained_model({
  trained_model_arn: "TrainedModelArn", # required
  collaboration_identifier: "UUID", # required
  version_identifier: "UUID",
})

Response structure


resp.membership_identifier #=> String
resp.collaboration_identifier #=> String
resp.trained_model_arn #=> String
resp.version_identifier #=> String
resp.incremental_training_data_channels #=> Array
resp.incremental_training_data_channels[0].channel_name #=> String
resp.incremental_training_data_channels[0].version_identifier #=> String
resp.incremental_training_data_channels[0].model_name #=> String
resp.name #=> String
resp.description #=> String
resp.status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "DELETE_PENDING", "DELETE_IN_PROGRESS", "DELETE_FAILED", "INACTIVE", "CANCEL_PENDING", "CANCEL_IN_PROGRESS", "CANCEL_FAILED"
resp.status_details.status_code #=> String
resp.status_details.message #=> String
resp.configured_model_algorithm_association_arn #=> String
resp.resource_config.instance_count #=> Integer
resp.resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p4d.24xlarge", "ml.p4de.24xlarge", "ml.p5.48xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge", "ml.trn1.2xlarge", "ml.trn1.32xlarge", "ml.trn1n.32xlarge", "ml.m6i.large", "ml.m6i.xlarge", "ml.m6i.2xlarge", "ml.m6i.4xlarge", "ml.m6i.8xlarge", "ml.m6i.12xlarge", "ml.m6i.16xlarge", "ml.m6i.24xlarge", "ml.m6i.32xlarge", "ml.c6i.xlarge", "ml.c6i.2xlarge", "ml.c6i.8xlarge", "ml.c6i.4xlarge", "ml.c6i.12xlarge", "ml.c6i.16xlarge", "ml.c6i.24xlarge", "ml.c6i.32xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.8xlarge", "ml.r5d.12xlarge", "ml.r5d.16xlarge", "ml.r5d.24xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.c7i.large", "ml.c7i.xlarge", "ml.c7i.2xlarge", "ml.c7i.4xlarge", "ml.c7i.8xlarge", "ml.c7i.12xlarge", "ml.c7i.16xlarge", "ml.c7i.24xlarge", "ml.c7i.48xlarge", "ml.m7i.large", "ml.m7i.xlarge", "ml.m7i.2xlarge", "ml.m7i.4xlarge", "ml.m7i.8xlarge", "ml.m7i.12xlarge", "ml.m7i.16xlarge", "ml.m7i.24xlarge", "ml.m7i.48xlarge", "ml.r7i.large", "ml.r7i.xlarge", "ml.r7i.2xlarge", "ml.r7i.4xlarge", "ml.r7i.8xlarge", "ml.r7i.12xlarge", "ml.r7i.16xlarge", "ml.r7i.24xlarge", "ml.r7i.48xlarge", "ml.g6.xlarge", "ml.g6.2xlarge", "ml.g6.4xlarge", "ml.g6.8xlarge", "ml.g6.12xlarge", "ml.g6.16xlarge", "ml.g6.24xlarge", "ml.g6.48xlarge", "ml.g6e.xlarge", "ml.g6e.2xlarge", "ml.g6e.4xlarge", "ml.g6e.8xlarge", "ml.g6e.12xlarge", "ml.g6e.16xlarge", "ml.g6e.24xlarge", "ml.g6e.48xlarge", "ml.p5en.48xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge"
resp.resource_config.volume_size_in_gb #=> Integer
resp.training_input_mode #=> String, one of "File", "FastFile", "Pipe"
resp.stopping_condition.max_runtime_in_seconds #=> Integer
resp.metrics_status #=> String, one of "PUBLISH_SUCCEEDED", "PUBLISH_FAILED"
resp.metrics_status_details #=> String
resp.logs_status #=> String, one of "PUBLISH_SUCCEEDED", "PUBLISH_FAILED"
resp.logs_status_details #=> String
resp.training_container_image_digest #=> String
resp.create_time #=> Time
resp.update_time #=> Time
resp. #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :trained_model_arn (required, String)

    The Amazon Resource Name (ARN) of the trained model that you want to return information about.

  • :collaboration_identifier (required, String)

    The collaboration ID that contains the trained model that you want to return information about.

  • :version_identifier (String)

    The version identifier of the trained model to retrieve. If not specified, the operation returns information about the latest version of the trained model.

Returns:

See Also:



2004
2005
2006
2007
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2004

def get_collaboration_trained_model(params = {}, options = {})
  req = build_request(:get_collaboration_trained_model, params)
  req.send_request(options)
end

#get_configured_audience_model(params = {}) ⇒ Types::GetConfiguredAudienceModelResponse

Returns information about a specified configured audience model.

Examples:

Request syntax with placeholder values


resp = client.get_configured_audience_model({
  configured_audience_model_arn: "ConfiguredAudienceModelArn", # required
})

Response structure


resp.create_time #=> Time
resp.update_time #=> Time
resp.configured_audience_model_arn #=> String
resp.name #=> String
resp.audience_model_arn #=> String
resp.output_config.destination.s3_destination.s3_uri #=> String
resp.output_config.role_arn #=> String
resp.description #=> String
resp.status #=> String, one of "ACTIVE"
resp.shared_audience_metrics #=> Array
resp.shared_audience_metrics[0] #=> String, one of "ALL", "NONE"
resp.min_matching_seed_size #=> Integer
resp.audience_size_config.audience_size_type #=> String, one of "ABSOLUTE", "PERCENTAGE"
resp.audience_size_config.audience_size_bins #=> Array
resp.audience_size_config.audience_size_bins[0] #=> Integer
resp.tags #=> Hash
resp.tags["TagKey"] #=> String
resp.child_resource_tag_on_create_policy #=> String, one of "FROM_PARENT_RESOURCE", "NONE"

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :configured_audience_model_arn (required, String)

    The Amazon Resource Name (ARN) of the configured audience model that you are interested in.

Returns:

See Also:



2062
2063
2064
2065
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2062

def get_configured_audience_model(params = {}, options = {})
  req = build_request(:get_configured_audience_model, params)
  req.send_request(options)
end

#get_configured_audience_model_policy(params = {}) ⇒ Types::GetConfiguredAudienceModelPolicyResponse

Returns information about a configured audience model policy.

Examples:

Request syntax with placeholder values


resp = client.get_configured_audience_model_policy({
  configured_audience_model_arn: "ConfiguredAudienceModelArn", # required
})

Response structure


resp.configured_audience_model_arn #=> String
resp.configured_audience_model_policy #=> String
resp.policy_hash #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :configured_audience_model_arn (required, String)

    The Amazon Resource Name (ARN) of the configured audience model that you are interested in.

Returns:

See Also:



2095
2096
2097
2098
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2095

def get_configured_audience_model_policy(params = {}, options = {})
  req = build_request(:get_configured_audience_model_policy, params)
  req.send_request(options)
end

#get_configured_model_algorithm(params = {}) ⇒ Types::GetConfiguredModelAlgorithmResponse

Returns information about a configured model algorithm.

Examples:

Request syntax with placeholder values


resp = client.get_configured_model_algorithm({
  configured_model_algorithm_arn: "ConfiguredModelAlgorithmArn", # required
})

Response structure


resp.create_time #=> Time
resp.update_time #=> Time
resp.configured_model_algorithm_arn #=> String
resp.name #=> String
resp.training_container_config.image_uri #=> String
resp.training_container_config.entrypoint #=> Array
resp.training_container_config.entrypoint[0] #=> String
resp.training_container_config.arguments #=> Array
resp.training_container_config.arguments[0] #=> String
resp.training_container_config.metric_definitions #=> Array
resp.training_container_config.metric_definitions[0].name #=> String
resp.training_container_config.metric_definitions[0].regex #=> String
resp.inference_container_config.image_uri #=> String
resp.role_arn #=> String
resp.description #=> String
resp.tags #=> Hash
resp.tags["TagKey"] #=> String
resp.kms_key_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :configured_model_algorithm_arn (required, String)

    The Amazon Resource Name (ARN) of the configured model algorithm that you want to return information about.

Returns:

See Also:



2150
2151
2152
2153
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2150

def get_configured_model_algorithm(params = {}, options = {})
  req = build_request(:get_configured_model_algorithm, params)
  req.send_request(options)
end

#get_configured_model_algorithm_association(params = {}) ⇒ Types::GetConfiguredModelAlgorithmAssociationResponse

Returns information about a configured model algorithm association.

Examples:

Request syntax with placeholder values


resp = client.get_configured_model_algorithm_association({
  configured_model_algorithm_association_arn: "ConfiguredModelAlgorithmAssociationArn", # required
  membership_identifier: "UUID", # required
})

Response structure


resp.create_time #=> Time
resp.update_time #=> Time
resp.configured_model_algorithm_association_arn #=> String
resp.membership_identifier #=> String
resp.collaboration_identifier #=> String
resp.configured_model_algorithm_arn #=> String
resp.name #=> String
resp.privacy_configuration.policies.trained_models.container_logs #=> Array
resp.privacy_configuration.policies.trained_models.container_logs[0]. #=> Array
resp.privacy_configuration.policies.trained_models.container_logs[0].[0] #=> String
resp.privacy_configuration.policies.trained_models.container_logs[0].filter_pattern #=> String
resp.privacy_configuration.policies.trained_models.container_logs[0].log_type #=> String, one of "ALL", "ERROR_SUMMARY"
resp.privacy_configuration.policies.trained_models.container_logs[0].log_redaction_configuration.entities_to_redact #=> Array
resp.privacy_configuration.policies.trained_models.container_logs[0].log_redaction_configuration.entities_to_redact[0] #=> String, one of "ALL_PERSONALLY_IDENTIFIABLE_INFORMATION", "NUMBERS", "CUSTOM"
resp.privacy_configuration.policies.trained_models.container_logs[0].log_redaction_configuration.custom_entity_config.custom_data_identifiers #=> Array
resp.privacy_configuration.policies.trained_models.container_logs[0].log_redaction_configuration.custom_entity_config.custom_data_identifiers[0] #=> String
resp.privacy_configuration.policies.trained_models.container_metrics.noise_level #=> String, one of "HIGH", "MEDIUM", "LOW", "NONE"
resp.privacy_configuration.policies.trained_models.max_artifact_size.unit #=> String, one of "GB"
resp.privacy_configuration.policies.trained_models.max_artifact_size.value #=> Float
resp.privacy_configuration.policies.trained_model_exports.max_size.unit #=> String, one of "GB"
resp.privacy_configuration.policies.trained_model_exports.max_size.value #=> Float
resp.privacy_configuration.policies.trained_model_exports.files_to_export #=> Array
resp.privacy_configuration.policies.trained_model_exports.files_to_export[0] #=> String, one of "MODEL", "OUTPUT"
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs #=> Array
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0]. #=> Array
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0].[0] #=> String
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0].filter_pattern #=> String
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0].log_type #=> String, one of "ALL", "ERROR_SUMMARY"
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0].log_redaction_configuration.entities_to_redact #=> Array
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0].log_redaction_configuration.entities_to_redact[0] #=> String, one of "ALL_PERSONALLY_IDENTIFIABLE_INFORMATION", "NUMBERS", "CUSTOM"
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0].log_redaction_configuration.custom_entity_config.custom_data_identifiers #=> Array
resp.privacy_configuration.policies.trained_model_inference_jobs.container_logs[0].log_redaction_configuration.custom_entity_config.custom_data_identifiers[0] #=> String
resp.privacy_configuration.policies.trained_model_inference_jobs.max_output_size.unit #=> String, one of "GB"
resp.privacy_configuration.policies.trained_model_inference_jobs.max_output_size.value #=> Float
resp.description #=> String
resp.tags #=> Hash
resp.tags["TagKey"] #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :configured_model_algorithm_association_arn (required, String)

    The Amazon Resource Name (ARN) of the configured model algorithm association that you want to return information about.

  • :membership_identifier (required, String)

    The membership ID of the member that created the configured model algorithm association.

Returns:

See Also:



2229
2230
2231
2232
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2229

def get_configured_model_algorithm_association(params = {}, options = {})
  req = build_request(:get_configured_model_algorithm_association, params)
  req.send_request(options)
end

#get_ml_configuration(params = {}) ⇒ Types::GetMLConfigurationResponse

Returns information about a specific ML configuration.

Examples:

Request syntax with placeholder values


resp = client.get_ml_configuration({
  membership_identifier: "UUID", # required
})

Response structure


resp.membership_identifier #=> String
resp.default_output_location.destination.s3_destination.s3_uri #=> String
resp.default_output_location.role_arn #=> String
resp.create_time #=> Time
resp.update_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :membership_identifier (required, String)

    The membership ID of the member that owns the ML configuration you want to return information about.

Returns:

See Also:



2265
2266
2267
2268
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2265

def get_ml_configuration(params = {}, options = {})
  req = build_request(:get_ml_configuration, params)
  req.send_request(options)
end

#get_ml_input_channel(params = {}) ⇒ Types::GetMLInputChannelResponse

Returns information about an ML input channel.

Examples:

Request syntax with placeholder values


resp = client.get_ml_input_channel({
  ml_input_channel_arn: "MLInputChannelArn", # required
  membership_identifier: "UUID", # required
})

Response structure


resp.membership_identifier #=> String
resp.collaboration_identifier #=> String
resp.ml_input_channel_arn #=> String
resp.name #=> String
resp.configured_model_algorithm_associations #=> Array
resp.configured_model_algorithm_associations[0] #=> String
resp.status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "DELETE_PENDING", "DELETE_IN_PROGRESS", "DELETE_FAILED", "INACTIVE"
resp.status_details.status_code #=> String
resp.status_details.message #=> String
resp.retention_in_days #=> Integer
resp.number_of_records #=> Integer
resp.privacy_budgets.access_budgets #=> Array
resp.privacy_budgets.access_budgets[0].resource_arn #=> String
resp.privacy_budgets.access_budgets[0].details #=> Array
resp.privacy_budgets.access_budgets[0].details[0].start_time #=> Time
resp.privacy_budgets.access_budgets[0].details[0].end_time #=> Time
resp.privacy_budgets.access_budgets[0].details[0].remaining_budget #=> Integer
resp.privacy_budgets.access_budgets[0].details[0].budget #=> Integer
resp.privacy_budgets.access_budgets[0].details[0].budget_type #=> String, one of "CALENDAR_DAY", "CALENDAR_MONTH", "CALENDAR_WEEK", "LIFETIME"
resp.privacy_budgets.access_budgets[0].details[0].auto_refresh #=> String, one of "ENABLED", "DISABLED"
resp.privacy_budgets.access_budgets[0].aggregate_remaining_budget #=> Integer
resp.description #=> String
resp.synthetic_data_configuration.synthetic_data_parameters.epsilon #=> Float
resp.synthetic_data_configuration.synthetic_data_parameters.max_membership_inference_attack_score #=> Float
resp.synthetic_data_configuration.synthetic_data_parameters.column_classification.column_mapping #=> Array
resp.synthetic_data_configuration.synthetic_data_parameters.column_classification.column_mapping[0].column_name #=> String
resp.synthetic_data_configuration.synthetic_data_parameters.column_classification.column_mapping[0].column_type #=> String, one of "CATEGORICAL", "NUMERICAL"
resp.synthetic_data_configuration.synthetic_data_parameters.column_classification.column_mapping[0].is_predictive_value #=> Boolean
resp.synthetic_data_configuration.synthetic_data_evaluation_scores.data_privacy_scores.membership_inference_attack_scores #=> Array
resp.synthetic_data_configuration.synthetic_data_evaluation_scores.data_privacy_scores.membership_inference_attack_scores[0].attack_version #=> String, one of "DISTANCE_TO_CLOSEST_RECORD_V1"
resp.synthetic_data_configuration.synthetic_data_evaluation_scores.data_privacy_scores.membership_inference_attack_scores[0].score #=> Float
resp.create_time #=> Time
resp.update_time #=> Time
resp.input_channel.data_source.protected_query_input_parameters.sql_parameters.query_string #=> String
resp.input_channel.data_source.protected_query_input_parameters.sql_parameters.analysis_template_arn #=> String
resp.input_channel.data_source.protected_query_input_parameters.sql_parameters.parameters #=> Hash
resp.input_channel.data_source.protected_query_input_parameters.sql_parameters.parameters["ParameterName"] #=> String
resp.input_channel.data_source.protected_query_input_parameters.compute_configuration.worker.type #=> String, one of "CR.1X", "CR.4X"
resp.input_channel.data_source.protected_query_input_parameters.compute_configuration.worker.number #=> Integer
resp.input_channel.data_source.protected_query_input_parameters.compute_configuration.worker.properties.spark #=> Hash
resp.input_channel.data_source.protected_query_input_parameters.compute_configuration.worker.properties.spark["SparkPropertyKey"] #=> String
resp.input_channel.data_source.protected_query_input_parameters.result_format #=> String, one of "CSV", "PARQUET"
resp.input_channel.role_arn #=> String
resp.protected_query_identifier #=> String
resp.number_of_files #=> Float
resp.size_in_gb #=> Float
resp.kms_key_arn #=> String
resp.tags #=> Hash
resp.tags["TagKey"] #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :ml_input_channel_arn (required, String)

    The Amazon Resource Name (ARN) of the ML input channel that you want to get.

  • :membership_identifier (required, String)

    The membership ID of the membership that contains the ML input channel that you want to get.

Returns:

See Also:



2366
2367
2368
2369
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2366

def get_ml_input_channel(params = {}, options = {})
  req = build_request(:get_ml_input_channel, params)
  req.send_request(options)
end

#get_trained_model(params = {}) ⇒ Types::GetTrainedModelResponse

Returns information about a trained model.

Examples:

Request syntax with placeholder values


resp = client.get_trained_model({
  trained_model_arn: "TrainedModelArn", # required
  membership_identifier: "UUID", # required
  version_identifier: "UUID",
})

Response structure


resp.membership_identifier #=> String
resp.collaboration_identifier #=> String
resp.trained_model_arn #=> String
resp.version_identifier #=> String
resp.incremental_training_data_channels #=> Array
resp.incremental_training_data_channels[0].channel_name #=> String
resp.incremental_training_data_channels[0].version_identifier #=> String
resp.incremental_training_data_channels[0].model_name #=> String
resp.name #=> String
resp.description #=> String
resp.status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "DELETE_PENDING", "DELETE_IN_PROGRESS", "DELETE_FAILED", "INACTIVE", "CANCEL_PENDING", "CANCEL_IN_PROGRESS", "CANCEL_FAILED"
resp.status_details.status_code #=> String
resp.status_details.message #=> String
resp.configured_model_algorithm_association_arn #=> String
resp.resource_config.instance_count #=> Integer
resp.resource_config.instance_type #=> String, one of "ml.m4.xlarge", "ml.m4.2xlarge", "ml.m4.4xlarge", "ml.m4.10xlarge", "ml.m4.16xlarge", "ml.g4dn.xlarge", "ml.g4dn.2xlarge", "ml.g4dn.4xlarge", "ml.g4dn.8xlarge", "ml.g4dn.12xlarge", "ml.g4dn.16xlarge", "ml.m5.large", "ml.m5.xlarge", "ml.m5.2xlarge", "ml.m5.4xlarge", "ml.m5.12xlarge", "ml.m5.24xlarge", "ml.c4.xlarge", "ml.c4.2xlarge", "ml.c4.4xlarge", "ml.c4.8xlarge", "ml.p2.xlarge", "ml.p2.8xlarge", "ml.p2.16xlarge", "ml.p4d.24xlarge", "ml.p4de.24xlarge", "ml.p5.48xlarge", "ml.c5.xlarge", "ml.c5.2xlarge", "ml.c5.4xlarge", "ml.c5.9xlarge", "ml.c5.18xlarge", "ml.c5n.xlarge", "ml.c5n.2xlarge", "ml.c5n.4xlarge", "ml.c5n.9xlarge", "ml.c5n.18xlarge", "ml.g5.xlarge", "ml.g5.2xlarge", "ml.g5.4xlarge", "ml.g5.8xlarge", "ml.g5.16xlarge", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.g5.48xlarge", "ml.trn1.2xlarge", "ml.trn1.32xlarge", "ml.trn1n.32xlarge", "ml.m6i.large", "ml.m6i.xlarge", "ml.m6i.2xlarge", "ml.m6i.4xlarge", "ml.m6i.8xlarge", "ml.m6i.12xlarge", "ml.m6i.16xlarge", "ml.m6i.24xlarge", "ml.m6i.32xlarge", "ml.c6i.xlarge", "ml.c6i.2xlarge", "ml.c6i.8xlarge", "ml.c6i.4xlarge", "ml.c6i.12xlarge", "ml.c6i.16xlarge", "ml.c6i.24xlarge", "ml.c6i.32xlarge", "ml.r5d.large", "ml.r5d.xlarge", "ml.r5d.2xlarge", "ml.r5d.4xlarge", "ml.r5d.8xlarge", "ml.r5d.12xlarge", "ml.r5d.16xlarge", "ml.r5d.24xlarge", "ml.t3.medium", "ml.t3.large", "ml.t3.xlarge", "ml.t3.2xlarge", "ml.r5.large", "ml.r5.xlarge", "ml.r5.2xlarge", "ml.r5.4xlarge", "ml.r5.8xlarge", "ml.r5.12xlarge", "ml.r5.16xlarge", "ml.r5.24xlarge", "ml.c7i.large", "ml.c7i.xlarge", "ml.c7i.2xlarge", "ml.c7i.4xlarge", "ml.c7i.8xlarge", "ml.c7i.12xlarge", "ml.c7i.16xlarge", "ml.c7i.24xlarge", "ml.c7i.48xlarge", "ml.m7i.large", "ml.m7i.xlarge", "ml.m7i.2xlarge", "ml.m7i.4xlarge", "ml.m7i.8xlarge", "ml.m7i.12xlarge", "ml.m7i.16xlarge", "ml.m7i.24xlarge", "ml.m7i.48xlarge", "ml.r7i.large", "ml.r7i.xlarge", "ml.r7i.2xlarge", "ml.r7i.4xlarge", "ml.r7i.8xlarge", "ml.r7i.12xlarge", "ml.r7i.16xlarge", "ml.r7i.24xlarge", "ml.r7i.48xlarge", "ml.g6.xlarge", "ml.g6.2xlarge", "ml.g6.4xlarge", "ml.g6.8xlarge", "ml.g6.12xlarge", "ml.g6.16xlarge", "ml.g6.24xlarge", "ml.g6.48xlarge", "ml.g6e.xlarge", "ml.g6e.2xlarge", "ml.g6e.4xlarge", "ml.g6e.8xlarge", "ml.g6e.12xlarge", "ml.g6e.16xlarge", "ml.g6e.24xlarge", "ml.g6e.48xlarge", "ml.p5en.48xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge", "ml.p3.16xlarge", "ml.p3dn.24xlarge"
resp.resource_config.volume_size_in_gb #=> Integer
resp.training_input_mode #=> String, one of "File", "FastFile", "Pipe"
resp.stopping_condition.max_runtime_in_seconds #=> Integer
resp.metrics_status #=> String, one of "PUBLISH_SUCCEEDED", "PUBLISH_FAILED"
resp.metrics_status_details #=> String
resp.logs_status #=> String, one of "PUBLISH_SUCCEEDED", "PUBLISH_FAILED"
resp.logs_status_details #=> String
resp.training_container_image_digest #=> String
resp.create_time #=> Time
resp.update_time #=> Time
resp.hyperparameters #=> Hash
resp.hyperparameters["HyperParametersKeyString"] #=> String
resp.environment #=> Hash
resp.environment["EnvironmentKeyString"] #=> String
resp.kms_key_arn #=> String
resp.tags #=> Hash
resp.tags["TagKey"] #=> String
resp.data_channels #=> Array
resp.data_channels[0].ml_input_channel_arn #=> String
resp.data_channels[0].channel_name #=> String
resp.data_channels[0].s3_data_distribution_type #=> String, one of "FullyReplicated", "ShardedByS3Key"

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :trained_model_arn (required, String)

    The Amazon Resource Name (ARN) of the trained model that you are interested in.

  • :membership_identifier (required, String)

    The membership ID of the member that created the trained model that you are interested in.

  • :version_identifier (String)

    The version identifier of the trained model to retrieve. If not specified, the operation returns information about the latest version of the trained model.

Returns:

See Also:



2466
2467
2468
2469
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2466

def get_trained_model(params = {}, options = {})
  req = build_request(:get_trained_model, params)
  req.send_request(options)
end

#get_trained_model_inference_job(params = {}) ⇒ Types::GetTrainedModelInferenceJobResponse

Returns information about a trained model inference job.

Examples:

Request syntax with placeholder values


resp = client.get_trained_model_inference_job({
  membership_identifier: "UUID", # required
  trained_model_inference_job_arn: "TrainedModelInferenceJobArn", # required
})

Response structure


resp.create_time #=> Time
resp.update_time #=> Time
resp.trained_model_inference_job_arn #=> String
resp.configured_model_algorithm_association_arn #=> String
resp.name #=> String
resp.status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "CANCEL_PENDING", "CANCEL_IN_PROGRESS", "CANCEL_FAILED", "INACTIVE"
resp.trained_model_arn #=> String
resp.trained_model_version_identifier #=> String
resp.resource_config.instance_type #=> String, one of "ml.r7i.48xlarge", "ml.r6i.16xlarge", "ml.m6i.xlarge", "ml.m5.4xlarge", "ml.p2.xlarge", "ml.m4.16xlarge", "ml.r7i.16xlarge", "ml.m7i.xlarge", "ml.m6i.12xlarge", "ml.r7i.8xlarge", "ml.r7i.large", "ml.m7i.12xlarge", "ml.m6i.24xlarge", "ml.m7i.24xlarge", "ml.r6i.8xlarge", "ml.r6i.large", "ml.g5.2xlarge", "ml.m5.large", "ml.m7i.48xlarge", "ml.m6i.16xlarge", "ml.p2.16xlarge", "ml.g5.4xlarge", "ml.m7i.16xlarge", "ml.c4.2xlarge", "ml.c5.2xlarge", "ml.c6i.32xlarge", "ml.c4.4xlarge", "ml.g5.8xlarge", "ml.c6i.xlarge", "ml.c5.4xlarge", "ml.g4dn.xlarge", "ml.c7i.xlarge", "ml.c6i.12xlarge", "ml.g4dn.12xlarge", "ml.c7i.12xlarge", "ml.c6i.24xlarge", "ml.g4dn.2xlarge", "ml.c7i.24xlarge", "ml.c7i.2xlarge", "ml.c4.8xlarge", "ml.c6i.2xlarge", "ml.g4dn.4xlarge", "ml.c7i.48xlarge", "ml.c7i.4xlarge", "ml.c6i.16xlarge", "ml.c5.9xlarge", "ml.g4dn.16xlarge", "ml.c7i.16xlarge", "ml.c6i.4xlarge", "ml.c5.xlarge", "ml.c4.xlarge", "ml.g4dn.8xlarge", "ml.c7i.8xlarge", "ml.c7i.large", "ml.g5.xlarge", "ml.c6i.8xlarge", "ml.c6i.large", "ml.g5.12xlarge", "ml.g5.24xlarge", "ml.m7i.2xlarge", "ml.c5.18xlarge", "ml.g5.48xlarge", "ml.m6i.2xlarge", "ml.g5.16xlarge", "ml.m7i.4xlarge", "ml.r6i.32xlarge", "ml.m6i.4xlarge", "ml.m5.xlarge", "ml.m4.10xlarge", "ml.r6i.xlarge", "ml.m5.12xlarge", "ml.m4.xlarge", "ml.r7i.2xlarge", "ml.r7i.xlarge", "ml.r6i.12xlarge", "ml.m5.24xlarge", "ml.r7i.12xlarge", "ml.m7i.8xlarge", "ml.m7i.large", "ml.r6i.24xlarge", "ml.r6i.2xlarge", "ml.m4.2xlarge", "ml.r7i.24xlarge", "ml.r7i.4xlarge", "ml.m6i.8xlarge", "ml.m6i.large", "ml.m5.2xlarge", "ml.p2.8xlarge", "ml.r6i.4xlarge", "ml.m6i.32xlarge", "ml.m4.4xlarge", "ml.p3.16xlarge", "ml.p3.2xlarge", "ml.p3.8xlarge"
resp.resource_config.instance_count #=> Integer
resp.output_configuration.accept #=> String
resp.output_configuration.members #=> Array
resp.output_configuration.members[0]. #=> String
resp.membership_identifier #=> String
resp.data_source.ml_input_channel_arn #=> String
resp.container_execution_parameters.max_payload_in_mb #=> Integer
resp.status_details.status_code #=> String
resp.status_details.message #=> String
resp.description #=> String
resp.inference_container_image_digest #=> String
resp.environment #=> Hash
resp.environment["InferenceEnvironmentMapKeyString"] #=> String
resp.kms_key_arn #=> String
resp.metrics_status #=> String, one of "PUBLISH_SUCCEEDED", "PUBLISH_FAILED"
resp.metrics_status_details #=> String
resp.logs_status #=> String, one of "PUBLISH_SUCCEEDED", "PUBLISH_FAILED"
resp.logs_status_details #=> String
resp.tags #=> Hash
resp.tags["TagKey"] #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :membership_identifier (required, String)

    Provides the membership ID of the membership that contains the trained model inference job that you are interested in.

  • :trained_model_inference_job_arn (required, String)

    Provides the Amazon Resource Name (ARN) of the trained model inference job that you are interested in.

Returns:

See Also:



2550
2551
2552
2553
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2550

def get_trained_model_inference_job(params = {}, options = {})
  req = build_request(:get_trained_model_inference_job, params)
  req.send_request(options)
end

#get_training_dataset(params = {}) ⇒ Types::GetTrainingDatasetResponse

Returns information about a training dataset.

Examples:

Request syntax with placeholder values


resp = client.get_training_dataset({
  training_dataset_arn: "TrainingDatasetArn", # required
})

Response structure


resp.create_time #=> Time
resp.update_time #=> Time
resp.training_dataset_arn #=> String
resp.name #=> String
resp.training_data #=> Array
resp.training_data[0].type #=> String, one of "INTERACTIONS"
resp.training_data[0].input_config.schema #=> Array
resp.training_data[0].input_config.schema[0].column_name #=> String
resp.training_data[0].input_config.schema[0].column_types #=> Array
resp.training_data[0].input_config.schema[0].column_types[0] #=> String, one of "USER_ID", "ITEM_ID", "TIMESTAMP", "CATEGORICAL_FEATURE", "NUMERICAL_FEATURE"
resp.training_data[0].input_config.data_source.glue_data_source.table_name #=> String
resp.training_data[0].input_config.data_source.glue_data_source.database_name #=> String
resp.training_data[0].input_config.data_source.glue_data_source.catalog_id #=> String
resp.status #=> String, one of "ACTIVE"
resp.role_arn #=> String
resp.tags #=> Hash
resp.tags["TagKey"] #=> String
resp.description #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :training_dataset_arn (required, String)

    The Amazon Resource Name (ARN) of the training dataset that you are interested in.

Returns:

See Also:



2604
2605
2606
2607
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2604

def get_training_dataset(params = {}, options = {})
  req = build_request(:get_training_dataset, params)
  req.send_request(options)
end

#list_audience_export_jobs(params = {}) ⇒ Types::ListAudienceExportJobsResponse

Returns a list of the audience export jobs.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_audience_export_jobs({
  next_token: "NextToken",
  max_results: 1,
  audience_generation_job_arn: "AudienceGenerationJobArn",
})

Response structure


resp.next_token #=> String
resp.audience_export_jobs #=> Array
resp.audience_export_jobs[0].create_time #=> Time
resp.audience_export_jobs[0].update_time #=> Time
resp.audience_export_jobs[0].name #=> String
resp.audience_export_jobs[0].audience_generation_job_arn #=> String
resp.audience_export_jobs[0].audience_size.type #=> String, one of "ABSOLUTE", "PERCENTAGE"
resp.audience_export_jobs[0].audience_size.value #=> Integer
resp.audience_export_jobs[0].description #=> String
resp.audience_export_jobs[0].status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE"
resp.audience_export_jobs[0].status_details.status_code #=> String
resp.audience_export_jobs[0].status_details.message #=> String
resp.audience_export_jobs[0].output_location #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The token value retrieved from a previous call to access the next page of results.

  • :max_results (Integer)

    The maximum size of the results that is returned per call.

  • :audience_generation_job_arn (String)

    The Amazon Resource Name (ARN) of the audience generation job that you are interested in.

Returns:

See Also:



2657
2658
2659
2660
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2657

def list_audience_export_jobs(params = {}, options = {})
  req = build_request(:list_audience_export_jobs, params)
  req.send_request(options)
end

#list_audience_generation_jobs(params = {}) ⇒ Types::ListAudienceGenerationJobsResponse

Returns a list of audience generation jobs.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_audience_generation_jobs({
  next_token: "NextToken",
  max_results: 1,
  configured_audience_model_arn: "ConfiguredAudienceModelArn",
  collaboration_id: "UUID",
})

Response structure


resp.next_token #=> String
resp.audience_generation_jobs #=> Array
resp.audience_generation_jobs[0].create_time #=> Time
resp.audience_generation_jobs[0].update_time #=> Time
resp.audience_generation_jobs[0].audience_generation_job_arn #=> String
resp.audience_generation_jobs[0].name #=> String
resp.audience_generation_jobs[0].description #=> String
resp.audience_generation_jobs[0].status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "DELETE_PENDING", "DELETE_IN_PROGRESS", "DELETE_FAILED"
resp.audience_generation_jobs[0].configured_audience_model_arn #=> String
resp.audience_generation_jobs[0].collaboration_id #=> String
resp.audience_generation_jobs[0].started_by #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The token value retrieved from a previous call to access the next page of results.

  • :max_results (Integer)

    The maximum size of the results that is returned per call.

  • :configured_audience_model_arn (String)

    The Amazon Resource Name (ARN) of the configured audience model that was used for the audience generation jobs that you are interested in.

  • :collaboration_id (String)

    The identifier of the collaboration that contains the audience generation jobs that you are interested in.

Returns:

See Also:



2713
2714
2715
2716
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2713

def list_audience_generation_jobs(params = {}, options = {})
  req = build_request(:list_audience_generation_jobs, params)
  req.send_request(options)
end

#list_audience_models(params = {}) ⇒ Types::ListAudienceModelsResponse

Returns a list of audience models.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_audience_models({
  next_token: "NextToken",
  max_results: 1,
})

Response structure


resp.next_token #=> String
resp.audience_models #=> Array
resp.audience_models[0].create_time #=> Time
resp.audience_models[0].update_time #=> Time
resp.audience_models[0].audience_model_arn #=> String
resp.audience_models[0].name #=> String
resp.audience_models[0].training_dataset_arn #=> String
resp.audience_models[0].status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "DELETE_PENDING", "DELETE_IN_PROGRESS", "DELETE_FAILED"
resp.audience_models[0].description #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The token value retrieved from a previous call to access the next page of results.

  • :max_results (Integer)

    The maximum size of the results that is returned per call.

Returns:

See Also:



2757
2758
2759
2760
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2757

def list_audience_models(params = {}, options = {})
  req = build_request(:list_audience_models, params)
  req.send_request(options)
end

#list_collaboration_configured_model_algorithm_associations(params = {}) ⇒ Types::ListCollaborationConfiguredModelAlgorithmAssociationsResponse

Returns a list of the configured model algorithm associations in a collaboration.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_collaboration_configured_model_algorithm_associations({
  next_token: "NextToken",
  max_results: 1,
  collaboration_identifier: "UUID", # required
})

Response structure


resp.next_token #=> String
resp.collaboration_configured_model_algorithm_associations #=> Array
resp.collaboration_configured_model_algorithm_associations[0].create_time #=> Time
resp.collaboration_configured_model_algorithm_associations[0].update_time #=> Time
resp.collaboration_configured_model_algorithm_associations[0].configured_model_algorithm_association_arn #=> String
resp.collaboration_configured_model_algorithm_associations[0].name #=> String
resp.collaboration_configured_model_algorithm_associations[0].description #=> String
resp.collaboration_configured_model_algorithm_associations[0].membership_identifier #=> String
resp.collaboration_configured_model_algorithm_associations[0].collaboration_identifier #=> String
resp.collaboration_configured_model_algorithm_associations[0].configured_model_algorithm_arn #=> String
resp.collaboration_configured_model_algorithm_associations[0]. #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The token value retrieved from a previous call to access the next page of results.

  • :max_results (Integer)

    The maximum size of the results that is returned per call.

  • :collaboration_identifier (required, String)

    The collaboration ID of the collaboration that contains the configured model algorithm associations that you are interested in.

Returns:

See Also:



2809
2810
2811
2812
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2809

def list_collaboration_configured_model_algorithm_associations(params = {}, options = {})
  req = build_request(:list_collaboration_configured_model_algorithm_associations, params)
  req.send_request(options)
end

#list_collaboration_ml_input_channels(params = {}) ⇒ Types::ListCollaborationMLInputChannelsResponse

Returns a list of the ML input channels in a collaboration.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_collaboration_ml_input_channels({
  next_token: "NextToken",
  max_results: 1,
  collaboration_identifier: "UUID", # required
})

Response structure


resp.next_token #=> String
resp.collaboration_ml_input_channels_list #=> Array
resp.collaboration_ml_input_channels_list[0].create_time #=> Time
resp.collaboration_ml_input_channels_list[0].update_time #=> Time
resp.collaboration_ml_input_channels_list[0].membership_identifier #=> String
resp.collaboration_ml_input_channels_list[0].collaboration_identifier #=> String
resp.collaboration_ml_input_channels_list[0].name #=> String
resp.collaboration_ml_input_channels_list[0].configured_model_algorithm_associations #=> Array
resp.collaboration_ml_input_channels_list[0].configured_model_algorithm_associations[0] #=> String
resp.collaboration_ml_input_channels_list[0].ml_input_channel_arn #=> String
resp.collaboration_ml_input_channels_list[0].status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "DELETE_PENDING", "DELETE_IN_PROGRESS", "DELETE_FAILED", "INACTIVE"
resp.collaboration_ml_input_channels_list[0]. #=> String
resp.collaboration_ml_input_channels_list[0].description #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The token value retrieved from a previous call to access the next page of results.

  • :max_results (Integer)

    The maximum number of results to return.

  • :collaboration_identifier (required, String)

    The collaboration ID of the collaboration that contains the ML input channels that you want to list.

Returns:

See Also:



2862
2863
2864
2865
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2862

def list_collaboration_ml_input_channels(params = {}, options = {})
  req = build_request(:list_collaboration_ml_input_channels, params)
  req.send_request(options)
end

#list_collaboration_trained_model_export_jobs(params = {}) ⇒ Types::ListCollaborationTrainedModelExportJobsResponse

Returns a list of the export jobs for a trained model in a collaboration.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_collaboration_trained_model_export_jobs({
  next_token: "NextToken",
  max_results: 1,
  collaboration_identifier: "UUID", # required
  trained_model_arn: "TrainedModelArn", # required
  trained_model_version_identifier: "UUID",
})

Response structure


resp.next_token #=> String
resp.collaboration_trained_model_export_jobs #=> Array
resp.collaboration_trained_model_export_jobs[0].create_time #=> Time
resp.collaboration_trained_model_export_jobs[0].update_time #=> Time
resp.collaboration_trained_model_export_jobs[0].name #=> String
resp.collaboration_trained_model_export_jobs[0].output_configuration.members #=> Array
resp.collaboration_trained_model_export_jobs[0].output_configuration.members[0]. #=> String
resp.collaboration_trained_model_export_jobs[0].status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE"
resp.collaboration_trained_model_export_jobs[0].status_details.status_code #=> String
resp.collaboration_trained_model_export_jobs[0].status_details.message #=> String
resp.collaboration_trained_model_export_jobs[0].description #=> String
resp.collaboration_trained_model_export_jobs[0]. #=> String
resp.collaboration_trained_model_export_jobs[0].trained_model_arn #=> String
resp.collaboration_trained_model_export_jobs[0].trained_model_version_identifier #=> String
resp.collaboration_trained_model_export_jobs[0].membership_identifier #=> String
resp.collaboration_trained_model_export_jobs[0].collaboration_identifier #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The token value retrieved from a previous call to access the next page of results.

  • :max_results (Integer)

    The maximum size of the results that is returned per call.

  • :collaboration_identifier (required, String)

    The collaboration ID of the collaboration that contains the trained model export jobs that you are interested in.

  • :trained_model_arn (required, String)

    The Amazon Resource Name (ARN) of the trained model that was used to create the export jobs that you are interested in.

  • :trained_model_version_identifier (String)

    The version identifier of the trained model to filter export jobs by. When specified, only export jobs for this specific version of the trained model are returned.

Returns:

See Also:



2930
2931
2932
2933
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 2930

def list_collaboration_trained_model_export_jobs(params = {}, options = {})
  req = build_request(:list_collaboration_trained_model_export_jobs, params)
  req.send_request(options)
end

#list_collaboration_trained_model_inference_jobs(params = {}) ⇒ Types::ListCollaborationTrainedModelInferenceJobsResponse

Returns a list of trained model inference jobs in a specified collaboration.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_collaboration_trained_model_inference_jobs({
  next_token: "NextToken",
  max_results: 1,
  collaboration_identifier: "UUID", # required
  trained_model_arn: "TrainedModelArn",
  trained_model_version_identifier: "UUID",
})

Response structure


resp.next_token #=> String
resp.collaboration_trained_model_inference_jobs #=> Array
resp.collaboration_trained_model_inference_jobs[0].trained_model_inference_job_arn #=> String
resp.collaboration_trained_model_inference_jobs[0].configured_model_algorithm_association_arn #=> String
resp.collaboration_trained_model_inference_jobs[0].membership_identifier #=> String
resp.collaboration_trained_model_inference_jobs[0].trained_model_arn #=> String
resp.collaboration_trained_model_inference_jobs[0].trained_model_version_identifier #=> String
resp.collaboration_trained_model_inference_jobs[0].collaboration_identifier #=> String
resp.collaboration_trained_model_inference_jobs[0].status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "CANCEL_PENDING", "CANCEL_IN_PROGRESS", "CANCEL_FAILED", "INACTIVE"
resp.collaboration_trained_model_inference_jobs[0].output_configuration.accept #=> String
resp.collaboration_trained_model_inference_jobs[0].output_configuration.members #=> Array
resp.collaboration_trained_model_inference_jobs[0].output_configuration.members[0]. #=> String
resp.collaboration_trained_model_inference_jobs[0].name #=> String
resp.collaboration_trained_model_inference_jobs[0].description #=> String
resp.collaboration_trained_model_inference_jobs[0].metrics_status #=> String, one of "PUBLISH_SUCCEEDED", "PUBLISH_FAILED"
resp.collaboration_trained_model_inference_jobs[0].metrics_status_details #=> String
resp.collaboration_trained_model_inference_jobs[0].logs_status #=> String, one of "PUBLISH_SUCCEEDED", "PUBLISH_FAILED"
resp.collaboration_trained_model_inference_jobs[0].logs_status_details #=> String
resp.collaboration_trained_model_inference_jobs[0].create_time #=> Time
resp.collaboration_trained_model_inference_jobs[0].update_time #=> Time
resp.collaboration_trained_model_inference_jobs[0]. #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The token value retrieved from a previous call to access the next page of results.

  • :max_results (Integer)

    The maximum size of the results that is returned per call.

  • :collaboration_identifier (required, String)

    The collaboration ID of the collaboration that contains the trained model inference jobs that you are interested in.

  • :trained_model_arn (String)

    The Amazon Resource Name (ARN) of the trained model that was used to create the trained model inference jobs that you are interested in.

  • :trained_model_version_identifier (String)

    The version identifier of the trained model to filter inference jobs by. When specified, only inference jobs that used this specific version of the trained model are returned.

Returns:

See Also:



3003
3004
3005
3006
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3003

def list_collaboration_trained_model_inference_jobs(params = {}, options = {})
  req = build_request(:list_collaboration_trained_model_inference_jobs, params)
  req.send_request(options)
end

#list_collaboration_trained_models(params = {}) ⇒ Types::ListCollaborationTrainedModelsResponse

Returns a list of the trained models in a collaboration.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_collaboration_trained_models({
  next_token: "NextToken",
  max_results: 1,
  collaboration_identifier: "UUID", # required
})

Response structure


resp.next_token #=> String
resp.collaboration_trained_models #=> Array
resp.collaboration_trained_models[0].create_time #=> Time
resp.collaboration_trained_models[0].update_time #=> Time
resp.collaboration_trained_models[0].trained_model_arn #=> String
resp.collaboration_trained_models[0].name #=> String
resp.collaboration_trained_models[0].version_identifier #=> String
resp.collaboration_trained_models[0].incremental_training_data_channels #=> Array
resp.collaboration_trained_models[0].incremental_training_data_channels[0].channel_name #=> String
resp.collaboration_trained_models[0].incremental_training_data_channels[0].version_identifier #=> String
resp.collaboration_trained_models[0].incremental_training_data_channels[0].model_name #=> String
resp.collaboration_trained_models[0].description #=> String
resp.collaboration_trained_models[0].membership_identifier #=> String
resp.collaboration_trained_models[0].collaboration_identifier #=> String
resp.collaboration_trained_models[0].status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "DELETE_PENDING", "DELETE_IN_PROGRESS", "DELETE_FAILED", "INACTIVE", "CANCEL_PENDING", "CANCEL_IN_PROGRESS", "CANCEL_FAILED"
resp.collaboration_trained_models[0].configured_model_algorithm_association_arn #=> String
resp.collaboration_trained_models[0]. #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The token value retrieved from a previous call to access the next page of results.

  • :max_results (Integer)

    The maximum size of the results that is returned per call.

  • :collaboration_identifier (required, String)

    The collaboration ID of the collaboration that contains the trained models you are interested in.

Returns:

See Also:



3060
3061
3062
3063
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3060

def list_collaboration_trained_models(params = {}, options = {})
  req = build_request(:list_collaboration_trained_models, params)
  req.send_request(options)
end

#list_configured_audience_models(params = {}) ⇒ Types::ListConfiguredAudienceModelsResponse

Returns a list of the configured audience models.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_configured_audience_models({
  next_token: "NextToken",
  max_results: 1,
})

Response structure


resp.next_token #=> String
resp.configured_audience_models #=> Array
resp.configured_audience_models[0].create_time #=> Time
resp.configured_audience_models[0].update_time #=> Time
resp.configured_audience_models[0].name #=> String
resp.configured_audience_models[0].audience_model_arn #=> String
resp.configured_audience_models[0].output_config.destination.s3_destination.s3_uri #=> String
resp.configured_audience_models[0].output_config.role_arn #=> String
resp.configured_audience_models[0].description #=> String
resp.configured_audience_models[0].configured_audience_model_arn #=> String
resp.configured_audience_models[0].status #=> String, one of "ACTIVE"

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The token value retrieved from a previous call to access the next page of results.

  • :max_results (Integer)

    The maximum size of the results that is returned per call.

Returns:

See Also:



3106
3107
3108
3109
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3106

def list_configured_audience_models(params = {}, options = {})
  req = build_request(:list_configured_audience_models, params)
  req.send_request(options)
end

#list_configured_model_algorithm_associations(params = {}) ⇒ Types::ListConfiguredModelAlgorithmAssociationsResponse

Returns a list of configured model algorithm associations.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_configured_model_algorithm_associations({
  next_token: "NextToken",
  max_results: 1,
  membership_identifier: "UUID", # required
})

Response structure


resp.next_token #=> String
resp.configured_model_algorithm_associations #=> Array
resp.configured_model_algorithm_associations[0].create_time #=> Time
resp.configured_model_algorithm_associations[0].update_time #=> Time
resp.configured_model_algorithm_associations[0].configured_model_algorithm_association_arn #=> String
resp.configured_model_algorithm_associations[0].configured_model_algorithm_arn #=> String
resp.configured_model_algorithm_associations[0].name #=> String
resp.configured_model_algorithm_associations[0].description #=> String
resp.configured_model_algorithm_associations[0].membership_identifier #=> String
resp.configured_model_algorithm_associations[0].collaboration_identifier #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The token value retrieved from a previous call to access the next page of results.

  • :max_results (Integer)

    The maximum size of the results that is returned per call.

  • :membership_identifier (required, String)

    The membership ID of the member that created the configured model algorithm associations you are interested in.

Returns:

See Also:



3156
3157
3158
3159
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3156

def list_configured_model_algorithm_associations(params = {}, options = {})
  req = build_request(:list_configured_model_algorithm_associations, params)
  req.send_request(options)
end

#list_configured_model_algorithms(params = {}) ⇒ Types::ListConfiguredModelAlgorithmsResponse

Returns a list of configured model algorithms.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_configured_model_algorithms({
  next_token: "NextToken",
  max_results: 1,
})

Response structure


resp.next_token #=> String
resp.configured_model_algorithms #=> Array
resp.configured_model_algorithms[0].create_time #=> Time
resp.configured_model_algorithms[0].update_time #=> Time
resp.configured_model_algorithms[0].configured_model_algorithm_arn #=> String
resp.configured_model_algorithms[0].name #=> String
resp.configured_model_algorithms[0].description #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The token value retrieved from a previous call to access the next page of results.

  • :max_results (Integer)

    The maximum size of the results that is returned per call.

Returns:

See Also:



3198
3199
3200
3201
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3198

def list_configured_model_algorithms(params = {}, options = {})
  req = build_request(:list_configured_model_algorithms, params)
  req.send_request(options)
end

#list_ml_input_channels(params = {}) ⇒ Types::ListMLInputChannelsResponse

Returns a list of ML input channels.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_ml_input_channels({
  next_token: "NextToken",
  max_results: 1,
  membership_identifier: "UUID", # required
})

Response structure


resp.next_token #=> String
resp.ml_input_channels_list #=> Array
resp.ml_input_channels_list[0].create_time #=> Time
resp.ml_input_channels_list[0].update_time #=> Time
resp.ml_input_channels_list[0].membership_identifier #=> String
resp.ml_input_channels_list[0].collaboration_identifier #=> String
resp.ml_input_channels_list[0].name #=> String
resp.ml_input_channels_list[0].configured_model_algorithm_associations #=> Array
resp.ml_input_channels_list[0].configured_model_algorithm_associations[0] #=> String
resp.ml_input_channels_list[0].protected_query_identifier #=> String
resp.ml_input_channels_list[0].ml_input_channel_arn #=> String
resp.ml_input_channels_list[0].status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "DELETE_PENDING", "DELETE_IN_PROGRESS", "DELETE_FAILED", "INACTIVE"
resp.ml_input_channels_list[0].description #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The token value retrieved from a previous call to access the next page of results.

  • :max_results (Integer)

    The maximum number of ML input channels to return.

  • :membership_identifier (required, String)

    The membership ID of the membership that contains the ML input channels that you want to list.

Returns:

See Also:



3251
3252
3253
3254
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3251

def list_ml_input_channels(params = {}, options = {})
  req = build_request(:list_ml_input_channels, params)
  req.send_request(options)
end

#list_tags_for_resource(params = {}) ⇒ Types::ListTagsForResourceResponse

Returns a list of tags for a provided resource.

Examples:

Request syntax with placeholder values


resp = client.list_tags_for_resource({
  resource_arn: "TaggableArn", # required
})

Response structure


resp.tags #=> Hash
resp.tags["TagKey"] #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :resource_arn (required, String)

    The Amazon Resource Name (ARN) of the resource that you are interested in.

Returns:

See Also:



3281
3282
3283
3284
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3281

def list_tags_for_resource(params = {}, options = {})
  req = build_request(:list_tags_for_resource, params)
  req.send_request(options)
end

#list_trained_model_inference_jobs(params = {}) ⇒ Types::ListTrainedModelInferenceJobsResponse

Returns a list of trained model inference jobs that match the request parameters.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_trained_model_inference_jobs({
  next_token: "NextToken",
  max_results: 1,
  membership_identifier: "UUID", # required
  trained_model_arn: "TrainedModelArn",
  trained_model_version_identifier: "UUID",
})

Response structure


resp.next_token #=> String
resp.trained_model_inference_jobs #=> Array
resp.trained_model_inference_jobs[0].trained_model_inference_job_arn #=> String
resp.trained_model_inference_jobs[0].configured_model_algorithm_association_arn #=> String
resp.trained_model_inference_jobs[0].membership_identifier #=> String
resp.trained_model_inference_jobs[0].trained_model_arn #=> String
resp.trained_model_inference_jobs[0].trained_model_version_identifier #=> String
resp.trained_model_inference_jobs[0].collaboration_identifier #=> String
resp.trained_model_inference_jobs[0].status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "CANCEL_PENDING", "CANCEL_IN_PROGRESS", "CANCEL_FAILED", "INACTIVE"
resp.trained_model_inference_jobs[0].output_configuration.accept #=> String
resp.trained_model_inference_jobs[0].output_configuration.members #=> Array
resp.trained_model_inference_jobs[0].output_configuration.members[0]. #=> String
resp.trained_model_inference_jobs[0].name #=> String
resp.trained_model_inference_jobs[0].description #=> String
resp.trained_model_inference_jobs[0].metrics_status #=> String, one of "PUBLISH_SUCCEEDED", "PUBLISH_FAILED"
resp.trained_model_inference_jobs[0].metrics_status_details #=> String
resp.trained_model_inference_jobs[0].logs_status #=> String, one of "PUBLISH_SUCCEEDED", "PUBLISH_FAILED"
resp.trained_model_inference_jobs[0].logs_status_details #=> String
resp.trained_model_inference_jobs[0].create_time #=> Time
resp.trained_model_inference_jobs[0].update_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The token value retrieved from a previous call to access the next page of results.

  • :max_results (Integer)

    The maximum size of the results that is returned per call.

  • :membership_identifier (required, String)

    The membership

  • :trained_model_arn (String)

    The Amazon Resource Name (ARN) of a trained model that was used to create the trained model inference jobs that you are interested in.

  • :trained_model_version_identifier (String)

    The version identifier of the trained model to filter inference jobs by. When specified, only inference jobs that used this specific version of the trained model are returned.

Returns:

See Also:



3352
3353
3354
3355
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3352

def list_trained_model_inference_jobs(params = {}, options = {})
  req = build_request(:list_trained_model_inference_jobs, params)
  req.send_request(options)
end

#list_trained_model_versions(params = {}) ⇒ Types::ListTrainedModelVersionsResponse

Returns a list of trained model versions for a specified trained model. This operation allows you to view all versions of a trained model, including information about their status and creation details. You can use this to track the evolution of your trained models and select specific versions for inference or further training.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_trained_model_versions({
  next_token: "NextToken",
  max_results: 1,
  membership_identifier: "UUID", # required
  trained_model_arn: "TrainedModelArn", # required
  status: "CREATE_PENDING", # accepts CREATE_PENDING, CREATE_IN_PROGRESS, CREATE_FAILED, ACTIVE, DELETE_PENDING, DELETE_IN_PROGRESS, DELETE_FAILED, INACTIVE, CANCEL_PENDING, CANCEL_IN_PROGRESS, CANCEL_FAILED
})

Response structure


resp.next_token #=> String
resp.trained_models #=> Array
resp.trained_models[0].create_time #=> Time
resp.trained_models[0].update_time #=> Time
resp.trained_models[0].trained_model_arn #=> String
resp.trained_models[0].version_identifier #=> String
resp.trained_models[0].incremental_training_data_channels #=> Array
resp.trained_models[0].incremental_training_data_channels[0].channel_name #=> String
resp.trained_models[0].incremental_training_data_channels[0].version_identifier #=> String
resp.trained_models[0].incremental_training_data_channels[0].model_name #=> String
resp.trained_models[0].name #=> String
resp.trained_models[0].description #=> String
resp.trained_models[0].membership_identifier #=> String
resp.trained_models[0].collaboration_identifier #=> String
resp.trained_models[0].status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "DELETE_PENDING", "DELETE_IN_PROGRESS", "DELETE_FAILED", "INACTIVE", "CANCEL_PENDING", "CANCEL_IN_PROGRESS", "CANCEL_FAILED"
resp.trained_models[0].configured_model_algorithm_association_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The pagination token from a previous ListTrainedModelVersions request. Use this token to retrieve the next page of results.

  • :max_results (Integer)

    The maximum number of trained model versions to return in a single page. The default value is 10, and the maximum value is 100.

  • :membership_identifier (required, String)

    The membership identifier for the collaboration that contains the trained model.

  • :trained_model_arn (required, String)

    The Amazon Resource Name (ARN) of the trained model for which to list versions.

  • :status (String)

    Filter the results to only include trained model versions with the specified status. Valid values include CREATE_PENDING, CREATE_IN_PROGRESS, ACTIVE, CREATE_FAILED, and others.

Returns:

See Also:



3424
3425
3426
3427
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3424

def list_trained_model_versions(params = {}, options = {})
  req = build_request(:list_trained_model_versions, params)
  req.send_request(options)
end

#list_trained_models(params = {}) ⇒ Types::ListTrainedModelsResponse

Returns a list of trained models.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_trained_models({
  next_token: "NextToken",
  max_results: 1,
  membership_identifier: "UUID", # required
})

Response structure


resp.next_token #=> String
resp.trained_models #=> Array
resp.trained_models[0].create_time #=> Time
resp.trained_models[0].update_time #=> Time
resp.trained_models[0].trained_model_arn #=> String
resp.trained_models[0].version_identifier #=> String
resp.trained_models[0].incremental_training_data_channels #=> Array
resp.trained_models[0].incremental_training_data_channels[0].channel_name #=> String
resp.trained_models[0].incremental_training_data_channels[0].version_identifier #=> String
resp.trained_models[0].incremental_training_data_channels[0].model_name #=> String
resp.trained_models[0].name #=> String
resp.trained_models[0].description #=> String
resp.trained_models[0].membership_identifier #=> String
resp.trained_models[0].collaboration_identifier #=> String
resp.trained_models[0].status #=> String, one of "CREATE_PENDING", "CREATE_IN_PROGRESS", "CREATE_FAILED", "ACTIVE", "DELETE_PENDING", "DELETE_IN_PROGRESS", "DELETE_FAILED", "INACTIVE", "CANCEL_PENDING", "CANCEL_IN_PROGRESS", "CANCEL_FAILED"
resp.trained_models[0].configured_model_algorithm_association_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The token value retrieved from a previous call to access the next page of results.

  • :max_results (Integer)

    The maximum size of the results that is returned per call.

  • :membership_identifier (required, String)

    The membership ID of the member that created the trained models you are interested in.

Returns:

See Also:



3480
3481
3482
3483
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3480

def list_trained_models(params = {}, options = {})
  req = build_request(:list_trained_models, params)
  req.send_request(options)
end

#list_training_datasets(params = {}) ⇒ Types::ListTrainingDatasetsResponse

Returns a list of training datasets.

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_training_datasets({
  next_token: "NextToken",
  max_results: 1,
})

Response structure


resp.next_token #=> String
resp.training_datasets #=> Array
resp.training_datasets[0].create_time #=> Time
resp.training_datasets[0].update_time #=> Time
resp.training_datasets[0].training_dataset_arn #=> String
resp.training_datasets[0].name #=> String
resp.training_datasets[0].status #=> String, one of "ACTIVE"
resp.training_datasets[0].description #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :next_token (String)

    The token value retrieved from a previous call to access the next page of results.

  • :max_results (Integer)

    The maximum size of the results that is returned per call.

Returns:

See Also:



3523
3524
3525
3526
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3523

def list_training_datasets(params = {}, options = {})
  req = build_request(:list_training_datasets, params)
  req.send_request(options)
end

#put_configured_audience_model_policy(params = {}) ⇒ Types::PutConfiguredAudienceModelPolicyResponse

Create or update the resource policy for a configured audience model.

Examples:

Request syntax with placeholder values


resp = client.put_configured_audience_model_policy({
  configured_audience_model_arn: "ConfiguredAudienceModelArn", # required
  configured_audience_model_policy: "ResourcePolicy", # required
  previous_policy_hash: "Hash",
  policy_existence_condition: "POLICY_MUST_EXIST", # accepts POLICY_MUST_EXIST, POLICY_MUST_NOT_EXIST
})

Response structure


resp.configured_audience_model_policy #=> String
resp.policy_hash #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :configured_audience_model_arn (required, String)

    The Amazon Resource Name (ARN) of the configured audience model that the resource policy will govern.

  • :configured_audience_model_policy (required, String)

    The IAM resource policy.

  • :previous_policy_hash (String)

    A cryptographic hash of the contents of the policy used to prevent unexpected concurrent modification of the policy.

  • :policy_existence_condition (String)

    Use this to prevent unexpected concurrent modification of the policy.

Returns:

See Also:



3567
3568
3569
3570
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3567

def put_configured_audience_model_policy(params = {}, options = {})
  req = build_request(:put_configured_audience_model_policy, params)
  req.send_request(options)
end

#put_ml_configuration(params = {}) ⇒ Struct

Assigns information about an ML configuration.

Examples:

Request syntax with placeholder values


resp = client.put_ml_configuration({
  membership_identifier: "UUID", # required
  default_output_location: { # required
    destination: {
      s3_destination: { # required
        s3_uri: "S3Path", # required
      },
    },
    role_arn: "IamRoleArn", # required
  },
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :membership_identifier (required, String)

    The membership ID of the member that is being configured.

  • :default_output_location (required, Types::MLOutputConfiguration)

    The default Amazon S3 location where ML output is stored for the specified member.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3601
3602
3603
3604
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3601

def put_ml_configuration(params = {}, options = {})
  req = build_request(:put_ml_configuration, params)
  req.send_request(options)
end

#start_audience_export_job(params = {}) ⇒ Struct

Export an audience of a specified size after you have generated an audience.

Examples:

Request syntax with placeholder values


resp = client.start_audience_export_job({
  name: "NameString", # required
  audience_generation_job_arn: "AudienceGenerationJobArn", # required
  audience_size: { # required
    type: "ABSOLUTE", # required, accepts ABSOLUTE, PERCENTAGE
    value: 1, # required
  },
  description: "ResourceDescription",
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    The name of the audience export job.

  • :audience_generation_job_arn (required, String)

    The Amazon Resource Name (ARN) of the audience generation job that you want to export.

  • :audience_size (required, Types::AudienceSize)

    The size of the generated audience. Must match one of the sizes in the configured audience model.

  • :description (String)

    The description of the audience export job.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3641
3642
3643
3644
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3641

def start_audience_export_job(params = {}, options = {})
  req = build_request(:start_audience_export_job, params)
  req.send_request(options)
end

#start_audience_generation_job(params = {}) ⇒ Types::StartAudienceGenerationJobResponse

Information necessary to start the audience generation job.

Examples:

Request syntax with placeholder values


resp = client.start_audience_generation_job({
  name: "NameString", # required
  configured_audience_model_arn: "ConfiguredAudienceModelArn", # required
  seed_audience: { # required
    data_source: {
      s3_uri: "S3Path", # required
    },
    role_arn: "IamRoleArn", # required
    sql_parameters: {
      query_string: "ProtectedQuerySQLParametersQueryStringString",
      analysis_template_arn: "AnalysisTemplateArn",
      parameters: {
        "ParameterName" => "ParameterValue",
      },
    },
    sql_compute_configuration: {
      worker: {
        type: "CR.1X", # accepts CR.1X, CR.4X
        number: 1,
        properties: {
          spark: {
            "SparkPropertyKey" => "SparkPropertyValue",
          },
        },
      },
    },
  },
  include_seed_in_output: false,
  collaboration_id: "UUID",
  description: "ResourceDescription",
  tags: {
    "TagKey" => "TagValue",
  },
})

Response structure


resp.audience_generation_job_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    The name of the audience generation job.

  • :configured_audience_model_arn (required, String)

    The Amazon Resource Name (ARN) of the configured audience model that is used for this audience generation job.

  • :seed_audience (required, Types::AudienceGenerationJobDataSource)

    The seed audience that is used to generate the audience.

  • :include_seed_in_output (Boolean)

    Whether the seed audience is included in the audience generation output.

  • :collaboration_id (String)

    The identifier of the collaboration that contains the audience generation job.

  • :description (String)

    The description of the audience generation job.

  • :tags (Hash<String,String>)

    The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

    The following basic restrictions apply to tags:

    • Maximum number of tags per resource - 50.

    • For each resource, each tag key must be unique, and each tag key can have only one value.

    • Maximum key length - 128 Unicode characters in UTF-8.

    • Maximum value length - 256 Unicode characters in UTF-8.

    • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.

    • Tag keys and values are case sensitive.

    • Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

Returns:

See Also:



3750
3751
3752
3753
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3750

def start_audience_generation_job(params = {}, options = {})
  req = build_request(:start_audience_generation_job, params)
  req.send_request(options)
end

#start_trained_model_export_job(params = {}) ⇒ Struct

Provides the information necessary to start a trained model export job.

Examples:

Request syntax with placeholder values


resp = client.start_trained_model_export_job({
  name: "NameString", # required
  trained_model_arn: "TrainedModelArn", # required
  trained_model_version_identifier: "UUID",
  membership_identifier: "UUID", # required
  output_configuration: { # required
    members: [ # required
      {
        account_id: "AccountId", # required
      },
    ],
  },
  description: "ResourceDescription",
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    The name of the trained model export job.

  • :trained_model_arn (required, String)

    The Amazon Resource Name (ARN) of the trained model that you want to export.

  • :trained_model_version_identifier (String)

    The version identifier of the trained model to export. This specifies which version of the trained model should be exported to the specified destination.

  • :membership_identifier (required, String)

    The membership ID of the member that is receiving the exported trained model artifacts.

  • :output_configuration (required, Types::TrainedModelExportOutputConfiguration)

    The output configuration information for the trained model export job.

  • :description (String)

    The description of the trained model export job.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3803
3804
3805
3806
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3803

def start_trained_model_export_job(params = {}, options = {})
  req = build_request(:start_trained_model_export_job, params)
  req.send_request(options)
end

#start_trained_model_inference_job(params = {}) ⇒ Types::StartTrainedModelInferenceJobResponse

Defines the information necessary to begin a trained model inference job.

Examples:

Request syntax with placeholder values


resp = client.start_trained_model_inference_job({
  membership_identifier: "UUID", # required
  name: "NameString", # required
  trained_model_arn: "TrainedModelArn", # required
  trained_model_version_identifier: "UUID",
  configured_model_algorithm_association_arn: "ConfiguredModelAlgorithmAssociationArn",
  resource_config: { # required
    instance_type: "ml.r7i.48xlarge", # required, accepts ml.r7i.48xlarge, ml.r6i.16xlarge, ml.m6i.xlarge, ml.m5.4xlarge, ml.p2.xlarge, ml.m4.16xlarge, ml.r7i.16xlarge, ml.m7i.xlarge, ml.m6i.12xlarge, ml.r7i.8xlarge, ml.r7i.large, ml.m7i.12xlarge, ml.m6i.24xlarge, ml.m7i.24xlarge, ml.r6i.8xlarge, ml.r6i.large, ml.g5.2xlarge, ml.m5.large, ml.m7i.48xlarge, ml.m6i.16xlarge, ml.p2.16xlarge, ml.g5.4xlarge, ml.m7i.16xlarge, ml.c4.2xlarge, ml.c5.2xlarge, ml.c6i.32xlarge, ml.c4.4xlarge, ml.g5.8xlarge, ml.c6i.xlarge, ml.c5.4xlarge, ml.g4dn.xlarge, ml.c7i.xlarge, ml.c6i.12xlarge, ml.g4dn.12xlarge, ml.c7i.12xlarge, ml.c6i.24xlarge, ml.g4dn.2xlarge, ml.c7i.24xlarge, ml.c7i.2xlarge, ml.c4.8xlarge, ml.c6i.2xlarge, ml.g4dn.4xlarge, ml.c7i.48xlarge, ml.c7i.4xlarge, ml.c6i.16xlarge, ml.c5.9xlarge, ml.g4dn.16xlarge, ml.c7i.16xlarge, ml.c6i.4xlarge, ml.c5.xlarge, ml.c4.xlarge, ml.g4dn.8xlarge, ml.c7i.8xlarge, ml.c7i.large, ml.g5.xlarge, ml.c6i.8xlarge, ml.c6i.large, ml.g5.12xlarge, ml.g5.24xlarge, ml.m7i.2xlarge, ml.c5.18xlarge, ml.g5.48xlarge, ml.m6i.2xlarge, ml.g5.16xlarge, ml.m7i.4xlarge, ml.r6i.32xlarge, ml.m6i.4xlarge, ml.m5.xlarge, ml.m4.10xlarge, ml.r6i.xlarge, ml.m5.12xlarge, ml.m4.xlarge, ml.r7i.2xlarge, ml.r7i.xlarge, ml.r6i.12xlarge, ml.m5.24xlarge, ml.r7i.12xlarge, ml.m7i.8xlarge, ml.m7i.large, ml.r6i.24xlarge, ml.r6i.2xlarge, ml.m4.2xlarge, ml.r7i.24xlarge, ml.r7i.4xlarge, ml.m6i.8xlarge, ml.m6i.large, ml.m5.2xlarge, ml.p2.8xlarge, ml.r6i.4xlarge, ml.m6i.32xlarge, ml.m4.4xlarge, ml.p3.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge
    instance_count: 1,
  },
  output_configuration: { # required
    accept: "InferenceOutputConfigurationAcceptString",
    members: [ # required
      {
        account_id: "AccountId", # required
      },
    ],
  },
  data_source: { # required
    ml_input_channel_arn: "MLInputChannelArn", # required
  },
  description: "ResourceDescription",
  container_execution_parameters: {
    max_payload_in_mb: 1,
  },
  environment: {
    "InferenceEnvironmentMapKeyString" => "InferenceEnvironmentMapValueString",
  },
  kms_key_arn: "KmsKeyArn",
  tags: {
    "TagKey" => "TagValue",
  },
})

Response structure


resp.trained_model_inference_job_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :membership_identifier (required, String)

    The membership ID of the membership that contains the trained model inference job.

  • :name (required, String)

    The name of the trained model inference job.

  • :trained_model_arn (required, String)

    The Amazon Resource Name (ARN) of the trained model that is used for this trained model inference job.

  • :trained_model_version_identifier (String)

    The version identifier of the trained model to use for inference. This specifies which version of the trained model should be used to generate predictions on the input data.

  • :configured_model_algorithm_association_arn (String)

    The Amazon Resource Name (ARN) of the configured model algorithm association that is used for this trained model inference job.

  • :resource_config (required, Types::InferenceResourceConfig)

    Defines the resource configuration for the trained model inference job.

  • :output_configuration (required, Types::InferenceOutputConfiguration)

    Defines the output configuration information for the trained model inference job.

  • :data_source (required, Types::ModelInferenceDataSource)

    Defines the data source that is used for the trained model inference job.

  • :description (String)

    The description of the trained model inference job.

  • :container_execution_parameters (Types::InferenceContainerExecutionParameters)

    The execution parameters for the container.

  • :environment (Hash<String,String>)

    The environment variables to set in the Docker container.

  • :kms_key_arn (String)

    The Amazon Resource Name (ARN) of the KMS key. This key is used to encrypt and decrypt customer-owned data in the ML inference job and associated data.

  • :tags (Hash<String,String>)

    The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

    The following basic restrictions apply to tags:

    • Maximum number of tags per resource - 50.

    • For each resource, each tag key must be unique, and each tag key can have only one value.

    • Maximum key length - 128 Unicode characters in UTF-8.

    • Maximum value length - 256 Unicode characters in UTF-8.

    • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.

    • Tag keys and values are case sensitive.

    • Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms ML considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

Returns:

See Also:



3937
3938
3939
3940
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3937

def start_trained_model_inference_job(params = {}, options = {})
  req = build_request(:start_trained_model_inference_job, params)
  req.send_request(options)
end

#tag_resource(params = {}) ⇒ Struct

Adds metadata tags to a specified resource.

Examples:

Request syntax with placeholder values


resp = client.tag_resource({
  resource_arn: "TaggableArn", # required
  tags: { # required
    "TagKey" => "TagValue",
  },
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :resource_arn (required, String)

    The Amazon Resource Name (ARN) of the resource that you want to assign tags.

  • :tags (required, Hash<String,String>)

    The optional metadata that you apply to the resource to help you categorize and organize them. Each tag consists of a key and an optional value, both of which you define.

    The following basic restrictions apply to tags:

    • Maximum number of tags per resource - 50.

    • For each resource, each tag key must be unique, and each tag key can have only one value.

    • Maximum key length - 128 Unicode characters in UTF-8.

    • Maximum value length - 256 Unicode characters in UTF-8.

    • If your tagging schema is used across multiple services and resources, remember that other services may have restrictions on allowed characters. Generally allowed characters are: letters, numbers, and spaces representable in UTF-8, and the following characters: + - = . _ : / @.

    • Tag keys and values are case sensitive.

    • Do not use aws:, AWS:, or any upper or lowercase combination of such as a prefix for keys as it is reserved for AWS use. You cannot edit or delete tag keys with this prefix. Values can have this prefix. If a tag value has aws as its prefix but the key does not, then Clean Rooms considers it to be a user tag and will count against the limit of 50 tags. Tags with only the key prefix of aws do not count against your tags per resource limit.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3995
3996
3997
3998
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 3995

def tag_resource(params = {}, options = {})
  req = build_request(:tag_resource, params)
  req.send_request(options)
end

#untag_resource(params = {}) ⇒ Struct

Removes metadata tags from a specified resource.

Examples:

Request syntax with placeholder values


resp = client.untag_resource({
  resource_arn: "TaggableArn", # required
  tag_keys: ["TagKey"], # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :resource_arn (required, String)

    The Amazon Resource Name (ARN) of the resource that you want to remove tags from.

  • :tag_keys (required, Array<String>)

    The key values of tags that you want to remove.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



4022
4023
4024
4025
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 4022

def untag_resource(params = {}, options = {})
  req = build_request(:untag_resource, params)
  req.send_request(options)
end

#update_configured_audience_model(params = {}) ⇒ Types::UpdateConfiguredAudienceModelResponse

Provides the information necessary to update a configured audience model. Updates that impact audience generation jobs take effect when a new job starts, but do not impact currently running jobs.

Examples:

Request syntax with placeholder values


resp = client.update_configured_audience_model({
  configured_audience_model_arn: "ConfiguredAudienceModelArn", # required
  output_config: {
    destination: { # required
      s3_destination: { # required
        s3_uri: "S3Path", # required
      },
    },
    role_arn: "IamRoleArn", # required
  },
  audience_model_arn: "AudienceModelArn",
  shared_audience_metrics: ["ALL"], # accepts ALL, NONE
  min_matching_seed_size: 1,
  audience_size_config: {
    audience_size_type: "ABSOLUTE", # required, accepts ABSOLUTE, PERCENTAGE
    audience_size_bins: [1], # required
  },
  description: "ResourceDescription",
})

Response structure


resp.configured_audience_model_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :configured_audience_model_arn (required, String)

    The Amazon Resource Name (ARN) of the configured audience model that you want to update.

  • :output_config (Types::ConfiguredAudienceModelOutputConfig)

    The new output configuration.

  • :audience_model_arn (String)

    The Amazon Resource Name (ARN) of the new audience model that you want to use.

  • :shared_audience_metrics (Array<String>)

    The new value for whether to share audience metrics.

  • :min_matching_seed_size (Integer)

    The minimum number of users from the seed audience that must match with users in the training data of the audience model.

  • :audience_size_config (Types::AudienceSizeConfig)

    The new audience size configuration.

  • :description (String)

    The new description of the configured audience model.

Returns:

See Also:



4089
4090
4091
4092
# File 'gems/aws-sdk-cleanroomsml/lib/aws-sdk-cleanroomsml/client.rb', line 4089

def update_configured_audience_model(params = {}, options = {})
  req = build_request(:update_configured_audience_model, params)
  req.send_request(options)
end