Class: Aws::Bedrock::Types::KnowledgeBaseVectorSearchConfiguration

Inherits:
Struct
  • Object
show all
Defined in:
gems/aws-sdk-bedrock/lib/aws-sdk-bedrock/types.rb

Overview

The configuration details for returning the results from the knowledge base vector search.

Constant Summary collapse

SENSITIVE =
[:filter]

Instance Attribute Summary collapse

Instance Attribute Details

#filterTypes::RetrievalFilter

Specifies the filters to use on the metadata fields in the knowledge base data sources before returning results.



9078
9079
9080
9081
9082
9083
9084
9085
9086
# File 'gems/aws-sdk-bedrock/lib/aws-sdk-bedrock/types.rb', line 9078

class KnowledgeBaseVectorSearchConfiguration < Struct.new(
  :number_of_results,
  :override_search_type,
  :filter,
  :implicit_filter_configuration,
  :reranking_configuration)
  SENSITIVE = [:filter]
  include Aws::Structure
end

#implicit_filter_configurationTypes::ImplicitFilterConfiguration

Configuration for implicit filtering in Knowledge Base vector searches. This allows the system to automatically apply filters based on the query context without requiring explicit filter expressions.



9078
9079
9080
9081
9082
9083
9084
9085
9086
# File 'gems/aws-sdk-bedrock/lib/aws-sdk-bedrock/types.rb', line 9078

class KnowledgeBaseVectorSearchConfiguration < Struct.new(
  :number_of_results,
  :override_search_type,
  :filter,
  :implicit_filter_configuration,
  :reranking_configuration)
  SENSITIVE = [:filter]
  include Aws::Structure
end

#number_of_resultsInteger

The number of text chunks to retrieve; the number of results to return.

Returns:

  • (Integer)


9078
9079
9080
9081
9082
9083
9084
9085
9086
# File 'gems/aws-sdk-bedrock/lib/aws-sdk-bedrock/types.rb', line 9078

class KnowledgeBaseVectorSearchConfiguration < Struct.new(
  :number_of_results,
  :override_search_type,
  :filter,
  :implicit_filter_configuration,
  :reranking_configuration)
  SENSITIVE = [:filter]
  include Aws::Structure
end

#override_search_typeString

By default, Amazon Bedrock decides a search strategy for you. If you're using an Amazon OpenSearch Serverless vector store that contains a filterable text field, you can specify whether to query the knowledge base with a HYBRID search using both vector embeddings and raw text, or SEMANTIC search using only vector embeddings. For other vector store configurations, only SEMANTIC search is available.

Returns:

  • (String)


9078
9079
9080
9081
9082
9083
9084
9085
9086
# File 'gems/aws-sdk-bedrock/lib/aws-sdk-bedrock/types.rb', line 9078

class KnowledgeBaseVectorSearchConfiguration < Struct.new(
  :number_of_results,
  :override_search_type,
  :filter,
  :implicit_filter_configuration,
  :reranking_configuration)
  SENSITIVE = [:filter]
  include Aws::Structure
end

#reranking_configurationTypes::VectorSearchRerankingConfiguration

Configuration for reranking search results in Knowledge Base vector searches. Reranking improves search relevance by reordering initial vector search results using more sophisticated relevance models.



9078
9079
9080
9081
9082
9083
9084
9085
9086
# File 'gems/aws-sdk-bedrock/lib/aws-sdk-bedrock/types.rb', line 9078

class KnowledgeBaseVectorSearchConfiguration < Struct.new(
  :number_of_results,
  :override_search_type,
  :filter,
  :implicit_filter_configuration,
  :reranking_configuration)
  SENSITIVE = [:filter]
  include Aws::Structure
end