
Guide du développeur

AWS SDK de chiffrement de base de
données

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS SDK de chiffrement de base de données Guide du développeur

AWS SDK de chiffrement de base de données: Guide du développeur

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Les marques commerciales et la présentation commerciale d’Amazon ne peuvent pas être utilisées
en relation avec un produit ou un service extérieur à Amazon, d’une manière susceptible d’entraîner
une confusion chez les clients, ou d’une manière qui dénigre ou discrédite Amazon. Toutes les autres
marques commerciales qui ne sont pas la propriété d’Amazon appartiennent à leurs propriétaires
respectifs, qui peuvent ou non être affiliés ou connectés à Amazon, ou sponsorisés par Amazon.

AWS SDK de chiffrement de base de données Guide du développeur

Table of Contents
Qu'est-ce que le SDK AWS de chiffrement des bases de données ? ... 1

Développé dans des référentiels open source ... 3
Support et maintenance .. 3
Envoyer un commentaire .. 4
Concepts .. 4

Chiffrement d’enveloppe ... 5
Clé de données .. 7
Clé d'emballage .. 8
Porte-clés .. 8
Actions cryptographiques .. 9
Description du matériau .. 10
Contexte de chiffrement ... 11
Gestionnaire de matériaux de chiffrement ... 11
Chiffrement symétrique et asymétrique .. 12
Engagement clé .. 12
Signatures numériques ... 13

Comment ça marche ... 15
Chiffrer et signer ... 15
Déchiffrer et vérifier .. 17

Suites d'algorithmes prises en charge .. 18
Suite d'algorithmes par défaut .. 21
AES-GCM sans signatures numériques ECDSA ... 21

Interaction avec AWS KMS .. 24
Configuration du kit SDK .. 26

Sélection d'un langage de programmation .. 26
Sélection des clés d'emballage ... 26
Création d'un filtre de découverte ... 28
Utilisation de bases de données mutualisées ... 29
Création de balises signées .. 30

Principaux magasins .. 38
Terminologie et concepts clés du magasin ... 38
Implémentation des autorisations avec le moindre privilégié .. 39
Créez un magasin de clés .. 40
Configurer les actions clés du magasin .. 41

iii

AWS SDK de chiffrement de base de données Guide du développeur

Configurez les actions clés de votre boutique ... 42
Créez des clés de branche ... 45
Faites pivoter votre clé de branche active .. 49

Porte-clés .. 52
Fonctionnement des porte-clés ... 53
AWS KMS porte-clés ... 54

Autorisations requises pour les AWS KMS porte-clés ... 55
Identification AWS KMS keys dans un AWS KMS porte-clés .. 56
Création d'un AWS KMS porte-clés ... 57
Utilisation de plusieurs régions AWS KMS keys .. 60
Utilisation d'un porte-clés AWS KMS Discovery .. 62
Utiliser un porte-clés de découverte AWS KMS régional ... 65

AWS KMS Porte-clés hiérarchiques ... 67
Comment ça marche .. 69
Prérequis ... 71
Autorisations requises ... 72
Choisissez un cache ... 72
Création d'un trousseau de clés hiérarchique .. 82
Utilisation du trousseau de clés hiérarchique pour un chiffrement consultable 88

AWS KMS Porte-clés ECDH ... 93
Autorisations requises pour les AWS KMS porte-clés ECDH .. 94
Création d'un AWS KMS porte-clés ECDH .. 94
Création d'un AWS KMS porte-clés de découverte ECDH .. 98

Porte-clés AES brut ... 101
Porte-clés RSA bruts ... 104
Porte-clés ECDH bruts .. 107

Création d'un porte-clés ECDH brut ... 108
Porte-clés multiples ... 118

Chiffrement consultable .. 122
Les balises sont-elles adaptées à mon ensemble de données ? ... 123
Scénario de chiffrement consultable ... 126
Balises .. 128

Balises standard ... 129
Balises composées ... 130

Balises de planification .. 131
Considérations relatives aux bases de données mutualisées ... 133

iv

AWS SDK de chiffrement de base de données Guide du développeur

Choisir un type de balise .. 133
Choix de la longueur d'une balise .. 140
Choisir un nom de balise ... 147

Configuration des balises .. 148
Configuration des balises standard .. 149
Configuration de balises composées ... 158
Exemples de configuration ... 169

Utilisation de balises .. 173
Interrogation de balises .. 176

Chiffrement consultable pour les bases de données mutualisées .. 178
Interrogation de balises dans une base de données mutualisée ... 181

Amazon DynamoDB ... 183
Chiffrement côté client et côté serveur ... 184
Quels sont les champs chiffrés et signés ? .. 186

Chiffrement des valeurs d'attribut ... 187
Signature de l'élément .. 188

Chiffrement consultable dans DynamoDB .. 188
Configuration des index secondaires avec des balises ... 189
Tester les sorties des balises ... 190

Mettre à jour votre modèle de données .. 196
Ajouter ENCRYPT_AND_SIGN de SIGN_ONLY nouveaux
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributs et .. 198
Supprimer les attributs existants .. 199
Remplacer un ENCRYPT_AND_SIGN attribut existant par SIGN_ONLY ou
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT .. 199
Modifier un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribut SIGN_ONLY ou un
existant en ENCRYPT_AND_SIGN ... 200
Ajouter un nouvel DO_NOTHING attribut ... 201
Modifier un SIGN_ONLY attribut existant en
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT .. 202
Modifier un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribut existant en
SIGN_ONLY ... 202

Langages de programmation .. 203
Java ... 203
.NET .. 240
Rust ... 257

v

AWS SDK de chiffrement de base de données Guide du développeur

Héritée .. 263
AWS SDK de chiffrement de base de données pour la prise en charge des versions
DynamoDB .. 264
Comment ça marche .. 264
Concepts ... 268
Fournisseur de matériel cryptographique ... 273
Langages de programmation .. 305
Modification de votre modèle de données ... 332
Résolution des problèmes .. 337

Renommer le client de chiffrement DynamoDB .. 342
Référence ... 344

Format de description du matériau ... 344
AWS KMS Détails techniques du porte-clés hiérarchique .. 348

Historique de la documentation ... 350
.. cccliii

vi

AWS SDK de chiffrement de base de données Guide du développeur

Qu'est-ce que le SDK AWS de chiffrement des bases de
données ?

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Le SDK AWS Database Encryption est un ensemble de bibliothèques logicielles qui vous permettent
d'inclure le chiffrement côté client dans la conception de votre base de données. Le SDK AWS
Database Encryption fournit des solutions de chiffrement au niveau des enregistrements. Vous
spécifiez quels champs sont cryptés et quels champs sont inclus dans les signatures afin de garantir
l'authenticité de vos données. Le chiffrement de vos données sensibles en transit et au repos permet
de garantir que vos données en texte brut ne sont pas accessibles à des tiers, y compris. AWS Le
SDK AWS de chiffrement de base de données est fourni gratuitement sous la licence Apache 2.0.

Ce guide du développeur fournit une présentation conceptuelle du SDK AWS Database Encryption,
notamment une introduction à son architecture, des détails sur la façon dont il protège vos données,
en quoi il diffère du chiffrement côté serveur et des conseils sur la sélection des composants
essentiels de votre application afin de vous aider à démarrer.

Le SDK AWS Database Encryption prend en charge Amazon DynamoDB avec un chiffrement au
niveau des attributs.

Le SDK AWS de chiffrement de base de données présente les avantages suivants :

Conçu spécialement pour les applications de base de données

Il n'est pas nécessaire d'être un expert en cryptographie pour utiliser le SDK AWS Database
Encryption. Les implémentations incluent des méthodes d'assistance conçues pour fonctionner
avec vos applications existantes.

Après avoir créé et configuré les composants requis, le client de chiffrement chiffre et signe de
manière transparente vos enregistrements lorsque vous les ajoutez à une base de données, puis
les vérifie et les déchiffre lorsque vous les récupérez.

1

AWS SDK de chiffrement de base de données Guide du développeur

Inclut le chiffrement et la signature sécurisées

Le SDK AWS de chiffrement de base de données inclut des implémentations sécurisées qui
chiffrent les valeurs des champs de chaque enregistrement à l'aide d'une clé de chiffrement
des données unique, puis signent l'enregistrement pour le protéger contre les modifications non
autorisées, telles que l'ajout ou la suppression de champs, ou l'échange de valeurs chiffrées.

Utilise les matériaux de chiffrement de n'importe quelle source

Le SDK AWS Database Encryption utilise des trousseaux de clés pour générer, chiffrer et
déchiffrer la clé de chiffrement des données unique qui protège votre dossier. Les porte-clés
déterminent les clés d'encapsulation qui chiffrent cette clé de données.

Vous pouvez utiliser des clés d'encapsulage provenant de n'importe quelle source, y compris
des services de cryptographie tels que AWS Key Management Service(AWS KMS) ou AWS
CloudHSM. Le SDK AWS de chiffrement de base de données ne nécessite Compte AWS aucun
AWS service.

Support pour la mise en cache du matériel cryptographique

Le trousseau de clés AWS KMS hiérarchique est une solution de mise en cache des matériaux
cryptographiques qui réduit le nombre d' AWS KMS appels en utilisant des clés de branche
AWS KMS protégées conservées dans une table Amazon DynamoDB, puis en mettant en
cache localement les éléments clés de branche utilisés dans les opérations de chiffrement et
de déchiffrement. Il vous permet de protéger votre matériel cryptographique sous une clé KMS
de chiffrement symétrique sans avoir à appeler AWS KMS chaque fois que vous chiffrez ou
déchiffrez un enregistrement. Le porte-clés AWS KMS hiérarchique est un bon choix pour les
applications qui doivent minimiser les appels à AWS KMS.

Chiffrement consultable

Vous pouvez concevoir des bases de données capables de rechercher des enregistrements
chiffrés sans déchiffrer l'intégralité de la base de données. En fonction de votre modèle de
menace et de vos exigences en matière de requêtes, vous pouvez utiliser le chiffrement
consultable pour effectuer des recherches de correspondance exacte ou des requêtes complexes
plus personnalisées sur votre base de données cryptée.

Support pour les schémas de base de données mutualisés

Le SDK AWS Database Encryption vous permet de protéger les données stockées dans des
bases de données avec un schéma partagé en isolant chaque client avec des matériaux de

2

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS SDK de chiffrement de base de données Guide du développeur

chiffrement distincts. Si plusieurs utilisateurs effectuent des opérations de chiffrement dans
votre base de données, utilisez l'un des trousseaux de AWS KMS clés pour fournir à chaque
utilisateur une clé distincte à utiliser dans ses opérations cryptographiques. Pour de plus amples
informations, veuillez consulter Utilisation de bases de données mutualisées.

Support pour des mises à jour de schéma fluides

Lorsque vous configurez le SDK de chiffrement de AWS base de données, vous fournissez
des actions cryptographiques qui indiquent au client les champs à chiffrer et à signer, les
champs à signer (mais pas à chiffrer) et ceux à ignorer. Après avoir utilisé le SDK AWS de
chiffrement de base de données pour protéger vos enregistrements, vous pouvez toujours
apporter des modifications à votre modèle de données. Vous pouvez mettre à jour vos actions
cryptographiques, telles que l'ajout ou la suppression de champs chiffrés, en un seul déploiement.

Développé dans des référentiels open source

Le SDK AWS Database Encryption est développé dans des référentiels open source sur. GitHub
Vous pouvez utiliser ces référentiels pour consulter le code, lire et signaler les problèmes, et trouver
des informations spécifiques à votre implémentation.

Le SDK AWS de chiffrement de base de données pour DynamoDB

• Le référentiel aws-database-encryption-sdk-dynamodb GitHub prend en charge les dernières
versions du SDK de chiffrement de AWS base de données pour DynamoDB en Java, .NET et Rust.

Le SDK AWS de chiffrement de base de données pour DynamoDB est un produit de Dafny, un
langage compatible avec la vérification dans lequel vous rédigez les spécifications, le code pour
les implémenter et les preuves pour les tester. Le résultat est une bibliothèque qui implémente
les fonctionnalités du SDK de chiffrement de AWS base de données pour DynamoDB dans une
structure garantissant l'exactitude fonctionnelle.

Support et maintenance

Le SDK AWS Database Encryption utilise la même politique de maintenance que le AWS SDK et
les outils, y compris ses phases de versionnement et de cycle de vie. En tant que bonne pratique,
nous vous recommandons d'utiliser la dernière version disponible du SDK de chiffrement de base de
données pour l'implémentation de votre AWS base de données, et de procéder à une mise à niveau
à mesure que de nouvelles versions sont publiées.

Développé dans des référentiels open source 3

https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/dafny-lang/dafny/blob/master/README.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html

AWS SDK de chiffrement de base de données Guide du développeur

Pour plus d'informations, consultez la politique de maintenance de AWS SDKs and Tools dans le
guide de référence AWS SDKs and Tools.

Envoyer un commentaire

Nous apprécions vos commentaires. Si vous avez une question ou un commentaire, ou un problème
à signaler, veuillez utiliser les ressources suivantes.

Si vous découvrez une faille de sécurité potentielle dans le SDK de chiffrement des AWS bases de
données, veuillez en informer le service AWS de sécurité. Ne créez pas de GitHub problème public.

Pour émettre des commentaires sur cette documentation, utilisez le lien des commentaires sur
n'importe quelle page.

AWS Concepts du SDK de chiffrement de base de données

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Cette rubrique explique les concepts et la terminologie utilisés dans le SDK AWS Database
Encryption.

Pour savoir comment les composants du SDK de chiffrement AWS de base de données
interagissent, consultezFonctionnement du SDK AWS de chiffrement de base de données.

Pour en savoir plus sur le SDK AWS de chiffrement des bases de données, consultez les rubriques
suivantes.

• Découvrez comment le SDK AWS de chiffrement des bases de données utilise le chiffrement
d'enveloppe pour protéger vos données.

• Découvrez les éléments du chiffrement des enveloppes : les clés de données qui protègent vos
enregistrements et les clés d'encapsulation qui protègent vos clés de données.

• Découvrez les porte-clés qui déterminent les clés d'emballage que vous utilisez.

• Découvrez le contexte de chiffrement qui renforce l'intégrité de votre processus de chiffrement.

Envoyer un commentaire 4

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://aws.amazon.com/security/vulnerability-reporting/

AWS SDK de chiffrement de base de données Guide du développeur

• Découvrez la description matérielle que les méthodes de chiffrement ajoutent à votre dossier.

• Découvrez les actions cryptographiques qui indiquent au SDK AWS Database Encryption les
champs à chiffrer et à signer.

Rubriques

• Chiffrement d’enveloppe

• Clé de données

• Clé d'emballage

• Porte-clés

• Actions cryptographiques

• Description du matériau

• Contexte de chiffrement

• Gestionnaire de matériaux de chiffrement

• Chiffrement symétrique et asymétrique

• Engagement clé

• Signatures numériques

Chiffrement d’enveloppe

La sécurité de vos données chiffrées dépend partiellement de la protection de la clé de données
capable de les déchiffrer. Le chiffrement de la clés de données en vue de sa protection est un
bonne pratique reconnue. Pour ce faire, vous avez besoin d'une autre clé de chiffrement, connue
sous le nom de clé de chiffrement ou clé d'encapsulation. La pratique consistant à utiliser une
clé d'encapsulation pour chiffrer des clés de données est connue sous le nom de chiffrement
d'enveloppe.

Protection des clés de données

Le SDK AWS Database Encryption chiffre chaque champ à l'aide d'une clé de données unique. Il
chiffre ensuite chaque clé de données sous la clé d'encapsulation que vous spécifiez. Il stocke les
clés de données cryptées dans la description du matériau.

Pour spécifier votre clé d'emballage, vous utilisez un porte-clés.

Chiffrement d’enveloppe 5

AWS SDK de chiffrement de base de données Guide du développeur

Chiffrer les mêmes données sous plusieurs clés d'encapsulation

Vous pouvez chiffrer la clé de données à l'aide de plusieurs clés d'encapsulation. Vous
souhaiterez peut-être fournir des clés d'encapsulation différentes pour différents utilisateurs,
ou des clés d'encapsulation de différents types ou à différents emplacements. Chacune des
clés d'encapsulation chiffre la même clé de données. Le SDK AWS de chiffrement de base de
données stocke toutes les clés de données cryptées à côté des champs cryptés de la description
du matériel.

Pour déchiffrer les données, vous devez fournir au moins une clé d'encapsulation capable de
déchiffrer les clés de données chiffrées.

Combinaison des points forts de plusieurs algorithmes

Pour chiffrer vos données, le SDK de chiffrement de AWS base de données utilise par défaut une
suite d'algorithmes avec chiffrement symétrique AES-GCM, fonction de dérivation de clés basée
sur HMAC (HKDF) et signature ECDSA. Pour chiffrer la clé de données, vous pouvez spécifier un
algorithme de chiffrement symétrique ou asymétrique adapté à votre clé d'encapsulation.

En règle générale, les algorithmes de chiffrement à clé symétrique sont plus rapides et produisent
des textes chiffrés plus petits que le chiffrement asymétrique et le chiffrement de clé publique.
Mais les algorithmes à clé publique assurent une séparation intrinsèque des rôles. Pour combiner
les points forts de chacun, vous pouvez chiffrer la clé de données avec le chiffrement par clé
publique.

Nous vous recommandons d'utiliser l'un des AWS KMS porte-clés dans la mesure du possible.
Lorsque vous utilisez le AWS KMS trousseau de clés, vous pouvez choisir de combiner les

Chiffrement d’enveloppe 6

AWS SDK de chiffrement de base de données Guide du développeur

forces de plusieurs algorithmes en spécifiant un RSA asymétrique AWS KMS key comme clé
d'encapsulation. Vous pouvez également utiliser une clé KMS de chiffrement symétrique.

Clé de données

Une clé de données est une clé de chiffrement que le SDK de chiffrement de AWS base de données
utilise pour chiffrer les champs d'un enregistrement marqués ENCRYPT_AND_SIGN dans les actions
cryptographiques. Chaque clé de données est un tableau d'octets qui respecte les exigences
concernant les clés cryptographiques. Le SDK AWS de chiffrement de base de données utilise une
clé de données unique pour chiffrer chaque attribut.

Il n'est pas nécessaire de spécifier, de générer, d'implémenter, d'étendre, de protéger ou d'utiliser des
clés de données. Le SDK AWS de chiffrement de base de données fait cela pour vous lorsque vous
appelez les opérations de chiffrement et de déchiffrement.

Pour protéger vos clés de données, le SDK AWS de chiffrement de base de données les chiffre à
l'aide d'une ou de plusieurs clés de chiffrement appelées clés d'encapsulation. Une fois que le SDK
AWS de chiffrement de base de données utilise vos clés de données en texte brut pour chiffrer vos
données, il les supprime de la mémoire dès que possible. Stocke ensuite la clé de données cryptée
dans la description du matériau. Pour plus de détails, consultez Fonctionnement du SDK AWS de
chiffrement de base de données.

Tip

Dans le SDK AWS Database Encryption, nous distinguons les clés de données des clés
de chiffrement de données. Il est recommandé que toutes les suites d'algorithmes prises
en charge utilisent une fonction de dérivation de clés. La fonction de dérivation de clés
prend une clé de données en entrée et renvoie les clés de chiffrement des données qui
sont réellement utilisées pour chiffrer vos enregistrements. C'est pour cette raison que nous
indiquons souvent que les données sont chiffrées « sous » une clé de données plutôt que
« par » la clé de données.

Chaque clé de données chiffrée inclut des métadonnées, notamment l'identifiant de la clé
d'encapsulation qui l'a chiffrée. Ces métadonnées permettent au SDK de chiffrement de AWS base
de données d'identifier les clés d'encapsulation valides lors du déchiffrement.

Clé de données 7

https://en.wikipedia.org/wiki/Key_derivation_function

AWS SDK de chiffrement de base de données Guide du développeur

Clé d'emballage

Une clé d'encapsulation est une clé de chiffrement utilisée par le SDK AWS de chiffrement de
base de données pour chiffrer la clé de données qui chiffre vos enregistrements. Chaque clé de
données peut être chiffrée sous une ou plusieurs clés d'encapsulation. Vous déterminez quelles clés
d'encapsulation sont utilisées pour protéger vos données lorsque vous configurez un trousseau de
clés.

Le SDK AWS Database Encryption prend en charge plusieurs clés d'encapsulation couramment
utilisées, telles que AWS Key Management Service(AWS KMS) les clés KMS de chiffrement
symétriques (y compris les clés multirégionales) et AWS KMS les clés RSA KMS asymétriques, les
clés AES-GCM (Advanced Encryption Standard/Galois Counter Mode) brutes et les clés RSA brutes.
Nous vous recommandons d'utiliser des clés KMS dans la mesure du possible. Pour choisir la clé
d'encapsulation à utiliser, consultez la section Sélection des clés d'encapsulation.

Lorsque vous utilisez le chiffrement des enveloppes, vous devez protéger vos clés d'emballage
contre tout accès non autorisé. Pour ce faire, vous pouvez utiliser l'une des méthodes suivantes :

• Utilisez un service conçu à cet effet, tel que AWS Key Management Service (AWS KMS).

• Utilisez un module de sécurité matériel (HSM) tel que celui proposé par AWS CloudHSM.

• Utilisez d'autres outils et services de gestion clés.

Si vous n'avez pas de système de gestion des clés, nous vous le recommandons AWS KMS. Le SDK
AWS de chiffrement de base de données s'intègre AWS KMS pour vous aider à protéger et à utiliser
vos clés d'encapsulation.

Porte-clés

Pour spécifier les clés d'encapsulation que vous utilisez pour le chiffrement et le déchiffrement, vous
utilisez un trousseau de clés. Vous pouvez utiliser les trousseaux de clés fournis par le SDK AWS
Database Encryption ou concevoir vos propres implémentations.

Clé d'emballage 8

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/asymmetric-key-specs.html#key-spec-rsa
https://docs.aws.amazon.com/kms/latest/developerguide/asymmetric-key-specs.html#key-spec-rsa
https://aws.amazon.com/kms/
https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/

AWS SDK de chiffrement de base de données Guide du développeur

Un porte-clés génère, chiffre et déchiffre des clés de données. Il génère également les clés MAC
utilisées pour calculer les codes d'authentification des messages basés sur le hachage (HMACs)
contenus dans la signature. Lorsque vous définissez un trousseau de clés, vous pouvez spécifier
les clés d'encapsulation qui chiffrent vos clés de données. La plupart des porte-clés contiennent au
moins une clé d'emballage ou un service fournissant et protégeant les clés d'emballage. Lors du
chiffrement, le SDK AWS de chiffrement de base de données utilise toutes les clés d'encapsulation
spécifiées dans le jeu de clés pour chiffrer la clé de données. Pour obtenir de l'aide sur le choix et
l'utilisation des trousseaux de clés définis par le SDK AWS de chiffrement de base de données,
consultez la section Utilisation des trousseaux de clés.

Actions cryptographiques

Les actions cryptographiques indiquent au crypteur les actions à effectuer sur chaque champ d'un
enregistrement.

Les valeurs de l'action cryptographique peuvent être l'une des suivantes :

• Chiffrer et signer — Chiffrez le champ. Incluez le champ crypté dans la signature.

• Signer uniquement — Incluez le champ dans la signature.

• Signer et inclure dans le contexte de chiffrement — Incluez le champ dans le contexte de signature
et de chiffrement.

Par défaut, les clés de partition et de tri sont les seuls attributs inclus dans le contexte
de chiffrement. Vous pouvez envisager de définir des champs supplémentaires
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT afin que le fournisseur d'ID de clé de branche
pour votre jeu de clés AWS KMS hiérarchique puisse identifier la clé de branche requise pour le
déchiffrement à partir du contexte de chiffrement. Pour plus d'informations, consultez le fournisseur
d'ID de clé de branche.

Note

Pour utiliser l'action SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographique,
vous devez utiliser la version 3.3 ou ultérieure du SDK AWS Database Encryption.
Déployez la nouvelle version sur tous les lecteurs avant de mettre à jour votre modèle de
données pour l'inclureSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

• Ne rien faire : ne chiffrez pas et n'incluez pas le champ dans la signature.

Actions cryptographiques 9

AWS SDK de chiffrement de base de données Guide du développeur

Pour tous les champs susceptibles de stocker des données sensibles, utilisez Chiffrer et signer.
Pour les valeurs de clé primaire (par exemple, une clé de partition et une clé de tri dans une table
DynamoDB), utilisez Signer uniquement ou Signer et inclure dans le contexte de chiffrement. Si vous
spécifiez des attributs Sign et incluez dans le contexte de chiffrement, les attributs de partition et de
tri doivent également être Signer et inclure dans le contexte de chiffrement. Il n'est pas nécessaire
de spécifier des actions cryptographiques pour la description du matériau. Le SDK AWS Database
Encryption signe automatiquement le champ dans lequel la description du matériau est stockée.

Choisissez vos actions cryptographiques avec soin. En cas de doute, utilisez Chiffrer
et signer. Une fois que vous avez utilisé le SDK de chiffrement de AWS base de
données pour protéger vos enregistrements, vous ne pouvez pas remplacer un
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT champ existant ENCRYPT_AND_SIGN ou par
une action cryptographique assignée à un champ existantDO_NOTHING. SIGN_ONLY DO_NOTHING
Toutefois, vous pouvez toujours apporter d'autres modifications à votre modèle de données.
Par exemple, vous pouvez ajouter ou supprimer des champs chiffrés dans le cadre d'un seul
déploiement.

Description du matériau

La description du matériau sert d'en-tête à un enregistrement crypté. Lorsque vous chiffrez et
signez des champs avec le SDK de chiffrement de AWS base de données, le crypteur enregistre
la description du matériel au fur et à mesure qu'il assemble le matériel cryptographique et stocke la
description du matériel dans un nouveau champ (aws_dbe_head) qu'il ajoute à votre enregistrement.

La description matérielle est une structure de données formatée portable qui contient des copies
cryptées des clés de données et d'autres informations, telles que les algorithmes de chiffrement,
le contexte de chiffrement et les instructions de chiffrement et de signature. Le crypteur enregistre
la description du matériel lorsqu'il assemble le matériel cryptographique pour le chiffrement et la
signature. Plus tard, lorsqu'il doit assembler du matériel cryptographique pour vérifier et déchiffrer un
champ, il utilise la description du matériel comme guide.

Le stockage des clés de données chiffrées à côté du champ crypté rationalise l'opération
de déchiffrement et vous évite d'avoir à stocker et à gérer les clés de données cryptées
indépendamment des données qu'elles chiffrent.

Pour des informations techniques sur la description du matériau, voirFormat de description du
matériau.

Description du matériau 10

AWS SDK de chiffrement de base de données Guide du développeur

Contexte de chiffrement

Pour améliorer la sécurité de vos opérations cryptographiques, le SDK de chiffrement AWS de
base de données inclut un contexte de chiffrement dans toutes les demandes de chiffrement et de
signature d'un enregistrement.

Un contexte de chiffrement est un ensemble de paires nom-valeur qui contient des données non
secrètes arbitraires authentifiées supplémentaires. Le SDK AWS Database Encryption inclut le nom
logique de votre base de données et les valeurs de clé primaire (par exemple, une clé de partition et
une clé de tri dans une table DynamoDB) dans le contexte du chiffrement. Lorsque vous chiffrez et
signez un champ, le contexte de chiffrement est lié cryptographiquement à l'enregistrement chiffré, de
sorte que le même contexte de chiffrement est requis pour déchiffrer le champ.

Si vous utilisez un AWS KMS trousseau de clés, le SDK AWS Database Encryption utilise également
le contexte de chiffrement pour fournir des données authentifiées supplémentaires (AAD) dans les
appels auxquels le trousseau de clés passe. AWS KMS

Chaque fois que vous utilisez la suite d'algorithmes par défaut, le gestionnaire de matériel
cryptographique (CMM) ajoute une paire nom-valeur au contexte de chiffrement composée d'un nom
réservé et d'une valeur représentant la clé de vérification publique. aws-crypto-public-key La
clé de vérification publique est enregistrée dans la description du matériau.

Gestionnaire de matériaux de chiffrement

Le gestionnaire de matériel cryptographique (CMM) assemble le matériel cryptographique utilisé pour
chiffrer, déchiffrer et signer vos données. Chaque fois que vous utilisez la suite d'algorithmes par
défaut, le matériel cryptographique inclut des clés de données chiffrées et en texte brut, des clés de
signature symétriques et une clé de signature asymétrique. Vous n'interagissez jamais directement
avec le CMM. Les méthodes de chiffrement et de déchiffrement s'en occupent pour vous.

Comme le CMM fait office de liaison entre le SDK de chiffrement de AWS base de données et un
trousseau de clés, il constitue un point idéal pour la personnalisation et l'extension, notamment pour
le soutien à l'application des politiques. Vous pouvez spécifier un CMM de manière explicite, mais ce
n'est pas obligatoire. Lorsque vous spécifiez un jeu de clés, le SDK de chiffrement AWS de base de
données crée un CMM par défaut pour vous. Le CMM par défaut obtient le matériel de chiffrement ou
de déchiffrement à partir du trousseau de clés que vous spécifiez. Pour cela, il peut être nécessaire
d'appeler un service de chiffrement, comme AWS Key Management Service (AWS KMS).

Contexte de chiffrement 11

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK de chiffrement de base de données Guide du développeur

Chiffrement symétrique et asymétrique

Le chiffrement symétrique utilise la même clé pour chiffrer et déchiffrer les données.

Le chiffrement asymétrique utilise une paire de clés de données liées mathématiquement. L'une des
clés de la paire chiffre les données ; seule l'autre clé de la paire peut les déchiffrer.

Le SDK AWS de chiffrement de base de données utilise le chiffrement d'enveloppe. Il chiffre vos
données à l'aide d'une clé de données symétrique. Il chiffre la clé de données symétrique avec une
ou plusieurs clés d'encapsulation symétriques ou asymétriques. Il ajoute une description matérielle à
l'enregistrement qui inclut au moins une copie cryptée de la clé de données.

Chiffrement de vos données (chiffrement symétrique)

Pour chiffrer vos données, le SDK de chiffrement AWS de base de données utilise une clé de
données symétrique et une suite d'algorithmes incluant un algorithme de chiffrement symétrique.
Pour déchiffrer les données, le SDK AWS de chiffrement de base de données utilise la même clé
de données et la même suite d'algorithmes.

Chiffrement de votre clé de données (chiffrement symétrique ou asymétrique)

Le trousseau de clés que vous fournissez à une opération de chiffrement et de déchiffrement
détermine la manière dont la clé de données symétrique est chiffrée et déchiffrée. Vous pouvez
choisir un trousseau de clés utilisant un chiffrement symétrique, tel qu'un trousseau de AWS KMS
clés doté d'une clé KMS de chiffrement symétrique, ou un jeu de clés utilisant un chiffrement
asymétrique, tel qu'un trousseau de clés doté d'une AWS KMS clé RSA KMS asymétrique.

Engagement clé

Le SDK AWS de chiffrement des bases de données prend en charge l'engagement par clé (parfois
appelé robustesse), une propriété de sécurité qui garantit que chaque texte chiffré ne peut être
déchiffré qu'en un seul texte clair. Pour ce faire, l'engagement clé garantit que seule la clé de
données qui a chiffré votre enregistrement sera utilisée pour le déchiffrer. Le SDK AWS Database
Encryption inclut un engagement clé pour toutes les opérations de chiffrement et de déchiffrement.

La plupart des chiffrements symétriques modernes (y compris AES) chiffrent le texte en clair avec
une clé secrète unique, comme la clé de données unique que le SDK de chiffrement de AWS base
de données utilise pour chiffrer chaque champ de texte en clair marqué dans un enregistrement.
ENCRYPT_AND_SIGN Le déchiffrement de cet enregistrement avec la même clé de données renvoie

Chiffrement symétrique et asymétrique 12

AWS SDK de chiffrement de base de données Guide du développeur

un texte en clair identique à l'original. Le déchiffrement avec une autre clé échouera généralement.
Bien que cela soit difficile, il est techniquement possible de déchiffrer un texte chiffré sous deux clés
différentes. Dans de rares cas, il est possible de trouver une clé capable de déchiffrer partiellement le
texte chiffré en un texte clair différent, mais toujours intelligible.

Le SDK AWS de chiffrement de base de données chiffre toujours chaque attribut sous une clé de
données unique. Il peut chiffrer cette clé de données sous plusieurs clés d'encapsulation, mais les
clés d'encapsulation chiffrent toujours la même clé de données. Néanmoins, un enregistrement
chiffré sophistiqué créé manuellement peut en fait contenir différentes clés de données, chacune
chiffrée par une clé d'encapsulation différente. Par exemple, si un utilisateur déchiffre l'enregistrement
chiffré, il renvoie 0x0 (faux) tandis qu'un autre utilisateur déchiffre le même enregistrement crypté
obtient 0x1 (vrai).

Pour éviter ce scénario, le SDK de chiffrement AWS de base de données inclut un engagement clé
lors du chiffrement et du déchiffrement. La méthode de cryptage lie cryptographiquement la clé de
données unique qui a produit le texte chiffré à l'engagement de clé, un code d'authentification de
message basé sur le hachage (HMAC) calculé sur la description du matériel à l'aide d'une dérivation
de la clé de données. Ensuite, il enregistre l'engagement clé dans la description du matériel. Lorsqu'il
déchiffre un enregistrement avec une clé d'engagement, le SDK de chiffrement de AWS base
de données vérifie que la clé de données est la seule clé pour cet enregistrement chiffré. Si la
vérification de la clé de données échoue, l'opération de déchiffrement échoue.

Signatures numériques

Le SDK AWS Database Encryption chiffre vos données à l'aide d'un algorithme de chiffrement
authentifié, AES-GCM, et le processus de déchiffrement vérifie l'intégrité et l'authenticité d'un
message chiffré sans utiliser de signature numérique. Mais comme AES-GCM utilise des clés
symétriques, toute personne capable de déchiffrer la clé de données utilisée pour déchiffrer le texte
chiffré pourrait également créer manuellement un nouveau texte chiffré, ce qui pourrait poser un
problème de sécurité. Par exemple, si vous utilisez un AWS KMS key comme clé d'encapsulation, un
utilisateur kms:Decrypt autorisé peut créer des textes chiffrés chiffrés sans appeler. kms:Encrypt

Pour éviter ce problème, la suite d'algorithmes par défaut ajoute une signature ECDSA (Elliptic
Curve Digital Signature Algorithm) aux enregistrements chiffrés. La suite d'algorithmes par
défaut chiffre les champs de votre enregistrement marqués à l'ENCRYPT_AND_SIGNaide
d'un algorithme de chiffrement authentifié, AES-GCM. Ensuite, il calcule à la fois les codes
d'authentification des messages basés sur le hachage (HMACs) et les signatures ECDSA
asymétriques sur les champs de votre enregistrement marqués, et. ENCRYPT_AND_SIGN

Signatures numériques 13

AWS SDK de chiffrement de base de données Guide du développeur

SIGN_ONLY SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Le processus de déchiffrement
utilise les signatures pour vérifier qu'un utilisateur autorisé a chiffré l'enregistrement.

Lorsque la suite d'algorithmes par défaut est utilisée, le SDK AWS de chiffrement de base
de données génère une clé privée temporaire et une paire de clés publiques pour chaque
enregistrement chiffré. Le SDK AWS Database Encryption stocke la clé publique dans la description
matérielle et supprime la clé privée. Cela garantit que personne ne peut créer une autre signature
vérifiant avec la clé publique. L'algorithme lie la clé publique à la clé de données cryptée en tant
que données authentifiées supplémentaires dans la description du matériel, empêchant ainsi les
utilisateurs qui ne peuvent que déchiffrer des champs de modifier la clé publique ou d'affecter la
vérification de signature.

Le SDK AWS de chiffrement de base de données inclut toujours la vérification HMAC. Les signatures
numériques ECDSA sont activées par défaut, mais elles ne sont pas obligatoires. Si les utilisateurs
qui chiffrent les données et ceux qui les déchiffrent jouissent de la même confiance, vous pouvez
envisager d'utiliser une suite d'algorithmes qui n'inclut pas de signatures numériques pour améliorer
vos performances. Pour plus d'informations sur la sélection d'autres suites d'algorithmes, voir Choisir
une suite d'algorithmes.

Note

Si un trousseau de clés ne fait pas de distinction entre les crypteurs et les déchiffreurs, les
signatures numériques ne fournissent aucune valeur cryptographique.

AWS KMS les trousseaux de clés, y compris le AWS KMS porte-clés asymétrique RSA, peuvent faire
la distinction entre les chiffreurs et les déchiffreurs en fonction des politiques clés et des politiques
IAM. AWS KMS

En raison de leur nature cryptographique, les trousseaux de clés suivants ne peuvent pas faire la
distinction entre les crypteurs et les déchiffreurs :

• AWS KMS Porte-clés hiérarchique

• AWS KMS Porte-clés ECDH

• Porte-clés AES brut

• Porte-clés RSA brut

• Porte-clés ECDH brut

Signatures numériques 14

AWS SDK de chiffrement de base de données Guide du développeur

Fonctionnement du SDK AWS de chiffrement de base de données

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Le SDK AWS Database Encryption fournit des bibliothèques de chiffrement côté client conçues
spécifiquement pour protéger les données que vous stockez dans les bases de données. Les
bibliothèques incluent les implémentations sécurisées que vous pouvez étendre ou utiliser
inchangées. Pour plus d'informations sur la définition et l'utilisation de composants personnalisés,
consultez le GitHub référentiel pour l'implémentation de votre base de données.

Les flux de travail présentés dans cette section expliquent comment le SDK AWS Database
Encryption chiffre, signe, déchiffre et vérifie les données de votre base de données. Ces flux de
travail décrivent le processus de base utilisant des éléments abstraits et les fonctionnalités par
défaut. Pour en savoir plus sur le fonctionnement du SDK AWS de chiffrement de base de données
avec l'implémentation de votre base de données, consultez la rubrique Qu'est-ce que le chiffrement
pour votre base de données ?

Le SDK AWS Database Encryption utilise le chiffrement d'enveloppe pour protéger vos données.
Chaque enregistrement est crypté sous une clé de données unique. La clé de données est
utilisée pour dériver une clé de chiffrement des données unique pour chaque champ marqué
ENCRYPT_AND_SIGN dans vos actions cryptographiques. Ensuite, une copie de la clé de données
est chiffrée par les clés d'encapsulation que vous spécifiez. Pour déchiffrer l'enregistrement chiffré, le
SDK de chiffrement AWS de base de données utilise les clés d'encapsulation que vous spécifiez pour
déchiffrer au moins une clé de données chiffrée. Il peut ensuite déchiffrer le texte chiffré et renvoyer
une entrée en texte brut.

Pour plus d'informations sur les termes utilisés dans le SDK de chiffrement AWS de base de
données, consultezAWS Concepts du SDK de chiffrement de base de données.

Chiffrer et signer

À la base, le SDK AWS de chiffrement de base de données est un crypteur d'enregistrements qui
chiffre, signe, vérifie et déchiffre les enregistrements de votre base de données. Il prend en compte
les informations relatives à vos dossiers et les instructions concernant les champs à chiffrer et
à signer. Il obtient le matériel de chiffrement et les instructions sur la façon de les utiliser à partir

Comment ça marche 15

AWS SDK de chiffrement de base de données Guide du développeur

d'un gestionnaire de matériel cryptographique configuré à partir de la clé d'encapsulation que vous
spécifiez.

La procédure pas à pas suivante décrit comment le SDK AWS de chiffrement de base de données
chiffre et signe vos entrées de données.

1. Le gestionnaire de matériel cryptographique fournit au SDK AWS Database Encryption des clés
de chiffrement de données uniques : une clé de données en texte brut, une copie de la clé de
données chiffrée par la clé d'encapsulation spécifiée et une clé MAC.

Note

Vous pouvez chiffrer la clé de données sous plusieurs clés d'encapsulation. Chacune
des clés d'encapsulation chiffre une copie séparée de la clé de données. Le SDK AWS
de chiffrement de base de données stocke toutes les clés de données cryptées dans la
description du matériel. Le SDK AWS Database Encryption ajoute un nouveau champ
(aws_dbe_head) à l'enregistrement qui contient la description du matériel.
Une clé MAC est dérivée pour chaque copie cryptée de la clé de données. Les clés MAC
ne sont pas enregistrées dans la description du matériau. Au lieu de cela, la méthode de
déchiffrement utilise les clés d'encapsulation pour dériver à nouveau les clés MAC.

2. La méthode de chiffrement chiffre chaque champ marqué comme indiqué ENCRYPT_AND_SIGN
dans les actions cryptographiques que vous avez spécifiées.

3. Le procédé de chiffrement commitKey dérive une de la clé de données et l'utilise pour générer
une valeur d'engagement de clé, puis supprime la clé de données.

4. La méthode de cryptage ajoute une description matérielle à l'enregistrement. La description
du matériel contient les clés de données cryptées et les autres informations relatives à
l'enregistrement crypté. Pour une liste complète des informations incluses dans la description du
matériau, voir Format de description du matériau.

5. La méthode de chiffrement utilise les clés MAC renvoyées à l'étape 1 pour calculer les valeurs
du code d'authentification des messages basé sur le hachage (HMAC) lors de la canonisation
de la description du matériel, du contexte de chiffrement et de chaque champ marqué
ENCRYPT_AND_SIGNSIGN_ONLY, ou SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT dans
le cadre des actions cryptographiques. Les valeurs HMAC sont stockées dans un nouveau
champ (aws_dbe_foot) que la méthode de chiffrement ajoute à l'enregistrement.

6. La méthode de chiffrement calcule une signature ECDSA lors de la canonisation de
la description du matériau, du contexte de chiffrement et de chaque champ marqué

Chiffrer et signer 16

AWS SDK de chiffrement de base de données Guide du développeur

ENCRYPT_AND_SIGNSIGN_ONLY, ou SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT stocke
les signatures ECDSA dans le champ. aws_dbe_foot

Note

Les signatures ECDSA sont activées par défaut, mais ne sont pas obligatoires.

7. La méthode de cryptage stocke l'enregistrement crypté et signé dans votre base de données

Déchiffrer et vérifier

1. Le gestionnaire de matériel cryptographique (CMM) fournit la méthode de déchiffrement avec les
matériaux de déchiffrement stockés dans la description du matériel, y compris la clé de données
en texte clair et la clé MAC associée.

• Le CMM déchiffre la clé de données cryptée à l'aide des clés d'encapsulage du jeu de clés
spécifié et renvoie la clé de données en texte brut.

2. La méthode de déchiffrement compare et vérifie la valeur d'engagement clé dans la description
du matériau.

3. La méthode de déchiffrement vérifie les signatures dans le champ de signature.

Il identifie les champs marqués ENCRYPT_AND_SIGN ou
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT ceux figurant dans la liste des
champs non authentifiés autorisés que vous avez définis. SIGN_ONLY La méthode
de déchiffrement utilise la clé MAC renvoyée à l'étape 1 pour recalculer et comparer
les valeurs HMAC des champs marqués, ou. ENCRYPT_AND_SIGN SIGN_ONLY
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Il vérifie ensuite les signatures ECDSA à
l'aide de la clé publique stockée dans le contexte de chiffrement.

4. La méthode de déchiffrement utilise la clé de données en texte brut pour déchiffrer chaque
valeur marquée. ENCRYPT_AND_SIGN Le SDK AWS de chiffrement de base de données
supprime ensuite la clé de données en texte brut.

5. La méthode de déchiffrement renvoie l'enregistrement en texte brut.

Déchiffrer et vérifier 17

AWS SDK de chiffrement de base de données Guide du développeur

Suites d'algorithmes prises en charge dans le SDK AWS de
chiffrement de base de données

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Une suite d'algorithmes est un ensemble d'algorithmes de chiffrement et de valeurs connexes. Les
systèmes cryptographiques utilisent l'implémentation de l'algorithme pour générer le texte chiffré.

Le SDK AWS Database Encryption utilise une suite d'algorithmes pour chiffrer et signer les champs
de votre base de données. Toutes les suites d'algorithmes prises en charge utilisent l'algorithme
Advanced Encryption Standard (AES) avec Galois/Counter Mode (GCM), connu sous le nom d'AES-
GCM, pour chiffrer les données brutes. Le SDK AWS de chiffrement de base de données prend en
charge les clés de chiffrement 256 bits. La longueur de la balise d'authentification est toujours de
16 octets.

AWS Suites d'algorithmes du SDK de chiffrement de base de données

Algorithm Algorithm
e de
chiffrement

Longueur
de la clé de
données
(en bits)

Algorithm
e de
dérivation
de clé

Algorithm
e de
signature
symétrique

Algorithm
e de
signature
asymétriq
ue

Engagemen
t clé

Par défaut AES-GCM 256 HKDF avec
SHA-512

HMAC-
SHA-384

ECDSA
avec
P-384 et
SHA-384

HKDF avec
SHA-512

AES-
GCM sans
signatures
numérique
s ECDSA

AES-GCM 256 HKDF avec
SHA-512

HMAC-
SHA-384

Aucun HKDF avec
SHA-512

Suites d'algorithmes prises en charge 18

AWS SDK de chiffrement de base de données Guide du développeur

Algorithme de chiffrement

Nom et mode de l'algorithme de chiffrement utilisé. Les suites d'algorithmes du SDK AWS de
chiffrement de base de données utilisent l'algorithme Advanced Encryption Standard (AES) avec
le mode Galois/Counter (GCM).

Longueur de la clé de données

Longueur de la clé de données en bits. Le SDK AWS de chiffrement de base de données prend
en charge les clés de données 256 bits. La clé de données est utilisée comme entrée dans une
fonction de dérivation de extract-and-expand clé basée sur HMAC (HKDF). La sortie de la fonction
HKDF est utilisée comme la clé de chiffrement des données dans l'algorithme de chiffrement.

Algorithme de dérivation de clé

La fonction de dérivation de extract-and-expand clé basée sur HMAC (HKDF) utilisée pour dériver
la clé de chiffrement des données. Le SDK AWS de chiffrement de base de données utilise le
HKDF défini dans la RFC 5869.

• La fonction de hachage utilisée est SHA-512

• Pour l'étape d'extraction :

• Aucune valeur salt n'est utilisée. Selon la RFC, le sel est défini sur une chaîne de zéros.

• Le matériel de saisie est la clé de données du trousseau de clés.

• Pour l'étape de développement :

• La clé pseudo aléatoire en entrée est la sortie de l'étape d'extraction.

• L'étiquette clé correspond aux octets codés en UTF-8 de la DERIVEKEY chaîne dans l'ordre
des octets en gros endian.

• Les informations d'entrée sont une concaténation de l'identifiant de l'algorithme et de
l'étiquette clé (dans cet ordre).

• La longueur du matériel de saisie de sortie est la longueur de la clé de données. Cette sortie
est utilisée comme la clé de chiffrement des données dans l'algorithme de chiffrement.

Algorithme de signature symétrique

Algorithme HMAC (Hash Based Message Authentication Code) utilisé pour générer une signature
symétrique. Toutes les suites d'algorithmes prises en charge incluent la vérification HMAC.

Le SDK AWS Database Encryption sérialise la description du matériel
et tous les champs marqués ENCRYPT_AND_SIGNSIGN_ONLY, ou.

Suites d'algorithmes prises en charge 19

https://tools.ietf.org/html/rfc5869

AWS SDK de chiffrement de base de données Guide du développeur

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Ensuite, il utilise HMAC avec un algorithme
de fonction de hachage cryptographique (SHA-384) pour signer la canonisation.

La signature HMAC symétrique est stockée dans un nouveau champ (aws_dbe_foot) que le
SDK de chiffrement de AWS base de données ajoute à l'enregistrement.

Algorithme de signature asymétrique

Algorithme de signature utilisé pour générer une signature numérique asymétrique.

Le SDK AWS Database Encryption sérialise la description du matériel
et tous les champs marqués ENCRYPT_AND_SIGNSIGN_ONLY, ou.
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Il utilise ensuite l'algorithme de signature
numérique à courbe elliptique (ECDSA) avec les spécificités suivantes pour signer la
canonicalisation :

• La courbe elliptique utilisée est la P-384, telle que définie dans la norme de signature
numérique (DSS) (FIPS PUB 186-4).

• La fonction de hachage utilisée est SHA-384.

La signature ECDSA asymétrique est stockée avec la signature HMAC symétrique sur le terrain.
aws_dbe_foot

Les signatures numériques ECDSA sont incluses par défaut, mais elles ne sont pas obligatoires.

Engagement clé

La fonction de dérivation de extract-and-expand clé basée sur HMAC (HKDF) utilisée pour dériver
la clé de validation.

• La fonction de hachage utilisée est SHA-512

• Pour l'étape d'extraction :

• Aucune valeur salt n'est utilisée. Selon la RFC, le sel est défini sur une chaîne de zéros.

• Le matériel de saisie est la clé de données du trousseau de clés.

• Pour l'étape de développement :

• La clé pseudo aléatoire en entrée est la sortie de l'étape d'extraction.

• Les informations d'entrée sont les octets codés en UTF-8 de la COMMITKEY chaîne dans
l'ordre des octets Big Endian.

• La longueur du matériel de saisie de sortie est de 256 bits. Cette sortie est utilisée comme clé
de validation.

Suites d'algorithmes prises en charge 20

http://doi.org/10.6028/NIST.FIPS.186-4
http://doi.org/10.6028/NIST.FIPS.186-4

AWS SDK de chiffrement de base de données Guide du développeur

La clé de validation calcule l'engagement de l'enregistrement, un hachage distinct du code
d'authentification des messages basé sur le hachage (HMAC) de 256 bits, par rapport à la
description du matériau. Pour une explication technique de l'ajout d'un engagement clé à une
suite d'algorithmes, voir Key Commitment AEADs in Cryptology ePrint Archive.

Suite d'algorithmes par défaut

Par défaut, le SDK de chiffrement AWS de base de données utilise une suite d'algorithmes avec
AES-GCM, une fonction de dérivation de extract-and-expand clé basée sur HMAC (HKDF), une
vérification HMAC, des signatures numériques ECDSA, un engagement de clé et une clé de
chiffrement 256 bits.

La suite d'algorithmes par défaut inclut la vérification HMAC (signatures symétriques) et les
signatures numériques ECDSA (signatures asymétriques). Ces signatures sont stockées dans un
nouveau champ (aws_dbe_foot) que le SDK AWS de chiffrement de base de données ajoute à
l'enregistrement. Les signatures numériques ECDSA sont particulièrement utiles lorsque la politique
d'autorisation permet à un ensemble d'utilisateurs de chiffrer des données et à un autre ensemble
d'utilisateurs de les déchiffrer.

La suite d'algorithmes par défaut déduit également un engagement clé : un hachage HMAC qui
lie la clé de données à l'enregistrement. La valeur d'engagement clé est un HMAC calculé à partir
de la description du matériau et de la clé de validation. La valeur d'engagement clé est ensuite
enregistrée dans la description du matériau. Un engagement clé garantit que chaque texte chiffré
est déchiffré en un seul texte clair. Pour ce faire, ils valident la clé de données utilisée comme entrée
dans l'algorithme de chiffrement. Lors du chiffrement, la suite d'algorithmes déduit un engagement clé
HMAC. Avant le déchiffrement, ils valident que la clé de données produit la même clé d'engagement
HMAC. Si ce n'est pas le cas, l'appel de déchiffrement échoue.

AES-GCM sans signatures numériques ECDSA

Bien que la suite d'algorithmes par défaut soit probablement adaptée à la plupart des applications,
vous pouvez choisir une autre suite d'algorithmes. Par exemple, certains modèles de confiance
seraient satisfaits par une suite d'algorithmes sans signature numérique ECDSA. Utilisez cette suite
uniquement lorsque les utilisateurs qui chiffrent les données et ceux qui les déchiffrent jouissent de la
même confiance.

Toutes les suites d'algorithmes du SDK de chiffrement de AWS base de données incluent la
vérification HMAC (signatures symétriques). La seule différence est que la suite d'algorithmes AES-

Suite d'algorithmes par défaut 21

https://eprint.iacr.org/2020/1153

AWS SDK de chiffrement de base de données Guide du développeur

GCM sans signature numérique ECDSA ne dispose pas de la signature asymétrique qui fournit une
couche supplémentaire d'authenticité et de non-répudiation.

Par exemple, si votre jeu de clés contient plusieurs clés d'encapsulation, wrappingKeyA
wrappingKeyBwrappingKeyC, et que vous déchiffrez un enregistrement à l'aide wrappingKeyA
de la signature symétrique HMAC vérifie que l'enregistrement a été crypté par un utilisateur ayant
accès à. wrappingKeyA Si vous avez utilisé la suite d'algorithmes par défaut, vous devez HMACs
fournir la même vérification et utiliser en outre la signature numérique ECDSA pour garantir que
l'enregistrement a été chiffré par un utilisateur disposant d'autorisations de chiffrement pour.
wrappingKeyA wrappingKeyA

Pour sélectionner la suite d'algorithmes AES-GCM sans signature numérique, incluez l'extrait suivant
dans votre configuration de chiffrement.

Java

L'extrait suivant spécifie la suite d'algorithmes AES-GCM sans signatures numériques ECDSA.
Pour de plus amples informations, veuillez consulter the section called “Configuration de
chiffrement”.

.algorithmSuiteId(
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384)

C# / .NET

L'extrait suivant spécifie la suite d'algorithmes AES-GCM sans signatures numériques ECDSA.
Pour de plus amples informations, veuillez consulter the section called “Configuration de
chiffrement”.

AlgorithmSuiteId =
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384

Rust

L'extrait suivant spécifie la suite d'algorithmes AES-GCM sans signatures numériques ECDSA.
Pour de plus amples informations, veuillez consulter the section called “Configuration de
chiffrement”.

.algorithm_suite_id(
 DbeAlgorithmSuiteId::AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,

AES-GCM sans signatures numériques ECDSA 22

AWS SDK de chiffrement de base de données Guide du développeur

)

AES-GCM sans signatures numériques ECDSA 23

AWS SDK de chiffrement de base de données Guide du développeur

Utilisation du SDK AWS de chiffrement de base de données
avec AWS KMS

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Pour utiliser le SDK AWS Database Encryption, vous devez configurer un jeu de clés et spécifier une
ou plusieurs clés d'encapsulage. Si vous n'avez pas d'infrastructure à clé, nous vous recommandons
d'utiliser AWS Key Management Service (AWS KMS).

Le SDK AWS Database Encryption prend en charge deux types de AWS KMS trousseaux de clés. Le
trousseau de AWS KMS clés traditionnel est utilisé AWS KMS keyspour générer, chiffrer et déchiffrer
des clés de données. Vous pouvez utiliser un chiffrement symétrique (SYMMETRIC_DEFAULT) ou des
clés RSA KMS asymétriques. Étant donné que le SDK AWS de chiffrement des bases de données
chiffre et signe chaque enregistrement à l'aide d'une clé de données unique, le AWS KMS trousseau
de clés doit faire appel à chaque opération AWS KMS de chiffrement et de déchiffrement. Pour les
applications qui doivent minimiser le nombre d'appels AWS KMS, le SDK de chiffrement de AWS
base de données prend également en charge le jeu de clés AWS KMS hiérarchique. Le trousseau
de clés hiérarchique est une solution de mise en cache des matériaux cryptographiques qui réduit le
nombre d' AWS KMS appels en utilisant des clés de branche AWS KMS protégées conservées dans
une table Amazon DynamoDB, puis en mettant en cache localement les éléments clés de branche
utilisés dans les opérations de chiffrement et de déchiffrement. Nous vous recommandons d'utiliser
les AWS KMS porte-clés dans la mesure du possible.

Pour interagir avec AWS KMS, le SDK AWS de chiffrement de base de données nécessite le AWS
KMS module du AWS SDK pour Java.

Pour préparer l'utilisation du SDK de chiffrement AWS de base de données avec AWS KMS

1. Créez un Compte AWS. Pour savoir comment procéder, consultez Comment créer et activer un
nouveau compte Amazon Web Services ? dans le AWS Knowledge Center.

2. Créez un chiffrement AWS KMS key symétrique. Pour obtenir de l'aide, consultez la section
Création de clés dans le guide du AWS Key Management Service développeur.

24

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS SDK de chiffrement de base de données Guide du développeur

Tip

Pour l'utiliser AWS KMS key par programmation, vous aurez besoin du nom de
ressource Amazon (ARN) du. AWS KMS key Pour obtenir de l'aide pour trouver l'ARN
d'un AWS KMS key, consultez la section Trouver l'ID de clé et l'ARN dans le guide du
AWS Key Management Service développeur.

3. Générez un identifiant de clé d'accès et une clé d'accès de sécurité. Vous pouvez utiliser l'ID
de clé d'accès et la clé d'accès secrète d'un utilisateur IAM ou vous pouvez les utiliser AWS
Security Token Service pour créer une nouvelle session avec des informations d'identification
de sécurité temporaires, notamment un ID de clé d'accès, une clé d'accès secrète et un jeton
de session. Pour des raisons de sécurité, nous vous recommandons d'utiliser des informations
d'identification temporaires au lieu des informations d'identification à long terme associées à vos
comptes utilisateur IAM ou utilisateur AWS (root).

Pour créer un utilisateur IAM avec une clé d'accès, consultez la section Création d'utilisateurs
IAM dans le guide de l'utilisateur IAM.

Pour générer des informations d'identification de sécurité temporaires, consultez la section
Demande d'informations d'identification de sécurité temporaires dans le guide de l'utilisateur
IAM.

4. Définissez vos AWS informations d'identification à l'aide des instructions contenues AWS SDK
pour Javadans l'ID de clé d'accès et la clé d'accès secrète que vous avez générés à l'étape 3. Si
vous avez généré des informations d'identification temporaires, vous devrez également spécifier
le jeton de session.

Cette procédure permet AWS SDKs de signer des AWS demandes à votre place. Les exemples
de code du SDK AWS de chiffrement de base de données qui interagissent AWS KMS
supposent que vous avez terminé cette étape.

25

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html

AWS SDK de chiffrement de base de données Guide du développeur

Configuration du SDK de chiffrement AWS de base de
données

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Le SDK AWS de chiffrement de base de données est conçu pour être facile à utiliser. Bien que le
SDK AWS de chiffrement de base de données comporte plusieurs options de configuration, les
valeurs par défaut sont soigneusement choisies pour être pratiques et sécurisées pour la plupart
des applications. Toutefois, vous devrez peut-être ajuster votre configuration pour améliorer les
performances ou inclure une fonctionnalité personnalisée dans votre conception.

Rubriques

• Sélection d'un langage de programmation

• Sélection des clés d'emballage

• Création d'un filtre de découverte

• Utilisation de bases de données mutualisées

• Création de balises signées

Sélection d'un langage de programmation

Le SDK AWS de chiffrement de base de données pour DynamoDB est disponible dans plusieurs
langages de programmation. Les implémentations du langage sont conçues pour être totalement
interopérables et pour offrir les mêmes fonctionnalités, bien qu'elles puissent être implémentées de
différentes manières. Généralement, vous utilisez la bibliothèque compatible avec votre application.

Sélection des clés d'emballage

Le SDK AWS de chiffrement de base de données génère une clé de données symétrique unique
pour chiffrer chaque champ. Vous n'avez pas besoin de configurer, de gérer ou d'utiliser les clés de
données. Le SDK AWS Database Encryption le fait pour vous.

Sélection d'un langage de programmation 26

AWS SDK de chiffrement de base de données Guide du développeur

Toutefois, vous devez sélectionner une ou plusieurs clés d'encapsulation pour chiffrer chaque clé de
données. Le SDK AWS de chiffrement de base de données prend en charge AWS Key Management
Service(AWS KMS) les clés KMS de chiffrement symétriques et les clés RSA KMS asymétriques.
Il prend également en charge les clés symétriques AES et les clés asymétriques RSA que vous
fournissez en différentes tailles. Vous êtes responsable de la sécurité et de la durabilité de vos clés
d'encapsulage. Nous vous recommandons donc d'utiliser une clé de chiffrement dans un module de
sécurité matériel ou un service d'infrastructure clé, tel que AWS KMS.

Pour spécifier vos clés d'encapsulation pour le chiffrement et le déchiffrement, vous utilisez un
trousseau de clés. Selon le type de trousseau de clés que vous utilisez, vous pouvez spécifier
une clé d'encapsulation ou plusieurs clés d'encapsulation de types identiques ou différents. Si
vous utilisez plusieurs clés d'encapsulation pour encapsuler une clé de données, chaque clé
d'encapsulation chiffrera une copie de la même clé de données. Les clés de données cryptées (une
par clé d'encapsulage) sont stockées dans la description du matériau stockée à côté du champ
crypté. Pour déchiffrer les données, le SDK de chiffrement AWS de base de données doit d'abord
utiliser l'une de vos clés d'encapsulation pour déchiffrer une clé de données chiffrée.

Nous vous recommandons d'utiliser l'un des AWS KMS porte-clés dans la mesure du possible.
Le SDK AWS de chiffrement de base de données fournit le AWS KMS trousseau de clés et le
trousseau de clés AWS KMS hiérarchique, ce qui réduit le nombre d'appels adressés à. AWS KMS
Pour spécifier un AWS KMS key dans un trousseau de clés, utilisez un identifiant de AWS KMS clé
compatible. Si vous utilisez le trousseau de clés AWS KMS hiérarchique, vous devez spécifier l'ARN
de la clé. Pour plus de détails sur les identificateurs de clé d'une AWS KMS clé, consultez la section
Identifiants de clé dans le guide du AWS Key Management Service développeur.

• Lorsque vous chiffrez avec un AWS KMS trousseau de clés, vous pouvez spécifier n'importe quel
identifiant de clé valide (ARN de clé, nom d'alias, ARN d'alias ou ID de clé) pour une clé KMS de
chiffrement symétrique. Si vous utilisez une clé RSA KMS asymétrique, vous devez spécifier l'ARN
de la clé.

Si vous spécifiez un nom d'alias ou un ARN d'alias pour une clé KMS lors du chiffrement, le SDK
de chiffrement de AWS base de données enregistre l'ARN de clé actuellement associé à cet alias ;
il n'enregistre pas l'alias. Les modifications apportées à l'alias n'affectent pas la clé KMS utilisée
pour déchiffrer vos clés de données.

• Par défaut, le AWS KMS trousseau de clés déchiffre les enregistrements en mode strict (où vous
spécifiez des clés KMS particulières). Vous devez utiliser un ARN clé AWS KMS keys pour vous
identifier en vue du déchiffrement.

Sélection des clés d'emballage 27

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS SDK de chiffrement de base de données Guide du développeur

Lorsque vous chiffrez à l'aide d'un AWS KMS trousseau de clés, le SDK AWS de chiffrement de
base de données stocke l'ARN de la clé AWS KMS key dans la description du matériau avec la clé
de données cryptée. Lors du déchiffrement en mode strict, le SDK de chiffrement de AWS base de
données vérifie que le même ARN de clé apparaît dans le jeu de clés avant de tenter d'utiliser la
clé d'encapsulation pour déchiffrer la clé de données chiffrée. Si vous utilisez un identifiant de clé
différent, le SDK AWS de chiffrement de base de données ne le reconnaîtra ni ne l'utilisera AWS
KMS key, même si les identifiants font référence à la même clé.

• Lors du déchiffrement en mode découverte, vous ne spécifiez aucune clé d'encapsulation. Tout
d'abord, le SDK AWS de chiffrement de base de données tente de déchiffrer l'enregistrement à
l'aide de la clé ARN stockée dans la description du matériau. Si cela ne fonctionne pas, le SDK de
chiffrement AWS de base de données demande de déchiffrer l'enregistrement AWS KMS à l'aide
de la clé KMS qui l'a chiffré, quel que soit le propriétaire de cette clé KMS ou y ayant accès.

Pour spécifier une clé AES brute ou une paire de clés RSA brute en tant que clé d'encapsulation
dans un trousseau de clés, vous devez spécifier un espace de noms et un nom. Lors du
déchiffrement, vous devez utiliser exactement le même espace de noms et le même nom pour
chaque clé d'encapsulation brute que ceux que vous avez utilisés lors du chiffrement. Si vous
utilisez un espace de noms ou un nom différent, le SDK de chiffrement AWS de base de données ne
reconnaîtra ni n'utilisera la clé d'encapsulation, même si le contenu de la clé est le même.

Création d'un filtre de découverte

Lorsque vous déchiffrez des données chiffrées à l'aide de clés KMS, il est recommandé de les
déchiffrer en mode strict, c'est-à-dire de limiter les clés d'encapsulation utilisées à celles que vous
spécifiez. Toutefois, si nécessaire, vous pouvez également déchiffrer en mode découverte, dans
lequel vous ne spécifiez aucune clé d'encapsulation. Dans ce mode, AWS KMS vous pouvez
déchiffrer la clé de données chiffrée à l'aide de la clé KMS qui l'a chiffrée, indépendamment de qui
possède ou a accès à cette clé KMS.

Si vous devez déchiffrer en mode découverte, nous vous recommandons de toujours utiliser un filtre
de découverte, qui limite les clés KMS pouvant être utilisées à celles d'une partition Compte AWS et
spécifiée. Le filtre de découverte est facultatif, mais il s'agit d'une bonne pratique.

Utilisez le tableau suivant pour déterminer la valeur de partition de votre filtre de découverte.

Création d'un filtre de découverte 28

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS SDK de chiffrement de base de données Guide du développeur

Région Partition

Régions AWS aws

Régions Chine aws-cn

AWS GovCloud (US) Regions aws-us-gov

L'exemple suivant montre comment créer un filtre de découverte. Avant d'utiliser le code, remplacez
les valeurs d'exemple par des valeurs valides pour votre partition Compte AWS and.

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();

C# / .NET

var discoveryFilter = new DiscoveryFilter
{
 Partition = "aws",
 AccountIds = 111122223333
};

Rust

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .partition("aws")
 .account_ids(111122223333)
 .build()?;

Utilisation de bases de données mutualisées
Avec le SDK AWS Database Encryption, vous pouvez configurer le chiffrement côté client pour
les bases de données avec un schéma partagé en isolant chaque client avec des matériaux de

Utilisation de bases de données mutualisées 29

AWS SDK de chiffrement de base de données Guide du développeur

chiffrement distincts. Lorsque vous envisagez une base de données mutualisée, prenez le temps de
passer en revue vos exigences en matière de sécurité et l'impact potentiel de la mutualisation sur
celles-ci. Par exemple, l'utilisation d'une base de données mutualisée peut avoir un impact sur votre
capacité à combiner le SDK AWS Database Encryption avec une autre solution de chiffrement côté
serveur.

Si plusieurs utilisateurs effectuent des opérations de chiffrement dans votre base de données, vous
pouvez utiliser l'un des AWS KMS trousseaux de clés pour fournir à chaque utilisateur une clé
distincte à utiliser dans ses opérations cryptographiques. La gestion des clés de données pour une
solution de chiffrement multi-locataires côté client peut s'avérer complexe. Nous vous recommandons
d'organiser vos données par locataire dans la mesure du possible. Si le locataire est identifié par les
valeurs des clés primaires (par exemple, la clé de partition dans une table Amazon DynamoDB), la
gestion de vos clés est plus simple.

Vous pouvez utiliser le AWS KMS trousseau de clés pour isoler chaque locataire à l'aide d'un
trousseau de AWS KMS clés distinct et. AWS KMS keys En fonction du volume d' AWS KMS appels
effectués par locataire, vous pouvez utiliser le trousseau de clés AWS KMS hiérarchique pour
minimiser le nombre d'appels adressés à AWS KMS. Le trousseau de clés AWS KMS hiérarchique
est une solution de mise en cache des matériaux cryptographiques qui réduit le nombre d' AWS KMS
appels en utilisant des clés de branche AWS KMS protégées conservées dans une table Amazon
DynamoDB, puis en mettant en cache localement les éléments clés de branche utilisés dans les
opérations de chiffrement et de déchiffrement. Vous devez utiliser le trousseau de clés AWS KMS
hiérarchique pour implémenter le chiffrement consultable dans votre base de données.

Création de balises signées

Le SDK AWS Database Encryption utilise des balises standard et des balises composées
pour fournir des solutions de chiffrement consultables qui vous permettent de rechercher
des enregistrements cryptés sans déchiffrer l'intégralité de la base de données interrogée.
Toutefois, le SDK AWS Database Encryption prend également en charge les balises signées
qui peuvent être entièrement configurées à partir de champs signés en texte brut. Les balises
signées sont un type de balise composée qui indexe et exécute des requêtes complexes sur des
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT champs SIGN_ONLY et des champs.

Par exemple, si vous avez une base de données mutualisée, vous souhaiterez peut-être créer une
balise signée qui vous permettra de rechercher dans votre base de données des enregistrements
chiffrés par la clé d'un locataire spécifique. Pour de plus amples informations, veuillez consulter
Interrogation de balises dans une base de données mutualisée.

Création de balises signées 30

AWS SDK de chiffrement de base de données Guide du développeur

Vous devez utiliser le trousseau de clés AWS KMS hiérarchique pour créer des balises signées.

Pour configurer une balise signée, fournissez les valeurs suivantes.

Java

Configuration de balise composée

L'exemple suivant définit les listes de pièces signées localement dans la configuration des balises
signées.

List<CompoundBeacon> compoundBeaconList = new ArrayList<>();
CompoundBeacon exampleCompoundBeacon = CompoundBeacon.builder()
 .name("compoundBeaconName")
 .split(".")
 .signed(signedPartList)
 .constructors(constructorList)
 .build();
compoundBeaconList.add(exampleCompoundBeacon);

Définition de la version de la balise

L'exemple suivant définit les listes de pièces signées globalement dans la version balise. Pour
plus d'informations sur la définition de la version des balises, consultez la section Utilisation des
balises.

 List<BeaconVersion> beaconVersions = new ArrayList<>();
beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .signedParts(signedPartList)
 .version(1) // MUST be 1
 .keyStore(keyStore)
 .keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branchKeyId)
 .cacheTTL(6000)
 .build())
 .build())
 .build()
);

Création de balises signées 31

AWS SDK de chiffrement de base de données Guide du développeur

C# / .NET

Voir l'exemple de code complet : BeaconConfig.cs

Configuration des balises signées

L'exemple suivant définit les listes de pièces signées localement dans la configuration des balises
signées.

var compoundBeaconList = new List<CompoundBeacon>();
var exampleCompoundBeacon = new CompoundBeacon
 {
 Name = "compoundBeaconName",
 Split = ".",
 Signed = signedPartList,
 Constructors = constructorList
 };
compoundBeaconList.Add(exampleCompoundBeacon);

Définition de la version de la balise

L'exemple suivant définit les listes de pièces signées globalement dans la version balise. Pour
plus d'informations sur la définition de la version des balises, consultez la section Utilisation des
balises.

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = keyStore,
 KeySource = new BeaconKeySource
 {
 Single = new SingleKeyStore
 {
 KeyId = branchKeyId,
 CacheTTL = 6000
 }
 }
 }

Création de balises signées 32

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/complexexample/BeaconConfig.cs

AWS SDK de chiffrement de base de données Guide du développeur

};

Vous pouvez définir vos pièces signées dans des listes définies localement ou globalement. Nous
vous recommandons de définir vos pièces signées dans une liste globale dans la version balise dans
la mesure du possible. En définissant les pièces signées de manière globale, vous pouvez définir
chaque pièce une seule fois, puis les réutiliser dans plusieurs configurations de balises composées.
Si vous n'avez l'intention d'utiliser une pièce signée qu'une seule fois, vous pouvez la définir dans une
liste locale dans la configuration des balises signées. Vous pouvez référencer des pièces locales et
globales dans votre liste de constructeurs.

Si vous définissez vos listes de pièces signées globalement, vous devez fournir une liste de pièces
du constructeur identifiant toutes les manières possibles dont la balise signée peut assembler les
champs dans la configuration de votre balise.

Note

Pour définir des listes de pièces signées de manière globale, vous devez utiliser la version
3.2 ou ultérieure du SDK AWS Database Encryption. Déployez la nouvelle version auprès de
tous les lecteurs avant de définir de nouvelles pièces de manière globale.
Vous ne pouvez pas mettre à jour les configurations de balises existantes pour définir des
listes de pièces signées de manière globale.

Nom de la balise

Le nom que vous utilisez lorsque vous interrogez la balise.

Le nom d'une balise signé ne peut pas être le même que celui d'un champ non chiffré. Deux
balises ne peuvent pas porter le même nom de balise.

Caractère divisé

Le caractère utilisé pour séparer les parties qui composent votre balise signée.

Le caractère divisé ne peut apparaître dans les valeurs en texte brut d'aucun des champs à partir
desquels la balise signée est construite.

Liste de pièces signée

Identifie les champs signés inclus dans la balise signée.

Création de balises signées 33

AWS SDK de chiffrement de base de données Guide du développeur

Chaque partie doit inclure un nom, une source et un préfixe. La source est le
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT champ SIGN_ONLY ou que l'article identifie.
La source doit être un nom de champ ou un index faisant référence à la valeur d'un champ
imbriqué. Si le nom de votre pièce identifie la source, vous pouvez omettre la source et le SDK
AWS de chiffrement de base de données utilisera automatiquement le nom comme source. Nous
recommandons de spécifier la source comme nom de pièce dans la mesure du possible. Le
préfixe peut être n'importe quelle chaîne, mais il doit être unique. Deux parties signées d'une
balise signée ne peuvent pas avoir le même préfixe. Nous recommandons d'utiliser une valeur
courte qui distingue la pièce des autres parties desservies par la balise composée.

Nous vous recommandons de définir vos pièces signées de manière globale dans la mesure du
possible. Vous pouvez envisager de définir une pièce signée localement si vous avez l'intention
de ne l'utiliser que dans une seule balise composée. Une pièce définie localement ne peut pas
avoir le même préfixe ou le même nom qu'une pièce définie globalement.

Java

List<SignedPart> signedPartList = new ArrayList<>);
 SignedPart signedPartExample = SignedPart.builder()
 .name("signedFieldName")
 .prefix("S-")
 .build();
 signedPartList.add(signedPartExample);

C# / .NET

var signedPartsList = new List<SignedPart>
{
 new SignedPart { Name = "signedFieldName1", Prefix = "S-" },
 new SignedPart { Name = "signedFieldName2", Prefix = "SF-" }
};

Liste des constructeurs (facultatif)

Identifie les constructeurs qui définissent les différentes manières dont les pièces signées peuvent
être assemblées par la balise signée.

Si vous ne spécifiez pas de liste de constructeurs, le SDK AWS Database Encryption assemble la
balise signée avec le constructeur par défaut suivant.

• Toutes les pièces signées dans l'ordre dans lequel elles ont été ajoutées à la liste des pièces
signées

Création de balises signées 34

AWS SDK de chiffrement de base de données Guide du développeur

• Toutes les pièces sont requises

Constructeurs

Chaque constructeur est une liste ordonnée de pièces du constructeur qui définit une manière
dont la balise signée peut être assemblée. Les pièces du constructeur sont assemblées dans
l'ordre dans lequel elles sont ajoutées à la liste, chaque partie étant séparée par le caractère
divisé spécifié.

Chaque partie du constructeur nomme une pièce signée et définit si cette partie est obligatoire
ou facultative dans le constructeur. Par exemple, si vous souhaitez interroger une balise
signée surField1,Field1.Field2, etField1.Field2.Field3, marquer Field2 et
Field3 comme facultatif et créer un constructeur.

Chaque constructeur doit avoir au moins une pièce requise. Nous vous recommandons de
rendre obligatoire la première partie de chaque constructeur afin que vous puissiez utiliser
l'BEGINS_WITHopérateur dans vos requêtes.

Un constructeur réussit si toutes ses pièces requises sont présentes dans l'enregistrement.
Lorsque vous écrivez un nouvel enregistrement, la balise signée utilise la liste des
constructeurs pour déterminer si la balise peut être assemblée à partir des valeurs fournies.
Il tente d'assembler la balise dans l'ordre dans lequel les constructeurs ont été ajoutés à la
liste des constructeurs, et il utilise le premier constructeur qui réussit. Si aucun constructeur ne
réussit, la balise n'est pas écrite dans l'enregistrement.

Tous les lecteurs et rédacteurs doivent spécifier le même ordre de constructeurs pour
s'assurer que les résultats de leurs requêtes sont corrects.

Utilisez les procédures suivantes pour spécifier votre propre liste de constructeurs.

1. Créez une pièce constructeur pour chaque pièce signée afin de définir si cette pièce est
requise ou non.

Le nom de la partie constructeur doit être le nom du champ signé.

L'exemple suivant montre comment créer une partie constructeur pour un champ signé.

Java

ConstructorPart field1ConstructorPart = ConstructorPart.builder()
 .name("Field1")
 .required(true)

Création de balises signées 35

AWS SDK de chiffrement de base de données Guide du développeur

 .build();

C# / .NET

var field1ConstructorPart = new ConstructorPart { Name = "Field1", Required
 = true };

2. Créez un constructeur pour chaque manière possible d'assembler la balise signée à l'aide
des pièces du constructeur que vous avez créées à l'étape 1.

Par exemple, si vous souhaitez effectuer une requête sur Field1.Field2.Field3
etField4.Field2.Field3, vous devez créer deux constructeurs. Field1et Field4
peuvent tous deux être requis car ils sont définis dans deux constructeurs distincts.

Java

// Create a list for Field1.Field2.Field3 queries
List<ConstructorPart> field123ConstructorPartList = new ArrayList<>();
field123ConstructorPartList.add(field1ConstructorPart);
field123ConstructorPartList.add(field2ConstructorPart);
field123ConstructorPartList.add(field3ConstructorPart);
Constructor field123Constructor = Constructor.builder()
 .parts(field123ConstructorPartList)
 .build();
// Create a list for Field4.Field2.Field1 queries
List<ConstructorPart> field421ConstructorPartList = new ArrayList<>();
field421ConstructorPartList.add(field4ConstructorPart);
field421ConstructorPartList.add(field2ConstructorPart);
field421ConstructorPartList.add(field1ConstructorPart);
Constructor field421Constructor = Constructor.builder()
 .parts(field421ConstructorPartList)
 .build();

C# / .NET

// Create a list for Field1.Field2.Field3 queries
 var field123ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field1ConstructorPart,
 field2ConstructorPart, field3ConstructorPart }
};
// Create a list for Field4.Field2.Field1 queries

Création de balises signées 36

AWS SDK de chiffrement de base de données Guide du développeur

var field421ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field4ConstructorPart,
 field2ConstructorPart, field1ConstructorPart }
};

3. Créez une liste de constructeurs qui inclut tous les constructeurs que vous avez créés à
l'étape 2.

Java

List<Constructor> constructorList = new ArrayList<>();
constructorList.add(field123Constructor)
constructorList.add(field421Constructor)

C# / .NET

var constructorList = new List<Constructor>
{
 field123Constructor,
 field421Constructor
};

4. Spécifiez le constructorList moment où vous créez votre balise signée.

Création de balises signées 37

AWS SDK de chiffrement de base de données Guide du développeur

Stockage des clés dans le SDK de chiffrement des AWS
bases de données
Dans le SDK AWS Database Encryption, un magasin de clés est une table Amazon DynamoDB qui
conserve les données hiérarchiques utilisées AWS KMS par le trousseau de clés hiérarchique. Le
magasin de clés permet de réduire le nombre d'appels que vous devez effectuer pour AWS KMS
effectuer des opérations cryptographiques avec le trousseau de clés hiérarchique.

Le magasin de clés conserve et gère les clés de branche que le trousseau de clés hiérarchique utilise
pour chiffrer les enveloppes et protéger les clés de chiffrement des données. Le magasin de clés
stocke la clé de branche active et toutes les versions précédentes de la clé de branche. La clé de
branche active est la version de clé de branche la plus récente. Le trousseau de clés hiérarchique
utilise une clé de chiffrement de données unique pour chaque demande de chiffrement et chiffre
chaque clé de chiffrement de données avec une clé d'encapsulation unique dérivée de la clé de
branche active. Le trousseau de clés hiérarchique dépend de la hiérarchie établie entre les clés de
branche actives et leurs clés d'encapsulation dérivées.

Terminologie et concepts clés du magasin

Key store (Magasin de clés)

Table DynamoDB qui conserve les données hiérarchiques, telles que les clés de branche et les
clés de balise.

Clé racine

Une clé KMS de chiffrement symétrique qui génère et protège les clés de branche et les clés de
balise de votre magasin de clés.

Clé de branche

Clé de données réutilisée pour obtenir une clé d'encapsulation unique pour le chiffrement des
enveloppes. Vous pouvez créer plusieurs clés de branche dans un même magasin de clés, mais
chaque clé de branche ne peut avoir qu'une seule version de clé de branche active à la fois. La
clé de branche active est la version de clé de branche la plus récente.

Les clés de branche sont dérivées de AWS KMS keys l'utilisation de
l'GenerateDataKeyWithoutPlaintextopération kms :.

Terminologie et concepts clés du magasin 38

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK de chiffrement de base de données Guide du développeur

Clé d'emballage

Clé de données unique utilisée pour chiffrer la clé de chiffrement des données utilisée dans les
opérations de chiffrement.

Les clés d'encapsulation sont dérivées des clés de branche. Pour plus d'informations sur le
processus de dérivation des clés, voir Détails techniques du trousseau de clés AWS KMS
hiérarchique.

Clé de chiffrement des données

Clé de données utilisée dans les opérations de chiffrement. Le trousseau de clés hiérarchique
utilise une clé de chiffrement des données unique pour chaque demande de chiffrement.

Clé de balise

Clé de données utilisée pour générer des balises à des fins de chiffrement consultable. Pour plus
d'informations, consultez la section Chiffrement consultable.

Implémentation des autorisations avec le moindre privilégié

Lorsque vous utilisez un magasin de clés et des trousseaux de clés AWS KMS hiérarchiques, nous
vous recommandons de suivre le principe du moindre privilège en définissant les rôles suivants :

Administrateur du magasin de clés

Les administrateurs du magasin de clés sont chargés de créer et de gérer le magasin de clés et
les clés de succursale qu'il conserve et protège. Les administrateurs de magasin de clés doivent
être les seuls utilisateurs autorisés à écrire sur la table Amazon DynamoDB qui vous sert de
magasin de clés. Ils doivent être les seuls utilisateurs ayant accès aux opérations d'administration
privilégiées, telles que CreateKeyet VersionKey. Vous ne pouvez effectuer ces opérations que
lorsque vous configurez de manière statique les actions de votre magasin de clés.

CreateKeyest une opération privilégiée qui peut ajouter un nouvel ARN de clé KMS à votre
liste d'autorisations de stockage de clés. Cette clé KMS peut créer de nouvelles clés de branche
actives. Nous recommandons de limiter l'accès à cette opération car une fois qu'une clé KMS est
ajoutée au magasin de clés de succursale, elle ne peut pas être supprimée.

Utilisateur du magasin de clés

Dans la plupart des cas d'utilisation, l'utilisateur du magasin de clés n'interagit avec le magasin de
clés que par le biais du trousseau de clés hiérarchique lorsqu'il chiffre, déchiffre, signe et vérifie

Implémentation des autorisations avec le moindre privilégié 39

AWS SDK de chiffrement de base de données Guide du développeur

les données. Par conséquent, ils n'ont besoin que d'autorisations de lecture pour accéder à la
table Amazon DynamoDB qui sert de magasin de clés. Les utilisateurs du magasin de clés ne
doivent avoir accès qu'aux opérations d'utilisation qui rendent les opérations cryptographiques
possibles, telles que GetActiveBranchKeyGetBranchKeyVersion, etGetBeaconKey. Ils
n'ont pas besoin d'autorisations pour créer ou gérer les clés de branche qu'ils utilisent.

Vous pouvez effectuer des opérations d'utilisation lorsque les actions de votre magasin de clés
sont configurées de manière statique ou lorsqu'elles sont configurées pour la découverte. Vous
ne pouvez pas effectuer d'opérations d'administrateur (CreateKeyetVersionKey) lorsque les
actions de votre magasin de clés sont configurées pour la découverte.

Si l'administrateur de votre magasin de clés de succursale a autorisé plusieurs clés KMS dans
votre magasin de clés de succursale, nous recommandons aux utilisateurs de votre magasin de
clés de configurer leurs actions de magasin de clés à des fins de découverte afin que leur jeu de
clés hiérarchique puisse utiliser plusieurs clés KMS.

Créez un magasin de clés

Avant de créer des clés de branche ou d'utiliser un trousseau de clés AWS KMS hiérarchique, vous
devez créer votre magasin de clés, une table Amazon DynamoDB qui gère et protège vos clés de
branche.

Important

Ne supprimez pas la table DynamoDB qui conserve vos clés de branche. Si vous supprimez
ce tableau, vous ne pourrez pas déchiffrer les données chiffrées à l'aide du trousseau de clés
hiérarchique.

Suivez les procédures de création d'une table du guide du développeur Amazon DynamoDB, en
utilisant les valeurs de chaîne requises suivantes pour la clé de partition et la clé de tri.

Clé de partition Clé de tri

Table de base branch-key-id type

Créez un magasin de clés 40

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS SDK de chiffrement de base de données Guide du développeur

Nom du magasin de clés logique

Lorsque vous nommez la table DynamoDB qui sert de banque de clés, il est important de prendre
soigneusement en compte le nom logique de la banque de clés que vous allez spécifier lors de la
configuration de vos actions de banque de clés. Le nom logique du magasin de clés sert d'identifiant
à votre magasin de clés et ne peut pas être modifié une fois qu'il a été initialement défini par le
premier utilisateur. Vous devez toujours spécifier le même nom logique de banque de clés dans vos
actions de banque de clés.

Il doit y avoir un one-to-one mappage entre le nom de la table DynamoDB et le nom du magasin de
clés logiques. Le nom du magasin de clés logique est lié de manière cryptographique à toutes les
données stockées dans la table afin de simplifier les opérations de restauration DynamoDB. Bien que
le nom du magasin de clés logique puisse être différent du nom de votre table DynamoDB, nous vous
recommandons vivement de spécifier le nom de votre table DynamoDB comme nom de magasin
de clés logique. Si le nom de votre table change après avoir restauré votre table DynamoDB à partir
d'une sauvegarde, le nom logique du magasin de clés peut être mappé au nouveau nom de table
DynamoDB afin de garantir que le trousseau de clés hiérarchique peut toujours accéder à votre
magasin de clés.

N'incluez pas d'informations confidentielles ou sensibles dans le nom de votre banque de clés
logique. Le nom du magasin de clés logique est affiché en texte clair dans les AWS KMS CloudTrail
événements sous la forme detablename.

Étapes suivantes

1. the section called “Configurer les actions clés du magasin”

2. the section called “Créez des clés de branche”

3. Création d'un porte-clés AWS KMS hiérarchique

Configurer les actions clés du magasin

Les actions du magasin de clés déterminent les opérations que vos utilisateurs peuvent effectuer et
la manière dont leur AWS KMS jeu de clés hiérarchique utilise les clés KMS autorisées dans votre
magasin de clés. Le SDK AWS Database Encryption prend en charge les configurations d'actions de
stockage de clés suivantes.

Configurer les actions clés du magasin 41

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK de chiffrement de base de données Guide du développeur

Statique

Lorsque vous configurez votre magasin de clés de manière statique, celui-ci ne peut utiliser que
la clé KMS associée à l'ARN de clé KMS que vous fournissez kmsConfiguration lors de la
configuration de vos actions de magasin de clés. Une exception est déclenchée si un ARN de clé
KMS différent est rencontré lors de la création, de la gestion des versions ou de l'obtention d'une
clé de branche.

Vous pouvez spécifier une clé KMS multirégionale dans votrekmsConfiguration, mais
l'ensemble de l'ARN de la clé, y compris la région, est conservé dans les clés de branche dérivées
de la clé KMS. Vous ne pouvez pas spécifier de clé dans une autre région, vous devez fournir
exactement la même clé multirégionale pour que les valeurs correspondent.

Lorsque vous configurez de manière statique les actions de votre
magasin de clés, vous pouvez effectuer des opérations d'utilisation
(GetActiveBranchKeyGetBranchKeyVersion,,GetBeaconKey) et des opérations
administratives (CreateKeyetVersionKey). CreateKeyest une opération privilégiée qui peut
ajouter un nouvel ARN de clé KMS à votre liste d'autorisations de stockage de clés. Cette clé
KMS peut créer de nouvelles clés de branche actives. Nous recommandons de limiter l'accès à
cette opération car une fois qu'une clé KMS est ajoutée au magasin de clés, elle ne peut pas être
supprimée.

Découverte

Lorsque vous configurez les actions de votre magasin de clés pour la découverte, le magasin
de clés peut utiliser n'importe quel AWS KMS key ARN autorisé dans votre magasin de clés.
Toutefois, une exception est déclenchée lorsqu'une clé KMS multirégionale est détectée et que la
région dans l'ARN de la clé ne correspond pas à la région du AWS KMS client utilisé.

Lorsque vous configurez votre banque de clés pour la découverte, vous ne pouvez pas effectuer
d'opérations administratives telles que CreateKey etVersionKey. Vous ne pouvez effectuer
que les opérations d'utilisation qui permettent de chiffrer, de déchiffrer, de signer et de vérifier.
Pour de plus amples informations, veuillez consulter the section called “Implémentation des
autorisations avec le moindre privilégié”.

Configurez les actions clés de votre boutique

Avant de configurer les actions de votre magasin de clés, assurez-vous que les conditions préalables
suivantes sont remplies.

Configurez les actions clés de votre boutique 42

AWS SDK de chiffrement de base de données Guide du développeur

• Déterminez les opérations que vous devez effectuer. Pour de plus amples informations, veuillez
consulter the section called “Implémentation des autorisations avec le moindre privilégié”.

• Choisissez un nom de magasin de clés logique

Il doit y avoir un one-to-one mappage entre le nom de la table DynamoDB et le nom du magasin
de clés logiques. Le nom du magasin de clés logique est lié de manière cryptographique à toutes
les données stockées dans la table afin de simplifier les opérations de restauration DynamoDB. Il
ne peut pas être modifié une fois défini initialement par le premier utilisateur. Vous devez toujours
spécifier le même nom logique de banque de clés dans les actions de votre banque de clés. Pour
de plus amples informations, veuillez consulter logical key store name.

Configuration statique

L'exemple suivant configure de manière statique les actions du magasin de clés. Vous devez
spécifier le nom de la table DynamoDB qui sert de magasin de clés, un nom logique pour le magasin
de clés et l'ARN de clé KMS qui identifie une clé KMS de chiffrement symétrique.

Note

Examinez attentivement l'ARN de la clé KMS que vous spécifiez lors de la configuration
statique de votre service de banque de clés. L'CreateKeyopération ajoute l'ARN de la clé
KMS à la liste d'autorisation de votre magasin de clés de succursale. Une fois qu'une clé
KMS est ajoutée au magasin de clés de succursale, elle ne peut pas être supprimée.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())
 .ddbTableName(keyStoreName)
 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .kmsKeyArn(kmsKeyArn)
 .build())
 .build()).build();

Configurez les actions clés de votre boutique 43

AWS SDK de chiffrement de base de données Guide du développeur

C# / .NET

var kmsConfig = new KMSConfiguration { KmsKeyArn = kmsKeyArn };
 var keystoreConfig = new KeyStoreConfig
 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = kmsConfig,
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Rust

let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let key_store_config = KeyStoreConfig::builder()
 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
 .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)
 .kms_configuration(KmsConfiguration::KmsKeyArn(kms_key_arn.to_string()))
 .build()?;

let keystore = keystore_client::Client::from_conf(key_store_config)?;

Configuration de la découverte

L'exemple suivant configure les actions du magasin de clés pour la découverte. Vous devez spécifier
le nom de la table DynamoDB qui sert de magasin de clés et un nom de magasin de clés logique.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())
 .ddbTableName(keyStoreName)
 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .discovery(Discovery.builder().build())

Configurez les actions clés de votre boutique 44

AWS SDK de chiffrement de base de données Guide du développeur

 .build())
 .build()).build();

C# / .NET

var keystoreConfig = new KeyStoreConfig
 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = new KMSConfiguration {Discovery = new Discovery()},
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Rust

let key_store_config = KeyStoreConfig::builder()
 .kms_client(kms_client)
 .ddb_client(ddb_client)
 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)

 .kms_configuration(KmsConfiguration::Discovery(Discovery::builder().build()?))
 .build()?;

Création d'une clé de branche active
Une clé de branche est une clé de données dérivée d'une clé AWS KMS key que le trousseau de
clés AWS KMS hiérarchique utilise pour réduire le nombre d'appels effectués. AWS KMS La clé de
branche active est la version de clé de branche la plus récente. Le trousseau de clés hiérarchique
génère une clé de données unique pour chaque demande de chiffrement et chiffre chaque clé de
données avec une clé d'encapsulation unique dérivée de la clé de branche active.

Pour créer une nouvelle clé de branche active, vous devez configurer de manière statique les actions
de votre magasin de clés. CreateKeyest une opération privilégiée qui ajoute l'ARN de la clé KMS
spécifié dans la configuration des actions de votre magasin de clés à votre liste d'autorisations de
stockage de clés. Ensuite, la clé KMS est utilisée pour générer la nouvelle clé de branche active.
Nous recommandons de limiter l'accès à cette opération car une fois qu'une clé KMS est ajoutée au
magasin de clés, elle ne peut pas être supprimée.

Créez des clés de branche 45

AWS SDK de chiffrement de base de données Guide du développeur

Nous vous recommandons d'utiliser l'CreateKeyopération via l'interface KeyStore d'administration
du plan de contrôle de votre application. Cette approche est conforme aux bonnes pratiques pour la
gestion des clés.

Ne créez pas de clés de branche dans le plan de données. Cette pratique peut entraîner :

• Appels inutiles à AWS KMS

• Plusieurs appels simultanés AWS KMS dans des environnements à haute simultanéité

• Plusieurs TransactWriteItems appels à la table DynamoDB de base.

L'CreateKeyopération inclut une vérification de l'état de l'TransactWriteItemsappel afin d'éviter
de remplacer les clés de branche existantes. Cependant, la création de clés dans le plan de données
peut toujours entraîner une utilisation inefficace des ressources et des problèmes de performances
potentiels.

Vous pouvez autoriser la mise en liste d'une clé KMS dans votre banque de clés, ou vous pouvez
autoriser la mise en liste de plusieurs clés KMS en mettant à jour l'ARN de la clé KMS que vous
spécifiez dans la configuration des actions de votre banque de clés et en appelant CreateKey à
nouveau. Si vous autorisez plusieurs clés KMS sur liste, les utilisateurs de votre magasin de clés
doivent configurer leurs actions de magasin de clés pour la découverte afin qu'ils puissent utiliser
n'importe laquelle des clés autorisées dans le magasin de clés auquel ils ont accès. Pour de plus
amples informations, veuillez consulter the section called “Configurer les actions clés du magasin”.

Autorisations nécessaires

Pour créer des clés de branche, vous avez besoin des ReEncrypt autorisations kms :
GenerateDataKeyWithoutPlaintext et kms : sur la clé KMS spécifiée dans les actions de votre
magasin de clés.

Création d'une clé de branche

L'opération suivante crée une nouvelle clé de branche active à l'aide de la clé KMS que vous avez
spécifiée dans la configuration des actions de votre magasin de clés, et ajoute la clé de branche
active à la table DynamoDB qui sert de magasin de clés.

Lorsque vous appelezCreateKey, vous pouvez choisir de spécifier les valeurs facultatives
suivantes.

• branchKeyIdentifier: définit une coutumebranch-key-id.

Créez des clés de branche 46

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS SDK de chiffrement de base de données Guide du développeur

Pour créer une personnalisationbranch-key-id, vous devez également inclure un contexte de
chiffrement supplémentaire dans le encryptionContext paramètre.

• encryptionContext: définit un ensemble facultatif de paires clé-valeur non secrètes qui
fournissent des données authentifiées supplémentaires (AAD) dans le contexte de chiffrement
inclus dans l'appel kms :. GenerateDataKeyWithoutPlaintext

Ce contexte de chiffrement supplémentaire est affiché avec le aws-crypto-ec: préfixe.

Java

final Map<String, String> additionalEncryptionContext =
 Collections.singletonMap("Additional Encryption Context for",
 "custom branch key id");

 final String BranchKey = keystore.CreateKey(
 CreateKeyInput.builder()
 .branchKeyIdentifier(custom-branch-key-id) //OPTIONAL
 .encryptionContext(additionalEncryptionContext) //OPTIONAL

 .build()).branchKeyIdentifier();

C# / .NET

var additionalEncryptionContext = new Dictionary<string, string>();
 additionalEncryptionContext.Add("Additional Encryption Context for", "custom
 branch key id");

 var branchKeyId = keystore.CreateKey(new CreateKeyInput
 {
 BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL
 EncryptionContext = additionalEncryptionContext // OPTIONAL
 });

Rust

let additional_encryption_context = HashMap::from([
 ("Additional Encryption Context for".to_string(), "custom branch key
 id".to_string())
]);

Créez des clés de branche 47

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK de chiffrement de base de données Guide du développeur

let branch_key_id = keystore.create_key()
 .branch_key_identifier("custom-branch-key-id") // OPTIONAL
 .encryption_context(additional_encryption_context) // OPTIONAL
 .send()
 .await?
 .branch_key_identifier
 .unwrap();

Tout d'abord, l'CreateKeyopération génère les valeurs suivantes.

• Un identifiant unique universel (UUID) de version 4 pour le branch-key-id (sauf si vous avez
spécifié un identifiant personnalisébranch-key-id).

• Un UUID version 4 pour la version de la clé de branche

• A timestamp au format de date et heure ISO 8601 en heure UTC (Temps universel coordonné).

Ensuite, l'CreateKeyopération appelle kms : GenerateDataKeyWithoutPlaintext en utilisant la
requête suivante.

{
 "EncryptionContext": {
 "branch-key-id" : "branch-key-id",
 "type" : "type",
 "create-time" : "timestamp",
 "logical-key-store-name" : "the logical table name for your key store",
 "kms-arn" : the KMS key ARN,
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 },
 "KeyId": "the KMS key ARN you specified in your key store actions",
 "NumberOfBytes": "32"
 }

Note

L'CreateKeyopération crée une clé de branche active et une clé de balise, même si vous
n'avez pas configuré votre base de données pour un chiffrement consultable. Les deux
clés sont stockées dans votre magasin de clés. Pour plus d'informations, voir Utilisation du
trousseau de clés hiérarchique pour le chiffrement consultable.

Créez des clés de branche 48

https://www.ietf.org/rfc/rfc4122.txt
https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK de chiffrement de base de données Guide du développeur

Ensuite, l'CreateKeyopération appelle kms : ReEncrypt pour créer un enregistrement actif pour la
clé de branche en mettant à jour le contexte de chiffrement.

Enfin, l'CreateKeyopération appelle ddb : TransactWriteItems pour écrire un nouvel élément qui
conservera la clé de branche dans la table que vous avez créée à l'étape 2. L'objet possède les
attributs suivants.

{
 "branch-key-id" : branch-key-id,
 "type" : "branch:ACTIVE",
 "enc" : the branch key returned by the GenerateDataKeyWithoutPlaintext call,
 "version": "branch:version:the branch key version UUID",
 "create-time" : "timestamp",
 "kms-arn" : "the KMS key ARN you specified in Step 1",
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 }

Faites pivoter votre clé de branche active

Il ne peut y avoir qu'une seule version active à la fois pour chaque clé de branche. En général,
chaque version de clé de branche active est utilisée pour satisfaire plusieurs demandes. Mais vous
contrôlez la mesure dans laquelle les clés de branche actives sont réutilisées et vous déterminez la
fréquence à laquelle la clé de branche active est pivotée.

Les clés de branche ne sont pas utilisées pour chiffrer les clés de données en texte brut. Ils sont
utilisés pour dériver les clés d'encapsulation uniques qui chiffrent les clés de données en texte brut.
Le processus de dérivation de la clé d'encapsulation produit une clé d'encapsulation unique de 32
octets avec 28 octets aléatoires. Cela signifie qu'une clé de branche peut obtenir plus de 79 octillions,
soit 2 96, clés d'encapsulation uniques avant que l'usure cryptographique ne se produise. Malgré
ce très faible risque d'épuisement, vous devrez peut-être alterner vos clés de succursale actives en
raison de règles commerciales ou contractuelles ou de réglementations gouvernementales.

La version active de la clé de branche reste active jusqu'à ce que vous la fassiez pivoter.
Les versions précédentes de la clé de branche active ne seront pas utilisées pour effectuer
des opérations de chiffrement et ne peuvent pas être utilisées pour obtenir de nouvelles clés
d'encapsulation, mais elles peuvent toujours être interrogées et fournir des clés d'encapsulation pour
déchiffrer les clés de données qu'elles chiffraient lorsqu'elles étaient actives.

Faites pivoter votre clé de branche active 49

https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html

AWS SDK de chiffrement de base de données Guide du développeur

Warning

La suppression des clés de branche dans les environnements de test est irréversible. Vous
ne pouvez pas récupérer les clés de branche supprimées. Lorsque vous supprimez et
recréez des clés de branche avec le même identifiant dans des environnements de test, les
problèmes suivants peuvent survenir :

• Les matériaux des tests précédents peuvent rester dans le cache

• Certains hôtes ou threads de test peuvent chiffrer des données à l'aide de clés de branche
supprimées

• Les données chiffrées avec des branches supprimées ne peuvent pas être déchiffrées

Pour éviter les échecs de chiffrement lors des tests d'intégration :

• Réinitialisez la référence hiérarchique du trousseau de clés avant de créer de nouvelles
clés de branche OU

• Utiliser une clé de branche unique IDs pour chaque test

Autorisations requises

Pour faire pivoter les clés de branche, vous avez besoin des ReEncrypt autorisations kms :
GenerateDataKeyWithoutPlaintext et kms : sur la clé KMS spécifiée dans les actions de votre
magasin de clés.

Faire pivoter une clé de branche active

Utilisez cette VersionKey opération pour faire pivoter votre clé de branche active. Lorsque vous
faites pivoter la clé de branche active, une nouvelle clé de branche est créée pour remplacer la
version précédente. branch-key-idCela ne change pas lorsque vous faites pivoter la clé de
branche active. Vous devez spécifier le code branch-key-id qui identifie la clé de branche active
actuelle lorsque vous appelezVersionKey.

Java

keystore.VersionKey(
 VersionKeyInput.builder()
 .branchKeyIdentifier("branch-key-id")
 .build()

Faites pivoter votre clé de branche active 50

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS SDK de chiffrement de base de données Guide du développeur

);

C# / .NET

 keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});

Rust

keystore.version_key()
 .branch_key_identifier(branch_key_id)
 .send()
 .await?;

Faites pivoter votre clé de branche active 51

AWS SDK de chiffrement de base de données Guide du développeur

Porte-clés

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Le SDK AWS Database Encryption utilise des trousseaux de clés pour chiffrer les enveloppes.
Les porte-clés génèrent, chiffrent et déchiffrent des clés de données. Les porte-clés déterminent la
source des clés de données uniques qui protègent chaque enregistrement chiffré, ainsi que les clés
d'encapsulation qui chiffrent cette clé de données. Vous spécifiez un porte-clés lors du chiffrement et
le même porte-clés ou un autre porte-clés lors du déchiffrement.

Vous pouvez utiliser chaque porte-clés individuellement ou combiner les porte-clés dans un porte-
clés multiple. Bien que la plupart des porte-clés peuvent générer, chiffrer et déchiffrer des clés de
données, vous pouvez créer un porte-clés qui effectue une seule opération particulière, par exemple
un porte-clés qui génère uniquement des clés de données, et utiliser ce porte-clés en combinaison
avec d'autres.

Nous vous recommandons d'utiliser un trousseau de clés qui protège vos clés d'encapsulation et
effectue des opérations cryptographiques dans une limite sécurisée, tel que le AWS KMS trousseau
de clés, qui utilise AWS KMS keys that never leave AWS Key Management Service()AWS KMS
non chiffré. Vous pouvez également créer un trousseau de clés utilisant des clés d'encapsulation
stockées dans vos modules de sécurité matériels (HSMs) ou protégées par d'autres services de clés
principales.

Votre trousseau de clés détermine les clés d'encapsulation qui protègent vos clés de données et, en
fin de compte, vos données. Utilisez les clés d'emballage les plus sûres et les plus pratiques pour
votre tâche. Dans la mesure du possible, utilisez des clés d'encapsulation protégées par un module
de sécurité matériel (HSM) ou une infrastructure de gestion des clés, comme les clés KMS in AWS
Key Management Service(AWS KMS) ou les clés de chiffrement in AWS CloudHSM.

Le SDK AWS Database Encryption fournit plusieurs ensembles de clés et configurations de
trousseaux de clés, et vous pouvez créer vos propres trousseaux de clés personnalisés. Vous
pouvez également créer un porte-clés multiple comprenant un ou plusieurs porte-clés du même type
ou d'un type différent.

Rubriques

52

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS SDK de chiffrement de base de données Guide du développeur

• Fonctionnement des porte-clés

• AWS KMS porte-clés

• AWS KMS Porte-clés hiérarchiques

• AWS KMS Porte-clés ECDH

• Porte-clés AES brut

• Porte-clés RSA bruts

• Porte-clés ECDH bruts

• Porte-clés multiples

Fonctionnement des porte-clés

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Lorsque vous chiffrez et signez un champ dans votre base de données, le SDK de chiffrement de
AWS base de données demande au trousseau de clés le matériel de chiffrement. Le porte-clés
renvoie une clé de données en texte brut, une copie de la clé de données chiffrée par chacune des
clés d'encapsulage du trousseau de clés et une clé MAC associée à la clé de données. Le SDK
AWS de chiffrement de base de données utilise la clé en texte brut pour chiffrer les données, puis la
supprime de la mémoire dès que possible. Le SDK AWS de chiffrement de base de données ajoute
ensuite une description matérielle qui inclut les clés de données chiffrées et d'autres informations,
telles que les instructions de chiffrement et de signature. Le SDK AWS Database Encryption
utilise la clé MAC pour calculer les codes d'authentification des messages basés sur le hachage
(HMACs) lors de la canonisation de la description du matériel et de tous les champs marqués ou.
ENCRYPT_AND_SIGN SIGN_ONLY

Lorsque vous déchiffrez des données, vous pouvez utiliser le même trousseau de clés que celui que
vous avez utilisé pour chiffrer les données, ou un autre. Pour déchiffrer les données, un jeu de clés
de déchiffrement doit avoir accès à au moins une clé d'encapsulation du jeu de clés de chiffrement.

Le SDK AWS de chiffrement de base de données transmet les clés de données chiffrées de la
description matérielle au trousseau de clés et demande au trousseau de déchiffrer l'une d'entre elles.

Fonctionnement des porte-clés 53

AWS SDK de chiffrement de base de données Guide du développeur

Le porte-clés utilise ses clés d'encapsulage pour déchiffrer l'une des clés de données chiffrées et
renvoie une clé de données en texte brut. Le SDK AWS de chiffrement de base de données utilise la
clé de données en texte brut pour déchiffrer les données. Si aucune des clés d'encapsulage du porte-
clés ne peut déchiffrer les clés de données chiffrées, l'opération de déchiffrement échoue.

Vous pouvez utiliser un seul porte-clés ou également combiner des porte-clés du même type ou
de types différents dans un porte-clés multiple. Lorsque vous chiffrez des données, le jeu de clés
multiples renvoie une copie de la clé de données chiffrée par toutes les clés d'encapsulage de tous
les trousseaux de clés qui le composent et une clé MAC associée à la clé de données. Vous pouvez
déchiffrer les données à l'aide d'un trousseau de clés avec n'importe laquelle des clés d'encapsulage
du trousseau de clés multiples.

AWS KMS porte-clés

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Un AWS KMS trousseau de clés utilise le chiffrement symétrique ou le RSA asymétrique AWS KMS
keyspour générer, chiffrer et déchiffrer les clés de données. AWS Key Management Service (AWS
KMS) protège vos clés KMS et effectue des opérations cryptographiques dans les limites de la norme
FIPS. Nous vous recommandons d'utiliser un AWS KMS trousseau de clés, ou un trousseau de clés
présentant des propriétés de sécurité similaires, dans la mesure du possible.

Vous pouvez également utiliser une clé KMS multirégionale symétrique dans un AWS KMS trousseau
de clés. Pour plus de détails et des exemples d'utilisation de plusieurs régions AWS KMS keys,
consultezUtilisation de plusieurs régions AWS KMS keys. Pour plus d'informations sur les clés
multirégionales, consultez la section Utilisation des clés multirégionales dans le manuel du AWS Key
Management Service développeur.

AWS KMS les porte-clés peuvent inclure deux types de clés d'emballage :

• Clé du générateur : génère une clé de données en texte brut et la chiffre. Un trousseau de clés qui
chiffre des données doit comporter une clé génératrice.

• Clés supplémentaires : chiffre la clé de données en texte brut générée par la clé du générateur.
AWS KMS les porte-clés peuvent comporter zéro ou plusieurs clés supplémentaires.

AWS KMS porte-clés 54

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS SDK de chiffrement de base de données Guide du développeur

Vous devez disposer d'une clé génératrice pour chiffrer les enregistrements. Lorsqu'un AWS KMS
trousseau de clés ne comporte qu'une seule AWS KMS clé, celle-ci est utilisée pour générer et
chiffrer la clé de données.

Comme tous les porte-clés, les AWS KMS porte-clés peuvent être utilisés indépendamment ou dans
un porte-clés multiple avec d'autres porte-clés du même type ou d'un type différent.

Rubriques

• Autorisations requises pour les AWS KMS porte-clés

• Identification AWS KMS keys dans un AWS KMS porte-clés

• Création d'un AWS KMS porte-clés

• Utilisation de plusieurs régions AWS KMS keys

• Utilisation d'un porte-clés AWS KMS Discovery

• Utiliser un porte-clés de découverte AWS KMS régional

Autorisations requises pour les AWS KMS porte-clés

Le SDK AWS de chiffrement de base de données n'en nécessite pas Compte AWS et n'en dépend
pas Service AWS. Toutefois, pour utiliser un AWS KMS trousseau de clés, vous devez disposer des
autorisations minimales suivantes AWS KMS keys sur celui-ci. Compte AWS

• Pour chiffrer avec un AWS KMS trousseau de clés, vous avez besoin de
l'GenerateDataKeyautorisation kms : sur la clé du générateur. Vous devez disposer de
l'autorisation KMS:Encrypt pour toutes les clés supplémentaires du trousseau de clés. AWS KMS

• Pour déchiffrer avec un AWS KMS trousseau de clés, vous devez disposer de l'autorisation
KMS:Decrypt sur au moins une des clés du trousseau de clés. AWS KMS

• Pour chiffrer avec un trousseau de clés multiples composé de trousseaux de AWS KMS clés,
vous avez besoin de l'GenerateDataKeyautorisation kms : sur la clé du générateur située dans le
trousseau de clés du générateur. Vous avez besoin de l'autorisation KMS:Encrypt sur toutes les
autres clés de tous les autres trousseaux de clés. AWS KMS

• Pour chiffrer avec un jeu de AWS KMS clés RSA asymétrique, vous n'avez pas besoin de kms :
GenerateDataKey ou de KMS:Encrypt car vous devez spécifier le matériel de clé publique
que vous souhaitez utiliser pour le chiffrement lorsque vous créez le trousseau de clés. Aucun
AWS KMS appel n'est effectué lors du chiffrement avec ce trousseau de clés. Pour déchiffrer
avec un trousseau de AWS KMS clés RSA asymétrique, vous devez disposer de l'autorisation
KMS:Decrypt.

Autorisations requises pour les AWS KMS porte-clés 55

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS SDK de chiffrement de base de données Guide du développeur

Pour des informations détaillées sur les autorisations pour AWS KMS keys, voir Authentification et
contrôle d'accès dans le Guide du AWS Key Management Service développeur.

Identification AWS KMS keys dans un AWS KMS porte-clés

Un AWS KMS porte-clés peut en inclure un ou plusieurs AWS KMS keys. Pour spécifier un AWS
KMS key dans un AWS KMS trousseau de clés, utilisez un identifiant de AWS KMS clé compatible.
Les identificateurs de clé que vous pouvez utiliser pour identifier un élément AWS KMS key dans un
trousseau de clés varient en fonction de l'opération et de l'implémentation du langage. Pour plus de
détails sur les identificateurs de clé d'un AWS KMS key, consultez la section Identifiants de clé dans
le guide du AWS Key Management Service développeur.

Il est recommandé d'utiliser l'identifiant de clé le plus précis qui soit adapté à votre tâche.

• Pour chiffrer à l'aide d'un AWS KMS trousseau de clés, vous pouvez utiliser un identifiant de clé, un
ARN de clé, un nom d'alias ou un ARN d'alias pour chiffrer les données.

Note

Si vous spécifiez un nom d'alias ou un alias ARN pour une clé KMS dans un jeu de clés
de chiffrement, l'opération de chiffrement enregistre l'ARN de clé actuellement associé à
l'alias dans les métadonnées de la clé de données chiffrée. Cela n'enregistre pas l'alias.
Les modifications apportées à l'alias n'affectent pas la clé KMS utilisée pour déchiffrer vos
clés de données chiffrées.

• Pour déchiffrer à l'aide d'un AWS KMS trousseau de clés, vous devez utiliser un ARN de clé pour
vous identifier. AWS KMS keys Pour plus de détails, consultez Sélection des clés d'emballage.

• Dans un porte-clés utilisé pour le chiffrement et le déchiffrement, vous devez utiliser un ARN de clé
pour identifier les AWS KMS keys.

Lors du déchiffrement, le SDK de chiffrement de AWS base de données recherche dans le jeu de
AWS KMS clés une clé capable de déchiffrer l'une AWS KMS key des clés de données chiffrées.
Plus précisément, le SDK AWS de chiffrement de base de données utilise le modèle suivant pour
chaque clé de données cryptée dans la description du matériel.

• Le SDK AWS de chiffrement de base de données obtient l'ARN de la clé AWS KMS key qui a
chiffré la clé de données à partir des métadonnées de la description du matériel.

Identification AWS KMS keys dans un AWS KMS porte-clés 56

https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN

AWS SDK de chiffrement de base de données Guide du développeur

• Le SDK AWS Database Encryption recherche dans le trousseau de clés de déchiffrement un AWS
KMS key code ARN correspondant.

• S'il trouve un AWS KMS key ARN correspondant dans le jeu de clés, le SDK de chiffrement de
AWS base de données demande d'utiliser la clé KMS AWS KMS pour déchiffrer la clé de données
chiffrée.

• Dans le cas contraire, il passe à la clé de données chiffrée suivante, le cas échéant.

Création d'un AWS KMS porte-clés

Vous pouvez configurer chaque AWS KMS porte-clés avec un AWS KMS key ou plusieurs AWS KMS
keys éléments identiques ou différents Comptes AWS . Régions AWS AWS KMS key Il doit s'agir
d'une clé de chiffrement symétrique (SYMMETRIC_DEFAULT) ou d'une clé RSA KMS asymétrique.
Vous pouvez également utiliser une clé KMS multirégionale à chiffrement symétrique. Vous pouvez
utiliser un ou plusieurs AWS KMS porte-clés dans un porte-clés multiple.

Vous pouvez créer un AWS KMS trousseau de clés qui chiffre et déchiffre les données, ou vous
pouvez créer un trousseau de AWS KMS clés spécialement conçu pour le chiffrement ou le
déchiffrement. Lorsque vous créez un AWS KMS trousseau de clés pour chiffrer des données,
vous devez spécifier une clé de génération, AWS KMS key qui est utilisée pour générer une clé de
données en texte brut et la chiffrer. La clé de données n'est mathématiquement pas liée à la clé KMS.
Ensuite, si vous le souhaitez, vous pouvez en spécifier d'autres AWS KMS keys qui chiffrent la même
clé de données en texte brut. Pour déchiffrer un champ crypté protégé par ce trousseau de clés, le
trousseau de déchiffrement que vous utilisez doit inclure au moins l'un des éléments AWS KMS keys
définis dans le trousseau de clés, ou non. AWS KMS keys(Un AWS KMS porte-clés sans numéro
AWS KMS keys est connu sous le nom de porte-clés AWS KMS Discovery.)

Toutes les clés d'encapsulation d'un jeu de clés de chiffrement ou d'un jeu de clés multiples doivent
être en mesure de chiffrer la clé de données. Si le chiffrement d'une clé d'encapsulation échoue, la
méthode de chiffrement échoue. Par conséquent, l'appelant doit disposer des autorisations requises
pour toutes les clés du trousseau de clés. Si vous utilisez un trousseau de découverte pour chiffrer
des données, seul ou dans un jeu de clés multiples, l'opération de chiffrement échoue.

Les exemples suivants utilisent la CreateAwsKmsMrkMultiKeyring méthode pour
créer un jeu de AWS KMS clés avec une clé KMS de chiffrement symétrique. La
CreateAwsKmsMrkMultiKeyring méthode crée automatiquement le AWS KMS client et garantit
que le trousseau de clés gère correctement les clés à région unique et à régions multiples. Ces

Création d'un AWS KMS porte-clés 57

AWS SDK de chiffrement de base de données Guide du développeur

exemples utilisent une clé ARNs pour identifier les clés KMS. Pour plus d’informations, consultez
Identification AWS KMS keys dans un AWS KMS porte-clés.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyArn)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput
{
 Generator = kmsKeyArn
};
var awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Rust

let provider_config = MaterialProvidersConfig::builder().build()?;
let mat_prov = client::Client::from_conf(provider_config)?;
let kms_keyring = mat_prov
 .create_aws_kms_mrk_multi_keyring()
 .generator(kms_key_id)
 .send()
 .await?;

Les exemples suivants utilisent la CreateAwsKmsRsaKeyring méthode pour créer un AWS KMS
trousseau de clés avec une clé RSA KMS asymétrique. Pour créer un trousseau de AWS KMS clés
RSA asymétrique, entrez les valeurs suivantes.

• kmsClient: créer un nouveau AWS KMS client

• kmsKeyID: l'ARN de clé qui identifie votre clé RSA KMS asymétrique

Création d'un AWS KMS porte-clés 58

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS SDK de chiffrement de base de données Guide du développeur

• publicKey: un ByteBuffer fichier PEM codé en UTF-8 qui représente la clé publique de la clé que
vous avez transmise kmsKeyID

• encryptionAlgorithm: l'algorithme de chiffrement doit être RSAES_OAEP_SHA_256 ou
RSAES_OAEP_SHA_1

Java

 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
 CreateAwsKmsRsaKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .kmsKeyId(rsaKMSKeyArn)
 .publicKey(publicKey)
 .encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
 .build();
IKeyring awsKmsRsaKeyring =
 matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsRsaKeyringInput = new CreateAwsKmsRsaKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = rsaKMSKeyArn,
 PublicKey = publicKey,
 EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};
IKeyring awsKmsRsaKeyring =
 matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_rsa_keyring = mpl
 .create_aws_kms_rsa_keyring()

Création d'un AWS KMS porte-clés 59

AWS SDK de chiffrement de base de données Guide du développeur

 .kms_key_id(rsa_kms_key_arn)
 .public_key(public_key)

 .encryption_algorithm(aws_sdk_kms::types::EncryptionAlgorithmSpec::RsaesOaepSha256)
 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
 .send()
 .await?;

Utilisation de plusieurs régions AWS KMS keys

Vous pouvez utiliser plusieurs régions AWS KMS keys comme clés d'encapsulation dans le SDK
de chiffrement AWS de base de données. Si vous chiffrez avec une clé multirégionale dans une clé
Région AWS, vous pouvez déchiffrer en utilisant une clé multirégionale associée dans une autre.
Région AWS

Les clés KMS multirégionales sont un ensemble de AWS KMS keys clés différentes Régions
AWS qui ont le même matériau clé et le même identifiant de clé. Vous pouvez utiliser ces clés
associées comme s'il s'agissait de la même clé dans différentes régions. Les clés multirégionales
prennent en charge les scénarios courants de reprise après sinistre et de sauvegarde qui nécessitent
le chiffrement dans une région et le déchiffrement dans une autre région sans passer un appel
interrégional à. AWS KMS Pour plus d'informations sur les clés multirégionales, consultez la section
Utilisation des clés multirégionales dans le manuel du AWS Key Management Service développeur.

Pour prendre en charge les clés multirégionales, le SDK de chiffrement de AWS base de données
inclut AWS KMS multi-Region-aware des trousseaux de clés. La CreateAwsKmsMrkMultiKeyring
méthode prend en charge les clés à région unique et à régions multiples.

• Pour les clés à région unique, le multi-Region-aware symbole se comporte comme le porte-clés
à région unique AWS KMS . Il tente de déchiffrer le texte chiffré uniquement à l'aide de la clé à
région unique qui a chiffré les données. Pour simplifier votre expérience en matière de trousseau
de AWS KMS clés, nous vous recommandons d'utiliser CreateAwsKmsMrkMultiKeyring cette
méthode chaque fois que vous utilisez une clé KMS de chiffrement symétrique.

• Pour les clés multirégionales, le multi-Region-aware symbole tente de déchiffrer le texte chiffré
avec la même clé multirégionale qui a chiffré les données ou avec la clé multirégionale associée
dans la région que vous spécifiez.

Dans les multi-Region-aware trousseaux de clés qui utilisent plusieurs clés KMS, vous pouvez
spécifier plusieurs clés à région unique ou multirégionale. Toutefois, vous ne pouvez spécifier qu'une

Utilisation de plusieurs régions AWS KMS keys 60

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS SDK de chiffrement de base de données Guide du développeur

seule clé pour chaque ensemble de clés multirégionales associées. Si vous spécifiez plusieurs
identificateurs de clé avec le même identifiant de clé, l'appel du constructeur échoue.

Les exemples suivants créent un AWS KMS trousseau de clés avec une clé KMS multirégionale. Les
exemples spécifient une clé multirégionale comme clé génératrice et une clé mono-région comme clé
enfant.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(multiRegionKeyArn)
 .kmsKeyIds(Collections.singletonList(kmsKeyArn))
 .build();
IKeyring awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput
{
 Generator = multiRegionKeyArn,
 KmsKeyIds = new List<String> { kmsKeyArn }
};
var awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let aws_kms_mrk_multi_keyring = mpl
 .create_aws_kms_mrk_multi_keyring()
 .generator(multiRegion_key_arn)
 .kms_key_ids(vec![key_arn.to_string()])
 .send()
 .await?;

Utilisation de plusieurs régions AWS KMS keys 61

AWS SDK de chiffrement de base de données Guide du développeur

Lorsque vous utilisez des trousseaux de AWS KMS clés multirégionaux, vous pouvez déchiffrer le
texte chiffré en mode strict ou en mode découverte. Pour déchiffrer le texte chiffré en mode strict,
instanciez le symbole multi-Region-aware avec la clé ARN de la clé multirégionale associée dans la
région dans laquelle vous êtes en train de déchiffrer le texte chiffré. Si vous spécifiez l'ARN d'une clé
multirégionale associée dans une région différente (par exemple, la région où l'enregistrement a été
chiffré), le multi-Region-aware symbole émettra un appel interrégional pour cela. AWS KMS key

Lors du déchiffrement en mode strict, le multi-Region-aware symbole nécessite un ARN clé. Il
n'accepte qu'un seul ARN de clé pour chaque ensemble de clés multirégionales associées.

Vous pouvez également déchiffrer en mode découverte à l'aide de clés AWS KMS multirégionales.
Lorsque vous déchiffrez en mode découverte, vous n'en spécifiez aucune. AWS KMS keys(Pour plus
d'informations sur les porte-clés de AWS KMS découverte d'une seule région, consultezUtilisation
d'un porte-clés AWS KMS Discovery.)

Si vous avez chiffré avec une clé multirégionale, le multi-Region-aware symbole en mode découverte
essaiera de le déchiffrer en utilisant une clé multirégionale associée dans la région locale. S'il n'en
existe aucun, l'appel échoue. En mode découverte, le SDK AWS de chiffrement de base de données
ne tente pas d'appeler plusieurs régions pour obtenir la clé multirégionale utilisée pour le chiffrement.

Utilisation d'un porte-clés AWS KMS Discovery

Lors du déchiffrement, il est recommandé de spécifier les clés d'encapsulation que le SDK de
chiffrement de AWS base de données peut utiliser. Pour suivre cette bonne pratique, utilisez un jeu
de clés de AWS KMS déchiffrement qui limite les clés AWS KMS d'encapsulage à celles que vous
spécifiez. Toutefois, vous pouvez également créer un trousseau de clés de AWS KMS découverte,
c'est-à-dire un AWS KMS trousseau de clés ne spécifiant aucune clé d'encapsulation.

Le SDK AWS Database Encryption fournit un jeu de clés de AWS KMS découverte standard et un
jeu de clés de découverte pour les AWS KMS clés multirégionales. Pour plus d'informations sur
l'utilisation de clés multirégionales avec le SDK AWS de chiffrement de base de données, consultez.
Utilisation de plusieurs régions AWS KMS keys

Comme il ne spécifie aucune clé d'encapsulation, un jeu de clés de découverte ne peut pas chiffrer
les données. Si vous utilisez un trousseau de découverte pour chiffrer des données, seul ou dans un
jeu de clés multiples, l'opération de chiffrement échoue.

Lors du déchiffrement, un jeu de clés de découverte permet au SDK de chiffrement de AWS base
de données de demander AWS KMS à déchiffrer toute clé de données chiffrée à l'aide de AWS

Utilisation d'un porte-clés AWS KMS Discovery 62

AWS SDK de chiffrement de base de données Guide du développeur

KMS key celle qui l'a chiffrée, indépendamment de son propriétaire ou de son accès. AWS KMS key
L'appel ne réussit que lorsque l'appelant est kms:Decrypt autorisé à utiliser le. AWS KMS key

Important

Si vous incluez un jeu de clés de AWS KMS découverte dans un jeu de clés multiples de
déchiffrement, le jeu de clés de découverte remplace toutes les restrictions relatives aux
clés KMS spécifiées par les autres trousseaux de clés du jeu de clés multiples. Le porte-clés
multiple se comporte comme le porte-clés le moins restrictif. Si vous utilisez un trousseau de
découverte pour chiffrer des données, seul ou dans un jeu de clés multiples, l'opération de
chiffrement échoue

Le SDK AWS Database Encryption fournit un jeu de clés de AWS KMS découverte pour plus de
commodité. Cependant, nous vous recommandons d'utiliser un porte-clés plus limité chaque fois que
possible pour les raisons suivantes.

• Authenticité — Un trousseau de clés de AWS KMS découverte peut utiliser tout AWS KMS key
élément utilisé pour chiffrer une clé de données dans la description du matériel, à condition que
l'appelant soit autorisé à l'utiliser pour le déchiffrer. AWS KMS key Ce n'est peut-être pas AWS
KMS key celui que l'appelant a l'intention d'utiliser. Par exemple, l'une des clés de données
cryptées peut avoir été cryptée sous une forme moins sécurisée AWS KMS key que tout le monde
peut utiliser.

• Latence et performances : un jeu de clés de AWS KMS découverte peut être sensiblement plus
lent que les autres car le SDK de chiffrement de AWS base de données essaie de déchiffrer toutes
les clés de données chiffrées, y compris celles chiffrées AWS KMS keys dans d'autres régions,
Comptes AWS et AWS KMS keys que l'appelant n'est pas autorisé à utiliser pour le déchiffrement.

Si vous utilisez un trousseau de clés de découverte, nous vous recommandons d'utiliser un filtre de
découverte pour limiter les clés KMS pouvant être utilisées à celles Comptes AWS des partitions
spécifiées. Pour obtenir de l'aide pour trouver votre identifiant de compte et votre partition, consultez
la section Vos Compte AWS identifiants et votre format ARN dans le Références générales AWS.

Les exemples de code suivants instancient un jeu de clés de AWS KMS découverte avec un filtre de
découverte qui limite les clés KMS que le SDK de chiffrement de AWS base de données peut utiliser
à celles de la aws partition et du compte d'exemple. 111122223333

Utilisation d'un porte-clés AWS KMS Discovery 63

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS SDK de chiffrement de base de données Guide du développeur

Avant d'utiliser ce code, remplacez les valeurs d'exemple Compte AWS et de partition par des
valeurs valides pour votre partition Compte AWS and. Si vos clés KMS se trouvent dans les régions
de Chine, utilisez la valeur de aws-cn partition. Si vos clés KMS sont incluses AWS GovCloud (US)
Regions, utilisez la valeur de aws-us-gov partition. Pour tous les autres Régions AWS, utilisez la
valeur de aws partition.

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

C# / .NET

// Create discovery filter
var discoveryFilter = new DiscoveryFilter
{
 Partition = "aws",
 AccountIds = 111122223333
};
// Create the discovery keyring
var createAwsKmsMrkDiscoveryMultiKeyringInput = new
 CreateAwsKmsMrkDiscoveryMultiKeyringInput
{
 DiscoveryFilter = discoveryFilter
};
var decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Rust

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()

Utilisation d'un porte-clés AWS KMS Discovery 64

AWS SDK de chiffrement de base de données Guide du développeur

 .partition("aws")
 .account_ids(111122223333)
 .build()?;

// Create the discovery keyring
let decrypt_keyring = mpl
 .create_aws_kms_mrk_discovery_multi_keyring()
 .discovery_filter(discovery_filter)
 .send()
 .await?;

Utiliser un porte-clés de découverte AWS KMS régional

Un trousseau de découverte AWS KMS régional est un trousseau de clés qui ne précise pas les
ARNs clés KMS. Au lieu de cela, il permet au SDK AWS de chiffrement de base de données de
déchiffrer en utilisant uniquement les clés KMS en particulier. Régions AWS

Lors du déchiffrement à l'aide d'un jeu de clés de découverte AWS KMS régional, le SDK AWS de
chiffrement de base de données déchiffre toute clé de données chiffrée selon un dans le spécifié.
AWS KMS key Région AWS Pour réussir, l'appelant doit avoir l'kms:Decryptautorisation d'utiliser
au moins l'un des éléments spécifiés Région AWS qui ont chiffré une clé de données. AWS KMS
keys

Comme les autres trousseaux de découverte, le trousseau de clés de découverte régional n'a
aucun effet sur le chiffrement. Cela ne fonctionne que lors du déchiffrement de champs chiffrés.
Si vous utilisez un jeu de clés de découverte régional dans un jeu de clés multiples utilisé pour le
chiffrement et le déchiffrement, il n'est efficace que lors du déchiffrement. Si vous utilisez un jeu de
clés de découverte multirégional pour chiffrer des données, seul ou dans un jeu de clés multirégional,
l'opération de chiffrement échoue.

Important

Si vous incluez un trousseau de clés de découverte AWS KMS régional dans un jeu de
clés multiples de déchiffrement, le jeu de clés de découverte régional remplace toutes les
restrictions relatives aux clés KMS spécifiées par les autres trousseaux de clés du jeu de
clés multiples. Le porte-clés multiple se comporte comme le porte-clés le moins restrictif. Un
trousseau de AWS KMS découverte n'a aucun effet sur le chiffrement lorsqu'il est utilisé seul
ou dans un jeu de clés multiples.

Utiliser un porte-clés de découverte AWS KMS régional 65

AWS SDK de chiffrement de base de données Guide du développeur

Le jeu de clés de découverte régional du SDK AWS de chiffrement de base de données tente
de déchiffrer uniquement avec des clés KMS dans la région spécifiée. Lorsque vous utilisez
un trousseau de clés de découverte, vous configurez la région sur le AWS KMS client. Ces
implémentations du SDK de chiffrement de AWS base de données ne filtrent pas les clés KMS par
région, mais AWS KMS échoueront à une demande de déchiffrement de clés KMS en dehors de la
région spécifiée.

Si vous utilisez un trousseau de clés de découverte, nous vous recommandons d'utiliser un filtre
de découverte afin de limiter les clés KMS utilisées pour le déchiffrement à celles figurant dans les
partitions Comptes AWS et les partitions spécifiées.

Par exemple, le code suivant crée un trousseau de clés de découverte AWS KMS régional avec un
filtre de découverte. Ce jeu de clés limite le SDK AWS de chiffrement de base de données aux clés
KMS du compte 111122223333 dans la région USA Ouest (Oregon) (us-west-2).

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .regions("us-west-2")
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

C# / .NET

// Create discovery filter
var discoveryFilter = new DiscoveryFilter
{
 Partition = "aws",
 AccountIds = 111122223333
};
// Create the discovery keyring
var createAwsKmsMrkDiscoveryMultiKeyringInput = new
 CreateAwsKmsMrkDiscoveryMultiKeyringInput

Utiliser un porte-clés de découverte AWS KMS régional 66

AWS SDK de chiffrement de base de données Guide du développeur

{
 DiscoveryFilter = discoveryFilter,
 Regions = us-west-2
};
var decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Rust

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .partition("aws")
 .account_ids(111122223333)
 .build()?;

// Create the discovery keyring
let decrypt_keyring = mpl
 .create_aws_kms_mrk_discovery_multi_keyring()
 .discovery_filter(discovery_filter)
 .regions(us-west-2)
 .send()
 .await?;

AWS KMS Porte-clés hiérarchiques

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Note

Depuis le 24 juillet 2023, les clés de branche créées lors de la version préliminaire pour
les développeurs ne sont plus prises en charge. Créez de nouvelles clés de branche pour
continuer à utiliser le magasin de clés que vous avez créé lors de la version préliminaire pour
les développeurs.

AWS KMS Porte-clés hiérarchiques 67

AWS SDK de chiffrement de base de données Guide du développeur

Avec le trousseau de clés AWS KMS hiérarchique, vous pouvez protéger vos documents
cryptographiques sous une clé KMS de chiffrement symétrique sans avoir à appeler AWS KMS
chaque fois que vous chiffrez ou déchiffrez un enregistrement. Il s'agit d'un bon choix pour les
applications qui doivent minimiser les appels AWS KMS, ainsi que pour les applications qui peuvent
réutiliser certains matériels cryptographiques sans enfreindre leurs exigences de sécurité.

Le trousseau de clés hiérarchique est une solution de mise en cache des matériaux cryptographiques
qui réduit le nombre d' AWS KMS appels en utilisant des clés de branche AWS KMS protégées
conservées dans une table Amazon DynamoDB, puis en mettant en cache localement les éléments
clés de branche utilisés dans les opérations de chiffrement et de déchiffrement. La table DynamoDB
sert de magasin de clés qui gère et protège les clés de branche. Il stocke la clé de branche active
et toutes les versions précédentes de la clé de branche. La clé de branche active est la version
de clé de branche la plus récente. Le trousseau de clés hiérarchique utilise une clé de chiffrement
de données unique pour chaque demande de chiffrement et chiffre chaque clé de chiffrement de
données avec une clé d'encapsulation unique dérivée de la clé de branche active. Le trousseau
de clés hiérarchique dépend de la hiérarchie établie entre les clés de branche actives et leurs clés
d'encapsulation dérivées.

Le trousseau de clés hiérarchique utilise généralement chaque version de clé de branche pour
satisfaire plusieurs demandes. Mais vous contrôlez la mesure dans laquelle les clés de branche
actives sont réutilisées et vous déterminez la fréquence à laquelle la clé de branche active est
pivotée. La version active de la clé de branche reste active jusqu'à ce que vous la fassiez pivoter.
Les versions précédentes de la clé de branche active ne seront pas utilisées pour effectuer des
opérations de chiffrement, mais elles peuvent toujours être interrogées et utilisées dans des
opérations de déchiffrement.

Lorsque vous instanciez le trousseau de clés hiérarchique, il crée un cache local. Vous spécifiez
une limite de cache qui définit la durée maximale pendant laquelle les éléments clés de branche
sont stockés dans le cache local avant leur expiration et leur expulsion du cache. Le trousseau
de clés hiérarchique effectue un AWS KMS appel pour déchiffrer la clé de branche et assembler
les matériaux de la clé de branche la première fois que a branch-key-id est spécifié dans une
opération. Les éléments clés de branche sont ensuite stockés dans le cache local et réutilisés pour
toutes les opérations de chiffrement et de déchiffrement qui le spécifient branch-key-id jusqu'à
l'expiration de la limite de cache. Le stockage des éléments clés de branche dans le cache local
réduit le nombre d' AWS KMS appels. Par exemple, considérez une limite de cache de 15 minutes.
Si vous effectuez 10 000 opérations de chiffrement dans cette limite de cache, le trousseau de AWS
KMS clés traditionnel devra effectuer 10 000 AWS KMS appels pour satisfaire 10 000 opérations de

AWS KMS Porte-clés hiérarchiques 68

AWS SDK de chiffrement de base de données Guide du développeur

chiffrement. Si vous en avez un actifbranch-key-id, le trousseau de clés hiérarchique n'a besoin
que d'un seul AWS KMS appel pour satisfaire 10 000 opérations de chiffrement.

Le cache local sépare le matériel de chiffrement du matériel de déchiffrement. Les matériaux de
chiffrement sont assemblés à partir de la clé de branche active et réutilisés pour toutes les opérations
de chiffrement jusqu'à l'expiration de la limite de cache. Les matériaux de déchiffrement sont
assemblés à partir de l'ID et de la version de la clé de branche identifiés dans les métadonnées du
champ crypté, et ils sont réutilisés pour toutes les opérations de déchiffrement liées à l'ID et à la
version de la clé de branche jusqu'à l'expiration de la limite de cache. Le cache local peut stocker
plusieurs versions de la même clé de branche à la fois. Lorsque le cache local est configuré pour
utiliser unbranch key ID supplier, il peut également stocker des éléments clés de branche provenant
de plusieurs clés de branche actives à la fois.

Note

Toutes les mentions du jeu de clés hiérarchique dans le SDK de chiffrement AWS de base de
données font référence au jeu de clés AWS KMS hiérarchique.

Rubriques

• Comment ça marche

• Prérequis

• Autorisations requises

• Choisissez un cache

• Création d'un trousseau de clés hiérarchique

• Utilisation du trousseau de clés hiérarchique pour un chiffrement consultable

Comment ça marche

Les procédures pas à pas suivantes décrivent comment le trousseau de clés hiérarchique assemble
le matériel de chiffrement et de déchiffrement, ainsi que les différents appels effectués par le
trousseau de clés pour les opérations de chiffrement et de déchiffrement. Pour plus de détails
techniques sur les processus de dérivation des clés d'encapsulation et de chiffrement des clés de
données en texte clair, consultez la section Détails techniques du trousseau de clés AWS KMS
hiérarchique.

Comment ça marche 69

AWS SDK de chiffrement de base de données Guide du développeur

Chiffrer et signer

La procédure pas à pas suivante décrit comment le trousseau de clés hiérarchique assemble les
matériaux de chiffrement et en déduit une clé d'encapsulation unique.

1. La méthode de cryptage demande au trousseau de clés hiérarchique le matériel de cryptage. Le
trousseau de clés génère une clé de données en texte brut, puis vérifie s'il existe des éléments
de clé de branche valides dans le cache local pour générer la clé d'encapsulation. S'il existe des
documents relatifs aux clés de succursale valides, le porte-clés passe à l'étape 4.

2. S'il n'existe aucun matériel de clé de branche valide, le trousseau de clés hiérarchique interroge
le magasin de clés pour trouver la clé de branche active.

a. Le magasin de clés appelle AWS KMS pour déchiffrer la clé de branche active et renvoie
la clé de branche active en texte clair. Les données identifiant la clé de branche active sont
sérialisées pour fournir des données authentifiées supplémentaires (AAD) lors de l'appel de
déchiffrement à. AWS KMS

b. Le magasin de clés renvoie la clé de branche en texte brut et les données qui l'identifient,
telles que la version de la clé de branche.

3. Le trousseau de clés hiérarchique assemble les éléments clés de branche (version de clé de
branche en texte clair et de clé de branche) et en stocke une copie dans le cache local.

4. Le trousseau de clés hiérarchique déduit une clé d'encapsulation unique à partir de la clé de
branche en texte brut et d'un sel aléatoire de 16 octets. Il utilise la clé d'encapsulation dérivée
pour chiffrer une copie de la clé de données en texte brut.

La méthode de cryptage utilise le matériel de cryptage pour chiffrer et signer l'enregistrement. Pour
plus d'informations sur la façon dont les enregistrements sont chiffrés et signés dans le SDK AWS de
chiffrement de base de données, voir Chiffrer et signer.

Déchiffrer et vérifier

La procédure pas à pas suivante décrit comment le trousseau de clés hiérarchique assemble le
matériel de déchiffrement et déchiffre la clé de données chiffrée.

1. Le procédé de déchiffrement identifie la clé de données chiffrée dans le champ de description
matérielle de l'enregistrement chiffré et la transmet au trousseau de clés hiérarchique.

2. Le trousseau hiérarchique désérialise les données identifiant la clé de données chiffrée, y
compris la version de la clé de branche, le sel de 16 octets et d'autres informations décrivant la
manière dont la clé de données a été cryptée.

Comment ça marche 70

AWS SDK de chiffrement de base de données Guide du développeur

Pour de plus amples informations, veuillez consulter AWS KMS Détails techniques du porte-clés
hiérarchique.

3. Le trousseau de clés hiérarchique vérifie si le cache local contient des éléments de clé de
branche valides qui correspondent à la version de clé de branche identifiée à l'étape 2. S'il existe
des documents relatifs aux clés de succursale valides, le porte-clés passe à l'étape 6.

4. S'il n'existe aucun matériel de clé de branche valide, le trousseau de clés hiérarchique interroge
le magasin de clés pour trouver la clé de branche correspondant à la version de clé de branche
identifiée à l'étape 2.

a. Le magasin de clés appelle AWS KMS pour déchiffrer la clé de branche et renvoie la clé
de branche active en texte clair. Les données identifiant la clé de branche active sont
sérialisées pour fournir des données authentifiées supplémentaires (AAD) lors de l'appel de
déchiffrement à. AWS KMS

b. Le magasin de clés renvoie la clé de branche en texte brut et les données qui l'identifient,
telles que la version de la clé de branche.

5. Le trousseau de clés hiérarchique assemble les éléments clés de branche (version de clé de
branche en texte clair et de clé de branche) et en stocke une copie dans le cache local.

6. Le trousseau de clés hiérarchique utilise les éléments de clé de branche assemblés et le sel de
16 octets identifié à l'étape 2 pour reproduire la clé d'encapsulation unique qui a chiffré la clé de
données.

7. Le trousseau de clés hiérarchique utilise la clé d'encapsulation reproduite pour déchiffrer la clé
de données et renvoie la clé de données en texte brut.

La méthode de déchiffrement utilise le matériel de déchiffrement et la clé de données en texte
brut pour déchiffrer et vérifier l'enregistrement. Pour plus d'informations sur la façon dont les
enregistrements sont déchiffrés et vérifiés dans le SDK de chiffrement de AWS base de données, voir
Déchiffrer et vérifier.

Prérequis

Avant de créer et d'utiliser un trousseau de clés hiérarchique, assurez-vous que les conditions
préalables suivantes sont remplies.

• Vous, ou l'administrateur de votre magasin de clés, avez créé un magasin de clés et créé au moins
une clé de branche active.

Prérequis 71

AWS SDK de chiffrement de base de données Guide du développeur

• Vous avez configuré les actions de votre magasin de clés.

Note

La façon dont vous configurez les actions de votre magasin de clés détermine les
opérations que vous pouvez effectuer et les clés KMS que le trousseau de clés
hiérarchique peut utiliser. Pour plus d'informations, consultez la section Actions du magasin
de clés.

• Vous disposez des AWS KMS autorisations requises pour accéder aux clés du magasin de clés
et des succursales et les utiliser. Pour de plus amples informations, veuillez consulter the section
called “Autorisations requises”.

• Vous avez examiné les types de cache pris en charge et configuré le type de cache le mieux
adapté à vos besoins. Pour plus d’informations, consultez the section called “Choisissez un cache”.

Autorisations requises

Le SDK AWS de chiffrement de base de données n'en nécessite pas Compte AWS et n'en dépend
pas Service AWS. Toutefois, pour utiliser un trousseau de clés hiérarchique, vous devez disposer
Compte AWS des autorisations minimales suivantes sur le ou les AWS KMS key chiffrements
symétriques de votre magasin de clés.

• Pour chiffrer et déchiffrer des données à l'aide du trousseau de clés hiérarchique, vous avez besoin
de KMS:Decrypt.

• Pour créer et faire pivoter des clés de branche, vous avez besoin de kms :
GenerateDataKeyWithoutPlaintext et kms : ReEncrypt.

Pour plus d'informations sur le contrôle de l'accès à vos clés de succursale et à votre magasin de
clés, consultezthe section called “Implémentation des autorisations avec le moindre privilégié”.

Choisissez un cache

Le trousseau de clés hiérarchique réduit le nombre d'appels en mettant AWS KMS en cache
localement les éléments clés de branche utilisés dans les opérations de chiffrement et de
déchiffrement. Avant de créer votre trousseau de clés hiérarchique, vous devez choisir le type de
cache que vous souhaitez utiliser. Vous pouvez utiliser le cache par défaut ou le personnaliser en
fonction de vos besoins.

Autorisations requises 72

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS SDK de chiffrement de base de données Guide du développeur

Le trousseau de clés hiérarchique prend en charge les types de cache suivants :

• the section called “Cache par défaut”

• the section called “MultiThreaded cache”

• the section called “StormTracking cache”

• the section called “Cache partagé”

Cache par défaut

Pour la plupart des utilisateurs, le cache par défaut répond à leurs exigences en matière de
threading. Le cache par défaut est conçu pour prendre en charge les environnements fortement
multithread. Lorsqu'une entrée de matériel de clé de branche expire, le cache par défaut empêche
plusieurs threads d'appeler AWS KMS en notifiant à un thread que l'entrée de matériaux de clé de
branche va expirer 10 secondes à l'avance. Cela garantit qu'un seul thread envoie une demande
AWS KMS pour actualiser le cache.

La valeur par défaut et StormTracking les caches prennent en charge le même modèle de
thread, mais il suffit de spécifier la capacité d'entrée pour utiliser le cache par défaut. Pour des
personnalisations de cache plus détaillées, utilisez le. the section called “StormTracking cache”

À moins que vous ne souhaitiez personnaliser le nombre d'entrées de matériaux clés de branche
pouvant être stockées dans le cache local, il n'est pas nécessaire de spécifier un type de cache
lorsque vous créez le trousseau de clés hiérarchique. Si vous ne spécifiez aucun type de cache, le
trousseau de clés hiérarchique utilise le type de cache par défaut et définit la capacité d'entrée à 1
000.

Pour personnaliser le cache par défaut, spécifiez les valeurs suivantes :

• Capacité d'entrée : limite le nombre d'entrées de matériaux clés de branche qui peuvent être
stockées dans le cache local.

Java

.cache(CacheType.builder()
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())

Choisissez un cache 73

AWS SDK de chiffrement de base de données Guide du développeur

C# / .NET

CacheType defaultCache = new CacheType
{
 Default = new DefaultCache{EntryCapacity = 100}
};

Rust

let cache: CacheType = CacheType::Default(
 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

MultiThreaded cache

Le MultiThreaded cache peut être utilisé en toute sécurité dans les environnements multithread, mais
il ne fournit aucune fonctionnalité permettant de minimiser les appels Amazon AWS KMS DynamoDB.
Par conséquent, lorsqu'une entrée de contenu clé de branche expire, tous les fils de discussion
seront avertis en même temps. Cela peut entraîner plusieurs AWS KMS appels pour actualiser le
cache.

Pour utiliser le MultiThreaded cache, spécifiez les valeurs suivantes :

• Capacité d'entrée : limite le nombre d'entrées de matériaux clés de branche qui peuvent être
stockées dans le cache local.

• Taille de la queue d'élagage d'entrée : définit le nombre d'entrées à élaguer si la capacité d'entrée
est atteinte.

Java

.cache(CacheType.builder()
 .MultiThreaded(MultiThreadedCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)
 .build())

Choisissez un cache 74

AWS SDK de chiffrement de base de données Guide du développeur

C# / .NET

CacheType multithreadedCache = new CacheType
{
 MultiThreaded = new MultiThreadedCache
 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1
 }
};

Rust

CacheType::MultiThreaded(
 MultiThreadedCache::builder()
 .entry_capacity(100)
 .entry_pruning_tail_size(1)
 .build()?)

StormTracking cache

Le StormTracking cache est conçu pour prendre en charge les environnements fortement
multithread. Lorsqu'une entrée de matériel de clé de branche expire, le StormTracking cache
empêche plusieurs threads d'appeler AWS KMS en notifiant à l'un d'entre eux que l'entrée de
matériaux de clé de branche va expirer à l'avance. Cela garantit qu'un seul thread envoie une
demande AWS KMS pour actualiser le cache.

Pour utiliser le StormTracking cache, spécifiez les valeurs suivantes :

• Capacité d'entrée : limite le nombre d'entrées de matériaux clés de branche qui peuvent être
stockées dans le cache local.

Valeur par défaut : 1000 entrées

• Taille de la queue d'élagage d'entrée : définit le nombre d'entrées de matériaux clés de branche à
tailler à la fois.

Valeur par défaut : 1 entrée

• Période de grâce : définit le nombre de secondes avant l'expiration pendant lesquelles une
tentative d'actualisation des documents clés de la branche est effectuée.

Choisissez un cache 75

AWS SDK de chiffrement de base de données Guide du développeur

Valeur par défaut : 10 secondes

• Intervalle de grâce : définit le nombre de secondes entre les tentatives d'actualisation des éléments
clés de la branche.

Valeur par défaut : 1 seconde

• Ventilateur : définit le nombre de tentatives simultanées qui peuvent être effectuées pour actualiser
les documents clés de la branche.

Valeur par défaut : 20 tentatives

• In flight time to live (TTL) : définit le nombre de secondes avant l'expiration d'une tentative
d'actualisation des informations clés de branche. Chaque fois que le cache revient NoSuchEntry
en réponse à unGetCacheEntry, cette clé de branche est considérée comme étant en vol jusqu'à
ce que la même clé soit écrite avec une PutCache entrée.

Valeur par défaut : 10 secondes

• Sommeil : définit le nombre de secondes pendant lesquelles un thread doit être mis en veille si le
fanOut délai est dépassé.

Valeur par défaut : 20 millisecondes

Java

.cache(CacheType.builder()
 .StormTracking(StormTrackingCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)
 .gracePeriod(10)
 .graceInterval(1)
 .fanOut(20)
 .inFlightTTL(10)
 .sleepMilli(20)
 .build())

C# / .NET

CacheType stormTrackingCache = new CacheType
{
 StormTracking = new StormTrackingCache

Choisissez un cache 76

AWS SDK de chiffrement de base de données Guide du développeur

 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1,
 FanOut = 20,
 GraceInterval = 1,
 GracePeriod = 10,
 InFlightTTL = 10,
 SleepMilli = 20
 }
};

Rust

CacheType::StormTracking(
 StormTrackingCache::builder()
 .entry_capacity(100)
 .entry_pruning_tail_size(1)
 .grace_period(10)
 .grace_interval(1)
 .fan_out(20)
 .in_flight_ttl(10)
 .sleep_milli(20)
 .build()?)

Cache partagé

Par défaut, le trousseau de clés hiérarchique crée un nouveau cache local chaque fois que vous
instanciez le trousseau de clés. Cependant, le cache partagé peut contribuer à économiser de la
mémoire en vous permettant de partager un cache entre plusieurs trousses de clés hiérarchiques.
Plutôt que de créer un nouveau cache de matériaux cryptographiques pour chaque jeu de clés
hiérarchique que vous instanciez, le cache partagé ne stocke qu'un seul cache en mémoire, qui
peut être utilisé par tous les jeux de clés hiérarchiques qui le référencent. Le cache partagé permet
d'optimiser l'utilisation de la mémoire en évitant la duplication du matériel cryptographique entre les
trousseaux de clés. Au lieu de cela, les trousseaux de clés hiérarchiques peuvent accéder au même
cache sous-jacent, réduisant ainsi l'encombrement mémoire global.

Lorsque vous créez votre cache partagé, vous définissez toujours le type de cache. Vous pouvez
spécifier un the section called “Cache par défaut”the section called “MultiThreaded cache”, ou
the section called “StormTracking cache” comme type de cache, ou le remplacer par un cache
personnalisé compatible.

Choisissez un cache 77

AWS SDK de chiffrement de base de données Guide du développeur

Partitions

Plusieurs trousseaux de clés hiérarchiques peuvent utiliser un seul cache partagé. Lorsque vous
créez un trousseau de clés hiérarchique avec un cache partagé, vous pouvez définir un ID de
partition facultatif. L'ID de partition permet de distinguer le jeu de clés hiérarchique qui écrit dans le
cache. Si deux trousseaux de clés hiérarchiques font référence au même ID de partition et au même
ID de clé de branchelogical key store name, les deux trousseaux de clés partageront les mêmes
entrées de cache dans le cache. Si vous créez deux trousseaux de clés hiérarchiques avec le même
cache partagé, mais avec une partition différente IDs, chaque trousseau de clés n'accèdera aux
entrées du cache qu'à partir de sa propre partition désignée dans le cache partagé. Les partitions
agissent comme des divisions logiques au sein du cache partagé, permettant à chaque jeu de clés
hiérarchique de fonctionner indépendamment sur sa propre partition désignée, sans interférer avec
les données stockées dans l'autre partition.

Si vous avez l'intention de réutiliser ou de partager les entrées du cache d'une partition, vous devez
définir votre propre ID de partition. Lorsque vous transmettez l'ID de partition à votre trousseau de
clés hiérarchique, celui-ci peut réutiliser les entrées du cache déjà présentes dans le cache partagé,
sans avoir à récupérer et à réautoriser les éléments clés de branche. Si vous ne spécifiez pas d'ID
de partition, un ID de partition unique est automatiquement attribué au trousseau de clés chaque fois
que vous instanciez le trousseau de clés hiérarchique.

Les procédures suivantes montrent comment créer un cache partagé avec le type de cache par
défaut et le transmettre à un trousseau de clés hiérarchique.

1. Créez un CryptographicMaterialsCache (CMC) à l'aide de la bibliothèque des fournisseurs
de matériaux (MPL).

Java

// Instantiate the MPL
final MaterialProviders matProv =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

// Create a CacheType object for the Default cache
final CacheType cache =
 CacheType.builder()
 .Default(DefaultCache.builder().entryCapacity(100).build())

Choisissez un cache 78

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS SDK de chiffrement de base de données Guide du développeur

 .build();

// Create a CMC using the default cache
final CreateCryptographicMaterialsCacheInput cryptographicMaterialsCacheInput =
 CreateCryptographicMaterialsCacheInput.builder()
 .cache(cache)
 .build();

final ICryptographicMaterialsCache sharedCryptographicMaterialsCache =
 matProv.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

C# / .NET

// Instantiate the MPL
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create a CacheType object for the Default cache
var cache = new CacheType { Default = new DefaultCache{EntryCapacity = 100} };

// Create a CMC using the default cache
var cryptographicMaterialsCacheInput = new
 CreateCryptographicMaterialsCacheInput {Cache = cache};

var sharedCryptographicMaterialsCache =
 materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

Rust

// Instantiate the MPL
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create a CacheType object for the default cache
let cache: CacheType = CacheType::Default(
 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

// Create a CMC using the default cache
let shared_cryptographic_materials_cache: CryptographicMaterialsCacheRef = mpl.
 create_cryptographic_materials_cache()
 .cache(cache)

Choisissez un cache 79

AWS SDK de chiffrement de base de données Guide du développeur

 .send()
 .await?;

2. Créez un CacheType objet pour le cache partagé.

Transmettez le sharedCryptographicMaterialsCache que vous avez créé à l'étape 1 au
nouvel CacheType objet.

Java

// Create a CacheType object for the sharedCryptographicMaterialsCache
final CacheType sharedCache =
 CacheType.builder()
 .Shared(sharedCryptographicMaterialsCache)
 .build();

C# / .NET

// Create a CacheType object for the sharedCryptographicMaterialsCache
var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache };

Rust

// Create a CacheType object for the shared_cryptographic_materials_cache
let shared_cache: CacheType =
 CacheType::Shared(shared_cryptographic_materials_cache);

3. Passez l'sharedCacheobjet de l'étape 2 à votre trousseau de clés hiérarchique.

Lorsque vous créez un trousseau de clés hiérarchique avec un cache partagé, vous pouvez
éventuellement définir un partitionID pour partager les entrées du cache entre plusieurs
trousseaux hiérarchiques. Si vous ne spécifiez pas d'ID de partition, le trousseau de clés
hiérarchique attribue automatiquement un identifiant de partition unique au trousseau de clés.

Note

Vos trousseaux de clés hiérarchiques partageront les mêmes entrées de cache dans
un cache partagé si vous créez au moins deux trousseaux de clés faisant référence
au même ID de partition et au même ID de clé de branche. logical key store name Si
vous ne souhaitez pas que plusieurs trousseaux de clés partagent les mêmes entrées

Choisissez un cache 80

AWS SDK de chiffrement de base de données Guide du développeur

de cache, vous devez utiliser un identifiant de partition unique pour chaque jeu de clés
hiérarchique.

L'exemple suivant crée un jeu de clés hiérarchique avec une branch key ID supplier limite de
cache de 600 secondes. Pour plus d'informations sur les valeurs définies dans la configuration
hiérarchique du trousseau de clés suivante, consultezthe section called “Création d'un trousseau
de clés hiérarchique”.

Java

// Create the Hierarchical keyring
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(sharedCache)
 .partitionID(partitionID)
 .build();
final IKeyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

// Create the Hierarchical keyring
var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 Cache = sharedCache,
 TtlSeconds = 600,
 PartitionId = partitionID
};
var keyring =
 materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Rust

// Create the Hierarchical keyring
let keyring1 = mpl

Choisissez un cache 81

AWS SDK de chiffrement de base de données Guide du développeur

 .create_aws_kms_hierarchical_keyring()
 .key_store(key_store1)
 .branch_key_id(branch_key_id.clone())
 // CryptographicMaterialsCacheRef is an Rc (Reference Counted), so if you
 clone it to
 // pass it to different Hierarchical Keyrings, it will still point to the
 same
 // underlying cache, and increment the reference count accordingly.
 .cache(shared_cache.clone())
 .ttl_seconds(600)
 .partition_id(partition_id.clone())
 .send()
 .await?;

Création d'un trousseau de clés hiérarchique

Pour créer un trousseau de clés hiérarchique, vous devez fournir les valeurs suivantes :

• Le nom d'un magasin clé

Le nom de la table DynamoDB que vous, ou votre administrateur de magasin de clés, avez créée
pour servir de magasin de clés.

•

Une limite de durée de vie du cache (TTL)

Durée en secondes pendant laquelle une entrée de clé de branche dans le cache local peut être
utilisée avant son expiration. La limite de cache TTL détermine la fréquence à laquelle le client
appelle AWS KMS pour autoriser l'utilisation des clés de branche. Cette valeur doit être supérieure
à zéro. Une fois la limite de cache TTL expirée, l'entrée n'est jamais servie et sera expulsée du
cache local.

• Un identifiant de clé de branche

Vous pouvez soit configurer statiquement le branch-key-id identifiant d'une seule clé de
branche active dans votre magasin de clés, soit fournir un fournisseur d'ID de clé de branche.

Le fournisseur d'ID de clé de branche utilise les champs stockés dans le contexte de chiffrement
pour déterminer quelle clé de branche est requise pour déchiffrer un enregistrement. Par défaut,

Création d'un trousseau de clés hiérarchique 82

AWS SDK de chiffrement de base de données Guide du développeur

seules les clés de partition et de tri sont incluses dans le contexte de chiffrement. Toutefois, vous
pouvez utiliser l'action SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographique pour
inclure des champs supplémentaires dans le contexte de chiffrement.

Nous vous recommandons vivement de faire appel à un fournisseur d'ID de clé de branche pour
les bases de données mutualisées où chaque locataire possède sa propre clé de branche. Vous
pouvez utiliser le fournisseur d'ID de clé de succursale pour créer un nom convivial pour votre clé
de succursale IDs afin de reconnaître facilement l'ID de clé de branche correct pour un locataire
spécifique. Par exemple, le nom convivial vous permet de faire référence à une clé de branche au
tenant1 lieu deb3f61619-4d35-48ad-a275-050f87e15122.

Pour les opérations de déchiffrement, vous pouvez soit configurer de manière statique un jeu
de clés hiérarchique unique pour limiter le déchiffrement à un seul locataire, soit utiliser le
fournisseur d'ID de clé de branche pour identifier le locataire responsable du déchiffrement d'un
enregistrement.

• (Facultatif) Un cache

Si vous souhaitez personnaliser le type de cache ou le nombre d'entrées clés de branche pouvant
être stockées dans le cache local, spécifiez le type de cache et la capacité d'entrée lorsque vous
initialisez le trousseau de clés.

Le trousseau de clés hiérarchique prend en charge les types de cache suivants : par défaut
MultiThreaded, StormTracking, et partagé. Pour plus d'informations et des exemples illustrant
comment définir chaque type de cache, consultezthe section called “Choisissez un cache”.

Si vous ne spécifiez pas de cache, le trousseau de clés hiérarchique utilise automatiquement le
type de cache par défaut et définit la capacité d'entrée à 1 000.

• (Facultatif) Un identifiant de partition

Si vous spécifiez lethe section called “Cache partagé”, vous pouvez éventuellement définir un ID de
partition. L'ID de partition permet de distinguer le jeu de clés hiérarchique qui écrit dans le cache.
Si vous avez l'intention de réutiliser ou de partager les entrées du cache d'une partition, vous devez
définir votre propre ID de partition. Vous pouvez spécifier n'importe quelle chaîne pour l'ID de
partition. Si vous ne spécifiez pas d'ID de partition, un ID de partition unique est automatiquement
attribué au trousseau de clés lors de sa création.

Pour de plus amples informations, veuillez consulter Partitions.

Création d'un trousseau de clés hiérarchique 83

AWS SDK de chiffrement de base de données Guide du développeur

Note

Vos trousseaux de clés hiérarchiques partageront les mêmes entrées de cache dans
un cache partagé si vous créez au moins deux trousseaux de clés faisant référence au
même ID de partition et au même ID de clé de branche. logical key store name Si vous ne
souhaitez pas que plusieurs trousseaux de clés partagent les mêmes entrées de cache,
vous devez utiliser un identifiant de partition unique pour chaque jeu de clés hiérarchique.

• (Facultatif) Une liste de jetons de subvention

Si vous contrôlez l'accès à la clé KMS dans votre trousseau de clés hiérarchique avec des
autorisations, vous devez fournir tous les jetons de subvention nécessaires lorsque vous initialisez
le trousseau de clés.

Création d'un trousseau de clés hiérarchique avec un identifiant de clé de branche statique

Les exemples suivants montrent comment créer un jeu de clés hiérarchique avec un identifiant de
clé de branche statique, lethe section called “Cache par défaut”, et une limite de cache TTL de 600
secondes.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(branchKeyStoreName)
 .branchKeyId(branch-key-id)
 .ttlSeconds(600)
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{

Création d'un trousseau de clés hiérarchique 84

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS SDK de chiffrement de base de données Guide du développeur

 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .branch_key_id(branch_key_id)
 .key_store(branch_key_store_name)
 .ttl_seconds(600)
 .send()
 .await?;

Créez un trousseau de clés hiérarchique avec un fournisseur d'identifiant de clé de succursale

Les procédures suivantes montrent comment créer un trousseau de clés hiérarchique avec un
fournisseur d'ID de clé de branche.

1. Création d'un fournisseur d'ID de clé de succursale

L'exemple suivant crée des noms conviviaux pour les deux clés de branche créées à l'étape 1 et
appelle CreateDynamoDbEncryptionBranchKeyIdSupplier à créer un fournisseur d'ID de
clé de branche avec le SDK AWS Database Encryption pour le client DynamoDB.

Java

// Create friendly names for each branch-key-id
class ExampleBranchKeyIdSupplier implements IDynamoDbKeyBranchKeyIdSupplier {
 private static String branchKeyIdForTenant1;
 private static String branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {
 this.branchKeyIdForTenant1 = tenant1Id;
 this.branchKeyIdForTenant2 = tenant2Id;
 }

Création d'un trousseau de clés hiérarchique 85

AWS SDK de chiffrement de base de données Guide du développeur

// Create the branch key ID supplier
final DynamoDbEncryption ddbEnc = DynamoDbEncryption.builder()
 .DynamoDbEncryptionConfig(DynamoDbEncryptionConfig.builder().build())
 .build();
final BranchKeyIdSupplier branchKeyIdSupplier =
 ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 CreateDynamoDbEncryptionBranchKeyIdSupplierInput.builder()
 .ddbKeyBranchKeyIdSupplier(new ExampleBranchKeyIdSupplier(branch-
key-ID-tenant1, branch-key-ID-tenant2))
 .build()).branchKeyIdSupplier();

C# / .NET

// Create friendly names for each branch-key-id
 class ExampleBranchKeyIdSupplier : DynamoDbKeyBranchKeyIdSupplierBase {
 private String _branchKeyIdForTenant1;
 private String _branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {
 this._branchKeyIdForTenant1 = tenant1Id;
 this._branchKeyIdForTenant2 = tenant2Id;
 }
// Create the branch key ID supplier
var ddbEnc = new DynamoDbEncryption(new DynamoDbEncryptionConfig());
var branchKeyIdSupplier = ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 new CreateDynamoDbEncryptionBranchKeyIdSupplierInput
 {
 DdbKeyBranchKeyIdSupplier = new ExampleBranchKeyIdSupplier(branch-key-
ID-tenant1, branch-key-ID-tenant2)
 }).BranchKeyIdSupplier;

Rust

// Create friendly names for each branch_key_id
pub struct ExampleBranchKeyIdSupplier {
 branch_key_id_for_tenant1: String,
 branch_key_id_for_tenant2: String,
}

impl ExampleBranchKeyIdSupplier {
 pub fn new(tenant1_id: &str, tenant2_id: &str) -> Self {
 Self {
 branch_key_id_for_tenant1: tenant1_id.to_string(),

Création d'un trousseau de clés hiérarchique 86

AWS SDK de chiffrement de base de données Guide du développeur

 branch_key_id_for_tenant2: tenant2_id.to_string(),
 }
 }
}

// Create the branch key ID supplier
let dbesdk_config = DynamoDbEncryptionConfig::builder().build()?;
let dbesdk = dbesdk_client::Client::from_conf(dbesdk_config)?;
let supplier = ExampleBranchKeyIdSupplier::new(tenant1_branch_key_id,
 tenant2_branch_key_id);

let branch_key_id_supplier = dbesdk
 .create_dynamo_db_encryption_branch_key_id_supplier()
 .ddb_key_branch_key_id_supplier(supplier)
 .send()
 .await?
 .branch_key_id_supplier
 .unwrap();

2. Création d'un trousseau de clés hiérarchique

Les exemples suivants initialisent un jeu de clés hiérarchique avec le fournisseur d'ID de clé
de branche créé à l'étape 1, une limite de cache TLL de 600 secondes et une taille de cache
maximale de 1 000.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(CacheType.builder() //OPTIONAL
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Création d'un trousseau de clés hiérarchique 87

AWS SDK de chiffrement de base de données Guide du développeur

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600,
 Cache = new CacheType
 {
 Default = new DefaultCache { EntryCapacity = 100 }
 }
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .branch_key_id_supplier(branch_key_id_supplier)
 .key_store(key_store)
 .ttl_seconds(600)
 .send()
 .await?;

Utilisation du trousseau de clés hiérarchique pour un chiffrement
consultable

Le chiffrement consultable vous permet de rechercher des enregistrements cryptés sans déchiffrer
l'intégralité de la base de données. Pour ce faire, il faut indexer la valeur en texte brut d'un champ
chiffré à l'aide d'une balise. Pour implémenter le chiffrement consultable, vous devez utiliser un
trousseau de clés hiérarchique.

L'CreateKeyopération de stockage des clés génère à la fois une clé de branche et une clé de
balise. La clé de branche est utilisée dans les opérations de chiffrement et de déchiffrement des
enregistrements. La clé de balise est utilisée pour générer des balises.

Utilisation du trousseau de clés hiérarchique pour un chiffrement consultable 88

AWS SDK de chiffrement de base de données Guide du développeur

La clé de branche et la clé de balise sont protégées par la même protection AWS KMS key que
celle que vous spécifiez lors de la création de votre service de banque de clés. Une fois que
l'CreateKeyopération appelle AWS KMS pour générer la clé de branche, elle appelle kms :
GenerateDataKeyWithoutPlaintext une seconde fois pour générer la clé de balise en utilisant la
requête suivante.

{
 "EncryptionContext": {
 "branch-key-id" : "branch-key-id",
 "type" : type,
 "create-time" : "timestamp",
 "logical-key-store-name" : "the logical table name for your key store",
 "kms-arn" : the KMS key ARN,
 "hierarchy-version" : 1
 },
 "KeyId": "the KMS key ARN",
 "NumberOfBytes": "32"
}

Après avoir généré les deux clés, l'CreateKeyopération appelle ddb : TransactWriteItems pour
écrire deux nouveaux éléments qui conserveront la clé de branche et la clé de balise dans votre
magasin de clés de succursale.

Lorsque vous configurez une balise standard, le SDK AWS de chiffrement de base de données
interroge le magasin de clés pour obtenir la clé de balise. Il utilise ensuite une fonction de dérivation
de extract-and-expand clé basée sur HMAC (HKDF) pour combiner la clé de balise avec le nom de la
balise standard afin de créer la clé HMAC pour une balise donnée.

Contrairement aux clés de branche, il n'existe qu'une seule version de clé de balise par clé branch-
key-id dans un magasin de clés. La clé de la balise n'est jamais tournée.

Définition de la source clé de votre balise

Lorsque vous définissez la version de balise pour vos balises standard et composées, vous devez
identifier la clé de balise et définir une durée de vie limite de cache (TTL) pour les éléments clés de
la balise. Les éléments clés des balises sont stockés dans un cache local distinct de celui des clés
de branche. L'extrait suivant montre comment définir le pour une base de données à keySource
locataire unique. Identifiez la clé de votre balise par celle à laquelle branch-key-id elle est
associée.

Utilisation du trousseau de clés hiérarchique pour un chiffrement consultable 89

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html
https://en.wikipedia.org/wiki/HKDF

AWS SDK de chiffrement de base de données Guide du développeur

Java

keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branch-key-id)
 .cacheTTL(6000)
 .build())
 .build())

C# / .NET

KeySource = new BeaconKeySource
{
 Single = new SingleKeyStore
 {
 KeyId = branch-key-id,
 CacheTTL = 6000
 }
}

Rust

 .key_source(BeaconKeySource::Single(
 SingleKeyStore::builder()
 // `keyId` references a beacon key.
 // For every branch key we create in the keystore,
 // we also create a beacon key.
 // This beacon key is not the same as the branch key,
 // but is created with the same ID as the branch key.
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .build()?,
))

Définition de la source de balise dans une base de données mutualisée

Si vous disposez d'une base de données mutualisée, vous devez spécifier les valeurs suivantes
lors de la keySource configuration de.

•

keyFieldName

Utilisation du trousseau de clés hiérarchique pour un chiffrement consultable 90

AWS SDK de chiffrement de base de données Guide du développeur

Définit le nom du champ qui stocke la clé branch-key-id associée à la balise utilisée pour
générer des balises pour un locataire donné. Il keyFieldName peut s'agir de n'importe quelle
chaîne, mais elle doit être unique à tous les autres champs de votre base de données. Lorsque
vous écrivez de nouveaux enregistrements dans votre base de données, la clé branch-key-
id identifiant la clé de balise utilisée pour générer des balises pour cet enregistrement est
stockée dans ce champ. Vous devez inclure ce champ dans vos requêtes sur les balises et
identifier les éléments clés de balise appropriés nécessaires pour recalculer la balise. Pour de
plus amples informations, veuillez consulter Interrogation de balises dans une base de données
mutualisée.

• CacheTTL

Durée en secondes pendant laquelle une entrée de contenu clé de balise dans le cache de
balises local peut être utilisée avant son expiration. Cette valeur doit être supérieure à zéro.
Lorsque la limite de cache TTL expire, l'entrée est expulsée du cache local.

• (Facultatif) Un cache

Si vous souhaitez personnaliser le type de cache ou le nombre d'entrées clés de branche
pouvant être stockées dans le cache local, spécifiez le type de cache et la capacité d'entrée
lorsque vous initialisez le trousseau de clés.

Le trousseau de clés hiérarchique prend en charge les types de cache suivants : par défaut
MultiThreaded, StormTracking, et partagé. Pour plus d'informations et des exemples illustrant
comment définir chaque type de cache, consultezthe section called “Choisissez un cache”.

Si vous ne spécifiez pas de cache, le trousseau de clés hiérarchique utilise automatiquement le
type de cache par défaut et définit la capacité d'entrée à 1 000.

L'exemple suivant crée un jeu de clés hiérarchique avec un fournisseur d'ID de clé de branche,
une limite de cache (TLL) de 600 secondes et une capacité d'entrée de 1 000.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(branchKeyStoreName)
 .branchKeyIdSupplier(branchKeyIdSupplier)

Utilisation du trousseau de clés hiérarchique pour un chiffrement consultable 91

AWS SDK de chiffrement de base de données Guide du développeur

 .ttlSeconds(600)
 .cache(CacheType.builder() //OPTIONAL
 .Default(DefaultCache.builder()
 .entryCapacity(1000)
 .build())
 .build();
final IKeyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600,
 Cache = new CacheType
 {
 Default = new DefaultCache { EntryCapacity = 1000 }
 }
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let provider_config = MaterialProvidersConfig::builder().build()?;
 let mat_prov = client::Client::from_conf(provider_config)?;
 let kms_keyring = mat_prov
 .create_aws_kms_hierarchical_keyring()
 .branch_key_id(branch_key_id)
 .key_store(key_store)
 .ttl_seconds(600)
 .send()
 .await?;

Utilisation du trousseau de clés hiérarchique pour un chiffrement consultable 92

AWS SDK de chiffrement de base de données Guide du développeur

AWS KMS Porte-clés ECDH

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Important

Le porte-clés AWS KMS ECDH n'est disponible qu'avec la version 1.5.0 ou ultérieure de la
bibliothèque des fournisseurs de matériaux.

Un porte-clés AWS KMS ECDH utilise un accord de clé asymétrique AWS KMS keyspour dériver
une clé d'encapsulation symétrique partagée entre deux parties. Tout d'abord, le trousseau de clés
utilise l'algorithme d'accord de clé Elliptic Curve Diffie-Hellman (ECDH) pour dériver un secret partagé
à partir de la clé privée contenue dans la paire de clés KMS de l'expéditeur et de la clé publique du
destinataire. Le trousseau de clés utilise ensuite le secret partagé pour dériver la clé d'encapsulation
partagée qui protège vos clés de chiffrement des données. La fonction de dérivation de clé utilisée
par le SDK AWS de chiffrement de base de données (KDF_CTR_HMAC_SHA384) pour dériver la clé
d'encapsulation partagée est conforme aux recommandations du NIST en matière de dérivation de
clés.

La fonction de dérivation de clés renvoie 64 octets de matériel de saisie. Pour garantir que les
deux parties utilisent le bon matériel de saisie, le SDK de chiffrement de AWS base de données
utilise les 32 premiers octets comme clé d'engagement et les 32 derniers octets comme clé
d'encapsulation partagée. Lors du déchiffrement, si le trousseau de clés ne peut pas reproduire
la même clé d'engagement et la même clé d'encapsulation partagée que celles stockées dans le
champ de description du matériel de l'enregistrement crypté, l'opération échoue. Par exemple, si vous
chiffrez un enregistrement avec un trousseau de clés configuré avec la clé privée d'Alice et la clé
publique de Bob, un trousseau de clés configuré avec la clé privée de Bob et la clé publique d'Alice
reproduira la même clé d'engagement et la même clé d'encapsulation partagée et pourra déchiffrer
l'enregistrement. Si la clé publique de Bob ne provient pas d'une paire de clés KMS, Bob peut créer
un jeu de clés ECDH brut pour déchiffrer l'enregistrement.

Le trousseau de clés AWS KMS ECDH chiffre les enregistrements avec une clé symétrique à l'aide
de l'AES-GCM. La clé de données est ensuite cryptée par enveloppe avec la clé d'encapsulation

AWS KMS Porte-clés ECDH 93

https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS SDK de chiffrement de base de données Guide du développeur

partagée dérivée à l'aide d'AES-GCM. Chaque porte-clés AWS KMS ECDH ne peut avoir qu'une
seule clé d'encapsulation partagée, mais vous pouvez inclure plusieurs porte-clés AWS KMS ECDH,
seuls ou avec d'autres porte-clés, dans un porte-clés multiple.

Rubriques

• Autorisations requises pour les AWS KMS porte-clés ECDH

• Création d'un AWS KMS porte-clés ECDH

• Création d'un AWS KMS porte-clés de découverte ECDH

Autorisations requises pour les AWS KMS porte-clés ECDH

Le SDK AWS Database Encryption ne nécessite pas de AWS compte et ne dépend d'aucun AWS
service. Toutefois, pour utiliser un porte-clés AWS KMS ECDH, vous devez disposer d'un AWS
compte et des autorisations minimales suivantes sur le porte-clés de votre trousseau AWS KMS keys
de clés. Les autorisations varient en fonction du schéma d'accord clé que vous utilisez.

• Pour chiffrer et déchiffrer des enregistrements à l'aide du schéma d'accord de
KmsPrivateKeyToStaticPublicKey clés, vous avez besoin de kms : GetPublicKey et kms :
DeriveSharedSecret sur la paire de clés KMS asymétrique de l'expéditeur. Si vous fournissez
directement la clé publique codée DER de l'expéditeur lorsque vous instanciez votre jeu de clés,
vous n'avez besoin que de l'DeriveSharedSecretautorisation kms : sur la paire de clés KMS
asymétrique de l'expéditeur.

• Pour déchiffrer des enregistrements à l'aide du schéma d'accord de KmsPublicKeyDiscovery
clés, vous avez besoin des GetPublicKey autorisations kms : DeriveSharedSecret et kms : sur la
paire de clés KMS asymétrique spécifiée.

Création d'un AWS KMS porte-clés ECDH

Pour créer un jeu de clés AWS KMS ECDH qui chiffre et déchiffre les données, vous devez utiliser
le schéma d'accord de clés. KmsPrivateKeyToStaticPublicKey Pour initialiser un trousseau
de clés AWS KMS ECDH avec le schéma d'accord de KmsPrivateKeyToStaticPublicKey clés,
fournissez les valeurs suivantes :

• AWS KMS key Identifiant de l'expéditeur

Autorisations requises pour les AWS KMS porte-clés ECDH 94

https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS SDK de chiffrement de base de données Guide du développeur

Doit identifier une paire de clés KMS à courbe elliptique (ECC) asymétrique recommandée par le
NIST avec une valeur de. KeyUsage KEY_AGREEMENT La clé privée de l'expéditeur est utilisée
pour dériver le secret partagé.

• (Facultatif) Clé publique de l'expéditeur

Il doit s'agir d'une clé publique X.509 codée DER, également connue sous le nom de
SubjectPublicKeyInfo (SPKI), telle que définie dans la RFC 5280.

L' AWS KMS GetPublicKeyopération renvoie la clé publique d'une paire de clés KMS asymétriques
dans le format CODÉ DER requis.

Pour réduire le nombre d' AWS KMS appels effectués par votre trousseau de clés, vous
pouvez fournir directement la clé publique de l'expéditeur. Si aucune valeur n'est fournie pour
la clé publique de l'expéditeur, le keyring appelle AWS KMS pour récupérer la clé publique de
l'expéditeur.

• Clé publique du destinataire

Vous devez fournir la clé publique X.509 codée DER du destinataire, également connue sous le
nom de SubjectPublicKeyInfo (SPKI), telle que définie dans la RFC 5280.

L' AWS KMS GetPublicKeyopération renvoie la clé publique d'une paire de clés KMS asymétriques
dans le format CODÉ DER requis.

• Spécification de la courbe

Identifie la spécification de la courbe elliptique dans les paires de clés spécifiées. Les paires de
clés de l'expéditeur et du destinataire doivent avoir la même spécification de courbe.

Valeurs valides: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Facultatif) Une liste de jetons de subvention

Si vous contrôlez l'accès à la clé KMS dans votre trousseau de clés AWS KMS ECDH avec des
autorisations, vous devez fournir tous les jetons d'autorisation nécessaires lors de l'initialisation du
trousseau de clés.

C# / .NET

L'exemple suivant crée un jeu de clés AWS KMS ECDH avec la clé KMS de l'expéditeur,
la clé publique de l'expéditeur et la clé publique du destinataire. Cet exemple utilise le

Création d'un AWS KMS porte-clés ECDH 95

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS SDK de chiffrement de base de données Guide du développeur

senderPublicKey paramètre facultatif pour fournir la clé publique de l'expéditeur. Si vous ne
fournissez pas la clé publique de l'expéditeur, le keyring appelle AWS KMS pour récupérer la clé
publique de l'expéditeur. Les paires de clés de l'expéditeur et du destinataire sont toutes deux en
ECC_NIST_P256 évolution.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations
{
 KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput
 {
 SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 SenderPublicKey = BobPublicKey,
 RecipientPublicKey = AlicePublicKey
 }
};

var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = staticConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

L'exemple suivant crée un jeu de clés AWS KMS ECDH avec la clé KMS de l'expéditeur,
la clé publique de l'expéditeur et la clé publique du destinataire. Cet exemple utilise le
senderPublicKey paramètre facultatif pour fournir la clé publique de l'expéditeur. Si vous ne
fournissez pas la clé publique de l'expéditeur, le keyring appelle AWS KMS pour récupérer la clé
publique de l'expéditeur. Les paires de clés de l'expéditeur et du destinataire sont toutes deux en
ECC_NIST_P256 évolution.

Création d'un AWS KMS porte-clés ECDH 96

AWS SDK de chiffrement de base de données Guide du développeur

// Retrieve public keys
// Must be DER-encoded X.509 public keys
ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab");
 ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

// Create the AWS KMS ECDH static keyring
 final CreateAwsKmsEcdhKeyringInput senderKeyringInput =
 CreateAwsKmsEcdhKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPrivateKeyToStaticPublicKey(
 KmsPrivateKeyToStaticPublicKeyInput.builder()
 .senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
 .senderPublicKey(BobPublicKey)
 .recipientPublicKey(AlicePublicKey)
 .build()).build()).build();

Rust

L'exemple suivant crée un jeu de clés AWS KMS ECDH avec la clé KMS de l'expéditeur,
la clé publique de l'expéditeur et la clé publique du destinataire. Cet exemple utilise le
sender_public_key paramètre facultatif pour fournir la clé publique de l'expéditeur. Si vous ne
fournissez pas la clé publique de l'expéditeur, le keyring appelle AWS KMS pour récupérer la clé
publique de l'expéditeur.

// Retrieve public keys
// Must be DER-encoded X.509 keys
let public_key_file_content_sender =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_SENDER))?;
let parsed_public_key_file_content_sender = parse(public_key_file_content_sender)?;
let public_key_sender_utf8_bytes = parsed_public_key_file_content_sender.contents();

let public_key_file_content_recipient =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content_recipient =
 parse(public_key_file_content_recipient)?;

Création d'un AWS KMS porte-clés ECDH 97

AWS SDK de chiffrement de base de données Guide du développeur

let public_key_recipient_utf8_bytes =
 parsed_public_key_file_content_recipient.contents();

// Create KmsPrivateKeyToStaticPublicKeyInput
let kms_ecdh_static_configuration_input =
 KmsPrivateKeyToStaticPublicKeyInput::builder()
 .sender_kms_identifier(arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab)
 // Must be a UTF8 DER-encoded X.509 public key
 .sender_public_key(public_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let kms_ecdh_static_configuration =
 KmsEcdhStaticConfigurations::KmsPrivateKeyToStaticPublicKey(kms_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH keyring
let kms_ecdh_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client)
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_static_configuration)
 .send()
 .await?;

Création d'un AWS KMS porte-clés de découverte ECDH

Lors du déchiffrement, il est recommandé de spécifier les clés que le SDK de chiffrement de AWS
base de données peut utiliser. Pour suivre cette bonne pratique, utilisez un porte-clés AWS KMS
ECDH avec le schéma d'accord de KmsPrivateKeyToStaticPublicKey clés. Toutefois, vous
pouvez également créer un jeu de clés de découverte AWS KMS ECDH, c'est-à-dire un trousseau
de clés AWS KMS ECDH capable de déchiffrer tout enregistrement dont la clé publique de la paire
de clés KMS spécifiée correspond à la clé publique du destinataire stockée dans le champ de
description du matériel de l'enregistrement chiffré.

Création d'un AWS KMS porte-clés de découverte ECDH 98

AWS SDK de chiffrement de base de données Guide du développeur

Important

Lorsque vous déchiffrez des enregistrements à l'aide du schéma d'accord de
KmsPublicKeyDiscovery clés, vous acceptez toutes les clés publiques, quel que soit leur
propriétaire.

Pour initialiser un trousseau de clés AWS KMS ECDH avec le schéma d'accord de
KmsPublicKeyDiscovery clés, fournissez les valeurs suivantes :

• AWS KMS key Identifiant du destinataire

Doit identifier une paire de clés KMS à courbe elliptique (ECC) asymétrique recommandée par le
NIST avec une valeur de. KeyUsage KEY_AGREEMENT

• Spécification de la courbe

Identifie la spécification de courbe elliptique dans la paire de clés KMS du destinataire.

Valeurs valides: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Facultatif) Une liste de jetons de subvention

Si vous contrôlez l'accès à la clé KMS dans votre trousseau de clés AWS KMS ECDH avec des
autorisations, vous devez fournir tous les jetons d'autorisation nécessaires lors de l'initialisation du
trousseau de clés.

C# / .NET

L'exemple suivant crée un trousseau de clés de découverte AWS KMS ECDH avec une paire
de clés KMS sur la ECC_NIST_P256 courbe. Vous devez disposer des DeriveSharedSecret
autorisations kms : GetPublicKey et kms : sur la paire de clés KMS spécifiée. Ce porte-clés peut
déchiffrer n'importe quel enregistrement où la clé publique de la paire de clés KMS spécifiée
correspond à la clé publique du destinataire stockée dans le champ de description matérielle de
l'enregistrement crypté.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create the AWS KMS ECDH discovery keyring
var discoveryConfiguration = new KmsEcdhStaticConfigurations

Création d'un AWS KMS porte-clés de découverte ECDH 99

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS SDK de chiffrement de base de données Guide du développeur

{
 KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput
 {
 RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
 }

};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = discoveryConfiguration
};
var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

L'exemple suivant crée un trousseau de clés de découverte AWS KMS ECDH avec une paire
de clés KMS sur la ECC_NIST_P256 courbe. Vous devez disposer des DeriveSharedSecret
autorisations kms : GetPublicKey et kms : sur la paire de clés KMS spécifiée. Ce porte-clés peut
déchiffrer n'importe quel enregistrement où la clé publique de la paire de clés KMS spécifiée
correspond à la clé publique du destinataire stockée dans le champ de description matérielle de
l'enregistrement crypté.

// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput =
 CreateAwsKmsEcdhKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPublicKeyDiscovery(
 KmsPublicKeyDiscoveryInput.builder()
 .recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321").build()
).build())
 .build();

Rust

// Create KmsPublicKeyDiscoveryInput

Création d'un AWS KMS porte-clés de découverte ECDH 100

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS SDK de chiffrement de base de données Guide du développeur

let kms_ecdh_discovery_static_configuration_input =
 KmsPublicKeyDiscoveryInput::builder()
 .recipient_kms_identifier(ecc_recipient_key_arn)
 .build()?;

let kms_ecdh_discovery_static_configuration =
 KmsEcdhStaticConfigurations::KmsPublicKeyDiscovery(kms_ecdh_discovery_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH discovery keyring
let kms_ecdh_discovery_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client.clone())
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_discovery_static_configuration)
 .send()
 .await?;

Porte-clés AES brut

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Le SDK AWS Database Encryption vous permet d'utiliser une clé symétrique AES que vous
fournissez comme clé d'encapsulation qui protège votre clé de données. Vous devez générer,
stocker et protéger le matériel clé, de préférence dans un module de sécurité matériel (HSM) ou un
système de gestion des clés. Utilisez un trousseau de clés AES brut lorsque vous devez fournir la clé
d'encapsulation et chiffrer les clés de données localement ou hors ligne.

Le jeu de clés AES brut chiffre les données à l'aide de l'algorithme AES-GCM et d'une clé
d'encapsulation que vous spécifiez sous forme de tableau d'octets. Vous ne pouvez spécifier qu'une
seule clé d'encapsulation par jeu de clés AES brut, mais vous pouvez inclure plusieurs porte-clés
AES bruts, seuls ou avec d'autres trousseaux de clés, dans un jeu de clés multiple.

Espaces de noms et noms clés

Porte-clés AES brut 101

AWS SDK de chiffrement de base de données Guide du développeur

Pour identifier la clé AES dans un trousseau de clés, le trousseau de clés AES brut utilise un
espace de noms de clé et un nom de clé que vous fournissez. Ces valeurs ne sont pas secrètes. Ils
apparaissent en texte brut dans la description matérielle que le SDK AWS de chiffrement de base de
données ajoute à l'enregistrement. Nous vous recommandons d'utiliser un espace de noms de clé
dans votre HSM ou votre système de gestion de clés et un nom de clé identifiant la clé AES dans ce
système.

Note

L'espace de noms clé et le nom de clé sont équivalents aux champs ID du fournisseur (ou
fournisseur) et ID clé duJceMasterKey.

Si vous créez différents trousseaux de clés pour chiffrer et déchiffrer un champ donné, l'espace
de noms et les valeurs des noms sont essentiels. Si l'espace de noms de clé et le nom de clé
du jeu de clés de déchiffrement ne correspondent pas exactement, en distinguant majuscules et
minuscules, à l'espace de noms de clé et au nom de clé du jeu de clés de chiffrement, le jeu de clés
de déchiffrement n'est pas utilisé, même si les octets essentiels sont identiques.

Par exemple, vous pouvez définir un trousseau de clés AES brut avec un espace de noms de clé
HSM_01 et un nom de clé. AES_256_012 Ensuite, vous utilisez ce trousseau de clés pour chiffrer
certaines données. Pour déchiffrer ces données, créez un jeu de clés AES brut avec le même espace
de noms, le même nom de clé et le même matériau clé.

Les exemples suivants montrent comment créer un trousseau de clés AES brut. La
AESWrappingKey variable représente le matériel clé que vous fournissez.

Java

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder()
 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Porte-clés AES brut 102

AWS SDK de chiffrement de base de données Guide du développeur

C# / .NET

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

// This example uses the key generator in Bouncy Castle to generate the key
 material.
// In production, use key material from a secure source.
var aesWrappingKey = new
 MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

// Create the keyring
var keyringInput = new CreateRawAesKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 WrappingKey = AESWrappingKey,
 WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
};

var matProv = new MaterialProviders(new MaterialProvidersConfig());
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name("AES_256_012")
 .key_namespace("HSM_01")
 .wrapping_key(aes_key_bytes)
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

Porte-clés AES brut 103

AWS SDK de chiffrement de base de données Guide du développeur

Porte-clés RSA bruts

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Le trousseau RSA brut effectue le chiffrement et le déchiffrement asymétriques des clés de données
dans la mémoire locale à l'aide des clés publiques et privées RSA que vous fournissez. Vous devez
générer, stocker et protéger la clé privée, de préférence dans un module de sécurité matériel (HSM)
ou un système de gestion des clés. La fonction de chiffrement chiffre la clé de données sous la clé
publique RSA. La fonction de déchiffrement déchiffre la clé de données à l'aide de la clé privée. Vous
pouvez choisir parmi plusieurs modes de remplissage RSA.

Un porte-clés RSA brut qui chiffre et déchiffre doit inclure une clé publique asymétrique et une clé
privée en paire. Toutefois, vous pouvez chiffrer des données à l'aide d'un jeu de clés RSA brut
contenant uniquement une clé publique, et vous pouvez déchiffrer des données à l'aide d'un jeu de
clés RSA brut contenant uniquement une clé privée. Vous pouvez inclure n'importe quel trousseau
RSA brut dans un trousseau à clés multiples. Si vous configurez un jeu de clés RSA brut avec une
clé publique et une clé privée, assurez-vous qu'elles font partie de la même paire de clés.

Le trousseau de clés RSA brut est équivalent au fichier JceMasterKeyin et interagit avec celui-ci Kit
SDK de chiffrement AWS pour Java lorsqu'il est utilisé avec des clés de chiffrement asymétriques
RSA.

Note

Le porte-clés RSA brut ne prend pas en charge les clés KMS asymétriques. Pour utiliser des
clés RSA KMS asymétriques, créez un AWS KMS trousseau de clés.

Espaces de noms et noms

Pour identifier le contenu clé RSA d'un trousseau de clés, le trousseau RSA brut utilise un espace
de noms de clé et un nom de clé que vous fournissez. Ces valeurs ne sont pas secrètes. Ils
apparaissent en texte brut dans la description matérielle que le SDK AWS de chiffrement de base de
données ajoute à l'enregistrement. Nous vous recommandons d'utiliser l'espace de noms de clé et le

Porte-clés RSA bruts 104

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html

AWS SDK de chiffrement de base de données Guide du développeur

nom de clé qui identifient la paire de clés RSA (ou sa clé privée) dans votre HSM ou votre système
de gestion des clés.

Note

L'espace de noms clé et le nom de clé sont équivalents aux champs ID du fournisseur (ou
fournisseur) et ID clé duJceMasterKey.

Si vous créez différents trousseaux de clés pour chiffrer et déchiffrer un enregistrement donné,
l'espace de noms et les valeurs des noms sont essentiels. Si l'espace de noms de clé et le nom de
clé du jeu de clés de déchiffrement ne correspondent pas exactement, en distinguant majuscules et
minuscules, à l'espace de noms de clé et au nom de clé du jeu de clés de chiffrement, le jeu de clés
de déchiffrement n'est pas utilisé, même si les clés proviennent de la même paire de clés.

L'espace de noms de clé et le nom de clé du contenu clé des trousseaux de clés de chiffrement et de
déchiffrement doivent être identiques, que le jeu de clés contienne la clé publique RSA, la clé privée
RSA ou les deux clés de la paire de clés. Supposons, par exemple, que vous cryptiez des données à
l'aide d'un jeu de clés RSA brut pour une clé publique RSA avec un espace de noms HSM_01 de clé
et un nom de clé. RSA_2048_06 Pour déchiffrer ces données, créez un jeu de clés RSA brut avec la
clé privée (ou paire de clés), ainsi que le même espace de noms et le même nom de clé.

Mode de rembourrage

Vous devez spécifier un mode de remplissage pour les porte-clés RSA bruts utilisés pour le
chiffrement et le déchiffrement, ou utiliser les fonctionnalités de l'implémentation de votre langage qui
le spécifient pour vous.

Il AWS Encryption SDK prend en charge les modes de remplissage suivants, sous réserve des
contraintes de chaque langue. Nous recommandons un mode de rembourrage OAEP, en particulier
OAEP avec SHA-256 et avec rembourrage SHA-256. MGF1 Le mode de PKCS1rembourrage n'est
pris en charge que pour des raisons de rétrocompatibilité.

• OAEP avec SHA-1 et rembourrage SHA-1 MGF1

• OAEP avec SHA-256 et avec rembourrage SHA-256 MGF1

• OAEP avec SHA-384 et avec rembourrage SHA-384 MGF1

• OAEP avec SHA-512 et avec rembourrage SHA-512 MGF1

• PKCS1 Rembourrage v1.5

Porte-clés RSA bruts 105

https://tools.ietf.org/html/rfc8017#section-7.1
https://tools.ietf.org/html/rfc8017#section-7.2

AWS SDK de chiffrement de base de données Guide du développeur

L'exemple Java suivant montre comment créer un jeu de clés RSA brut avec les clés publique et
privée d'une paire de clés RSA et l'OAEP avec SHA-256 et avec le mode de remplissage SHA-256.
MGF1 Les RSAPrivateKey variables RSAPublicKey et représentent le matériel clé que vous
fournissez.

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder()
 .keyName("RSA_2048_06")
 .keyNamespace("HSM_01")
 .paddingScheme(PaddingScheme.OAEP_SHA256_MGF1)
 .publicKey(RSAPublicKey)
 .privateKey(RSAPrivateKey)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

C# / .NET

var keyNamespace = "HSM_01";
var keyName = "RSA_2048_06";

// Get public and private keys from PEM files
var publicKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));
var privateKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));

// Create the keyring input
var keyringInput = new CreateRawRsaKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 PaddingScheme = PaddingScheme.OAEP_SHA512_MGF1,
 PublicKey = publicKey,
 PrivateKey = privateKey
};

// Create the keyring
var matProv = new MaterialProviders(new MaterialProvidersConfig());

Porte-clés RSA bruts 106

AWS SDK de chiffrement de base de données Guide du développeur

var rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let raw_rsa_keyring = mpl
 .create_raw_rsa_keyring()
 .key_name("RSA_2048_06")
 .key_namespace("HSM_01")
 .padding_scheme(PaddingScheme::OaepSha256Mgf1)
 .public_key(RSA_public_key)
 .private_key(RSA_private_key)
 .send()
 .await?;

Porte-clés ECDH bruts

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Important

Le porte-clés Raw ECDH n'est disponible qu'avec la version 1.5.0 de la bibliothèque Material
Providers.

Le porte-clés ECDH brut utilise les paires de clés publiques-privées à courbe elliptique que vous
fournissez pour dériver une clé d'encapsulation partagée entre deux parties. Tout d'abord, le
trousseau de clés déduit un secret partagé à l'aide de la clé privée de l'expéditeur, de la clé publique
du destinataire et de l'algorithme d'accord de clé Elliptic Curve Diffie-Hellman (ECDH). Le trousseau
de clés utilise ensuite le secret partagé pour dériver la clé d'encapsulation partagée qui protège
vos clés de chiffrement des données. La fonction de dérivation de clé utilisée par le SDK AWS de
chiffrement de base de données (KDF_CTR_HMAC_SHA384) pour dériver la clé d'encapsulation
partagée est conforme aux recommandations du NIST pour la dérivation de clés.

Porte-clés ECDH bruts 107

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS SDK de chiffrement de base de données Guide du développeur

La fonction de dérivation de clés renvoie 64 octets de matériel de saisie. Pour garantir que les
deux parties utilisent le bon matériel de saisie, le SDK de chiffrement de AWS base de données
utilise les 32 premiers octets comme clé d'engagement et les 32 derniers octets comme clé
d'encapsulation partagée. Lors du déchiffrement, si le trousseau de clés ne peut pas reproduire
la même clé d'engagement et la même clé d'encapsulation partagée que celles stockées dans le
champ de description du matériel de l'enregistrement crypté, l'opération échoue. Par exemple, si vous
chiffrez un enregistrement avec un trousseau de clés configuré avec la clé privée d'Alice et la clé
publique de Bob, un trousseau de clés configuré avec la clé privée de Bob et la clé publique d'Alice
reproduira la même clé d'engagement et la même clé d'encapsulation partagée et pourra déchiffrer
l'enregistrement. Si la clé publique de Bob provient d'une AWS KMS key paire, Bob peut créer un jeu
de clés AWS KMS ECDH pour déchiffrer l'enregistrement.

Le trousseau de clés ECDH brut chiffre les enregistrements avec une clé symétrique à l'aide de
l'AES-GCM. La clé de données est ensuite cryptée par enveloppe avec la clé d'encapsulation
partagée dérivée à l'aide d'AES-GCM. Chaque porte-clés Raw ECDH ne peut avoir qu'une seule clé
d'encapsulation partagée, mais vous pouvez inclure plusieurs porte-clés Raw ECDH, seuls ou avec
d'autres porte-clés, dans un porte-clés multiple.

Vous êtes responsable de la génération, du stockage et de la protection de vos clés privées, de
préférence dans un module de sécurité matériel (HSM) ou un système de gestion des clés. Les
paires de clés de l'expéditeur et du destinataire doivent se trouver sur la même courbe elliptique. Le
SDK AWS Database Encryption prend en charge les spécifications de courbe elliptique suivantes :

• ECC_NIST_P256

• ECC_NIST_P384

• ECC_NIST_P512

Création d'un porte-clés ECDH brut

Le trousseau de clés Raw ECDH prend en charge trois schémas d'accord
clés :RawPrivateKeyToStaticPublicKey,, etEphemeralPrivateKeyToStaticPublicKey.
PublicKeyDiscovery Le schéma d'accord de clé que vous sélectionnez détermine les opérations
cryptographiques que vous pouvez effectuer et la manière dont les matériaux de clé sont assemblés.

Rubriques

• RawPrivateKeyToStaticPublicKey

• EphemeralPrivateKeyToStaticPublicKey

Création d'un porte-clés ECDH brut 108

AWS SDK de chiffrement de base de données Guide du développeur

• PublicKeyDiscovery

RawPrivateKeyToStaticPublicKey

Utilisez le schéma d'accord des RawPrivateKeyToStaticPublicKey clés pour configurer de
manière statique la clé privée de l'expéditeur et la clé publique du destinataire dans le trousseau de
clés. Ce schéma d'accord clé permet de chiffrer et de déchiffrer des enregistrements.

Pour initialiser un jeu de clés ECDH brut avec le schéma d'accord de
RawPrivateKeyToStaticPublicKey clés, fournissez les valeurs suivantes :

• Clé privée de l'expéditeur

Vous devez fournir la clé privée codée PEM de l'expéditeur (PrivateKeyInfo structures PKCS #8),
telle que définie dans la RFC 5958.

• Clé publique du destinataire

Vous devez fournir la clé publique X.509 codée DER du destinataire, également connue sous le
nom de SubjectPublicKeyInfo (SPKI), telle que définie dans la RFC 5280.

Vous pouvez spécifier la clé publique d'une paire de clés KMS à accord de clé asymétrique ou la
clé publique à partir d'une paire de clés générée en dehors de AWS.

• Spécification de la courbe

Identifie la spécification de la courbe elliptique dans les paires de clés spécifiées. Les paires de
clés de l'expéditeur et du destinataire doivent avoir la même spécification de courbe.

Valeurs valides: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var BobPrivateKey = new MemoryStream(new byte[] { });
 var AlicePublicKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH static keyring
 var staticConfiguration = new RawEcdhStaticConfigurations()
 {
 RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput

Création d'un porte-clés ECDH brut 109

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS SDK de chiffrement de base de données Guide du développeur

 {
 SenderStaticPrivateKey = BobPrivateKey,
 RecipientPublicKey = AlicePublicKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = staticConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

L'exemple Java suivant utilise le schéma d'accord de RawPrivateKeyToStaticPublicKey clé
pour configurer de manière statique la clé privée de l'expéditeur et la clé publique du destinataire.
Les deux paires de clés sont sur la ECC_NIST_P256 courbe.

private static void StaticRawKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair senderKeys = GetRawEccKey();
 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH static keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .RawPrivateKeyToStaticPublicKey(
 RawPrivateKeyToStaticPublicKeyInput.builder()
 // Must be a PEM-encoded private key

 .senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded()))
 // Must be a DER-encoded X.509 public key

Création d'un porte-clés ECDH brut 110

AWS SDK de chiffrement de base de données Guide du développeur

 .recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded()))
 .build()
)
 .build()
).build();

 final IKeyring staticKeyring =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Rust

L'exemple Python suivant utilise le schéma d'accord de raw_ecdh_static_configuration
clé pour configurer de manière statique la clé privée de l'expéditeur et la clé publique du
destinataire. Les deux paires de clés doivent se trouver sur la même courbe.

// Create keyring input
let raw_ecdh_static_configuration_input =
 RawPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .sender_static_private_key(private_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let raw_ecdh_static_configuration =
 RawEcdhStaticConfigurations::RawPrivateKeyToStaticPublicKey(raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH static keyring
let raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(raw_ecdh_static_configuration)
 .send()
 .await?;

Création d'un porte-clés ECDH brut 111

AWS SDK de chiffrement de base de données Guide du développeur

EphemeralPrivateKeyToStaticPublicKey

Les porte-clés configurés avec le schéma d'accord de
EphemeralPrivateKeyToStaticPublicKey clés créent une nouvelle paire de clés localement et
dérivent une clé d'encapsulation partagée unique pour chaque appel de chiffrement.

Ce schéma d'accord clé ne peut chiffrer que des enregistrements. Pour déchiffrer les enregistrements
chiffrés avec le schéma d'accord de EphemeralPrivateKeyToStaticPublicKey clé, vous
devez utiliser un schéma d'accord de clé de découverte configuré avec la clé publique du même
destinataire. Pour le déchiffrer, vous pouvez utiliser un jeu de clés ECDH brut avec l'algorithme
d'accord de PublicKeyDiscoveryclés ou, si la clé publique du destinataire provient d'une paire de
clés KMS à accord de clé asymétrique, vous pouvez utiliser un porte-clés AWS KMS ECDH avec le
schéma d'accord de clés. KmsPublicKeyDiscovery

Pour initialiser un jeu de clés ECDH brut avec le schéma d'accord de
EphemeralPrivateKeyToStaticPublicKey clés, fournissez les valeurs suivantes :

• Clé publique du destinataire

Vous devez fournir la clé publique X.509 codée DER du destinataire, également connue sous le
nom de SubjectPublicKeyInfo (SPKI), telle que définie dans la RFC 5280.

Vous pouvez spécifier la clé publique d'une paire de clés KMS à accord de clé asymétrique ou la
clé publique à partir d'une paire de clés générée en dehors de AWS.

• Spécification de la courbe

Identifie la spécification de la courbe elliptique dans la clé publique spécifiée.

Lors du chiffrement, le trousseau de clés crée une nouvelle paire de clés sur la courbe spécifiée
et utilise la nouvelle clé privée et la clé publique spécifiée pour dériver une clé d'encapsulation
partagée.

Valeurs valides: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

L'exemple suivant crée un trousseau de clés ECDH brut avec le schéma d'accord de
EphemeralPrivateKeyToStaticPublicKey clés. Lors du chiffrement, le trousseau de clés
créera une nouvelle paire de clés localement sur la courbe spécifiéeECC_NIST_P256.

Création d'un porte-clés ECDH brut 112

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS SDK de chiffrement de base de données Guide du développeur

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePublicKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH ephemeral keyring
 var ephemeralConfiguration = new RawEcdhStaticConfigurations()
 {
 EphemeralPrivateKeyToStaticPublicKey = new
 EphemeralPrivateKeyToStaticPublicKeyInput
 {
 RecipientPublicKey = AlicePublicKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = ephemeralConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

L'exemple suivant crée un trousseau de clés ECDH brut avec le schéma d'accord de
EphemeralPrivateKeyToStaticPublicKey clés. Lors du chiffrement, le trousseau de clés
créera une nouvelle paire de clés localement sur la courbe spécifiéeECC_NIST_P256.

private static void EphemeralRawEcdhKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 ByteBuffer recipientPublicKey = getPublicKeyBytes();

 // Create the Raw ECDH ephemeral keyring
 final CreateRawEcdhKeyringInput ephemeralInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()

Création d'un porte-clés ECDH brut 113

AWS SDK de chiffrement de base de données Guide du développeur

 .EphemeralPrivateKeyToStaticPublicKey(
 EphemeralPrivateKeyToStaticPublicKeyInput.builder()
 .recipientPublicKey(recipientPublicKey)
 .build()
)
 .build()
).build();

 final IKeyring ephemeralKeyring =
 materialProviders.CreateRawEcdhKeyring(ephemeralInput);
}

Rust

L'exemple suivant crée un trousseau de clés ECDH brut avec le schéma d'accord de
ephemeral_raw_ecdh_static_configuration clés. Lors du chiffrement, le trousseau de
clés créera une nouvelle paire de clés localement sur la courbe spécifiée.

// Create EphemeralPrivateKeyToStaticPublicKeyInput
let ephemeral_raw_ecdh_static_configuration_input =
 EphemeralPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let ephemeral_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::EphemeralPrivateKeyToStaticPublicKey(ephemeral_raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH ephemeral private key keyring
let ephemeral_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(ephemeral_raw_ecdh_static_configuration)
 .send()
 .await?;

Création d'un porte-clés ECDH brut 114

AWS SDK de chiffrement de base de données Guide du développeur

PublicKeyDiscovery

Lors du déchiffrement, il est recommandé de spécifier les clés d'encapsulation que le SDK de
chiffrement de AWS base de données peut utiliser. Pour suivre cette bonne pratique, utilisez
un trousseau de clés ECDH qui spécifie à la fois la clé privée de l'expéditeur et la clé publique
du destinataire. Cependant, vous pouvez également créer un jeu de clés de découverte ECDH
brut, c'est-à-dire un jeu de clés ECDH brut capable de déchiffrer tout enregistrement dont la
clé publique spécifiée correspond à la clé publique du destinataire stockée dans le champ de
description matérielle de l'enregistrement crypté. Ce schéma d'accord clé ne peut déchiffrer que les
enregistrements.

Important

Lorsque vous déchiffrez des enregistrements à l'aide du schéma d'accord de
PublicKeyDiscovery clés, vous acceptez toutes les clés publiques, quel que soit leur
propriétaire.

Pour initialiser un jeu de clés ECDH brut avec le schéma d'accord de PublicKeyDiscovery clés,
fournissez les valeurs suivantes :

• Clé privée statique du destinataire

Vous devez fournir la clé privée codée PEM du destinataire (PrivateKeyInfo structures PKCS #8),
telle que définie dans la RFC 5958.

• Spécification de la courbe

Identifie la spécification de la courbe elliptique dans la clé privée spécifiée. Les paires de clés de
l'expéditeur et du destinataire doivent avoir la même spécification de courbe.

Valeurs valides: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

L'exemple suivant crée un trousseau de clés ECDH brut avec le schéma d'accord de
PublicKeyDiscovery clés. Ce porte-clés peut déchiffrer tout enregistrement dont la clé
publique de la clé privée spécifiée correspond à la clé publique du destinataire stockée dans le
champ de description du matériel de l'enregistrement crypté.

Création d'un porte-clés ECDH brut 115

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2

AWS SDK de chiffrement de base de données Guide du développeur

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePrivateKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH discovery keyring
 var discoveryConfiguration = new RawEcdhStaticConfigurations()
 {
 PublicKeyDiscovery = new PublicKeyDiscoveryInput
 {
 RecipientStaticPrivateKey = AlicePrivateKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = discoveryConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

L'exemple suivant crée un trousseau de clés ECDH brut avec le schéma d'accord de
PublicKeyDiscovery clés. Ce porte-clés peut déchiffrer tout enregistrement dont la clé
publique de la clé privée spécifiée correspond à la clé publique du destinataire stockée dans le
champ de description du matériel de l'enregistrement crypté.

private static void RawEcdhDiscovery() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH discovery keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(

Création d'un porte-clés ECDH brut 116

AWS SDK de chiffrement de base de données Guide du développeur

 RawEcdhStaticConfigurations.builder()
 .PublicKeyDiscovery(
 PublicKeyDiscoveryInput.builder()
 // Must be a PEM-encoded private key

 .recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded()))
 .build()
)
 .build()
).build();

 final IKeyring publicKeyDiscovery =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Rust

L'exemple suivant crée un trousseau de clés ECDH brut avec le schéma d'accord de
discovery_raw_ecdh_static_configuration clés. Ce porte-clés peut déchiffrer
tout message dont la clé publique de la clé privée spécifiée correspond à la clé publique du
destinataire enregistrée dans le texte chiffré du message.

// Create PublicKeyDiscoveryInput
let discovery_raw_ecdh_static_configuration_input =
 PublicKeyDiscoveryInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .recipient_static_private_key(private_key_recipient_utf8_bytes)
 .build()?;

let discovery_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::PublicKeyDiscovery(discovery_raw_ecdh_static_configuration_input);

// Create raw ECDH discovery private key keyring
let discovery_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(discovery_raw_ecdh_static_configuration)
 .send()
 .await?;

Création d'un porte-clés ECDH brut 117

AWS SDK de chiffrement de base de données Guide du développeur

Porte-clés multiples

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Vous pouvez combiner plusieurs porte-clés au sein d'un porte-clés multiple. Un porte-clés multiple
est un porte-clés qui se compose d'un ou plusieurs porte-clés individuels différents ou partageant le
même type. L'effet est semblable à l'utilisation de plusieurs porte-clés en série. Lorsque vous utilisez
un porte-clés multiple pour chiffrer des données, toutes les clés d'encapsulage de tous ses porte-clés
sont capables de déchiffrer les données.

Lorsque vous créez un porte-clés multiple pour chiffrer des données, vous désignez l'un des porte-
clés en tant que porte-clés générateur. Tous les autres porte-clés sont appelés porte-clés enfants.
Le porte-clés générateur génère et chiffre la clé de données en texte brut. Ensuite, toutes les clés
d'encapsulage dans l'ensemble des porte-clés enfants chiffrent la même clé de données en texte
brut. Le porte-clés multiple renvoie la clé en texte brut et une clé de données chiffrée pour chaque
clé d'encapsulage du porte-clés multiple. Si le trousseau de clés du générateur est un trousseau
KMS, la clé du générateur du AWS KMS trousseau génère et chiffre la clé en texte brut. Ensuite,
toutes les clés supplémentaires AWS KMS keys du AWS KMS trousseau de clés et toutes les clés
enveloppantes de tous les porte-clés enfants du trousseau de clés multiples chiffrent la même clé en
texte brut.

Lors du déchiffrement, le SDK de chiffrement de AWS base de données utilise les trousseaux de clés
pour tenter de déchiffrer l'une des clés de données chiffrées. Les porte-clés sont appelés dans l'ordre
dans lequel ils sont spécifiées dans le porte-clés multiple. Le traitement s'arrête dès qu'une clé d'un
porte-clés peut déchiffrer une clé de données chiffrée.

Pour créer un porte-clés multiple, vous devez d'abord instancier les porte-clés enfants. Dans cet
exemple, nous utilisons un AWS KMS porte-clés et un porte-clés AES brut, mais vous pouvez
combiner tous les porte-clés compatibles dans un porte-clés multiple.

Java

// 1. Create the raw AES keyring.
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

Porte-clés multiples 118

AWS SDK de chiffrement de base de données Guide du développeur

final CreateRawAesKeyringInput createRawAesKeyringInput =
 CreateRawAesKeyringInput.builder()
 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// 2. Create the AWS KMS keyring.
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyArn)
 .build();
IKeyring awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

C# / .NET

// 1. Create the raw AES keyring.
var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createRawAesKeyringInput = new CreateRawAesKeyringInput
{
 KeyName = "keyName",
 KeyNamespace = "myNamespaces",
 WrappingKey = AESWrappingKey,
 WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
};
var rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// 2. Create the AWS KMS keyring.
// We create a MRK multi keyring, as this interface also supports
// single-region KMS keys,
// and creates the KMS client for us automatically.
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput
{
 Generator = keyArn
};
var awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Porte-clés multiples 119

AWS SDK de chiffrement de base de données Guide du développeur

Rust

// 1. Create the raw AES keyring
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name("AES_256_012")
 .key_namespace("HSM_01")
 .wrapping_key(aes_key_bytes)
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

// 2. Create the AWS KMS keyring
let aws_kms_mrk_multi_keyring = mpl
 .create_aws_kms_mrk_multi_keyring()
 .generator(key_arn)
 .send()
 .await?;

Ensuite, créez le porte-clés multiple et spécifiez son porte-clés générateur, le cas échéant. Dans cet
exemple, nous créons un porte-clés multiple dans lequel le porte-clés est le AWS KMS porte-clés
générateur et le porte-clés AES est le porte-clés enfant.

Java

Le CreateMultiKeyringInput constructeur Java vous permet de définir un porte-clés
générateur et des trouses-clés enfants. L'createMultiKeyringInputobjet obtenu est
immuable.

final CreateMultiKeyringInput createMultiKeyringInput =
 CreateMultiKeyringInput.builder()
 .generator(awsKmsMrkMultiKeyring)
 .childKeyrings(Collections.singletonList(rawAesKeyring))
 .build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Porte-clés multiples 120

AWS SDK de chiffrement de base de données Guide du développeur

C# / .NET

Le CreateMultiKeyringInput constructeur .NET vous permet de définir un porte-clés
générateur et un trousseau de clés enfant. L'CreateMultiKeyringInputobjet obtenu est
immuable.

var createMultiKeyringInput = new CreateMultiKeyringInput
{
 Generator = awsKmsMrkMultiKeyring,
 ChildKeyrings = new List<IKeyring> { rawAesKeyring }
};
var multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Rust

let multi_keyring = mpl
 .create_multi_keyring()
 .generator(aws_kms_mrk_multi_keyring)
 .child_keyrings(vec![raw_aes_keyring.clone()])
 .send()
 .await?;

À présent, vous pouvez utiliser le porte-clés multiple pour chiffrer et déchiffrer les données.

Porte-clés multiples 121

AWS SDK de chiffrement de base de données Guide du développeur

Chiffrement consultable

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Le chiffrement consultable vous permet de rechercher des enregistrements cryptés sans déchiffrer
l'intégralité de la base de données. Cela se fait à l'aide de balises, qui créent une carte entre la
valeur en texte brut écrite dans un champ et la valeur cryptée réellement stockée dans votre base de
données. Le SDK AWS Database Encryption stocke la balise dans un nouveau champ qu'il ajoute à
l'enregistrement. Selon le type de balise que vous utilisez, vous pouvez effectuer des recherches de
correspondance exacte ou des requêtes complexes plus personnalisées sur vos données chiffrées.

Note

Le chiffrement consultable dans le SDK AWS de chiffrement de base de données est différent
du chiffrement symétrique consultable défini dans la recherche universitaire, tel que le
chiffrement symétrique consultable.

Une balise est une balise HMAC (Hash Based Message Authentication Code) tronquée qui crée une
carte entre le texte brut et les valeurs chiffrées d'un champ. Lorsque vous écrivez une nouvelle valeur
dans un champ chiffré configuré pour le chiffrement consultable, le SDK de chiffrement de AWS base
de données calcule un HMAC par rapport à la valeur en texte brut. Cette sortie HMAC correspond
un à un (1:1) à la valeur en texte brut de ce champ. La sortie HMAC est tronquée afin que plusieurs
valeurs de texte clair distinctes correspondent à la même balise HMAC tronquée. Ces faux positifs
limitent la capacité d'un utilisateur non autorisé à identifier des informations distinctives concernant
la valeur en texte brut. Lorsque vous interrogez une balise, le SDK AWS Database Encryption filtre
automatiquement ces faux positifs et renvoie le résultat en texte brut de votre requête.

Le nombre moyen de faux positifs générés pour chaque balise est déterminé par la longueur restante
de la balise après troncature. Pour obtenir de l'aide pour déterminer la longueur de balise appropriée
pour votre implémentation, consultez la section Détermination de la longueur de balise.

122

https://dl.acm.org/doi/10.1145/1180405.1180417
https://dl.acm.org/doi/10.1145/1180405.1180417
https://dl.acm.org/doi/10.1145/1180405.1180417

AWS SDK de chiffrement de base de données Guide du développeur

Note

Le chiffrement consultable est conçu pour être mis en œuvre dans de nouvelles bases de
données non peuplées. Toute balise configurée dans une base de données existante ne
cartographiera que les nouveaux enregistrements téléchargés dans la base de données, il n'y
a aucun moyen pour une balise de mapper des données existantes.

Rubriques

• Les balises sont-elles adaptées à mon ensemble de données ?

• Scénario de chiffrement consultable

Les balises sont-elles adaptées à mon ensemble de données ?

L'utilisation de balises pour effectuer des requêtes sur des données chiffrées réduit les coûts de
performance associés aux bases de données chiffrées côté client. Lorsque vous utilisez des balises,
il existe un compromis inhérent entre l'efficacité de vos requêtes et la quantité d'informations révélées
sur la distribution de vos données. La balise ne modifie pas l'état chiffré du champ. Lorsque vous
chiffrez et signez un champ avec le SDK de chiffrement AWS de base de données, la valeur en texte
brut du champ n'est jamais exposée à la base de données. La base de données stocke la valeur
chiffrée aléatoire du champ.

Les balises sont stockées à côté des champs cryptés à partir desquels elles sont calculées. Cela
signifie que même si un utilisateur non autorisé ne peut pas voir les valeurs en texte clair d'un champ
crypté, il peut être en mesure d'effectuer une analyse statistique sur les balises pour en savoir plus
sur la distribution de votre ensemble de données et, dans les cas extrêmes, identifier les valeurs en
texte clair auxquelles une balise correspond. La façon dont vous configurez vos balises peut atténuer
ces risques. En particulier, le choix de la bonne longueur de balise peut vous aider à préserver la
confidentialité de votre ensemble de données.

Sécurité et performance

• Plus la longueur de la balise est courte, plus la sécurité est préservée.

• Plus la longueur de la balise est longue, plus les performances sont préservées.

Les balises sont-elles adaptées à mon ensemble de données ? 123

AWS SDK de chiffrement de base de données Guide du développeur

Le chiffrement consultable peut ne pas être en mesure de fournir les niveaux de performance et de
sécurité souhaités pour tous les ensembles de données. Passez en revue votre modèle de menace,
vos exigences de sécurité et vos besoins en matière de performances avant de configurer des
balises.

Tenez compte des exigences d'unicité des ensembles de données suivantes pour déterminer si le
chiffrement consultable convient à votre ensemble de données.

Diffusion

Le niveau de sécurité préservé par une balise dépend de la distribution de votre ensemble de
données. Lorsque vous configurez un champ chiffré pour le chiffrement consultable, le SDK de
chiffrement AWS de base de données calcule un HMAC sur la base des valeurs en texte brut
écrites dans ce champ. Toutes les balises calculées pour un champ donné sont calculées à l'aide
de la même clé, à l'exception des bases de données mutualisées qui utilisent une clé distincte
pour chaque locataire. Cela signifie que si la même valeur en texte brut est écrite plusieurs fois
dans le champ, la même balise HMAC est créée pour chaque instance de cette valeur en texte
clair.

Vous devez éviter de créer des balises à partir de champs contenant des valeurs très communes.
Prenons l'exemple d'une base de données qui enregistre l'adresse de chaque résident de
l'État de l'Illinois. Si vous créez une balise à partir du City champ crypté, la balise calculée sur
« Chicago » sera surreprésentée en raison du pourcentage élevé de la population de l'Illinois
qui vit à Chicago. Même si un utilisateur non autorisé peut uniquement lire les valeurs cryptées
et les valeurs des balises, il peut être en mesure d'identifier les enregistrements contenant
des données relatives aux résidents de Chicago si la balise préserve cette distribution. Pour
minimiser la quantité d'informations distinctives révélées concernant votre distribution, vous devez
suffisamment tronquer votre balise. La longueur de balise requise pour masquer cette distribution
inégale entraîne des coûts de performance importants qui risquent de ne pas répondre aux
besoins de votre application.

Vous devez analyser soigneusement la distribution de votre jeu de données afin de déterminer
dans quelle mesure vos balises doivent être tronquées. La longueur de balise restante après
la troncature est directement corrélée à la quantité d'informations statistiques pouvant être
identifiées sur votre distribution. Vous devrez peut-être choisir des longueurs de balise plus
courtes pour minimiser suffisamment la quantité d'informations distinctives révélées à propos de
votre ensemble de données.

Les balises sont-elles adaptées à mon ensemble de données ? 124

AWS SDK de chiffrement de base de données Guide du développeur

Dans les cas extrêmes, vous ne pouvez pas calculer la longueur d'une balise pour un jeu de
données distribué de manière inégale afin d'équilibrer efficacement les performances et la
sécurité. Par exemple, vous ne devez pas créer de balise à partir d'un champ qui contient le
résultat d'un test médical pour une maladie rare. Étant donné que les NEGATIVE résultats
devraient être nettement plus répandus dans l'ensemble de données, les POSITIVE résultats
peuvent être facilement identifiés en fonction de leur rareté. Il est très difficile de masquer la
distribution lorsque le champ ne comporte que deux valeurs possibles. Si vous utilisez une balise
suffisamment courte pour masquer la distribution, toutes les valeurs en texte brut correspondent à
la même balise HMAC. Si vous utilisez une longueur de balise plus longue, il est évident de savoir
quelles balises correspondent à des valeurs en texte brutPOSITIVE.

Corrélation

Nous vous recommandons vivement d'éviter de créer des balises distinctes à partir de champs
contenant des valeurs corrélées. Les balises construites à partir de champs corrélés nécessitent
des longueurs de balise plus courtes pour minimiser suffisamment la quantité d'informations
révélées sur la distribution de chaque ensemble de données à un utilisateur non autorisé. Vous
devez analyser soigneusement votre ensemble de données, notamment son entropie et la
distribution conjointe des valeurs corrélées, afin de déterminer dans quelle mesure vos balises
doivent être tronquées. Si la longueur des balises qui en résulte ne répond pas à vos besoins en
termes de performances, les balises ne conviennent peut-être pas à votre ensemble de données.

Par exemple, vous ne devez pas créer deux balises City et deux ZIPCode champs distincts,
car le code postal sera probablement associé à une seule ville. Généralement, les faux
positifs générés par une balise limitent la capacité d'un utilisateur non autorisé à identifier des
informations distinctives concernant votre ensemble de données. Mais la corrélation entre les
ZIPCode champs City et signifie qu'un utilisateur non autorisé peut facilement identifier les
résultats faussement positifs et distinguer les différents codes postaux.

Vous devez également éviter de créer des balises à partir de champs contenant les
mêmes valeurs en texte brut. Par exemple, vous ne devez pas créer de balise à partir de
preferredPhone champs mobilePhone et de champs, car ils contiennent probablement les
mêmes valeurs. Si vous créez des balises distinctes à partir des deux champs, le SDK AWS de
chiffrement de base de données crée les balises pour chaque champ sous des clés différentes. Il
en résulte deux balises HMAC différentes pour la même valeur en texte brut. Il est peu probable
que les deux balises distinctes présentent les mêmes faux positifs et un utilisateur non autorisé
pourrait être en mesure de distinguer différents numéros de téléphone.

Les balises sont-elles adaptées à mon ensemble de données ? 125

AWS SDK de chiffrement de base de données Guide du développeur

Même si votre jeu de données contient des champs corrélés ou présente une distribution inégale,
vous pouvez peut-être créer des balises qui préservent la confidentialité de votre ensemble de
données en utilisant des longueurs de balise plus courtes. Cependant, la longueur des balises ne
garantit pas que chaque valeur unique de votre ensemble de données produira un certain nombre de
faux positifs qui minimiseront efficacement la quantité d'informations distinctives révélées à propos de
votre ensemble de données. La longueur de la balise estime uniquement le nombre moyen de faux
positifs produits. Plus votre jeu de données est inégalement distribué, moins la longueur de balise est
efficace pour déterminer le nombre moyen de faux positifs produits.

Examinez attentivement la distribution des champs à partir desquels vous construisez les balises
et déterminez dans quelle mesure vous devrez tronquer la longueur des balises pour répondre à
vos exigences de sécurité. Les rubriques suivantes de ce chapitre supposent que vos balises sont
distribuées de manière uniforme et ne contiennent pas de données corrélées.

Scénario de chiffrement consultable

L'exemple suivant illustre une solution de chiffrement consultable simple. En application, les champs
d'exemple utilisés dans cet exemple peuvent ne pas respecter les recommandations d'unicité de
distribution et de corrélation pour les balises. Vous pouvez utiliser cet exemple comme référence
lorsque vous découvrirez les concepts de chiffrement consultables dans ce chapitre.

Prenons l'exemple d'une base de données nommée Employees qui suit les données des employés
d'une entreprise. Chaque enregistrement de la base de données contient des champs appelés
EmployeeID LastName, FirstName, et Address. Chaque champ de la Employees base de données
est identifié par la clé primaireEmployeeID.

Voici un exemple d'enregistrement en texte brut dans la base de données.

{
 "EmployeeID": 101,
 "LastName": "Jones",
 "FirstName": "Mary",
 "Address": {
 "Street": "123 Main",
 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345
 }
}

Scénario de chiffrement consultable 126

AWS SDK de chiffrement de base de données Guide du développeur

Si vous avez marqué les FirstName champs LastName et comme ENCRYPT_AND_SIGN dans
vos actions cryptographiques, les valeurs de ces champs sont chiffrées localement avant d'être
téléchargées dans la base de données. Les données cryptées téléchargées sont entièrement
aléatoires, la base de données ne reconnaît pas ces données comme étant protégées. Il détecte
simplement les entrées de données typiques. Cela signifie que l'enregistrement réellement stocké
dans la base de données peut ressembler à ce qui suit.

{
 "PersonID": 101,
 "LastName": "1d76e94a2063578637d51371b363c9682bad926cbd",
 "FirstName": "21d6d54b0aaabc411e9f9b34b6d53aa4ef3b0a35",
 "Address": {
 "Street": "123 Main",
 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345
 }
}

Si vous devez interroger la base de données pour obtenir des correspondances exactes dans le
LastName champ, configurez une balise standard nommée LastNamepour mapper les valeurs en
texte clair écrites dans le LastName champ aux valeurs cryptées stockées dans la base de données.

Cette balise effectue des calculs HMACs à partir des valeurs en texte brut du LastName champ.
Chaque sortie HMAC est tronquée de sorte qu'elle ne correspond plus exactement à la valeur en
texte brut. Par exemple, le hachage complet et le hachage tronqué pour Jones peuvent ressembler à
ce qui suit.

Hachage complet

2aa4e9b404c68182562b6ec761fcca5306de527826a69468885e59dc36d0c3f824bdd44cab45526f70a2a18322000264f5451acf75f9f817e2b35099d408c833

Hachage tronqué

b35099d408c833

Une fois la balise standard configurée, vous pouvez effectuer des recherches d'égalité sur le
LastName terrain. Par exemple, si vous souhaitez effectuer une rechercheJones, utilisez la
LastNamebalise pour effectuer la requête suivante.

LastName = Jones

Scénario de chiffrement consultable 127

AWS SDK de chiffrement de base de données Guide du développeur

Le SDK AWS Database Encryption filtre automatiquement les faux positifs et renvoie le résultat en
texte brut de votre requête.

Balises

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Une balise est une balise HMAC (Hash Based Message Authentication Code) tronquée qui crée une
carte entre la valeur en texte brut écrite dans un champ et la valeur cryptée réellement stockée dans
votre base de données. La balise ne modifie pas l'état chiffré du champ. La balise calcule un HMAC
sur la valeur en texte brut du champ et le stocke à côté de la valeur cryptée. Cette sortie HMAC
correspond un à un (1:1) à la valeur en texte brut de ce champ. La sortie HMAC est tronquée afin
que plusieurs valeurs de texte clair distinctes correspondent à la même balise HMAC tronquée. Ces
faux positifs limitent la capacité d'un utilisateur non autorisé à identifier des informations distinctives
concernant la valeur en texte brut.

Les balises ne peuvent être créées qu'à partir de champs marqués ou
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT dans ENCRYPT_AND_SIGN le SIGN_ONLY cadre
de vos actions cryptographiques. La balise elle-même n'est ni signée ni cryptée. Vous ne pouvez pas
créer une balise avec des champs marquésDO_NOTHING.

Le type de balise que vous configurez détermine le type de requêtes que vous pouvez effectuer.
Il existe deux types de balises compatibles avec le chiffrement consultable. Les balises standard
effectuent des recherches d'égalité. Les balises composées combinent des chaînes de texte en clair
littérales et des balises standard pour effectuer des opérations de base de données complexes.
Après avoir configuré vos balises, vous devez configurer un index secondaire pour chaque
balise avant de pouvoir effectuer une recherche dans les champs chiffrés. Pour de plus amples
informations, veuillez consulter Configuration des index secondaires avec des balises.

Rubriques

• Balises standard

• Balises composées

Balises 128

AWS SDK de chiffrement de base de données Guide du développeur

Balises standard

Les balises standard constituent le moyen le plus simple d'implémenter un chiffrement consultable
dans votre base de données. Ils ne peuvent effectuer des recherches d'égalité que pour un seul
champ crypté ou virtuel. Pour savoir comment configurer les balises standard, consultez la section
Configuration des balises standard.

Le champ à partir duquel une balise standard est construite est appelé source de balise. Il identifie
l'emplacement des données que la balise doit cartographier. La source de la balise peut être un
champ crypté ou un champ virtuel. La source de balise de chaque balise standard doit être unique.
Vous ne pouvez pas configurer deux balises avec la même source de balise.

Les balises standard peuvent être utilisées pour effectuer des recherches d'égalité pour un champ
crypté ou virtuel. Ils peuvent également être utilisés pour créer des balises composées afin
d'effectuer des opérations de base de données plus complexes. Pour vous aider à organiser et
à gérer les balises standard, le SDK AWS de chiffrement de base de données fournit les styles
de balises facultatifs suivants qui définissent l'utilisation prévue d'une balise standard. Pour plus
d'informations, voir Définition des styles de balises.

Vous pouvez créer une balise standard qui effectue des recherches d'égalité pour un seul
champ crypté, ou vous pouvez créer une balise standard qui effectue des recherches d'égalité
sur la concaténation de plusieurs SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT champs
ENCRYPT_AND_SIGNSIGN_ONLY, et en créant un champ virtuel.

Champs virtuels

Un champ virtuel est un champ conceptuel construit à partir d'un ou de plusieurs champs sources.
La création d'un champ virtuel n'entraîne pas l'inscription d'un nouveau champ dans votre
enregistrement. Le champ virtuel n'est pas explicitement stocké dans votre base de données. Il
est utilisé dans une configuration de balise standard pour donner à la balise des instructions sur
la façon d'identifier un segment spécifique d'un champ ou de concaténer plusieurs champs dans
un enregistrement pour effectuer une requête spécifique. Un champ virtuel nécessite au moins un
champ crypté.

Balises standard 129

AWS SDK de chiffrement de base de données Guide du développeur

Note

L'exemple suivant montre les types de transformations et de requêtes que vous pouvez
effectuer avec un champ virtuel. En application, les champs d'exemple utilisés dans cet
exemple peuvent ne pas respecter les recommandations d'unicité de distribution et de
corrélation pour les balises.

Par exemple, si vous souhaitez effectuer des recherches d'égalité sur la concaténation de
LastName champs FirstName et, vous pouvez créer l'un des champs virtuels suivants.

• Un NameTag champ virtuel, construit à partir de la première lettre du FirstName champ, suivie
du LastName champ, le tout en minuscules. Ce champ virtuel vous permet d'effectuer des
requêtesNameTag=mjones.

• Un LastFirst champ virtuel, qui est construit à partir du LastName champ,
suivi du FirstName champ. Ce champ virtuel vous permet d'effectuer des
requêtesLastFirst=JonesMary.

Ou, si vous souhaitez effectuer des recherches d'égalité sur un segment spécifique d'un champ
chiffré, créez un champ virtuel qui identifie le segment que vous souhaitez interroger.

Par exemple, si vous souhaitez interroger un IPAddress champ chiffré à l'aide des trois premiers
segments de l'adresse IP, créez le champ virtuel suivant.

• Un IPSegment champ virtuel, construit à partir deSegments(‘.’, 0, 3). Ce champ virtuel
vous permet d'effectuer des requêtesIPSegment=192.0.2. La requête renvoie tous les
enregistrements dont IPAddress la valeur commence par « 192.0.2 ».

Les champs virtuels doivent être uniques. Il est impossible de créer deux champs virtuels à partir
des mêmes champs sources.

Pour obtenir de l'aide sur la configuration des champs virtuels et des balises qui les utilisent,
consultez la section Création d'un champ virtuel.

Balises composées

Les balises composées créent des index qui améliorent les performances des requêtes et vous
permettent d'effectuer des opérations de base de données plus complexes. Vous pouvez utiliser
des balises composées pour combiner des chaînes de texte brut littérales et des balises standard
pour effectuer des requêtes complexes sur des enregistrements chiffrés, telles que l'interrogation de

Balises composées 130

AWS SDK de chiffrement de base de données Guide du développeur

deux types d'enregistrements différents à partir d'un seul index ou l'interrogation d'une combinaison
de champs à l'aide d'une clé de tri. Pour d'autres exemples de solutions de balises composées, voir
Choisir un type de balise.

Les balises composées peuvent être construites à partir de balises standard ou d'une combinaison
de balises standard et de champs signés. Ils sont construits à partir d'une liste de pièces.
Toutes les balises composées doivent inclure une liste de parties cryptées identifiant les
ENCRYPT_AND_SIGN champs inclus dans la balise. Chaque ENCRYPT_AND_SIGN champ
doit être identifié par une balise standard. Les balises composées plus complexes peuvent
également inclure une liste de parties signées identifiant le texte en clair SIGN_ONLY ou
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT les champs inclus dans la balise, et une liste
de pièces de constructeur identifiant toutes les manières possibles dont la balise composée peut
assembler les champs.

Note

Le SDK AWS Database Encryption prend également en charge les balises signées qui
peuvent être entièrement configurées à partir de texte brut SIGN_ONLY et de champs.
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Les balises signées sont un type de
balise composée qui indexe et exécute des requêtes complexes sur des champs signés,
mais non chiffrés. Pour de plus amples informations, veuillez consulter Création de balises
signées.

Pour obtenir de l'aide sur la configuration des balises composées, consultez la section Configuration
des balises composées.

La façon dont vous configurez votre balise composée détermine les types de requêtes qu'elle peut
effectuer. Par exemple, vous pouvez rendre certaines parties cryptées et signées facultatives pour
permettre une plus grande flexibilité dans vos requêtes. Pour plus d'informations sur les types de
requêtes que les balises composées peuvent effectuer, consultezInterrogation de balises.

Balises de planification

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Balises de planification 131

AWS SDK de chiffrement de base de données Guide du développeur

Les balises sont conçues pour être mises en œuvre dans de nouvelles bases de données non
peuplées. Toute balise configurée dans une base de données existante ne mappera que les
nouveaux enregistrements écrits dans la base de données. Les balises sont calculées à partir de
la valeur en texte brut d'un champ. Une fois le champ crypté, il n'est plus possible pour la balise de
mapper les données existantes. Une fois que vous avez écrit de nouveaux enregistrements avec
une balise, vous ne pouvez pas mettre à jour la configuration de la balise. Cependant, vous pouvez
ajouter de nouvelles balises pour les nouveaux champs que vous ajoutez à votre enregistrement.

Pour implémenter le chiffrement consultable, vous devez utiliser le trousseau de clés AWS KMS
hiérarchique pour générer, chiffrer et déchiffrer les clés de données utilisées pour protéger vos
enregistrements. Pour de plus amples informations, veuillez consulter Utilisation du trousseau de clés
hiérarchique pour un chiffrement consultable.

Avant de configurer les balises pour le chiffrement consultable, vous devez passer en revue vos
exigences en matière de chiffrement, vos modèles d'accès à la base de données et votre modèle de
menace afin de déterminer la meilleure solution pour votre base de données.

Le type de balise que vous configurez détermine le type de requêtes que vous pouvez effectuer. La
longueur de balise que vous spécifiez dans la configuration de balise standard détermine le nombre
attendu de faux positifs produits pour une balise donnée. Nous vous recommandons vivement
d'identifier et de planifier les types de requêtes que vous devez effectuer avant de configurer vos
balises. Une fois que vous avez utilisé une balise, la configuration ne peut pas être mise à jour.

Nous vous recommandons vivement de passer en revue et d'effectuer les tâches suivantes avant de
configurer des balises.

• Déterminez si les balises sont adaptées à votre ensemble de données

• Choisissez un type de balise

• Choisissez une longueur de balise

• Choisissez un nom de balise

N'oubliez pas les exigences d'unicité des balises suivantes lorsque vous planifiez la solution de
chiffrement consultable pour votre base de données.

• Chaque balise standard doit avoir une source de balise unique

Il est impossible de créer plusieurs balises standard à partir du même champ crypté ou virtuel.

Balises de planification 132

AWS SDK de chiffrement de base de données Guide du développeur

Cependant, une seule balise standard peut être utilisée pour construire plusieurs balises
composées.

• Évitez de créer un champ virtuel dont les champs source se chevauchent avec les balises standard
existantes

La construction d'une balise standard à partir d'un champ virtuel contenant un champ source utilisé
pour créer une autre balise standard peut réduire la sécurité des deux balises.

Pour de plus amples informations, veuillez consulter Considérations relatives à la sécurité des
champs virtuels.

Considérations relatives aux bases de données mutualisées

Pour interroger les balises configurées dans une base de données mutualisée, vous devez inclure le
champ qui stocke le fichier branch-key-id associé au locataire qui a chiffré l'enregistrement dans
votre requête. Vous définissez ce champ lorsque vous définissez la source de la clé de balise. Pour
que la requête aboutisse, la valeur de ce champ doit identifier les éléments clés de balise appropriés
requis pour recalculer la balise.

Avant de configurer vos balises, vous devez décider de la manière dont vous comptez les inclure
branch-key-id dans vos requêtes. Pour plus d'informations sur les différentes manières dont vous
pouvez inclure le branch-key-id dans vos requêtes, consultezInterrogation de balises dans une
base de données mutualisée.

Choisir un type de balise

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Grâce au chiffrement consultable, vous pouvez rechercher des enregistrements chiffrés en mappant
les valeurs en texte brut dans un champ crypté à l'aide d'une balise. Le type de balise que vous
configurez détermine le type de requêtes que vous pouvez effectuer.

Nous vous recommandons vivement d'identifier et de planifier les types de requêtes que vous devez
effectuer avant de configurer vos balises. Après avoir configuré vos balises, vous devez configurer

Considérations relatives aux bases de données mutualisées 133

AWS SDK de chiffrement de base de données Guide du développeur

un index secondaire pour chaque balise avant de pouvoir effectuer une recherche dans les champs
chiffrés. Pour de plus amples informations, veuillez consulter Configuration des index secondaires
avec des balises.

Les balises créent une carte entre la valeur en texte brut écrite dans un champ et la valeur cryptée
réellement stockée dans votre base de données. Vous ne pouvez pas comparer les valeurs de
deux balises standard, même si elles contiennent le même texte brut sous-jacent. Les deux balises
standard produiront deux balises HMAC différentes pour les mêmes valeurs en texte brut. Par
conséquent, les balises standard ne peuvent pas effectuer les requêtes suivantes.

• beacon1 = beacon2

• beacon1 IN (beacon2)

• value IN (beacon1, beacon2, ...)

• CONTAINS(beacon1, beacon2)

Vous ne pouvez effectuer les requêtes ci-dessus que si vous comparez les parties signées des
balises composées, à l'exception de l'CONTAINSopérateur, que vous pouvez utiliser avec les balises
composées pour identifier la valeur complète d'un champ chiffré ou signé que contient la balise
assemblée. Lorsque vous comparez des parties signées, vous pouvez éventuellement inclure le
préfixe d'une partie chiffrée, mais vous ne pouvez pas inclure la valeur cryptée d'un champ. Pour plus
d'informations sur les types de requêtes que les balises standard et composées peuvent effectuer,
consultez la section Interrogation de balises.

Envisagez les solutions de chiffrement consultables suivantes lorsque vous examinez les modèles
d'accès à votre base de données. Les exemples suivants définissent la balise à configurer pour
répondre aux différentes exigences de chiffrement et d'interrogation.

Balises standard

Les balises standard peuvent uniquement effectuer des recherches d'égalité. Vous pouvez utiliser
des balises standard pour effectuer les requêtes suivantes.

Interrogez un seul champ chiffré

Si vous souhaitez identifier les enregistrements contenant une valeur spécifique pour un champ
chiffré, créez une balise standard.

Choisir un type de balise 134

AWS SDK de chiffrement de base de données Guide du développeur

Exemples

Dans l'exemple suivant, considérez une base de données nommée UnitInspection qui suit les
données d'inspection d'une installation de production. Chaque enregistrement de la base de données
contient des champs appelés work_idinspection_date,inspector_id_last4, etunit.
L'identifiant complet de l'inspecteur est un nombre compris entre 0 et 99 999 999. Toutefois, pour
garantir une distribution uniforme de l'ensemble de données, inspector_id_last4 seuls les
quatre derniers chiffres de l'identifiant de l'inspecteur sont enregistrés. Chaque champ de la base de
données est identifié par la clé primairework_id. Les unit champs inspector_id_last4 et sont
marqués ENCRYPT_AND_SIGN dans les actions cryptographiques.

Voici un exemple d'entrée en texte brut dans la UnitInspection base de données.

{
 "work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
 "inspection_date": 2023-06-07,
 "inspector_id_last4": 8744,
 "unit": 229304973450
}

Interroger un seul champ chiffré dans un enregistrement

Si le inspector_id_last4 champ doit être chiffré, mais que vous devez tout de même
l'interroger pour obtenir des correspondances exactes, créez une balise standard à partir
du inspector_id_last4 champ. Utilisez ensuite la balise standard pour créer un index
secondaire. Vous pouvez utiliser cet index secondaire pour effectuer une requête sur le
inspector_id_last4 champ crypté.

Pour obtenir de l'aide sur la configuration des balises standard, consultez la section Configuration des
balises standard.

Interroger un champ virtuel

Un champ virtuel est un champ conceptuel construit à partir d'un ou de plusieurs champs sources.
Si vous souhaitez effectuer des recherches d'égalité pour un segment spécifique d'un champ crypté,
ou effectuer des recherches d'égalité sur la concaténation de plusieurs champs, créez une balise
standard à partir d'un champ virtuel. Tous les champs virtuels doivent inclure au moins un champ
source chiffré.

Choisir un type de balise 135

AWS SDK de chiffrement de base de données Guide du développeur

Exemples

Les exemples suivants créent des champs virtuels pour la Employees base de données. Voici un
exemple d'enregistrement en texte brut dans la Employees base de données.

{
 "EmployeeID": 101,
 "SSN": 000-00-0000,
 "LastName": "Jones",
 "FirstName": "Mary",
 "Address": {
 "Street": "123 Main",
 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345
 }
}

Interroger un segment d'un champ chiffré

Dans cet exemple, le SSN champ est crypté.

Si vous souhaitez interroger le SSN champ à l'aide des quatre derniers chiffres d'un numéro de
sécurité sociale, créez un champ virtuel qui identifie le segment que vous souhaitez interroger.

Un Last4SSN champ virtuel, construit à partir de, vous Suffix(4) permet d'effectuer des
requêtesLast4SSN=0000. Utilisez ce champ virtuel pour créer une balise standard. Utilisez
ensuite la balise standard pour créer un index secondaire. Vous pouvez utiliser cet index
secondaire pour effectuer des requêtes sur le champ virtuel. Cette requête renvoie tous les
enregistrements dont SSN la valeur se termine par les quatre derniers chiffres que vous avez
spécifiés.

Interrogez la concaténation de plusieurs champs

Note

L'exemple suivant montre les types de transformations et de requêtes que vous pouvez
effectuer avec un champ virtuel. En application, les champs d'exemple utilisés dans cet
exemple peuvent ne pas respecter les recommandations d'unicité de distribution et de
corrélation pour les balises.

Choisir un type de balise 136

AWS SDK de chiffrement de base de données Guide du développeur

Si vous souhaitez effectuer des recherches d'égalité sur une concaténation de LastName champs
FirstName et, vous pouvez créer un NameTag champ virtuel, construit à partir de la première
lettre du FirstName champ, suivie du champ, le LastName tout en minuscules. Utilisez ce
champ virtuel pour créer une balise standard. Utilisez ensuite la balise standard pour créer
un index secondaire. Vous pouvez utiliser cet index secondaire pour effectuer des requêtes
NameTag=mjones sur le champ virtuel.

Au moins un des champs source doit être chiffré. L'FirstNameun ou l'autre LastName pourrait
être chiffré, ou les deux pourraient être chiffrés. Tous les champs source en texte brut doivent être
marqués en tant que SIGN_ONLY ou SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT dans
vos actions cryptographiques.

Pour obtenir de l'aide sur la configuration des champs virtuels et des balises qui les utilisent,
consultez la section Création d'un champ virtuel.

Balises composées

Les balises composées créent un index à partir de chaînes de texte brut littérales et de balises
standard pour effectuer des opérations de base de données complexes. Vous pouvez utiliser des
balises composées pour effectuer les requêtes suivantes.

Interrogez une combinaison de champs chiffrés sur un seul index

Si vous devez interroger une combinaison de champs chiffrés sur un seul index, créez une balise
composée qui combine les balises standard individuelles construites pour chaque champ chiffré afin
de former un index unique.

Après avoir configuré la balise composée, vous pouvez créer un index secondaire qui spécifie la
balise composée comme clé de partition pour effectuer des requêtes de correspondance exacte ou
avec une clé de tri pour effectuer des requêtes plus complexes. Les index secondaires qui spécifient
la balise composée comme clé de tri peuvent effectuer des requêtes de correspondance exacte et
des requêtes complexes plus personnalisées.

Exemples

Pour les exemples suivants, considérez une base de données nommée UnitInspection qui
suit les données d'inspection d'une installation de production. Chaque enregistrement de la base
de données contient des champs appelés work_idinspection_date,inspector_id_last4,
etunit. L'identifiant complet de l'inspecteur est un nombre compris entre 0 et 99 999 999. Toutefois,
pour garantir une distribution uniforme de l'ensemble de données, inspector_id_last4 seuls les

Choisir un type de balise 137

AWS SDK de chiffrement de base de données Guide du développeur

quatre derniers chiffres de l'identifiant de l'inspecteur sont enregistrés. Chaque champ de la base de
données est identifié par la clé primairework_id. Les unit champs inspector_id_last4 et sont
marqués ENCRYPT_AND_SIGN dans les actions cryptographiques.

Voici un exemple d'entrée en texte brut dans la UnitInspection base de données.

{
 "work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
 "inspection_date": 2023-06-07,
 "inspector_id_last4": 8744,
 "unit": 229304973450
}

Effectuez des recherches d'égalité sur une combinaison de champs cryptés

Si vous souhaitez interroger la UnitInspection base de données pour obtenir des
correspondances exactesinspector_id_last4.unit, créez d'abord des balises standard
distinctes pour les unit champs inspector_id_last4 et. Créez ensuite une balise composée
à partir des deux balises standard.

Après avoir configuré la balise composée, créez un index secondaire qui spécifie la balise
composée comme clé de partition. Utilisez cet index secondaire pour rechercher des
correspondances exactes surinspector_id_last4.unit. Par exemple, vous pouvez
interroger cette balise pour trouver une liste des inspections effectuées par un inspecteur pour
une unité donnée.

Réaliser des requêtes complexes sur une combinaison de champs chiffrés

Si vous souhaitez interroger la UnitInspection base de données sur inspector_id_last4
etinspector_id_last4.unit, créez d'abord des balises standard distinctes pour les unit
champs inspector_id_last4 et. Créez ensuite une balise composée à partir des deux balises
standard.

Après avoir configuré la balise composée, créez un index secondaire qui spécifie la
balise composée comme clé de tri. Utilisez cet index secondaire pour rechercher dans la
UnitInspection base de données les entrées commençant par un certain inspecteur
ou pour demander à la base de données une liste de toutes les unités appartenant
à une plage d'identifiants d'unités spécifique qui ont été inspectées par un certain
inspecteur. Vous pouvez également effectuer des recherches de correspondance exacte
surinspector_id_last4.unit.

Choisir un type de balise 138

AWS SDK de chiffrement de base de données Guide du développeur

Pour obtenir de l'aide sur la configuration des balises composées, consultez la section Configuration
des balises composées.

Interrogez une combinaison de champs chiffrés et de champs en texte brut sur un seul index

Si vous devez interroger une combinaison de champs chiffrés et de champs en texte
brut sur un seul index, créez une balise composée qui combine des balises standard
individuelles et des champs de texte en clair pour former un index unique. Les champs de
texte brut utilisés pour créer la balise composée doivent être marqués SIGN_ONLY ou figurer
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT dans vos actions cryptographiques.

Après avoir configuré la balise composée, vous pouvez créer un index secondaire qui spécifie la
balise composée comme clé de partition pour effectuer des requêtes de correspondance exacte ou
avec une clé de tri pour effectuer des requêtes plus complexes. Les index secondaires qui spécifient
la balise composée comme clé de tri peuvent effectuer des requêtes de correspondance exacte et
des requêtes complexes plus personnalisées.

Exemples

Pour les exemples suivants, considérez une base de données nommée UnitInspection qui
suit les données d'inspection d'une installation de production. Chaque enregistrement de la base
de données contient des champs appelés work_idinspection_date,inspector_id_last4,
etunit. L'identifiant complet de l'inspecteur est un nombre compris entre 0 et 99 999 999. Toutefois,
pour garantir une distribution uniforme de l'ensemble de données, inspector_id_last4 seuls les
quatre derniers chiffres de l'identifiant de l'inspecteur sont enregistrés. Chaque champ de la base de
données est identifié par la clé primairework_id. Les unit champs inspector_id_last4 et sont
marqués ENCRYPT_AND_SIGN dans les actions cryptographiques.

Voici un exemple d'entrée en texte brut dans la UnitInspection base de données.

{
 "work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
 "inspection_date": 2023-06-07,
 "inspector_id_last4": 8744,
 "unit": 229304973450
}

Effectuez des recherches d'égalité sur une combinaison de champs

Si vous souhaitez interroger la UnitInspection base de données pour les inspections
effectuées par un inspecteur spécifique à une date précise, créez d'abord une balise standard

Choisir un type de balise 139

AWS SDK de chiffrement de base de données Guide du développeur

pour le inspector_id_last4 champ. Le inspector_id_last4 champ est marqué
ENCRYPT_AND_SIGN dans les actions cryptographiques. Toutes les parties cryptées
nécessitent leur propre balise standard. Le inspection_date champ est marqué SIGN_ONLY
et ne nécessite pas de balise standard. Créez ensuite une balise composée à partir du
inspection_date champ et de la balise inspector_id_last4 standard.

Après avoir configuré la balise composée, créez un index secondaire qui spécifie la balise
composée comme clé de partition. Utilisez cet index secondaire pour rechercher dans les bases
de données des enregistrements correspondant exactement à un inspecteur et à une date
d'inspection spécifiques. Par exemple, vous pouvez interroger la base de données pour obtenir
la liste de toutes les inspections effectuées à une date précise par l'inspecteur dont l'identifiant se
termine 8744 par un identifiant.

Exécuter des requêtes complexes sur une combinaison de champs

Si vous souhaitez interroger la base de données pour les inspections effectuées dans
une inspection_date plage, ou interroger la base de données pour les inspections
effectuées sur une inspection_date contrainte particulière par inspector_id_last4
ouinspector_id_last4.unit, créez d'abord des balises standard distinctes pour les
champs inspector_id_last4 etunit. Créez ensuite une balise composée à partir du
inspection_date champ de texte brut et des deux balises standard.

Après avoir configuré la balise composée, créez un index secondaire qui spécifie la balise
composée comme clé de tri. Utilisez cet index secondaire pour effectuer des requêtes pour les
inspections effectuées à des dates spécifiques par un inspecteur spécifique. Par exemple, vous
pouvez interroger la base de données pour obtenir la liste de toutes les unités inspectées à la
même date. Vous pouvez également interroger la base de données pour obtenir une liste de
toutes les inspections effectuées sur une unité spécifique entre une plage de dates d'inspection
donnée.

Pour obtenir de l'aide sur la configuration des balises composées, consultez la section Configuration
des balises composées.

Choix de la longueur d'une balise

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Choix de la longueur d'une balise 140

AWS SDK de chiffrement de base de données Guide du développeur

Lorsque vous écrivez une nouvelle valeur dans un champ chiffré configuré pour le chiffrement
consultable, le SDK de chiffrement de AWS base de données calcule un HMAC par rapport à
la valeur en texte brut. Cette sortie HMAC correspond un à un (1:1) à la valeur en texte brut
de ce champ. La sortie HMAC est tronquée afin que plusieurs valeurs de texte clair distinctes
correspondent à la même balise HMAC tronquée. Ces collisions, ou faux positifs, limitent la capacité
d'un utilisateur non autorisé à identifier des informations distinctives concernant la valeur en texte
brut.

Le nombre moyen de faux positifs générés pour chaque balise est déterminé par la longueur restante
de la balise après troncature. Vous devez uniquement définir la longueur des balises lors de la
configuration des balises standard. Les balises composées utilisent les longueurs des balises
standard à partir desquelles elles sont construites.

La balise ne modifie pas l'état chiffré du champ. Cependant, lorsque vous utilisez des balises, il existe
un compromis inhérent entre l'efficacité de vos requêtes et la quantité d'informations révélées sur la
distribution de vos données.

L'objectif du chiffrement consultable est de réduire les coûts de performance associés aux bases de
données chiffrées côté client en utilisant des balises pour effectuer des requêtes sur des données
chiffrées. Les balises sont stockées à côté des champs cryptés à partir desquels elles sont calculées.
Cela signifie qu'ils peuvent révéler des informations distinctives sur la distribution de votre ensemble
de données. Dans des cas extrêmes, un utilisateur non autorisé peut être en mesure d'analyser les
informations révélées sur votre distribution et de les utiliser pour identifier la valeur en texte brut d'un
champ. Le choix de la bonne longueur de balise peut contribuer à atténuer ces risques et à préserver
la confidentialité de votre distribution.

Passez en revue votre modèle de menace pour déterminer le niveau de sécurité dont vous avez
besoin. Par exemple, plus il y a de personnes qui ont accès à votre base de données, mais ne
devraient pas avoir accès aux données en texte brut, plus vous souhaiterez peut-être protéger la
confidentialité de la distribution de votre ensemble de données. Pour accroître la confidentialité,
une balise doit générer davantage de faux positifs. L'augmentation de la confidentialité entraîne une
réduction des performances des requêtes.

Sécurité et performance

• Une balise trop longue produit trop peu de faux positifs et peut révéler des informations distinctives
sur la distribution de votre ensemble de données.

• Une balise trop courte produit trop de faux positifs et augmente le coût des performances des
requêtes car elle nécessite une analyse plus approfondie de la base de données.

Choix de la longueur d'une balise 141

AWS SDK de chiffrement de base de données Guide du développeur

Lorsque vous déterminez la longueur de balise appropriée pour votre solution, vous devez trouver
une longueur qui préserve de manière adéquate la sécurité de vos données sans affecter les
performances de vos requêtes plus que ce qui est absolument nécessaire. Le niveau de sécurité
préservé par une balise dépend de la distribution de votre ensemble de données et de la corrélation
des champs à partir desquels vos balises sont construites. Les rubriques suivantes supposent que
vos balises sont distribuées de manière uniforme et ne contiennent pas de données corrélées.

Rubriques

• Calcul de la longueur des balises

• exemple

Calcul de la longueur des balises

La longueur de la balise est définie en bits et fait référence au nombre de bits de la balise HMAC
conservés après la troncature. La longueur de balise recommandée varie en fonction de la
distribution du jeu de données, de la présence de valeurs corrélées et de vos exigences spécifiques
en matière de sécurité et de performances. Si votre jeu de données est distribué de manière
uniforme, vous pouvez utiliser les équations et procédures suivantes pour identifier la meilleure
longueur de balise pour votre implémentation. Ces équations ne font qu'estimer le nombre moyen de
faux positifs produits par la balise. Elles ne garantissent pas que chaque valeur unique de votre jeu
de données produira un nombre spécifique de faux positifs.

Note

L'efficacité de ces équations dépend de la distribution de votre jeu de données. Si votre
jeu de données n'est pas distribué de manière uniforme, consultezLes balises sont-elles
adaptées à mon ensemble de données ?.
En général, plus votre jeu de données est éloigné d'une distribution uniforme, plus vous
devez raccourcir la longueur de votre balise.

1.

Estimer la population

La population est le nombre attendu de valeurs uniques dans le champ à partir duquel votre
balise standard est construite, il ne s'agit pas du nombre total attendu de valeurs stockées
dans le champ. Prenons l'exemple d'un Room champ crypté qui identifie le lieu des réunions

Choix de la longueur d'une balise 142

AWS SDK de chiffrement de base de données Guide du développeur

des employés. Le Room champ devrait stocker 100 000 valeurs au total, mais les employés ne
peuvent réserver que 50 salles différentes pour les réunions. Cela signifie que la population est
de 50 car seules 50 valeurs uniques peuvent être stockées Room sur le terrain.

Note

Si votre balise standard est construite à partir d'un champ virtuel, la population utilisée
pour calculer la longueur de la balise est le nombre de combinaisons uniques créées par
le champ virtuel.

Lorsque vous estimez votre population, veillez à tenir compte de la croissance prévue de
l'ensemble de données. Une fois que vous avez écrit de nouveaux enregistrements avec la
balise, vous ne pouvez pas mettre à jour la longueur de la balise. Passez en revue votre modèle
de menace et toutes les solutions de base de données existantes afin de créer une estimation
du nombre de valeurs uniques que vous prévoyez de stocker dans ce champ au cours des cinq
prochaines années.

Votre population n'a pas besoin d'être précise. Identifiez d'abord le nombre de valeurs uniques
dans votre base de données actuelle ou estimez le nombre de valeurs uniques que vous
comptez stocker au cours de la première année. Posez ensuite les questions suivantes pour
déterminer la croissance prévue des valeurs uniques au cours des cinq prochaines années.

• Vous attendez-vous à ce que les valeurs uniques soient multipliées par 10 ?

• Vous attendez-vous à ce que les valeurs uniques soient multipliées par 100 ?

• Vous attendez-vous à ce que les valeurs uniques soient multipliées par 1000 ?

La différence entre 50 000 et 60 000 valeurs uniques n'est pas significative et elles aboutiront
toutes deux à la même longueur de balise recommandée. Cependant, la différence entre 50 000
et 500 000 valeurs uniques aura un impact significatif sur la longueur de balise recommandée.

Envisagez d'examiner les données publiques sur la fréquence des types de données courants,
tels que les codes postaux ou les noms de famille. Par exemple, il existe 41 707 codes postaux
aux États-Unis d'Amérique. La population que vous utilisez doit être proportionnelle à votre
propre base de données. Si le ZIPCode champ de votre base de données inclut des données
provenant de l'ensemble des États-Unis d'Amérique, vous pouvez définir votre population
comme étant 41 707, même si ZIPCode le champ ne contient pas actuellement 41 707 valeurs

Choix de la longueur d'une balise 143

AWS SDK de chiffrement de base de données Guide du développeur

uniques. Si le ZIPCode champ de votre base de données inclut uniquement les données d'un
seul État, et n'inclura que les données d'un seul État, vous pouvez définir votre population
comme le nombre total de codes postaux dans cet État au lieu de 41 704.

2. Calculez la plage recommandée pour le nombre de collisions attendu

Pour déterminer la longueur de balise appropriée pour un champ donné, vous devez d'abord
identifier une plage appropriée pour le nombre de collisions attendu. Le nombre de collisions
attendu représente le nombre moyen attendu de valeurs de texte brut uniques correspondant
à une balise HMAC particulière. Le nombre attendu de faux positifs pour une valeur unique en
texte brut est inférieur d'un au nombre de collisions attendu.

Nous recommandons que le nombre de collisions attendu soit supérieur ou égal à deux, et
inférieur à la racine carrée de votre population. Les équations suivantes ne fonctionnent que si
votre population possède 16 valeurs uniques ou plus.

2 ≤ number of collisions < √(Population)

Si le nombre de collisions est inférieur à deux, la balise produira trop peu de faux positifs. Nous
recommandons deux comme nombre minimum de collisions attendues, car cela signifie qu'en
moyenne, chaque valeur unique du champ générera au moins un faux positif en étant mappée à
une autre valeur unique.

3. Calculez la plage recommandée pour les longueurs de balise

Après avoir identifié le nombre minimum et maximum de collisions attendues, utilisez l'équation
suivante pour identifier une plage de longueurs de balise appropriées.

number of collisions = Population * 2-(beacon length)

Tout d'abord, déterminez la longueur de la balise lorsque le nombre de collisions attendues est
égal à deux (le nombre minimum recommandé de collisions attendues).

2 = Population * 2-(beacon length)

Ensuite, déterminez la longueur de la balise pour laquelle le nombre de collisions attendu est
égal à la racine carrée de votre population (le nombre maximum recommandé de collisions
attendues).

Choix de la longueur d'une balise 144

AWS SDK de chiffrement de base de données Guide du développeur

√(Population) = Population * 2-(beacon length)

Nous recommandons d'arrondir le résultat produit par cette équation à la longueur de balise
la plus courte. Par exemple, si l'équation produit une longueur de balise de 15,6, nous
recommandons d'arrondir cette valeur à 15 bits au lieu d'arrondir à 16 bits.

4. Choisissez une longueur de balise

Ces équations identifient uniquement une plage recommandée de longueurs de balise pour votre
champ. Nous vous recommandons d'utiliser une balise plus courte pour préserver la sécurité de
votre ensemble de données dans la mesure du possible. Cependant, la longueur de la balise
que vous utilisez réellement est déterminée par votre modèle de menace. Tenez compte de vos
exigences en matière de performances lorsque vous examinez votre modèle de menace afin de
déterminer la longueur de balise la mieux adaptée à votre champ.

L'utilisation d'une longueur de balise plus courte réduit les performances des requêtes, tandis
que l'utilisation d'une longueur de balise plus longue réduit la sécurité. En général, si votre jeu
de données est inégalement distribué ou si vous créez des balises distinctes à partir de champs
corrélés, vous devez utiliser des balises de plus courte longueur afin de minimiser la quantité
d'informations révélées sur la distribution de vos ensembles de données.

Si vous examinez votre modèle de menace et que vous déterminez que les informations
distinctives révélées concernant la distribution d'un champ ne constituent pas une menace pour
votre sécurité globale, vous pouvez choisir d'utiliser une longueur de balise supérieure à la plage
recommandée que vous avez calculée. Par exemple, si vous avez calculé la plage de longueurs
de balise recommandée pour un champ entre 9 et 16 bits, vous pouvez choisir d'utiliser une
longueur de balise de 24 bits pour éviter toute perte de performance.

Choisissez soigneusement la longueur de votre balise. Une fois que vous avez écrit de
nouveaux enregistrements avec la balise, vous ne pouvez pas mettre à jour la longueur de la
balise.

exemple

Prenons l'exemple d'une base de données qui a marqué le unit champ comme
ENCRYPT_AND_SIGN dans les actions cryptographiques. Pour configurer une balise standard pour le
unit champ, nous devons déterminer le nombre attendu de faux positifs et la longueur de la balise
pour le unit champ.

Choix de la longueur d'une balise 145

AWS SDK de chiffrement de base de données Guide du développeur

1. Estimer la population

Après avoir examiné notre modèle de menace et notre solution de base de données actuelle,
nous nous attendons à ce que le unit champ contienne à terme 100 000 valeurs uniques.

Cela signifie que la population est égale à 100 000 habitants.

2. Calculez la plage recommandée pour le nombre de collisions attendu.

Dans cet exemple, le nombre de collisions attendu doit être compris entre 2 et 316.

2 ≤ number of collisions < √(Population)

a. 2 ≤ number of collisions < √(100,000)

b. 2 ≤ number of collisions < 316

3. Calculez la plage recommandée pour la longueur de balise.

Dans cet exemple, la longueur de la balise doit être comprise entre 9 et 16 bits.

number of collisions = Population * 2-(beacon length)

a. Calculez la longueur de la balise lorsque le nombre de collisions attendu est égal au
minimum identifié à l'étape 2.

2 = 100,000 * 2-(beacon length)

Longueur de la balise = 15,6, soit 15 bits

b. Calculez la longueur de la balise lorsque le nombre de collisions attendu est égal au
maximum identifié à l'étape 2.

316 = 100,000 * 2-(beacon length)

Longueur de la balise = 8,3, soit 8 bits

4. Déterminez la longueur de balise adaptée à vos exigences de sécurité et de performance.

Pour chaque bit inférieur à 15, le coût de performance et la sécurité doublent.
Choix de la longueur d'une balise 146

AWS SDK de chiffrement de base de données Guide du développeur

• 16 bits

• En moyenne, chaque valeur unique correspond à 1,5 autre unité.

• Sécurité : deux enregistrements portant la même balise HMAC tronquée ont 66 % de
chances d'avoir la même valeur en texte brut.

• Performance : une requête permet de récupérer 15 enregistrements pour 10
enregistrements que vous avez réellement demandés.

• 14 bits

• En moyenne, chaque valeur unique correspond à 6,1 autres unités.

• Sécurité : deux enregistrements portant la même balise HMAC tronquée ont 33 % de
chances d'avoir la même valeur en texte brut.

• Performance : une requête permet de récupérer 30 enregistrements pour 10
enregistrements que vous avez réellement demandés.

Choisir un nom de balise

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Chaque balise est identifiée par un nom de balise unique. Une fois qu'une balise est configurée, le
nom de la balise est le nom que vous utilisez lorsque vous interrogez un champ chiffré. Le nom d'une
balise peut être le même que celui d'un champ crypté ou d'un champ virtuel, mais il ne peut pas être
le même que celui d'un champ non chiffré. Deux balises différentes ne peuvent pas porter le même
nom de balise.

Pour des exemples illustrant comment nommer et configurer les balises, consultez la section
Configuration des balises.

Nommer une balise standard

Lorsque vous nommez des balises standard, nous recommandons vivement que le nom de votre
balise corresponde à la source de la balise dans la mesure du possible. Cela signifie que le nom de
la balise et le nom du champ crypté ou virtuel à partir duquel votre balise standard est construite sont

Choisir un nom de balise 147

AWS SDK de chiffrement de base de données Guide du développeur

identiques. Par exemple, si vous créez une balise standard pour un champ chiffré nomméLastName,
le nom de votre balise doit également êtreLastName.

Lorsque le nom de votre balise est identique à celui de la source de la balise, vous pouvez omettre
la source de la balise dans votre configuration et le SDK de chiffrement de AWS base de données
utilisera automatiquement le nom de la balise comme source de balise.

Configuration des balises

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Il existe deux types de balises qui prennent en charge le chiffrement consultable. Les balises
standard effectuent des recherches d'égalité. Ils constituent le moyen le plus simple d'implémenter le
chiffrement consultable dans votre base de données. Les balises composées combinent des chaînes
de texte en clair littérales et des balises standard pour effectuer des requêtes plus complexes.

Les balises sont conçues pour être mises en œuvre dans de nouvelles bases de données non
peuplées. Toute balise configurée dans une base de données existante ne mappera que les
nouveaux enregistrements écrits dans la base de données. Les balises sont calculées à partir de
la valeur en texte brut d'un champ. Une fois le champ crypté, il n'est plus possible pour la balise de
mapper les données existantes. Une fois que vous avez écrit de nouveaux enregistrements avec
une balise, vous ne pouvez pas mettre à jour la configuration de la balise. Cependant, vous pouvez
ajouter de nouvelles balises pour les nouveaux champs que vous ajoutez à votre enregistrement.

Après avoir déterminé vos modèles d'accès, la configuration des balises doit être la deuxième étape
de l'implémentation de votre base de données. Ensuite, après avoir configuré toutes vos balises,
vous devez créer un jeu de clés AWS KMS hiérarchique, définir la version de la balise, configurer un
index secondaire pour chaque balise, définir vos actions cryptographiques et configurer votre base de
données et le client du SDK AWS Database Encryption. Pour plus d'informations, consultez la section
Utilisation de balises.

Pour faciliter la définition de la version des balises, nous vous recommandons de créer des listes
pour les balises standard et composées. Ajoutez chaque balise que vous créez à la liste de balises
standard ou composée correspondante au fur et à mesure de sa configuration.

Rubriques

Configuration des balises 148

AWS SDK de chiffrement de base de données Guide du développeur

• Configuration des balises standard

• Configuration de balises composées

• Exemples de configuration

Configuration des balises standard

Les balises standard constituent le moyen le plus simple d'implémenter un chiffrement consultable
dans votre base de données. Ils ne peuvent effectuer des recherches d'égalité que pour un seul
champ crypté ou virtuel.

Exemple de syntaxe de configuration

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beaconName")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C# / .NET

var standardBeaconList = new List<StandardBeacon>();
StandardBeacon exampleStandardBeacon = new StandardBeacon
 {
 Name = "beaconName",
 Length = 10
 };
standardBeaconList.Add(exampleStandardBeacon);

Rust

let standard_beacon_list = vec![

 StandardBeacon::builder().name("beacon_name").length(beacon_length_in_bits).build()?,

Pour configurer une balise standard, fournissez les valeurs suivantes.

Configuration des balises standard 149

AWS SDK de chiffrement de base de données Guide du développeur

Nom de la balise

Le nom que vous utilisez lorsque vous interrogez un champ chiffré.

Le nom d'une balise peut être le même que celui d'un champ crypté ou d'un champ virtuel, mais il
ne peut pas être le même que celui d'un champ non chiffré. Nous vous recommandons vivement
d'utiliser le nom du champ crypté ou du champ virtuel à partir duquel votre balise standard
est construite dans la mesure du possible. Deux balises différentes ne peuvent pas porter le
même nom de balise. Pour obtenir de l'aide pour déterminer le meilleur nom de balise pour votre
implémentation, consultez Choisir un nom de balise.

Longueur de la balise

Nombre de bits de la valeur de hachage de la balise conservés après la troncature.

La longueur de la balise détermine le nombre moyen de faux positifs produits par une balise
donnée. Pour plus d'informations et pour vous aider à déterminer la longueur de balise appropriée
pour votre implémentation, consultez la section Détermination de la longueur de balise.

Source de balise (facultatif)

Champ à partir duquel une balise standard est construite.

La source de la balise doit être un nom de champ ou un index faisant référence à la valeur d'un
champ imbriqué. Lorsque le nom de votre balise est identique à celui de la source de la balise,
vous pouvez omettre la source de la balise dans votre configuration et le SDK de chiffrement de
AWS base de données utilisera automatiquement le nom de la balise comme source de balise.

Création d'un champ virtuel

Pour créer un champ virtuel, vous devez fournir un nom pour le champ virtuel et une liste des champs
sources. L'ordre dans lequel vous ajoutez les champs source à la liste des pièces virtuelles détermine
l'ordre dans lequel ils sont concaténés pour créer le champ virtuel. L'exemple suivant concatène deux
champs source dans leur intégralité pour créer un champ virtuel.

Note

Nous vous recommandons de vérifier que vos champs virtuels produisent le résultat attendu
avant de remplir votre base de données. Pour plus d'informations, consultez la section Tester
les sorties des balises.

Configuration des balises standard 150

AWS SDK de chiffrement de base de données Guide du développeur

Java

Voir l'exemple de code complet : VirtualBeaconSearchableEncryptionExample.java

List<VirtualPart> virtualPartList = new ArrayList<>();
 virtualPartList.add(sourceField1);
 virtualPartList.add(sourceField2);

VirtualField virtualFieldName = VirtualField.builder()
 .name("virtualFieldName")
 .parts(virtualPartList)
 .build();

List<VirtualField> virtualFieldList = new ArrayList<>();
 virtualFieldList.add(virtualFieldName);

C# / .NET

Voir l'exemple de code complet : VirtualBeaconSearchableEncryptionExample.cs

var virtualPartList = new List<VirtualPart> { sourceField1, sourceField2 };

var virtualFieldName = new VirtualField
{
 Name = "virtualFieldName",
 Parts = virtualPartList
};

var virtualFieldList = new List<VirtualField> { virtualFieldName };

Rust

Voir l'exemple de code complet : virtual_beacon_searchable_encryption.rs

let virtual_part_list = vec![source_field_one, source_field_two];

let state_and_has_test_result_field = VirtualField::builder()
 .name("virtual_field_name")
 .parts(virtual_part_list)
 .build()?;

let virtual_field_list = vec![virtual_field_name];

Configuration des balises standard 151

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/VirtualBeaconSearchableEncryptionExample.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/VirtualBeaconSearchableEncryptionExample.cs
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/virtual_beacon_searchable_encryption.rs

AWS SDK de chiffrement de base de données Guide du développeur

Pour créer un champ virtuel avec un segment spécifique d'un champ source, vous devez définir cette
transformation avant d'ajouter le champ source à votre liste de pièces virtuelles.

Considérations relatives à la sécurité des champs virtuels

Les balises ne modifient pas l'état chiffré du champ. Cependant, lorsque vous utilisez des balises, il
existe un compromis inhérent entre l'efficacité de vos requêtes et la quantité d'informations révélées
sur la distribution de vos données. La façon dont vous configurez votre balise détermine le niveau de
sécurité préservé par cette balise.

Évitez de créer un champ virtuel dont les champs source se chevauchent avec les balises standard
existantes. La création de champs virtuels incluant un champ source qui a déjà été utilisé pour créer
une balise standard peut réduire le niveau de sécurité des deux balises. L'ampleur de la réduction de
la sécurité dépend du niveau d'entropie ajouté par les champs source supplémentaires. Le niveau
d'entropie est déterminé par la distribution de valeurs uniques dans le champ source supplémentaire
et par le nombre de bits que le champ source supplémentaire contribue à la taille globale du champ
virtuel.

Vous pouvez utiliser la population et la longueur des balises pour déterminer si les champs source
d'un champ virtuel préservent la sécurité de votre ensemble de données. La population est le nombre
attendu de valeurs uniques dans un champ. Votre population n'a pas besoin d'être précise. Pour
obtenir de l'aide pour estimer la population d'un champ, voir Estimer la population.

Examinez l'exemple suivant lorsque vous examinez la sécurité de vos champs virtuels.

• Beacon1 est construit à partir de. FieldA FieldAa une population supérieure à 2 (longueur de

Beacon1).

• Beacon2 est construit à partir deVirtualField, qui est construit à partir deFieldA,
FieldBFieldC, et. FieldD Ensemble, FieldBFieldC, et FieldD ont une population supérieure
à 2 N

Beacon2 préserve la sécurité de Beacon1 et de Beacon2 si les affirmations suivantes sont vraies :

N ≥ (Beacon1 length)/2

and

N ≥ (Beacon2 length)/2

Configuration des balises standard 152

AWS SDK de chiffrement de base de données Guide du développeur

Définition des styles de balises

Les balises standard peuvent être utilisées pour effectuer des recherches d'égalité pour un champ
crypté ou virtuel. Ils peuvent également être utilisés pour créer des balises composées afin
d'effectuer des opérations de base de données plus complexes. Pour vous aider à organiser et à
gérer les balises standard, le SDK AWS de chiffrement de base de données fournit les styles de
balises facultatifs suivants qui définissent l'utilisation prévue d'une balise standard.

Note

Pour définir les styles de balises, vous devez utiliser la version 3.2 ou ultérieure du SDK AWS
Database Encryption. Déployez la nouvelle version sur tous les lecteurs avant d'ajouter des
styles de balises à vos configurations de balises.

PartOnly

Une balise standard définie comme ne PartOnly peut être utilisée que pour définir une partie
cryptée d'une balise composée. Vous ne pouvez pas interroger directement une balise PartOnly
standard.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beaconName")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .partOnly(PartOnly.builder().build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C#//.NET

new StandardBeacon
{
 Name = "beaconName",
 Length = beaconLengthInBits,

Configuration des balises standard 153

AWS SDK de chiffrement de base de données Guide du développeur

 Style = new BeaconStyle
 {
 PartOnly = new PartOnly()
 }
}

Rust

StandardBeacon::builder()
 .name("beacon_name")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::PartOnly(PartOnly::builder().build()?))
 .build()?

Shared

Par défaut, chaque balise standard génère une clé HMAC unique pour le calcul de la balise. Par
conséquent, vous ne pouvez pas effectuer de recherche d'égalité sur les champs chiffrés à partir
de deux balises standard distinctes. Une balise standard définie comme Shared utilise la clé
HMAC d'une autre balise standard pour ses calculs.

Par exemple, si vous devez comparer des beacon1 champs à des beacon2 champs, beacon2
définissez-les comme une Shared balise qui utilise la clé HMAC de beacon1 pour ses calculs.

Note

Tenez compte de vos besoins en matière de sécurité et de performances avant de
configurer des Shared balises. Sharedles balises peuvent augmenter la quantité
d'informations statistiques pouvant être identifiées sur la distribution de votre ensemble de
données. Par exemple, ils peuvent révéler quels champs partagés contiennent la même
valeur en texte brut.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beacon2")
 .length(beaconLengthInBits)
 .style(

Configuration des balises standard 154

AWS SDK de chiffrement de base de données Guide du développeur

 BeaconStyle.builder()
 .shared(Shared.builder().other("beacon1").build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C#//.NET

new StandardBeacon
{
 Name = "beacon2",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 Shared = new Shared { Other = "beacon1" }
 }
}

Rust

StandardBeacon::builder()
 .name("beacon2")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::Shared(
 Shared::builder().other("beacon1").build()?,
))
 .build()?

AsSet

Par défaut, si la valeur d'un champ est un ensemble, le SDK AWS de chiffrement de base
de données calcule une balise standard unique pour l'ensemble. Par conséquent, vous ne
pouvez pas exécuter la requête CONTAINS(a, :value) où se a trouve un champ crypté.
Une balise standard définie comme AsSet calcule des valeurs de balise standard individuelles
pour chaque élément individuel de l'ensemble et stocke la valeur de balise dans l'élément sous
forme d'ensemble. Cela permet au SDK AWS de chiffrement de base de données d'exécuter la
requêteCONTAINS(a, :value).

Pour définir une balise AsSet standard, les éléments de l'ensemble doivent appartenir à la même
population afin qu'ils puissent tous utiliser la même longueur de balise. L'ensemble de balises

Configuration des balises standard 155

AWS SDK de chiffrement de base de données Guide du développeur

peut comporter moins d'éléments que le jeu de texte en clair en cas de collisions lors du calcul
des valeurs des balises.

Note

Tenez compte de vos besoins en matière de sécurité et de performances avant
de configurer des AsSet balises. AsSetles balises peuvent augmenter la quantité
d'informations statistiques pouvant être identifiées sur la distribution de votre ensemble de
données. Par exemple, ils peuvent révéler la taille de l'ensemble de texte en clair.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beaconName")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .asSet(AsSet.builder().build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C#//.NET

new StandardBeacon
{
 Name = "beaconName",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 AsSet = new AsSet()
 }
}

Rust

StandardBeacon::builder()
 .name("beacon_name")

Configuration des balises standard 156

AWS SDK de chiffrement de base de données Guide du développeur

 .length(beacon_length_in_bits)
 .style(BeaconStyle::AsSet(AsSet::builder().build()?))
 .build()?

SharedSet

Une balise standard définie comme SharedSet combine les AsSet fonctions Shared et afin
que vous puissiez effectuer des recherches d'égalité sur les valeurs cryptées d'un ensemble et
d'un champ. Cela permet au SDK AWS de chiffrement de base de données d'exécuter la requête
CONTAINS(a, b) lorsqu'il a s'agit d'un ensemble chiffré et b d'un champ chiffré.

Note

Tenez compte de vos besoins en matière de sécurité et de performances avant de
configurer des Shared balises. SharedSetles balises peuvent augmenter la quantité
d'informations statistiques pouvant être identifiées sur la distribution de votre ensemble de
données. Par exemple, ils peuvent révéler la taille de l'ensemble de texte en clair ou les
champs partagés contenant la même valeur en texte brut.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beacon2")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .sharedSet(SharedSet.builder().other("beacon1").build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C#//.NET

new StandardBeacon
{
 Name = "beacon2",
 Length = beaconLengthInBits,

Configuration des balises standard 157

AWS SDK de chiffrement de base de données Guide du développeur

 Style = new BeaconStyle
 {
 SharedSet = new SharedSet { Other = "beacon1" }
 }
}

Rust

StandardBeacon::builder()
 .name("beacon2")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::SharedSet(
 SharedSet::builder().other("beacon1").build()?,
))
 .build()?

Configuration de balises composées

Les balises composées combinent des chaînes de texte brut littérales et des balises standard
pour effectuer des opérations de base de données complexes, telles que l'interrogation de deux
types d'enregistrement différents à partir d'un seul index ou l'interrogation d'une combinaison
de champs à l'aide d'une clé de tri. Les balises composées peuvent être construites à partir de
ENCRYPT_AND_SIGNSIGN_ONLY, et de SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT champs.
Vous devez créer une balise standard pour chaque champ chiffré inclus dans la balise composée.

Note

Nous vous recommandons de vérifier que vos balises composées produisent le résultat
attendu avant de remplir votre base de données. Pour plus d'informations, consultez la
section Tester les sorties des balises.

Exemple de syntaxe de configuration

Java

Configuration de balise composée

L'exemple suivant définit des listes de pièces chiffrées et signées localement dans la configuration
des balises composées.

Configuration de balises composées 158

AWS SDK de chiffrement de base de données Guide du développeur

List<CompoundBeacon> compoundBeaconList = new ArrayList<>();
CompoundBeacon exampleCompoundBeacon = CompoundBeacon.builder()
 .name("compoundBeaconName")
 .split(".")
 .encrypted(encryptedPartList)
 .signed(signedPartList)
 .constructors(constructorList)
 .build();
compoundBeaconList.add(exampleCompoundBeacon);

Définition de la version de la balise

L'exemple suivant définit les listes de pièces chiffrées et signées de manière globale dans la
version balise. Pour plus d'informations sur la définition de la version des balises, consultez la
section Utilisation des balises.

 List<BeaconVersion> beaconVersions = new ArrayList<>();
beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .encryptedParts(encryptedPartList)
 .signedParts(signedPartList)
 .version(1) // MUST be 1
 .keyStore(keyStore)
 .keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branchKeyId)
 .cacheTTL(6000)
 .build())
 .build())
 .build()
);

C# / .NET

Voir l'exemple de code complet : BeaconConfig.cs

Configuration de balise composée

L'exemple suivant définit des listes de pièces chiffrées et signées localement dans la configuration
des balises composées.

Configuration de balises composées 159

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/complexexample/BeaconConfig.cs

AWS SDK de chiffrement de base de données Guide du développeur

var compoundBeaconList = new List<CompoundBeacon>();
var exampleCompoundBeacon = new CompoundBeacon
 {
 Name = "compoundBeaconName",
 Split = ".",
 Encrypted = encryptedPartList,
 Signed = signedPartList,
 Constructors = constructorList
 };
compoundBeaconList.Add(exampleCompoundBeacon);

Définition de la version de la balise

L'exemple suivant définit les listes de pièces chiffrées et signées de manière globale dans la
version balise. Pour plus d'informations sur la définition de la version des balises, consultez la
section Utilisation des balises.

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 EncryptedParts = encryptedPartsList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = keyStore,
 KeySource = new BeaconKeySource
 {
 Single = new SingleKeyStore
 {
 KeyId = branchKeyId,
 CacheTTL = 6000
 }
 }
 }
};

Rust

Voir l'exemple de code complet : beacon_config.rs

Configuration de balise composée

Configuration de balises composées 160

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/complexexample/beacon_config.rs

AWS SDK de chiffrement de base de données Guide du développeur

L'exemple suivant définit des listes de pièces chiffrées et signées localement dans la configuration
des balises composées.

let compound_beacon_list = vec![
 CompoundBeacon::builder()
 .name("compound_beacon_name")
 .split(".")
 .encrypted(encrypted_parts_list)
 .signed(signed_parts_list)
 .constructors(constructor_list)
 .build()?

Définition de la version de la balise

L'exemple suivant définit les listes de pièces chiffrées et signées de manière globale dans la
version balise. Pour plus d'informations sur la définition de la version des balises, consultez la
section Utilisation des balises.

let beacon_versions = BeaconVersion::builder()
 .standard_beacons(standard_beacon_list)
 .compound_beacons(compound_beacon_list)
 .encrypted_parts(encrypted_parts_list)
 .signed_parts(signed_parts_list)
 .version(1) // MUST be 1
 .key_store(key_store.clone())
 .key_source(BeaconKeySource::Single(
 SingleKeyStore::builder()
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .build()?,
))
 .build()?;
let beacon_versions = vec![beacon_versions];

Vous pouvez définir vos parties chiffrées et vos parties signées dans des listes définies localement
ou globalement. Nous vous recommandons de définir vos parties cryptées et signées dans une
liste globale dans la version balise dans la mesure du possible. En définissant les parties chiffrées
et signées de manière globale, vous pouvez définir chaque partie une seule fois, puis les réutiliser
dans plusieurs configurations de balises composées. Si vous n'avez l'intention d'utiliser une pièce
chiffrée ou signée qu'une seule fois, vous pouvez la définir dans une liste locale dans la configuration

Configuration de balises composées 161

AWS SDK de chiffrement de base de données Guide du développeur

des balises composées. Vous pouvez référencer des pièces locales et globales dans votre liste de
constructeurs.

Si vous définissez vos listes de pièces chiffrées et signées de manière globale, vous devez fournir
une liste de composants du constructeur identifiant toutes les manières possibles dont la balise
composée peut assembler les champs dans votre configuration de balise composée.

Note

Pour définir des listes de pièces chiffrées et signées de manière globale, vous devez utiliser
la version 3.2 ou ultérieure du SDK AWS Database Encryption. Déployez la nouvelle version
sur tous les lecteurs avant de définir de nouvelles pièces de manière globale.
Vous ne pouvez pas mettre à jour les configurations de balises existantes pour définir des
listes de pièces chiffrées et signées dans le monde entier.

Pour configurer une balise composée, fournissez les valeurs suivantes.

Nom de la balise

Le nom que vous utilisez lorsque vous interrogez un champ chiffré.

Le nom d'une balise peut être le même que celui d'un champ crypté ou d'un champ virtuel, mais il
ne peut pas être le même que celui d'un champ non chiffré. Deux balises ne peuvent pas porter le
même nom de balise. Pour obtenir de l'aide pour déterminer le meilleur nom de balise pour votre
implémentation, consultez Choisir un nom de balise.

Caractère divisé

Le caractère utilisé pour séparer les parties qui composent votre balise composée.

Le caractère divisé ne peut apparaître dans les valeurs en texte brut d'aucun des champs à partir
desquels la balise composée est construite.

Liste de pièces cryptée

Identifie les ENCRYPT_AND_SIGN champs inclus dans la balise composée.

Chaque partie doit inclure un nom et un préfixe. Le nom de pièce doit être le nom de la balise
standard construite à partir du champ crypté. Le préfixe peut être n'importe quelle chaîne, mais il
doit être unique. Une pièce chiffrée ne peut pas avoir le même préfixe qu'une pièce signée. Nous

Configuration de balises composées 162

AWS SDK de chiffrement de base de données Guide du développeur

recommandons d'utiliser une valeur courte qui distingue la pièce des autres parties desservies par
la balise composée.

Nous vous recommandons de définir vos parties cryptées de manière globale dans la mesure du
possible. Vous pouvez envisager de définir une partie chiffrée localement si vous avez l'intention
de ne l'utiliser que dans une seule balise composée. Une partie cryptée définie localement ne
peut pas avoir le même préfixe ou le même nom qu'une partie cryptée définie globalement.

Java

List<EncryptedPart> encryptedPartList = new ArrayList<>);
EncryptedPart encryptedPartExample = EncryptedPart.builder()
 .name("standardBeaconName")
 .prefix("E-")
 .build();
encryptedPartList.add(encryptedPartExample);

C# / .NET

var encryptedPartList = new List<EncryptedPart>();
var encryptedPartExample = new EncryptedPart
 {
 Name = "compoundBeaconName",
 Prefix = "E-"
 };
encryptedPartList.Add(encryptedPartExample);

Rust

let encrypted_parts_list = vec![
 EncryptedPart::builder()
 .name("standard_beacon_name")
 .prefix("E-")
 .build()?
];

Liste de pièces signée

Identifie les champs signés inclus dans la balise composée.

Configuration de balises composées 163

AWS SDK de chiffrement de base de données Guide du développeur

Note

Les pièces signées sont facultatives. Vous pouvez configurer une balise composée qui ne
fait référence à aucune pièce signée.

Chaque partie doit inclure un nom, une source et un préfixe. La source est le
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT champ SIGN_ONLY ou que l'article identifie.
La source doit être un nom de champ ou un index faisant référence à la valeur d'un champ
imbriqué. Si le nom de votre pièce identifie la source, vous pouvez omettre la source et le SDK
AWS de chiffrement de base de données utilisera automatiquement le nom comme source. Nous
recommandons de spécifier la source comme nom de pièce dans la mesure du possible. Le
préfixe peut être n'importe quelle chaîne, mais il doit être unique. Une pièce signée ne peut pas
avoir le même préfixe qu'une pièce chiffrée. Nous recommandons d'utiliser une valeur courte qui
distingue la pièce des autres parties desservies par la balise composée.

Nous vous recommandons de définir vos pièces signées de manière globale dans la mesure du
possible. Vous pouvez envisager de définir une pièce signée localement si vous avez l'intention
de ne l'utiliser que dans une seule balise composée. Une pièce signée définie localement ne peut
pas avoir le même préfixe ou le même nom qu'une pièce signée définie globalement.

Java

List<SignedPart> signedPartList = new ArrayList<>);
SignedPart signedPartExample = SignedPart.builder()
 .name("signedFieldName")
 .prefix("S-")
 .build();
signedPartList.add(signedPartExample);

C# / .NET

var signedPartsList = new List<SignedPart>
{
 new SignedPart { Name = "signedFieldName1", Prefix = "S-" },
 new SignedPart { Name = "signedFieldName2", Prefix = "SF-" }
};

Configuration de balises composées 164

AWS SDK de chiffrement de base de données Guide du développeur

Rust

let signed_parts_list = vec![
 SignedPart::builder()
 .name("signed_field_name_1")
 .prefix("S-")
 .build()?,
 SignedPart::builder()
 .name("signed_field_name_2")
 .prefix("SF-")
 .build()?,
];

Liste des constructeurs

Identifie les constructeurs qui définissent les différentes manières dont les pièces cryptées et
signées peuvent être assemblées par la balise composée. Vous pouvez référencer des pièces
locales et globales dans votre liste de constructeurs.

Si vous créez votre balise composée à partir de pièces chiffrées et signées définies globalement,
vous devez fournir une liste de constructeurs.

Si vous n'utilisez aucune pièce chiffrée ou signée définie globalement pour construire votre
balise composée, la liste des constructeurs est facultative. Si vous ne spécifiez pas de liste
de constructeurs, le SDK AWS Database Encryption assemble la balise composée avec le
constructeur par défaut suivant.

• Toutes les pièces signées dans l'ordre dans lequel elles ont été ajoutées à la liste des pièces
signées

• Toutes les pièces cryptées dans l'ordre dans lequel elles ont été ajoutées à la liste des pièces
cryptées

• Toutes les pièces sont requises

Constructeurs

Chaque constructeur est une liste ordonnée de pièces du constructeur qui définit une manière
dont la balise composée peut être assemblée. Les pièces du constructeur sont assemblées
dans l'ordre dans lequel elles sont ajoutées à la liste, chaque partie étant séparée par le
caractère divisé spécifié.

Chaque partie du constructeur nomme une partie chiffrée ou une partie signée, et définit si
cette partie est obligatoire ou facultative dans le constructeur. Par exemple, si vous souhaitez

Configuration de balises composées 165

AWS SDK de chiffrement de base de données Guide du développeur

interroger une balise composée surField1,Field1.Field2, etField1.Field2.Field3,
marquer Field2 et Field3 comme facultatif et créer un constructeur.

Chaque constructeur doit avoir au moins une pièce requise. Nous vous recommandons de
rendre obligatoire la première partie de chaque constructeur afin que vous puissiez utiliser
l'BEGINS_WITHopérateur dans vos requêtes.

Un constructeur réussit si toutes ses pièces requises sont présentes dans l'enregistrement.
Lorsque vous écrivez un nouvel enregistrement, la balise composée utilise la liste des
constructeurs pour déterminer si la balise peut être assemblée à partir des valeurs fournies.
Il tente d'assembler la balise dans l'ordre dans lequel les constructeurs ont été ajoutés à la
liste des constructeurs, et il utilise le premier constructeur qui réussit. Si aucun constructeur ne
réussit, la balise n'est pas écrite dans l'enregistrement.

Tous les lecteurs et rédacteurs doivent spécifier le même ordre de constructeurs pour
s'assurer que les résultats de leurs requêtes sont corrects.

Utilisez les procédures suivantes pour spécifier votre propre liste de constructeurs.

1. Créez une partie constructeur pour chaque pièce chiffrée et pièce signée afin de définir si
cette partie est requise ou non.

Le nom de la partie constructeur doit être le nom de la balise standard ou du champ signé
qu'il représente.

Java

ConstructorPart field1ConstructorPart = ConstructorPart.builder()
 .name("Field1")
 .required(true)
 .build();

C# / .NET

var field1ConstructorPart = new ConstructorPart { Name = "Field1", Required
 = true };

Rust

let field_1_constructor_part = ConstructorPart::builder()
 .name("field_1")

Configuration de balises composées 166

AWS SDK de chiffrement de base de données Guide du développeur

 .required(true)
 .build()?;

2. Créez un constructeur pour chaque manière possible d'assembler la balise composée à l'aide
des pièces du constructeur que vous avez créées à l'étape 1.

Par exemple, si vous souhaitez effectuer une requête sur Field1.Field2.Field3
etField4.Field2.Field3, vous devez créer deux constructeurs. Field1et Field4
peuvent tous deux être requis car ils sont définis dans deux constructeurs distincts.

Java

// Create a list for Field1.Field2.Field3 queries
List<ConstructorPart> field123ConstructorPartList = new ArrayList<>();
field123ConstructorPartList.add(field1ConstructorPart);
field123ConstructorPartList.add(field2ConstructorPart);
field123ConstructorPartList.add(field3ConstructorPart);
Constructor field123Constructor = Constructor.builder()
 .parts(field123ConstructorPartList)
 .build();
// Create a list for Field4.Field2.Field1 queries
List<ConstructorPart> field421ConstructorPartList = new ArrayList<>();
field421ConstructorPartList.add(field4ConstructorPart);
field421ConstructorPartList.add(field2ConstructorPart);
field421ConstructorPartList.add(field1ConstructorPart);
Constructor field421Constructor = Constructor.builder()
 .parts(field421ConstructorPartList)
 .build();

C# / .NET

// Create a list for Field1.Field2.Field3 queries
 var field123ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field1ConstructorPart,
 field2ConstructorPart, field3ConstructorPart }
};
// Create a list for Field4.Field2.Field1 queries
var field421ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field4ConstructorPart,
 field2ConstructorPart, field1ConstructorPart }

Configuration de balises composées 167

AWS SDK de chiffrement de base de données Guide du développeur

};

Rust

// Create a list for field1.field2.field3 queries
let field1_field2_field3_constructor = Constructor::builder()
 .parts(vec![
 field1_constructor_part,
 field2_constroctor_part.clone(),
 field3_constructor_part,
])
 .build()?;

// Create a list for field4.field2.field1 queries
let field4_field2_field1_constructor = Constructor::builder()
 .parts(vec![
 field4_constructor_part,
 field2_constroctor_part.clone(),
 field1_constructor_part,
])
 .build()?;

3. Créez une liste de constructeurs qui inclut tous les constructeurs que vous avez créés à
l'étape 2.

Java

List<Constructor> constructorList = new ArrayList<>();
constructorList.add(field123Constructor)
constructorList.add(field421Constructor)

C# / .NET

var constructorList = new List<Constructor>
{
 field123Constructor,
 field421Constructor
};

Rust

let constructor_list = vec![

Configuration de balises composées 168

AWS SDK de chiffrement de base de données Guide du développeur

 field1_field2_field3_constructor,
 field4_field2_field1_constructor,
];

4. Spécifiez le constructorList moment où vous créez votre balise composée.

Exemples de configuration

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Les exemples suivants montrent comment configurer des balises standard et composées. Les
configurations suivantes ne fournissent pas de longueur de balise. Pour obtenir de l'aide pour
déterminer la longueur de balise adaptée à votre configuration, voir Choisir une longueur de balise.

Pour voir des exemples de code complets qui montrent comment configurer et utiliser des balises,
consultez les exemples de chiffrement consultables Java, .NET et Rust dans le référentiel aws-
database-encryption-sdk -dynamodb sur. GitHub

Rubriques

• Balises standard

• Balises composées

Balises standard

Si vous souhaitez interroger le inspector_id_last4 champ pour obtenir des correspondances
exactes, créez une balise standard en utilisant la configuration suivante.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("inspector_id_last4")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(exampleStandardBeacon);

Exemples de configuration 169

https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/

AWS SDK de chiffrement de base de données Guide du développeur

C# / .NET

var standardBeaconList = new List<StandardBeacon>>);
StandardBeacon exampleStandardBeacon = new StandardBeacon
 {
 Name = "inspector_id_last4",
 Length = 10
 };
standardBeaconList.Add(exampleStandardBeacon);

Rust

let last4_beacon = StandardBeacon::builder()
 .name("inspector_id_last4")
 .length(10)
 .build()?;

let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;

let standard_beacon_list = vec![last4_beacon, unit_beacon];

Balises composées

Si vous souhaitez interroger la UnitInspection base de données sur inspector_id_last4
etinspector_id_last4.unit, créez une balise composée avec la configuration suivante. Cette
balise composée ne nécessite que des parties cryptées.

Java

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
List<StandardBeacon> standardBeaconList = new ArrayList<>);
StandardBeacon inspectorBeacon = StandardBeacon.builder()
 .name("inspector_id_last4")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(inspectorBeacon);

StandardBeacon unitBeacon = StandardBeacon.builder()
 .name("unit")
 .length(beaconLengthInBits)

Exemples de configuration 170

AWS SDK de chiffrement de base de données Guide du développeur

 .build();
standardBeaconList.add(unitBeacon);

// 2. Define the encrypted parts.
List<EncryptedPart> encryptedPartList = new ArrayList<>);

// Each encrypted part needs a name and prefix
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
EncryptedPart encryptedPartInspector = EncryptedPart.builder()
 .name("inspector_id_last4")
 .prefix("I-")
 .build();
encryptedPartList.add(encryptedPartInspector);

EncryptedPart encryptedPartUnit = EncryptedPart.builder()
 .name("unit")
 .prefix("U-")
 .build();
encryptedPartList.add(encryptedPartUnit);

// 3. Create the compound beacon.
// This compound beacon only requires a name, split character,
// and list of encrypted parts
CompoundBeacon inspectorUnitBeacon = CompoundBeacon.builder()
 .name("inspectorUnitBeacon")
 .split(".")
 .sensitive(encryptedPartList)
 .build();

C# / .NET

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
StandardBeacon inspectorBeacon = new StandardBeacon
 {
 Name = "inspector_id_last4",
 Length = 10
 };
standardBeaconList.Add(inspectorBeacon);
StandardBeacon unitBeacon = new StandardBeacon
 {

Exemples de configuration 171

AWS SDK de chiffrement de base de données Guide du développeur

 Name = "unit",
 Length = 30
 };
standardBeaconList.Add(unitBeacon);

// 2. Define the encrypted parts.
var last4EncryptedPart = new EncryptedPart

// Each encrypted part needs a name and prefix
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
var last4EncryptedPart = new EncryptedPart
 {
 Name = "inspector_id_last4",
 Prefix = "I-"
 };
encryptedPartList.Add(last4EncryptedPart);

var unitEncryptedPart = new EncryptedPart
 {
 Name = "unit",
 Prefix = "U-"
 };
encryptedPartList.Add(unitEncryptedPart);

// 3. Create the compound beacon.
// This compound beacon only requires a name, split character,
// and list of encrypted parts
var compoundBeaconList = new List<CompoundBeacon>>);
var inspectorCompoundBeacon = new CompoundBeacon
 {
 Name = "inspector_id_last4",
 Split = ".",
 Encrypted = encryptedPartList
 };
compoundBeaconList.Add(inspectorCompoundBeacon);

Rust

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
let last4_beacon = StandardBeacon::builder()

Exemples de configuration 172

AWS SDK de chiffrement de base de données Guide du développeur

 .name("inspector_id_last4")
 .length(10)
 .build()?;

let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;

let standard_beacon_list = vec![last4_beacon, unit_beacon];

// 2. Define the encrypted parts.
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
let encrypted_parts_list = vec![
 EncryptedPart::builder()
 .name("inspector_id_last4")
 .prefix("I-")
 .build()?,
 EncryptedPart::builder().name("unit").prefix("U-").build()?,
];

// 3. Create the compound beacon
// This compound beacon only requires a name, split character,
// and list of encrypted parts
let compound_beacon_list = vec![CompoundBeacon::builder()
 .name("last4UnitCompound")
 .split(".")
 .encrypted(encrypted_parts_list)
 .build()?];

Utilisation de balises

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Les balises vous permettent de rechercher des enregistrements cryptés sans déchiffrer l'intégralité
de la base de données interrogée. Les balises sont conçues pour être implémentées dans de

Utilisation de balises 173

AWS SDK de chiffrement de base de données Guide du développeur

nouvelles bases de données non peuplées. Toute balise configurée dans une base de données
existante ne mappera que les nouveaux enregistrements écrits dans la base de données. Les
balises sont calculées à partir de la valeur en texte brut d'un champ. Une fois le champ crypté, la
balise ne peut plus cartographier les données existantes. Une fois que vous avez écrit de nouveaux
enregistrements avec une balise, vous ne pouvez pas mettre à jour la configuration de la balise.
Cependant, vous pouvez ajouter de nouvelles balises pour les nouveaux champs que vous ajoutez à
votre enregistrement.

Après avoir configuré vos balises, vous devez suivre les étapes suivantes avant de commencer à
remplir votre base de données et à exécuter des requêtes sur vos balises.

1. Création d'un porte-clés AWS KMS hiérarchique

Pour utiliser le chiffrement consultable, vous devez utiliser le trousseau de clés AWS KMS
hiérarchique pour générer, chiffrer et déchiffrer les clés de données utilisées pour protéger vos
enregistrements.

Après avoir configuré vos balises, assemblez les prérequis relatifs au jeu de clés hiérarchique et
créez votre trousseau de clés hiérarchique.

Pour plus de détails sur les raisons pour lesquelles le trousseau de clés hiérarchique est requis,
voir Utilisation du trousseau de clés hiérarchique pour le chiffrement consultable.

2.

Définissez la version de la balise

Spécifiez votre keyStorekeySource, une liste de toutes les balises standard que vous avez
configurées, une liste de toutes les balises composées que vous avez configurées, une liste de
parties cryptées, une liste de parties signées et une version de balise. Vous devez spécifier 1 la
version de la balise. Pour obtenir des conseils sur la définition de votrekeySource, voirDéfinition
de la source clé de votre balise.

L'exemple Java suivant définit la version de balise pour une base de données à locataire
unique. Pour obtenir de l'aide sur la définition de la version de balise pour une base de
données mutualisée, consultez la section Chiffrement consultable pour les bases de données
mutualisées.

Java

 List<BeaconVersion> beaconVersions = new ArrayList<>();

Utilisation de balises 174

AWS SDK de chiffrement de base de données Guide du développeur

beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .encryptedParts(encryptedPartsList)
 .signedParts(signedPartsList)
 .version(1) // MUST be 1
 .keyStore(keyStore)
 .keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branchKeyId)
 .cacheTTL(6000)
 .build())
 .build())
 .build()
);

C# / .NET

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 EncryptedParts = encryptedPartsList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = branchKeyStoreName,
 KeySource = new BeaconKeySource
 {
 Single = new SingleKeyStore
 {
 KeyId = branch-key-id,
 CacheTTL = 6000
 }
 }
 }
};

Rust

let beacon_version = BeaconVersion::builder()

Utilisation de balises 175

AWS SDK de chiffrement de base de données Guide du développeur

 .standard_beacons(standard_beacon_list)
 .compound_beacons(compound_beacon_list)
 .version(1) // MUST be 1
 .key_store(key_store.clone())
 .key_source(BeaconKeySource::Single(
 SingleKeyStore::builder()
 // `keyId` references a beacon key.
 // For every branch key we create in the keystore,
 // we also create a beacon key.
 // This beacon key is not the same as the branch key,
 // but is created with the same ID as the branch key.
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .build()?,
))
 .build()?;
let beacon_versions = vec![beacon_version];

3. Configuration des index secondaires

Après avoir configuré vos balises, vous devez configurer un index secondaire qui reflète chaque
balise avant de pouvoir effectuer une recherche dans les champs chiffrés. Pour de plus amples
informations, veuillez consulter Configuration des index secondaires avec des balises.

4. Définissez vos actions cryptographiques

Tous les champs utilisés pour construire une balise standard doivent être
marquésENCRYPT_AND_SIGN. Tous les autres champs utilisés pour créer des balises doivent
être marqués SIGN_ONLY ouSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

5. Configuration d'un client SDK AWS de chiffrement de base de données

Pour configurer un client du SDK AWS de chiffrement de base de données qui protège les
éléments de table de votre table DynamoDB, consultez la section Bibliothèque de chiffrement
côté client Java pour DynamoDB.

Interrogation de balises

Le type de balise que vous configurez détermine le type de requêtes que vous pouvez effectuer.
Les balises standard utilisent des expressions de filtre pour effectuer des recherches d'égalité. Les
balises composées combinent des chaînes de texte en clair littérales et des balises standard pour

Interrogation de balises 176

AWS SDK de chiffrement de base de données Guide du développeur

effectuer des requêtes complexes. Lorsque vous interrogez des données chiffrées, vous recherchez
le nom de la balise.

Vous ne pouvez pas comparer les valeurs de deux balises standard, même si elles contiennent le
même texte brut sous-jacent. Les deux balises standard produiront deux balises HMAC différentes
pour les mêmes valeurs en texte brut. Par conséquent, les balises standard ne peuvent pas effectuer
les requêtes suivantes.

• beacon1 = beacon2

• beacon1 IN (beacon2)

• value IN (beacon1, beacon2, ...)

• CONTAINS(beacon1, beacon2)

Les balises composées peuvent effectuer les requêtes suivantes.

• BEGINS_WITH(a), où a reflète la valeur totale du champ par lequel commence la balise
composée assemblée. Vous ne pouvez pas utiliser l'BEGINS_WITHopérateur pour identifier
une valeur commençant par une sous-chaîne particulière. Cependant, vous pouvez utiliser
« BEGINS_WITH(S_) where » S_ reflète le préfixe d'une pièce par laquelle commence la balise
composée assemblée.

• CONTAINS(a), où a reflète la valeur totale d'un champ que contient la balise composée
assemblée. Vous ne pouvez pas utiliser l'CONTAINSopérateur pour identifier un enregistrement
contenant une sous-chaîne particulière ou une valeur au sein d'un ensemble.

Par exemple, vous ne pouvez pas exécuter une CONTAINS(path, "a" requête a qui reflète la
valeur d'un ensemble.

• Vous pouvez comparer les parties signées de balises composées. Lorsque vous comparez des
parties signées, vous pouvez éventuellement ajouter le préfixe d'une partie chiffrée à une ou
plusieurs parties signées, mais vous ne pouvez inclure la valeur d'un champ crypté dans aucune
requête.

Par exemple, vous pouvez comparer des pièces signées et effectuer une requête sur
signedField1 = signedField2 ouvalue IN (signedField1, signedField2, ...).

Vous pouvez également comparer les parties signées et le préfixe d'une pièce chiffrée en
effectuant une requête sursignedField1.A_ = signedField2.B_.

Interrogation de balises 177

AWS SDK de chiffrement de base de données Guide du développeur

• field BETWEEN a AND b, où a et b sont des pièces signées. Vous pouvez éventuellement
ajouter le préfixe d'une partie chiffrée à une ou plusieurs parties signées, mais vous ne pouvez
inclure la valeur d'un champ crypté dans aucune requête.

Vous devez inclure le préfixe pour chaque partie que vous incluez dans une requête sur une balise
composée. Par exemple, si vous avez créé une balise composéecompoundBeacon, à partir de deux
champs, encryptedField etsignedField, vous devez inclure les préfixes configurés pour ces
deux parties lorsque vous interrogez la balise.

compoundBeacon = E_encryptedFieldValue.S_signedFieldValue

Chiffrement consultable pour les bases de données mutualisées

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Pour implémenter le chiffrement consultable dans votre base de données, vous devez utiliser un
trousseau de clés AWS KMS hiérarchique. Le trousseau de clés AWS KMS hiérarchique génère,
chiffre et déchiffre les clés de données utilisées pour protéger vos dossiers. Il crée également la clé
de balise utilisée pour générer des balises. Lorsque vous utilisez le trousseau de clés AWS KMS
hiérarchique avec des bases de données à locataires multiples, il existe une clé de branche et une
clé de balise distinctes pour chaque locataire. Pour interroger des données chiffrées dans une base
de données mutualisée, vous devez identifier les éléments clés de balise utilisés pour générer la
balise que vous interrogez. Pour de plus amples informations, veuillez consulter the section called
“Utilisation du trousseau de clés hiérarchique pour un chiffrement consultable”.

Lorsque vous définissez la version de balise pour une base de données mutualisée, spécifiez
une liste de toutes les balises standard que vous avez configurées, une liste de toutes les balises
composées que vous avez configurées, une version de balise et un. keySource Vous devez définir
votre source de clé de balise comme une MultiKeyStore durée de vie du cache de clé de balise
local et inclure une taille de cache maximale pour le cache de clé de balise local. keyFieldName

Si vous avez configuré des balises signées, elles doivent être incluses dans
votrecompoundBeaconList. Les balises signées sont un type de balise composée qui indexe

Chiffrement consultable pour les bases de données mutualisées 178

AWS SDK de chiffrement de base de données Guide du développeur

et exécute des requêtes complexes sur des SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
champs SIGN_ONLY et des champs.

Java

List<BeaconVersion> beaconVersions = new ArrayList<>();
 beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .version(1) // MUST be 1
 .keyStore(branchKeyStoreName)
 .keySource(BeaconKeySource.builder()
 .multi(MultiKeyStore.builder()
 .keyFieldName(keyField)
 .cacheTTL(6000)
 .maxCacheSize(10)
 .build())
 .build())
 .build()
);

C# / .NET

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 EncryptedParts = encryptedPartsList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = branchKeyStoreName,
 KeySource = new BeaconKeySource
 {
 Multi = new MultiKeyStore
 {
 KeyId = branch-key-id,
 CacheTTL = 6000,
 MaxCacheSize = 10
 }
 }

Chiffrement consultable pour les bases de données mutualisées 179

AWS SDK de chiffrement de base de données Guide du développeur

 }
};

Rust

let beacon_version = BeaconVersion::builder()
 .standard_beacons(standard_beacon_list)
 .compound_beacons(compound_beacon_list)
 .version(1) // MUST be 1
 .key_store(key_store.clone())
 .key_source(BeaconKeySource::Multi(
 MultiKeyStore::builder()
 // `keyId` references a beacon key.
 // For every branch key we create in the keystore,
 // we also create a beacon key.
 // This beacon key is not the same as the branch key,
 // but is created with the same ID as the branch key.
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .max_cache_size(10)
 .build()?,
))
 .build()?;
let beacon_versions = vec![beacon_version];

keyFieldName

keyFieldNameDéfinit le nom du champ qui stocke la clé branch-key-id associée à la balise
utilisée pour générer des balises pour un locataire donné.

Lorsque vous écrivez de nouveaux enregistrements dans votre base de données, la clé branch-
key-id identifiant la clé de balise utilisée pour générer des balises pour cet enregistrement est
stockée dans ce champ.

Par défaut, il keyField s'agit d'un champ conceptuel qui n'est pas explicitement stocké dans
votre base de données. Le SDK AWS de chiffrement de base de données identifie la clé branch-
key-id de données chiffrée contenue dans la description du matériel et stocke la valeur dans
le concept afin que vous keyField puissiez la référencer dans vos balises composées et
vos balises signées. Puisque la description du matériau est signée, le concept keyField est
considéré comme une partie signée.

Chiffrement consultable pour les bases de données mutualisées 180

AWS SDK de chiffrement de base de données Guide du développeur

Vous pouvez également inclure le keyField dans vos actions cryptographiques sous forme
de SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT champ SIGN_ONLY ou pour le stocker
explicitement dans votre base de données. Dans ce cas, vous devez l'inclure manuellement
keyField chaque fois que vous écrivez un enregistrement branch-key-id dans votre base de
données.

Interrogation de balises dans une base de données mutualisée

Pour interroger une balise, vous devez l'inclure keyField dans votre requête afin d'identifier les
éléments clés de balise appropriés nécessaires pour recalculer la balise. Vous devez spécifier
le code branch-key-id associé à la clé de balise utilisée pour générer les balises d'un
enregistrement. Vous ne pouvez pas spécifier le nom convivial qui identifie un locataire branch-
key-id dans le fournisseur d'ID de clé de succursale. Vous pouvez les inclure keyField dans vos
requêtes de différentes manières.

Balises composées

Que vous les stockiez explicitement ou non keyField dans vos dossiers, vous pouvez les
inclure keyField directement dans vos balises composées sous forme de pièce signée. La pièce
keyField signée doit être requise.

Par exemple, si vous souhaitez créer une balise composéecompoundBeacon, à partir de deux
champssignedField, encryptedField vous devez également l'inclure keyField sous forme
de pièce signée. Cela vous permet d'effectuer la requête suivante surcompoundBeacon.

compoundBeacon = E_encryptedFieldValue.S_signedFieldValue.K_branch-key-id

Balises signées

Le SDK AWS Database Encryption utilise des balises standard et composées pour fournir des
solutions de chiffrement consultables. Ces balises doivent inclure au moins un champ crypté.
Cependant, le SDK AWS Database Encryption prend également en charge les balises signées
qui peuvent être entièrement configurées à partir de texte brut SIGN_ONLY et de champs.
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Les balises signées peuvent être construites à partir d'une seule pièce. Que vous le stockiez
explicitement keyField dans vos dossiers ou non, vous pouvez créer une balise signée à partir
de celle-ci keyField et l'utiliser pour créer des requêtes composées combinant une requête sur

Interrogation de balises dans une base de données mutualisée 181

AWS SDK de chiffrement de base de données Guide du développeur

la balise keyField signée avec une requête sur l'une de vos autres balises. Par exemple, vous
pouvez exécuter la requête suivante.

keyField = K_branch-key-id AND compoundBeacon =
 E_encryptedFieldValue.S_signedFieldValue

Pour obtenir de l'aide sur la configuration des balises signées, voir Création de balises signées

Interrogez directement sur le keyField

Si vous l'avez spécifié keyField dans vos actions cryptographiques et que vous stockez
explicitement le champ dans votre enregistrement, vous pouvez créer une requête composée qui
combine une requête sur votre balise avec une requête sur lekeyField. Vous pouvez choisir
d'effectuer une requête directement sur le keyField si vous souhaitez interroger une balise
standard. Par exemple, vous pouvez exécuter la requête suivante.

keyField = branch-key-id AND standardBeacon = S_standardBeaconValue

Interrogation de balises dans une base de données mutualisée 182

AWS SDK de chiffrement de base de données Guide du développeur

AWS SDK de chiffrement de base de données pour
DynamoDB

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Le SDK AWS Database Encryption pour DynamoDB est une bibliothèque logicielle qui vous permet
d'inclure le chiffrement côté client dans votre conception Amazon DynamoDB. Le SDK AWS de
chiffrement de base de données pour DynamoDB fournit un chiffrement au niveau des attributs et
vous permet de spécifier les éléments à chiffrer et ceux à inclure dans les signatures afin de garantir
l'authenticité de vos données. Le chiffrement de vos données sensibles en transit et au repos permet
de garantir que vos données en texte brut ne sont pas accessibles à des tiers, y compris. AWS

Note

Le SDK AWS de chiffrement de base de données ne prend pas en charge partiQL.

Dans DynamoDB, une table est un ensemble d'éléments. Chaque élément est une collection
d'attributs. Chaque attribut a un nom et une valeur. Le SDK AWS de chiffrement de base de données
pour DynamoDB chiffre les valeurs des attributs. Puis, il calcule une signature sur les attributs.
Vous spécifiez les valeurs d'attribut à chiffrer et celles à inclure dans la signature lors des actions
cryptographiques.

Les rubriques de ce chapitre fournissent une vue d'ensemble du SDK de chiffrement de AWS base
de données pour DynamoDB, notamment les champs chiffrés, des conseils sur l'installation et la
configuration du client, ainsi que des exemples Java pour vous aider à démarrer.

Rubriques

• Chiffrement côté client et côté serveur

• Quels sont les champs chiffrés et signés ?

• Chiffrement consultable dans DynamoDB

• Mettre à jour votre modèle de données

183

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.TablesItemsAttributes

AWS SDK de chiffrement de base de données Guide du développeur

• AWS SDK de chiffrement de base de données pour DynamoDB, langages de programmation
disponibles

• Ancien client de chiffrement DynamoDB

Chiffrement côté client et côté serveur

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Le SDK AWS de chiffrement de base de données pour DynamoDB prend en charge le chiffrement
côté client, dans le cadre duquel vous cryptez les données de votre table avant de les envoyer à
votre base de données. DynamoDB fournit toutefois une fonctionnalité de chiffrement au repos côté
serveur qui chiffre de manière transparente votre table lorsqu'elle est conservée sur le disque et la
déchiffre lorsque vous accédez à la table.

Les outils que vous choisissez dépendent de la sensibilité de vos données et des exigences de
sécurité de votre application. Vous pouvez utiliser à la fois le SDK AWS de chiffrement de base de
données pour DynamoDB et le chiffrement au repos. Lorsque vous envoyez des éléments chiffrés et
signés à DynamoDB, DynamoDB ne les reconnaît pas comme étant protégés. Il détecte simplement
les éléments de table classiques avec ses valeurs d'attribut binaires.

Chiffrement côté serveur au repos

DynamoDB prend en charge le chiffrement au repos, une fonctionnalité de chiffrement côté serveur
dans laquelle DynamoDB chiffre de manière transparente vos tables pour vous lorsque celles-ci sont
conservées sur le disque, et les déchiffre lorsque vous accédez aux données des tables.

Lorsque vous utilisez un AWS SDK pour interagir avec DynamoDB, par défaut, vos données sont
chiffrées en transit via une connexion HTTPS, déchiffrées au point de terminaison DynamoDB, puis
rechiffrées avant d'être stockées dans DynamoDB.

• Chiffrement par défaut. DynamoDB chiffre et déchiffre de manière transparente toutes les tables
lorsqu'elles sont écrites. Aucune option ne permet d'activer ou de désactiver le chiffrement au
repos.

• DynamoDB crée et gère les clés cryptographiques.La clé unique de chaque table est protégée par
un code AWS KMS keyqui ne laisse jamais AWS Key Management Service(AWS KMS) non chiffré.

Chiffrement côté client et côté serveur 184

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK de chiffrement de base de données Guide du développeur

Par défaut, DynamoDB utilise une clé intégrée Clé détenue par AWSau service DynamoDB, mais
vous pouvez choisir Clé gérée par AWSune clé ou une clé gérée par le client dans votre compte
pour protéger certaines ou toutes vos tables.

• Toutes les données de la table sont cryptées sur le disque.Lorsqu'une table chiffrée est enregistrée
sur disque, DynamoDB chiffre toutes les données de la table, y compris la clé primaire et les index
secondaires locaux et globaux. Si votre table a une clé de tri, certaines clés de tri qui marquent les
limites de plage sont stockées en texte brut dans les métadonnées de la table.

• Les objets liés aux tables sont également chiffrés. Le chiffrement au repos protège les flux
DynamoDB, les tables globales et les sauvegardes chaque fois qu'ils sont écrits sur un support
durable.

• Vos éléments sont déchiffrés lorsque vous y accédez.Lorsque vous accédez à la table, DynamoDB
déchiffre la partie de la table qui inclut votre élément cible et vous renvoie l'élément en texte brut.

AWS SDK de chiffrement de base de données pour DynamoDB

Le chiffrement côté client end-to-end protège vos données, en transit et au repos, depuis leur source
jusqu'à leur stockage dans DynamoDB. Vos données en texte brut ne sont jamais exposées à
des tiers, y compris AWS. Vous pouvez utiliser le SDK AWS de chiffrement de base de données
pour DynamoDB avec les nouvelles tables DynamoDB, ou vous pouvez migrer vos tables Amazon
DynamoDB existantes vers la dernière version du SDK de chiffrement de base de données pour
DynamoDB. AWS

• Vos données sont protégées en transit et au repos. Il n'est jamais exposé à des tiers, y compris
AWS.

• Vous pouvez signer les éléments de vos tables. Vous pouvez demander au SDK AWS de
chiffrement de base de données pour DynamoDB de calculer une signature sur tout ou partie d'un
élément de table, y compris les attributs de clé primaire. Cette signature vous permet de détecter
les modifications non autorisées sur l'élément comme un tout, y compris l'ajout ou la suppression
d'attributs, ou le remplacement d'une valeur d'attribut par une autre.

• Vous déterminez comment vos données sont protégées en sélectionnant un trousseau de clés.
Votre trousseau de clés détermine les clés d'encapsulation qui protègent vos clés de données et,
en fin de compte, vos données. Utilisez les clés d'emballage les plus sûres et les plus pratiques
pour votre tâche.

• Le SDK AWS de chiffrement de base de données pour DynamoDB ne chiffre pas l'intégralité de la
table. Vous choisissez les attributs qui sont chiffrés dans vos articles. Le SDK AWS de chiffrement

Chiffrement côté client et côté serveur 185

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.SecondaryIndexes
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.SecondaryIndexes
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.SecondaryIndexes
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BackupRestore.html

AWS SDK de chiffrement de base de données Guide du développeur

de base de données pour DynamoDB ne chiffre pas un élément entier. Il ne chiffre pas les noms
d'attribut, ou les noms ou valeurs des attributs de clé primaire (clé de partition et clé de tri).

AWS Encryption SDK

Si vous chiffrez des données que vous stockez dans DynamoDB, nous vous recommandons AWS le
SDK de chiffrement de base de données pour DynamoDB.

Le kit AWS Encryption SDK est une bibliothèque de chiffrement côté serveur qui vous aide à chiffrer
et déchiffrer les données génériques. Même s'il peut protéger tout type de données, il n'est pas conçu
pour fonctionner avec des données structurées, comme les enregistrements de base de données.
Contrairement au SDK AWS de chiffrement de base de données pour DynamoDB, AWS Encryption
SDK il ne peut pas fournir de contrôle d'intégrité au niveau des éléments et il n'a aucune logique
permettant de reconnaître les attributs ou d'empêcher le chiffrement des clés primaires.

Si vous utilisez le AWS Encryption SDK pour chiffrer un élément de votre table, n'oubliez pas qu'il
n'est pas compatible avec le SDK de chiffrement de AWS base de données pour DynamoDB. Vous
ne pouvez pas chiffrer avec une bibliothèque et déchiffrer avec l'autre.

Quels sont les champs chiffrés et signés ?

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Le SDK AWS Database Encryption pour DynamoDB est une bibliothèque de chiffrement côté client
spécialement conçue pour les applications Amazon DynamoDB. Amazon DynamoDB stocke les
données dans des tables, qui sont un ensemble d'éléments. Chaque élément est une collection
d'attributs. Chaque attribut a un nom et une valeur. Le SDK AWS de chiffrement de base de données
pour DynamoDB chiffre les valeurs des attributs. Puis, il calcule une signature sur les attributs. Vous
pouvez spécifier les valeurs d'attribut à chiffrer et celles à inclure dans la signature.

Le chiffrement protège la confidentialité de la valeur d'attribut. La signature assure l'intégrité de
tous les attributs signés et de leurs relations entre eux, et fournit l'authentification. Elle vous permet
de détecter les modifications non autorisées sur l'élément comme un tout, y compris l'ajout ou la
suppression d'attributs, ou le remplacement d'une valeur chiffrée par une autre.

Quels sont les champs chiffrés et signés ? 186

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.TablesItemsAttributes

AWS SDK de chiffrement de base de données Guide du développeur

Dans un élément chiffré, certaines données restent en texte brut, notamment le nom de la table, tous
les noms d'attributs, les valeurs d'attribut que vous ne chiffrez pas, les noms et valeurs des attributs
de la clé primaire (clé de partition et clé de tri) et les types d'attributs. Ne stockez pas les données
sensibles dans ces champs.

Pour plus d'informations sur le fonctionnement du SDK AWS de chiffrement de base de données
pour DynamoDB, consultez. Fonctionnement du SDK AWS de chiffrement de base de données

Note

Toutes les mentions d'actions d'attributs dans les rubriques du SDK AWS de chiffrement de
base de données pour DynamoDB font référence aux actions cryptographiques.

Rubriques

• Chiffrement des valeurs d'attribut

• Signature de l'élément

Chiffrement des valeurs d'attribut

Le SDK AWS de chiffrement de base de données pour DynamoDB chiffre les valeurs (mais pas le
nom ou le type d'attribut) des attributs que vous spécifiez. Pour déterminer quelles sont les valeurs
d'attribut chiffrées, utilisez les actions d'attribut.

Par exemple, cet élément inclut les attributs example et test.

'example': 'data',
'test': 'test-value',
...

Si vous chiffrez l'attribut example, mais pas l'attribut test, les résultats se présentent comme suit.
La valeur d'attribut example chiffrée est une donnée binaire, et non une chaîne.

'example': Binary(b"'b\x933\x9a+s\xf1\xd6a\xc5\xd5\x1aZ\xed\xd6\xce\xe9X\xf0T\xcb\x9fY
\x9f\xf3\xc9C\x83\r\xbb\\"),
'test': 'test-value'
...

Chiffrement des valeurs d'attribut 187

AWS SDK de chiffrement de base de données Guide du développeur

Les attributs de clé primaire (clé de partition et clé de tri) de chaque élément doivent rester en texte
brut car DynamoDB les utilise pour rechercher l'élément dans le tableau. Ils doivent être signés, mais
pas chiffrés.

Le SDK AWS de chiffrement de base de données pour DynamoDB identifie les attributs de clé
primaire pour vous et garantit que leurs valeurs sont signées, mais pas chiffrées. Et, si vous identifiez
votre clé primaire, puis essayez de la chiffrer, le client lève une exception.

Le client enregistre la description du matériau dans un nouvel attribut (aws_dbe_head) qu'il ajoute à
l'article. La description du matériel décrit comment l'article a été crypté et signé. Le client utilise ces
informations pour vérifier et déchiffrer l'élément. Le champ qui contient la description du matériau
n'est pas crypté.

Signature de l'élément

Après avoir chiffré les valeurs d'attribut spécifiées, le SDK de chiffrement de AWS base de
données pour DynamoDB calcule les codes d'authentification des messages basés sur le
hachage (HMACs) et une signature numérique lors de la canonisation de la description du
matériel, du contexte de chiffrement et de chaque champ marqué, ou dans les actions d'attribut.
ENCRYPT_AND_SIGNSIGN_ONLYSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Les signatures
ECDSA sont activées par défaut, mais ne sont pas obligatoires. Le client enregistre les signatures
HMACs et dans un nouvel attribut (aws_dbe_foot) qu'il ajoute à l'élément.

Chiffrement consultable dans DynamoDB

Pour configurer vos tables Amazon DynamoDB pour le chiffrement consultable, vous devez utiliser
AWS KMS le trousseau de clés hiérarchique pour générer, chiffrer et déchiffrer les clés de données
utilisées pour protéger vos articles. Vous devez également inclure le SearchConfigdans la
configuration de chiffrement de votre table.

Note

Si vous utilisez la bibliothèque de chiffrement côté client Java pour DynamoDB, vous devez
utiliser le SDK de chiffrement de AWS base de données de bas niveau pour l'API DynamoDB
pour chiffrer, signer, vérifier et déchiffrer les éléments de votre table. Le client DynamoDB
amélioré et les DynamoDBItemEncryptor niveaux inférieurs ne prennent pas en charge le
chiffrement consultable.

Signature de l'élément 188

AWS SDK de chiffrement de base de données Guide du développeur

Rubriques

• Configuration des index secondaires avec des balises

• Tester les sorties des balises

Configuration des index secondaires avec des balises

Après avoir configuré vos balises, vous devez configurer un index secondaire qui reflète chaque
balise avant de pouvoir effectuer une recherche sur les attributs chiffrés.

Lorsque vous configurez une balise standard ou composée, le SDK AWS Database Encryption
ajoute le aws_dbe_b_ préfixe au nom de la balise afin que le serveur puisse facilement identifier les
balises. Par exemple, si vous nommez une balise composéecompoundBeacon, le nom complet de la
balise est en faitaws_dbe_b_compoundBeacon. Si vous souhaitez configurer des index secondaires
qui incluent une balise standard ou composée, vous devez inclure le aws_dbe_b_ préfixe lorsque
vous identifiez le nom de la balise.

Clés de partition et de tri

Vous ne pouvez pas chiffrer les valeurs des clés primaires. Vos clés de partition et de tri doivent
être signées. Les valeurs de votre clé primaire ne peuvent pas être une balise standard ou
composée.

Les valeurs de votre clé primaire doivent êtreSIGN_ONLY, sauf si vous spécifiez des
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributs, les attributs de partition et de tri
doivent également l'êtreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Les valeurs de vos clés primaires peuvent être des balises signées. Si vous avez configuré des
balises signées distinctes pour chacune de vos valeurs de clé primaire, vous devez spécifier le
nom d'attribut qui identifie la valeur de clé primaire comme le nom de balise signé. Toutefois, le
SDK AWS de chiffrement de base de données n'ajoute pas le aws_dbe_b_ préfixe aux balises
signées. Même si vous avez configuré des balises signées distinctes pour les valeurs de votre clé
primaire, il vous suffit de spécifier les noms d'attribut pour les valeurs de clé primaire lorsque vous
configurez un index secondaire.

Index locaux secondaires

La clé de tri d'un index secondaire local peut être une balise.

Si vous spécifiez une balise pour la clé de tri, le type doit être String. Si vous spécifiez une balise
standard ou composée pour la clé de tri, vous devez inclure le aws_dbe_b_ préfixe lorsque vous

Configuration des index secondaires avec des balises 189

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html

AWS SDK de chiffrement de base de données Guide du développeur

spécifiez le nom de la balise. Si vous spécifiez une balise signée, spécifiez le nom de la balise
sans aucun préfixe.

Index secondaires globaux

Les clés de partition et de tri d'un index secondaire global peuvent toutes deux être des balises.

Si vous spécifiez une balise pour la partition ou la clé de tri, le type doit être String. Si vous
spécifiez une balise standard ou composée pour la clé de tri, vous devez inclure le aws_dbe_b_
préfixe lorsque vous spécifiez le nom de la balise. Si vous spécifiez une balise signée, spécifiez le
nom de la balise sans aucun préfixe.

Projections d'attribut

Une projection est l'ensemble d'attributs copié à partir d'une table dans un index secondaire. Les
clés de partition et de tri de la table sont toujours projetées dans l'index. Vous pouvez projeter
d'autres attributs en fonction des exigences de requête de votre application. DynamoDB propose
trois options différentes pour les projections d'attributs KEYS_ONLY :INCLUDE, et. ALL

Si vous utilisez la projection d'attributs INCLUDE pour effectuer une recherche sur une balise,
vous devez spécifier le nom de tous les attributs à partir desquels la balise est construite, ainsi
que le nom de la balise avec le aws_dbe_b_ préfixe. Par exemple, si vous avez configuré une
balise composée compoundBeaconfield1, à partir de field2field3, et, vous devez spécifier
aws_dbe_b_compoundBeaconfield1,field2, et field3 dans la projection.

Un index secondaire global ne peut utiliser que les attributs explicitement spécifiés dans la
projection, mais un index secondaire local peut utiliser n'importe quel attribut.

Tester les sorties des balises

Si vous avez configuré des balises composées ou créé vos balises à l'aide de champs virtuels, nous
vous recommandons de vérifier que ces balises produisent le résultat attendu avant de remplir votre
table DynamoDB.

Le SDK AWS Database Encryption fournit le DynamoDbEncryptionTransforms service qui vous
aide à résoudre les problèmes liés aux champs virtuels et aux sorties de balises composées.

Tester des champs virtuels

L'extrait suivant crée des éléments de test, définit le DynamoDbEncryptionTransforms service
avec la configuration de chiffrement des tables DynamoDB et montre comment vérifier que le champ
virtuel produit le résultat attendu. ResolveAttributes

Tester les sorties des balises 190

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html#GSI.Projections

AWS SDK de chiffrement de base de données Guide du développeur

Java

Voir l'exemple de code complet : VirtualBeaconSearchableEncryptionExample.java

// Create test items
final PutItemRequest itemWithHasTestResultPutRequest = PutItemRequest.builder()
 .tableName(ddbTableName)
 .item(itemWithHasTestResult)
 .build();

final PutItemResponse itemWithHasTestResultPutResponse =
 ddb.putItem(itemWithHasTestResultPutRequest);

final PutItemRequest itemWithNoHasTestResultPutRequest = PutItemRequest.builder()
 .tableName(ddbTableName)
 .item(itemWithNoHasTestResult)
 .build();

final PutItemResponse itemWithNoHasTestResultPutResponse =
 ddb.putItem(itemWithNoHasTestResultPutRequest);

// Define the DynamoDbEncryptionTransforms service
final DynamoDbEncryptionTransforms trans = DynamoDbEncryptionTransforms.builder()
 .DynamoDbTablesEncryptionConfig(encryptionConfig).build();

// Verify configuration
final ResolveAttributesInput resolveInput = ResolveAttributesInput.builder()
 .TableName(ddbTableName)
 .Item(itemWithHasTestResult)
 .Version(1)
 .build();
final ResolveAttributesOutput resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that VirtualFields has the expected value
Map<String, String> vf = new HashMap<>();
vf.put("stateAndHasTestResult", "CAt");
assert resolveOutput.VirtualFields().equals(vf);

C# / .NET

Consultez l'exemple de code complet : VirtualBeaconSearchableEncryptionExample.cs.

 // Create item with hasTestResult=true
var itemWithHasTestResult = new Dictionary<String, AttributeValue>

Tester les sorties des balises 191

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/VirtualBeaconSearchableEncryptionExample.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/VirtualBeaconSearchableEncryptionExample.cs

AWS SDK de chiffrement de base de données Guide du développeur

{
 ["customer_id"] = new AttributeValue("ABC-123"),
 ["create_time"] = new AttributeValue { N = "1681495205" },
 ["state"] = new AttributeValue("CA"),
 ["hasTestResult"] = new AttributeValue { BOOL = true }
};

// Create item with hasTestResult=false
var itemWithNoHasTestResult = new Dictionary<String, AttributeValue>
{
 ["customer_id"] = new AttributeValue("DEF-456"),
 ["create_time"] = new AttributeValue { N = "1681495205" },
 ["state"] = new AttributeValue("CA"),
 ["hasTestResult"] = new AttributeValue { BOOL = false }
};

// Define the DynamoDbEncryptionTransforms service
var trans = new DynamoDbEncryptionTransforms(encryptionConfig);

// Verify configuration
var resolveInput = new ResolveAttributesInput
{
 TableName = ddbTableName,
 Item = itemWithHasTestResult,
 Version = 1
};
var resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that VirtualFields has the expected value
Debug.Assert(resolveOutput.VirtualFields.Count == 1);
Debug.Assert(resolveOutput.VirtualFields["stateAndHasTestResult"] == "CAt");

Rust

Consultez l'exemple de code complet : virtual_beacon_searchable_encryption.rs.

// Create item with hasTestResult=true
let item_with_has_test_result = HashMap::from([
 (
 "customer_id".to_string(),
 AttributeValue::S("ABC-123".to_string()),
),
 (
 "create_time".to_string(),

Tester les sorties des balises 192

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/virtual_beacon_searchable_encryption.rs

AWS SDK de chiffrement de base de données Guide du développeur

 AttributeValue::N("1681495205".to_string()),
),
 ("state".to_string(), AttributeValue::S("CA".to_string())),
 ("hasTestResult".to_string(), AttributeValue::Bool(true)),
]);

// Create item with hasTestResult=false
let item_with_no_has_test_result = HashMap::from([
 (
 "customer_id".to_string(),
 AttributeValue::S("DEF-456".to_string()),
),
 (
 "create_time".to_string(),
 AttributeValue::N("1681495205".to_string()),
),
 ("state".to_string(), AttributeValue::S("CA".to_string())),
 ("hasTestResult".to_string(), AttributeValue::Bool(false)),
]);

// Define the transform service
let trans = transform_client::Client::from_conf(encryption_config.clone())?;

// Verify the configuration
let resolve_output = trans
 .resolve_attributes()
 .table_name(ddb_table_name)
 .item(item_with_has_test_result.clone())
 .version(1)
 .send()
 .await?;

// Verify that VirtualFields has the expected value
let virtual_fields = resolve_output.virtual_fields.unwrap();
assert_eq!(virtual_fields.len(), 1);
assert_eq!(virtual_fields["stateAndHasTestResult"], "CAt");

Tester des balises composées

L'extrait suivant crée un élément de test, définit le DynamoDbEncryptionTransforms service
avec la configuration de chiffrement des tables DynamoDB et montre comment vérifier que la balise
composée produit le résultat attendu. ResolveAttributes

Tester les sorties des balises 193

AWS SDK de chiffrement de base de données Guide du développeur

Java

Voir l'exemple de code complet : CompoundBeaconSearchableEncryptionExample.java

// Create an item with both attributes used in the compound beacon.
final HashMap<String, AttributeValue> item = new HashMap<>();
item.put("work_id", AttributeValue.builder().s("9ce39272-8068-4efd-a211-
cd162ad65d4c").build());
item.put("inspection_date", AttributeValue.builder().s("2023-06-13").build());
item.put("inspector_id_last4", AttributeValue.builder().s("5678").build());
item.put("unit", AttributeValue.builder().s("011899988199").build());

// Define the DynamoDbEncryptionTransforms service
final DynamoDbEncryptionTransforms trans = DynamoDbEncryptionTransforms.builder()
 .DynamoDbTablesEncryptionConfig(encryptionConfig).build();

// Verify configuration
final ResolveAttributesInput resolveInput = ResolveAttributesInput.builder()
 .TableName(ddbTableName)
 .Item(item)
 .Version(1)
 .build();

final ResolveAttributesOutput resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that CompoundBeacons has the expected value
Map<String, String> cbs = new HashMap<>();
cbs.put("last4UnitCompound", "L-5678.U-011899988199");
assert resolveOutput.CompoundBeacons().equals(cbs);
// Note : the compound beacon actually stored in the table is not
 "L-5678.U-011899988199"
// but rather something like "L-abc.U-123", as both parts are EncryptedParts
// and therefore the text is replaced by the associated beacon

C# / .NET

Voir l'exemple de code complet : CompoundBeaconSearchableEncryptionExample.cs

// Create an item with both attributes used in the compound beacon
var item = new Dictionary<String, AttributeValue>
{
 ["work_id"] = new AttributeValue("9ce39272-8068-4efd-a211-cd162ad65d4c"),
 ["inspection_date"] = new AttributeValue("2023-06-13"),

Tester les sorties des balises 194

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/CompoundBeaconSearchableEncryptionExample.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/CompoundBeaconSearchableEncryptionExample.cs

AWS SDK de chiffrement de base de données Guide du développeur

 ["inspector_id_last4"] = new AttributeValue("5678"),
 ["unit"] = new AttributeValue("011899988199")
};

// Define the DynamoDbEncryptionTransforms service
var trans = new DynamoDbEncryptionTransforms(encryptionConfig);

// Verify configuration
var resolveInput = new ResolveAttributesInput
{
 TableName = ddbTableName,
 Item = item,
 Version = 1
};
var resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that CompoundBeacons has the expected value
Debug.Assert(resolveOutput.CompoundBeacons.Count == 1);
Debug.Assert(resolveOutput.CompoundBeacons["last4UnitCompound"] ==
 "L-5678.U-011899988199");
// Note : the compound beacon actually stored in the table is not
 "L-5678.U-011899988199"
// but rather something like "L-abc.U-123", as both parts are EncryptedParts
// and therefore the text is replaced by the associated beacon

Rust

Voir l'exemple de code complet : compound_beacon_searchable_encryption.rs

// Create an item with both attributes used in the compound beacon
let item = HashMap::from([
 (
 "work_id".to_string(),
 AttributeValue::S("9ce39272-8068-4efd-a211-cd162ad65d4c".to_string()),
),
 (
 "inspection_date".to_string(),
 AttributeValue::S("2023-06-13".to_string()),
),
 (
 "inspector_id_last4".to_string(),
 AttributeValue::S("5678".to_string()),
),

Tester les sorties des balises 195

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/compound_beacon_searchable_encryption.rs

AWS SDK de chiffrement de base de données Guide du développeur

 (
 "unit".to_string(),
 AttributeValue::S("011899988199".to_string()),
),
]);

// Define the transforms service
let trans = transform_client::Client::from_conf(encryption_config.clone())?;

// Verify configuration
let resolve_output = trans
 .resolve_attributes()
 .table_name(ddb_table_name)
 .item(item.clone())
 .version(1)
 .send()
 .await?;

// Verify that CompoundBeacons has the expected value
Dlet compound_beacons = resolve_output.compound_beacons.unwrap();
assert_eq!(compound_beacons.len(), 1);
assert_eq!(
 compound_beacons["last4UnitCompound"],
 "L-5678.U-011899988199"
);
// but rather something like "L-abc.U-123", as both parts are EncryptedParts
// and therefore the text is replaced by the associated beacon

Mettre à jour votre modèle de données

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Lorsque vous configurez le SDK AWS de chiffrement de base de données pour DynamoDB, vous
fournissez des actions attributaires. Lors du chiffrement, le SDK AWS de chiffrement de base de
données utilise les actions d'attributs pour identifier les attributs à chiffrer et à signer, les attributs
à signer (mais pas à chiffrer) et ceux à ignorer. Vous définissez également les attributs non signés
autorisés pour indiquer explicitement au client quels attributs sont exclus des signatures. Lors du

Mettre à jour votre modèle de données 196

AWS SDK de chiffrement de base de données Guide du développeur

déchiffrement, le SDK AWS de chiffrement de base de données utilise les attributs non signés
autorisés que vous avez définis pour identifier les attributs qui ne sont pas inclus dans les signatures.
Les actions d'attribut ne sont pas enregistrées dans l'élément chiffré et le SDK AWS de chiffrement
de base de données ne met pas automatiquement à jour vos actions d'attribut.

Choisissez soigneusement vos actions d'attribut. En cas de doute, utilisez Chiffrer et signer. Une fois
que vous avez utilisé le SDK AWS de chiffrement de base de données pour protéger vos éléments,
vous ne pouvez pas modifier un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribut ou
un attribut existant ENCRYPT_AND_SIGN enDO_NOTHING. SIGN_ONLY Cependant, vous pouvez
effectuer les modifications suivantes en toute sécurité.

• Ajouter ENCRYPT_AND_SIGN de SIGN_ONLY nouveaux
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributs et

• Supprimer les attributs existants

• Remplacer un ENCRYPT_AND_SIGN attribut existant par SIGN_ONLY ou
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

• Modifier un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribut SIGN_ONLY ou un existant
en ENCRYPT_AND_SIGN

• Ajouter un nouvel DO_NOTHING attribut

• Modifier un SIGN_ONLY attribut existant en SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

• Modifier un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribut existant en SIGN_ONLY

Considérations relatives au chiffrement consultable

Avant de mettre à jour votre modèle de données, réfléchissez bien à l'impact que vos mises à jour
peuvent avoir sur les balises que vous avez créées à partir des attributs. Une fois que vous avez écrit
de nouveaux enregistrements avec une balise, vous ne pouvez pas mettre à jour la configuration de
la balise. Vous ne pouvez pas mettre à jour les actions d'attribut associées aux attributs que vous
avez utilisés pour créer des balises. Si vous supprimez un attribut existant et sa balise associée, vous
ne pourrez pas interroger les enregistrements existants à l'aide de cette balise. Vous pouvez créer de
nouvelles balises pour les nouveaux champs que vous ajoutez à votre enregistrement, mais vous ne
pouvez pas mettre à jour les balises existantes pour inclure le nouveau champ.

Considérations relatives aux SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributs

Par défaut, les clés de partition et de tri sont les seuls attributs inclus dans le contexte
de chiffrement. Vous pouvez envisager de définir des champs supplémentaires

Mettre à jour votre modèle de données 197

AWS SDK de chiffrement de base de données Guide du développeur

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT afin que le fournisseur d'ID de clé
de branche pour votre jeu de clés AWS KMS hiérarchique puisse identifier la clé de
branche requise pour le déchiffrement à partir du contexte de chiffrement. Pour plus
d'informations, consultez le fournisseur d'ID de clé de branche. Si vous spécifiez des
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributs, les attributs de partition et de tri doivent
également l'êtreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Note

Pour utiliser l'action SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographique,
vous devez utiliser la version 3.3 ou ultérieure du SDK AWS Database Encryption. Déployez
la nouvelle version sur tous les lecteurs avant de mettre à jour votre modèle de données pour
l'inclureSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Ajouter ENCRYPT_AND_SIGN de SIGN_ONLY nouveaux
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributs et

Pour ajouter un nouvel attribut ENCRYPT_AND_SIGNSIGN_ONLY, ou un nouvel
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribut, définissez-le dans vos actions d'attribut.

Vous ne pouvez pas supprimer un DO_NOTHING attribut existant et le réajouter en tant
qu'SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXTattribut ENCRYPT_AND_SIGNSIGN_ONLY, ou.

Utilisation d'une classe de données annotée

Si vous avez défini vos actions d'attribut avec unTableSchema, ajoutez le nouvel attribut à
votre classe de données annotée. Si vous ne spécifiez aucune annotation d'action d'attribut pour
le nouvel attribut, le client chiffrera et signera le nouvel attribut par défaut (sauf si l'attribut fait
partie de la clé primaire). Si vous souhaitez uniquement signer le nouvel attribut, vous devez
l'ajouter avec l'@DynamoDBEncryptionSignAndIncludeInEncryptionContextannotation
@DynamoDBEncryptionSignOnly or.

Utilisation d'un modèle d'objet

Si vous avez défini manuellement vos actions d'attribut, ajoutez le nouvel attribut aux
actions d'attribut de votre modèle d'objet et spécifiez ENCRYPT_AND_SIGNSIGN_ONLY, ou
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT en tant qu'action d'attribut.

Ajouter ENCRYPT_AND_SIGN de SIGN_ONLY nouveaux
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributs et

198

AWS SDK de chiffrement de base de données Guide du développeur

Supprimer les attributs existants

Si vous décidez que vous n'avez plus besoin d'un attribut, vous pouvez arrêter d'écrire des données
dans cet attribut ou vous pouvez le supprimer officiellement de vos actions d'attribut. Lorsque vous
arrêtez d'écrire de nouvelles données dans un attribut, celui-ci apparaît toujours dans vos actions
d'attribut. Cela peut être utile si vous devez recommencer à utiliser l'attribut à l'avenir. La suppression
officielle de l'attribut de vos actions d'attribut ne le supprime pas de votre ensemble de données.
Votre jeu de données contiendra toujours des éléments qui incluent cet attribut.

Pour supprimer officiellement un attribut existantENCRYPT_AND_SIGN,
SIGN_ONLYSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, ou un DO_NOTHING attribut, mettez
à jour vos actions d'attribut.

Si vous supprimez un DO_NOTHING attribut, vous ne devez pas le supprimer de vos attributs non
signés autorisés. Même si vous n'écrivez plus de nouvelles valeurs dans cet attribut, le client doit
tout de même savoir que l'attribut n'est pas signé pour pouvoir lire les éléments existants qui le
contiennent.

Utilisation d'une classe de données annotée

Si vous avez défini vos actions d'attribut avec unTableSchema, supprimez l'attribut de votre classe
de données annotée.

Utilisation d'un modèle d'objet

Si vous avez défini manuellement vos actions d'attribut, supprimez l'attribut des actions d'attribut de
votre modèle d'objet.

Remplacer un ENCRYPT_AND_SIGN attribut existant par SIGN_ONLY ou
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Pour remplacer un ENCRYPT_AND_SIGN attribut existant par SIGN_ONLY
ouSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, vous devez mettre à jour vos actions
d'attribut. Une fois la mise à jour déployée, le client sera en mesure de vérifier et de déchiffrer les
valeurs existantes écrites dans l'attribut, mais il ne signera que les nouvelles valeurs écrites dans
l'attribut.

Supprimer les attributs existants 199

AWS SDK de chiffrement de base de données Guide du développeur

Note

Réfléchissez bien à vos exigences de sécurité avant de remplacer un ENCRYPT_AND_SIGN
attribut existant par SIGN_ONLY ouSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Tout
attribut susceptible de stocker des données sensibles doit être chiffré.

Utilisation d'une classe de données annotée

Si vous avez défini vos actions d'attribut avec unTableSchema, mettez à jour l'attribut existant
pour inclure l'@DynamoDBEncryptionSignAndIncludeInEncryptionContextannotation
@DynamoDBEncryptionSignOnly ou dans votre classe de données annotée.

Utilisation d'un modèle d'objet

Si vous avez défini manuellement vos actions d'attribut, mettez à jour l'action
d'attribut associée à l'attribut existant depuis SIGN_ONLY ou ENCRYPT_AND_SIGN
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT vers votre modèle d'objet.

Modifier un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribut
SIGN_ONLY ou un existant en ENCRYPT_AND_SIGN

Pour remplacer un attribut existant SIGN_ONLY ou par un
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributENCRYPT_AND_SIGN, vous devez mettre
à jour vos actions d'attribut. Une fois la mise à jour déployée, le client sera en mesure de vérifier les
valeurs existantes écrites dans l'attribut, puis de chiffrer et de signer les nouvelles valeurs écrites
dans l'attribut.

Utilisation d'une classe de données annotée

Si vous avez défini vos actions d'attribut avec unTableSchema, supprimez
l'@DynamoDBEncryptionSignAndIncludeInEncryptionContextannotation
@DynamoDBEncryptionSignOnly ou de l'attribut existant.

Utilisation d'un modèle d'objet

Si vous avez défini manuellement vos actions d'attribut, mettez à jour l'action d'attribut associée
à l'attribut depuis SIGN_ONLY ou SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT vers
ENCRYPT_AND_SIGN dans votre modèle d'objet.

Modifier un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribut SIGN_ONLY ou un existant en
ENCRYPT_AND_SIGN

200

AWS SDK de chiffrement de base de données Guide du développeur

Ajouter un nouvel DO_NOTHING attribut

Pour réduire le risque d'erreur lors de l'ajout d'un nouvel DO_NOTHING attribut, nous vous
recommandons de spécifier un préfixe distinct lorsque vous nommez vos DO_NOTHING attributs, puis
d'utiliser ce préfixe pour définir les attributs non signés autorisés.

Vous ne pouvez pas supprimer un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribut ou
un attribut existant ENCRYPT_AND_SIGN de votre classe de données annotée, puis le réintégrer en
tant qu'DO_NOTHINGattribut. SIGN_ONLY Vous ne pouvez ajouter que des DO_NOTHING attributs
entièrement nouveaux.

Les étapes à suivre pour ajouter un nouvel DO_NOTHING attribut varient selon que vous avez défini
vos attributs non signés autorisés de manière explicite dans une liste ou à l'aide d'un préfixe.

Utilisation d'un préfixe d'attributs non signés autorisé

Si vous avez défini vos actions d'attribut avec unTableSchema, ajoutez le nouvel DO_NOTHING
attribut à votre classe de données annotée avec l'@DynamoDBEncryptionDoNothingannotation. Si
vous avez défini manuellement vos actions d'attribut, mettez-les à jour pour inclure le nouvel attribut.
Assurez-vous de configurer explicitement le nouvel attribut avec l'action d'DO_NOTHINGattribut. Vous
devez inclure le même préfixe distinct dans le nom du nouvel attribut.

Utilisation d'une liste d'attributs non signés autorisés

1. Ajoutez le nouvel DO_NOTHING attribut à votre liste d'attributs non signés autorisés et déployez
la liste mise à jour.

2. Déployez la modification depuis l'étape 1.

Vous ne pouvez pas passer à l'étape 3 tant que la modification ne s'est pas propagée à tous les
hôtes qui ont besoin de lire ces données.

3. Ajoutez le nouvel DO_NOTHING attribut à vos actions d'attribut.

a. Si vous avez défini vos actions d'attribut avec unTableSchema, ajoutez
le nouvel DO_NOTHING attribut à votre classe de données annotée avec
l'@DynamoDBEncryptionDoNothingannotation.

b. Si vous avez défini manuellement vos actions d'attribut, mettez-les à jour pour inclure le
nouvel attribut. Assurez-vous de configurer explicitement le nouvel attribut avec l'action
d'DO_NOTHINGattribut.

4. Déployez la modification depuis l'étape 3.

Ajouter un nouvel DO_NOTHING attribut 201

AWS SDK de chiffrement de base de données Guide du développeur

Modifier un SIGN_ONLY attribut existant en
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Pour remplacer un SIGN_ONLY attribut existant
parSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, vous devez mettre à jour vos actions
d'attribut. Une fois la mise à jour déployée, le client sera en mesure de vérifier les valeurs existantes
écrites dans l'attribut et continuera à signer les nouvelles valeurs écrites dans l'attribut. Les nouvelles
valeurs écrites dans l'attribut seront incluses dans le contexte de chiffrement.

Si vous spécifiez des SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributs, les attributs de
partition et de tri doivent également l'êtreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Utilisation d'une classe de données annotée

Si vous avez défini vos actions d'attribut avec unTableSchema, mettez à jour
l'action d'attribut associée à l'attribut de @DynamoDBEncryptionSignOnly
à@DynamoDBEncryptionSignAndIncludeInEncryptionContext.

Utilisation d'un modèle d'objet

Si vous avez défini manuellement vos actions d'attribut, mettez à jour l'action d'attribut associée à
l'attribut de SIGN_ONLY à SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT dans votre modèle
d'objet.

Modifier un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribut
existant en SIGN_ONLY

Pour remplacer un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribut existant
parSIGN_ONLY, vous devez mettre à jour vos actions d'attribut. Une fois la mise à jour déployée, le
client sera en mesure de vérifier les valeurs existantes écrites dans l'attribut et continuera à signer
les nouvelles valeurs écrites dans l'attribut. Les nouvelles valeurs écrites dans l'attribut ne seront pas
incluses dans le contexte de chiffrement.

Avant de remplacer un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribut existant
parSIGN_ONLY, réfléchissez bien à l'impact que vos mises à jour peuvent avoir sur les fonctionnalités
de votre fournisseur d'ID de clé de succursale.

Utilisation d'une classe de données annotée

Modifier un SIGN_ONLY attribut existant en SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 202

AWS SDK de chiffrement de base de données Guide du développeur

Si vous avez défini vos actions d'attribut avec unTableSchema, mettez à jour l'action d'attribut
associée à l'attribut de @DynamoDBEncryptionSignAndIncludeInEncryptionContext
à@DynamoDBEncryptionSignOnly.

Utilisation d'un modèle d'objet

Si vous avez défini manuellement vos actions d'attribut, mettez à jour l'action d'attribut associée à
l'attribut de SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT à SIGN_ONLY dans votre modèle
d'objet.

AWS SDK de chiffrement de base de données pour DynamoDB,
langages de programmation disponibles

Le SDK AWS de chiffrement de base de données pour DynamoDB est disponible pour les
langages de programmation suivants. Les bibliothèques spécifiques au langage varient, mais les
implémentations qui en résultent sont interopérables. Vous pouvez chiffrer avec une implémentation
de langage et déchiffrer avec une autre. L'interopérabilité peut être soumise à des contraintes de
langage. Si c'est le cas, ces contraintes sont décrites dans la rubrique relative à l'implémentation du
langage.

Rubriques

• Java

• .NET

• Rust

Java

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Cette rubrique explique comment installer et utiliser la version 3. x de la bibliothèque de chiffrement
côté client Java pour DynamoDB. Pour plus de détails sur la programmation avec le SDK AWS de
chiffrement de base de données pour DynamoDB, consultez les exemples Java dans aws-database-
encryption-sdk le référentiel -dynamodb sur. GitHub

Langages de programmation 203

https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples

AWS SDK de chiffrement de base de données Guide du développeur

Note

Les rubriques suivantes portent sur la version 3. x de la bibliothèque de chiffrement côté
client Java pour DynamoDB.
Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. Le SDK AWS Database Encryption continue de prendre en charge les anciennes
versions du client de chiffrement DynamoDB.

Rubriques

• Prérequis

• Installation

• Utilisation de la bibliothèque de chiffrement côté client Java pour DynamoDB

• Exemples Java

• Configurer une table DynamoDB existante pour utiliser AWS le SDK de chiffrement de base de
données pour DynamoDB

• Migrer vers la version 3.x de la bibliothèque de chiffrement côté client Java pour DynamoDB

Prérequis

Avant d'installer la version 3. x de la bibliothèque de chiffrement côté client Java pour DynamoDB,
assurez-vous de remplir les conditions préalables suivantes.

Environnement de développement Java

Vous aurez besoin de Java 8 ou version ultérieure. Sur le site web d'Oracle, consultez la page
Téléchargements Java SE, puis téléchargez et installez le kit Java SE Development (JDK).

Si vous utilisez le kit JDK Oracle, vous devez également télécharger et installer les fichiers Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy.

AWS SDK for Java 2.x

Le SDK AWS de chiffrement de base de données pour DynamoDB nécessite le module
DynamoDB Enhanced Client du. AWS SDK for Java 2.x Vous pouvez installer la totalité du kit
SDK ou le seul module.

Java 204

https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html

AWS SDK de chiffrement de base de données Guide du développeur

Pour plus d'informations sur la mise à jour de votre version du AWS SDK pour Java, voir Migration
de la version 1.x vers la version 2.x du. AWS SDK pour Java

AWS SDK pour Java Il est disponible via Apache Maven. Vous pouvez déclarer une dépendance
pour l'ensemble AWS SDK pour Java ou uniquement pour le dynamodb-enhanced module.

Installez le à l' AWS SDK pour Java aide d'Apache Maven

• Pour importer tout le AWS SDK pour Java en tant que dépendance, déclarez-le dans votre
fichier pom.xml.

• Pour créer une dépendance uniquement pour le module Amazon DynamoDB dans AWS SDK
pour Java le, suivez les instructions pour spécifier des modules particuliers. Réglez le groupId
to software.amazon.awssdk et le artifactID todynamodb-enhanced.

Note

Si vous utilisez le AWS KMS trousseau de clés ou le trousseau de clés AWS KMS
hiérarchique, vous devez également créer une dépendance pour le AWS KMS module.
Réglez le groupId to software.amazon.awssdk et le artifactID tokms.

Installation

Vous pouvez installer la version 3. x de la bibliothèque de chiffrement côté client Java pour
DynamoDB de la manière suivante.

Utilisation d'Apache Maven

Le client de chiffrement Amazon DynamoDB pour Java est disponible via Apache Maven avec la
définition de dépendance suivante.

<dependency>
 <groupId>software.amazon.cryptography</groupId>
 <artifactId>aws-database-encryption-sdk-dynamodb</artifactId>
 <version>version-number</version>
</dependency>

Java 205

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies
https://maven.apache.org/

AWS SDK de chiffrement de base de données Guide du développeur

Utilisation de Gradle Kotlin

Vous pouvez utiliser Gradle pour déclarer une dépendance vis-à-vis du client de chiffrement
Amazon DynamoDB pour Java en ajoutant ce qui suit à la section des dépendances de votre
projet Gradle.

implementation("software.amazon.cryptography:aws-database-encryption-sdk-
dynamodb:version-number")

Manuellement

Pour installer la bibliothèque de chiffrement côté client Java pour DynamoDB, clonez ou
téléchargez le référentiel -dynamodb. aws-database-encryption-sdk GitHub

Après avoir installé le SDK, commencez par consulter l'exemple de code de ce guide et les exemples
Java du référentiel aws-database-encryption-sdk -dynamodb sur. GitHub

Utilisation de la bibliothèque de chiffrement côté client Java pour DynamoDB

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Cette rubrique décrit certaines des fonctions et classes d'assistance de la version 3. x de la
bibliothèque de chiffrement côté client Java pour DynamoDB.

Pour plus de détails sur la programmation avec la bibliothèque de chiffrement côté client Java pour
DynamoDB, consultez les exemples Java, les exemples Java dans le référentiel -dynamodb sur. aws-
database-encryption-sdk GitHub

Rubriques

• Chiffreurs d'éléments

• Actions relatives aux attributs dans le SDK de chiffrement AWS de base de données pour
DynamoDB

• Configuration du chiffrement dans le SDK de chiffrement AWS de base de données pour
DynamoDB

• Mise à jour d'éléments avec le SDK AWS de chiffrement de base de données

Java 206

https://gradle.org/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples

AWS SDK de chiffrement de base de données Guide du développeur

• Déchiffrer des sets signés

Chiffreurs d'éléments

À la base, le SDK de chiffrement AWS de base de données pour DynamoDB est un outil de
chiffrement d'éléments. Vous pouvez utiliser la version 3. x de la bibliothèque de chiffrement côté
client Java pour DynamoDB afin de chiffrer, signer, vérifier et déchiffrer les éléments de votre table
DynamoDB de la manière suivante.

Le client amélioré DynamoDB

Vous pouvez configurer le client DynamoDB amélioré pour chiffrer et signer automatiquement
DynamoDbEncryptionInterceptor les éléments côté client avec vos demandes DynamoDB.
PutItem Avec le client DynamoDB Enhanced, vous pouvez définir vos actions attributaires à
l'aide d'une classe de données annotée. Nous vous recommandons d'utiliser le client DynamoDB
amélioré dans la mesure du possible.

Le client DynamoDB Enhanced ne prend pas en charge le chiffrement consultable.

Note

Le SDK AWS de chiffrement de base de données ne prend pas en charge les annotations
sur les attributs imbriqués.

L'API DynamoDB de bas niveau

Vous pouvez configurer l'API DynamoDB de bas niveau pour chiffrer et signer automatiquement
DynamoDbEncryptionInterceptor les éléments côté client avec vos demandes DynamoDB.
PutItem

Vous devez utiliser l'API DynamoDB de bas niveau pour utiliser le chiffrement consultable.

Le niveau inférieur DynamoDbItemEncryptor

Le niveau inférieur chiffre, signe ou déchiffre et vérifie DynamoDbItemEncryptor directement
les éléments de votre table sans appeler DynamoDB. Il n'émet pas de DynamoDB ni
de PutItem requêtesGetItem. Par exemple, vous pouvez utiliser le niveau inférieur
DynamoDbItemEncryptor pour déchiffrer et vérifier directement un élément DynamoDB que
vous avez déjà récupéré.

Java 207

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html

AWS SDK de chiffrement de base de données Guide du développeur

Le niveau inférieur DynamoDbItemEncryptor ne prend pas en charge le chiffrement
consultable.

Actions relatives aux attributs dans le SDK de chiffrement AWS de base de données pour DynamoDB

Les actions d'attribut déterminent quelles valeurs d'attribut sont cryptées et signées, lesquelles
sont uniquement signées, lesquelles sont signées et incluses dans le contexte de chiffrement, et
lesquelles sont ignorées.

Note

Pour utiliser l'action SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographique,
vous devez utiliser la version 3.3 ou ultérieure du SDK AWS Database Encryption. Déployez
la nouvelle version sur tous les lecteurs avant de mettre à jour votre modèle de données pour
l'inclureSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Si vous utilisez l'API DynamoDB de bas niveau ou de DynamoDbItemEncryptor niveau inférieur,
vous devez définir manuellement vos actions attributaires. Si vous utilisez le client DynamoDB
amélioré, vous pouvez soit définir manuellement vos actions attributaires, soit utiliser une classe de
données annotée pour générer un. TableSchema Pour simplifier le processus de configuration, nous
vous recommandons d'utiliser une classe de données annotée. Lorsque vous utilisez une classe de
données annotée, vous ne devez modéliser votre objet qu'une seule fois.

Note

Après avoir défini les actions relatives aux attributs, vous devez définir quels attributs sont
exclus des signatures. Pour faciliter l'ajout de nouveaux attributs non signés à l'avenir, nous
vous recommandons de choisir un préfixe distinct (tel que : « ») pour identifier vos attributs
non signés. Incluez ce préfixe dans le nom d'attribut pour tous les attributs marqués lorsque
vous DO_NOTHING définissez votre schéma DynamoDB et vos actions d'attribut.

Utiliser une classe de données annotée

Utilisez une classe de données annotée pour spécifier vos actions attributaires avec le client
DynamoDB amélioré et. DynamoDbEncryptionInterceptor Le SDK AWS de chiffrement
de base de données pour DynamoDB utilise les annotations d'attribut DynamoDB standard qui

Java 208

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/enhanced/dynamodb/mapper/annotations/package-summary.html

AWS SDK de chiffrement de base de données Guide du développeur

définissent le type d'attribut afin de déterminer comment protéger un attribut. Par défaut, tous les
attributs sont chiffrés et signés à l'exception des clés primaires, qui sont signées, mais pas chiffrées.

Note

Pour utiliser l'action SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographique,
vous devez utiliser la version 3.3 ou ultérieure du SDK AWS Database Encryption. Déployez
la nouvelle version sur tous les lecteurs avant de mettre à jour votre modèle de données pour
l'inclureSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Consultez SimpleClass.java dans le référentiel aws-database-encryption-sdk -dynamodb GitHub pour
plus d'informations sur les annotations du client DynamoDB Enhanced.

Par défaut, les attributs de clé primaire sont signés mais pas chiffrés (SIGN_ONLY) et tous
les autres attributs sont chiffrés et signés (ENCRYPT_AND_SIGN). Si vous définissez des
attributs commeSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, les attributs de partition
et de tri doivent également l'êtreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Pour
spécifier des exceptions, utilisez les annotations de chiffrement définies dans la bibliothèque
de chiffrement côté client Java pour DynamoDB. Par exemple, si vous souhaitez qu'un attribut
particulier soit uniquement signé, utilisez l'@DynamoDbEncryptionSignOnlyannotation. Si
vous souhaitez qu'un attribut particulier soit signé et inclus dans le contexte de chiffrement,
utilisez le@DynamoDbEncryptionSignAndIncludeInEncryptionContext. Si
vous souhaitez qu'un attribut particulier ne soit ni signé ni chiffré (DO_NOTHING), utilisez
l'@DynamoDbEncryptionDoNothingannotation.

Note

Le SDK AWS de chiffrement de base de données ne prend pas en charge les annotations sur
les attributs imbriqués.

L'exemple suivant montre les annotations utilisées pour définir ENCRYPT_AND_SIGN et DO_NOTHING
attribuer des actions. SIGN_ONLY Pour un exemple illustrant les annotations utilisées pour
définirSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, consultez le SimpleClassfichier 4.java.

@DynamoDbBean
public class SimpleClass {

Java 209

https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/enhanced/dynamodb/mapper/annotations/package-summary.html
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS SDK de chiffrement de base de données Guide du développeur

 private String partitionKey;
 private int sortKey;
 private String attribute1;
 private String attribute2;
 private String attribute3;

 @DynamoDbPartitionKey
 @DynamoDbAttribute(value = "partition_key")
 public String getPartitionKey() {
 return this.partitionKey;
 }

 public void setPartitionKey(String partitionKey) {
 this.partitionKey = partitionKey;
 }

 @DynamoDbSortKey
 @DynamoDbAttribute(value = "sort_key")
 public int getSortKey() {
 return this.sortKey;
 }

 public void setSortKey(int sortKey) {
 this.sortKey = sortKey;
 }

 public String getAttribute1() {
 return this.attribute1;
 }

 public void setAttribute1(String attribute1) {
 this.attribute1 = attribute1;
 }

 @DynamoDbEncryptionSignOnly
 public String getAttribute2() {
 return this.attribute2;
 }

 public void setAttribute2(String attribute2) {
 this.attribute2 = attribute2;
 }

 @DynamoDbEncryptionDoNothing

Java 210

AWS SDK de chiffrement de base de données Guide du développeur

 public String getAttribute3() {
 return this.attribute3;
 }

 @DynamoDbAttribute(value = ":attribute3")
 public void setAttribute3(String attribute3) {
 this.attribute3 = attribute3;
 }

}

Utilisez votre classe de données annotée pour créer le, TableSchema comme indiqué dans l'extrait
de code suivant.

final TableSchema<SimpleClass> tableSchema = TableSchema.fromBean(SimpleClass.class);

Définissez manuellement les actions de vos attributs

Pour spécifier manuellement les actions d'attribut, créez un Map objet dans lequel les paires nom-
valeur représentent les noms d'attributs et les actions spécifiées.

Spécifiez ENCRYPT_AND_SIGN le chiffrement et la signature d'un attribut.
Spécifiez SIGN_ONLY pour signer un attribut, mais pas pour le chiffrer. Spécifiez
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT de signer un attribut et de l'inclure dans le
contexte de chiffrement. Vous ne pouvez pas chiffrer un attribut sans le signer également. Spécifiez
DO_NOTHING si un attribut doit être ignoré.

Les attributs de partition et de tri doivent être l'un SIGN_ONLY ou
l'autreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Si vous définissez des attributs
commeSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, les attributs de partition et de tri doivent
également l'êtreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Note

Pour utiliser l'action SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographique,
vous devez utiliser la version 3.3 ou ultérieure du SDK AWS Database Encryption. Déployez
la nouvelle version sur tous les lecteurs avant de mettre à jour votre modèle de données pour
l'inclureSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Java 211

AWS SDK de chiffrement de base de données Guide du développeur

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be signed
attributeActionsOnEncrypt.put("partition_key",
 CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
// The sort attribute must be signed
attributeActionsOnEncrypt.put("sort_key",
 CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
attributeActionsOnEncrypt.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute3",
 CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
attributeActionsOnEncrypt.put(":attribute4", CryptoAction.DO_NOTHING);

Configuration du chiffrement dans le SDK de chiffrement AWS de base de données pour DynamoDB

Lorsque vous utilisez le SDK AWS Database Encryption, vous devez définir explicitement une
configuration de chiffrement pour votre table DynamoDB. Les valeurs requises dans votre
configuration de chiffrement varient selon que vous avez défini vos actions attributaires manuellement
ou à l'aide d'une classe de données annotée.

L'extrait suivant définit une configuration de chiffrement de table DynamoDB à l'aide du client
DynamoDB amélioré et autorise les attributs non signés définis par un préfixe distinct TableSchema.

final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .schemaOnEncrypt(tableSchema)
 // Optional: only required if you use beacons
 .search(SearchConfig.builder()
 .writeVersion(1) // MUST be 1
 .versions(beaconVersions)
 .build())
 .build());

Nom de table logique

Nom de table logique pour votre table DynamoDB.

Java 212

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html

AWS SDK de chiffrement de base de données Guide du développeur

Le nom de table logique est lié de manière cryptographique à toutes les données stockées dans
la table afin de simplifier les opérations de restauration DynamoDB. Nous vous recommandons
vivement de spécifier le nom de votre table DynamoDB comme nom de table logique lorsque
vous définissez votre configuration de chiffrement pour la première fois. Vous devez toujours
spécifier le même nom de table logique. Pour que le déchiffrement réussisse, le nom de la table
logique doit correspondre au nom spécifié lors du chiffrement. Si le nom de votre table DynamoDB
change après la restauration de votre table DynamoDB à partir d'une sauvegarde, le nom logique
de la table garantit que l'opération de déchiffrement reconnaît toujours la table.

Attributs non signés autorisés

Les attributs marqués DO_NOTHING dans vos actions d'attributs.

Les attributs non signés autorisés indiquent au client quels attributs sont exclus des signatures.
Le client suppose que tous les autres attributs sont inclus dans la signature. Ensuite, lors du
déchiffrement d'un enregistrement, le client détermine les attributs qu'il doit vérifier et ceux à
ignorer parmi les attributs non signés autorisés que vous avez spécifiés. Vous ne pouvez pas
supprimer un attribut de vos attributs non signés autorisés.

Vous pouvez définir explicitement les attributs non signés autorisés en créant un tableau
répertoriant tous vos DO_NOTHING attributs. Vous pouvez également spécifier un préfixe distinct
lorsque vous nommez vos DO_NOTHING attributs et utiliser le préfixe pour indiquer au client quels
attributs ne sont pas signés. Nous vous recommandons vivement de spécifier un préfixe distinct,
car cela simplifie le processus d'ajout d'un nouvel DO_NOTHING attribut à l'avenir. Pour de plus
amples informations, veuillez consulter Mettre à jour votre modèle de données.

Si vous ne spécifiez pas de préfixe pour tous les DO_NOTHING attributs, vous pouvez configurer
un allowedUnsignedAttributes tableau répertoriant explicitement tous les attributs que le
client doit s'attendre à voir non signés lorsqu'il les rencontre lors du déchiffrement. Vous ne devez
définir explicitement vos attributs non signés autorisés que si cela est absolument nécessaire.

Configuration de la recherche (facultatif)

SearchConfigDéfinit la version de la balise.

Le SearchConfig doit être spécifié pour utiliser un chiffrement consultable ou des balises
signées.

Suite d'algorithmes (facultatif)

algorithmSuiteIdDéfinit la suite d'algorithmes utilisée par le SDK AWS de chiffrement de
base de données.

Java 213

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK de chiffrement de base de données Guide du développeur

À moins que vous ne spécifiiez explicitement une suite d'algorithmes alternative, le SDK AWS de
chiffrement de base de données utilise la suite d'algorithmes par défaut. La suite d'algorithmes
par défaut utilise l'algorithme AES-GCM avec dérivation de clés, signatures numériques et
engagement de clés. Bien que la suite d'algorithmes par défaut soit susceptible de convenir
à la plupart des applications, vous pouvez choisir une autre suite d'algorithmes. Par exemple,
certains modèles de confiance seraient satisfaits par une suite d'algorithmes sans signature
numérique. Pour plus d'informations sur les suites d'algorithmes prises en charge par le SDK
AWS de chiffrement de base de données, consultezSuites d'algorithmes prises en charge dans le
SDK AWS de chiffrement de base de données.

Pour sélectionner la suite d'algorithmes AES-GCM sans signature numérique ECDSA, incluez
l'extrait suivant dans votre configuration de chiffrement de table.

.algorithmSuiteId(
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384)

Mise à jour d'éléments avec le SDK AWS de chiffrement de base de données

Le SDK AWS de chiffrement de base de données ne prend pas en charge ddb : UpdateItem pour les
éléments chiffrés ou signés. Pour mettre à jour un élément chiffré ou signé, vous devez utiliser ddb :
PutItem. Lorsque vous spécifiez la même clé primaire qu'un élément existant dans votre PutItem
demande, le nouvel élément remplace complètement l'élément existant. Vous pouvez également
utiliser CLOBBER pour effacer et remplacer tous les attributs lors de la sauvegarde après avoir mis à
jour vos articles.

Déchiffrer des sets signés

Dans les versions 3.0.0 et 3.1.0 du SDK de chiffrement de AWS base de données, si vous définissez
un attribut de type set commeSIGN_ONLY, les valeurs de l'ensemble sont canonisées dans l'ordre
dans lequel elles sont fournies. DynamoDB ne préserve pas l'ordre des ensembles. Par conséquent,
il est possible que la validation de signature de l'élément contenant l'ensemble échoue. La validation
de signature échoue lorsque les valeurs de l'ensemble sont renvoyées dans un ordre différent de
celui dans lequel elles ont été fournies au SDK AWS Database Encryption, même si les attributs de
l'ensemble contiennent les mêmes valeurs.

Java 214

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapperConfig.SaveBehavior.html#CLOBBER
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.SetTypes

AWS SDK de chiffrement de base de données Guide du développeur

Note

Les versions 3.1.1 et ultérieures du SDK de chiffrement de AWS base de données canonisent
les valeurs de tous les attributs de type défini, afin que les valeurs soient lues dans le même
ordre que celui dans lequel elles ont été écrites dans DynamoDB.

Si la validation de signature échoue, l'opération de déchiffrement échoue et renvoie le message
d'erreur suivant.

software.amazon.cryptography.dbencryptionsdk.structuredencryption.model. StructuredEncrypti
onException: Aucune étiquette de destinataire ne correspond.

Si le message d'erreur ci-dessus s'affiche et que vous pensez que l'élément que vous essayez
de déchiffrer inclut un ensemble signé à l'aide de la version 3.0.0 ou 3.1.0, consultez le
DecryptWithPermuterépertoire du dépôt aws-database-encryption-sdk -dynamodb-java GitHub pour
savoir comment valider correctement l'ensemble.

Exemples Java

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Les exemples suivants montrent comment utiliser la bibliothèque de chiffrement côté client Java pour
DynamoDB afin de protéger les éléments de table de votre application. Vous pouvez trouver d'autres
exemples (et apporter les vôtres) dans les exemples Java du référentiel aws-database-encryption-sdk
-dynamodb sur. GitHub

Les exemples suivants montrent comment configurer la bibliothèque de chiffrement côté client
Java pour DynamoDB dans une nouvelle table Amazon DynamoDB non remplie. Si vous souhaitez
configurer vos tables Amazon DynamoDB existantes pour le chiffrement côté client, consultez.
Ajouter la version 3.x à une table existante

Rubriques

Java 215

https://github.com/aws/aws-database-encryption-sdk-dynamodb-java/tree/v3.1.1/DecryptWithPermute
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples

AWS SDK de chiffrement de base de données Guide du développeur

• Utilisation du client amélioré DynamoDB

• Utilisation de l'API DynamoDB de bas niveau

• Utiliser le niveau inférieur DynamoDbItemEncryptor

Utilisation du client amélioré DynamoDB

L'exemple suivant montre comment utiliser le client amélioré DynamoDB
DynamoDbEncryptionInterceptor et AWS KMS un trousseau de clés pour chiffrer des éléments
de table DynamoDB dans le cadre de vos appels d'API DynamoDB.

Vous pouvez utiliser n'importe quel trousseau de clés compatible avec le client DynamoDB amélioré,
mais nous vous recommandons d'utiliser l'un des trousseaux de clés dans la mesure du AWS KMS
possible.

Note

Le client DynamoDB Enhanced ne prend pas en charge le chiffrement consultable. Utilisez le
DynamoDbEncryptionInterceptor avec l'API DynamoDB de bas niveau pour utiliser le
chiffrement consultable.

Voir l'exemple de code complet : EnhancedPutGetExample.java

Étape 1 : Création du AWS KMS porte-clés

L'exemple suivant permet de CreateAwsKmsMrkMultiKeyring créer un AWS KMS trousseau
de clés avec une clé KMS de chiffrement symétrique. La CreateAwsKmsMrkMultiKeyring
méthode garantit que le trousseau de clés gère correctement les clés à région unique et à régions
multiples.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Java 216

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/EnhancedPutGetExample.java

AWS SDK de chiffrement de base de données Guide du développeur

Étape 2 : Création d'un schéma de table à partir de la classe de données annotée

L'exemple suivant utilise la classe de données annotée pour créer leTableSchema.

Cet exemple suppose que les actions de classe de données et d'attribut annotées ont été définies
à l'aide du SimpleClassfichier .java. Pour plus d'informations sur l'annotation des actions de vos
attributs, consultezUtiliser une classe de données annotée.

Note

Le SDK AWS de chiffrement de base de données ne prend pas en charge les annotations
sur les attributs imbriqués.

final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

Étape 3 : définir les attributs exclus des signatures

L'exemple suivant suppose que tous les DO_NOTHING attributs partagent le préfixe distinct : « »
et utilise le préfixe pour définir les attributs non signés autorisés. Le client suppose que tout nom
d'attribut avec le préfixe : « » est exclu des signatures. Pour de plus amples informations, veuillez
consulter Allowed unsigned attributes.

final String unsignedAttrPrefix = ":";

Étape 4 : Création de la configuration de chiffrement

L'exemple suivant définit une tableConfigs carte qui représente la configuration de chiffrement
de la table DynamoDB.

Cet exemple indique le nom de la table DynamoDB comme nom de table logique. Nous vous
recommandons vivement de spécifier le nom de votre table DynamoDB comme nom de table
logique lorsque vous définissez votre configuration de chiffrement pour la première fois. Pour
de plus amples informations, veuillez consulter Configuration du chiffrement dans le SDK de
chiffrement AWS de base de données pour DynamoDB.

Java 217

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html

AWS SDK de chiffrement de base de données Guide du développeur

Note

Pour utiliser le chiffrement consultable ou les balises signées, vous devez également les
inclure SearchConfigdans votre configuration de chiffrement.

final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .schemaOnEncrypt(tableSchema)
 .build());

Étape 5 : Crée le DynamoDbEncryptionInterceptor

L'exemple suivant en crée un nouveau DynamoDbEncryptionInterceptor à tableConfigs
partir de l'étape 4.

final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

Étape 6 : créer un nouveau client DynamoDB du AWS SDK

L'exemple suivant crée un nouveau client DynamoDB du AWS SDK à l'aide interceptor de
l'étape 5.

final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

Java 218

AWS SDK de chiffrement de base de données Guide du développeur

Étape 7 : Création du client DynamoDB amélioré et création d'une table

L'exemple suivant crée le client DynamoDB amélioré à l'aide du client DynamoDB AWS SDK créé
à l'étape 6 et crée une table à l'aide de la classe de données annotée.

final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);

Étape 8 : Chiffrer et signer un élément du tableau

L'exemple suivant place un élément dans la table DynamoDB à l'aide du client DynamoDB
amélioré. L'élément est chiffré et signé côté client avant d'être envoyé à DynamoDB.

final SimpleClass item = new SimpleClass();
item.setPartitionKey("EnhancedPutGetExample");
item.setSortKey(0);
item.setAttribute1("encrypt and sign me!");
item.setAttribute2("sign me!");
item.setAttribute3("ignore me!");

table.putItem(item);

Utilisation de l'API DynamoDB de bas niveau

L'exemple suivant montre comment utiliser l'API DynamoDB de bas niveau avec AWS KMS un
trousseau de clés pour chiffrer et signer automatiquement des éléments côté client avec vos
demandes DynamoDB. PutItem

Vous pouvez utiliser n'importe quel porte-clés compatible, mais nous vous recommandons d'utiliser
l'un des AWS KMS porte-clés dans la mesure du possible.

Voir l'exemple de code complet : BasicPutGetExample.java

Étape 1 : Création du AWS KMS porte-clés

L'exemple suivant permet de CreateAwsKmsMrkMultiKeyring créer un AWS KMS trousseau
de clés avec une clé KMS de chiffrement symétrique. La CreateAwsKmsMrkMultiKeyring

Java 219

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/BasicPutGetExample.java

AWS SDK de chiffrement de base de données Guide du développeur

méthode garantit que le trousseau de clés gère correctement les clés à région unique et à régions
multiples.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Étape 2 : configurer les actions de vos attributs

L'exemple suivant définit une attributeActionsOnEncrypt carte qui représente des
exemples d'actions attributaires pour un élément de table.

Note

L'exemple suivant ne définit aucun attribut en tant
queSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Si vous spécifiez des
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributs, les attributs de partition et
de tri doivent également l'êtreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("partition_key", CryptoAction.SIGN_ONLY);
// The sort attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("sort_key", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put(":attribute3", CryptoAction.DO_NOTHING);

Étape 3 : définir les attributs exclus des signatures

L'exemple suivant suppose que tous les DO_NOTHING attributs partagent le préfixe distinct : « »
et utilise le préfixe pour définir les attributs non signés autorisés. Le client suppose que tout nom
d'attribut avec le préfixe : « » est exclu des signatures. Pour de plus amples informations, veuillez
consulter Allowed unsigned attributes.

Java 220

AWS SDK de chiffrement de base de données Guide du développeur

final String unsignedAttrPrefix = ":";

Étape 4 : définir la configuration du chiffrement des tables DynamoDB

L'exemple suivant définit une tableConfigs carte qui représente la configuration de chiffrement
pour cette table DynamoDB.

Cet exemple indique le nom de la table DynamoDB comme nom de table logique. Nous vous
recommandons vivement de spécifier le nom de votre table DynamoDB comme nom de table
logique lorsque vous définissez votre configuration de chiffrement pour la première fois. Pour
de plus amples informations, veuillez consulter Configuration du chiffrement dans le SDK de
chiffrement AWS de base de données pour DynamoDB.

Note

Pour utiliser le chiffrement consultable ou les balises signées, vous devez également les
inclure SearchConfigdans votre configuration de chiffrement.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .attributeActionsOnEncrypt(attributeActionsOnEncrypt)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .build();
tableConfigs.put(ddbTableName, config);

Étape 5 : Création du DynamoDbEncryptionInterceptor

L'exemple suivant crée le DynamoDbEncryptionInterceptor à l'aide tableConfigs de
l'étape 4.

DynamoDbEncryptionInterceptor interceptor = DynamoDbEncryptionInterceptor.builder()
 .config(DynamoDbTablesEncryptionConfig.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build())
 .build();

Java 221

AWS SDK de chiffrement de base de données Guide du développeur

Étape 6 : créer un nouveau client DynamoDB du AWS SDK

L'exemple suivant crée un nouveau client DynamoDB du AWS SDK à l'aide interceptor de
l'étape 5.

final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

Étape 7 : Chiffrer et signer un élément de table DynamoDB

L'exemple suivant définit une item carte qui représente un exemple d'élément de table et place
l'élément dans la table DynamoDB. L'élément est chiffré et signé côté client avant d'être envoyé à
DynamoDB.

final HashMap<String, AttributeValue> item = new HashMap<>();
item.put("partition_key", AttributeValue.builder().s("BasicPutGetExample").build());
item.put("sort_key", AttributeValue.builder().n("0").build());
item.put("attribute1", AttributeValue.builder().s("encrypt and sign me!").build());
item.put("attribute2", AttributeValue.builder().s("sign me!").build());
item.put(":attribute3", AttributeValue.builder().s("ignore me!").build());

final PutItemRequest putRequest = PutItemRequest.builder()
 .tableName(ddbTableName)
 .item(item)
 .build();

final PutItemResponse putResponse = ddb.putItem(putRequest);

Utiliser le niveau inférieur DynamoDbItemEncryptor

L'exemple suivant montre comment utiliser le niveau inférieur DynamoDbItemEncryptor avec un
AWS KMS trousseau de clés pour chiffrer et signer directement des éléments de table. L'élément
DynamoDbItemEncryptor n'est pas placé dans votre table DynamoDB.

Vous pouvez utiliser n'importe quel trousseau de clés compatible avec le client DynamoDB amélioré,
mais nous vous recommandons d'utiliser l'un des trousseaux de clés dans la mesure du AWS KMS
possible.

Java 222

AWS SDK de chiffrement de base de données Guide du développeur

Note

Le niveau inférieur DynamoDbItemEncryptor ne prend pas en charge le chiffrement
consultable. Utilisez le DynamoDbEncryptionInterceptor avec l'API DynamoDB de bas
niveau pour utiliser le chiffrement consultable.

Voir l'exemple de code complet : ItemEncryptDecryptExample.java

Étape 1 : Création du AWS KMS porte-clés

L'exemple suivant permet de CreateAwsKmsMrkMultiKeyring créer un AWS KMS trousseau
de clés avec une clé KMS de chiffrement symétrique. La CreateAwsKmsMrkMultiKeyring
méthode garantit que le trousseau de clés gère correctement les clés à région unique et à régions
multiples.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Étape 2 : configurer les actions de vos attributs

L'exemple suivant définit une attributeActionsOnEncrypt carte qui représente des
exemples d'actions attributaires pour un élément de table.

Note

L'exemple suivant ne définit aucun attribut en tant
queSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Si vous spécifiez des
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributs, les attributs de partition et
de tri doivent également l'êtreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be SIGN_ONLY

Java 223

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/itemencryptor/ItemEncryptDecryptExample.java

AWS SDK de chiffrement de base de données Guide du développeur

attributeActionsOnEncrypt.put("partition_key", CryptoAction.SIGN_ONLY);
// The sort attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("sort_key", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put(":attribute3", CryptoAction.DO_NOTHING);

Étape 3 : définir les attributs exclus des signatures

L'exemple suivant suppose que tous les DO_NOTHING attributs partagent le préfixe distinct : « »
et utilise le préfixe pour définir les attributs non signés autorisés. Le client suppose que tout nom
d'attribut avec le préfixe : « » est exclu des signatures. Pour de plus amples informations, veuillez
consulter Allowed unsigned attributes.

final String unsignedAttrPrefix = ":";

Étape 4 : définir la DynamoDbItemEncryptor configuration

L'exemple suivant définit la configuration deDynamoDbItemEncryptor.

Cet exemple indique le nom de la table DynamoDB comme nom de table logique. Nous vous
recommandons vivement de spécifier le nom de votre table DynamoDB comme nom de table
logique lorsque vous définissez votre configuration de chiffrement pour la première fois. Pour
de plus amples informations, veuillez consulter Configuration du chiffrement dans le SDK de
chiffrement AWS de base de données pour DynamoDB.

final DynamoDbItemEncryptorConfig config = DynamoDbItemEncryptorConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .attributeActionsOnEncrypt(attributeActionsOnEncrypt)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .build();

Étape 5 : Création du DynamoDbItemEncryptor

L'exemple suivant en crée un nouveau à DynamoDbItemEncryptor l'aide de l'étape 4 config à
partir de l'étape 4.

final DynamoDbItemEncryptor itemEncryptor = DynamoDbItemEncryptor.builder()

Java 224

AWS SDK de chiffrement de base de données Guide du développeur

 .DynamoDbItemEncryptorConfig(config)
 .build();

Étape 6 : Chiffrer et signer directement un élément du tableau

L'exemple suivant chiffre et signe directement un élément à l'aide duDynamoDbItemEncryptor.
L'élément DynamoDbItemEncryptor n'est pas placé dans votre table DynamoDB.

final Map<String, AttributeValue> originalItem = new HashMap<>();
originalItem.put("partition_key",
 AttributeValue.builder().s("ItemEncryptDecryptExample").build());
originalItem.put("sort_key", AttributeValue.builder().n("0").build());
originalItem.put("attribute1", AttributeValue.builder().s("encrypt and sign
 me!").build());
originalItem.put("attribute2", AttributeValue.builder().s("sign me!").build());
originalItem.put(":attribute3", AttributeValue.builder().s("ignore me!").build());

final Map<String, AttributeValue> encryptedItem = itemEncryptor.EncryptItem(
 EncryptItemInput.builder()
 .plaintextItem(originalItem)
 .build()
).encryptedItem();

Configurer une table DynamoDB existante pour utiliser AWS le SDK de chiffrement de
base de données pour DynamoDB

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Avec la version 3. x de la bibliothèque de chiffrement côté client Java pour DynamoDB, vous pouvez
configurer vos tables Amazon DynamoDB existantes pour le chiffrement côté client. Cette rubrique
fournit des conseils sur les trois étapes à suivre pour ajouter la version 3. x vers une table DynamoDB
existante et renseignée.

Prérequis

Version 3. x de la bibliothèque de chiffrement côté client Java pour DynamoDB nécessite le
client DynamoDB amélioré fourni dans. AWS SDK for Java 2.x Si vous utilisez toujours Dynamo

Java 225

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html

AWS SDK de chiffrement de base de données Guide du développeur

DBMapper, vous devez effectuer la migration AWS SDK for Java 2.x vers le client DynamoDB
amélioré.

Suivez les instructions de migration de la version 1.x vers la version 2.x du. AWS SDK pour Java

Suivez ensuite les instructions pour commencer à utiliser l'API client améliorée DynamoDB.

Avant de configurer votre table pour utiliser la bibliothèque de chiffrement côté client Java pour
DynamoDB, vous devez générer une TableSchema classe de données annotée et créer un client
amélioré.

Étape 1 : Préparez-vous à lire et à écrire des éléments chiffrés

Procédez comme suit pour préparer votre client du SDK AWS Database Encryption à lire et à écrire
des éléments chiffrés. Après avoir déployé les modifications suivantes, votre client continuera à
lire et à écrire des éléments en texte brut. Il ne chiffrera ni ne signera aucun nouvel élément inscrit
dans la table, mais il sera en mesure de déchiffrer les éléments chiffrés dès leur apparition. Ces
modifications préparent le client à commencer à chiffrer de nouveaux éléments. Les modifications
suivantes doivent être déployées sur chaque lecteur avant de passer à l'étape suivante.

1. Définissez vos actions attributaires

Mettez à jour votre classe de données annotée pour inclure des actions d'attribut qui définissent
les valeurs d'attribut qui seront chiffrées et signées, celles qui seront uniquement signées et celles
qui seront ignorées.

Consultez le SimpleClassfichier .java dans le référentiel aws-database-encryption-sdk -dynamodb
GitHub pour plus d'informations sur les annotations du client DynamoDB Enhanced.

Par défaut, les attributs de clé primaire sont signés mais pas chiffrés (SIGN_ONLY) et tous les
autres attributs sont chiffrés et signés (ENCRYPT_AND_SIGN). Pour spécifier des exceptions,
utilisez les annotations de chiffrement définies dans la bibliothèque de chiffrement côté
client Java pour DynamoDB. Par exemple, si vous souhaitez qu'un attribut particulier soit
un signe, utilisez uniquement l'@DynamoDbEncryptionSignOnlyannotation. Si vous
souhaitez qu'un attribut particulier soit signé et inclus dans le contexte de chiffrement,
utilisez l'@DynamoDbEncryptionSignAndIncludeInEncryptionContextannotation.
Si vous souhaitez qu'un attribut particulier ne soit ni signé ni chiffré (DO_NOTHING), utilisez
l'@DynamoDbEncryptionDoNothingannotation.

Java 226

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java

AWS SDK de chiffrement de base de données Guide du développeur

Note

Si vous spécifiez des SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
attributs, les attributs de partition et de tri doivent également
l'êtreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Pour un exemple illustrant les
annotations utilisées pour définirSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT,
consultez le SimpleClassfichier 4.java.

Pour des exemples d'annotations, voirUtiliser une classe de données annotée.

2. Définissez les attributs qui seront exclus des signatures

L'exemple suivant suppose que tous les DO_NOTHING attributs partagent le préfixe distinct : « »
et utilise le préfixe pour définir les attributs non signés autorisés. Le client supposera que tout nom
d'attribut avec le préfixe : « » est exclu des signatures. Pour de plus amples informations, veuillez
consulter Allowed unsigned attributes.

final String unsignedAttrPrefix = ":";

3. Créez un porte-clés

L'exemple suivant crée un AWS KMS trousseau de clés. Le AWS KMS trousseau de clés utilise le
chiffrement symétrique ou le RSA asymétrique AWS KMS keys pour générer, chiffrer et déchiffrer
les clés de données.

Cet exemple permet CreateMrkMultiKeyring de créer un AWS KMS trousseau de clés avec
une clé KMS de chiffrement symétrique. Le CreateAwsKmsMrkMultiKeyring procédé garantit
que le trousseau de clés gère correctement les clés à région unique et à régions multiples.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Java 227

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS SDK de chiffrement de base de données Guide du développeur

4. Définition de la configuration du chiffrement des tables DynamoDB

L'exemple suivant définit une tableConfigs carte qui représente la configuration de chiffrement
pour cette table DynamoDB.

Cet exemple indique le nom de la table DynamoDB comme nom de table logique. Nous vous
recommandons vivement de spécifier le nom de votre table DynamoDB comme nom de table
logique lorsque vous définissez votre configuration de chiffrement pour la première fois. Pour
de plus amples informations, veuillez consulter Configuration du chiffrement dans le SDK de
chiffrement AWS de base de données pour DynamoDB.

Vous devez le spécifier FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT comme
remplacement en texte brut. Cette politique continue de lire et d'écrire des éléments en texte brut,
de lire des éléments chiffrés et de préparer le client à écrire des éléments chiffrés.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .schemaOnEncrypt(tableSchema)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)

 .plaintextOverride(PlaintextOverride.FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT)
 .build();
tableConfigs.put(ddbTableName, config);

5. Créer le DynamoDbEncryptionInterceptor

L'exemple suivant crée le DynamoDbEncryptionInterceptor à l'aide tableConfigs de
l'étape 3.

DynamoDbEncryptionInterceptor interceptor = DynamoDbEncryptionInterceptor.builder()
 .config(DynamoDbTablesEncryptionConfig.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build())
 .build();

Java 228

AWS SDK de chiffrement de base de données Guide du développeur

Étape 2 : Écrire des éléments chiffrés et signés

Mettez à jour la politique de texte brut dans votre DynamoDbEncryptionInterceptor
configuration pour permettre au client d'écrire des éléments chiffrés et signés. Après avoir déployé
la modification suivante, le client chiffre et signe les nouveaux éléments en fonction des actions
d'attribut que vous avez configurées à l'étape 1. Le client pourra lire les éléments en texte brut et les
éléments chiffrés et signés.

Avant de passer à l'étape 3, vous devez chiffrer et signer tous les éléments en texte brut existants
dans votre tableau. Il n'existe pas de métrique ou de requête unique que vous puissiez exécuter pour
chiffrer rapidement vos éléments en texte brut existants. Utilisez le processus le mieux adapté à votre
système. Par exemple, vous pouvez utiliser un processus asynchrone qui analyse lentement la table
et réécrit les éléments à l'aide des actions attributaires et de la configuration de chiffrement que vous
avez définies. Pour identifier les éléments en texte brut de votre tableau, nous vous recommandons
de rechercher tous les éléments qui ne contiennent pas les aws_dbe_foot attributs aws_dbe_head
et que le SDK de chiffrement de AWS base de données ajoute aux éléments lorsqu'ils sont chiffrés et
signés.

L'exemple suivant met à jour la configuration de chiffrement des tables depuis
l'étape 1. Vous devez mettre à jour le remplacement en texte brut avec.
FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT Cette politique continue de lire les
éléments en texte brut, mais également de lire et d'écrire des éléments chiffrés. Créez-en un
nouveau DynamoDbEncryptionInterceptor à l'aide de la mise à jourtableConfigs.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .schemaOnEncrypt(tableSchema)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)

 .plaintextOverride(PlaintextOverride.FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT)
 .build();
tableConfigs.put(ddbTableName, config);

Java 229

AWS SDK de chiffrement de base de données Guide du développeur

Étape 3 : lire uniquement les éléments chiffrés et signés

Une fois que vous avez chiffré et signé tous vos éléments, mettez à jour la dérogation en texte brut
dans votre DynamoDbEncryptionInterceptor configuration pour autoriser uniquement le client
à lire et écrire des éléments chiffrés et signés. Après avoir déployé la modification suivante, le client
chiffre et signe les nouveaux éléments en fonction des actions d'attribut que vous avez configurées à
l'étape 1. Le client ne pourra lire que les éléments chiffrés et signés.

L'exemple suivant met à jour la configuration de chiffrement des tables depuis
l'étape 2. Vous pouvez soit mettre à jour la règle de remplacement en texte brut,
FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT soit la supprimer de votre configuration.
Le client lit et écrit uniquement les éléments chiffrés et signés par défaut. Créez-en un nouveau
DynamoDbEncryptionInterceptor à l'aide de la mise à jourtableConfigs.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .schemaOnEncrypt(tableSchema)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 // Optional: you can also remove the plaintext policy from your configuration

 .plaintextOverride(PlaintextOverride.FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT)
 .build();
tableConfigs.put(ddbTableName, config);

Migrer vers la version 3.x de la bibliothèque de chiffrement côté client Java pour
DynamoDB

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Version 3. x de la bibliothèque de chiffrement côté client Java pour DynamoDB est une réécriture
majeure du 2. base de code x. Il inclut de nombreuses mises à jour, telles qu'un nouveau format de
données structuré, une prise en charge améliorée de la mutualisation, des modifications de schéma

Java 230

AWS SDK de chiffrement de base de données Guide du développeur

fluides et la prise en charge du chiffrement consultable. Cette rubrique fournit des conseils sur la
façon de migrer votre code vers la version 3. x.

Migration de la version 1.x vers la version 2.x

Migrez vers la version 2. x avant de migrer vers la version 3. x. Version 2. x a changé le symbole du
fournisseur le plus récent de MostRecentProvider àCachingMostRecentProvider. Si vous
utilisez actuellement la version 1. x de la bibliothèque de chiffrement côté client Java pour DynamoDB
avec le MostRecentProvider symbole, vous devez mettre à jour le nom du symbole dans votre
code en. CachingMostRecentProvider Pour plus d'informations, voir Mises à jour du fournisseur
le plus récent.

Migration de la version 2.x vers la version 3.x

Les procédures suivantes décrivent comment migrer votre code depuis la version 2. x vers la version
3. x de la bibliothèque de chiffrement côté client Java pour DynamoDB.

Étape 1. Préparez-vous à lire les éléments dans le nouveau format

Procédez comme suit pour préparer votre client AWS Database Encryption SDK à lire les éléments
dans le nouveau format. Après avoir déployé les modifications suivantes, votre client continuera à se
comporter de la même manière que dans la version 2. x. Votre client continuera à lire et à écrire des
éléments dans la version 2. format x, mais ces modifications préparent le client à lire les éléments
dans le nouveau format.

Mettez à jour votre AWS SDK pour Java version 2.x

Version 3. x de la bibliothèque de chiffrement côté client Java pour DynamoDB nécessite le client
DynamoDB amélioré. Le client DynamoDB amélioré remplace le DBMapper Dynamo utilisé dans
les versions précédentes. Pour utiliser le client amélioré, vous devez utiliser le AWS SDK for Java
2.x.

Suivez les instructions de migration de la version 1.x vers la version 2.x du. AWS SDK pour Java

Pour plus d'informations sur les AWS SDK for Java 2.x modules requis, consultezPrérequis.

Configurez votre client pour lire les éléments chiffrés par les anciennes versions

Les procédures suivantes fournissent une vue d'ensemble des étapes illustrées dans l'exemple de
code ci-dessous.

1. Créez un porte-clés.

Java 231

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html

AWS SDK de chiffrement de base de données Guide du développeur

Les porte-clés et les gestionnaires de matériel cryptographique remplacent les fournisseurs
de matériel cryptographique utilisés dans les versions précédentes de la bibliothèque de
chiffrement côté client Java pour DynamoDB.

Important

Les clés d'encapsulation que vous spécifiez lors de la création d'un jeu de clés
doivent être les mêmes que celles que vous avez utilisées avec votre fournisseur de
matériel cryptographique dans la version 2. x.

2. Créez un schéma de table au-dessus de votre classe annotée.

Cette étape définit les actions d'attribut qui seront utilisées lorsque vous commencerez à
écrire des éléments dans le nouveau format.

Pour obtenir des conseils sur l'utilisation du nouveau client DynamoDB amélioré, reportez-
vous à la section Generate TableSchema a du guide du développeur.AWS SDK pour Java

L'exemple suivant suppose que vous avez mis à jour votre classe annotée à partir de la
version 2. x en utilisant les nouvelles annotations d'actions d'attribut. Pour plus d'informations
sur l'annotation des actions de vos attributs, consultezUtiliser une classe de données
annotée.

Note

Si vous spécifiez des SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
attributs, les attributs de partition et de tri doivent également
l'êtreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.
Pour un exemple illustrant les annotations utilisées pour
définirSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, consultez
SimpleClass4.java.

3. Définissez les attributs exclus de la signature.

4. Configurez une carte explicite des actions d'attributs configurées dans votre classe modélisée
de la version 2.x.

Cette étape définit les actions d'attribut utilisées pour écrire des éléments dans l'ancien
format.

Java 232

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS SDK de chiffrement de base de données Guide du développeur

5. Configurez le DynamoDBEncryptor que vous avez utilisé dans la version 2. x de la
bibliothèque de chiffrement côté client Java pour DynamoDB.

6. Configurez le comportement existant.

7. Créez un DynamoDbEncryptionInterceptor.

8. Créez un nouveau client AWS DynamoDB SDK.

9. Créez le DynamoDBEnhancedClient et créez un tableau avec votre classe modélisée.

Pour plus d'informations sur le client DynamoDB amélioré, voir créer un client amélioré.

public class MigrationExampleStep1 {

 public static void MigrationStep1(String kmsKeyId, String ddbTableName, int
 sortReadValue) {
 // 1. Create a Keyring.
 // This example creates an AWS KMS Keyring that specifies the
 // same kmsKeyId previously used in the version 2.x configuration.
 // It uses the 'CreateMrkMultiKeyring' method to create the
 // keyring, so that the keyring can correctly handle both single
 // region and Multi-Region KMS Keys.
 // Note that this example uses the AWS SDK for Java v2 KMS client.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
 final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

 // 2. Create a Table Schema over your annotated class.
 // For guidance on using the new attribute actions
 // annotations, see SimpleClass.java in the
 // aws-database-encryption-sdk-dynamodb GitHub repository.
 // All primary key attributes must be signed but not encrypted
 // and by default all non-primary key attributes
 // are encrypted and signed (ENCRYPT_AND_SIGN).
 // If you want a particular non-primary key attribute to be signed but
 // not encrypted, use the 'DynamoDbEncryptionSignOnly' annotation.
 // If you want a particular attribute to be neither signed nor encrypted
 // (DO_NOTHING), use the 'DynamoDbEncryptionDoNothing' annotation.

Java 233

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS SDK de chiffrement de base de données Guide du développeur

 final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

 // 3. Define which attributes the client should expect to be excluded
 // from the signature when reading items.
 // This value represents all unsigned attributes across the entire
 // dataset.
 final List<String> allowedUnsignedAttributes = Arrays.asList("attribute3");

 // 4. Configure an explicit map of the attribute actions configured
 // in your version 2.x modeled class.
 final Map<String, CryptoAction> legacyActions = new HashMap<>();
 legacyActions.put("partition_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("sort_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
 legacyActions.put("attribute2", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute3", CryptoAction.DO_NOTHING);

 // 5. Configure the DynamoDBEncryptor that you used in version 2.x.
 final AWSKMS kmsClient = AWSKMSClientBuilder.defaultClient();
 final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kmsClient,
 kmsKeyId);
 final DynamoDBEncryptor oldEncryptor = DynamoDBEncryptor.getInstance(cmp);

 // 6. Configure the legacy behavior.
 // Input the DynamoDBEncryptor and attribute actions created in
 // the previous steps. For Legacy Policy, use
 // 'FORCE_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT'. This policy continues to
 read
 // and write items using the old format, but will be able to read
 // items written in the new format as soon as they appear.
 final LegacyOverride legacyOverride = LegacyOverride
 .builder()
 .encryptor(oldEncryptor)
 .policy(LegacyPolicy.FORCE_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT)
 .attributeActionsOnEncrypt(legacyActions)
 .build();

 // 7. Create a DynamoDbEncryptionInterceptor with the above configuration.
 final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
 tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)

Java 234

AWS SDK de chiffrement de base de données Guide du développeur

 .keyring(kmsKeyring)
 .allowedUnsignedAttributes(allowedUnsignedAttributes)
 .schemaOnEncrypt(tableSchema)
 .legacyOverride(legacyOverride)
 .build());
 final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

 // 8. Create a new AWS SDK DynamoDb client using the
 // interceptor from Step 7.
 final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

 // 9. Create the DynamoDbEnhancedClient using the AWS SDK DynamoDb client
 // created in Step 8, and create a table with your modeled class.
 final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
 final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);
 }
}

Étape 2. Écrire des éléments dans le nouveau format

Après avoir déployé les modifications apportées à l'étape 1 sur tous les lecteurs, effectuez les étapes
suivantes pour configurer votre client AWS Database Encryption SDK afin d'écrire des éléments dans
le nouveau format. Après avoir déployé les modifications suivantes, votre client continuera à lire les
éléments dans l'ancien format et commencera à écrire et à lire des éléments dans le nouveau format.

Les procédures suivantes fournissent une vue d'ensemble des étapes illustrées dans l'exemple de
code ci-dessous.

Java 235

AWS SDK de chiffrement de base de données Guide du développeur

1. Continuez à configurer votre trousseau de clés, votre schéma de table, vos anciennes actions
attributairesallowedUnsignedAttributes, DynamoDBEncryptor comme vous l'avez fait à
l'étape 1.

2. Mettez à jour votre ancien comportement pour n'écrire que les nouveaux éléments en utilisant le
nouveau format.

3. Créer une DynamoDbEncryptionInterceptor

4. Créez un nouveau client AWS DynamoDB SDK.

5. Créez le DynamoDBEnhancedClient et créez un tableau avec votre classe modélisée.

Pour plus d'informations sur le client DynamoDB amélioré, voir créer un client amélioré.

public class MigrationExampleStep2 {

 public static void MigrationStep2(String kmsKeyId, String ddbTableName, int
 sortReadValue) {
 // 1. Continue to configure your keyring, table schema, legacy
 // attribute actions, allowedUnsignedAttributes, and
 // DynamoDBEncryptor as you did in Step 1.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
 final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

 final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

 final List<String> allowedUnsignedAttributes = Arrays.asList("attribute3");

 final Map<String, CryptoAction> legacyActions = new HashMap<>();
 legacyActions.put("partition_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("sort_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
 legacyActions.put("attribute2", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute3", CryptoAction.DO_NOTHING);

 final AWSKMS kmsClient = AWSKMSClientBuilder.defaultClient();

Java 236

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS SDK de chiffrement de base de données Guide du développeur

 final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kmsClient,
 kmsKeyId);
 final DynamoDBEncryptor oldEncryptor = DynamoDBEncryptor.getInstance(cmp);

 // 2. Update your legacy behavior to only write new items using the new
 // format.
 // For Legacy Policy, use 'FORBID_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT'. This
 policy
 // continues to read items in both formats, but will only write items
 // using the new format.
 final LegacyOverride legacyOverride = LegacyOverride
 .builder()
 .encryptor(oldEncryptor)
 .policy(LegacyPolicy.FORBID_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT)
 .attributeActionsOnEncrypt(legacyActions)
 .build();

 // 3. Create a DynamoDbEncryptionInterceptor with the above configuration.
 final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
 tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributes(allowedUnsignedAttributes)
 .schemaOnEncrypt(tableSchema)
 .legacyOverride(legacyOverride)
 .build());
 final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

 // 4. Create a new AWS SDK DynamoDb client using the
 // interceptor from Step 3.
 final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

Java 237

AWS SDK de chiffrement de base de données Guide du développeur

 // 5. Create the DynamoDbEnhancedClient using the AWS SDK DynamoDb Client
 created
 // in Step 4, and create a table with your modeled class.
 final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
 final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);
 }
}

Après avoir déployé les modifications de l'étape 2, vous devez rechiffrer tous les anciens éléments de
votre tableau avec le nouveau format avant de passer à l'étape 3. Il n'existe pas de métrique ou de
requête unique que vous puissiez exécuter pour chiffrer rapidement vos éléments existants. Utilisez
le processus le mieux adapté à votre système. Par exemple, vous pouvez utiliser un processus
asynchrone qui analyse lentement la table et réécrit les éléments à l'aide des nouvelles actions
attributaires et de la nouvelle configuration de chiffrement que vous avez définies.

Étape 3. Lisez et écrivez uniquement les éléments dans le nouveau format

Après avoir rechiffré tous les éléments de votre tableau avec le nouveau format, vous pouvez
supprimer le comportement existant de votre configuration. Procédez comme suit pour configurer
votre client de manière à ce qu'il lise et écrive uniquement les éléments dans le nouveau format.

Les procédures suivantes fournissent une vue d'ensemble des étapes illustrées dans l'exemple de
code ci-dessous.

1. Continuez à configurer votre trousseau de clés, votre schéma de table,
allowedUnsignedAttributes comme vous l'avez fait à l'étape 1. Supprimez les anciennes
actions attributaires et DynamoDBEncryptor supprimez-les de votre configuration.

2. Créez un DynamoDbEncryptionInterceptor.

3. Créez un nouveau client AWS DynamoDB SDK.

4. Créez le DynamoDBEnhancedClient et créez un tableau avec votre classe modélisée.

Pour plus d'informations sur le client DynamoDB amélioré, voir créer un client amélioré.

public class MigrationExampleStep3 {

Java 238

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS SDK de chiffrement de base de données Guide du développeur

 public static void MigrationStep3(String kmsKeyId, String ddbTableName, int
 sortReadValue) {
 // 1. Continue to configure your keyring, table schema,
 // and allowedUnsignedAttributes as you did in Step 1.
 // Do not include the configurations for the DynamoDBEncryptor or
 // the legacy attribute actions.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
 final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

 final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

 final List<String> allowedUnsignedAttributes = Arrays.asList("attribute3");

 // 3. Create a DynamoDbEncryptionInterceptor with the above configuration.
 // Do not configure any legacy behavior.
 final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
 tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributes(allowedUnsignedAttributes)
 .schemaOnEncrypt(tableSchema)
 .build());
 final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

 // 4. Create a new AWS SDK DynamoDb client using the
 // interceptor from Step 3.
 final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()

Java 239

AWS SDK de chiffrement de base de données Guide du développeur

 .addExecutionInterceptor(interceptor)
 .build())
 .build();

 // 5. Create the DynamoDbEnhancedClient using the AWS SDK Client
 // created in Step 4, and create a table with your modeled class.
 final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
 final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);
 }
}

.NET

Cette rubrique explique comment installer et utiliser la version 3. x de la bibliothèque de chiffrement
côté client .NET pour DynamoDB. Pour plus de détails sur la programmation avec le SDK AWS de
chiffrement de base de données pour DynamoDB, consultez les exemples .NET dans aws-database-
encryption-sdk le référentiel -dynamodb sur. GitHub

La bibliothèque de chiffrement côté client .NET pour DynamoDB est destinée aux développeurs qui
écrivent des applications en C# et dans d'autres langages de programmation .NET. Elle est prise en
charge sur Windows, macOS et Linux.

Toutes les implémentations en langage de programmation du SDK de chiffrement de AWS base de
données pour DynamoDB sont interopérables. Toutefois, les valeurs vides SDK pour .NET ne sont
pas prises en charge pour les types de données de liste ou de carte. Cela signifie que si vous utilisez
la bibliothèque de chiffrement côté client Java pour DynamoDB pour écrire un élément contenant des
valeurs vides pour un type de données de liste ou de carte, vous ne pouvez pas déchiffrer et lire cet
élément à l'aide de la bibliothèque de chiffrement côté client .NET pour DynamoDB.

Rubriques

• Installation de la bibliothèque de chiffrement côté client .NET pour DynamoDB

• Débogage avec .NET

• Utilisation de la bibliothèque de chiffrement côté client .NET pour DynamoDB

• Exemples .NET

• Configurer une table DynamoDB existante pour utiliser AWS le SDK de chiffrement de base de
données pour DynamoDB

.NET 240

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/

AWS SDK de chiffrement de base de données Guide du développeur

Installation de la bibliothèque de chiffrement côté client .NET pour DynamoDB

La bibliothèque de chiffrement côté client .NET pour DynamoDB est disponible sous le nom de
AWS.Cryptography. DbEncryptionSDK. DynamoDbemballer dans NuGet. Pour plus de détails sur
l'installation et la création de la bibliothèque, consultez le fichier .NET README.md dans le aws-
database-encryption-sdk référentiel -dynamodb. La bibliothèque de chiffrement côté client .NET pour
DynamoDB nécessite les clés SDK pour .NET même si vous n'utilisez pas (). AWS Key Management
Service AWS KMS Le SDK pour .NET est installé avec le NuGet package.

Version 3. x de la bibliothèque de chiffrement côté client .NET pour DynamoDB prend en
charge .NET 6.0 et .NET Framework net48 et versions ultérieures.

Débogage avec .NET

La bibliothèque de chiffrement côté client .NET pour DynamoDB ne génère aucun journal. Les
exceptions de la bibliothèque de chiffrement côté client .NET pour DynamoDB génèrent un message
d'exception, mais aucune trace de pile.

Pour vous aider à déboguer, veillez à activer la connexion au SDK pour .NET. Les journaux et
les messages d'erreur du SDK pour .NET peuvent vous aider à distinguer les erreurs survenant
dans la bibliothèque de chiffrement côté client .NET pour DynamoDB SDK pour .NET de celles
qui se produisent dans la bibliothèque de chiffrement .NET. Pour obtenir de l'aide SDK pour .NET
concernant la journalisation, consultez AWSLoggingle guide du AWS SDK pour .NET développeur.
(Pour consulter le sujet, développez la section Ouvrir pour afficher le contenu du .NET Framework.)

Utilisation de la bibliothèque de chiffrement côté client .NET pour DynamoDB

Cette rubrique décrit certaines des fonctions et classes d'assistance de la version 3. x de la
bibliothèque de chiffrement côté client .NET pour DynamoDB.

Pour plus de détails sur la programmation avec la bibliothèque de chiffrement côté client .NET
pour DynamoDB, consultez les exemples .NET dans le référentiel -dynamodb sur. aws-database-
encryption-sdk GitHub

Rubriques

• Chiffreurs d'éléments

• Actions relatives aux attributs dans le SDK de chiffrement AWS de base de données pour
DynamoDB

.NET 241

https://www.nuget.org/packages/AWS.Cryptography.DbEncryptionSDK.DynamoDb/
https://www.nuget.org/packages/AWS.Cryptography.DbEncryptionSDK.DynamoDb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/DynamoDbEncryption/runtimes/net/README.md
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-config-other.html#config-setting-awslogging
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/

AWS SDK de chiffrement de base de données Guide du développeur

• Configuration du chiffrement dans le SDK de chiffrement AWS de base de données pour
DynamoDB

• Mise à jour d'éléments avec le SDK AWS de chiffrement de base de données

Chiffreurs d'éléments

À la base, le SDK de chiffrement AWS de base de données pour DynamoDB est un outil de
chiffrement d'éléments. Vous pouvez utiliser la version 3. x de la bibliothèque de chiffrement côté
client .NET pour DynamoDB afin de chiffrer, signer, vérifier et déchiffrer les éléments de votre table
DynamoDB de la manière suivante.

Le SDK de chiffrement de AWS base de données de bas niveau pour l'API DynamoDB

Vous pouvez utiliser votre configuration de chiffrement de table pour créer un client DynamoDB
qui chiffre et signe automatiquement les éléments côté client avec vos requêtes DynamoDB.
PutItem Vous pouvez utiliser ce client directement ou créer un modèle de document ou un
modèle de persistance d'objet.

Vous devez utiliser le SDK de chiffrement de AWS base de données de bas niveau pour l'API
DynamoDB afin d'utiliser le chiffrement consultable.

Le niveau inférieur DynamoDbItemEncryptor

Le niveau inférieur chiffre, signe ou déchiffre et vérifie DynamoDbItemEncryptor directement
les éléments de votre table sans appeler DynamoDB. Il n'émet pas de DynamoDB ni
de PutItem requêtesGetItem. Par exemple, vous pouvez utiliser le niveau inférieur
DynamoDbItemEncryptor pour déchiffrer et vérifier directement un élément DynamoDB que
vous avez déjà récupéré. Si vous utilisez le niveau inférieurDynamoDbItemEncryptor, nous
vous recommandons d'utiliser le modèle de programmation de bas niveau SDK pour .NET fourni
pour communiquer avec DynamoDB.

Le niveau inférieur DynamoDbItemEncryptor ne prend pas en charge le chiffrement
consultable.

Actions relatives aux attributs dans le SDK de chiffrement AWS de base de données pour DynamoDB

Les actions d'attribut déterminent quelles valeurs d'attribut sont cryptées et signées, lesquelles
sont uniquement signées, lesquelles sont signées et incluses dans le contexte de chiffrement, et
lesquelles sont ignorées.

.NET 242

https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-document
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-document
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-object-persistence
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-low-level

AWS SDK de chiffrement de base de données Guide du développeur

Pour spécifier des actions d'attribut avec le client .NET, définissez manuellement les actions d'attribut
à l'aide d'un modèle d'objet. Spécifiez vos actions d'attribut en créant un Dictionary objet dans
lequel les paires nom-valeur représentent les noms d'attributs et les actions spécifiées.

Spécifiez ENCRYPT_AND_SIGN le chiffrement et la signature d'un attribut.
Spécifiez SIGN_ONLY pour signer un attribut, mais pas pour le chiffrer. Spécifiez
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT de signer un attribut et de l'inclure dans le
contexte de chiffrement. Vous ne pouvez pas chiffrer un attribut sans le signer également. Spécifiez
DO_NOTHING si un attribut doit être ignoré.

Les attributs de partition et de tri doivent être l'un SIGN_ONLY ou
l'autreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Si vous définissez des attributs
commeSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, les attributs de partition et de tri doivent
également l'êtreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Note

Après avoir défini les actions relatives aux attributs, vous devez définir quels attributs sont
exclus des signatures. Pour faciliter l'ajout de nouveaux attributs non signés à l'avenir, nous
vous recommandons de choisir un préfixe distinct (tel que : « ») pour identifier vos attributs
non signés. Incluez ce préfixe dans le nom d'attribut pour tous les attributs marqués lorsque
vous DO_NOTHING définissez votre schéma DynamoDB et vos actions d'attribut.

Le modèle d'objet suivant montre comment spécifierENCRYPT_AND_SIGN,
SIGN_ONLYSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, et DO_NOTHING attribuer des
actions avec le client .NET. Cet exemple utilise le préfixe « : » pour identifier les DO_NOTHING
attributs.

Note

Pour utiliser l'action SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT cryptographique,
vous devez utiliser la version 3.3 ou ultérieure du SDK AWS Database Encryption. Déployez
la nouvelle version sur tous les lecteurs avant de mettre à jour votre modèle de données pour
l'inclureSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>

.NET 243

AWS SDK de chiffrement de base de données Guide du développeur

{
 ["partition_key"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, // The
 partition attribute must be signed
 ["sort_key"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, // The sort
 attribute must be signed
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 ["attribute3"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT,
 [":attribute4"] = CryptoAction.DO_NOTHING
};

Configuration du chiffrement dans le SDK de chiffrement AWS de base de données pour DynamoDB

Lorsque vous utilisez le SDK AWS Database Encryption, vous devez définir explicitement une
configuration de chiffrement pour votre table DynamoDB. Les valeurs requises dans votre
configuration de chiffrement varient selon que vous avez défini vos actions attributaires manuellement
ou à l'aide d'une classe de données annotée.

L'extrait suivant définit une configuration de chiffrement de table DynamoDB à l'aide du SDK de
chiffrement de AWS base de données de bas niveau pour l'API DynamoDB et des attributs non
signés autorisés définis par un préfixe distinct.

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 // Optional: SearchConfig only required if you use beacons
 Search = new SearchConfig
 {
 WriteVersion = 1, // MUST be 1
 Versions = beaconVersions
 }
};
tableConfigs.Add(ddbTableName, config);

.NET 244

AWS SDK de chiffrement de base de données Guide du développeur

Nom de table logique

Nom de table logique pour votre table DynamoDB.

Le nom de table logique est lié de manière cryptographique à toutes les données stockées dans
la table afin de simplifier les opérations de restauration DynamoDB. Nous vous recommandons
vivement de spécifier le nom de votre table DynamoDB comme nom de table logique lorsque
vous définissez votre configuration de chiffrement pour la première fois. Vous devez toujours
spécifier le même nom de table logique. Pour que le déchiffrement réussisse, le nom de la table
logique doit correspondre au nom spécifié lors du chiffrement. Si le nom de votre table DynamoDB
change après la restauration de votre table DynamoDB à partir d'une sauvegarde, le nom logique
de la table garantit que l'opération de déchiffrement reconnaît toujours la table.

Attributs non signés autorisés

Les attributs marqués DO_NOTHING dans vos actions d'attributs.

Les attributs non signés autorisés indiquent au client quels attributs sont exclus des signatures.
Le client suppose que tous les autres attributs sont inclus dans la signature. Ensuite, lors du
déchiffrement d'un enregistrement, le client détermine les attributs qu'il doit vérifier et ceux à
ignorer parmi les attributs non signés autorisés que vous avez spécifiés. Vous ne pouvez pas
supprimer un attribut de vos attributs non signés autorisés.

Vous pouvez définir explicitement les attributs non signés autorisés en créant un tableau
répertoriant tous vos DO_NOTHING attributs. Vous pouvez également spécifier un préfixe distinct
lorsque vous nommez vos DO_NOTHING attributs et utiliser le préfixe pour indiquer au client quels
attributs ne sont pas signés. Nous vous recommandons vivement de spécifier un préfixe distinct,
car cela simplifie le processus d'ajout d'un nouvel DO_NOTHING attribut à l'avenir. Pour de plus
amples informations, veuillez consulter Mettre à jour votre modèle de données.

Si vous ne spécifiez pas de préfixe pour tous les DO_NOTHING attributs, vous pouvez configurer
un allowedUnsignedAttributes tableau répertoriant explicitement tous les attributs que le
client doit s'attendre à voir non signés lorsqu'il les rencontre lors du déchiffrement. Vous ne devez
définir explicitement vos attributs non signés autorisés que si cela est absolument nécessaire.

Configuration de la recherche (facultatif)

SearchConfigDéfinit la version de la balise.

Le SearchConfig doit être spécifié pour utiliser un chiffrement consultable ou des balises
signées.

.NET 245

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK de chiffrement de base de données Guide du développeur

Suite d'algorithmes (facultatif)

algorithmSuiteIdDéfinit la suite d'algorithmes utilisée par le SDK AWS de chiffrement de
base de données.

À moins que vous ne spécifiiez explicitement une suite d'algorithmes alternative, le SDK AWS de
chiffrement de base de données utilise la suite d'algorithmes par défaut. La suite d'algorithmes
par défaut utilise l'algorithme AES-GCM avec dérivation de clés, signatures numériques et
engagement de clés. Bien que la suite d'algorithmes par défaut soit susceptible de convenir
à la plupart des applications, vous pouvez choisir une autre suite d'algorithmes. Par exemple,
certains modèles de confiance seraient satisfaits par une suite d'algorithmes sans signature
numérique. Pour plus d'informations sur les suites d'algorithmes prises en charge par le SDK
AWS de chiffrement de base de données, consultezSuites d'algorithmes prises en charge dans le
SDK AWS de chiffrement de base de données.

Pour sélectionner la suite d'algorithmes AES-GCM sans signature numérique ECDSA, incluez
l'extrait suivant dans votre configuration de chiffrement de table.

AlgorithmSuiteId =
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384

Mise à jour d'éléments avec le SDK AWS de chiffrement de base de données

Le SDK AWS de chiffrement de base de données ne prend pas en charge ddb : UpdateItem pour
les éléments qui incluent des attributs chiffrés ou signés. Pour mettre à jour un attribut chiffré ou
signé, vous devez utiliser ddb : PutItem. Lorsque vous spécifiez la même clé primaire qu'un élément
existant dans votre PutItem demande, le nouvel article remplace complètement l'élément existant.
Vous pouvez également utiliser CLOBBER pour effacer et remplacer tous les attributs lors de la
sauvegarde après avoir mis à jour vos articles.

Exemples .NET

Les exemples suivants montrent comment utiliser la bibliothèque de chiffrement côté client .NET
pour DynamoDB afin de protéger les éléments de table de votre application. Pour trouver d'autres
exemples (et apporter les vôtres), consultez les exemples .NET dans le référentiel aws-database-
encryption-sdk -dynamodb sur. GitHub

Les exemples suivants montrent comment configurer la bibliothèque de chiffrement côté client .NET
pour DynamoDB dans une nouvelle table Amazon DynamoDB non remplie. Si vous souhaitez

.NET 246

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapperConfig.SaveBehavior.html#CLOBBER
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/net/src

AWS SDK de chiffrement de base de données Guide du développeur

configurer vos tables Amazon DynamoDB existantes pour le chiffrement côté client, consultez.
Ajouter la version 3.x à une table existante

Rubriques

• Utilisation du SDK de chiffrement de AWS base de données de bas niveau pour l'API DynamoDB

• Utiliser le niveau inférieur DynamoDbItemEncryptor

Utilisation du SDK de chiffrement de AWS base de données de bas niveau pour l'API DynamoDB

L'exemple suivant montre comment utiliser le SDK de chiffrement de AWS base de données
de bas niveau pour l'API DynamoDB avec un jeu de AWS KMS clés afin de chiffrer et de signer
automatiquement des éléments côté client avec vos demandes DynamoDB. PutItem

Vous pouvez utiliser n'importe quel porte-clés compatible, mais nous vous recommandons d'utiliser
l'un des AWS KMS porte-clés dans la mesure du possible.

Voir l'exemple de code complet : BasicPutGetExample.cs

Étape 1 : Création du AWS KMS porte-clés

L'exemple suivant permet de CreateAwsKmsMrkMultiKeyring créer un AWS KMS trousseau
de clés avec une clé KMS de chiffrement symétrique. Le CreateAwsKmsMrkMultiKeyring
procédé garantit que le trousseau de clés gère correctement les clés à région unique et à zones
multiples.

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Étape 2 : configurer les actions de vos attributs

L'exemple suivant définit un attributeActionsOnEncrypt dictionnaire qui représente des
exemples d'actions attributaires pour un élément de table.

Note

L'exemple suivant ne définit aucun attribut en tant
queSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Si vous spécifiez des

.NET 247

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/BasicPutGetExample.cs

AWS SDK de chiffrement de base de données Guide du développeur

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributs, les attributs de partition et
de tri doivent également l'êtreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
 SIGN_ONLY
 ["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 [":attribute3"] = CryptoAction.DO_NOTHING
};

Étape 3 : définir les attributs exclus des signatures

L'exemple suivant suppose que tous les DO_NOTHING attributs partagent le préfixe distinct : « »
et utilise le préfixe pour définir les attributs non signés autorisés. Le client suppose que tout nom
d'attribut avec le préfixe : « » est exclu des signatures. Pour de plus amples informations, veuillez
consulter Allowed unsigned attributes.

const String unsignAttrPrefix = ":";

Étape 4 : définir la configuration du chiffrement des tables DynamoDB

L'exemple suivant définit une tableConfigs carte qui représente la configuration de chiffrement
pour cette table DynamoDB.

Cet exemple indique le nom de la table DynamoDB comme nom de table logique. Nous vous
recommandons vivement de spécifier le nom de votre table DynamoDB comme nom de table
logique lorsque vous définissez votre configuration de chiffrement pour la première fois. Pour
de plus amples informations, veuillez consulter Configuration du chiffrement dans le SDK de
chiffrement AWS de base de données pour DynamoDB.

Note

Pour utiliser le chiffrement consultable ou les balises signées, vous devez également les
inclure SearchConfigdans votre configuration de chiffrement.

.NET 248

AWS SDK de chiffrement de base de données Guide du développeur

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix
};
tableConfigs.Add(ddbTableName, config);

Étape 5 : créer un nouveau client DynamoDB du AWS SDK

L'exemple suivant crée un nouveau client DynamoDB du AWS SDK à l'aide
TableEncryptionConfigs de l'étape 4.

var ddb = new Client.DynamoDbClient(
 new DynamoDbTablesEncryptionConfig { TableEncryptionConfigs = tableConfigs });

Étape 6 : Chiffrer et signer un élément de table DynamoDB

L'exemple suivant définit un item dictionnaire qui représente un exemple d'élément de table et
place cet élément dans la table DynamoDB. L'élément est chiffré et signé côté client avant d'être
envoyé à DynamoDB.

var item = new Dictionary<String, AttributeValue>
{
 ["partition_key"] = new AttributeValue("BasicPutGetExample"),
 ["sort_key"] = new AttributeValue { N = "0" },
 ["attribute1"] = new AttributeValue("encrypt and sign me!"),
 ["attribute2"] = new AttributeValue("sign me!"),
 [":attribute3"] = new AttributeValue("ignore me!")
};

PutItemRequest putRequest = new PutItemRequest
{
 TableName = ddbTableName,
 Item = item
};

.NET 249

AWS SDK de chiffrement de base de données Guide du développeur

PutItemResponse putResponse = await ddb.PutItemAsync(putRequest);

Utiliser le niveau inférieur DynamoDbItemEncryptor

L'exemple suivant montre comment utiliser le niveau inférieur DynamoDbItemEncryptor avec un
AWS KMS trousseau de clés pour chiffrer et signer directement des éléments de table. L'élément
DynamoDbItemEncryptor n'est pas placé dans votre table DynamoDB.

Vous pouvez utiliser n'importe quel trousseau de clés compatible avec le client DynamoDB amélioré,
mais nous vous recommandons d'utiliser l'un des trousseaux de clés dans la mesure du AWS KMS
possible.

Note

Le niveau inférieur DynamoDbItemEncryptor ne prend pas en charge le chiffrement
consultable. Utilisez le SDK de chiffrement de AWS base de données de bas niveau pour
l'API DynamoDB afin d'utiliser le chiffrement consultable.

Voir l'exemple de code complet : ItemEncryptDecryptExample.cs

Étape 1 : Création du AWS KMS porte-clés

L'exemple suivant permet de CreateAwsKmsMrkMultiKeyring créer un AWS KMS trousseau
de clés avec une clé KMS de chiffrement symétrique. Le CreateAwsKmsMrkMultiKeyring
procédé garantit que le trousseau de clés gère correctement les clés à région unique et à zones
multiples.

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Étape 2 : configurer les actions de vos attributs

L'exemple suivant définit un attributeActionsOnEncrypt dictionnaire qui représente des
exemples d'actions attributaires pour un élément de table.

.NET 250

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/itemencryptor/ItemEncryptDecryptExample.cs

AWS SDK de chiffrement de base de données Guide du développeur

Note

L'exemple suivant ne définit aucun attribut en tant
queSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Si vous spécifiez des
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributs, les attributs de partition et
de tri doivent également l'êtreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<String, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
 SIGN_ONLY
 ["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 [":attribute3"] = CryptoAction.DO_NOTHING
};

Étape 3 : définir les attributs exclus des signatures

L'exemple suivant suppose que tous les DO_NOTHING attributs partagent le préfixe distinct : « »
et utilise le préfixe pour définir les attributs non signés autorisés. Le client suppose que tout nom
d'attribut avec le préfixe : « » est exclu des signatures. Pour de plus amples informations, veuillez
consulter Allowed unsigned attributes.

String unsignAttrPrefix = ":";

Étape 4 : Définition de la DynamoDbItemEncryptor configuration

L'exemple suivant définit la configuration deDynamoDbItemEncryptor.

Cet exemple indique le nom de la table DynamoDB comme nom de table logique. Nous vous
recommandons vivement de spécifier le nom de votre table DynamoDB comme nom de table
logique lorsque vous définissez votre configuration de chiffrement pour la première fois. Pour
de plus amples informations, veuillez consulter Configuration du chiffrement dans le SDK de
chiffrement AWS de base de données pour DynamoDB.

var config = new DynamoDbItemEncryptorConfig
{

.NET 251

AWS SDK de chiffrement de base de données Guide du développeur

 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix
};

Étape 5 : Création du DynamoDbItemEncryptor

L'exemple suivant en crée un nouveau à DynamoDbItemEncryptor l'aide de l'étape 4 config à
partir de l'étape 4.

var itemEncryptor = new DynamoDbItemEncryptor(config);

Étape 6 : Chiffrer et signer directement un élément du tableau

L'exemple suivant chiffre et signe directement un élément à l'aide duDynamoDbItemEncryptor.
L'élément DynamoDbItemEncryptor n'est pas placé dans votre table DynamoDB.

var originalItem = new Dictionary<String, AttributeValue>
{
 ["partition_key"] = new AttributeValue("ItemEncryptDecryptExample"),
 ["sort_key"] = new AttributeValue { N = "0" },
 ["attribute1"] = new AttributeValue("encrypt and sign me!"),
 ["attribute2"] = new AttributeValue("sign me!"),
 [":attribute3"] = new AttributeValue("ignore me!")
};

var encryptedItem = itemEncryptor.EncryptItem(
 new EncryptItemInput { PlaintextItem = originalItem }
).EncryptedItem;

Configurer une table DynamoDB existante pour utiliser AWS le SDK de chiffrement de
base de données pour DynamoDB

Avec la version 3. x de la bibliothèque de chiffrement côté client .NET pour DynamoDB, vous pouvez
configurer vos tables Amazon DynamoDB existantes pour le chiffrement côté client. Cette rubrique
fournit des conseils sur les trois étapes à suivre pour ajouter la version 3. x vers une table DynamoDB
existante et renseignée.

.NET 252

AWS SDK de chiffrement de base de données Guide du développeur

Étape 1 : Préparez-vous à lire et à écrire des éléments chiffrés

Procédez comme suit pour préparer votre client du SDK AWS Database Encryption à lire et à écrire
des éléments chiffrés. Après avoir déployé les modifications suivantes, votre client continuera à
lire et à écrire des éléments en texte brut. Il ne chiffrera ni ne signera aucun nouvel élément inscrit
dans la table, mais il sera en mesure de déchiffrer les éléments chiffrés dès leur apparition. Ces
modifications préparent le client à commencer à chiffrer de nouveaux éléments. Les modifications
suivantes doivent être déployées sur chaque lecteur avant de passer à l'étape suivante.

1. Définissez vos actions attributaires

Créez un modèle d'objet pour définir les valeurs d'attribut qui seront cryptées et signées, celles qui
seront uniquement signées et celles qui seront ignorées.

Par défaut, les attributs de clé primaire sont signés mais pas chiffrés (SIGN_ONLY) et tous les
autres attributs sont chiffrés et signés (ENCRYPT_AND_SIGN).

Spécifiez ENCRYPT_AND_SIGN le chiffrement et la signature d'un attribut.
Spécifiez SIGN_ONLY pour signer un attribut, mais pas pour le chiffrer. Spécifiez
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT à signer et à attribuer et à inclure dans
le contexte de chiffrement. Vous ne pouvez pas chiffrer un attribut sans le signer également.
Spécifiez DO_NOTHING si un attribut doit être ignoré. Pour de plus amples informations, veuillez
consulter Actions relatives aux attributs dans le SDK de chiffrement AWS de base de données
pour DynamoDB.

Note

Si vous spécifiez des SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
attributs, les attributs de partition et de tri doivent également
l'êtreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
 SIGN_ONLY
 ["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 [":attribute3"] = CryptoAction.DO_NOTHING

.NET 253

AWS SDK de chiffrement de base de données Guide du développeur

};

2. Définissez les attributs qui seront exclus des signatures

L'exemple suivant suppose que tous les DO_NOTHING attributs partagent le préfixe distinct : « »
et utilise le préfixe pour définir les attributs non signés autorisés. Le client supposera que tout nom
d'attribut avec le préfixe : « » est exclu des signatures. Pour de plus amples informations, veuillez
consulter Allowed unsigned attributes.

const String unsignAttrPrefix = ":";

3. Créez un porte-clés

L'exemple suivant crée un AWS KMS trousseau de clés. Le AWS KMS trousseau de clés utilise le
chiffrement symétrique ou le RSA asymétrique AWS KMS keys pour générer, chiffrer et déchiffrer
les clés de données.

Cet exemple permet CreateMrkMultiKeyring de créer un AWS KMS trousseau de clés avec
une clé KMS de chiffrement symétrique. La CreateAwsKmsMrkMultiKeyring méthode garantit
que le trousseau de clés gère correctement les clés à région unique et à régions multiples.

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

4. Définition de la configuration du chiffrement des tables DynamoDB

L'exemple suivant définit une tableConfigs carte qui représente la configuration de chiffrement
pour cette table DynamoDB.

Cet exemple indique le nom de la table DynamoDB comme nom de table logique. Nous vous
recommandons vivement de spécifier le nom de votre table DynamoDB comme nom de table
logique lorsque vous définissez votre configuration de chiffrement pour la première fois.

Vous devez le spécifier FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT comme
remplacement en texte brut. Cette politique continue de lire et d'écrire des éléments en texte brut,
de lire des éléments chiffrés et de préparer le client à écrire des éléments chiffrés.

Pour plus d'informations sur les valeurs incluses dans la configuration du chiffrement des tables,
consultezConfiguration du chiffrement dans le SDK de chiffrement AWS de base de données pour
DynamoDB.

.NET 254

AWS SDK de chiffrement de base de données Guide du développeur

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 PlaintextOverride = FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT
};
tableConfigs.Add(ddbTableName, config);

5. Création d'un nouveau client AWS DynamoDB SDK

L'exemple suivant crée un nouveau client DynamoDB AWS SDK à l'aide
TableEncryptionConfigs de l'étape 4.

var ddb = new Client.DynamoDbClient(
 new DynamoDbTablesEncryptionConfig { TableEncryptionConfigs = tableConfigs });

Étape 2 : Écrire des éléments chiffrés et signés

Mettez à jour la politique de texte brut dans votre configuration de chiffrement de table pour permettre
au client d'écrire des éléments chiffrés et signés. Après avoir déployé la modification suivante,
le client chiffre et signe les nouveaux éléments en fonction des actions d'attribut que vous avez
configurées à l'étape 1. Le client pourra lire les éléments en texte brut et les éléments chiffrés et
signés.

Avant de passer à l'étape 3, vous devez chiffrer et signer tous les éléments en texte brut existants
dans votre tableau. Il n'existe pas de métrique ou de requête unique que vous puissiez exécuter pour
chiffrer rapidement vos éléments en texte brut existants. Utilisez le processus le mieux adapté à votre
système. Par exemple, vous pouvez utiliser un processus asynchrone qui analyse lentement la table
et réécrit les éléments à l'aide des actions attributaires et de la configuration de chiffrement que vous
avez définies. Pour identifier les éléments en texte brut de votre tableau, nous vous recommandons
de rechercher tous les éléments qui ne contiennent pas les aws_dbe_foot attributs aws_dbe_head
et que le SDK de chiffrement de AWS base de données ajoute aux éléments lorsqu'ils sont chiffrés et
signés.

.NET 255

AWS SDK de chiffrement de base de données Guide du développeur

L'exemple suivant met à jour la configuration de chiffrement des tables depuis
l'étape 1. Vous devez mettre à jour le remplacement en texte brut avec.
FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT Cette politique continue de lire les
éléments en texte brut, mais également de lire et d'écrire des éléments chiffrés. Créez un nouveau
client DynamoDB du AWS SDK à l'aide de la version mise à jour. TableEncryptionConfigs

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 PlaintextOverride = FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT
};
tableConfigs.Add(ddbTableName, config);

Étape 3 : lire uniquement les éléments chiffrés et signés

Une fois que vous avez chiffré et signé tous vos éléments, mettez à jour la dérogation en texte brut
dans votre configuration de chiffrement de table pour autoriser uniquement le client à lire et écrire des
éléments chiffrés et signés. Après avoir déployé la modification suivante, le client chiffre et signe les
nouveaux éléments en fonction des actions d'attribut que vous avez configurées à l'étape 1. Le client
ne pourra lire que les éléments chiffrés et signés.

L'exemple suivant met à jour la configuration de chiffrement des tables depuis
l'étape 2. Vous pouvez soit mettre à jour la règle de remplacement en texte brut,
FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT soit la supprimer de votre configuration.
Le client lit et écrit uniquement les éléments chiffrés et signés par défaut. Créez un nouveau client
DynamoDB du AWS SDK à l'aide de la version mise à jour. TableEncryptionConfigs

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",

.NET 256

AWS SDK de chiffrement de base de données Guide du développeur

 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 // Optional: you can also remove the plaintext policy from your configuration
 PlaintextOverride = FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT
};
tableConfigs.Add(ddbTableName, config);

Rust

Cette rubrique explique comment installer et utiliser la version 1. x de la bibliothèque de chiffrement
côté client Rust pour DynamoDB. Pour plus de détails sur la programmation avec le SDK AWS de
chiffrement de base de données pour DynamoDB, consultez les exemples Rust dans aws-database-
encryption-sdk le référentiel -dynamodb sur. GitHub

Toutes les implémentations en langage de programmation du SDK de chiffrement de AWS base de
données pour DynamoDB sont interopérables.

Rubriques

• Prérequis

• Installation

• Utilisation de la bibliothèque de chiffrement côté client Rust pour DynamoDB

Prérequis

Avant d'installer la bibliothèque de chiffrement côté client Rust pour DynamoDB, assurez-vous de
remplir les conditions préalables suivantes.

Installez Rust and Cargo

Installez la version stable actuelle de Rust en utilisant rustup.

Pour plus d'informations sur le téléchargement et l'installation de rustup, consultez les procédures
d'installation dans The Cargo Book.

Rust 257

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/
https://www.rust-lang.org/
https://rustup.rs/
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://doc.rust-lang.org/cargo/getting-started/installation.html

AWS SDK de chiffrement de base de données Guide du développeur

Installation

La bibliothèque de chiffrement Rust côté client pour DynamoDB est disponible sous forme de caisse
sur Crates.io. aws-db-esdk Pour plus de détails sur l'installation et la création de la bibliothèque,
consultez le fichier README.md dans le aws-database-encryption-sdk référentiel -dynamodb. GitHub

Manuellement

Pour installer la bibliothèque de chiffrement côté client Rust pour DynamoDB, clonez ou
téléchargez le référentiel -dynamodb. aws-database-encryption-sdk GitHub

Pour installer la dernière version

Exécutez la commande Cargo suivante dans le répertoire de votre projet :

cargo add aws-db-esdk

Ou ajoutez la ligne suivante à votre Cargo.toml :

aws-db-esdk = "<version>"

Utilisation de la bibliothèque de chiffrement côté client Rust pour DynamoDB

Cette rubrique décrit certaines des fonctions et classes d'assistance de la version 1. x de la
bibliothèque de chiffrement côté client Rust pour DynamoDB.

Pour plus de détails sur la programmation avec la bibliothèque de chiffrement côté client Rust
pour DynamoDB, consultez les exemples Rust dans le référentiel -dynamodb sur. aws-database-
encryption-sdk GitHub

Rubriques

• Chiffreurs d'éléments

• Actions relatives aux attributs dans le SDK de chiffrement AWS de base de données pour
DynamoDB

• Configuration du chiffrement dans le SDK de chiffrement AWS de base de données pour
DynamoDB

• Mise à jour d'éléments avec le SDK AWS de chiffrement de base de données

Rust 258

https://crates.io/crates/aws-db-esdk
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/

AWS SDK de chiffrement de base de données Guide du développeur

Chiffreurs d'éléments

À la base, le SDK de chiffrement AWS de base de données pour DynamoDB est un outil de
chiffrement d'éléments. Vous pouvez utiliser la version 1. x de la bibliothèque de chiffrement côté
client Rust pour DynamoDB pour chiffrer, signer, vérifier et déchiffrer les éléments de votre table
DynamoDB de la manière suivante.

Le SDK de chiffrement de AWS base de données de bas niveau pour l'API DynamoDB

Vous pouvez utiliser votre configuration de chiffrement de table pour créer un client DynamoDB
qui chiffre et signe automatiquement les éléments côté client avec vos requêtes DynamoDB.
PutItem

Vous devez utiliser le SDK de chiffrement de AWS base de données de bas niveau pour l'API
DynamoDB afin d'utiliser le chiffrement consultable.

Pour un exemple illustrant comment utiliser le SDK de chiffrement de AWS base de données
de bas niveau pour l'API DynamoDB, consultez basic_get_put_example.rs dans le référentiel -
dynamodb sur. aws-database-encryption-sdk GitHub

Le niveau inférieur DynamoDbItemEncryptor

Le niveau inférieur chiffre, signe ou déchiffre et vérifie DynamoDbItemEncryptor directement
les éléments de votre table sans appeler DynamoDB. Il n'émet pas de DynamoDB ni
de PutItem requêtesGetItem. Par exemple, vous pouvez utiliser le niveau inférieur
DynamoDbItemEncryptor pour déchiffrer et vérifier directement un élément DynamoDB que
vous avez déjà récupéré.

Le niveau inférieur DynamoDbItemEncryptor ne prend pas en charge le chiffrement
consultable.

Pour un exemple illustrant comment utiliser le niveau inférieurDynamoDbItemEncryptor,
consultez item_encrypt_decrypt.rs dans le référentiel -dynamodb sur. aws-database-encryption-
sdk GitHub

Actions relatives aux attributs dans le SDK de chiffrement AWS de base de données pour DynamoDB

Les actions d'attribut déterminent quelles valeurs d'attribut sont cryptées et signées, lesquelles
sont uniquement signées, lesquelles sont signées et incluses dans le contexte de chiffrement, et
lesquelles sont ignorées.

Rust 259

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/basic_get_put_example.rs
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/itemencryptor/item_encrypt_decrypt.rs

AWS SDK de chiffrement de base de données Guide du développeur

Pour spécifier des actions d'attribut avec le client Rust, définissez manuellement les actions d'attribut
à l'aide d'un modèle d'objet. Spécifiez vos actions d'attribut en créant un HashMap objet dans lequel
les paires nom-valeur représentent les noms d'attributs et les actions spécifiées.

Spécifiez ENCRYPT_AND_SIGN le chiffrement et la signature d'un attribut.
Spécifiez SIGN_ONLY pour signer un attribut, mais pas pour le chiffrer. Spécifiez
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT de signer un attribut et de l'inclure dans le
contexte de chiffrement. Vous ne pouvez pas chiffrer un attribut sans le signer également. Spécifiez
DO_NOTHING si un attribut doit être ignoré.

Les attributs de partition et de tri doivent être l'un SIGN_ONLY ou
l'autreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Si vous définissez des attributs
commeSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, les attributs de partition et de tri doivent
également l'êtreSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Note

Après avoir défini vos actions d'attribut, vous devez définir quels attributs sont exclus des
signatures. Pour faciliter l'ajout de nouveaux attributs non signés à l'avenir, nous vous
recommandons de choisir un préfixe distinct (tel que : « ») pour identifier vos attributs non
signés. Incluez ce préfixe dans le nom d'attribut pour tous les attributs marqués lorsque vous
DO_NOTHING définissez votre schéma DynamoDB et vos actions d'attribut.

Le modèle d'objet suivant montre comment spécifierENCRYPT_AND_SIGN,
SIGN_ONLYSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, et DO_NOTHING attribuer des
actions avec le client Rust. Cet exemple utilise le préfixe « : » pour identifier les DO_NOTHING
attributs.

let attribute_actions_on_encrypt = HashMap::from([
 ("partition_key".to_string(), CryptoAction::SignOnly),
 ("sort_key".to_string(), CryptoAction::SignOnly),
 ("attribute1".to_string(), CryptoAction::EncryptAndSign),
 ("attribute2".to_string(), CryptoAction::SignOnly),
 (":attribute3".to_string(), CryptoAction::DoNothing),
]);

Rust 260

AWS SDK de chiffrement de base de données Guide du développeur

Configuration du chiffrement dans le SDK de chiffrement AWS de base de données pour DynamoDB

Lorsque vous utilisez le SDK AWS Database Encryption, vous devez définir explicitement une
configuration de chiffrement pour votre table DynamoDB. Les valeurs requises dans votre
configuration de chiffrement varient selon que vous avez défini vos actions attributaires manuellement
ou à l'aide d'une classe de données annotée.

L'extrait suivant définit une configuration de chiffrement de table DynamoDB à l'aide du SDK de
chiffrement de AWS base de données de bas niveau pour l'API DynamoDB et des attributs non
signés autorisés définis par un préfixe distinct.

let table_config = DynamoDbTableEncryptionConfig::builder()
 .logical_table_name(ddb_table_name)
 .partition_key_name("partition_key")
 .sort_key_name("sort_key")
 .attribute_actions_on_encrypt(attribute_actions_on_encrypt)
 .keyring(kms_keyring)
 .allowed_unsigned_attribute_prefix(UNSIGNED_ATTR_PREFIX)
 // Specifying an algorithm suite is optional
 .algorithm_suite_id(
 DbeAlgorithmSuiteId::AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)
 .build()?;

let table_configs = DynamoDbTablesEncryptionConfig::builder()
 .table_encryption_configs(HashMap::from([(ddb_table_name.to_string(),
 table_config)]))
 .build()?;

Nom de table logique

Nom de table logique pour votre table DynamoDB.

Le nom de table logique est lié de manière cryptographique à toutes les données stockées dans
la table afin de simplifier les opérations de restauration DynamoDB. Nous vous recommandons
vivement de spécifier le nom de votre table DynamoDB comme nom de table logique lorsque
vous définissez votre configuration de chiffrement pour la première fois. Vous devez toujours
spécifier le même nom de table logique. Pour que le déchiffrement réussisse, le nom de la table
logique doit correspondre au nom spécifié lors du chiffrement. Si le nom de votre table DynamoDB
change après la restauration de votre table DynamoDB à partir d'une sauvegarde, le nom logique
de la table garantit que l'opération de déchiffrement reconnaît toujours la table.

Rust 261

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK de chiffrement de base de données Guide du développeur

Attributs non signés autorisés

Les attributs marqués DO_NOTHING dans vos actions d'attributs.

Les attributs non signés autorisés indiquent au client quels attributs sont exclus des signatures.
Le client suppose que tous les autres attributs sont inclus dans la signature. Ensuite, lors du
déchiffrement d'un enregistrement, le client détermine les attributs qu'il doit vérifier et ceux à
ignorer parmi les attributs non signés autorisés que vous avez spécifiés. Vous ne pouvez pas
supprimer un attribut de vos attributs non signés autorisés.

Vous pouvez définir explicitement les attributs non signés autorisés en créant un tableau
répertoriant tous vos DO_NOTHING attributs. Vous pouvez également spécifier un préfixe distinct
lorsque vous nommez vos DO_NOTHING attributs et utiliser le préfixe pour indiquer au client quels
attributs ne sont pas signés. Nous vous recommandons vivement de spécifier un préfixe distinct,
car cela simplifie le processus d'ajout d'un nouvel DO_NOTHING attribut à l'avenir. Pour de plus
amples informations, veuillez consulter Mettre à jour votre modèle de données.

Si vous ne spécifiez pas de préfixe pour tous les DO_NOTHING attributs, vous pouvez configurer
un allowedUnsignedAttributes tableau répertoriant explicitement tous les attributs que le
client doit s'attendre à voir non signés lorsqu'il les rencontre lors du déchiffrement. Vous ne devez
définir explicitement vos attributs non signés autorisés que si cela est absolument nécessaire.

Configuration de la recherche (facultatif)

SearchConfigDéfinit la version de la balise.

Le SearchConfig doit être spécifié pour utiliser un chiffrement consultable ou des balises
signées.

Suite d'algorithmes (facultatif)

algorithmSuiteIdDéfinit la suite d'algorithmes utilisée par le SDK AWS de chiffrement de
base de données.

À moins que vous ne spécifiiez explicitement une suite d'algorithmes alternative, le SDK AWS de
chiffrement de base de données utilise la suite d'algorithmes par défaut. La suite d'algorithmes
par défaut utilise l'algorithme AES-GCM avec dérivation de clés, signatures numériques et
engagement de clés. Bien que la suite d'algorithmes par défaut soit susceptible de convenir
à la plupart des applications, vous pouvez choisir une autre suite d'algorithmes. Par exemple,
certains modèles de confiance seraient satisfaits par une suite d'algorithmes sans signature

Rust 262

AWS SDK de chiffrement de base de données Guide du développeur

numérique. Pour plus d'informations sur les suites d'algorithmes prises en charge par le SDK
AWS de chiffrement de base de données, consultezSuites d'algorithmes prises en charge dans le
SDK AWS de chiffrement de base de données.

Pour sélectionner la suite d'algorithmes AES-GCM sans signature numérique ECDSA, incluez
l'extrait suivant dans votre configuration de chiffrement de table.

.algorithm_suite_id(
 DbeAlgorithmSuiteId::AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)

Mise à jour d'éléments avec le SDK AWS de chiffrement de base de données

Le SDK AWS de chiffrement de base de données ne prend pas en charge ddb : UpdateItem pour les
éléments qui incluent des attributs chiffrés ou signés. Pour mettre à jour un attribut chiffré ou signé,
vous devez utiliser ddb : PutItem. Lorsque vous spécifiez la même clé primaire qu'un élément existant
dans votre PutItem demande, le nouvel élément remplace complètement l'élément existant.

Ancien client de chiffrement DynamoDB

Le 9 juin 2023, notre bibliothèque de chiffrement côté client a été renommée AWS Database
Encryption SDK. Le SDK AWS Database Encryption continue de prendre en charge les anciennes
versions du client de chiffrement DynamoDB. Pour plus d'informations sur les différentes parties de
la bibliothèque de chiffrement côté client qui ont changé avec le changement de nom, consultez.
Changement du nom du client de chiffrement Amazon DynamoDB

Pour migrer vers la dernière version de la bibliothèque de chiffrement côté client Java pour
DynamoDB, consultez. Migrer vers la version 3.x

Rubriques

• AWS SDK de chiffrement de base de données pour la prise en charge des versions DynamoDB

• Fonctionnement du client de chiffrement DynamoDB

• Concepts du client de chiffrement Amazon DynamoDB

• Fournisseur de matériel cryptographique

• Langages de programmation disponibles pour le client de chiffrement Amazon DynamoDB

• Modification de votre modèle de données

Héritée 263

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

AWS SDK de chiffrement de base de données Guide du développeur

• Résolution des problèmes liés à votre application cliente de chiffrement DynamoDB

AWS SDK de chiffrement de base de données pour la prise en charge des
versions DynamoDB

Les rubriques du chapitre Legacy fournissent des informations sur les versions 1. x —2. x du client
de chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB pour
Python.

Le tableau suivant répertorie les langues et les versions qui prennent en charge le chiffrement côté
client dans Amazon DynamoDB.

Langage de programmation Version Phase du cycle de vie de la
version majeure du SDK

Java Versions 1. x End-of-Support phase, en
vigueur en juillet 2022

Java Versions 2. x Disponibilité générale (GA)

Java Version 3. x Disponibilité générale (GA)

Python Versions 1. x End-of-Support phase, en
vigueur en juillet 2022

Python Versions 2. x End-of-Support phase, en
vigueur en juillet 2022

Python Versions 3. x Disponibilité générale (GA)

Fonctionnement du client de chiffrement DynamoDB

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de
chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB

AWS SDK de chiffrement de base de données pour la prise en charge des versions DynamoDB 264

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS SDK de chiffrement de base de données Guide du développeur

pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

Le client de chiffrement DynamoDB est spécialement conçu pour protéger les données que vous
stockez dans DynamoDB. Les bibliothèques incluent les implémentations sécurisées que vous
pouvez étendre ou utiliser inchangées. Et, la plupart des éléments sont représentés par des éléments
abstraits afin que vous puissiez créer et utiliser des composants personnalisés compatibles.

Chiffrement et signature des éléments de table

Au cœur du client de chiffrement DynamoDB se trouve un outil de chiffrement d'éléments qui chiffre,
signe, vérifie et déchiffre les éléments de table. Il prend les informations sur les éléments de table
et les instructions sur les éléments à chiffrer et signer. Il obtient les matériaux de chiffrement et les
instructions sur leur utilisation auprès d'un fournisseur CMP que vous sélectionnez et configurez.

Le schéma suivant illustre un aperçu de haut niveau du processus.

Pour chiffrer et signer un élément de table, le client de chiffrement DynamoDB a besoin des éléments
suivants :

Comment ça marche 265

AWS SDK de chiffrement de base de données Guide du développeur

• Informations sur le tableau. Il obtient des informations sur la table à partir d'un contexte de
chiffrement DynamoDB que vous fournissez. Certains assistants obtiennent les informations
requises auprès de DynamoDB et créent le contexte de chiffrement DynamoDB pour vous.

Note

Le contexte de chiffrement DynamoDB dans le client de chiffrement DynamoDB n'est pas
lié au contexte de chiffrement dans () et le. AWS Key Management Service AWS KMS
AWS Encryption SDK

• Attributs à chiffrer et signer. Il obtient ces informations à partir des actions d'attribut que vous
fournissez.

• Matériaux de chiffrement, clés de chiffrement et de signature incluses. Il obtient ces informations
auprès d'un fournisseur CMP que vous sélectionnez et configurez.

• Instructions pour le chiffrement et la signature de l'élément. Le fournisseur CMP ajoute les
instructions sur l'utilisation des matériaux de chiffrement, algorithmes de chiffrement et de signature
inclus, à la description du matériau réel.

Le chiffreur d'élément utilise tous ces éléments pour chiffrer et signer l'élément. Le chiffreur
d'élément ajoute aussi deux attributs à l'élément : un attribut de description de matériau qui contient
les instructions de chiffrement et de signature (description du matériau réel), et un attribut qui
contient la signature. Vous pouvez interagir directement avec le chiffreur d'élément, ou utilisez les
fonctions d'annotation qui interagissent avec le chiffreur d'élément pour que vous implémentiez le
comportement par défaut sécurisé.

Il en résulte un élément DynamoDB contenant les données chiffrées et signées.

Vérification et déchiffrement des éléments de table

Ces composants fonctionnent aussi ensemble pour vérifier et déchiffrer votre élément, comme illustré
dans le schéma suivant.

Comment ça marche 266

AWS SDK de chiffrement de base de données Guide du développeur

Pour vérifier et déchiffrer un élément, le client de chiffrement DynamoDB a besoin des mêmes
composants, de composants présentant la même configuration ou de composants spécialement
conçus pour déchiffrer les éléments, comme suit :

• Informations relatives à la table issues du contexte de chiffrement DynamoDB.

• Attributs à vérifier et à déchiffrer. Il obtient ces informations à partir des actions d'attribut.

• Matériaux de déchiffrement, clés de vérification et de déchiffrement incluses, depuis le fournisseur
CMP que vous sélectionnez et configurez.

L'élément chiffré n'inclut pas d'enregistrement du CMP qui a été utilisé pour le chiffrer. Vous devez
fournir le même CMP, un CMP avec la même configuration ou un CMP qui a été conçu pour
déchiffrer les éléments.

• Informations sur la façon dont l'élément a été chiffré et signé, algorithmes de chiffrement et de
signature inclus. Le client obtient ces informations à partir de l'attribut de description du matériau
de l'élément.

Comment ça marche 267

AWS SDK de chiffrement de base de données Guide du développeur

Le chiffreur d'élément utilise tous ces éléments pour vérifier et déchiffrer l'élément. Il supprime aussi
les attribut de description de matériau et de signature. Le résultat est un élément DynamoDB en texte
brut.

Concepts du client de chiffrement Amazon DynamoDB

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de
chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB
pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

Cette rubrique explique les concepts et la terminologie utilisés dans le client de chiffrement Amazon
DynamoDB.

Pour savoir comment les composants du client de chiffrement DynamoDB interagissent, consultez.
Fonctionnement du client de chiffrement DynamoDB

Rubriques

• Fournisseur CMP (Cryptographic Materials Provider)

• Chiffreurs d'éléments

• Actions d'attribut

• Description du matériau

• Client de chiffrement DynamoDB

• Magasin de fournisseur

Fournisseur CMP (Cryptographic Materials Provider)

Lorsque vous implémentez le client de chiffrement DynamoDB, l'une de vos premières tâches
consiste à sélectionner un fournisseur de matériel cryptographique (CMP) (également appelé
fournisseur de matériel de chiffrement). Votre choix détermine une grande part du reste de
l'implémentation.

Concepts 268

AWS SDK de chiffrement de base de données Guide du développeur

Un fournisseur CMP recueille, assemble et retourne les matériaux de chiffrement que le chiffreur
d'élément utilise pour chiffrer et signer vos éléments de table. Le CMP détermine les algorithmes
de chiffrement à utiliser, ainsi que la façon de générer et de protéger le chiffrement et les clés de
signature.

Le fournisseur CMP interagit avec le chiffreur d'élément. Celui-ci demande les matériaux de
chiffrement ou de déchiffrement au CMP, et le CMP les retourne au chiffreur d'élément. Puis, celui-ci
utilise les matériaux de chiffrement pour chiffrer et signer, ou vérifier et déchiffrer, l'élément.

Vous spécifiez le CMP lorsque vous configurez le client. Vous pouvez créer un CMP personnalisé
compatible ou utiliser l'un des nombreux modèles de CMPs la bibliothèque. La plupart CMPs sont
disponibles pour plusieurs langages de programmation.

Chiffreurs d'éléments

Le chiffreur d'éléments est un composant de niveau inférieur qui effectue des opérations de
chiffrement pour le client de chiffrement DynamoDB. Il demande les matériaux de chiffrement auprès
d'un fournisseur CMP, puis utilise les matériaux retournés par le CMP pour chiffrer et signer, ou
vérifier et déchiffrer, votre élément de table.

Vous pouvez interagir directement avec le chiffreur d'élément ou utiliser les annotations fournis
par votre bibliothèque. Par exemple, le client de chiffrement DynamoDB pour Java inclut
AttributeEncryptor une classe d'assistance que vous pouvez utiliser avec DynamoDBMapper
le chiffreur d'éléments, au lieu d'interagir directement avec celui-ci. DynamoDBEncryptor La
bibliothèque Python inclut les classes d'annotations EncryptedTable, EncryptedClient et
EncryptedResource qui interagissent avec le chiffreur d'éléments pour vous.

Actions d'attribut

Les actions d'attribut informent le chiffreur d'élément des actions à exécuter sur chaque attribut de
l'élément.

L'action d'attribut peut avoir l'une des valeurs suivantes :

• Chiffrer et signer — Chiffrez la valeur de l'attribut. Incluez l'attribut (nom et valeur) dans la signature
de l'élément.

• Signe uniquement — Incluez l'attribut dans la signature de l'article.

• Ne rien faire : ne chiffrez pas et ne signez pas l'attribut.

Concepts 269

AWS SDK de chiffrement de base de données Guide du développeur

Pour tout attribut pouvant stocker des données sensibles, utilisez Chiffrer et signer. Pour les attributs
de clé primaire (clé de partition et clé de tri), utilisez Signer uniquement. L'attribut de description de
matériau et l'attribut de signature ne sont pas signés ou chiffrés. Vous n'avez pas besoin de spécifier
les actions d'attribut pour ces attributs.

Choisissez soigneusement vos actions d'attribut. En cas de doute, utilisez Chiffrer et signer. Une fois
que vous avez utilisé le client de chiffrement DynamoDB pour protéger les éléments de votre table,
vous ne pouvez pas modifier l'action d'un attribut sans risquer une erreur de validation de signature.
Pour plus de détails, consultez Modification de votre modèle de données.

Warning

Ne chiffrez pas les attributs de la clé primaire. Ils doivent rester en texte brut pour que
DynamoDB puisse trouver l'élément sans exécuter une analyse complète du tableau.

Si le contexte de chiffrement DynamoDB identifie les attributs de votre clé primaire, le client génère
une erreur si vous essayez de les chiffrer.

La technique que vous utilisez pour spécifier les actions d'attribut dépend du langage de
programmation que vous utilisez. Elle peut aussi être spécifique aux classes d'annotations que vous
utilisez.

Pour plus d'informations, consultez la documentation de votre langage de programmation.

• Python

• Java

Description du matériau

La description du matériau pour un élément de table chiffré se compose d'informations, telles que
les algorithmes de chiffrement, sur la façon dont l'élément de table est chiffré et signé. Le fournisseur
CMP enregistre la description du matériau tandis qu'il rassemble les matériaux de chiffrement pour
le chiffrement et la signature. Par la suite, quand il doit rassembler les matériaux de chiffrement pour
vérifier et chiffrer l'élément, il utilise la description du matériau comme guide.

Dans le client de chiffrement DynamoDB, la description matérielle fait référence à trois éléments
connexes :

Concepts 270

AWS SDK de chiffrement de base de données Guide du développeur

Description du matériau demandé

Certains fournisseurs de matériel cryptographique (CMPs) vous permettent de définir des options
avancées, telles qu'un algorithme de chiffrement. Pour indiquer vos choix, vous ajoutez des paires
nom-valeur à la propriété de description matérielle du contexte de chiffrement DynamoDB dans
votre demande de chiffrement d'un élément de table. L'élément est appelé description du matériau
demandé. Les valeurs autorisées pour la description du matériau demandé sont définies par le
fournisseur CMP que vous choisissez.

Note

Comme la description du matériau peut remplacer les valeurs par défaut sécurisées, il est
recommandé d'omettre la description du matériau demandé à moins que vous n'ayez une
excellente raison de l'utiliser.

Description du matériau réel

La description matérielle renvoyée par les fournisseurs de matériel cryptographique (CMPs) est
connue sous le nom de description matérielle réelle. Elle décrit les valeurs réelles que le CMP a
utilisées quand il a rassemblé les matériaux de chiffrement. Elle se compose généralement de la
description du matériau demandé, le cas échéant, avec les ajouts et les modifications.

Attribut de description du matériau

Le client enregistre la description du matériau réel dans l'attribut de description du matériau de
l'élément chiffré. Le nom de l'attribut de description du matériau est amzn-ddb-map-desc et sa
valeur est la description du matériau réel. Le client utilise les valeurs de l'attribut de description du
matériau pour vérifier et déchiffrer l'élément.

Client de chiffrement DynamoDB

Le contexte de chiffrement DynamoDB fournit des informations sur la table et l'élément au fournisseur
de matériel cryptographique (CMP). Dans les implémentations avancées, le contexte de chiffrement
DynamoDB peut inclure une description matérielle demandée.

Lorsque vous chiffrez des éléments de table, le contexte de chiffrement DynamoDB est lié
cryptographiquement aux valeurs d'attributs chiffrées. Lorsque vous déchiffrez, si le contexte de
chiffrement DynamoDB ne correspond pas exactement, en distinguant majuscules et minuscules, au
contexte de chiffrement DynamoDB utilisé pour le chiffrement, l'opération de déchiffrement échoue.

Concepts 271

AWS SDK de chiffrement de base de données Guide du développeur

Si vous interagissez directement avec le chiffreur d'éléments, vous devez fournir un contexte de
chiffrement DynamoDB lorsque vous appelez une méthode de chiffrement ou de déchiffrement. La
plupart des assistants créent le contexte de chiffrement DynamoDB pour vous.

Note

Le contexte de chiffrement DynamoDB dans le client de chiffrement DynamoDB n'est pas
lié au contexte de chiffrement dans () et le. AWS Key Management Service AWS KMS AWS
Encryption SDK

Le contexte de chiffrement DynamoDB peut inclure les champs suivants. Tous les champs et valeurs
sont facultatifs.

• Nom de la table

• Nom de la clé de partition

• Nom de la clé de tri

• Paires nom-valeur des attributs

• Description du matériau demandé

Magasin de fournisseur

Une boutique de fournisseurs est un composant qui renvoie des fournisseurs de matériel
cryptographique (CMPs). Le magasin du fournisseur peut les créer CMPs ou les obtenir à partir d'une
autre source, telle qu'un autre magasin du fournisseur. Le magasin du fournisseur enregistre les
versions CMPs qu'il crée dans un stockage persistant dans lequel chaque CMP stocké est identifié
par le nom matériel du demandeur et le numéro de version.

Le fournisseur le plus récent du client de chiffrement DynamoDB l'obtient CMPs auprès d'un magasin
du fournisseur, mais vous pouvez utiliser le magasin du fournisseur pour CMPs approvisionner
n'importe quel composant. Chaque fournisseur le plus récent est associé à une boutique de
fournisseurs, mais une boutique de fournisseurs peut fournir des CMPs informations à de nombreux
demandeurs sur plusieurs hôtes.

Le magasin du fournisseur crée de nouvelles versions CMPs de On Demand et renvoie les versions
nouvelles et existantes. Il retourne aussi le dernier numéro de version d'un nom de matériau donné.
Le demandeur peut ainsi savoir lorsque le magasin de fournisseur a une nouvelle version de son
fournisseur, puis la demander.

Concepts 272

AWS SDK de chiffrement de base de données Guide du développeur

Le client de chiffrement DynamoDB inclut MetaStoreun magasin fournisseur qui crée des clés
CMPs Wrapped qui sont stockées dans DynamoDB et chiffrées à l'aide d'un client de chiffrement
DynamoDB interne.

En savoir plus :

• Magasin de fournisseur : Java, Python

• MetaStore: Java, Python

Fournisseur de matériel cryptographique

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de
chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB
pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

L'une des décisions les plus importantes que vous prenez lorsque vous utilisez le client de
chiffrement DynamoDB est de sélectionner un fournisseur de matériel cryptographique (CMP). Le
fournisseur CMP assemble et retourne les matériaux de déchiffrement au chiffreur d'élément. Il
détermine aussi la façon dont les clés de chiffrement et les clés de signature sont générées, que
les nouveaux matériaux de clés soient générés pour chaque élément ou soient réutilisés, et les
algorithmes de chiffrement et de signature qui sont utilisés.

Vous pouvez choisir un CMP parmi les implémentations fournies dans les bibliothèques du client de
chiffrement DynamoDB ou créer un CMP personnalisé compatible. Le choix du fournisseur CMP peut
aussi dépendre du langage de programmation que vous utilisez.

Cette rubrique décrit les plus courantes CMPs et propose quelques conseils pour vous aider à choisir
celle qui convient le mieux à votre application.

Fournisseur de matériaux KMS direct

Le fournisseur de matériel KMS direct protège les articles de votre table sous un format AWS
KMS keyqui ne laisse jamais AWS Key Management Service(AWS KMS) non chiffré. Votre
application n'a pas à générer ou gérer des matériaux de chiffrement. Comme il utilise le AWS

Fournisseur de matériel cryptographique 273

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/store/ProviderStore.html
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/src/dynamodb_encryption_sdk/material_providers/store/__init__.py
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/store/MetaStore.html
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/materials_providers/metastore.html#module-dynamodb_encryption_sdk.material_providers.store.meta
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK de chiffrement de base de données Guide du développeur

KMS key pour générer des clés de chiffrement et de signature uniques pour chaque élément, ce
fournisseur appelle AWS KMS chaque fois qu'il chiffre ou déchiffre un élément.

Si vous utilisez AWS KMS et qu'un AWS KMS appel par transaction est pratique pour votre
application, ce fournisseur est un bon choix.

Pour plus de détails, consultez Fournisseur de matériaux KMS direct.

Fournisseur CMP encapsulé

Le Wrapped Materials Provider (Wrapped CMP) vous permet de générer et de gérer vos clés
d'encapsulation et de signature en dehors du client de chiffrement DynamoDB.

Le fournisseur CMP encapsulé génère une clé de chiffrement unique pour chaque élément. Puis,
il utilise les clés d'encapsulation (ou de désencapsulation) et de signature que vous fournissez.
En tant que tel, vous déterminez de quelle façon les clés d'encapsulation et de signature sont
générées, et si elles sont propres à chaque élément ou sont réutilisées. Le Wrapped CMP est
une alternative sécurisée au fournisseur Direct KMS pour les applications qui n'utilisent pas de
matériel cryptographique AWS KMS et qui peuvent le gérer en toute sécurité.

Pour plus de détails, consultez Fournisseur de matériaux encapsulé.

À propos du fournisseur le plus récent

Le fournisseur le plus récent est un fournisseur CMP conçu pour travailler avec un magasin de
fournisseur. Il CMPs provient du magasin du fournisseur et obtient le matériel cryptographique
qu'il renvoie depuis le CMPs. Le fournisseur le plus récent utilise généralement chaque
fournisseur CMP pour satisfaire plusieurs demandes de matériaux de chiffrement, mais vous
pouvez utiliser les fonctions du magasin de fournisseur pour contrôler l'étendue à laquelle les
matériaux sont réutilisés, déterminer à quelle fréquence a lieu la rotation des fournisseurs CMP et,
même, modifier le type de fournisseur CMP utilisé sans modifier le fournisseur le plus récent.

Vous pouvez utiliser le fournisseur le plus récent avec n'importe quel magasin de fournisseur
compatible. Le client de chiffrement DynamoDB inclut MetaStore un, qui est un magasin
fournisseur qui renvoie Wrapped. CMPs

Le fournisseur le plus récent constitue un bon choix pour les applications qui doivent minimiser
les appels à leur source de chiffrement, et pour les applications qui peuvent réutiliser certains
matériaux de chiffrement sans enfreindre leurs exigences de sécurité. Par exemple, il vous permet
de protéger votre matériel cryptographique avec un AWS KMS keyin AWS Key Management
Service(AWS KMS) sans avoir à appeler AWS KMS chaque fois que vous chiffrez ou déchiffrez
un élément.

Fournisseur de matériel cryptographique 274

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK de chiffrement de base de données Guide du développeur

Pour plus de détails, consultez À propos du fournisseur le plus récent.

Fournisseur de matériaux statique

Le fournisseur de matériaux statiques est conçu pour les tests, les proof-of-concept
démonstrations et la compatibilité existante. Il ne génère pas de matériaux de chiffrement
uniques pour chaque élément. Il retourne les mêmes clés de chiffrement et de signature que vous
fournissez, et ces clés sont utilisées directement pour chiffrer, déchiffrer et signer vos éléments de
table.

Note

Le fournisseur statique asymétrique de la bibliothèque Java n'est pas un fournisseur
statique. Il fournit juste d'autres constructeurs au fournisseur CMP encapsulé. Il est sûr
pour une utilisation en production, mais vous devez utiliser directement le CMP encapsulé
chaque fois que possible.

Rubriques

• Fournisseur de matériaux KMS direct

• Fournisseur de matériaux encapsulé

• À propos du fournisseur le plus récent

• Fournisseur de matériaux statique

Fournisseur de matériaux KMS direct

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de
chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB
pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

Le fournisseur de matériel Direct KMS (fournisseur direct KMS) protège les éléments de votre table
sous un format AWS KMS keyqui ne laisse jamais AWS Key Management Service(AWS KMS)

Fournisseur de matériel cryptographique 275

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/AsymmetricStaticProvider.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK de chiffrement de base de données Guide du développeur

non chiffré. Le fournisseur CMP retourne une clé de chiffrement et une clé de signature uniques
pour chaque élément de table. Pour ce faire, il appelle AWS KMS chaque fois que vous chiffrez ou
déchiffrez un élément.

Si vous traitez des éléments DynamoDB à une fréquence élevée et à grande échelle, vous risquez
de dépasser les limites, ce qui entraîne des AWS KMS requests-per-secondretards de traitement.
Si vous devez dépasser une limite, créez un dossier dans le AWS Support Centre. Vous pouvez
également envisager de faire appel à un fournisseur de matériel cryptographique avec une
réutilisation limitée des clés, tel que le fournisseur le plus récent.

Pour utiliser le fournisseur Direct KMS, l'appelant doit avoir, au moins un Compte AWS AWS KMS
key, et l'autorisation d'appeler les opérations GenerateDataKeyet de déchiffrer sur le. AWS KMS key
AWS KMS key Il doit s'agir d'une clé de chiffrement symétrique ; le client de chiffrement DynamoDB
ne prend pas en charge le chiffrement asymétrique. Si vous utilisez une table globale DynamoDB,
vous souhaiterez peut-être spécifier AWS KMS une clé multirégionale. Pour plus de détails, consultez
Comment l'utiliser.

Note

Lorsque vous utilisez le fournisseur Direct KMS, les noms et les valeurs de vos attributs de
clé primaire apparaissent en texte clair dans le contexte de AWS KMS chiffrement et dans
AWS CloudTrail les journaux des AWS KMS opérations associées. Toutefois, le client de
chiffrement DynamoDB n'expose jamais le texte en clair des valeurs d'attributs chiffrées.

Le fournisseur Direct KMS est l'un des nombreux fournisseurs de matériel cryptographique (CMPs)
pris en charge par le client de chiffrement DynamoDB. Pour plus d'informations sur l'autre CMPs,
voirFournisseur de matériel cryptographique.

Pour obtenir un exemple de code, consultez :

• Java: AwsKmsEncryptedItem

• Python : aws-kms-encrypted-table, aws-kms-encrypted-item

Rubriques

• Comment l'utiliser

• Comment ça marche

Fournisseur de matériel cryptographique 276

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_table.py
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_item.py

AWS SDK de chiffrement de base de données Guide du développeur

Comment l'utiliser

Pour créer un fournisseur KMS direct, utilisez le paramètre Key ID pour spécifier une clé KMS de
chiffrement symétrique dans votre compte. La valeur du paramètre Key ID peut être l'ID de clé, l'ARN
de clé, le nom d'alias ou l'ARN d'alias du AWS KMS key. Pour plus de détails sur les identificateurs
de clé, consultez la section Identifiants de clé dans le guide du AWS Key Management Service
développeur.

Le fournisseur Direct KMS nécessite une clé KMS de chiffrement symétrique. Vous ne pouvez pas
utiliser de clé KMS asymétrique. Toutefois, vous pouvez utiliser une clé KMS multirégionale, une clé
KMS contenant des éléments clés importés ou une clé KMS dans un magasin de clés personnalisé.
Vous devez disposer des autorisations kms : GenerateDataKey et KMS:Decrypt sur la clé KMS. Vous
devez donc utiliser une clé gérée par le client, et non une clé KMS AWS gérée ou AWS détenue.

Le client de chiffrement DynamoDB pour Python détermine la région à AWS KMS appeler depuis la
région dans la valeur du paramètre ID clé, s'il en inclut une. Sinon, il utilise la région du AWS KMS
client, si vous en spécifiez une, ou la région que vous configurez dans le AWS SDK pour Python
(Boto3). Pour plus d'informations sur la sélection de régions en Python, consultez Configuration dans
le manuel de AWS référence de l'API SDK for Python (Boto3).

Le client de chiffrement DynamoDB pour Java détermine la région à AWS KMS appeler depuis la
région du client, si AWS KMS le client que vous spécifiez inclut une région. Dans le cas contraire,
il utilise la région que vous configurez dans le AWS SDK pour Java. Pour plus d'informations sur la
sélection des régions dans le AWS SDK pour Java, voir Région AWS sélection dans le guide du AWS
SDK pour Java développeur.

Java

// Replace the example key ARN and Region with valid values for your application
final String keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
final String region = 'us-west-2'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Fournisseur de matériel cryptographique 277

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html

AWS SDK de chiffrement de base de données Guide du développeur

Python

L'exemple suivant utilise la clé ARN pour spécifier le AWS KMS key. Si votre identifiant de clé
n'inclut pas de Région AWS, le client de chiffrement DynamoDB obtient la région à partir de la
session Botocore configurée, s'il en existe une, ou à partir des paramètres par défaut de Boto.

Replace the example key ID with a valid value
kms_key = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key)

Si vous utilisez des tables globales Amazon DynamoDB, nous vous recommandons de chiffrer vos
données sous une clé multirégionale. AWS KMS Les clés multirégionales sont AWS KMS keys
différentes Régions AWS et peuvent être utilisées de manière interchangeable car elles ont le même
identifiant de clé et le même matériau de clé. Pour plus de détails, consultez la section Utilisation de
clés multirégionales dans le Guide du AWS Key Management Service développeur.

Note

Si vous utilisez la version 2017.11.29 des tables globales, vous devez définir des actions
attributaires afin que les champs de réplication réservés ne soient ni chiffrés ni signés. Pour
plus de détails, consultez Problèmes liés aux anciennes versions des tables globales.

Pour utiliser une clé multirégionale avec le client de chiffrement DynamoDB, créez une clé
multirégionale et répliquez-la dans les régions dans lesquelles votre application s'exécute. Configurez
ensuite le fournisseur Direct KMS pour utiliser la clé multirégionale dans la région dans laquelle le
client de chiffrement DynamoDB appelle. AWS KMS

L'exemple suivant configure le client de chiffrement DynamoDB pour chiffrer les données dans la
région USA Est (Virginie du Nord) (us-east-1) et les déchiffrer dans la région USA Ouest (Oregon)
(us-west-2) à l'aide d'une clé multirégionale.

Java

Dans cet exemple, le client de chiffrement DynamoDB obtient la région à AWS KMS appeler
depuis la région du client. AWS KMS La keyArn valeur identifie une clé multirégionale dans la
même région.

Fournisseur de matériel cryptographique 278

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V1.html

AWS SDK de chiffrement de base de données Guide du développeur

// Encrypt in us-east-1

// Replace the example key ARN and Region with valid values for your application
final String usEastKey = 'arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
final String region = 'us-east-1'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, usEastKey);

// Decrypt in us-west-2

// Replace the example key ARN and Region with valid values for your application
final String usWestKey = 'arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
final String region = 'us-west-2'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, usWestKey);

Python

Dans cet exemple, le client de chiffrement DynamoDB obtient la région à AWS KMS appeler
depuis la région dans l'ARN de la clé.

Encrypt in us-east-1

Replace the example key ID with a valid value
us_east_key = 'arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=us_east_key)

Decrypt in us-west-2

Replace the example key ID with a valid value
us_west_key = 'arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=us_west_key)

Fournisseur de matériel cryptographique 279

AWS SDK de chiffrement de base de données Guide du développeur

Comment ça marche

Le fournisseur Direct KMS renvoie des clés de chiffrement et de signature protégées par un AWS
KMS key code que vous spécifiez, comme indiqué dans le schéma suivant.

• Pour générer du matériel de chiffrement, le fournisseur Direct KMS demande de AWS KMS
générer une clé de données unique pour chaque élément à l'aide d'une clé AWS KMS key que
vous spécifiez. Il dérive les clés de chiffrement et de signature de l'élément depuis la copie en texte
brut de la clé de données, puis retourne les clés de chiffrement et de signature, ainsi que la clé des
données chiffrées, qui est stockée dans l'attribut de description de matériau de l'élément.

Le chiffreur d'élément utilise les clés de chiffrement et de signature, et les supprime de la mémoire
dès que possible. Seule la copie chiffrée de la clé de données à partir de laquelle elles ont été
dérivées est enregistrée dans l'élément chiffré.

• Pour générer du matériel de déchiffrement, le fournisseur KMS direct demande de AWS KMS
déchiffrer la clé de données chiffrée. Puis, il dérive les clés de vérification et de signature de la clé
de données en texte brut, et les retourne au chiffreur d'élément.

Le chiffreur d'élément vérifie l'élément et, si la vérification aboutit, déchiffre les valeurs chiffrées.
Puis, il supprime les clés de la mémoire dès que possible.

Fournisseur de matériel cryptographique 280

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys

AWS SDK de chiffrement de base de données Guide du développeur

Obtention des matériaux de chiffrement

Cette section décrit en détail les entrées, les sorties et le traitement du fournisseur KMS direct quand
il reçoit une demande de matériaux de chiffrement de la part du chiffreur d'élément.

Entrée (depuis l'application)

• L'identifiant clé d'un AWS KMS key.

Entrée (depuis le chiffreur d'élément)

• Contexte de chiffrement DynamoDB

Sortie (vers le chiffreur d'élément)

• Clé de chiffrement (texte brut)

• Clé de signature

• Dans Description du matériau réel : ces valeurs sont enregistrées dans l'attribut de description du
matériau que le client ajoute à l'élément.

• amzn-ddb-env-key: clé de données codée en Base64 cryptée par le AWS KMS key

• amzn-ddb-env-alg: algorithme de chiffrement, par défaut AES/256

• amzn-ddb-sig-alg: algorithme de signature, par défaut, Hmac /256 SHA256

• amzn-ddb-wrap-alg: km

Traitement

1. Le fournisseur Direct KMS envoie AWS KMS une demande d'utilisation de la clé spécifiée AWS
KMS key pour générer une clé de données unique pour l'article. L'opération retourne une clé en
texte brut et une copie chiffrée sous la AWS KMS key. Ce matériau est appelé matériau de clé
initial.

La demande inclut les valeurs suivantes en texte brut dans le contexte de chiffrement AWS
KMS. Ces valeurs non secrètes sont liées en termes de chiffrement à l'objet chiffré, si bien que le
même contexte de chiffrement est requis au déchiffrement. Vous pouvez utiliser ces valeurs pour
identifier l'appel AWS KMS dans les AWS CloudTrail journaux.

• amzn-ddb-env-alg — Algorithme de chiffrement, par défaut AES/256

Fournisseur de matériel cryptographique 281

https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://en.wikipedia.org/wiki/HMAC
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/kms/latest/developerguide/monitoring-overview.html

AWS SDK de chiffrement de base de données Guide du développeur

• amzn-ddb-sig-alg — Algorithme de signature, par défaut Hmac /256 SHA256

• (Facultatif) aws-kms-table — table name

• (Facultatif) partition key name — partition key value (les valeurs binaires sont
codées en Base64)

• (Facultatif) sort key name — sort key value (les valeurs binaires sont codées en
Base64)

Le fournisseur Direct KMS obtient les valeurs du contexte de AWS KMS chiffrement à partir du
contexte de chiffrement DynamoDB de l'élément. Si le contexte de chiffrement DynamoDB n'inclut
aucune valeur, telle que le nom de la table, cette paire nom-valeur est omise du contexte de
chiffrement. AWS KMS

2. Le fournisseur KMS direct dérive une clé de chiffrement symétrique et une clé de signature à
partir de la clé de données. Par défaut, il utilise l'algorithme de hachage sécurisé (SHA) 256 et
la fonction de dérivation de clé RFC5869 basée sur HMAC pour dériver une clé de chiffrement
symétrique AES 256 bits et une clé de signature HMAC-SHA-256 bits.

3. Le fournisseur KMS direct retourne la sortie du chiffreur d'élément.

4. Le chiffreur d'élément utilise la clé de chiffrement pour chiffrer les attributs spécifiés et la clé de
signature pour les signer, à l'aide des algorithmes spécifiés dans la description du matériau réel. Il
supprime les clés en texte brut de la mémoire dès que possible.

Obtention des matériaux de déchiffrement

Cette section décrit en détail les entrées, les sorties et le traitement du fournisseur KMS direct quand
il reçoit une demande de déchiffrement de matériaux de la part du chiffreur d'élément.

Entrée (depuis l'application)

• L'identifiant clé d'un AWS KMS key.

La valeur de l'ID de clé peut être l'ID de clé, l'ARN de clé, le nom d'alias ou l'ARN d'alias du AWS
KMS key. Toutes les valeurs qui ne sont pas incluses dans l'ID de clé, telles que la région, doivent
être disponibles dans le profil AWS nommé. La clé ARN fournit toutes les valeurs AWS KMS
nécessaires.

Entrée (depuis le chiffreur d'élément)

Fournisseur de matériel cryptographique 282

https://en.wikipedia.org/wiki/SHA-2
https://tools.ietf.org/html/rfc5869
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles

AWS SDK de chiffrement de base de données Guide du développeur

• Copie du contexte de chiffrement DynamoDB qui contient le contenu de l'attribut de description du
matériau.

Sortie (vers le chiffreur d'élément)

• Clé de chiffrement (texte brut)

• Clé de signature

Traitement

1. Le fournisseur Direct KMS obtient la clé de données chiffrée à partir de l'attribut de description du
matériau contenu dans l'élément chiffré.

2. Il demande AWS KMS d'utiliser le paramètre spécifié AWS KMS key pour déchiffrer la clé de
données cryptée. L'opération retourne une clé en texte brut.

Cette demande doit utiliser le même contexte de chiffrement AWS KMS que celui utilisé pour
générer et chiffrer la clé de données.

• aws-kms-table – table name

• partition key name— partition key value (les valeurs binaires sont codées en
Base64)

• (Facultatif) sort key name — sort key value (les valeurs binaires sont codées en
Base64)

• amzn-ddb-env-alg — Algorithme de chiffrement, par défaut AES/256

• amzn-ddb-sig-alg — Algorithme de signature, par défaut Hmac /256 SHA256

3. Le fournisseur Direct KMS utilise l'algorithme de hachage sécurisé (SHA) 256 et une fonction de
dérivation de clé RFC5869 basée sur HMAC pour dériver une clé de chiffrement symétrique AES
256 bits et une clé de signature HMAC-SHA-256 bits à partir de la clé de données.

4. Le fournisseur KMS direct retourne la sortie du chiffreur d'élément.

5. Le chiffreur d'élément utilise la clé de signature pour vérifier l'élément. S'il réussit, il utilise la clé
de chiffrement symétrique pour déchiffrer les valeurs d'attribut chiffrées. Ces opérations utilisent
les algorithmes de chiffrement et de signature spécifiés dans la description du matériau réel. Le
chiffreur d'élément supprime les clés en texte brut de la mémoire dès que possible.

Fournisseur de matériel cryptographique 283

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://en.wikipedia.org/wiki/SHA-2
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

AWS SDK de chiffrement de base de données Guide du développeur

Fournisseur de matériaux encapsulé

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de
chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB
pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

Le Wrapped Materials Provider (Wrapped CMP) vous permet d'utiliser des clés d'encapsulation
et de signature provenant de n'importe quelle source avec le client de chiffrement DynamoDB. Le
CMP Wrapped ne dépend d'aucun AWS service. Cependant, vous devez générer et gérer vos clés
d'encapsulation et de signature en dehors du client, y compris la fourniture des clés appropriées pour
vérifier et déchiffrer l'élément.

Le fournisseur CMP encapsulé génère une clé de chiffrement d'élément unique pour chaque élément.
Il encapsule la clé de chiffrement d'élément avec la clé d'encapsulation que vous fournissez et
enregistre la clé de chiffrement d'élément encapsulée dans l'attribut de description de matériau de
l'élément. Comme vous fournissez les clés d'encapsulation et de signature, vous déterminez de
quelle façon les clés d'encapsulation et de signature sont générées, et si elles sont propres à chaque
élément ou sont réutilisées.

Le fournisseur CMP encapsulé constitue une implémentation sécurisée et un bon choix pour les
applications qui peuvent gérer les matériaux de chiffrement.

Le Wrapped CMP est l'un des nombreux fournisseurs de matériel cryptographique (CMPs) pris
en charge par le client de chiffrement DynamoDB. Pour plus d'informations sur l'autre CMPs,
voirFournisseur de matériel cryptographique.

Pour obtenir un exemple de code, consultez :

• Java: AsymmetricEncryptedItem

• Python : wrapped-rsa-encrypted-table, wrapped-symmetric-encrypted-table

Rubriques

• Comment l'utiliser

Fournisseur de matériel cryptographique 284

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AsymmetricEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/wrapped_rsa_encrypted_table.py
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/wrapped_symmetric_encrypted_table.py

AWS SDK de chiffrement de base de données Guide du développeur

• Comment ça marche

Comment l'utiliser

Pour créer un fournisseur CMP encapsulé, spécifiez une clé d'encapsulation (requise au chiffrement),
une clé de désencapsulation (requise au déchiffrement) et une clé de signature. Vous devez fournir
les clés lorsque vous chiffrez et déchiffrez les éléments.

Les clés d'encapsulation, de désencapsulation et de signature peuvent être des clés symétriques ou
des paires de clés asymétriques.

Java

// This example uses asymmetric wrapping and signing key pairs
final KeyPair wrappingKeys = ...
final KeyPair signingKeys = ...

final WrappedMaterialsProvider cmp =
 new WrappedMaterialsProvider(wrappingKeys.getPublic(),
 wrappingKeys.getPrivate(),
 signingKeys);

Python

This example uses symmetric wrapping and signing keys
wrapping_key = ...
signing_key = ...

wrapped_cmp = WrappedCryptographicMaterialsProvider(
 wrapping_key=wrapping_key,
 unwrapping_key=wrapping_key,
 signing_key=signing_key
)

Comment ça marche

Le fournisseur CMP encapsulé génère une nouvelle clé de chiffrement d'élément pour chaque
élément. Il utilise les clés d'encapsulation, de désencapsulation et de signature que vous fournissez,
comme illustré dans le schéma suivant.

Fournisseur de matériel cryptographique 285

AWS SDK de chiffrement de base de données Guide du développeur

Obtention des matériaux de chiffrement

Cette section décrit en détail les entrées, les sorties et le traitement du fournisseur CMP encapsulé
quand il reçoit une demande de matériaux de chiffrement.

Entrée (depuis l'application)

• Clé d'encapsulation : clé symétrique Advanced Encryption Standard (AES) ou clé publique RSA.
Obligatoire si les valeurs d'attribut sont chiffrées. Sinon, elle est facultative et ignorée.

• Clé de désencapsulation : facultative et ignorée.

• Clé de signature

Entrée (depuis le chiffreur d'élément)

• Contexte de chiffrement DynamoDB

Sortie (vers le chiffreur d'élément) :

• Clé de chiffrement d'élément en texte brut

• Clé de signature (inchangée)

• Description du matériau réel : ces valeurs sont enregistrées dans l'attribut de description du
matériau que le client ajoute à l'élément.

• amzn-ddb-env-key : clé de chiffrement d'élément codée en base64

• amzn-ddb-env-alg : algorithme de chiffrement utilisé pour chiffrer l'élément. La valeur par
défaut est AES-256-CBC.

Fournisseur de matériel cryptographique 286

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

AWS SDK de chiffrement de base de données Guide du développeur

• amzn-ddb-wrap-alg : algorithme d'encapsulation utilisé par le fournisseur CMP encapsulé
pour encapsuler la clé de chiffrement d'élément. Si la clé d'encapsulation est une clé AES, la clé
est encapsulée à l'aide de AES-Keywrap non complétée, comme défini dans RFC 3394. Si la
clé d'encapsulation est une clé RSA, elle est chiffrée à l'aide de RSA OAEP avec rembourrage.
MGF1

Traitement

Lorsque vous chiffrez un élément, vous transmettez une clé d'encapsulation et une clé de signature.
Une clé de désencapsulation est facultative et ignorée.

1. Le fournisseur CMP encapsulé génère une clé de chiffrement d'élément symétrique unique pour
l'élément de table.

2. Il utilise la clé d'encapsulation que vous spécifiez pour encapsuler la clé de chiffrement d'élément.
Puis, il la supprime de la mémoire dès que possible.

3. Il retourne la clé de chiffrement d'élément en texte brut, la clé de signature que vous avez fournie
et une description de matériau réel qui inclut la clé de chiffrement d'élément encapsulé, ainsi que
les algorithmes de chiffrement et d'encapsulation.

4. Le chiffreur d'élément utilise la clé de chiffrement en texte brut pour chiffrer l'élément. Il utilise la
clé de signature que vous avez fournie pour signer l'élément. Puis, il supprime les clés en texte
brut de la mémoire dès que possible. Il copie les champs de la description du matériel réel, y
compris la clé de chiffrement encapsulée (amzn-ddb-env-key), dans l'attribut de la description
de matériau de l'élément.

Obtention des matériaux de déchiffrement

Cette section décrit en détail les entrées, les sorties et le traitement du fournisseur CMP encapsulé
quand il reçoit une demande de matériaux de déchiffrement.

Entrée (depuis l'application)

• Clé d'encapsulation : facultative et ignorée.

• Clé de désencapsulation : la même clé symétrique Advanced Encryption Standard (AES) ou la
même clé privée RSA qui correspond à la clé publique RSA utilisée pour chiffrer. Obligatoire si les
valeurs d'attribut sont chiffrées. Sinon, elle est facultative et ignorée.

• Clé de signature

Fournisseur de matériel cryptographique 287

https://tools.ietf.org/html/rfc3394.html
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

AWS SDK de chiffrement de base de données Guide du développeur

Entrée (depuis le chiffreur d'élément)

• Copie du contexte de chiffrement DynamoDB qui contient le contenu de l'attribut de description du
matériau.

Sortie (vers le chiffreur d'élément)

• Clé de chiffrement d'élément en texte brut

• Clé de signature (inchangée)

Traitement

Lorsque vous déchiffrez un élément, vous transmettez une clé de désencapsulation et une clé de
signature. Une clé d'encapsulation est facultative et ignorée.

1. Le fournisseur CMP encapsulé obtient la clé de chiffrement d'élément encapsulé depuis l'attribut
de description du matériau de l'élément.

2. Il utilise la clé et l'algorithme de désencapsulation pour désencapsuler la clé de chiffrement
d'élément.

3. Il retourne la clé de chiffrement de l'élément en texte brut, la clé de signature, et les algorithmes de
chiffrement et de signature au chiffreur d'élément.

4. Le chiffreur d'élément utilise la clé de signature pour vérifier l'élément. S'il réussit, il utilise la clé
de chiffrement d'élément pour déchiffrer l'élément. Puis, il supprime les clés en texte brut de la
mémoire dès que possible.

À propos du fournisseur le plus récent

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de
chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB
pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

Fournisseur de matériel cryptographique 288

AWS SDK de chiffrement de base de données Guide du développeur

Le fournisseur le plus récent est un fournisseur CMP conçu pour travailler avec un magasin de
fournisseur. Il CMPs provient du magasin du fournisseur et obtient le matériel cryptographique qu'il
renvoie depuis le CMPs. Il utilise généralement chaque CMP pour répondre à plusieurs demandes
de matériaux de chiffrement. Cependant, vous pouvez utiliser les fonctions de son magasin de
fournisseur pour contrôler jusqu'à quelle mesure les matériaux sont réutilisés, déterminer la
fréquence de rotation de son fournisseur CMP et, même, modifier le type de fournisseur CMP utilisé
sans modifier le fournisseur le plus récent.

Note

Le code associé au MostRecentProvider symbole du fournisseur le plus récent peut
stocker du matériel cryptographique en mémoire pendant toute la durée de vie du processus.
Cela peut permettre à un appelant d'utiliser des clés qu'il n'est plus autorisé à utiliser.
Le MostRecentProvider symbole est obsolète dans les anciennes versions prises en
charge du client de chiffrement DynamoDB et supprimé de la version 2.0.0. Il est remplacé
par le CachingMostRecentProvider symbole. Pour plus de détails, consultez Mises à
jour du fournisseur le plus récent.

Le fournisseur le plus récent constitue un bon choix pour les applications qui doivent minimiser
les appels au magasin de fournisseur et à sa source de chiffrement, et pour les applications qui
peuvent réutiliser certains matériaux de chiffrement sans enfreindre leurs exigences de sécurité. Par
exemple, il vous permet de protéger votre matériel cryptographique sous un AWS KMS keyin AWS
Key Management Service(AWS KMS) sans appeler AWS KMS chaque fois que vous cryptez ou
décryptez un élément.

Le magasin de fournisseurs que vous choisissez détermine le type de magasin utilisé par le
fournisseur le plus récent et la fréquence à CMPs laquelle il reçoit un nouveau CMP. Vous pouvez
utiliser tout magasin de fournisseur compatible avec le fournisseur le plus récent, y compris les
magasins de fournisseur personnalisés que vous concevez.

Le client de chiffrement DynamoDB inclut MetaStoreun qui crée et renvoie des fournisseurs de
matériaux encapsulés (encapsulés). CMPs Il MetaStore enregistre plusieurs versions du Wrapped
CMPs qu'il génère dans une table DynamoDB interne et les protège par un chiffrement côté client par
une instance interne du client de chiffrement DynamoDB.

Vous pouvez configurer le MetaStore pour utiliser n'importe quel type de CMP interne pour protéger
le contenu du tableau, y compris un fournisseur KMS direct qui génère du matériel cryptographique

Fournisseur de matériel cryptographique 289

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK de chiffrement de base de données Guide du développeur

protégé par vos soins AWS KMS key, un CMP encapsulé qui utilise les clés d'encapsulage et de
signature que vous fournissez, ou un CMP personnalisé compatible que vous concevez.

Pour obtenir un exemple de code, consultez :

• Java: MostRecentEncryptedItem

• Python : most_recent_provider_encrypted_table

Rubriques

• Comment l'utiliser

• Comment ça marche

• Mises à jour du fournisseur le plus récent

Comment l'utiliser

Pour créer un fournisseur le plus récent, vous devez créer et configurer un magasin de fournisseur,
puis créer un fournisseur le plus récent qui utilise le magasin de fournisseur.

Les exemples suivants montrent comment créer un fournisseur le plus récent qui utilise un MetaStore
et protège les versions de sa table DynamoDB interne avec du matériel cryptographique provenant
d'un fournisseur KMS direct. Ces exemples utilisent le CachingMostRecentProvidersymbole.

Chaque fournisseur le plus récent possède un nom qui l'identifie CMPs dans le MetaStore tableau, un
paramètre time-to-live(TTL) et un paramètre de taille de cache qui détermine le nombre d'entrées que
le cache peut contenir. Ces exemples définissent la taille du cache à 1 000 entrées et à un TTL de 60
secondes.

Java

// Set the name for MetaStore's internal table
final String keyTableName = 'metaStoreTable'

// Set the Region and AWS KMS key
final String region = 'us-west-2'
final String keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

// Set the TTL and cache size
final long ttlInMillis = 60000;

Fournisseur de matériel cryptographique 290

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/MostRecentEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/most_recent_provider_encrypted_table.py

AWS SDK de chiffrement de base de données Guide du développeur

final long cacheSize = 1000;

// Name that identifies the MetaStore's CMPs in the provider store
final String materialName = 'testMRP'

// Create an internal DynamoDB client for the MetaStore
final AmazonDynamoDB ddb =
 AmazonDynamoDBClientBuilder.standard().withRegion(region).build();

// Create an internal Direct KMS Provider for the MetaStore
final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider kmsProv = new DirectKmsMaterialProvider(kms,
 keyArn);

// Create an item encryptor for the MetaStore,
// including the Direct KMS Provider
final DynamoDBEncryptor keyEncryptor = DynamoDBEncryptor.getInstance(kmsProv);

// Create the MetaStore
final MetaStore metaStore = new MetaStore(ddb, keyTableName, keyEncryptor);

//Create the Most Recent Provider
final CachingMostRecentProvider cmp = new CachingMostRecentProvider(metaStore,
 materialName, ttlInMillis, cacheSize);

Python

Designate an AWS KMS key
kms_key_id = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

Set the name for MetaStore's internal table
meta_table_name = 'metaStoreTable'

Name that identifies the MetaStore's CMPs in the provider store
material_name = 'testMRP'

Create an internal DynamoDB table resource for the MetaStore
meta_table = boto3.resource('dynamodb').Table(meta_table_name)

Create an internal Direct KMS Provider for the MetaStore
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

Fournisseur de matériel cryptographique 291

AWS SDK de chiffrement de base de données Guide du développeur

Create the MetaStore with the Direct KMS Provider
meta_store = MetaStore(
 table=meta_table,
 materials_provider=kms_cmp
)

Create a Most Recent Provider using the MetaStore
Sets the TTL (in seconds) and cache size (# entries)
most_recent_cmp = MostRecentProvider(
 provider_store=meta_store,
 material_name=material_name,
 version_ttl=60.0,
 cache_size=1000
)

Comment ça marche

Le fournisseur le plus récent CMPs provient d'un magasin de fournisseurs. Puis, il utilise le
fournisseur CMP pour générer les matériaux de chiffrement qu'il retourne au chiffreur d'élément.

À propos du fournisseur le plus récent

Le fournisseur le plus récent obtient un fournisseur CMP à partir d'un magasin de fournisseur.
Puis, il utilise le fournisseur CMP pour générer les matériaux de chiffrement qu'il retourne. Chaque
fournisseur le plus récent est associé à une boutique de fournisseurs, mais une boutique de
fournisseurs peut CMPs approvisionner plusieurs fournisseurs sur plusieurs hôtes.

Le fournisseur le plus récent peut travailler avec n'importe quel fournisseur CMP compatible d'un
magasin de fournisseur. Il demande du matériel de chiffrement ou de déchiffrement au CMP et
renvoie le résultat au chiffreur d'articles. Il n'effectue pas d'opération de chiffrement.

Pour demander un fournisseur CMP auprès de son magasin de fournisseur, le fournisseur le plus
récent fournit son nom de matériau et la version d'un fournisseur CMP existant qu'il veut utiliser. Pour
les matériaux de chiffrement, le fournisseur le plus récent demande toujours la version maximale (la
« plus récente »). Pour les matériaux de chiffrement, il demande la version du fournisseur CMP qui a
été utilisée pour créer les matériaux de chiffrement, comme illustré dans le diagramme suivant.

Fournisseur de matériel cryptographique 292

AWS SDK de chiffrement de base de données Guide du développeur

Le fournisseur le plus récent enregistre les versions CMPs renvoyées par le magasin du fournisseur
dans un cache local le moins récemment utilisé (LRU) en mémoire. Le cache permet au fournisseur
le plus récent d'obtenir CMPs ce dont il a besoin sans avoir à appeler le magasin du fournisseur pour
chaque élément. Vous pouvez effacer le cache à la demande.

Le fournisseur le plus récent utilise une time-to-livevaleur configurable que vous pouvez ajuster en
fonction des caractéristiques de votre application.

À propos de MetaStore

Vous pouvez utiliser un fournisseur le plus récent avec n'importe quel magasin de fournisseur, y
compris un magasin de fournisseur personnalisé compatible. Le client de chiffrement DynamoDB
inclut MetaStore une implémentation sécurisée que vous pouvez configurer et personnaliser.

A MetaStoreest un magasin fournisseur qui crée et renvoie des Wrapped CMPs configurés avec
la clé d'encapsulation, la clé de déballage et la clé de signature requises par Wrapped CMPs . A
MetaStore est une option sécurisée pour le fournisseur le plus récent, car Wrapped génère CMPs
toujours des clés de chiffrement uniques pour chaque article. Seule la clé d'encapsulation qui protège
la clé de chiffrement d'élément et la clé de signature sont réutilisées.

Le schéma suivant montre les composants du fournisseur le plus récent MetaStore et la manière dont
il interagit avec celui-ci.

Fournisseur de matériel cryptographique 293

AWS SDK de chiffrement de base de données Guide du développeur

Il MetaStore génère le Wrapped CMPs, puis le stocke (sous forme cryptée) dans une table
DynamoDB interne. La clé de partition est le nom du matériel du fournisseur le plus récent ; la clé
de tri son numéro de version. Les éléments de la table sont protégés par un client de chiffrement
DynamoDB interne, comprenant un crypteur d'éléments et un fournisseur interne de matériel
cryptographique (CMP).

Vous pouvez utiliser n'importe quel type de CMP interne MetaStore, y compris un fournisseur
KMS direct, un CMP encapsulé avec du matériel cryptographique que vous fournissez ou un CMP
personnalisé compatible. Si le CMP interne de votre ordinateur MetaStore est un fournisseur KMS
direct, vos clés d'emballage et de signature réutilisables sont protégées par un AWS KMS keyin AWS
Key Management Service(AWS KMS). Les MetaStore appels AWS KMS chaque fois qu'il ajoute une
nouvelle version CMP à sa table interne ou qu'il obtient une version CMP à partir de sa table interne.

Définition d'une time-to-live valeur

Vous pouvez définir une valeur time-to-live (TTL) pour chaque fournisseur le plus récent que vous
créez. En général, utilisez la valeur TTL la plus basse adaptée à votre application.

L'utilisation de la valeur TTL est modifiée dans le CachingMostRecentProvider symbole du
fournisseur le plus récent.

Fournisseur de matériel cryptographique 294

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK de chiffrement de base de données Guide du développeur

Note

Le MostRecentProvider symbole du fournisseur le plus récent est obsolète dans les
anciennes versions prises en charge du client de chiffrement DynamoDB et supprimé de la
version 2.0.0. Il est remplacé par le CachingMostRecentProvider symbole. Nous vous
recommandons de mettre à jour votre code dès que possible. Pour plus de détails, consultez
Mises à jour du fournisseur le plus récent.

CachingMostRecentProvider

CachingMostRecentProviderUtilise la valeur TTL de deux manières différentes.

• Le TTL détermine la fréquence à laquelle le fournisseur le plus récent vérifie la présence
d'une nouvelle version du CMP dans le magasin du fournisseur. Si une nouvelle version
est disponible, le fournisseur le plus récent remplace son CMP et actualise son matériel
cryptographique. Dans le cas contraire, il continue d'utiliser son CMP et son matériel
cryptographique actuels.

• Le TTL détermine la durée pendant CMPs laquelle le cache peut être utilisé. Avant d'utiliser
un CMP mis en cache pour le chiffrement, le fournisseur le plus récent évalue le temps passé
dans le cache. Si le temps de cache du CMP dépasse le TTL, le CMP est expulsé du cache
et le fournisseur le plus récent obtient une nouvelle version de CMP dans le magasin de son
fournisseur.

MostRecentProvider

Dans leMostRecentProvider, le TTL détermine la fréquence à laquelle le fournisseur le plus
récent vérifie la présence d'une nouvelle version du CMP dans le magasin du fournisseur. Si une
nouvelle version est disponible, le fournisseur le plus récent remplace son CMP et actualise son
matériel cryptographique. Dans le cas contraire, il continue d'utiliser son CMP et son matériel
cryptographique actuels.

Le TTL ne détermine pas la fréquence à laquelle une nouvelle version du CMP est créée. Vous créez
de nouvelles versions CMP en faisant pivoter les matériaux cryptographiques.

La valeur TTL idéale varie en fonction de l'application et de ses objectifs de latence et de
disponibilité. Un TTL inférieur améliore votre profil de sécurité en réduisant le temps pendant lequel
les documents cryptographiques sont stockés en mémoire. En outre, un TTL inférieur actualise les

Fournisseur de matériel cryptographique 295

AWS SDK de chiffrement de base de données Guide du développeur

informations critiques plus fréquemment. Par exemple, si votre CMP interne est un fournisseur KMS
direct, il vérifie plus fréquemment que l'appelant est toujours autorisé à utiliser un. AWS KMS key

Toutefois, si le TTL est trop bref, les appels fréquents vers le magasin du fournisseur peuvent
augmenter vos coûts et obliger ce dernier à limiter les demandes provenant de votre application
et d'autres applications partageant votre compte de service. Il peut également être avantageux de
coordonner le TTL avec la vitesse à laquelle vous faites pivoter les documents cryptographiques.

Pendant les tests, modifiez le TTL et la taille du cache en fonction des différentes charges de travail
jusqu'à ce que vous trouviez une configuration adaptée à votre application et à vos normes de
sécurité et de performance.

Rotation des matériaux de chiffrement

Lorsqu'un fournisseur le plus récent a besoin de matériel de chiffrement, il utilise toujours la version la
plus récente de son CMP dont il a connaissance. La fréquence à laquelle il vérifie la présence d'une
version plus récente est déterminée par la valeur time-to-live(TTL) que vous définissez lorsque vous
configurez le fournisseur le plus récent.

Lorsque le TTL expire, le fournisseur le plus récent vérifie la version la plus récente du CMP dans le
magasin du fournisseur. Si un CMP est disponible, le fournisseur le plus récent l'obtient et remplace
le CMP dans son cache. Il utilise ce CMP et son matériel cryptographique jusqu'à ce qu'il découvre
que le magasin du fournisseur dispose d'une version plus récente.

Pour demander au magasin de fournisseur de créer une version d'un CMP pour un fournisseur le
plus récent, appelez l'opération Create New Provider du magasin de fournisseur avec le nom de
matériau du fournisseur le plus récent. Le magasin de fournisseur crée un CMP et enregistre une
copie chiffrée dans son stockage interne avec un numéro de version supérieur. (Il retourne aussi un
CMP, mais vous pouvez l'ignorer.) Par conséquent, la prochaine fois que le fournisseur le plus récent
demandera au magasin du fournisseur le numéro de version maximal de celui-ci CMPs, il obtiendra
le nouveau numéro de version supérieur et l'utilisera dans les demandes ultérieures adressées au
magasin pour voir si une nouvelle version du CMP a été créée.

Vous pouvez planifier vos appels Create New Provider en fonction de l'heure, du nombre d'éléments
ou d'attributs traités, ou de toute autre métrique qui revêt un sens pour votre application.

Obtention des matériaux de chiffrement

Le fournisseur le plus récent utilise le processus suivant, illustré dans le diagramme, pour obtenir
les matériaux de chiffrement qu'il retourne au chiffreur d'élément. La sortie dépend du type de

Fournisseur de matériel cryptographique 296

AWS SDK de chiffrement de base de données Guide du développeur

fournisseur CMP que le magasin de fournisseur retourne. Le fournisseur le plus récent peut utiliser
n'importe quel magasin de fournisseurs compatible, y compris MetaStore celui inclus dans le client de
chiffrement DynamoDB.

Lorsque vous créez un fournisseur le plus récent à l'aide du
CachingMostRecentProvidersymbole, vous spécifiez un magasin de fournisseurs, le nom du
fournisseur le plus récent et une valeur time-to-live(TTL). Vous pouvez également éventuellement
spécifier une taille de cache, qui détermine le nombre maximal de documents cryptographiques
pouvant exister dans le cache.

Quand le chiffreur d'élément demande au fournisseur le plus récent les matériaux de chiffrement, le
fournisseur le plus récent commence par chercher dans le cache le dernier numéro de version de ses
fournisseurs CMP.

• S'il trouve la dernière version du CMP dans son cache et que le CMP n'a pas dépassé la valeur
TTL, le fournisseur le plus récent utilise le CMP pour générer du matériel de chiffrement. Puis,

Fournisseur de matériel cryptographique 297

AWS SDK de chiffrement de base de données Guide du développeur

il retourne les matériaux de chiffrement au chiffreur d'élément. Cette opération ne requiert pas
d'appel au magasin de fournisseur.

• Si la dernière version du CMP n'est pas dans son cache, ou si elle est dans le cache mais
a dépassé sa valeur TTL, le fournisseur le plus récent demande un CMP à son magasin de
fournisseurs. La demande inclut le nom de matériau du fournisseur le plus récent et le numéro de
version maximal qu'il connaît.

1. Le magasin de fournisseur retourne un fournisseur CMP à partir de son stockage permanent. Si
le magasin du fournisseur est un MetaStore, il obtient un CMP encapsulé chiffré à partir de sa
table DynamoDB interne en utilisant le nom du matériau du fournisseur le plus récent comme
clé de partition et le numéro de version comme clé de tri. Il MetaStore utilise son crypteur
d'éléments interne et son CMP interne pour déchiffrer le CMP encapsulé. Ensuite, il retourne le
fournisseur CMP en texte brut au fournisseur le plus récent. Si le CMP interne est un fournisseur
KMS direct, cette étape inclut un appel de AWS Key Management Service (AWS KMS).

2. Le fournisseur CMP ajoute le champ amzn-ddb-meta-id à la description du matériau réel.
Sa valeur est le nom de matériau et la version du CMP dans sa table interne. Le magasin de
fournisseur retourne le fournisseur CMP au fournisseur le plus récent.

3. Le fournisseur le plus récent met en cache mémoire le fournisseur CMP.

4. Le fournisseur le plus récent utilise le fournisseur CMP pour générer les matériaux de
chiffrement. Puis, il retourne les matériaux de chiffrement au chiffreur d'élément.

Obtention des matériaux de déchiffrement

Quand le chiffreur d'élément demande au fournisseur le plus récent les matériaux de chiffrement, le
fournisseur le plus récent utilise le processus suivant pour les obtenir et les retourner.

1. Le fournisseur le plus récent demande au magasin de fournisseur le numéro de version des
matériaux de chiffrement utilisés pour chiffrer l'élément. Il transmet la description du matériau réel
depuis l'attribut de description du matériau de l'élément.

2. Le magasin de fournisseur obtient le numéro de version du CMP en charge du chiffrement auprès
du champ amzn-ddb-meta-id de la description du matériau réel et le retourne au fournisseur le
plus récent.

3. Le fournisseur le plus récent recherche dans son cache le numéro de version du CMP utilisé pour
chiffrer et signer l'élément.

Fournisseur de matériel cryptographique 298

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK de chiffrement de base de données Guide du développeur

• S'il trouve que la version correspondante du CMP se trouve dans son cache et que le CMP n'a pas
dépassé la valeur time-to-live (TTL), le fournisseur le plus récent utilise le CMP pour générer du
matériel de déchiffrement. Puis, il retourne les matériaux de déchiffrement au chiffreur d'élément.
Cette opération ne requiert pas d'appel au magasin de fournisseur ou à un autre fournisseur CMP.

• Si la version correspondante du CMP ne se trouve pas dans son cache, ou si le cache AWS KMS
key a dépassé sa valeur TTL, le fournisseur le plus récent demande un CMP à son magasin de
fournisseurs. Il envoie le nom de matériau et le numéro de version du CMP de chiffrement dans la
demande.

1. Le magasin de fournisseur recherche dans le stockage permanent le fournisseur CMP en
utilisant le nom du fournisseur le plus récent comme clé de partition et le numéro de version
comme clé de tri.

• Si le nom et le numéro de version ne sont pas dans le stockage permanent, le magasin
de fournisseur lève une exception. Si le magasin de fournisseur a été utilisé pour générer
le CMP, celui-ci doit être stocké dans son stockage permanent, à moins qu'il ne soit
intentionnellement supprimé.

• Si le CMP avec le nom et le numéro de version correspondants se trouve dans le stockage
permanent du magasin de fournisseur, celui-ci retourne le CMP spécifié au fournisseur le plus
récent.

Si le magasin du fournisseur est un MetaStore, il obtient le CMP chiffré à partir de sa table
DynamoDB. Puis, il utilise les matériaux de chiffrement de son fournisseur CMP interne pour
déchiffrer le CMP chiffré avant de retourner le fournisseur CMP au fournisseur le plus récent.
Si le CMP interne est un fournisseur KMS direct, cette étape inclut un appel de AWS Key
Management Service (AWS KMS).

2. Le fournisseur le plus récent met en cache mémoire le fournisseur CMP.

3. Le fournisseur le plus récent utilise le fournisseur CMP pour générer les matériaux de
déchiffrement. Puis, il retourne les matériaux de déchiffrement au chiffreur d'élément.

Mises à jour du fournisseur le plus récent

Le symbole du fournisseur le plus récent est remplacé par
MostRecentProviderCachingMostRecentProvider.

Fournisseur de matériel cryptographique 299

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK de chiffrement de base de données Guide du développeur

Note

Le MostRecentProvider symbole, qui représente le fournisseur le plus récent, est
obsolète dans la version 1.15 du client de chiffrement DynamoDB pour Java et dans la
version 1.3 du client de chiffrement DynamoDB pour Python et supprimé des versions 2.0.0
du client de chiffrement DynamoDB dans les deux implémentations linguistiques. Utilisez
plutôt leCachingMostRecentProvider.

CachingMostRecentProviderimplémente les modifications suivantes :

• Supprime CachingMostRecentProvider périodiquement les documents cryptographiques de la
mémoire lorsque leur durée en mémoire dépasse la valeur configurée time-to-live (TTL).

Ils MostRecentProvider peuvent stocker du matériel cryptographique en mémoire pendant
toute la durée de vie du processus. Par conséquent, le fournisseur le plus récent n'est peut-être
pas au courant des modifications d'autorisation. Il peut utiliser des clés de chiffrement une fois que
les autorisations de l'appelant à les utiliser ont été révoquées.

Si vous ne pouvez pas effectuer la mise à jour vers cette nouvelle version, vous pouvez obtenir un
effet similaire en appelant régulièrement la clear() méthode dans le cache. Cette méthode vide
manuellement le contenu du cache et oblige le fournisseur le plus récent à demander un nouveau
CMP et de nouveaux matériaux cryptographiques.

• CachingMostRecentProviderIl inclut également un paramètre de taille de cache qui vous
permet de mieux contrôler le cache.

Pour effectuer la mise à jour vers leCachingMostRecentProvider, vous devez modifier le nom
du symbole dans votre code. À tous les autres égards, le CachingMostRecentProvider est
entièrement rétrocompatible avec leMostRecentProvider. Il n'est pas nécessaire de chiffrer à
nouveau les éléments du tableau.

Cependant, cela CachingMostRecentProvider génère davantage d'appels vers l'infrastructure
clé sous-jacente. Il appelle le magasin du fournisseur au moins une fois par intervalle time-to-live
(TTL). Les applications avec de nombreuses applications actives CMPs (en raison de rotations
fréquentes) ou les applications avec de grands flottes sont les plus susceptibles d'être sensibles à ce
changement.

Fournisseur de matériel cryptographique 300

AWS SDK de chiffrement de base de données Guide du développeur

Avant de publier votre code mis à jour, testez-le minutieusement pour vous assurer que les appels
les plus fréquents n'altèrent pas votre application ou n'entraînent pas de ralentissement de la part
des services dont dépend votre fournisseur, tels que AWS Key Management Service (AWS KMS) ou
Amazon DynamoDB. Pour atténuer les problèmes de performances, ajustez la taille du cache et celle
time-to-live du en CachingMostRecentProvider fonction des caractéristiques de performance
que vous observez. Pour de plus amples informations, consultez Définition d'une time-to-live valeur.

Fournisseur de matériaux statique

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de
chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB
pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

Le fournisseur de matériaux statiques (Static CMP) est un fournisseur de matériaux cryptographiques
(CMP) très simple destiné aux tests, aux proof-of-concept démonstrations et à la compatibilité
existante.

Pour utiliser le fournisseur CMP statique afin de chiffrer un élément de table, vous fournissez une
clé de chiffrement symétrique AES (Advanced Encryption Standard) et une clé ou paire de clés de
signature. Vous devez fournir les mêmes clés pour déchiffrer l'élément chiffré. Le fournisseur CMP
statique n'assure aucune opération de chiffrement. Au lieu de cela, il transmet inchangées les clés
de chiffrement que vous fournissez au chiffreur d'élément. Le chiffreur d'élément chiffre les éléments
directement sous la clé de chiffrement. Puis, il utilise directement la clé de signature pour les signer.

Comme le fournisseur CMP statique ne génère pas de matériau de chiffrement unique, tous les
éléments de table que vous traitez sont chiffrés avec la même clé de chiffrement et signés par la
même clé de signature. Lorsque vous utilisez la même clé pour chiffrer les valeurs d'attribut de
nombreux éléments, ou que vous utilisez la même clé ou paire de clés pour signer tous les éléments,
vous risquez de dépasser les limites de chiffrement des clés.

Note

Le fournisseur statique asymétrique de la bibliothèque Java n'est pas un fournisseur statique.
Il fournit juste d'autres constructeurs au fournisseur CMP encapsulé. Il est sûr pour une

Fournisseur de matériel cryptographique 301

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/AsymmetricStaticProvider.html

AWS SDK de chiffrement de base de données Guide du développeur

utilisation en production, mais vous devez utiliser directement le CMP encapsulé chaque fois
que possible.

Le CMP statique est l'un des nombreux fournisseurs de matériel cryptographique (CMPs) pris
en charge par le client de chiffrement DynamoDB. Pour plus d'informations sur l'autre CMPs,
voirFournisseur de matériel cryptographique.

Pour obtenir un exemple de code, consultez :

• Java: SymmetricEncryptedItem

Rubriques

• Comment l'utiliser

• Comment ça marche

Comment l'utiliser

Pour créer un fournisseur statique, fournissez une clé ou paire de clés de chiffrement, et une clé
ou paire de clés de signature. Vous devez fournir le matériau de clé pour chiffrer et déchiffrer les
éléments de table.

Java

// To encrypt
SecretKey cek = ...; // Encryption key
SecretKey macKey = ...; // Signing key
EncryptionMaterialsProvider provider = new SymmetricStaticProvider(cek, macKey);

// To decrypt
SecretKey cek = ...; // Encryption key
SecretKey macKey = ...; // Verification key
EncryptionMaterialsProvider provider = new SymmetricStaticProvider(cek, macKey);

Python

You can provide encryption materials, decryption materials, or both
encrypt_keys = EncryptionMaterials(
 encryption_key = ...,
 signing_key = ...

Fournisseur de matériel cryptographique 302

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/SymmetricEncryptedItem.java

AWS SDK de chiffrement de base de données Guide du développeur

)

decrypt_keys = DecryptionMaterials(
 decryption_key = ...,
 verification_key = ...
)

static_cmp = StaticCryptographicMaterialsProvider(
 encryption_materials=encrypt_keys
 decryption_materials=decrypt_keys
)

Comment ça marche

Le fournisseur statique transmet les clés de chiffrement et de signature que vous fournissez au
chiffreur d'élément, où elles sont utilisées directement pour chiffrer et signer vos éléments de table.
À moins que vous ne fournissiez différentes clés pour chaque élément, les mêmes clés sont utilisées
pour chaque élément.

Obtention des matériaux de chiffrement

Cette section décrit en détail les entrées, les sorties et le traitement du fournisseur CMP statique
quand il reçoit une demande de matériaux de chiffrement.

Entrée (depuis l'application)

• Une clé de chiffrement — Il doit s'agir d'une clé symétrique, telle qu'une clé AES (Advanced
Encryption Standard).

• Une clé de signature : il peut s'agir d'une clé symétrique ou d'une paire de clés asymétrique.

Entrée (depuis le chiffreur d'élément)

Fournisseur de matériel cryptographique 303

https://tools.ietf.org/html/rfc3394.html
https://tools.ietf.org/html/rfc3394.html

AWS SDK de chiffrement de base de données Guide du développeur

• Contexte de chiffrement DynamoDB

Sortie (vers le chiffreur d'élément)

• Clé de chiffrement transmise comme entrée.

• Clé de signature transmise comme entrée.

• Description de matériau réel : description de matériau demandé, le cas échéant, inchangé.

Obtention des matériaux de déchiffrement

Cette section décrit en détail les entrées, les sorties et le traitement du fournisseur CMP statique
quand il reçoit une demande de matériaux de déchiffrement.

Même s'il comporte des méthodes distinctes pour l'obtention des matériaux de chiffrement et celle
des matériaux de déchiffrement, le comportement est le même.

Entrée (depuis l'application)

• Une clé de chiffrement — Il doit s'agir d'une clé symétrique, telle qu'une clé AES (Advanced
Encryption Standard).

• Une clé de signature : il peut s'agir d'une clé symétrique ou d'une paire de clés asymétrique.

Entrée (depuis le chiffreur d'élément)

• Contexte de chiffrement DynamoDB (non utilisé)

Sortie (vers le chiffreur d'élément)

• Clé de chiffrement transmise comme entrée.

• Clé de signature transmise comme entrée.

Fournisseur de matériel cryptographique 304

https://tools.ietf.org/html/rfc3394.html
https://tools.ietf.org/html/rfc3394.html

AWS SDK de chiffrement de base de données Guide du développeur

Langages de programmation disponibles pour le client de chiffrement
Amazon DynamoDB

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de
chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB
pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

Le client de chiffrement Amazon DynamoDB est disponible pour les langages de programmation
suivants. Les bibliothèques spécifiques au langage varient, mais les implémentations qui en résultent
sont interopérables. Par exemple, vous pouvez chiffrer (et signer) un élément avec le client Java et le
déchiffrer avec le client Python.

Pour plus d'informations, consultez la rubrique correspondante.

Rubriques

• Client de chiffrement Amazon DynamoDB pour Java

• Client de chiffrement DynamoDB pour Python

Client de chiffrement Amazon DynamoDB pour Java

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de
chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB
pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

Cette rubrique explique comment installer et utiliser le client de chiffrement Amazon DynamoDB pour
Java. Pour plus de détails sur la programmation avec le client de chiffrement DynamoDB, consultez

Langages de programmation 305

https://aws.github.io/aws-dynamodb-encryption-java/

AWS SDK de chiffrement de base de données Guide du développeur

les exemples Java, les exemples du référentiel GitHub et le Javadoc pour aws-dynamodb-encryption-
java le client de chiffrement DynamoDB.

Note

Versions 1. x. x du client de chiffrement DynamoDB pour Java sont end-of-support en phase
à compter de juillet 2022. Passez à une version plus récente dès que possible.

Rubriques

• Prérequis

• Installation

• Utilisation du client de chiffrement DynamoDB pour Java

• Exemple de code pour le client de chiffrement DynamoDB pour Java

Prérequis

Avant d'installer le client de chiffrement Amazon DynamoDB pour Java, assurez-vous de remplir les
conditions préalables suivantes.

Environnement de développement Java

Vous aurez besoin de Java 8 ou version ultérieure. Sur le site web d'Oracle, consultez la page
Téléchargements Java SE, puis téléchargez et installez le kit Java SE Development (JDK).

Si vous utilisez le kit JDK Oracle, vous devez également télécharger et installer les fichiers Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy.

AWS SDK pour Java

Le client de chiffrement DynamoDB nécessite le module DynamoDB même si votre application
n'interagit pas avec DynamoDB. AWS SDK pour Java Vous pouvez installer la totalité du kit SDK
ou le seul module. Si vous utilisez Maven, ajoutez aws-java-sdk-dynamodb à votre fichier
pom.xml.

Pour plus d'informations sur l'installation et la configuration du AWS SDK pour Java, consultez
AWS SDK pour Java.

Langages de programmation 306

https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/
https://aws.github.io/aws-dynamodb-encryption-java/
https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/getting-started.html

AWS SDK de chiffrement de base de données Guide du développeur

Installation

Vous pouvez installer le client de chiffrement Amazon DynamoDB pour Java de la manière suivante.

Manuellement

Pour installer le client de chiffrement Amazon DynamoDB pour Java, clonez ou téléchargez le
référentiel. aws-dynamodb-encryption-java GitHub

Utilisation d'Apache Maven

Le client de chiffrement Amazon DynamoDB pour Java est disponible via Apache Maven avec la
définition de dépendance suivante.

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-dynamodb-encryption-java</artifactId>
 <version>version-number</version>
</dependency>

Après avoir installé le SDK, commencez par consulter l'exemple de code présenté dans ce guide et le
Javadoc du client de chiffrement DynamoDB activé. GitHub

Utilisation du client de chiffrement DynamoDB pour Java

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de
chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB
pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

Cette rubrique décrit certaines fonctionnalités du client de chiffrement DynamoDB en Java qui ne sont
peut-être pas disponibles dans d'autres implémentations de langage de programmation.

Pour plus de détails sur la programmation avec le client de chiffrement DynamoDB, consultez les
exemples Java, les exemples ci-dessous et le Javadoc pour aws-dynamodb-encryption-java
repository GitHub le client de chiffrement DynamoDB.

Langages de programmation 307

https://github.com/aws/aws-dynamodb-encryption-java/
https://maven.apache.org/
https://aws.github.io/aws-dynamodb-encryption-java/
https://aws.github.io/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/
https://aws.github.io/aws-dynamodb-encryption-java/

AWS SDK de chiffrement de base de données Guide du développeur

Rubriques

• Crypteurs d'objets : AttributeEncryptor et Dynamo DBEncryptor

• Configuration du comportement d'enregistrement

• Actions d'attribut en Java

• Remplacer les noms des tables

Crypteurs d'objets : AttributeEncryptor et Dynamo DBEncryptor

Le client de chiffrement DynamoDB en Java possède deux chiffreurs d'éléments : le Dynamo de
niveau inférieur et le. DBEncryptor AttributeEncryptor

AttributeEncryptorIl s'agit d'une classe d'assistance qui vous aide à utiliser le Dynamo
DBMapper DynamoDB Encryptor dans le AWS SDK pour Java client de chiffrement DynamoDB.
Lorsque vous utilisez le AttributeEncryptor avec le DynamoDBMapper, il chiffre et signe vos
éléments de manière transparente lorsque vous les enregistrez. Il vérifie et déchiffre également vos
éléments de manière transparente lorsque vous les chargez.

Configuration du comportement d'enregistrement

Vous pouvez utiliser le AttributeEncryptor et DynamoDBMapper pour ajouter ou remplacer
des éléments de tableau par des attributs signés uniquement ou chiffrés et signés. Pour ces tâches,
nous vous recommandons de le configurer pour utiliser le comportement d'enregistrement PUT,
comme illustré dans l'exemple suivant. Sinon, il est possible que vous ne puissiez pas déchiffrer vos
données.

DynamoDBMapperConfig mapperConfig =
 DynamoDBMapperConfig.builder().withSaveBehavior(SaveBehavior.PUT).build();
DynamoDBMapper mapper = new DynamoDBMapper(ddb, mapperConfig, new
 AttributeEncryptor(encryptor));

Si vous utilisez le comportement d'enregistrement par défaut, qui met à jour uniquement les attributs
modélisés dans l'élément de table, les attributs non modélisés ne sont pas inclus dans la signature et
ne sont pas modifiés par les écritures de table. Par conséquent, lors de lectures ultérieures de tous
les attributs, la signature ne sera pas validée, car elle n'inclut pas d'attributs non modélisés.

Vous pouvez également utiliser le comportement de sauvegarde CLOBBER. Comportement
d'enregistrement est identique au comportement d'enregistrement PUT, si ce n'est qu'il désactive le
verrouillage optimiste et remplace l'élément dans la table.

Langages de programmation 308

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html

AWS SDK de chiffrement de base de données Guide du développeur

Pour éviter les erreurs de signature, le client de chiffrement DynamoDB lance une exception
d'exécution si un est utilisé avec AttributeEncryptor un qui n'est pas configuré avec
DynamoDBMapper un comportement d'enregistrement de ou. CLOBBER PUT

Pour voir ce code utilisé dans un exemple, consultez Utilisation de la Dynamo DBMapper l'exemple
AwsKmsEncryptedObject.java dans le aws-dynamodb-encryption-java référentiel dans GitHub.

Actions d'attribut en Java

Les actions d'attribut déterminent les valeurs d'attribut chiffrées et signées, qui sont uniquement
signées et qui sont ignorées. La méthode que vous utilisez pour spécifier les actions attributaires
varie selon que vous utilisez le Dynamo DynamoDBMapper et AttributeEncryptor ou le Dynamo
DBEncryptor de niveau inférieur.

Important

Après avoir utilisé vos actions d’attribut pour chiffrer vos éléments de table, l’ajouter ou la
suppression d’attributs de votre modèle de données peut provoquer une erreur de validation
de signature qui vous empêche de déchiffrer vos données. Pour obtenir une explication
détaillée, consultez Modification de votre modèle de données.

Actions attributaires pour le Dynamo DBMapper

Quand vous utilisez les DynamoDBMapper et AttributeEncryptor, vous utilisez les annotations
pour spécifier les actions d'attribut. Le client de chiffrement DynamoDB utilise les annotations
d'attribut DynamoDB standard qui définissent le type d'attribut afin de déterminer comment protéger
un attribut. Par défaut, tous les attributs sont chiffrés et signés à l'exception des clés primaires, qui
sont signées, mais pas chiffrées.

Note

Ne chiffrez pas la valeur des attributs avec l'annotation @Dynamo DBVersion Attribute, bien
que vous puissiez (et devriez) les signer. Sinon, les conditions qui utilisent sa valeur auront
des effets inattendus.

// Attributes are encrypted and signed
@DynamoDBAttribute(attributeName="Description")

Langages de programmation 309

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedObject.java
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Annotations.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.OptimisticLocking.html

AWS SDK de chiffrement de base de données Guide du développeur

// Partition keys are signed but not encrypted
@DynamoDBHashKey(attributeName="Title")

// Sort keys are signed but not encrypted
@DynamoDBRangeKey(attributeName="Author")

Pour spécifier des exceptions, utilisez les annotations de chiffrement définies dans le client de
chiffrement DynamoDB pour Java. Si vous les spécifiez au niveau classe, elles deviennent la valeur
par défaut pour la classe.

// Sign only
@DoNotEncrypt

// Do nothing; not encrypted or signed
@DoNotTouch

Par exemple, ces annotations signent mais ne chiffrent pas l'attribut PublicationYear, et ni ne
chiffrent ou ne signent la valeur d'attribut ISBN.

// Sign only (override the default)
@DoNotEncrypt
@DynamoDBAttribute(attributeName="PublicationYear")

// Do nothing (override the default)
@DoNotTouch
@DynamoDBAttribute(attributeName="ISBN")

Actions attributaires pour le Dynamo DBEncryptor

Pour spécifier des actions d'attribut lorsque vous utilisez DBEncryptor directement le Dynamo, créez
un HashMap objet dans lequel les paires nom-valeur représentent les noms d'attributs et les actions
spécifiées.

Les valeurs valides des actions d'attribut sont définies dans le type énuméré EncryptionFlags.
Vous pouvez utiliser ENCRYPT et SIGN conjointement, utiliser SIGN seul, ou omettre les deux.
Toutefois, si vous l'utilisez ENCRYPT seul, le client de chiffrement DynamoDB génère une erreur.
Vous ne pouvez pas chiffrer un attribut que vous ne signez pas.

ENCRYPT

Langages de programmation 310

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html

AWS SDK de chiffrement de base de données Guide du développeur

SIGN

Warning

Ne chiffrez pas les attributs de la clé primaire. Ils doivent rester en texte brut pour que
DynamoDB puisse trouver l'élément sans exécuter une analyse complète du tableau.

Si vous spécifiez une clé primaire dans le contexte de chiffrement, puis que vous la spécifiez
ENCRYPT dans l'action d'attribut pour l'un ou l'autre des attributs de clé primaire, le client de
chiffrement DynamoDB émet une exception.

Par exemple, le code Java suivant crée un code actions HashMap qui chiffre et signe tous les
attributs de l'recordélément. Les exceptions sont les attributs de clé de partition et de clé de tri, qui
sont signés mais non chiffrés, et l'attribut test, qui n'est ni signé ni chiffré.

final EnumSet<EncryptionFlags> signOnly = EnumSet.of(EncryptionFlags.SIGN);
final EnumSet<EncryptionFlags> encryptAndSign = EnumSet.of(EncryptionFlags.ENCRYPT,
 EncryptionFlags.SIGN);
final Map<String, Set<EncryptionFlags>> actions = new HashMap<>();

for (final String attributeName : record.keySet()) {
 switch (attributeName) {
 case partitionKeyName: // no break; falls through to next case
 case sortKeyName:
 // Partition and sort keys must not be encrypted, but should be signed
 actions.put(attributeName, signOnly);
 break;
 case "test":
 // Don't encrypt or sign
 break;
 default:
 // Encrypt and sign everything else
 actions.put(attributeName, encryptAndSign);
 break;
 }
}

Puis, quand vous appelez la méthode encryptRecord de DynamoDBEncryptor, spécifiez la map
comme valeur du paramètre attributeFlags. Par exemple, cet appel d'encryptRecord utilise la
map actions.

Langages de programmation 311

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html#encryptRecord-java.util.Map-java.util.Map-com.amazonaws.services.dynamodbv2.datamodeling.encryption.EncryptionContext-

AWS SDK de chiffrement de base de données Guide du développeur

// Encrypt the plaintext record
final Map<String, AttributeValue> encrypted_record = encryptor.encryptRecord(record,
 actions, encryptionContext);

Remplacer les noms des tables

Dans le client de chiffrement DynamoDB, le nom de la table DynamoDB est un élément du contexte
de chiffrement DynamoDB transmis aux méthodes de chiffrement et de déchiffrement. Lorsque vous
chiffrez ou signez des éléments de table, le contexte de chiffrement DynamoDB, y compris le nom
de la table, est lié cryptographiquement au texte chiffré. Si le contexte de chiffrement DynamoDB
transmis à la méthode de déchiffrement ne correspond pas au contexte de chiffrement DynamoDB
transmis à la méthode de chiffrement, l'opération de déchiffrement échoue.

Il arrive parfois que le nom d'une table change, par exemple lorsque vous sauvegardez une table ou
que vous effectuez une point-in-time restauration. Lorsque vous déchiffrez ou vérifiez la signature de
ces éléments, vous devez transmettre le même contexte de chiffrement DynamoDB que celui utilisé
pour chiffrer et signer les éléments, y compris le nom de table d'origine. Le nom de la table actuelle
n'est pas nécessaire.

Lorsque vous utilisez leDynamoDBEncryptor, vous assemblez le contexte de chiffrement
DynamoDB manuellement. Toutefois, si vous utilisez leDynamoDBMapper, AttributeEncryptor
crée le contexte de chiffrement DynamoDB pour vous, y compris le nom de la table actuelle. Pour
indiquer à AttributeEncryptor de créer un contexte de chiffrement avec un nom de table
différent, utilisez le EncryptionContextOverrideOperator.

Par exemple, le code suivant crée des instances du fournisseur de matériaux
cryptographiques (CMP) et du DynamoDBEncryptor. Ensuite, il appelle la méthode
setEncryptionContextOverrideOperator de DynamoDBEncryptor. Il utilise l'opérateur
overrideEncryptionContextTableName, qui remplace un nom de table. Lorsqu'il est
configuré de cette façon, il AttributeEncryptor crée un contexte de chiffrement DynamoDB
qui newTableName inclut à la place de. oldTableName Pour un exemple complet, consultez
EncryptionContextOverridesWithDynamoDBMapper.java.

final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);
final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp);

encryptor.setEncryptionContextOverrideOperator(EncryptionContextOperators.overrideEncryptionContextTableName(
 oldTableName, newTableName));

Langages de programmation 312

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/PointInTimeRecovery.html
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/EncryptionContextOverridesWithDynamoDBMapper.java

AWS SDK de chiffrement de base de données Guide du développeur

Lorsque vous appelez la méthode de chargement de DynamoDBMapper, qui déchiffre et vérifie
l'élément, vous spécifiez le nom de la table d'origine.

mapper.load(itemClass, DynamoDBMapperConfig.builder()

 .withTableNameOverride(DynamoDBMapperConfig.TableNameOverride.withTableNameReplacement(oldTableName))
 .build());

Vous pouvez également utiliser l'opérateur overrideEncryptionContextTableNameUsingMap,
qui remplace plusieurs noms de table.

Les opérateurs de remplacement de nom de table sont généralement utilisés lors du déchiffrement
des données et de la vérification des signatures. Toutefois, vous pouvez les utiliser pour attribuer une
valeur différente au nom de la table dans le contexte de chiffrement DynamoDB lors du chiffrement et
de la signature.

N'utilisez pas les opérateurs de remplacement de nom de table si vous utilisez le
DynamoDBEncryptor. Créez plutôt un contexte de chiffrement avec le nom de la table d'origine et
soumettez-le à la méthode de déchiffrement.

Exemple de code pour le client de chiffrement DynamoDB pour Java

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de
chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB
pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

Les exemples suivants montrent comment utiliser le client de chiffrement DynamoDB pour Java afin
de protéger les éléments de table DynamoDB dans votre application. Vous pouvez trouver d'autres
exemples (et apporter les vôtres) dans le répertoire des exemples du aws-dynamodb-encryption-
javaréférentiel sur GitHub.

Rubriques

• Utilisation de la Dynamo DBEncryptor

• Utilisation de la Dynamo DBMapper

Langages de programmation 313

https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/

AWS SDK de chiffrement de base de données Guide du développeur

Utilisation de la Dynamo DBEncryptor

Cet exemple montre comment utiliser le Dynamo de niveau inférieur DBEncryptor avec le fournisseur
Direct KMS. Le fournisseur Direct KMS génère et protège son matériel cryptographique sous la forme
d'un AWS KMS keyin AWS Key Management Service (AWS KMS) que vous spécifiez.

Vous pouvez utiliser n'importe quel fournisseur de matériel cryptographique (CMP) compatible
avec leDynamoDBEncryptor, et vous pouvez utiliser le fournisseur Direct KMS avec le
DynamoDBMapper et. AttributeEncryptor

Voir l'exemple de code complet : AwsKmsEncryptedItem.java

Étape 1 : Créer le fournisseur KMS direct

Créez une instance du AWS KMS client avec la région spécifiée. Utilisez ensuite l'instance client
pour créer une instance du fournisseur Direct KMS selon vos préférences AWS KMS key.

Cet exemple utilise l'Amazon Resource Name (ARN) pour identifier le AWS KMS key, mais vous
pouvez utiliser n'importe quel identifiant de clé valide.

final String keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
final String region = "us-west-2";

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Étape 2 : Créer un élément

Cet exemple définit un record HashMap qui représente un exemple d'élément de table.

final String partitionKeyName = "partition_attribute";
final String sortKeyName = "sort_attribute";

final Map<String, AttributeValue> record = new HashMap<>();
record.put(partitionKeyName, new AttributeValue().withS("value1"));
record.put(sortKeyName, new AttributeValue().withN("55"));
record.put("example", new AttributeValue().withS("data"));
record.put("numbers", new AttributeValue().withN("99"));
record.put("binary", new AttributeValue().withB(ByteBuffer.wrap(new byte[]{0x00,
 0x01, 0x02})));

Langages de programmation 314

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedItem.java
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS SDK de chiffrement de base de données Guide du développeur

record.put("test", new AttributeValue().withS("test-value"));

Étape 3 : Création d'une dynamo DBEncryptor

Créez une instance de DynamoDBEncryptor avec le fournisseur KMS direct.

final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp);

Étape 4 : Création d'un contexte de chiffrement DynamoDB

Le contexte de chiffrement DynamoDB contient des informations sur la structure de la
table et sur la manière dont elle est chiffrée et signée. Si vous utilisez DynamoDBMapper,
AttributeEncryptor crée automatiquement le contexte de chiffrement.

final String tableName = "testTable";

final EncryptionContext encryptionContext = new EncryptionContext.Builder()
 .withTableName(tableName)
 .withHashKeyName(partitionKeyName)
 .withRangeKeyName(sortKeyName)
 .build();

Étape 5 : Créer l'objet actions d'attribut

Les actions d'attribut déterminent quels attributs de l'élément sont chiffrés et signés, lesquels sont
uniquement signés et lesquels ne sont ni chiffrés ni signés.

En Java, pour spécifier des actions d'attribut, vous créez des paires HashMap de nom d'attribut et
de EncryptionFlags valeur.

Par exemple, le code Java suivant crée un actions HashMap qui chiffre et signe tous les
attributs de l'recordélément, à l'exception des attributs de clé de partition et de clé de tri, qui sont
signés, mais non chiffrés, et de l'testattribut, qui n'est ni signé ni chiffré.

final EnumSet<EncryptionFlags> signOnly = EnumSet.of(EncryptionFlags.SIGN);
final EnumSet<EncryptionFlags> encryptAndSign = EnumSet.of(EncryptionFlags.ENCRYPT,
 EncryptionFlags.SIGN);
final Map<String, Set<EncryptionFlags>> actions = new HashMap<>();

for (final String attributeName : record.keySet()) {
 switch (attributeName) {

Langages de programmation 315

AWS SDK de chiffrement de base de données Guide du développeur

 case partitionKeyName: // fall through to the next case
 case sortKeyName:
 // Partition and sort keys must not be encrypted, but should be signed
 actions.put(attributeName, signOnly);
 break;
 case "test":
 // Neither encrypted nor signed
 break;
 default:
 // Encrypt and sign all other attributes
 actions.put(attributeName, encryptAndSign);
 break;
 }
}

Étape 6 : Chiffrer et signer l'élément

Pour chiffrer et signer l'élément de table, appelez la méthode encryptRecord sur l'instance de
DynamoDBEncryptor. Spécifiez l'élément de table (record), les actions d'attribut (actions) et
le contexte de chiffrement (encryptionContext).

final Map<String, AttributeValue> encrypted_record = encryptor.encryptRecord(record,
 actions, encryptionContext);

Étape 7 : Placer l'élément dans la table DynamoDB

Enfin, placez l'élément chiffré et signé dans la table DynamoDB.

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();
ddb.putItem(tableName, encrypted_record);

Utilisation de la Dynamo DBMapper

L'exemple suivant montre comment utiliser la classe d'assistance du mappeur DynamoDB avec le
fournisseur Direct KMS. Le fournisseur Direct KMS génère et protège son matériel cryptographique
sous la forme d'un AWS KMS keyin AWS Key Management Service (AWS KMS) que vous spécifiez.

Vous pouvez utiliser tout fournisseur CMP compatible avec DynamoDBMapper, et vous pouvez
utiliser le fournisseur KMS direct avec le DynamoDBEncryptor de bas niveau.

Voir l'exemple de code complet : AwsKmsEncryptedObject.java

Langages de programmation 316

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedObject.java

AWS SDK de chiffrement de base de données Guide du développeur

Étape 1 : Créer le fournisseur KMS direct

Créez une instance du AWS KMS client avec la région spécifiée. Utilisez ensuite l'instance client
pour créer une instance du fournisseur Direct KMS selon vos préférences AWS KMS key.

Cet exemple utilise l'Amazon Resource Name (ARN) pour identifier le AWS KMS key, mais vous
pouvez utiliser n'importe quel identifiant de clé valide.

final String keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
final String region = "us-west-2";

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Étape 2 : Création du chiffreur DynamoDB et de Dynamo DBMapper

Utilisez le fournisseur Direct KMS que vous avez créé à l'étape précédente pour créer une
instance de DynamoDB Encryptor. Vous devez instancier le chiffreur DynamoDB de niveau
inférieur pour utiliser le mappeur DynamoDB.

Créez ensuite une instance de votre base de données DynamoDB et une configuration de
mappeur, puis utilisez-les pour créer une instance du mappeur DynamoDB.

Important

Lorsque vous utilisez DynamoDBMapper pour ajouter ou modifier des éléments signés (ou
chiffrés et signés), configurez-le pour qu'il utilise un comportement d'enregistrement, par
exemple PUT, qui inclut tous les attributs, comme illustré dans l'exemple suivant. Sinon, il
est possible que vous ne puissiez pas déchiffrer vos données.

final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp)
final AmazonDynamoDB ddb =
 AmazonDynamoDBClientBuilder.standard().withRegion(region).build();

DynamoDBMapperConfig mapperConfig =
 DynamoDBMapperConfig.builder().withSaveBehavior(SaveBehavior.PUT).build();
DynamoDBMapper mapper = new DynamoDBMapper(ddb, mapperConfig, new
 AttributeEncryptor(encryptor));

Langages de programmation 317

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS SDK de chiffrement de base de données Guide du développeur

Étape 3 : définition de votre table DynamoDB

Définissez ensuite votre table DynamoDB. Utilisez des annotations pour spécifier les actions
d'attribut. Cet exemple crée une table DynamoDB et une classe qui ExampleTable représente
les éléments DataPoJo de la table.

Dans cet exemple de table, les attributs de la clé primaire seront signés, mais pas chiffrés. Cela
s'applique à l'attribut partition_attribute, qui est annoté avec @DynamoDBHashKey, et
l'attribut sort_attribute, qui est annoté avec @DynamoDBRangeKey.

Les attributs qui sont annotés avec @DynamoDBAttribute, par exemple some numbers, seront
chiffrés et signés. Les exceptions sont les attributs qui utilisent les annotations de chiffrement
@DoNotEncrypt (signer uniquement) ou @DoNotTouch (ne pas chiffrer ni signer) définies par le
client de chiffrement DynamoDB. Par exemple, étant donné que l'attribut leave me comporte une
annotation @DoNotTouch, il ne sera ni chiffré ni signé.

@DynamoDBTable(tableName = "ExampleTable")
public static final class DataPoJo {
 private String partitionAttribute;
 private int sortAttribute;
 private String example;
 private long someNumbers;
 private byte[] someBinary;
 private String leaveMe;

 @DynamoDBHashKey(attributeName = "partition_attribute")
 public String getPartitionAttribute() {
 return partitionAttribute;
 }

 public void setPartitionAttribute(String partitionAttribute) {
 this.partitionAttribute = partitionAttribute;
 }

 @DynamoDBRangeKey(attributeName = "sort_attribute")
 public int getSortAttribute() {
 return sortAttribute;
 }

 public void setSortAttribute(int sortAttribute) {
 this.sortAttribute = sortAttribute;
 }

Langages de programmation 318

AWS SDK de chiffrement de base de données Guide du développeur

 @DynamoDBAttribute(attributeName = "example")
 public String getExample() {
 return example;
 }

 public void setExample(String example) {
 this.example = example;
 }

 @DynamoDBAttribute(attributeName = "some numbers")
 public long getSomeNumbers() {
 return someNumbers;
 }

 public void setSomeNumbers(long someNumbers) {
 this.someNumbers = someNumbers;
 }

 @DynamoDBAttribute(attributeName = "and some binary")
 public byte[] getSomeBinary() {
 return someBinary;
 }

 public void setSomeBinary(byte[] someBinary) {
 this.someBinary = someBinary;
 }

 @DynamoDBAttribute(attributeName = "leave me")
 @DoNotTouch
 public String getLeaveMe() {
 return leaveMe;
 }

 public void setLeaveMe(String leaveMe) {
 this.leaveMe = leaveMe;
 }

 @Override
 public String toString() {
 return "DataPoJo [partitionAttribute=" + partitionAttribute + ", sortAttribute="
 + sortAttribute + ", example=" + example + ", someNumbers=" + someNumbers
 + ", someBinary=" + Arrays.toString(someBinary) + ", leaveMe=" + leaveMe +
 "]";

Langages de programmation 319

AWS SDK de chiffrement de base de données Guide du développeur

 }
}

Étape 4 : Chiffrer et enregistrer un élément de table

Désormais, lorsque vous créez un élément de table et que vous utilisez le mappeur DynamoDB
pour l'enregistrer, l'élément est automatiquement chiffré et signé avant d'être ajouté à la table.

Cet exemple définit un élément de table appelé record. Avant qu'il soit enregistré dans la table,
ses attributs sont chiffrées et signés selon les annotations de la classe DataPoJo. Dans le cas
présent, tous les attributs à l'exception de PartitionAttribute, SortAttribute et LeaveMe
sont chiffrés et signés. PartitionAttribute et SortAttributes sont seulement signés.
L'attribut LeaveMe n'est ni chiffré ni signé.

Pour chiffrer et signer l'élément record, puis l'ajouter à ExampleTable, appelez la méthode
save de la classe DynamoDBMapper. Votre mappeur DynamoDB étant configuré pour utiliser
PUT le comportement d'enregistrement, l'élément remplace tout élément possédant les mêmes
clés primaires, au lieu de le mettre à jour. Cela garantit que les signatures correspondent et que
vous pouvez déchiffrer l'élément lorsque vous le récupérez de la table.

DataPoJo record = new DataPoJo();
record.setPartitionAttribute("is this");
record.setSortAttribute(55);
record.setExample("data");
record.setSomeNumbers(99);
record.setSomeBinary(new byte[]{0x00, 0x01, 0x02});
record.setLeaveMe("alone");

mapper.save(record);

Client de chiffrement DynamoDB pour Python

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de
chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB
pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

Langages de programmation 320

AWS SDK de chiffrement de base de données Guide du développeur

Cette rubrique explique comment installer et utiliser le client de chiffrement DynamoDB pour Python.
Vous pouvez trouver le code dans le aws-dynamodb-encryption-pythonréférentiel sur GitHub, y
compris un exemple de code complet et testé pour vous aider à démarrer.

Note

Versions 1. x. x et 2. x. x du client de chiffrement DynamoDB pour Python sont end-of-support
en phase à compter de juillet 2022. Passez à une version plus récente dès que possible.

Rubriques

• Prérequis

• Installation

• Utilisation du client de chiffrement DynamoDB pour Python

• Exemple de code pour le client de chiffrement DynamoDB pour Python

Prérequis

Avant d'installer le client de chiffrement Amazon DynamoDB pour Python, assurez-vous de remplir
les conditions préalables suivantes.

Version prise en charge de Python

Python 3.8 ou version ultérieure est requis par le client de chiffrement Amazon DynamoDB pour
les versions 3.3.0 et ultérieures de Python. Pour télécharger Python, consultez Téléchargements
Python.

Les versions antérieures du client de chiffrement Amazon DynamoDB pour Python prennent en
charge Python 2.7, Python 3.4 et versions ultérieures, mais nous vous recommandons d'utiliser la
dernière version du client de chiffrement DynamoDB.

Outil d'installation pip pour Python

Python 3.6 et versions ultérieures incluent pip, bien que vous souhaitiez peut-être le mettre à
niveau. Pour plus d'informations sur la mise à niveau ou l'installation de pip, consultez Installation
dans la documentation pip.

Langages de programmation 321

https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples
https://www.python.org/downloads/
https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installation/

AWS SDK de chiffrement de base de données Guide du développeur

Installation

Utilisez pip pour installer le client de chiffrement Amazon DynamoDB pour Python, comme indiqué
dans les exemples suivants.

Pour installer la dernière version

pip install dynamodb-encryption-sdk

Pour plus d'informations sur l'utilisation de pip pour installer et mettre à niveau les packages,
consultez Installing Packages.

Le client de chiffrement DynamoDB nécessite la bibliothèque de chiffrement sur toutes les
plateformes. Toutes les versions de pip installent et créent la bibliothèque de chiffrement sous
Windows. pip 8.1 et les versions ultérieures installent et créent la bibliothèque de chiffrement sous
Linux. Si vous utilisez une version antérieure de pip et que votre environnement Linux ne possède
pas les outils nécessaires pour générer la bibliothèque de chiffrement, vous devez les installer. Pour
plus d'informations, consultez Création du chiffrement sous Linux.

Vous pouvez obtenir la dernière version de développement du client de chiffrement DynamoDB à
partir du aws-dynamodb-encryption-pythonréférentiel. GitHub

Après avoir installé le client de chiffrement DynamoDB, commencez par consulter l'exemple de code
Python présenté dans ce guide.

Utilisation du client de chiffrement DynamoDB pour Python

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de
chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB
pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

Cette rubrique décrit certaines fonctionnalités du client de chiffrement DynamoDB pour Python qui
ne sont peut-être pas disponibles dans d'autres implémentations de langage de programmation.

Langages de programmation 322

https://packaging.python.org/tutorials/installing-packages/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/installation/#building-cryptography-on-linux
https://github.com/aws/aws-dynamodb-encryption-python/

AWS SDK de chiffrement de base de données Guide du développeur

Ces fonctionnalités sont conçues pour faciliter l'utilisation du client de chiffrement DynamoDB
de la manière la plus sécurisée. À moins que vous n'ayez un scénario inhabituel, nous vous
recommandons de les utiliser.

Pour plus de détails sur la programmation avec le client de chiffrement DynamoDB, consultez les
exemples Python de ce guide, les exemples du référentiel et aws-dynamodb-encryption-python la
documentation GitHub Python du client de chiffrement DynamoDB.

Rubriques

• Classes d'annotations clientes

• TableInfo classe

• Actions d'attribut en Python

Classes d'annotations clientes

Le client de chiffrement DynamoDB pour Python inclut plusieurs classes d'assistance client qui
reflètent les classes Boto 3 pour DynamoDB. Ces classes d'assistance sont conçues pour faciliter
l'ajout de chiffrement et de signature à votre application DynamoDB existante et pour éviter les
problèmes les plus courants, comme suit :

• Empêchez-vous de chiffrer la clé primaire de votre élément, soit en ajoutant une action de
remplacement pour la clé primaire à l'AttributeActionsobjet, soit en lançant une exception si votre
AttributeActions objet demande explicitement au client de chiffrer la clé primaire. Si l'action
par défaut de votre objet AttributeActions est DO_NOTHING, les classes d'annotations clientes
utilisent cette action pour la clé primaire. Sinon, elles utilisent SIGN_ONLY.

• Créez un TableInfo objet et renseignez le contexte de chiffrement DynamoDB en fonction d'un
appel à DynamoDB. Cela permet de garantir que votre contexte de chiffrement DynamoDB est
précis et que le client peut identifier la clé primaire.

• Support des méthodes, telles que put_item etget_item, qui chiffrent et déchiffrent de manière
transparente les éléments de votre table lorsque vous écrivez ou lisez dans une table DynamoDB.
Seule la méthode update_item n'est pas prise en charge.

Vous pouvez utiliser les classes d'annotations clientes au lieu d'interagir directement avec le chiffreur
d'élément de bas niveau. Utilisez ces classes à moins que vous n'ayez besoin de définir des options
avancées dans le chiffreur d'élément.

Les classes d'annotations clientes incluent les éléments suivants :

Langages de programmation 323

https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/

AWS SDK de chiffrement de base de données Guide du développeur

• EncryptedTablepour les applications qui utilisent la ressource Table dans DynamoDB pour traiter
une table à la fois.

• EncryptedResourcepour les applications qui utilisent la classe Service Resource dans DynamoDB
pour le traitement par lots.

• EncryptedClientpour les applications qui utilisent le client de niveau inférieur dans DynamoDB.

Pour utiliser les classes d'assistance client, l'appelant doit être autorisé à appeler l'opération
DynamoDB sur la table cible DescribeTable.

TableInfo classe

La TableInfoclasse est une classe auxiliaire qui représente une table DynamoDB, avec des champs
pour sa clé primaire et ses index secondaires. Elle vous permet d'obtenir des informations précises et
en temps réel sur la table.

Si vous utilisez une classe d'annotations clientes, elle crée et utilise un objet TableInfo pour vous.
Sinon, vous pouvez en créer un explicitement. Pour obtenir un exemple, consultez Utilisation du
chiffreur d'élément.

Lorsque vous appelez la refresh_indexed_attributes méthode sur un TableInfo objet, elle
renseigne les valeurs des propriétés de l'objet en appelant l'opération DynamoDB DescribeTable.
L'interrogation de la table est beaucoup plus fiable que le codage en dur des noms d'index. La
TableInfo classe inclut également une encryption_context_values propriété qui fournit les
valeurs requises pour le contexte de chiffrement DynamoDB.

Pour utiliser la refresh_indexed_attributes méthode, l'appelant doit être autorisé à appeler
l'opération DescribeTableDynamoDB sur la table cible.

Actions d'attribut en Python

Les actions d'attribut informent le chiffreur d'élément des actions à exécuter sur chaque attribut de
l'élément. Pour spécifier les actions d'attribut en Python, créez un objet AttributeActions avec
une action par défaut et les exceptions éventuelles pour des attributs particuliers. Les valeurs valides
sont définies dans le type énuméré CryptoAction.

Important

Après avoir utilisé vos actions d’attribut pour chiffrer vos éléments de table, l’ajouter ou la
suppression d’attributs de votre modèle de données peut provoquer une erreur de validation

Langages de programmation 324

https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/table.html#module-dynamodb_encryption_sdk.encrypted.table
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#table
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/resource.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#service-resource
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/client.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#client
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/tools/structures.html#dynamodb_encryption_sdk.structures.TableInfo
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS SDK de chiffrement de base de données Guide du développeur

de signature qui vous empêche de déchiffrer vos données. Pour obtenir une explication
détaillée, consultez Modification de votre modèle de données.

DO_NOTHING = 0
SIGN_ONLY = 1
ENCRYPT_AND_SIGN = 2

Par exemple, l'objet AttributeActions établit ENCRYPT_AND_SIGN comme valeur par défaut
pour tous les attributs, et spécifie les exceptions pour les attributs ISBN et PublicationYear.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={
 'ISBN': CryptoAction.DO_NOTHING,
 'PublicationYear': CryptoAction.SIGN_ONLY
 }
)

Si vous utilisez une classe d'annotations clientes, vous n'avez pas besoin de spécifier une action
d'attribut pour les attributs de clé primaire. Les classes d'annotations clients vous empêchent de
chiffrer votre clé primaire.

Si vous n'utilisez pas une classe d'annotations clientes et que l'action par défaut est
ENCRYPT_AND_SIGN, vous devez spécifier une action pour la clé primaire. L'action recommandée
pour les clés primaires est SIGN_ONLY. À des fins de simplification, utilisez la méthode
set_index_keys, qui utilise SIGN_ONLY pour les clés primaires ou DO_NOTHING quand il s'agit
de l'action par défaut.

Warning

Ne chiffrez pas les attributs de la clé primaire. Ils doivent rester en texte brut pour que
DynamoDB puisse trouver l'élément sans exécuter une analyse complète du tableau.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
)

Langages de programmation 325

AWS SDK de chiffrement de base de données Guide du développeur

actions.set_index_keys(*table_info.protected_index_keys())

Exemple de code pour le client de chiffrement DynamoDB pour Python

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de
chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB
pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

Les exemples suivants montrent comment utiliser le client de chiffrement DynamoDB pour Python
afin de protéger les données DynamoDB dans votre application. Vous pouvez trouver d'autres
exemples (et apporter les vôtres) dans le répertoire des exemples du aws-dynamodb-encryption-
pythonréférentiel sur GitHub.

Rubriques

• Utiliser la classe d'assistance EncryptedTable client

• Utilisation du chiffreur d'élément

Utiliser la classe d'assistance EncryptedTable client

L'exemple suivant montre comment utiliser le fournisseur KMS direct avec la EncryptedTable
classe d'annotations cliente. Cet exemple utilise le même fournisseur CMP que l'exemple Utilisation
du chiffreur d'élément qui suit. Cependant, il utilise la classe EncryptedTable au lieu d'interagir
directement avec le chiffreur d'élément de bas niveau.

En comparant ces exemples, vous pouvez voir le travail que la classe d'annotations cliente effectue
à votre place. Cela implique de créer le contexte de chiffrement DynamoDB et de s'assurer que
les attributs de clé primaire sont toujours signés, mais jamais chiffrés. Pour créer le contexte
de chiffrement et découvrir la clé primaire, les classes d'assistance client appellent l'opération
DynamoDB DescribeTable. Pour exécuter ce code, vous devez avoir l'autorisation d'appeler cette
opération.

Consultez l'exemple de code complet : aws_kms_encrypted_table.py

Langages de programmation 326

https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples
https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_table.py

AWS SDK de chiffrement de base de données Guide du développeur

Étape 1 : Créer la table

Commencez par créer une instance d'une table DynamoDB standard avec le nom de la table.

table_name='test-table'
table = boto3.resource('dynamodb').Table(table_name)

Étape 2 : Créer un fournisseur CMP

Créez une instance du fournisseur CMP que vous avez sélectionné.

Cet exemple utilise le fournisseur KMS direct, mais vous pouvez utiliser n'importe quel fournisseur
CMP compatible. Pour créer un fournisseur KMS direct, spécifiez un AWS KMS key. Cet exemple
utilise le Amazon Resource Name (ARN) du AWS KMS key, mais vous pouvez utiliser n'importe
quel identifiant de clé valide.

kms_key_id='arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

Étape 3 : Créer l'objet actions d'attribut

Les actions d'attribut informent le chiffreur d'élément des actions à exécuter sur chaque attribut
de l'élément. L'objet AttributeActions de l'exemple chiffre et signe tous les éléments à
l'exception de l'attribut test, qui est ignoré.

Ne spécifiez pas d'actions d'attribut pour les attributs de clé primaire quand vous utilisez une
classe d'annotations cliente. La classe EncryptedTable signe, mais ne chiffre jamais, les
attributs de clé primaire.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={'test': CryptoAction.DO_NOTHING}
)

Étape 4 : Créer la table chiffrée

Créez la table chiffrée à l'aide de la table standard, du fournisseur KMS direct et des actions
d'attribut. Cette étape termine la configuration.

encrypted_table = EncryptedTable(

Langages de programmation 327

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS SDK de chiffrement de base de données Guide du développeur

 table=table,
 materials_provider=kms_cmp,
 attribute_actions=actions
)

Étape 5 : Placer l'élément en texte brut dans la table

Lorsque vous appelez la put_item méthode sur leencrypted_table, les éléments de votre
table sont chiffrés, signés et ajoutés de manière transparente à votre table DynamoDB.

Tout d'abord, définissez l'élément de table.

plaintext_item = {
 'partition_attribute': 'value1',
 'sort_attribute': 55
 'example': 'data',
 'numbers': 99,
 'binary': Binary(b'\x00\x01\x02'),
 'test': 'test-value'
}

Puis, insérez-le dans la table.

encrypted_table.put_item(Item=plaintext_item)

Pour obtenir l'élément de la table DynamoDB sous sa forme cryptée, appelez get_item la
méthode sur l'objet. table Pour obtenir l'élément chiffré, appelez la méthode get_item sur l'objet
encrypted_table.

Utilisation du chiffreur d'élément

Cet exemple montre comment interagir directement avec le chiffreur d'éléments dans le client
de chiffrement DynamoDB lors du chiffrement d'éléments de table, au lieu d'utiliser les classes
d'assistance du client qui interagissent avec le crypteur d'éléments à votre place.

Lorsque vous utilisez cette technique, vous créez le contexte de chiffrement DynamoDB et l'objet
CryptoConfig de configuration () manuellement. Vous cryptez également les éléments lors d'un
appel et vous les placez dans votre table DynamoDB lors d'un appel distinct. Cela vous permet de
personnaliser vos put_item appels et d'utiliser le client de chiffrement DynamoDB pour chiffrer et
signer les données structurées qui ne sont jamais envoyées à DynamoDB.

Langages de programmation 328

AWS SDK de chiffrement de base de données Guide du développeur

Cet exemple utilise le fournisseur KMS direct, mais vous pouvez utiliser n'importe quel fournisseur
CMP compatible.

Voir l'exemple de code complet : aws_kms_encrypted_item.py

Étape 1 : Créer la table

Commencez par créer une instance d'une ressource de table DynamoDB standard avec le nom
de la table.

table_name='test-table'
table = boto3.resource('dynamodb').Table(table_name)

Étape 2 : Créer un fournisseur CMP

Créez une instance du fournisseur CMP que vous avez sélectionné.

Cet exemple utilise le fournisseur KMS direct, mais vous pouvez utiliser n'importe quel fournisseur
CMP compatible. Pour créer un fournisseur KMS direct, spécifiez un AWS KMS key. Cet exemple
utilise le Amazon Resource Name (ARN) du AWS KMS key, mais vous pouvez utiliser n'importe
quel identifiant de clé valide.

kms_key_id='arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

Étape 3 : Utiliser la classe TableInfo d'assistance

Pour obtenir des informations sur la table à partir de DynamoDB, créez une instance de
TableInfola classe d'assistance. Lorsque vous travaillez directement avec le chiffreur d'élément,
vous devez créer une instance TableInfo et appeler ses méthodes. Les classes d'annotation
clientes le font pour vous.

La refresh_indexed_attributes méthode TableInfo utilise l'opération
DescribeTableDynamoDB pour obtenir des informations précises et en temps réel sur la table.
Elles incluent la clé primaire et ses index secondaires locaux et globaux. L'appelant doit avoir
l'autorisation d'appeler DescribeTable.

table_info = TableInfo(name=table_name)
table_info.refresh_indexed_attributes(table.meta.client)

Langages de programmation 329

https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_item.py
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS SDK de chiffrement de base de données Guide du développeur

Étape 4 : Création du contexte de chiffrement DynamoDB

Le contexte de chiffrement DynamoDB contient des informations sur la structure de la table
et sur la manière dont elle est chiffrée et signée. Cet exemple crée un contexte de chiffrement
DynamoDB de manière explicite, car il interagit avec le chiffreur d'éléments. Les classes
d'assistance client créent le contexte de chiffrement DynamoDB pour vous.

Pour obtenir la clé de partition et la clé de tri, vous pouvez utiliser les propriétés de la classe
d'TableInfoassistance.

index_key = {
 'partition_attribute': 'value1',
 'sort_attribute': 55
}

encryption_context = EncryptionContext(
 table_name=table_name,
 partition_key_name=table_info.primary_index.partition,
 sort_key_name=table_info.primary_index.sort,
 attributes=dict_to_ddb(index_key)
)

Étape 5 : Créer l'objet actions d'attribut

Les actions d'attribut informent le chiffreur d'élément des actions à exécuter sur chaque attribut
de l'élément. L'objet AttributeActions de l'exemple chiffre et signe tous les éléments à
l'exception des attributs de clé primaire, qui sont signés, mais pas chiffrés, et de l'attribut test,
qui est ignoré.

Lorsque vous interagissez directement avec le chiffreur d'élément et que votre action par défaut
est ENCRYPT_AND_SIGN, vous devez spécifier une autre action pour la clé primaire. Vous
pouvez utiliser la méthode set_index_keys, qui utilise SIGN_ONLY pour la clé primaire, ou
DO_NOTHING s'il s'agit de l'action par défaut.

Pour spécifier la clé primaire, cet exemple utilise les clés d'index de l'TableInfoobjet, qui sont
renseignées par un appel à DynamoDB. Cette technique est plus sûre que le codage en dur des
noms de clé primaire.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={'test': CryptoAction.DO_NOTHING}
)

Langages de programmation 330

AWS SDK de chiffrement de base de données Guide du développeur

actions.set_index_keys(*table_info.protected_index_keys())

Étape 6 : Créer la configuration pour l'élément

Pour configurer le client de chiffrement DynamoDB, utilisez les objets que vous venez de créer
dans CryptoConfigune configuration pour l'élément de table. Les classes d'assistance client créent
le CryptoConfig pour vous.

crypto_config = CryptoConfig(
 materials_provider=kms_cmp,
 encryption_context=encryption_context,
 attribute_actions=actions
)

Étape 7 : Chiffrer l'élément

Cette étape chiffre et signe l'élément, mais ne le place pas dans la table DynamoDB.

Lorsque vous utilisez une classe d'assistance client, vos éléments sont chiffrés et signés de
manière transparente, puis ajoutés à votre table DynamoDB lorsque vous appelez la méthode
de la put_item classe d'assistance. Lorsque vous utilisez le chiffreur d'élément directement, les
actions de chiffrage et de placement sont indépendantes.

Tout d'abord, créez un élément en texte brut.

plaintext_item = {
 'partition_attribute': 'value1',
 'sort_key': 55,
 'example': 'data',
 'numbers': 99,
 'binary': Binary(b'\x00\x01\x02'),
 'test': 'test-value'
}

Puis, chiffrez-le et signez-le. La méthode encrypt_python_item requiert l'objet de
configuration CryptoConfig.

encrypted_item = encrypt_python_item(plaintext_item, crypto_config)

Étape 8 : Placer l'élément dans la table

Cette étape place l'élément chiffré et signé dans la table DynamoDB.

Langages de programmation 331

https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/config.html

AWS SDK de chiffrement de base de données Guide du développeur

table.put_item(Item=encrypted_item)

Pour afficher l'élément chiffré, appelez la méthode get_item sur l'objet original table, et non
sur l'objet encrypted_table. Elle obtient l'élément de la table DynamoDB sans le vérifier et le
déchiffrer.

encrypted_item = table.get_item(Key=partition_key)['Item']

L'illustration suivante présente une partie d'un exemple d'élément de table chiffré et signé.

Les valeurs des attributs chiffrés sont des données binaires. Les noms et valeurs des attributs de
clé primaire (partition_attribute et sort_attribute) et l'attribut test demeurent en texte
brut. La sortie affiche aussi l'attribut qui contient la signature (*amzn-ddb-map-sig*) et l'attribut de
description des matériaux (*amzn-ddb-map-desc*).

Modification de votre modèle de données

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de
chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB
pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

Modification de votre modèle de données 332

AWS SDK de chiffrement de base de données Guide du développeur

Chaque fois que vous chiffrez ou déchiffrez un élément, vous devez fournir des actions attributaires
qui indiquent au client de chiffrement DynamoDB quels attributs chiffrer et signer, quels attributs
signer (mais pas chiffrer) et lesquels ignorer. Les actions d'attribut ne sont pas enregistrées dans
l'élément chiffré et le client de chiffrement DynamoDB ne met pas automatiquement à jour vos
actions d'attribut.

Important

Le client de chiffrement DynamoDB ne prend pas en charge le chiffrement des données de
table DynamoDB existantes non chiffrées.

Chaque fois que vous modifiez votre modèle de données, c'est-à-dire lorsque vous ajoutez ou
supprimez des attributs de vos éléments de table, vous risquez une erreur. Si les actions d'attribut
que vous spécifiez ne rendent pas compte de tous les attributs de l'élément, l'élément peut ne pas
être chiffré et signé comme vous l'escomptiez. Surtout, si les actions d'attribut que vous fournissez
lors du déchiffrement d'un élément diffèrent des actions d'attribut que vous avez fournies lors du
chiffrement de l'élément, la vérification de la signature peut échouer.

Par exemple, si les actions d'attribut utilisées pour chiffrer l'élément lui disent de signer l'attribut
test, la signature de l'élément comportera l'attribut test. Cependant, si les actions d'attribut
utilisées pour déchiffrer l'élément ne tiennent pas compte de l'attribut test, la vérification échouera
parce que le client essaiera de vérifier une signature qui n'inclut pas l'attribut test.

Cela pose un problème particulier lorsque plusieurs applications lisent et écrivent les mêmes
éléments DynamoDB, car le client de chiffrement DynamoDB doit calculer la même signature pour les
éléments de toutes les applications. C'est également un problème pour toute application distribuée
car les modifications dans les actions d'attribut doivent se propager à tous les hôtes. Même si un hôte
accède à vos tables DynamoDB dans le cadre d'un seul processus, la mise en place d'un processus
basé sur les meilleures pratiques permettra d'éviter les erreurs si le projet devient plus complexe.

Pour éviter les erreurs de validation de signature qui vous empêchent de lire les éléments de votre
tableau, suivez les instructions suivantes.

• Ajout d'un attribut : si le nouvel attribut modifie vos actions d'attribut, déployez entièrement la
modification d'action d'attribut avant d'inclure le nouvel attribut dans un élément.

• Suppression d'un attribut : si vous arrêtez d'utiliser un attribut dans vos articles, ne modifiez pas
vos actions d'attribut.

Modification de votre modèle de données 333

AWS SDK de chiffrement de base de données Guide du développeur

• Modification de l'action : une fois que vous avez utilisé une configuration d'actions attributaires pour
chiffrer les éléments de votre tableau, vous ne pouvez pas modifier en toute sécurité l'action par
défaut ou l'action d'un attribut existant sans rechiffrer chaque élément de votre tableau.

Les erreurs de validation de signature peuvent être extrêmement difficiles à résoudre, de sorte que la
meilleure approche consiste à les prévenir.

Rubriques

• Ajout d'un attribut

• Suppression d'un attribut

Ajout d'un attribut

Lorsque vous ajouterez un nouvel attribut à des éléments de table, vous devrez peut-être modifier
vos actions attributaires. Pour éviter les erreurs de validation de signature, nous vous recommandons
d'implémenter cette modification en deux étapes. Vérifiez que la première étape est terminée avant
de commencer la deuxième étape.

1. Modifiez les actions d'attribut dans toutes les applications qui lisent ou écrivent dans la table.
Déployez ces modifications et confirmez que la mise à jour a été propagée à tous les hôtes de
destination.

2. Écrire des valeurs dans le nouvel attribut dans vos éléments de table.

Cette approche en deux étapes garantit que toutes les applications et les hôtes ont les mêmes
actions d'attribut et calculera la même signature, avant toute rencontre avec le nouvel attribut. Ceci
est important même lorsque l'action de l'attribut est Ne rien faire (ne pas chiffrer ou signer), car la
valeur par défaut de certains chiffreurs est de chiffrer et de signer.

Les exemples suivants montrent le code de la première étape de ce processus. Ils ajoutent un nouvel
attribut d'élément link, qui stocke un lien vers un autre élément de table. Étant donné que ce lien
doit rester en texte brut, l'exemple lui attribue l'action sign-only. Après avoir entièrement déployé cette
modification, puis vérifié que toutes les applications et tous les hôtes possèdent les nouvelles actions
attributaires, vous pouvez commencer à utiliser l'attribut link dans vos éléments de table.

Modification de votre modèle de données 334

AWS SDK de chiffrement de base de données Guide du développeur

Java DynamoDB Mapper

Lors de l'utilisation de DynamoDB Mapper et AttributeEncryptor, par défaut, tous
les attributs sont chiffrés et signés à l'exception des clés primaires, qui sont signées mais
pas chiffrées. Pour spécifier une action de signature uniquement, utilisez l'annotation
@DoNotEncrypt.

Cet exemple utilise l'annotation @DoNotEncrypt du nouvel attribut link.

@DynamoDBTable(tableName = "ExampleTable")
public static final class DataPoJo {
 private String partitionAttribute;
 private int sortAttribute;
 private String link;

 @DynamoDBHashKey(attributeName = "partition_attribute")
 public String getPartitionAttribute() {
 return partitionAttribute;
 }

 public void setPartitionAttribute(String partitionAttribute) {
 this.partitionAttribute = partitionAttribute;
 }

 @DynamoDBRangeKey(attributeName = "sort_attribute")
 public int getSortAttribute() {
 return sortAttribute;
 }

 public void setSortAttribute(int sortAttribute) {
 this.sortAttribute = sortAttribute;
 }

 @DynamoDBAttribute(attributeName = "link")
 @DoNotEncrypt
 public String getLink() {
 return link;
 }

 public void setLink(String link) {
 this.link = link;
 }

Modification de votre modèle de données 335

AWS SDK de chiffrement de base de données Guide du développeur

 @Override
 public String toString() {
 return "DataPoJo [partitionAttribute=" + partitionAttribute + ",
 sortAttribute=" + sortAttribute + ",
 link=" + link + "]";
 }
}

Java DynamoDB encryptor

Dans le chiffreur DynamoDB de niveau inférieur, vous devez définir des actions pour chaque
attribut. Cet exemple utilise une instruction switch où la valeur par défaut est encryptAndSign et
des exceptions sont spécifiées pour la clé de partition, la clé de tri et le nouvel attribut link. Dans
cet exemple, si le code d'attribut de lien n'était pas entièrement déployé avant son utilisation,
l'attribut de lien serait chiffré et signé par certaines applications, mais seulement signé par
d'autres.

for (final String attributeName : record.keySet()) {
 switch (attributeName) {
 case partitionKeyName:
 // fall through to the next case
 case sortKeyName:
 // partition and sort keys must be signed, but not encrypted
 actions.put(attributeName, signOnly);
 break;
 case "link":
 // only signed
 actions.put(attributeName, signOnly);
 break;
 default:
 // Encrypt and sign all other attributes
 actions.put(attributeName, encryptAndSign);
 break;
 }
}

Python

Dans le client de chiffrement DynamoDB pour Python, vous pouvez définir une action par défaut
pour tous les attributs, puis spécifier des exceptions.

Modification de votre modèle de données 336

AWS SDK de chiffrement de base de données Guide du développeur

Si vous utilisez une classe d'annotations clientes, vous n'avez pas besoin de spécifier une action
d'attribut pour les attributs de clé primaire. Les classes d'annotations clients vous empêchent
de chiffrer votre clé primaire. Toutefois, si vous n'utilisez pas de classes d'annotations clientes,
vous devez définir l'action SIGN_ONLY sur votre clé de partition et la clé de tri. Si vous chiffrez
accidentellement votre partition ou votre clé de tri, vous ne pourrez pas récupérer vos données
sans une analyse complète de la table.

Cet exemple spécifie une exception pour le nouvel attribut link, qui obtient l'action SIGN_ONLY.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={
 'example': CryptoAction.DO_NOTHING,
 'link': CryptoAction.SIGN_ONLY
 }
)

Suppression d'un attribut

Si vous n'avez plus besoin d'un attribut dans les éléments chiffrés avec le client de chiffrement
DynamoDB, vous pouvez arrêter de l'utiliser. Toutefois, ne supprimez pas ou ne modifiez pas l'action
de cet attribut. Si vous le faites, puis que vous rencontrez un élément avec cet attribut, la signature
calculée pour l'élément ne correspondra pas à la signature d'origine et la validation de la signature
échouera.

Bien que vous soyez tenté de supprimer toutes les traces de l'attribut de votre code, ajoutez un
commentaire indiquant que l'élément n'est plus utilisé au lieu de le supprimer. Même si vous
effectuez une analyse complète de table pour supprimer toutes les instances de l'attribut, un élément
chiffré avec cet attribut peut être mis en cache ou en cours de traitement quelque part dans votre
configuration.

Résolution des problèmes liés à votre application cliente de chiffrement
DynamoDB

Note

Notre bibliothèque de chiffrement côté client a été renommée AWS Database Encryption
SDK. La rubrique suivante fournit des informations sur les versions 1. x —2. x du client de

Résolution des problèmes 337

AWS SDK de chiffrement de base de données Guide du développeur

chiffrement DynamoDB pour Java et versions 1. x —3. x du client de chiffrement DynamoDB
pour Python. Pour plus d'informations, consultez la section SDK AWS de chiffrement de base
de données pour la prise en charge des versions DynamoDB.

Cette section décrit les problèmes que vous pouvez rencontrer lors de l'utilisation du client de
chiffrement DynamoDB et propose des suggestions pour les résoudre.

Pour fournir des commentaires sur le client de chiffrement DynamoDB, signalez un problème dans
aws-dynamodb-encryption-javale référentiel or. aws-dynamodb-encryption-python GitHub

Pour émettre des commentaires sur cette documentation, utilisez le lien des commentaires sur
n'importe quelle page.

Rubriques

• Accès refusé

• Échec de la vérification de la signature

• Problèmes liés aux anciennes versions des tables globales

• Mauvaise performance du fournisseur le plus récent

Accès refusé

Problème : votre application se voit refuser l'accès à une ressource dont elle a besoin.

Suggestion : en savoir plus sur les autorisations requises et les ajouter au contexte de sécurité dans
lequel votre application s'exécute.

Détails

Pour exécuter une application qui utilise la bibliothèque d'un client de chiffrement DynamoDB,
l'appelant doit être autorisé à utiliser ses composants. Sinon, l'accès aux éléments requis lui est
refusé.

• Le client de chiffrement DynamoDB ne nécessite pas de compte Amazon Web Services AWS()
et ne dépend d'aucun service. AWS Toutefois, si votre application l'utilise AWS, vous avez besoin
d'un Compte AWS et d'utilisateurs autorisés à utiliser le compte.

• Le client de chiffrement DynamoDB n'a pas besoin d'Amazon DynamoDB. Toutefois, si l'application
qui utilise le client crée des tables DynamoDB, place des éléments dans une table ou extrait des

Résolution des problèmes 338

https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-python/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html

AWS SDK de chiffrement de base de données Guide du développeur

éléments d'une table, l'appelant doit être autorisé à utiliser les opérations DynamoDB requises
dans votre. Compte AWS Pour plus de détails, consultez les rubriques relatives au contrôle d'accès
dans le guide du développeur Amazon DynamoDB.

• Si votre application utilise une classe d'assistance client dans le client de chiffrement DynamoDB
pour Python, l'appelant doit être autorisé à appeler l'opération DynamoDB. DescribeTable

• Le client de chiffrement DynamoDB n'a pas AWS Key Management Service besoin de ().AWS
KMS Toutefois, si votre application utilise un fournisseur de matériel KMS direct, ou si elle utilise un
fournisseur le plus récent avec un magasin de fournisseurs qui l'utilise AWS KMS, l'appelant doit
être autorisé à utiliser les opérations AWS KMS GenerateDataKeyet à déchiffrer.

Échec de la vérification de la signature

Problème : un élément ne peut pas être déchiffré en raison de l'échec de la vérification de la
signature. L'élément peut aussi ne pas avoir été chiffré et signé comme vous l'escomptez.

Suggestion : vérifiez que les actions d'attribut que vous fournissez représentent tous les attributs de
l'élément. Lors du déchiffrement d'un élément, veillez à fournir les actions d'attribut qui correspondent
aux actions utilisées pour chiffrer l'élément.

Détails

Les actions d'attribut que vous fournissez indiquent au client de chiffrement DynamoDB les attributs à
chiffrer et à signer, les attributs à signer (mais pas à chiffrer) et ceux à ignorer.

Si les actions d'attribut que vous spécifiez ne rendent pas compte de tous les attributs de l'élément,
l'élément peut ne pas être chiffré et signé comme vous l'escomptiez. Si les actions d'attribut que vous
fournissez lors du déchiffrement d'un élément diffèrent des actions d'attribut que vous avez fournies
lors du chiffrement de l'élément, la vérification de la signature peut échouer. Il s'agit d'un problème
particulier pour les applications distribuées dans lesquelles les nouvelles actions d'attribut peuvent ne
pas avoir été propagées sur tous les hôtes.

Les erreurs de validation de signature sont difficiles à résoudre. Pour vous aider à les prévenir,
prenez des précautions supplémentaires lorsque vous modifiez votre modèle de données. Pour plus
de détails, consultez Modification de votre modèle de données.

Problèmes liés aux anciennes versions des tables globales

Problème : les éléments d'une ancienne version de la table globale Amazon DynamoDB ne peuvent
pas être déchiffrés car la vérification des signatures échoue.

Résolution des problèmes 339

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/access-control-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS SDK de chiffrement de base de données Guide du développeur

Suggestion : définissez des actions d'attribut afin que les champs de réplication réservés ne soient ni
chiffrés ni signés.

Détails

Vous pouvez utiliser le client de chiffrement DynamoDB avec les tables globales DynamoDB. Nous
vous recommandons d'utiliser des tables globales avec une clé KMS multirégionale et de répliquer la
clé KMS dans tous les Régions AWS endroits où la table globale est répliquée.

À partir de la version 2019.11.21 des tables globales, vous pouvez utiliser des tables globales avec le
client de chiffrement DynamoDB sans configuration particulière. Toutefois, si vous utilisez des tables
globales version 2017.11.29, vous devez vous assurer que les champs de réplication réservés ne
sont ni chiffrés ni signés.

Si vous utilisez la version 2017.11.29 des tables globales, vous devez définir les actions d'attribut
pour les attributs suivants DO_NOTHING en Java ou en @DoNotTouch Python.

• aws:rep:deleting

• aws:rep:updatetime

• aws:rep:updateregion

Si vous utilisez une autre version des tables globales, aucune action n'est requise.

Mauvaise performance du fournisseur le plus récent

Problème : votre application est moins réactive, en particulier après la mise à jour vers une version
plus récente du client de chiffrement DynamoDB.

Suggestion : ajustez la time-to-live valeur et la taille du cache.

Détails

Le fournisseur le plus récent est conçu pour améliorer les performances des applications qui utilisent
le client de chiffrement DynamoDB en autorisant une réutilisation limitée du matériel cryptographique.
Lorsque vous configurez le fournisseur le plus récent pour votre application, vous devez trouver un
équilibre entre l'amélioration des performances et les problèmes de sécurité liés à la mise en cache
et à la réutilisation.

Dans les nouvelles versions du client de chiffrement DynamoDB, la valeur (TTL) détermine time-to-
live la durée pendant laquelle les fournisseurs de matériel cryptographique mis en cache () peuvent

Résolution des problèmes 340

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V2.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V1.html

AWS SDK de chiffrement de base de données Guide du développeur

être utilisés. CMPs Le TTL détermine également la fréquence à laquelle le fournisseur le plus récent
vérifie la présence d'une nouvelle version du CMP.

Si votre TTL est trop long, votre application peut enfreindre vos règles commerciales ou vos normes
de sécurité. Si votre TTL est trop court, des appels fréquents au magasin du fournisseur peuvent
entraîner le ralentissement des demandes provenant de votre application et d'autres applications
partageant votre compte de service. Pour résoudre ce problème, ajustez le TTL et la taille du cache à
une valeur correspondant à vos objectifs de latence et de disponibilité et conforme à vos normes de
sécurité. Pour plus de détails, consultez Définition d'une time-to-live valeur.

Résolution des problèmes 341

AWS SDK de chiffrement de base de données Guide du développeur

Changement du nom du client de chiffrement Amazon
DynamoDB

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Le 9 juin 2023, notre bibliothèque de chiffrement côté client a été renommée AWS Database
Encryption SDK. Le SDK AWS de chiffrement de base de données est compatible avec Amazon
DynamoDB. Il peut déchiffrer et lire les éléments chiffrés par l'ancien client de chiffrement
DynamoDB. Pour plus d'informations sur les anciennes versions du client de chiffrement DynamoDB,
consultez. AWS SDK de chiffrement de base de données pour la prise en charge des versions
DynamoDB

Le SDK AWS de chiffrement de base de données fournit la version 3. x de la bibliothèque de
chiffrement côté client Java pour DynamoDB, qui constitue une réécriture majeure du client de
chiffrement DynamoDB pour Java. Il inclut de nombreuses mises à jour, telles qu'un nouveau format
de données structuré, une prise en charge améliorée de la mutualisation, des modifications de
schéma fluides et la prise en charge du chiffrement consultable.

Pour en savoir plus sur les nouvelles fonctionnalités introduites avec le SDK AWS de chiffrement de
base de données, consultez les rubriques suivantes.

Chiffrement consultable

Vous pouvez concevoir des bases de données capables de rechercher des enregistrements
chiffrés sans déchiffrer l'intégralité de la base de données. En fonction de votre modèle de
menace et de vos exigences en matière de requêtes, vous pouvez utiliser le chiffrement
consultable pour effectuer des recherches de correspondance exacte ou des requêtes complexes
plus personnalisées sur vos enregistrements chiffrés.

Porte-clés

Le SDK AWS Database Encryption utilise des trousseaux de clés pour chiffrer les enveloppes.
Les porte-clés génèrent, chiffrent et déchiffrent les clés de données qui protègent vos dossiers.
Le SDK AWS Database Encryption prend en charge les AWS KMS jeux de clés utilisant le

342

AWS SDK de chiffrement de base de données Guide du développeur

chiffrement symétrique ou RSA asymétrique AWS KMS keyspour protéger vos clés de données,
ainsi que les porte-clés AWS KMS hiérarchiques qui vous permettent de protéger vos documents
cryptographiques sous une clé KMS de chiffrement symétrique sans avoir à appeler AWS KMS
chaque fois que vous chiffrez ou déchiffrez un enregistrement. Vous pouvez également spécifier
votre propre matériau clé avec les porte-clés Raw AES et RSA Raw.

Changements de schéma simplifiés

Lorsque vous configurez le SDK de chiffrement de AWS base de données, vous fournissez
des actions cryptographiques qui indiquent au client les champs à chiffrer et à signer, les
champs à signer (mais pas à chiffrer) et ceux à ignorer. Après avoir utilisé le SDK AWS de
chiffrement de base de données pour protéger vos enregistrements, vous pouvez toujours
apporter des modifications à votre modèle de données. Vous pouvez mettre à jour vos actions
cryptographiques, telles que l'ajout ou la suppression de champs chiffrés, en un seul déploiement.

Configuration des tables DynamoDB existantes pour le chiffrement côté client

Les anciennes versions du client de chiffrement DynamoDB ont été conçues pour être
implémentées dans de nouvelles tables non remplies. Avec le SDK AWS Database Encryption
pour DynamoDB, vous pouvez migrer vos tables Amazon DynamoDB existantes vers la version 3.
x de la bibliothèque de chiffrement côté client Java pour DynamoDB.

343

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS SDK de chiffrement de base de données Guide du développeur

Référence

Notre bibliothèque de chiffrement côté client a été renommée SDK de chiffrement de AWS base
de données. Ce guide du développeur fournit toujours des informations sur le client de chiffrement
DynamoDB.

Les rubriques suivantes fournissent des informations techniques sur le SDK de chiffrement AWS de
base de données.

Format de description du matériau
La description du matériau sert d'en-tête à un enregistrement crypté. Lorsque vous chiffrez et
signez des champs avec le SDK de chiffrement de AWS base de données, le crypteur enregistre
la description du matériel au fur et à mesure qu'il assemble le matériel cryptographique et stocke la
description du matériel dans un nouveau champ (aws_dbe_head) qu'il ajoute à votre enregistrement.
La description matérielle est une structure de données formatée portable qui contient la clé de
données cryptée et des informations sur la manière dont l'enregistrement a été crypté et signé. Le
tableau suivant décrit les valeurs qui constituent la description du matériau. Les octets sont ajoutés
dans l'ordre indiqué.

Valeur Longueur en octets

Version 1

Signatures Enabled 1

Record ID 32

Encrypt Legend Variable

Encryption Context Length 2

??? Variable

Encrypted Data Key Count 1

Encrypted Data Keys Variable

Format de description du matériau 344

AWS SDK de chiffrement de base de données Guide du développeur

Valeur Longueur en octets

Record Commitment 1

Version

Version du format de ce aws_dbe_head champ.

Signatures activées

Indique si les signatures numériques ECDSA sont activées pour cet enregistrement.

Valeur d'octet Signification

0x01 Signatures numériques ECDSA activées (par
défaut)

0x00 Signatures numériques ECDSA désactivées

Identifiant de l'enregistrement

Une valeur de 256 bits générée aléatoirement qui identifie l'enregistrement. L'identifiant de
l'enregistrement :

• Identifie de manière unique l'enregistrement crypté.

• Lie la description du matériau à l'enregistrement crypté.

Chiffrer la légende

Description sérialisée des champs authentifiés qui ont été chiffrés. La légende de chiffrement est
utilisée pour déterminer les champs que la méthode de déchiffrement doit tenter de déchiffrer.

Valeur d'octet Signification

0x65 ENCRYPT_AND_SIGN

0x73 SIGN_ONLY

Le Encrypt Legend est sérialisé comme suit :

Format de description du matériau 345

AWS SDK de chiffrement de base de données Guide du développeur

1. Lexicographiquement par la séquence d'octets qui représente leur chemin canonique.

2. Pour chaque champ, dans l'ordre, ajoutez l'une des valeurs d'octets spécifiées ci-dessus pour
indiquer si ce champ doit être crypté.

Longueur du contexte de chiffrement

La longueur du contexte de chiffrement. Il s'agit d'une valeur de 2 octets interprétée comme un
entier 16 bits non signé. La longueur maximale est de 65 535 octets.

Contexte de chiffrement

Ensemble de paires nom-valeur contenant des données authentifiées supplémentaires arbitraires
et non secrètes.

Lorsque les signatures numériques ECDSA sont activées, le contexte de chiffrement contient la
paire clé-valeur. {"aws-crypto-footer-ecdsa-key": Qtxt} Qtxtreprésente le point de la
courbe elliptique Q compressé conformément à SEC 1 version 2.0 puis codé en base64.

Nombre de clés de données cryptées

Nombre de clés de données chiffrées. Il s'agit d'une valeur de 1 octet interprétée comme un entier
non signé de 8 bits qui indique le nombre de clés de données chiffrées. Le nombre maximum de
clés de données chiffrées dans chaque enregistrement est de 255.

Clés de données cryptées

Séquence de clés de données chiffrées. La longueur de la séquence est déterminée par le
nombre de clés de données chiffrées et la longueur de chacune. La séquence contient au moins
une clé de données chiffrée.

Le tableau suivant décrit les champs qui composent chaque clé de données chiffrée. Les octets
sont ajoutés dans l'ordre indiqué.

Structure de la clé de données chiffrée

Champ Longueur en octets

Key Provider ID Length 2

Key Provider ID Variable. Est égal à la valeur spécifiée dans
les 2 octets précédents (Longueur de l'ID du
fournisseur de clés).

Format de description du matériau 346

https://www.secg.org/sec1-v2.pdf

AWS SDK de chiffrement de base de données Guide du développeur

Champ Longueur en octets

Key Provider Information Length 2

Key Provider Information Variable. Est égal à la valeur spécifiée
dans les 2 octets précédents (Longueur de
l'information du fournisseur de clés).

Encrypted Data Key Length 2

Encrypted Data Key Variable. Est égal à la valeur spécifiée dans
les 2 octets précédents (Longueur de la clé
de données chiffrée).

Longueur de l'identifiant du fournisseur clé

Longueur de l'identifiant du fournisseur de clés. Il s'agit d'une valeur de 2 octets interprétée
comme un entier 16 bits non signé qui spécifie le nombre d'octets qui contiennent l'ID du
fournisseur des clés.

Identifiant du fournisseur clé

Identifiant du fournisseur de clés. Il est utilisé pour indiquer le fournisseur de la clé de données
chiffrée et doit être extensible.

Longueur des informations sur les fournisseurs clés

Longueur de l'information du fournisseur de clés. Il s'agit d'une valeur de 2 octets interprétée
comme un entier 16 bits non signé qui spécifie le nombre d'octets qui contiennent l'information
du fournisseur des clés.

Informations clés sur les fournisseurs

Information sur le fournisseur de clés. Il est déterminé par le fournisseur de clés.

Lorsque vous utilisez un AWS KMS trousseau de clés, cette valeur contient le nom de
ressource Amazon (ARN) du AWS KMS key.

Longueur de la clé de données cryptée

Longueur de la clé de données chiffrée. Il s'agit d'une valeur de 2 octets interprétée comme
un entier 16 bits non signé qui spécifie le nombre d'octets qui contiennent la clé de données
chiffrée.

Format de description du matériau 347

AWS SDK de chiffrement de base de données Guide du développeur

Clé de données cryptée

Clé de données chiffrée. Il s'agit de la clé de données cryptée par le fournisseur de clés.

Engagement record

Un hachage distinct de 256 bits basé sur le hachage (HMAC) calculé sur tous les octets de
description matérielle précédents à l'aide de la clé de validation.

AWS KMS Détails techniques du porte-clés hiérarchique

Le trousseau de clés AWS KMS hiérarchique utilise une clé de données unique pour chiffrer chaque
champ et chiffre chaque clé de données avec une clé d'encapsulation unique dérivée d'une clé de
branche active. Il utilise une dérivation de clé en mode compteur avec une fonction pseudo-aléatoire
avec HMAC SHA-256 pour dériver la clé d'encapsulation de 32 octets avec les entrées suivantes.

• Un sel aléatoire de 16 octets

• La clé de branche active

• La valeur codée en UTF-8 pour l'identifiant du fournisseur de clés « » aws-kms-hierarchy

Le trousseau de clés hiérarchique utilise la clé d'encapsulation dérivée pour chiffrer une copie de la
clé de données en texte brut à l'aide du protocole AES-GCM-256 avec une balise d'authentification
de 16 octets et les entrées suivantes.

• La clé d'encapsulation dérivée est utilisée comme clé de chiffrement AES-GCM

• La clé de données est utilisée comme message AES-GCM

• Un vecteur d'initialisation aléatoire (IV) de 12 octets est utilisé comme AES-GCM IV

• Données authentifiées supplémentaires (AAD) contenant les valeurs sérialisées suivantes.

Valeur Longueur en octets Interprété comme

"aws-kms-hierarchy" 17 Encodé en UTF-8

L'identifiant de la clé de
branche

Variable Encodé en UTF-8

AWS KMS Détails techniques du porte-clés hiérarchique 348

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
https://en.wikipedia.org/wiki/UTF-8

AWS SDK de chiffrement de base de données Guide du développeur

Valeur Longueur en octets Interprété comme

La version de la clé de
branche

16 Encodé en UTF-8

Contexte de chiffrement Variable Paires de valeurs clés codées
en UTF-8

AWS KMS Détails techniques du porte-clés hiérarchique 349

AWS SDK de chiffrement de base de données Guide du développeur

Historique du document relatif au guide du développeur du
SDK AWS de chiffrement des bases de données

Le tableau suivant décrit les modifications importantes apportées à cette documentation. En plus de
ces principales modifications, nous mettons fréquemment à jour la documentation pour améliorer
les descriptions et les exemples, et pour répondre aux commentaires que vous nous envoyez. Pour
recevoir une notification concernant des modifications importantes, abonnez-vous au flux RSS.

Modification Description Date

Nouvelle fonction Ajout de documentation pour
le porte-clés AWS KMS ECDH
et le porte-clés ECDH brut.

17 juin 2024

Version de disponibilité
générale (GA)

Présentation de la prise en
charge de la bibliothèque de
chiffrement côté client .NET
pour DynamoDB.

17 janvier 2024

Version de disponibilité
générale (GA)

Documentation mise à jour
pour la version GA de la
version 3. x de la bibliothèque
de chiffrement côté client Java
pour DynamoDB.

Warning

Les clés de branche
créées lors de la
version préliminaire
pour les développeurs
ne sont plus prises en
charge.

24 juillet 2023

350

https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-net.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-net.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-java.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-java.html

AWS SDK de chiffrement de base de données Guide du développeur

Changement de nom du client
de chiffrement DynamoDB

La bibliothèque de chiffrement
côté client est renommée AWS
Database Encryption SDK.

9 juin 2023

Version préliminaire Documentation ajoutée et
mise à jour pour la version
3. x de la bibliothèque de
chiffrement côté client Java
pour DynamoDB, qui inclut un
nouveau format de données
structurées, une prise en
charge améliorée de la
mutualisation, des modificat
ions de schéma fluides et une
prise en charge du chiffrement
consultable.

9 juin 2023

Modification de la documenta
tion

Remplacez le AWS Key
Management Service terme
clé principale du client (CMK)
par AWS KMS keyclé KMS.

30 août 2021

Nouvelle fonction Ajout du support pour AWS
Key Management Service
(AWS KMS) les clés multirégi
onales. Les clés multirégi
onales sont des AWS KMS
clés différentes Régions AWS
qui peuvent être utilisées de
manière interchangeable car
elles ont le même identifiant
de clé et le même matériau de
clé.

8 juin 2021

Nouvel exemple Ajout d'un exemple d'utilisa
tion de Dynamo DBMapper en
Java.

6 septembre 2018

351

https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/direct-kms-provider.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/direct-kms-provider.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/direct-kms-provider.html#provider-kms-how-to-use
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/java-examples.html#java-example-dynamodb-mapper

AWS SDK de chiffrement de base de données Guide du développeur

Support de Python Ajout de la prise en charge de
Python, en plus de Java.

2 mai 2018

Première version Première version de la
présente documentation.

2 mai 2018

352

https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/python.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/

AWS SDK de chiffrement de base de données Guide du développeur

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le
contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

cccliii

	AWS SDK de chiffrement de base de données
	Table of Contents
	Qu'est-ce que le SDK AWS de chiffrement des bases de données ?
	Développé dans des référentiels open source
	Support et maintenance
	Envoyer un commentaire
	AWS Concepts du SDK de chiffrement de base de données
	Chiffrement d’enveloppe
	Clé de données
	Clé d'emballage
	Porte-clés
	Actions cryptographiques
	Description du matériau
	Contexte de chiffrement
	Gestionnaire de matériaux de chiffrement
	Chiffrement symétrique et asymétrique
	Engagement clé
	Signatures numériques

	Fonctionnement du SDK AWS de chiffrement de base de données
	Chiffrer et signer
	Déchiffrer et vérifier

	Suites d'algorithmes prises en charge dans le SDK AWS de chiffrement de base de données
	Suite d'algorithmes par défaut
	AES-GCM sans signatures numériques ECDSA

	Utilisation du SDK AWS de chiffrement de base de données avec AWS KMS
	Configuration du SDK de chiffrement AWS de base de données
	Sélection d'un langage de programmation
	Sélection des clés d'emballage
	Création d'un filtre de découverte
	Utilisation de bases de données mutualisées
	Création de balises signées

	Stockage des clés dans le SDK de chiffrement des AWS bases de données
	Terminologie et concepts clés du magasin
	Implémentation des autorisations avec le moindre privilégié
	Créez un magasin de clés
	Configurer les actions clés du magasin
	Configurez les actions clés de votre boutique
	Configuration statique
	Configuration de la découverte

	Création d'une clé de branche active
	Faites pivoter votre clé de branche active

	Porte-clés
	Fonctionnement des porte-clés
	AWS KMS porte-clés
	Autorisations requises pour les AWS KMS porte-clés
	Identification AWS KMS keys dans un AWS KMS porte-clés
	Création d'un AWS KMS porte-clés
	Utilisation de plusieurs régions AWS KMS keys
	Utilisation d'un porte-clés AWS KMS Discovery
	Utiliser un porte-clés de découverte AWS KMS régional

	AWS KMS Porte-clés hiérarchiques
	Comment ça marche
	Prérequis
	Autorisations requises
	Choisissez un cache
	Cache par défaut
	MultiThreaded cache
	StormTracking cache
	Cache partagé

	Création d'un trousseau de clés hiérarchique
	Création d'un trousseau de clés hiérarchique avec un identifiant de clé de branche statique
	Créez un trousseau de clés hiérarchique avec un fournisseur d'identifiant de clé de succursale

	Utilisation du trousseau de clés hiérarchique pour un chiffrement consultable
	Définition de la source clé de votre balise

	AWS KMS Porte-clés ECDH
	Autorisations requises pour les AWS KMS porte-clés ECDH
	Création d'un AWS KMS porte-clés ECDH
	Création d'un AWS KMS porte-clés de découverte ECDH

	Porte-clés AES brut
	Porte-clés RSA bruts
	Porte-clés ECDH bruts
	Création d'un porte-clés ECDH brut
	RawPrivateKeyToStaticPublicKey
	EphemeralPrivateKeyToStaticPublicKey
	PublicKeyDiscovery

	Porte-clés multiples

	Chiffrement consultable
	Les balises sont-elles adaptées à mon ensemble de données ?
	Scénario de chiffrement consultable
	Balises
	Balises standard
	Balises composées

	Balises de planification
	Considérations relatives aux bases de données mutualisées
	Choisir un type de balise
	Balises standard
	Interrogez un seul champ chiffré
	Exemples

	Interroger un champ virtuel
	Exemples

	Balises composées
	Interrogez une combinaison de champs chiffrés sur un seul index
	Exemples

	Interrogez une combinaison de champs chiffrés et de champs en texte brut sur un seul index
	Exemples

	Choix de la longueur d'une balise
	Calcul de la longueur des balises
	exemple

	Choisir un nom de balise

	Configuration des balises
	Configuration des balises standard
	Exemple de syntaxe de configuration
	Création d'un champ virtuel
	Considérations relatives à la sécurité des champs virtuels

	Définition des styles de balises

	Configuration de balises composées
	Exemple de syntaxe de configuration

	Exemples de configuration
	Balises standard
	Balises composées

	Utilisation de balises
	Interrogation de balises

	Chiffrement consultable pour les bases de données mutualisées
	Interrogation de balises dans une base de données mutualisée

	AWS SDK de chiffrement de base de données pour DynamoDB
	Chiffrement côté client et côté serveur
	Quels sont les champs chiffrés et signés ?
	Chiffrement des valeurs d'attribut
	Signature de l'élément

	Chiffrement consultable dans DynamoDB
	Configuration des index secondaires avec des balises
	Tester les sorties des balises
	Tester des champs virtuels
	Tester des balises composées

	Mettre à jour votre modèle de données
	Ajouter ENCRYPT_AND_SIGN de SIGN_ONLY nouveaux SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attributs et
	Supprimer les attributs existants
	Remplacer un ENCRYPT_AND_SIGN attribut existant par SIGN_ONLY ou SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
	Modifier un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribut SIGN_ONLY ou un existant en ENCRYPT_AND_SIGN
	Ajouter un nouvel DO_NOTHING attribut
	Modifier un SIGN_ONLY attribut existant en SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
	Modifier un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT attribut existant en SIGN_ONLY

	AWS SDK de chiffrement de base de données pour DynamoDB, langages de programmation disponibles
	Java
	Prérequis
	Installation
	Utilisation de la bibliothèque de chiffrement côté client Java pour DynamoDB
	Chiffreurs d'éléments
	Actions relatives aux attributs dans le SDK de chiffrement AWS de base de données pour DynamoDB
	Utiliser une classe de données annotée
	Définissez manuellement les actions de vos attributs

	Configuration du chiffrement dans le SDK de chiffrement AWS de base de données pour DynamoDB
	Mise à jour d'éléments avec le SDK AWS de chiffrement de base de données
	Déchiffrer des sets signés

	Exemples Java
	Utilisation du client amélioré DynamoDB
	Utilisation de l'API DynamoDB de bas niveau
	Utiliser le niveau inférieur DynamoDbItemEncryptor

	Configurer une table DynamoDB existante pour utiliser AWS le SDK de chiffrement de base de données pour DynamoDB
	Étape 1 : Préparez-vous à lire et à écrire des éléments chiffrés
	Étape 2 : Écrire des éléments chiffrés et signés
	Étape 3 : lire uniquement les éléments chiffrés et signés

	Migrer vers la version 3.x de la bibliothèque de chiffrement côté client Java pour DynamoDB
	Migration de la version 1.x vers la version 2.x
	Migration de la version 2.x vers la version 3.x
	Étape 1. Préparez-vous à lire les éléments dans le nouveau format
	Étape 2. Écrire des éléments dans le nouveau format
	Étape 3. Lisez et écrivez uniquement les éléments dans le nouveau format

	.NET
	Installation de la bibliothèque de chiffrement côté client .NET pour DynamoDB
	Débogage avec .NET
	Utilisation de la bibliothèque de chiffrement côté client .NET pour DynamoDB
	Chiffreurs d'éléments
	Actions relatives aux attributs dans le SDK de chiffrement AWS de base de données pour DynamoDB
	Configuration du chiffrement dans le SDK de chiffrement AWS de base de données pour DynamoDB
	Mise à jour d'éléments avec le SDK AWS de chiffrement de base de données

	Exemples .NET
	Utilisation du SDK de chiffrement de AWS base de données de bas niveau pour l'API DynamoDB
	Utiliser le niveau inférieur DynamoDbItemEncryptor

	Configurer une table DynamoDB existante pour utiliser AWS le SDK de chiffrement de base de données pour DynamoDB
	Étape 1 : Préparez-vous à lire et à écrire des éléments chiffrés
	Étape 2 : Écrire des éléments chiffrés et signés
	Étape 3 : lire uniquement les éléments chiffrés et signés

	Rust
	Prérequis
	Installation
	Utilisation de la bibliothèque de chiffrement côté client Rust pour DynamoDB
	Chiffreurs d'éléments
	Actions relatives aux attributs dans le SDK de chiffrement AWS de base de données pour DynamoDB
	Configuration du chiffrement dans le SDK de chiffrement AWS de base de données pour DynamoDB
	Mise à jour d'éléments avec le SDK AWS de chiffrement de base de données

	Ancien client de chiffrement DynamoDB
	AWS SDK de chiffrement de base de données pour la prise en charge des versions DynamoDB
	Fonctionnement du client de chiffrement DynamoDB
	Concepts du client de chiffrement Amazon DynamoDB
	Fournisseur CMP (Cryptographic Materials Provider)
	Chiffreurs d'éléments
	Actions d'attribut
	Description du matériau
	Client de chiffrement DynamoDB
	Magasin de fournisseur

	Fournisseur de matériel cryptographique
	Fournisseur de matériaux KMS direct
	Comment l'utiliser
	Comment ça marche
	Obtention des matériaux de chiffrement
	Obtention des matériaux de déchiffrement

	Fournisseur de matériaux encapsulé
	Comment l'utiliser
	Comment ça marche
	Obtention des matériaux de chiffrement
	Obtention des matériaux de déchiffrement

	À propos du fournisseur le plus récent
	Comment l'utiliser
	Comment ça marche
	À propos du fournisseur le plus récent
	À propos de MetaStore
	Définition d'une time-to-live valeur
	Rotation des matériaux de chiffrement
	Obtention des matériaux de chiffrement
	Obtention des matériaux de déchiffrement

	Mises à jour du fournisseur le plus récent

	Fournisseur de matériaux statique
	Comment l'utiliser
	Comment ça marche
	Obtention des matériaux de chiffrement
	Obtention des matériaux de déchiffrement

	Langages de programmation disponibles pour le client de chiffrement Amazon DynamoDB
	Client de chiffrement Amazon DynamoDB pour Java
	Prérequis
	Installation
	Utilisation du client de chiffrement DynamoDB pour Java
	Crypteurs d'objets : AttributeEncryptor et Dynamo DBEncryptor
	Configuration du comportement d'enregistrement
	Actions d'attribut en Java
	Actions attributaires pour le Dynamo DBMapper
	Actions attributaires pour le Dynamo DBEncryptor

	Remplacer les noms des tables

	Exemple de code pour le client de chiffrement DynamoDB pour Java
	Utilisation de la Dynamo DBEncryptor
	Utilisation de la Dynamo DBMapper

	Client de chiffrement DynamoDB pour Python
	Prérequis
	Installation
	Utilisation du client de chiffrement DynamoDB pour Python
	Classes d'annotations clientes
	TableInfo classe
	Actions d'attribut en Python

	Exemple de code pour le client de chiffrement DynamoDB pour Python
	Utiliser la classe d'assistance EncryptedTable client
	Utilisation du chiffreur d'élément

	Modification de votre modèle de données
	Ajout d'un attribut
	Suppression d'un attribut

	Résolution des problèmes liés à votre application cliente de chiffrement DynamoDB
	Accès refusé
	Échec de la vérification de la signature
	Problèmes liés aux anciennes versions des tables globales
	Mauvaise performance du fournisseur le plus récent

	Changement du nom du client de chiffrement Amazon DynamoDB
	Référence
	Format de description du matériau
	AWS KMS Détails techniques du porte-clés hiérarchique

	Historique du document relatif au guide du développeur du SDK AWS de chiffrement des bases de données
	

