D’autres exemples de kits AWS SDK sont disponibles dans le référentiel GitHub AWS Doc SDK Examples
Utilisation de DetectModerationLabels avec un kit AWS SDK ou une interface de ligne de commande
Les exemples de code suivants illustrent comment utiliser DetectModerationLabels.
Pour plus d’informations, consultez Détecter des images inappropriées.
- .NET
-
- SDK pour .NET
-
Note
Il y en a plus sur GitHub. Trouvez l’exemple complet et découvrez comment le configurer et l’exécuter dans le référentiel d’exemples de code AWS
. using System; using System.Threading.Tasks; using Amazon.Rekognition; using Amazon.Rekognition.Model; /// <summary> /// Uses the Amazon Rekognition Service to detect unsafe content in a /// JPEG or PNG format image. /// </summary> public class DetectModerationLabels { public static async Task Main(string[] args) { string photo = "input.jpg"; string bucket = "amzn-s3-demo-bucket"; var rekognitionClient = new AmazonRekognitionClient(); var detectModerationLabelsRequest = new DetectModerationLabelsRequest() { Image = new Image() { S3Object = new S3Object() { Name = photo, Bucket = bucket, }, }, MinConfidence = 60F, }; try { var detectModerationLabelsResponse = await rekognitionClient.DetectModerationLabelsAsync(detectModerationLabelsRequest); Console.WriteLine("Detected labels for " + photo); foreach (ModerationLabel label in detectModerationLabelsResponse.ModerationLabels) { Console.WriteLine($"Label: {label.Name}"); Console.WriteLine($"Confidence: {label.Confidence}"); Console.WriteLine($"Parent: {label.ParentName}"); } } catch (Exception ex) { Console.WriteLine(ex.Message); } } }-
Pour plus de détails sur l’API, consultez DetectModerationLabels dans la Référence des API du kit AWS SDK pour .NET.
-
- CLI
-
- AWS CLI
-
Pour détecter le contenu inapproprié dans une image
La commande
detect-moderation-labelssuivante détecte le contenu inapproprié dans l’image spécifiée stockée dans un compartiment Amazon S3.aws rekognition detect-moderation-labels \ --image"S3Object={Bucket=MyImageS3Bucket,Name=gun.jpg}"Sortie :
{ "ModerationModelVersion": "3.0", "ModerationLabels": [ { "Confidence": 97.29618072509766, "ParentName": "Violence", "Name": "Weapon Violence" }, { "Confidence": 97.29618072509766, "ParentName": "", "Name": "Violence" } ] }Pour plus d’informations, consultez Détection d’images inappropriées dans le Guide du développeur Amazon Rekognition.
-
Pour plus de détails sur l’API, consultez DetectModerationLabels
dans la Référence des commandes de l’AWS CLI.
-
- Java
-
- SDK pour Java 2.x
-
Note
Il y en a plus sur GitHub. Trouvez l’exemple complet et découvrez comment le configurer et l’exécuter dans le référentiel d’exemples de code AWS
. import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.*; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectModerationLabels { public static void main(String[] args) { final String usage = """ Usage: <bucketName> <sourceImage> Where: bucketName - The name of the S3 bucket where the images are stored. sourceImage - The name of the image (for example, pic1.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String bucketName = args[0]; String sourceImage = args[1]; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); detectModLabels(rekClient, bucketName, sourceImage); rekClient.close(); } /** * Detects moderation labels in an image stored in an Amazon S3 bucket. * * @param rekClient the Amazon Rekognition client to use for the detection * @param bucketName the name of the Amazon S3 bucket where the image is stored * @param sourceImage the name of the image file to be analyzed * * @throws RekognitionException if there is an error during the image detection process */ public static void detectModLabels(RekognitionClient rekClient, String bucketName, String sourceImage) { try { S3Object s3ObjectTarget = S3Object.builder() .bucket(bucketName) .name(sourceImage) .build(); Image targetImage = Image.builder() .s3Object(s3ObjectTarget) .build(); DetectModerationLabelsRequest moderationLabelsRequest = DetectModerationLabelsRequest.builder() .image(targetImage) .minConfidence(60F) .build(); DetectModerationLabelsResponse moderationLabelsResponse = rekClient .detectModerationLabels(moderationLabelsRequest); List<ModerationLabel> labels = moderationLabelsResponse.moderationLabels(); System.out.println("Detected labels for image"); for (ModerationLabel label : labels) { System.out.println("Label: " + label.name() + "\n Confidence: " + label.confidence().toString() + "%" + "\n Parent:" + label.parentName()); } } catch (RekognitionException e) { e.printStackTrace(); System.exit(1); } } }-
Pour plus d’informations sur l’API consultez DetectModerationLabels dans la Référence de l’API AWS SDK for Java 2.x.
-
- Kotlin
-
- SDK pour Kotlin
-
Note
Il y en a plus sur GitHub. Trouvez l’exemple complet et découvrez comment le configurer et l’exécuter dans le référentiel d’exemples de code AWS
. suspend fun detectModLabels(sourceImage: String) { val myImage = Image { this.bytes = (File(sourceImage).readBytes()) } val request = DetectModerationLabelsRequest { image = myImage minConfidence = 60f } RekognitionClient.fromEnvironment { region = "us-east-1" }.use { rekClient -> val response = rekClient.detectModerationLabels(request) response.moderationLabels?.forEach { label -> println("Label: ${label.name} - Confidence: ${label.confidence} % Parent: ${label.parentName}") } } }-
Pour plus d’informations sur l’API consultez DetectModerationLabels
dans la Référence de l’API de l’AWS SDK pour Kotlin.
-
- Python
-
- Kit SDK pour Python (Boto3)
-
Note
Il y en a plus sur GitHub. Trouvez l’exemple complet et découvrez comment le configurer et l’exécuter dans le référentiel d’exemples de code AWS
. class RekognitionImage: """ Encapsulates an Amazon Rekognition image. This class is a thin wrapper around parts of the Boto3 Amazon Rekognition API. """ def __init__(self, image, image_name, rekognition_client): """ Initializes the image object. :param image: Data that defines the image, either the image bytes or an Amazon S3 bucket and object key. :param image_name: The name of the image. :param rekognition_client: A Boto3 Rekognition client. """ self.image = image self.image_name = image_name self.rekognition_client = rekognition_client def detect_moderation_labels(self): """ Detects moderation labels in the image. Moderation labels identify content that may be inappropriate for some audiences. :return: The list of moderation labels found in the image. """ try: response = self.rekognition_client.detect_moderation_labels( Image=self.image ) labels = [ RekognitionModerationLabel(label) for label in response["ModerationLabels"] ] logger.info( "Found %s moderation labels in %s.", len(labels), self.image_name ) except ClientError: logger.exception( "Couldn't detect moderation labels in %s.", self.image_name ) raise else: return labels-
Pour plus de détails sur l’API, consultez DetectModerationLabels dans la Référence des API du kit AWS SDK for Python (Boto3).
-