Exemples d’utilisation de l’AWS CLI avec Amazon Textract - AWS Command Line Interface

Exemples d’utilisation de l’AWS CLI avec Amazon Textract

Les exemples de code suivants montrent comment réaliser des actions et mettre en œuvre des scénarios courants en utilisant l’AWS Command Line Interface avec Amazon Textract.

Les actions sont des extraits de code de programmes plus larges et doivent être exécutées dans leur contexte. Alors que les actions vous indiquent comment appeler des fonctions de service individuelles, vous pouvez les voir en contexte dans leurs scénarios associés.

Chaque exemple inclut un lien vers le code source complet, où vous trouverez des instructions sur la configuration et l’exécution du code en contexte.

Rubriques

Actions

L’exemple de code suivant montre comment utiliser analyze-document.

AWS CLI

Pour analyser le texte d’un document

L’exemple analyze-document suivant montre comment analyser le texte d’un document.

Linux/macOS :

aws textract analyze-document \ --document '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \ --feature-types '["TABLES","FORMS"]'

Windows :

aws textract analyze-document \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\",\"FORMS\"]" \ --region region-name

Sortie :

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "87586964-d50d-43e2-ace5-8a890657b9a0", "a1e72126-21d9-44f4-a8d6-5c385f9002ba", "e889d012-8a6b-4d2e-b7cd-7a8b327d876a" ] } ], "BlockType": "PAGE", "Id": "c2227f12-b25d-4e1f-baea-1ee180d926b2" } ], "DocumentMetadata": { "Pages": 1 } }

Pour plus d’informations, consultez Analyzing Document Text with Amazon Textract dans le Manuel du développeur Amazon Textract

  • Pour plus de détails sur l’API, consultez AnalyzeDocument dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser detect-document-text.

AWS CLI

Pour détecter du texte dans un document

L’exemple detect-document-text suivant montre comment détecter du texte dans un document.

Linux/macOS :

aws textract detect-document-text \ --document '{"S3Object":{"Bucket":"bucket","Name":"document"}}'

Windows :

aws textract detect-document-text \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region region-name

Sortie :

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "896a9f10-9e70-4412-81ce-49ead73ed881", "0da18623-dc4c-463d-a3d1-9ac050e9e720", "167338d7-d38c-4760-91f1-79a8ec457bb2" ] } ], "BlockType": "PAGE", "Id": "21f0535e-60d5-4bc7-adf2-c05dd851fa25" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "62490c26-37ea-49fa-8034-7a9ff9369c9c", "1e4f3f21-05bd-4da9-ba10-15d01e66604c" ] } ], "Confidence": 89.11581420898438, "Geometry": { "BoundingBox": { "Width": 0.33642634749412537, "Top": 0.17169663310050964, "Left": 0.13885067403316498, "Height": 0.49159330129623413 }, "Polygon": [ { "Y": 0.17169663310050964, "X": 0.13885067403316498 }, { "Y": 0.17169663310050964, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.13885067403316498 } ] }, "Text": "He llo,", "BlockType": "LINE", "Id": "896a9f10-9e70-4412-81ce-49ead73ed881" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "19b28058-9516-4352-b929-64d7cef29daf" ] } ], "Confidence": 85.5694351196289, "Geometry": { "BoundingBox": { "Width": 0.33182239532470703, "Top": 0.23131252825260162, "Left": 0.5091826915740967, "Height": 0.3766750991344452 }, "Polygon": [ { "Y": 0.23131252825260162, "X": 0.5091826915740967 }, { "Y": 0.23131252825260162, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.5091826915740967 } ] }, "Text": "worlc", "BlockType": "LINE", "Id": "0da18623-dc4c-463d-a3d1-9ac050e9e720" } ], "DocumentMetadata": { "Pages": 1 } }

Pour plus d’informations, consultez Detecting Document Text with Amazon Textract dans le Manuel du développeur Amazon Textract

  • Pour plus de détails sur l’API, consultez DetectDocumentText dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser get-document-analysis.

AWS CLI

Pour obtenir les résultats de l’analyse de texte asynchrone d’un document de plusieurs pages

L’exemple get-document-analysis suivant montre comment obtenir les résultats de l’analyse de texte asynchrone d’un document de plusieurs pages.

aws textract get-document-analysis \ --job-id df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b \ --max-results 1000

Sortie :

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "75966e64-81c2-4540-9649-d66ec341cd8f", "bb099c24-8282-464c-a179-8a9fa0a057f0", "5ebf522d-f9e4-4dc7-bfae-a288dc094595" ] } ], "BlockType": "PAGE", "Id": "247c28ee-b63d-4aeb-9af0-5f7ea8ba109e", "Page": 1 } ], "NextToken": "cY1W3eTFvoB0cH7YrKVudI4Gb0H8J0xAYLo8xI/JunCIPWCthaKQ+07n/ElyutsSy0+1VOImoTRmP1zw4P0RFtaeV9Bzhnfedpx1YqwB4xaGDA==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }

Pour plus d’informations, consultez Detecting and Analyzing Text in Multi-Page Documents dans le Manuel du développeur Amazon Textract

  • Pour plus de détails sur l’API, consultez GetDocumentAnalysis dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser get-document-text-detection.

AWS CLI

Pour obtenir les résultats de la détection de texte asynchrone dans un document de plusieurs pages

L’exemple get-document-text-detection suivant montre comment obtenir les résultats de la détection de texte asynchrone dans un document de plusieurs pages.

aws textract get-document-text-detection \ --job-id 57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9 \ --max-results 1000

Sortie

{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "1b926a34-0357-407b-ac8f-ec473160c6a9", "0c35dc17-3605-4c9d-af1a-d9451059df51", "dea3db8a-52c2-41c0-b50c-81f66f4aa758" ] } ], "BlockType": "PAGE", "Id": "84671a5e-8c99-43be-a9d1-6838965da33e", "Page": 1 } ], "NextToken": "GcqyoAJuZwujOT35EN4LCI3EUzMtiLq3nKyFFHvU5q1SaIdEBcSty+njNgoWwuMP/muqc96S4o5NzDqehhXvhkodMyVO5OJGyms5lsrCxibWJw==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }

Pour plus d’informations, consultez Detecting and Analyzing Text in Multi-Page Documents dans le Manuel du développeur Amazon Textract

  • Pour plus de détails sur l’API, consultez GetDocumentTextDetection dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser start-document-analysis.

AWS CLI

Pour commencer à analyser le texte d’un document de plusieurs pages

L’exemple start-document-analysis suivant montre comment lancer une analyse de texte asynchrone dans un document de plusieurs pages.

Linux/macOS :

aws textract start-document-analysis \ --document-location '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \ --feature-types '["TABLES","FORMS"]' \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleArn"

Windows :

aws textract start-document-analysis \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\", \"FORMS\"]" \ --region region-name \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleArn"

Sortie :

{ "JobId": "df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b" }

Pour plus d’informations, consultez Detecting and Analyzing Text in Multi-Page Documents dans le Manuel du développeur Amazon Textract

  • Pour plus de détails sur l’API, consultez StartDocumentAnalysis dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser start-document-text-detection.

AWS CLI

Pour commencer à détecter du texte dans un document de plusieurs pages

L’exemple start-document-text-detection suivant montre comment lancer une détection de texte asynchrone dans un document de plusieurs pages.

Linux/macOS :

aws textract start-document-text-detection \ --document-location '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleARN"

Windows :

aws textract start-document-text-detection \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region region-name \ --notification-channel "SNSTopicArn=arn:snsTopic,RoleArn=roleArn"

Sortie :

{ "JobId": "57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9" }

Pour plus d’informations, consultez Detecting and Analyzing Text in Multi-Page Documents dans le Manuel du développeur Amazon Textract