Exemples d’utilisation de l’AWS CLI avec AWS Glue - AWS Command Line Interface

Exemples d’utilisation de l’AWS CLI avec AWS Glue

Les exemples de code suivants montrent comment réaliser des actions et mettre en œuvre des scénarios courants en utilisant l’AWS Command Line Interface avec AWS Glue.

Les actions sont des extraits de code de programmes plus larges et doivent être exécutées dans leur contexte. Alors que les actions vous indiquent comment appeler des fonctions de service individuelles, vous pouvez les voir en contexte dans leurs scénarios associés.

Chaque exemple inclut un lien vers le code source complet, où vous trouverez des instructions sur la configuration et l’exécution du code en contexte.

Rubriques

Actions

L’exemple de code suivant montre comment utiliser batch-stop-job-run.

AWS CLI

Pour arrêter les exécutions de tâches

L’exemple batch-stop-job-run suivant arrête les exécutions de tâches.

aws glue batch-stop-job-run \ --job-name "my-testing-job" \ --job-run-id jr_852f1de1f29fb62e0ba4166c33970803935d87f14f96cfdee5089d5274a61d3f

Sortie :

{ "SuccessfulSubmissions": [ { "JobName": "my-testing-job", "JobRunId": "jr_852f1de1f29fb62e0ba4166c33970803935d87f14f96cfdee5089d5274a61d3f" } ], "Errors": [], "ResponseMetadata": { "RequestId": "66bd6b90-01db-44ab-95b9-6aeff0e73d88", "HTTPStatusCode": 200, "HTTPHeaders": { "date": "Fri, 16 Oct 2020 20:54:51 GMT", "content-type": "application/x-amz-json-1.1", "content-length": "148", "connection": "keep-alive", "x-amzn-requestid": "66bd6b90-01db-44ab-95b9-6aeff0e73d88" }, "RetryAttempts": 0 } }

Pour plus d’informations, consultez Exécutions de tâches dans le Manuel du développeur AWS Glue.

  • Pour plus de détails sur l’API, consultez BatchStopJobRun dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser create-connection.

AWS CLI

Pour créer une connexion pour les magasins de données AWS Glue

L’exemple create-connection suivant crée une connexion dans le catalogue de données AWS Glue, qui fournit des informations de connexion pour un magasin de données Kafka.

aws glue create-connection \ --connection-input '{ \ "Name":"conn-kafka-custom", \ "Description":"kafka connection with ssl to custom kafka", \ "ConnectionType":"KAFKA", \ "ConnectionProperties":{ \ "KAFKA_BOOTSTRAP_SERVERS":"<Kafka-broker-server-url>:<SSL-Port>", \ "KAFKA_SSL_ENABLED":"true", \ "KAFKA_CUSTOM_CERT": "s3://bucket/prefix/cert-file.pem" \ }, \ "PhysicalConnectionRequirements":{ \ "SubnetId":"subnet-1234", \ "SecurityGroupIdList":["sg-1234"], \ "AvailabilityZone":"us-east-1a"} \ }' \ --region us-east-1 --endpoint https://glue.us-east-1.amazonaws.com

Cette commande ne produit aucune sortie.

Pour plus d’informations, consultez Définition de connexions dans le catalogue de données AWS Glue dans le Manuel du développeur AWS Glue.

  • Pour plus de détails sur l’API, consultez CreateConnection dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser create-database.

AWS CLI

Pour créer une base de données

L’exemple create-database suivant crée une base de données dans le catalogue de données AWS Glue.

aws glue create-database \ --database-input "{\"Name\":\"tempdb\"}" \ --profile my_profile \ --endpoint https://glue.us-east-1.amazonaws.com

Cette commande ne produit aucune sortie.

Pour plus d’informations, consultez Définition d’une base de données dans votre catalogue de données dans le Manuel du développeur AWS Glue.

  • Pour plus de détails sur l’API, consultez CreateDatabase dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser create-job.

AWS CLI

Pour créer une tâche afin de transformer des données

L’exemple create-job suivant crée une tâche de streaming qui exécute un script stocké dans S3.

aws glue create-job \ --name my-testing-job \ --role AWSGlueServiceRoleDefault \ --command '{ \ "Name": "gluestreaming", \ "ScriptLocation": "s3://amzn-s3-demo-bucket/folder/" \ }' \ --region us-east-1 \ --output json \ --default-arguments '{ \ "--job-language":"scala", \ "--class":"GlueApp" \ }' \ --profile my-profile \ --endpoint https://glue.us-east-1.amazonaws.com

Contenu de test_script.scala :

import com.amazonaws.services.glue.ChoiceOption import com.amazonaws.services.glue.GlueContext import com.amazonaws.services.glue.MappingSpec import com.amazonaws.services.glue.ResolveSpec import com.amazonaws.services.glue.errors.CallSite import com.amazonaws.services.glue.util.GlueArgParser import com.amazonaws.services.glue.util.Job import com.amazonaws.services.glue.util.JsonOptions import org.apache.spark.SparkContext import scala.collection.JavaConverters._ object GlueApp { def main(sysArgs: Array[String]) { val spark: SparkContext = new SparkContext() val glueContext: GlueContext = new GlueContext(spark) // @params: [JOB_NAME] val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray) Job.init(args("JOB_NAME"), glueContext, args.asJava) // @type: DataSource // @args: [database = "tempdb", table_name = "s3-source", transformation_ctx = "datasource0"] // @return: datasource0 // @inputs: [] val datasource0 = glueContext.getCatalogSource(database = "tempdb", tableName = "s3-source", redshiftTmpDir = "", transformationContext = "datasource0").getDynamicFrame() // @type: ApplyMapping // @args: [mapping = [("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")], transformation_ctx = "applymapping1"] // @return: applymapping1 // @inputs: [frame = datasource0] val applymapping1 = datasource0.applyMapping(mappings = Seq(("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")), caseSensitive = false, transformationContext = "applymapping1") // @type: SelectFields // @args: [paths = ["sensorid", "currenttemperature", "status"], transformation_ctx = "selectfields2"] // @return: selectfields2 // @inputs: [frame = applymapping1] val selectfields2 = applymapping1.selectFields(paths = Seq("sensorid", "currenttemperature", "status"), transformationContext = "selectfields2") // @type: ResolveChoice // @args: [choice = "MATCH_CATALOG", database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "resolvechoice3"] // @return: resolvechoice3 // @inputs: [frame = selectfields2] val resolvechoice3 = selectfields2.resolveChoice(choiceOption = Some(ChoiceOption("MATCH_CATALOG")), database = Some("tempdb"), tableName = Some("my-s3-sink"), transformationContext = "resolvechoice3") // @type: DataSink // @args: [database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "datasink4"] // @return: datasink4 // @inputs: [frame = resolvechoice3] val datasink4 = glueContext.getCatalogSink(database = "tempdb", tableName = "my-s3-sink", redshiftTmpDir = "", transformationContext = "datasink4").writeDynamicFrame(resolvechoice3) Job.commit() } }

Sortie :

{ "Name": "my-testing-job" }

Pour plus d’informations, consultez Création de tâches dans AWS Glue dans le Manuel du développeur AWS Glue.

  • Pour plus de détails sur l’API, consultez CreateJob dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser create-table.

AWS CLI

Exemple 1 : pour créer une table pour un flux de données Kinesis

L’exemple create-table suivant crée une table dans le catalogue de données AWS Glue qui décrit un flux de données Kinesis.

aws glue create-table \ --database-name tempdb \ --table-input '{"Name":"test-kinesis-input", "StorageDescriptor":{ \ "Columns":[ \ {"Name":"sensorid", "Type":"int"}, \ {"Name":"currenttemperature", "Type":"int"}, \ {"Name":"status", "Type":"string"} ], \ "Location":"my-testing-stream", \ "Parameters":{ \ "typeOfData":"kinesis","streamName":"my-testing-stream", \ "kinesisUrl":"https://kinesis.us-east-1.amazonaws.com" \ }, \ "SerdeInfo":{ \ "SerializationLibrary":"org.openx.data.jsonserde.JsonSerDe"} \ }, \ "Parameters":{ \ "classification":"json"} \ }' \ --profile my-profile \ --endpoint https://glue.us-east-1.amazonaws.com

Cette commande ne produit aucune sortie.

Pour plus d’informations, consultez Définition des tables dans le catalogue de données AWS Glue dans le Manuel du développeur AWS Glue.

Exemple 2 : pour créer une table pour un magasin de données Kafka

L’exemple create-table suivant crée une table dans le catalogue de données AWS Glue, qui décrit un magasin de données Kafka.

aws glue create-table \ --database-name tempdb \ --table-input '{"Name":"test-kafka-input", "StorageDescriptor":{ \ "Columns":[ \ {"Name":"sensorid", "Type":"int"}, \ {"Name":"currenttemperature", "Type":"int"}, \ {"Name":"status", "Type":"string"} ], \ "Location":"glue-topic", \ "Parameters":{ \ "typeOfData":"kafka","topicName":"glue-topic", \ "connectionName":"my-kafka-connection" }, \ "SerdeInfo":{ \ "SerializationLibrary":"org.apache.hadoop.hive.serde2.OpenCSVSerde"} \ }, \ "Parameters":{ \ "separatorChar":","} \ }' \ --profile my-profile \ --endpoint https://glue.us-east-1.amazonaws.com

Cette commande ne produit aucune sortie.

Pour plus d’informations, consultez Définition des tables dans le catalogue de données AWS Glue dans le Manuel du développeur AWS Glue.

Exemple 3 : pour créer une table pour un magasin de données AWS S3

L’exemple create-table suivant crée une table dans le catalogue de données AWS Glue qui décrit un magasin de données AWS Simple Storage Service (AWS S3).

aws glue create-table \ --database-name tempdb \ --table-input '{"Name":"s3-output", "StorageDescriptor":{ \ "Columns":[ \ {"Name":"s1", "Type":"string"}, \ {"Name":"s2", "Type":"int"}, \ {"Name":"s3", "Type":"string"} ], \ "Location":"s3://bucket-path/", \ "SerdeInfo":{ \ "SerializationLibrary":"org.openx.data.jsonserde.JsonSerDe"} \ }, \ "Parameters":{ \ "classification":"json"} \ }' \ --profile my-profile \ --endpoint https://glue.us-east-1.amazonaws.com

Cette commande ne produit aucune sortie.

Pour plus d’informations, consultez Définition des tables dans le catalogue de données AWS Glue dans le Manuel du développeur AWS Glue.

  • Pour plus de détails sur l’API, consultez CreateTable dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser delete-job.

AWS CLI

Pour supprimer une tâche

L’exemple delete-job suivant supprime une tâche qui n’est plus nécessaire.

aws glue delete-job \ --job-name my-testing-job

Sortie :

{ "JobName": "my-testing-job" }

Pour plus d’informations, consultez Utilisation des tâches dans la console AWS Glue dans le Manuel du développeur AWS Glue.

  • Pour plus de détails sur l’API, consultez DeleteJob dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser get-databases.

AWS CLI

Pour répertorier les définitions de tout ou partie des bases de données du catalogue de données AWS Glue

L’exemple get-databases suivant renvoie les informations sur les bases de données du catalogue de données.

aws glue get-databases

Sortie :

{ "DatabaseList": [ { "Name": "default", "Description": "Default Hive database", "LocationUri": "file:/spark-warehouse", "CreateTime": 1602084052.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" }, { "Name": "flights-db", "CreateTime": 1587072847.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" }, { "Name": "legislators", "CreateTime": 1601415625.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" }, { "Name": "tempdb", "CreateTime": 1601498566.0, "CreateTableDefaultPermissions": [ { "Principal": { "DataLakePrincipalIdentifier": "IAM_ALLOWED_PRINCIPALS" }, "Permissions": [ "ALL" ] } ], "CatalogId": "111122223333" } ] }

Pour plus d’informations, consultez Définition d’une base de données dans votre catalogue de données dans le Manuel du développeur AWS Glue.

  • Pour plus de détails sur l’API, consultez GetDatabases dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser get-job-run.

AWS CLI

Pour obtenir les informations sur l’exécution d’une tâche

L’exemple get-job-run suivant récupère les informations sur l’exécution d’une tâche.

aws glue get-job-run \ --job-name "Combine legistators data" \ --run-id jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e

Sortie :

{ "JobRun": { "Id": "jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e", "Attempt": 0, "JobName": "Combine legistators data", "StartedOn": 1602873931.255, "LastModifiedOn": 1602874075.985, "CompletedOn": 1602874075.985, "JobRunState": "SUCCEEDED", "Arguments": { "--enable-continuous-cloudwatch-log": "true", "--enable-metrics": "", "--enable-spark-ui": "true", "--job-bookmark-option": "job-bookmark-enable", "--spark-event-logs-path": "s3://aws-glue-assets-111122223333-us-east-1/sparkHistoryLogs/" }, "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 117, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" } }

Pour plus d’informations, consultez Exécutions de tâches dans le Manuel du développeur AWS Glue.

  • Pour plus de détails sur l’API, consultez GetJobRun dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser get-job-runs.

AWS CLI

Pour obtenir les informations sur toutes les exécutions d’une tâche

L’exemple get-job-runs suivant récupère les informations sur toutes les exécutions d’une tâche.

aws glue get-job-runs \ --job-name "my-testing-job"

Sortie :

{ "JobRuns": [ { "Id": "jr_012e176506505074d94d761755e5c62538ee1aad6f17d39f527e9140cf0c9a5e", "Attempt": 0, "JobName": "my-testing-job", "StartedOn": 1602873931.255, "LastModifiedOn": 1602874075.985, "CompletedOn": 1602874075.985, "JobRunState": "SUCCEEDED", "Arguments": { "--enable-continuous-cloudwatch-log": "true", "--enable-metrics": "", "--enable-spark-ui": "true", "--job-bookmark-option": "job-bookmark-enable", "--spark-event-logs-path": "s3://aws-glue-assets-111122223333-us-east-1/sparkHistoryLogs/" }, "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 117, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" }, { "Id": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_2", "Attempt": 2, "PreviousRunId": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_1", "JobName": "my-testing-job", "StartedOn": 1602811168.496, "LastModifiedOn": 1602811282.39, "CompletedOn": 1602811282.39, "JobRunState": "FAILED", "ErrorMessage": "An error occurred while calling o122.pyWriteDynamicFrame. Access Denied (Service: Amazon S3; Status Code: 403; Error Code: AccessDenied; Request ID: 021AAB703DB20A2D; S3 Extended Request ID: teZk24Y09TkXzBvMPG502L5VJBhe9DJuWA9/TXtuGOqfByajkfL/Tlqt5JBGdEGpigAqzdMDM/U=)", "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 110, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" }, { "Id": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f_attempt_1", "Attempt": 1, "PreviousRunId": "jr_03cc19ddab11c4e244d3f735567de74ff93b0b3ef468a713ffe73e53d1aec08f", "JobName": "my-testing-job", "StartedOn": 1602811020.518, "LastModifiedOn": 1602811138.364, "CompletedOn": 1602811138.364, "JobRunState": "FAILED", "ErrorMessage": "An error occurred while calling o122.pyWriteDynamicFrame. Access Denied (Service: Amazon S3; Status Code: 403; Error Code: AccessDenied; Request ID: 2671D37856AE7ABB; S3 Extended Request ID: RLJCJw20brV+PpC6GpORahyF2fp9flB5SSb2bTGPnUSPVizLXRl1PN3QZldb+v1o9qRVktNYbW8=)", "PredecessorRuns": [], "AllocatedCapacity": 10, "ExecutionTime": 113, "Timeout": 2880, "MaxCapacity": 10.0, "WorkerType": "G.1X", "NumberOfWorkers": 10, "LogGroupName": "/aws-glue/jobs", "GlueVersion": "2.0" } ] }

Pour plus d’informations, consultez Exécutions de tâches dans le Manuel du développeur AWS Glue.

  • Pour plus de détails sur l’API, consultez GetJobRuns dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser get-job.

AWS CLI

Pour récupérer les informations sur une tâche

L’exemple get-job suivant récupère les informations sur une tâche.

aws glue get-job \ --job-name my-testing-job

Sortie :

{ "Job": { "Name": "my-testing-job", "Role": "Glue_DefaultRole", "CreatedOn": 1602805698.167, "LastModifiedOn": 1602805698.167, "ExecutionProperty": { "MaxConcurrentRuns": 1 }, "Command": { "Name": "gluestreaming", "ScriptLocation": "s3://janetst-bucket-01/Scripts/test_script.scala", "PythonVersion": "2" }, "DefaultArguments": { "--class": "GlueApp", "--job-language": "scala" }, "MaxRetries": 0, "AllocatedCapacity": 10, "MaxCapacity": 10.0, "GlueVersion": "1.0" } }

Pour plus d’informations, consultez Tâches dans le Manuel du développeur AWS Glue.

  • Pour plus de détails sur l’API, consultez GetJob dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser get-plan.

AWS CLI

Pour obtenir le code généré pour mapper les données des tables sources aux tables cibles

L’exemple get-plan suivant récupère le code généré pour mapper les colonnes de la source de données à la cible de données.

aws glue get-plan --mapping '[ \ { \ "SourcePath":"sensorid", \ "SourceTable":"anything", \ "SourceType":"int", \ "TargetPath":"sensorid", \ "TargetTable":"anything", \ "TargetType":"int" \ }, \ { \ "SourcePath":"currenttemperature", \ "SourceTable":"anything", \ "SourceType":"int", \ "TargetPath":"currenttemperature", \ "TargetTable":"anything", \ "TargetType":"int" \ }, \ { \ "SourcePath":"status", \ "SourceTable":"anything", \ "SourceType":"string", \ "TargetPath":"status", \ "TargetTable":"anything", \ "TargetType":"string" \ }]' \ --source '{ \ "DatabaseName":"tempdb", \ "TableName":"s3-source" \ }' \ --sinks '[ \ { \ "DatabaseName":"tempdb", \ "TableName":"my-s3-sink" \ }]' --language "scala" --endpoint https://glue.us-east-1.amazonaws.com --output "text"

Sortie :

import com.amazonaws.services.glue.ChoiceOption import com.amazonaws.services.glue.GlueContext import com.amazonaws.services.glue.MappingSpec import com.amazonaws.services.glue.ResolveSpec import com.amazonaws.services.glue.errors.CallSite import com.amazonaws.services.glue.util.GlueArgParser import com.amazonaws.services.glue.util.Job import com.amazonaws.services.glue.util.JsonOptions import org.apache.spark.SparkContext import scala.collection.JavaConverters._ object GlueApp { def main(sysArgs: Array[String]) { val spark: SparkContext = new SparkContext() val glueContext: GlueContext = new GlueContext(spark) // @params: [JOB_NAME] val args = GlueArgParser.getResolvedOptions(sysArgs, Seq("JOB_NAME").toArray) Job.init(args("JOB_NAME"), glueContext, args.asJava) // @type: DataSource // @args: [database = "tempdb", table_name = "s3-source", transformation_ctx = "datasource0"] // @return: datasource0 // @inputs: [] val datasource0 = glueContext.getCatalogSource(database = "tempdb", tableName = "s3-source", redshiftTmpDir = "", transformationContext = "datasource0").getDynamicFrame() // @type: ApplyMapping // @args: [mapping = [("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")], transformation_ctx = "applymapping1"] // @return: applymapping1 // @inputs: [frame = datasource0] val applymapping1 = datasource0.applyMapping(mappings = Seq(("sensorid", "int", "sensorid", "int"), ("currenttemperature", "int", "currenttemperature", "int"), ("status", "string", "status", "string")), caseSensitive = false, transformationContext = "applymapping1") // @type: SelectFields // @args: [paths = ["sensorid", "currenttemperature", "status"], transformation_ctx = "selectfields2"] // @return: selectfields2 // @inputs: [frame = applymapping1] val selectfields2 = applymapping1.selectFields(paths = Seq("sensorid", "currenttemperature", "status"), transformationContext = "selectfields2") // @type: ResolveChoice // @args: [choice = "MATCH_CATALOG", database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "resolvechoice3"] // @return: resolvechoice3 // @inputs: [frame = selectfields2] val resolvechoice3 = selectfields2.resolveChoice(choiceOption = Some(ChoiceOption("MATCH_CATALOG")), database = Some("tempdb"), tableName = Some("my-s3-sink"), transformationContext = "resolvechoice3") // @type: DataSink // @args: [database = "tempdb", table_name = "my-s3-sink", transformation_ctx = "datasink4"] // @return: datasink4 // @inputs: [frame = resolvechoice3] val datasink4 = glueContext.getCatalogSink(database = "tempdb", tableName = "my-s3-sink", redshiftTmpDir = "", transformationContext = "datasink4").writeDynamicFrame(resolvechoice3) Job.commit() } }

Pour plus d’informations, consultez Editing Scripts in AWS Glue dans le Manuel du développeur AWS Glue.

  • Pour plus de détails sur l’API, consultez GetPlan dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser get-tables.

AWS CLI

Pour répertorier les définitions de tout ou partie des tables dans la base de données spécifiée

L’exemple get-tables suivant renvoie les informations sur les tables de la base de données spécifiée.

aws glue get-tables --database-name 'tempdb'

Sortie :

{ "TableList": [ { "Name": "my-s3-sink", "DatabaseName": "tempdb", "CreateTime": 1602730539.0, "UpdateTime": 1602730539.0, "Retention": 0, "StorageDescriptor": { "Columns": [ { "Name": "sensorid", "Type": "int" }, { "Name": "currenttemperature", "Type": "int" }, { "Name": "status", "Type": "string" } ], "Location": "s3://janetst-bucket-01/test-s3-output/", "Compressed": false, "NumberOfBuckets": 0, "SerdeInfo": { "SerializationLibrary": "org.openx.data.jsonserde.JsonSerDe" }, "SortColumns": [], "StoredAsSubDirectories": false }, "Parameters": { "classification": "json" }, "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN", "IsRegisteredWithLakeFormation": false, "CatalogId": "007436865787" }, { "Name": "s3-source", "DatabaseName": "tempdb", "CreateTime": 1602730658.0, "UpdateTime": 1602730658.0, "Retention": 0, "StorageDescriptor": { "Columns": [ { "Name": "sensorid", "Type": "int" }, { "Name": "currenttemperature", "Type": "int" }, { "Name": "status", "Type": "string" } ], "Location": "s3://janetst-bucket-01/", "Compressed": false, "NumberOfBuckets": 0, "SortColumns": [], "StoredAsSubDirectories": false }, "Parameters": { "classification": "json" }, "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN", "IsRegisteredWithLakeFormation": false, "CatalogId": "007436865787" }, { "Name": "test-kinesis-input", "DatabaseName": "tempdb", "CreateTime": 1601507001.0, "UpdateTime": 1601507001.0, "Retention": 0, "StorageDescriptor": { "Columns": [ { "Name": "sensorid", "Type": "int" }, { "Name": "currenttemperature", "Type": "int" }, { "Name": "status", "Type": "string" } ], "Location": "my-testing-stream", "Compressed": false, "NumberOfBuckets": 0, "SerdeInfo": { "SerializationLibrary": "org.openx.data.jsonserde.JsonSerDe" }, "SortColumns": [], "Parameters": { "kinesisUrl": "https://kinesis.us-east-1.amazonaws.com", "streamName": "my-testing-stream", "typeOfData": "kinesis" }, "StoredAsSubDirectories": false }, "Parameters": { "classification": "json" }, "CreatedBy": "arn:aws:iam::007436865787:user/JRSTERN", "IsRegisteredWithLakeFormation": false, "CatalogId": "007436865787" } ] }

Pour plus d’informations, consultez Définition des tables dans le catalogue de données AWS Glue dans le Manuel du développeur AWS Glue.

  • Pour plus de détails sur l’API, consultez GetTables dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser start-crawler.

AWS CLI

Pour démarrer un robot

L’exemple start-crawler suivant démarre un robot.

aws glue start-crawler --name my-crawler

Sortie :

None

Pour plus d’informations, consultez Définition des crawlers dans le Manuel du développeur AWS Glue.

  • Pour plus de détails sur l’API, consultez StartCrawler dans la Référence des commandes de l’AWS CLI.

L’exemple de code suivant montre comment utiliser start-job-run.

AWS CLI

Pour commencer l’exécution d’une tâche

L’exemple start-job-run suivant démarre une tâche.

aws glue start-job-run \ --job-name my-job

Sortie :

{ "JobRunId": "jr_22208b1f44eb5376a60569d4b21dd20fcb8621e1a366b4e7b2494af764b82ded" }

Pour plus d’informations, consultez Création de tâches dans le Manuel du développeur AWS Glue.

  • Pour plus de détails sur l’API, consultez StartJobRun dans la Référence des commandes de l’AWS CLI.