
Référence SQL

AWS Clean Rooms

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Clean Rooms Référence SQL

AWS Clean Rooms: Référence SQL

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Les marques et la présentation commerciale d’Amazon ne peuvent être utilisées en relation avec
un produit ou un service qui n’est pas d’Amazon, d’une manière susceptible de créer une confusion
parmi les clients, ou d’une manière qui dénigre ou discrédite Amazon. Toutes les autres marques
commerciales qui ne sont pas la propriété d’Amazon appartiennent à leurs propriétaires respectifs,
qui peuvent ou non être affiliés ou connectés à Amazon, ou sponsorisés par Amazon.

AWS Clean Rooms Référence SQL

Table of Contents
Présentation de .. 1

Conventions ... 1
Règles de dénomination .. 2

Noms et colonnes d'associations de tables configurés .. 2
Mots réservés ... 4

Prise en charge des types de données par le moteur SQL ... 6
Types de données numériques .. 6
Types de données booléennes .. 9
Types de données de date et d’heure ... 9
Types de données de caractères ... 10
Types de données structurées ... 12

AWS Clean Rooms SQL Spark ... 15
Littéraux ... 15

+ Opérateur (concaténation) ... 16
Types de données ... 17

Caractères multioctets .. 19
Types numériques .. 20
Types caractères .. 28
Types datetime ... 30
Type Boolean .. 48
Type binaire .. 51
Type imbriqué ... 51
Compatibilité et conversion de types ... 53

Commandes SQL .. 59
TABLE DE CACHE ... 59
Indicateurs ... 62
SELECT .. 69

Fonctions SQL ... 117
Fonctions d’agrégation .. 118
Fonctions de tableau .. 142
Expressions conditionnelles .. 152
Fonctions de constructeur .. 165
Fonctions de formatage des types de données ... 169
Fonctions de date et d’heure ... 198

iii

AWS Clean Rooms Référence SQL

Fonctions de chiffrement et de déchiffrement .. 228
Fonctions de hachage .. 232
Fonctions Hyperloglog .. 236
Fonctions JSON .. 244
Fonctions mathématiques ... 247
Fonctions scalaires ... 279
Fonctions de chaîne ... 281
Fonctions liées à la confidentialité ... 328
Fonctions de fenêtrage ... 334

Conditions SQL .. 367
Opérateurs de comparaison ... 368
Conditions logiques ... 373
Conditions de correspondance de modèles ... 377
Condition de plage BETWEEN ... 382
Condition null .. 385
Condition EXISTS ... 385
Condition IN .. 386

Interrogation de données imbriquées .. 389
Navigation .. 389
Désimbriquer des requêtes ... 390
Sémantique laxiste .. 392
Types d’introspection ... 393

Historique de la documentation ... 395
... cccxcviii

iv

AWS Clean Rooms Référence SQL

Vue d'ensemble de SQL dans AWS Clean Rooms
Bienvenue dans la référence AWS Clean Rooms SQL.

AWS Clean Roomsrepose sur le langage de requête structuré (SQL) standard du secteur, un langage
de requête composé de commandes et de fonctions que vous utilisez pour travailler avec des bases
de données et des objets de base de données. SQL applique également des règles concernant
l'utilisation des types de données, des expressions et des littéraux.

Les rubriques suivantes fournissent des informations générales sur les conventions et les règles de
dénomination utilisées dans cette référence SQL.

Rubriques

• Conventions du guide de référence SQL

• Règles de dénomination SQL

• Prise en charge des types de données par le moteur SQL

Les sections suivantes fournissent des informations sur les littéraux, les types de données, les
commandes SQL, les types de fonctions SQL et les conditions SQL que vous pouvez utiliser. AWS
Clean Rooms

• AWS Clean Rooms SQL Spark

Pour plus d'informationsAWS Clean Rooms, consultez le guide de l'AWS Clean Roomsutilisateur et le
guide de référence des AWS Clean Rooms API.

Conventions du guide de référence SQL
Cette section explique les conventions utilisées pour écrire la syntaxe des expressions, commandes
et fonctions SQL.

Caractère Description

CAPS Les mots en lettres majuscules sont des mots clés.

[] Les crochets indiquent des arguments facultatifs.
Plusieurs arguments entre crochets signifient que vous

Conventions 1

https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/apireference/Welcome.html

AWS Clean Rooms Référence SQL

Caractère Description

pouvez choisir n’importe quel nombre d’arguments.
En outre, les arguments entre crochets placés sur des
lignes séparées indiquent que l'analyseur s'attend à ce
que les arguments soient dans l'ordre où ils apparaiss
ent dans la syntaxe.

{ } Les accolades indiquent que vous devez choisir l’un
des arguments proposés.

| Les barres verticales indiquent que vous pouvez choisir
entre les arguments.

italique Les mots en italique correspondent à des espaces
réservés. Vous devez insérer la valeur appropriée à la
place du mot en italique.

... Les trois points de suspension indiquent que vous
pouvez répéter l’élément précédent.

' Les mots entre apostrophes droites signifient que vous
devez taper les apostrophes.

Règles de dénomination SQL

Les sections suivantes expliquent les règles de dénomination SQL dans AWS Clean Rooms.

Rubriques

• Noms et colonnes d'associations de tables configurés

• Mots réservés

Noms et colonnes d'associations de tables configurés

Les membres autorisés à effectuer des requêtes utilisent les noms d'associations de tables
configurés comme noms de table dans les requêtes. Les noms des associations de tables
configurées et les colonnes de table configurées peuvent être aliasés dans les requêtes.

Règles de dénomination 2

AWS Clean Rooms Référence SQL

Les règles de dénomination suivantes s'appliquent aux noms d'associations de tables configurés, aux
noms de colonnes de table configurés et aux alias :

• Ils ne doivent utiliser que des caractères alphanumériques, un trait de soulignement (_) ou un trait
d'union (-), mais ils ne peuvent pas commencer ou se terminer par un tiret.

• (Règle d'analyse personnalisée uniquement) Ils peuvent utiliser le signe dollar ($) mais ne
peuvent pas utiliser un modèle qui suit une constante de chaîne entre guillemets en dollars.

Une constante de chaîne entre guillemets en dollars se compose des éléments suivants :

• un signe du dollar ($)

• un « tag » optionnel de zéro caractère ou plus

• un autre signe du dollar

• séquence arbitraire de caractères qui constitue le contenu de la chaîne

• un signe du dollar ($)

• le même tag qui a commencé la cotation du dollar

• un signe du dollar

Par exemple : $$invalid$$

• Ils ne peuvent pas contenir de tirets (-) consécutifs.

• Ils ne peuvent commencer par aucun des préfixes suivants :

padb_, pg_, stcs_, stl_, stll_, stv_, svcs_, svl_, svv_, sys_, systable_

• Ils ne peuvent pas contenir de barres obliques inversées (\), de guillemets (') ou d'espaces qui ne
sont pas entre guillemets doubles.

• S'ils commencent par un caractère non alphabétique, ils doivent être placés entre guillemets (» «).

• S'ils contiennent un trait d'union (-), ils doivent être entre guillemets (» «).

• Ils doivent comporter entre 1 et 127 caractères.

• Les mots réservés doivent être entre guillemets (» «).

• Les noms de colonnes réservés suivants ne peuvent pas être utilisés AWS Clean Rooms (même
entre guillemets) :

• oid

• tabloïd

• xmin

• cmin

Noms et colonnes d'associations de tables configurés 3

AWS Clean Rooms Référence SQL

• xmax

• cmax

• ctid

Mots réservés

Voici une liste des mots réservés dans AWS Clean Rooms.

AES128 DELTA32KDESC LEADING PRIMARY

AES256ALL DISTINCT LEFTLIKE RAW

ALLOWOVER
WRITEANALYSE

DO LIMIT READRATIO

ANALYZE DISABLE LOCALTIME RECOVERRE
FERENCES

AND ELSE LOCALTIMESTAMP REJECTLOG

ANY EMPTYASNU
LLENABLE

LUN RESORT

ARRAY ENCODE LUNS RESPECT

AS ENCRYPT LZO RESTORE

ASC ENCRYPTIONEND LZOP RIGHTSELECT

AUTHORIZATION EXCEPT MINUS SESSION_USER

AZ64 EXPLICITFALSE MOSTLY16 SIMILAR

BACKUPBETWEEN FOR MOSTLY32 SNAPSHOT

BINARY FOREIGN MOSTLY8NATURAL SOME

BLANKSASN
ULLBOTH

FREEZE NEW SYSDATESYSTEM

Mots réservés 4

AWS Clean Rooms Référence SQL

BYTEDICT FROM NOT TABLE

BZIP2CASE FULL NOTNULL TAG

CAST GLOBALDICT256 NULL TDES

CHECK GLOBALDIC
T64KGRANT

NULLSOFF TEXT255

COLLATE GROUP OFFLINEOFFSET TEXT32KTHEN

COLUMN GZIPHAVING OID TIMESTAMP

CONSTRAINT IDENTITY OLD TO

CREATE IGNOREILIKE ON TOPTRAILING

CREDENTIA
LSCROSS

IN ONLY TRUE

CURRENT_DATE INITIALLY OPEN TRUNCATEC
OLUMNSUNION

CURRENT_TIME INNER OR UNIQUE

CURRENT_T
IMESTAMP

INTERSECT ORDER UNNEST

CURRENT_USER INTERVAL OUTER USING

CURRENT_U
SER_IDDEFAULT

INTO OVERLAPS VERBOSE

DEFERRABLE IS PARALLELP
ARTITION

WALLETWHEN

DEFLATE ISNULL PERCENT WHERE

DEFRAG JOIN PERMISSIONS WITH

DELTA LANGUAGE PIVOTPLACING WITHOUT

Mots réservés 5

AWS Clean Rooms Référence SQL

Prise en charge des types de données par le moteur SQL

AWS Clean Rooms prend en charge plusieurs moteurs et dialectes SQL. Comprendre les systèmes
de types de données dans ces implémentations est essentiel pour une collaboration et une analyse
de données réussies. Les tableaux suivants présentent les types de données équivalents dans AWS
Clean Rooms SQL, Snowflake SQL et Spark SQL.

Types de données numériques

Les types numériques représentent différents types de nombres, des nombres entiers précis
aux valeurs approximatives à virgule flottante. Le choix du type numérique influe à la fois sur les
exigences de stockage et sur la précision des calculs. Les types entiers varient en fonction de la taille
des octets, tandis que les types décimaux et à virgule flottante offrent différentes options de précision
et d'échelle.

Type de données AWS Clean Rooms
SQL

Snowflake
SQL

SQL Spark Description

Entier de 8 octets BIGINT Non pris en
charge

GROS, LONG Entiers signés
compris entre
-9,223,372 036
854 775 808 et
9 223 372 036
854 775 807.

Entier de 4 octets INT Non pris en
charge

INT, ENTIER Entiers signés
compris entre
-2 147 483 648
et 2 147 483
647

Entier de 2 octets SMALLINT Non pris en
charge

SMALL INT,
SHORT

Entiers signés
compris entre
-32 768 et 32
767

Prise en charge des types de données par le moteur SQL 6

AWS Clean Rooms Référence SQL

Type de données AWS Clean Rooms
SQL

Snowflake
SQL

SQL Spark Description

Entier sur 1 octet Non pris en charge Non pris en
charge

TINYINT,
OCTET

Entiers signés
compris entre
-128 et 127

Flotteur à double
précision

DOUBLE, DOUBLE
PRÉCISION

FLOAT
FLOAT4,
FLOAT8,
DOUBLE,
DOUBLE
PRÉCISION,
RÉEL

DOUBLE Numéros à
virgule flottante
à double
précision sur 8
octets

Flotteur de
précision unique

RÉEL, FLOTTANT Non pris en
charge

FLOAT Numéros à
virgule flottante
à précision
unique sur 4
octets

Types de données numériques 7

AWS Clean Rooms Référence SQL

Type de données AWS Clean Rooms
SQL

Snowflake
SQL

SQL Spark Description

Décimal (précision
fixe)

DECIMAL DÉCIMAL,
NUMÉRIQUE,
NOMBRE

Note

Snowflake
aliase
automatiq
uement
les
types
numérique
s
exacts
de plus
petite
largeur
(INT,
BIGINT,
SMALLINT,
etc.) en
NUMBER.

DÉCIMAL,
NUMÉRIQUE,

Nombres
décimaux
signés avec
une précision
arbitraire

Décimal (avec
précision)

DÉCIMAL (p) DÉCIMAL (p),
NOMBRE (p)

DÉCIMAL (p) Nombres
décimaux à
précision fixe

Décimal (avec
échelle)

DECIMAL(p,s) DÉCIMAL (p,
s), NOMBRE
(p, s)

DECIMAL(p,s) Nombres
décimaux à
précision fixe
avec échelle

Types de données numériques 8

AWS Clean Rooms Référence SQL

Types de données booléennes

Les types booléens représentent des valeurs true/false logiques simples. Ces types sont cohérents
dans tous les moteurs SQL et sont couramment utilisés pour les indicateurs, les conditions et les
opérations logiques.

Type de données AWS Clean Rooms
SQL

Snowflake
SQL

SQL Spark Description

Booléen BOOLEAN BOOLEAN BOOLEAN Représente
true/false des
valeurs

Types de données de date et d’heure

Les types de date et d'heure traitent des données temporelles, avec différents niveaux de précision
et de connaissance du fuseau horaire. Ces types prennent en charge différents formats pour le
stockage des dates, des heures et des horodatages, avec des options permettant d'inclure ou
d'exclure les informations de fuseau horaire.

Type de données AWS Clean Rooms
SQL

Snowflake
SQL

SQL Spark Description

Date DATE DATE DATE Valeurs de
date (année,
mois, jour)
sans fuseau
horaire

Heure TIME Non pris en
charge

Non pris en
charge

Heure du jour
en UTC, sans
fuseau horaire

Temps passé avec
TZ

TIMETZ Non pris en
charge

Non pris en
charge

Heure du jour
en UTC, avec
fuseau horaire

Types de données booléennes 9

AWS Clean Rooms Référence SQL

Type de données AWS Clean Rooms
SQL

Snowflake
SQL

SQL Spark Description

Horodatage TIMESTAMP HORODATAG
E,
TIMESTAMP
_NTZ

TIMESTAMP
_NTZ

Horodatage
sans fuseau
horaire

Note

NTZ
indique
« Pas
de
fuseau
horaire »

Horodatage avec
TZ

TIMESTAMPTZ TIMESTAMP
_LTZ

HORODATAG
E,
TIMESTAMP
_LTZ

Horodatage
avec fuseau
horaire local

Note

LTZ
indique
le
« fuseau
horaire
local »

Types de données de caractères

Les types de caractères stockent des données textuelles, offrant à la fois des options de longueur
fixe et de longueur variable. Ces types gèrent les chaînes de texte et les données binaires, avec des
spécifications de longueur facultatives pour contrôler l'allocation de stockage.

Types de données de caractères 10

AWS Clean Rooms Référence SQL

Type de données AWS Clean Rooms
SQL

Snowflake
SQL

SQL Spark Description

Caractère de
longueur fixe

CHAR CHAR,
CARACTÈRE

CHAR,
CARACTÈRE

Chaîne de
caractères de
longueur fixe

Caractère de
longueur fixe avec
longueur

CHAR(n) CARACTÈRE
(n),
CARACTÈRE
(n)

CARACTÈRE
(n),
CARACTÈRE
(n)

Chaîne de
caractères
de longueur
fixe avec
une longueur
spécifiée

Caractère de
longueur variable

VARCHAR VARCHAR,
CHAÎNE,
TEXTE

VARCHAR,
CHAÎNE

Chaîne de
caractères
de longueur
variable

Caractère de
longueur variable
avec longueur

VARCHAR(n) VARCHAR (n),
CHAÎNE (n),
TEXTE (n)

VARCHAR(n) Chaîne de
caractères
de longueur
variable avec
limite de
longueur

Binaire VARBYTE BINARY,
VARBINARY

BINAIRE Séquence
d'octets
binaires

Binaire avec
longueur

VARBYTE(n) Non pris en
charge

Non pris en
charge

Séquence
d'octets
binaires avec
limite de
longueur

Types de données de caractères 11

AWS Clean Rooms Référence SQL

Types de données structurées

Les types structurés permettent une organisation complexe des données en combinant plusieurs
valeurs dans des champs uniques. Il s'agit notamment de tableaux pour les collections ordonnées,
de cartes pour les paires clé-valeur et de structures pour créer des structures de données
personnalisées avec des champs nommés.

Type de données AWS Clean Rooms
SQL

Snowflake
SQL

SQL Spark Description

Tableau MATRICE <type> TABLEAU
(type)

MATRICE
<type>

Séquence
ordonnée
d'éléments du
même type

Note

Les
types
de
tableaux
doivent
contenir
des
éléments
du
même
type

Map CARTE<key, value> MAP (clé,
valeur)

CARTE<key,
value>

Collection de
paires clé-
valeur

Note

Les
types

Types de données structurées 12

AWS Clean Rooms Référence SQL

Type de données AWS Clean Rooms
SQL

Snowflake
SQL

SQL Spark Description

de
cartes
doivent
contenir
des
éléments
du
même
type

Struct STRUCTURE
< field1 : type1,
field2 : type2>

OBJET
(champ1
type1, champ2
type2)

STRUCTURE
< field1 : type1,
field2 : type2 >

Structure
avec champs
nommés de
types spécifiés

Note

La
syntaxe
des
types
structuré
s peut
varier
légèremen
t entre
les
implément
ations

Types de données structurées 13

AWS Clean Rooms Référence SQL

Type de données AWS Clean Rooms
SQL

Snowflake
SQL

SQL Spark Description

Super SUPER Non pris en
charge

Non pris en
charge

Type flexible
supportant
tous les types
de données,
y compris
les types
complexes

Types de données structurées 14

AWS Clean Rooms Référence SQL

AWS Clean Rooms SQL Spark
AWS Clean Rooms Spark SQL applique les règles relatives à l'utilisation des types de données, des
expressions et des littéraux.

Pour plus d'informations sur AWS Clean Rooms Spark SQL, consultez le guide de l'AWS Clean
Rooms utilisateur et le guide de référence des AWS Clean Rooms API.

Les rubriques suivantes fournissent des informations sur les littéraux, les types de données, les
commandes, les fonctions et les conditions pris en charge dans AWS Clean Rooms Spark SQL.

Rubriques

• Littéraux

• Types de données

• AWS Clean Rooms Commandes SQL Spark

• AWS Clean Rooms Fonctions Spark SQL

• AWS Clean Rooms Conditions SQL de Spark

Littéraux

Un littéral ou une constante est une valeur de données fixe, composée d’une séquence de caractères
ou d’une constante numérique.

AWS Clean Rooms Spark SQL prend en charge plusieurs types de littéraux, notamment :

• Les littéraux numériques pour les entiers, les décimaux et les nombres à virgule flottante.

• Les littéraux de caractères, également appelés chaînes, chaînes de caractères ou constantes de
caractères, sont utilisés pour spécifier une valeur de chaîne de caractères.

• Litéraux de date, d'heure et d'horodatage, utilisés avec les types de données datetime. Pour de
plus amples informations, veuillez consulter Littéraux de type date, heure et horodatage.

• Littéraux d'intervalle. Pour de plus amples informations, veuillez consulter Littéraux de type interval.

• Littéraux booléens. Pour de plus amples informations, veuillez consulter Littéraux booléens.

• Littéraux nuls, utilisés pour spécifier une valeur nulle.

• Uniquement TAB, CARRIAGE RETURN (CR), et LINE FEED (LF) Les caractères de contrôle
Unicode de la catégorie générale Unicode (Cc) sont pris en charge.

Littéraux 15

https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/apireference/Welcome.html

AWS Clean Rooms Référence SQL

AWS Clean Rooms Spark SQL ne prend pas en charge les références directes à des chaînes
littérales dans la clause SELECT, mais elles peuvent être utilisées dans des fonctions telles que
CAST.

+ Opérateur (concaténation)

Concatène les littéraux numériques, les littéraux de chaîne et/ou les littéraux de date/heure et
d'intervalle. Ils se trouvent de chaque côté du symbole + et renvoient des types différents en fonction
des entrées de chaque côté du symbole +.

Syntaxe

numeric + string

date + time

date + timetz

L'ordre des arguments peut être inversé.

Arguments

numeric literals

Les littéraux ou constantes qui représentent des nombres peuvent être des entiers ou à virgule
flottante.

string literals

Chaînes, chaînes de caractères ou constantes de caractères

date

A DATE colonne ou expression qui est implicitement convertie en DATE.

time

A TIME colonne ou expression qui est implicitement convertie en TIME.

timetz

A TIMETZ colonne ou expression qui est implicitement convertie en TIMETZ.

+ Opérateur (concaténation) 16

AWS Clean Rooms Référence SQL

exemple

Le tableau d'exemple suivant TIME_TEST comporte une colonne TIME_VAL (type TIME) avec trois
valeurs insérées.

select date '2000-01-02' + time_val as ts from time_test;

Types de données

Chaque valeur stockée ou récupérée par AWS Clean Rooms Spark SQL possède un type de
données associé à un ensemble fixe de propriétés associées. Les types de données sont déclarés
lorsque les tables sont créées. Un type de données contraint l’ensemble des valeurs qu’une colonne
ou un argument peut contenir.

Le tableau suivant répertorie les types de données que vous pouvez utiliser dans AWS Clean Rooms
Spark SQL.

Nom du type de
données

Type de données les alias ; Description

ARRAY the section called
“Type imbriqué”

Non applicable Type de données
imbriqué dans un
tableau

BIGINT the section called
“Types numériques”

Non applicable Entier signé sur huit
octets

BINAIRE the section called
“Type binaire”

Non applicable Valeurs de séquence
d'octets

BOOLEAN the section called
“Type Boolean”

BOOL Booléen logique (true/
false)

BYTE the section called
“Types numériques”

Non applicable Nombres entiers
signés sur 1 octet,
compris entre -128 et
127

Types de données 17

AWS Clean Rooms Référence SQL

Nom du type de
données

Type de données les alias ; Description

CHAR the section called
“Types caractères”

CHARACTER Chaîne de caractères
de longueur fixe

DATE the section called
“Types datetime”

Non applicable Date calendaire
(année, mois, jour)

DECIMAL the section called
“Types numériques”

NUMERIC Valeur numérique
exacte avec précision
sélectionnable

FLOAT the section called
“Types numériques”

FLOAT8, DOUBLE
PRÉCISION

Nombre à virgule
flottante de double
précision

INTEGER the section called
“Types numériques”

INT Entier signé sur
quatre octets

INTERVAL the section called
“Types datetime”

Non applicable Durée en ordre
journalier ou mensuel

LONG the section called
“Types numériques”

Non applicable Nombres entiers
signés sur 8 octets

MAP the section called
“Type imbriqué”

Non applicable Type de données
imbriquées sur la
carte

REAL the section called
“Types numériques”

FLOAT4 Nombre à virgule
flottante simple
précision

SHORT the section called
“Types numériques”

Non applicable Nombres entiers
signés sur 2 octets.

SMALLINT the section called
“Types numériques”

Non applicable Entier signé sur deux
octets

Types de données 18

AWS Clean Rooms Référence SQL

Nom du type de
données

Type de données les alias ; Description

STRUCT the section called
“Type imbriqué”

Non applicable Type de données
imbriqué dans la
structure

TIMESTAMP_LTZ the section called
“Types datetime”

Non applicable Heure de la journée
avec fuseau horaire
local

TIMESTAMP_NTZ the section called
“Types datetime”

Non applicable Heure de la journée
sans fuseau horaire

TINYINT the section called
“Types numériques”

Non applicable Nombres entiers
signés sur 1 octet,
compris entre -128 et
127

VARCHAR the section called
“Types caractères”

CARACTÈRE
VARIABLE

Chaîne de caractères
de longueur variable
avec une limite définie
par l’utilisateur

Note

Les types de données imbriqués ARRAY, STRUCT et MAP ne sont actuellement activés que
pour la règle d'analyse personnalisée. Pour de plus amples informations, veuillez consulter
Type imbriqué.

Caractères multioctets

Le type de données VARCHAR prend en charge les caractères multioctets UTF-8 jusqu’à un
maximum de quatre octets. Les caractères de cinq octets ou plus ne sont pas pris en charge. Pour
calculer la taille d’une colonne VARCHAR qui contient des caractères multioctets, multipliez le
nombre de caractères par le nombre d’octets par caractère. Par exemple, si une chaîne possède

Caractères multioctets 19

AWS Clean Rooms Référence SQL

quatre caractères chinois et que chaque caractère est long de trois octets, vous avez besoin d’une
colonne VARCHAR(12) pour stocker la chaîne.

Le type de données VARCHAR ne prend pas en charge les points de code UTF-8 non valides
suivants :

0xD800 – 0xDFFF (Séquences d’octets :ED A0 80 – ED BF BF)

Le type de données CHAR ne prend pas en charge les caractères multioctets.

Types numériques

Les types de données numériques incluent les entiers, les décimaux et les nombres à virgule
flottante.

Rubriques

• Types d’entier

• Type DECIMAL ou NUMERIC

• Types à virgule flottante

• Calculs avec les valeurs numériques

Types d’entier

Utilisez les types de données suivants pour stocker des nombres entiers de différentes plages. Vous
ne pouvez pas stocker de valeurs en dehors de la plage autorisée pour chaque type.

Name Stockage Range

SMALLINT 2 bytes -32768 à +32767

SHORT 2 bytes -32768 à +32767

INTEGER ou INT 4 octets -2147483648 à
+2147483647

BIGINT 8 octets -92233720368547758
08 à 922337203
6854775807

Types numériques 20

AWS Clean Rooms Référence SQL

Name Stockage Range

LONG 8 octets -92233720368547758
08 à 922337203
6854775807

Type DECIMAL ou NUMERIC

Utilisez le type de données DECIMAL ou NUMERIC pour stocker les valeurs avec une précision
définie par l’utilisateur. Les mots clés DECIMAL et NUMERIC sont interchangeables. Dans ce
document, decimal est le terme privilégié pour ce type de données. Le terme numeric (numérique) est
utilisé de façon générique pour faire référence aux types de données integer, decimal et floating-point
(entier, décimal et virgule flottante).

Stockage Range

Variable, jusqu’à 128 bits pour les types
DECIMAL non compressés.

Entiers signés 128 bits avec précision
maximale de 38 chiffres.

Définissez une colonne DECIMAL dans un tableau en spécifiant a precision et scale :

decimal(precision, scale)

precision

Le nombre total de chiffres significatifs dans la valeur entière : le nombre de chiffres de chaque
côté de la virgule. Par exemple, le nombre 48.2891 a une précision de 6 et une échelle de 4. La
précision par défaut, si elle n’est pas spécifiée, est de 18. La précision maximale est de 38.

Si le nombre de chiffres à gauche de la virgule décimale dans une valeur d'entrée dépasse la
précision de la colonne moins son échelle, la valeur ne peut pas être copiée dans la colonne
(ni insérée ou mise à jour). Cette règle s’applique à toute valeur qui se trouve en dehors de la
plage de la définition de la colonne. Par exemple, la plage autorisée de valeurs pour une colonne
numeric(5,2) s’étend de -999.99 à 999.99.

Types numériques 21

AWS Clean Rooms Référence SQL

scale

Le nombre de chiffres décimaux de la partie fractionnaire de la valeur, à droite de la virgule. Les
entiers possèdent une échelle égale à zéro. Dans une spécification de colonne, la valeur de
l’échelle doit être inférieure ou égale à la valeur de la précision. L’échelle par défaut, si elle n’est
pas spécifiée, est de 0. L’échelle maximale est de 37.

Si l’échelle d’une valeur d’entrée chargée dans une table est supérieure à l’échelle de la colonne,
la valeur est arrondie à l’échelle spécifiée. Par exemple, la colonne PRICEPAID de la table
SALES est une colonne DECIMAL(8,2). Si une valeur DECIMAL(8,4) est insérée dans la colonne
PRICEPAID, la valeur est arrondie à une échelle de 2.

insert into sales
values (0, 8, 1, 1, 2000, 14, 5, 4323.8951, 11.00, null);

select pricepaid, salesid from sales where salesid=0;

pricepaid | salesid
-----------+---------
4323.90 | 0
(1 row)

Cependant, les résultats de conversions explicites de valeurs sélectionnées dans les tables ne
sont pas arrondis.

Note

La valeur positive maximale que vous pouvez insérer dans une colonne
DECIMAL(19,0) est 9223372036854775807 (263 -1). La valeur négative maximale
est -9223372036854775807. Par exemple, une tentative d’insérer la valeur
9999999999999999999 (19 fois le chiffre neuf) entraîne une erreur de dépassement de
capacité. Quel que soit le placement de la virgule décimale, la plus grande chaîne qu'AWS
Clean Rooms puisse représenter comme nombre DECIMAL est 9223372036854775807.
Par exemple, la plus grande valeur que vous puissiez charger dans une colonne
DECIMAL(19,18) est 9.223372036854775807.
Ces règles sont dues aux raisons suivantes :

• Les valeurs DECIMAL dont la précision est inférieure ou égale à 19 chiffres significatifs
sont stockées en interne sous forme de nombres entiers de 8 octets.

Types numériques 22

AWS Clean Rooms Référence SQL

• Les valeurs DECIMAL avec une précision de 20 à 38 chiffres significatifs sont stockées
sous forme de nombres entiers de 16 octets.

Notes sur l’utilisation des colonnes DECIMAL ou NUMERIC 128 bits

N’attribuez pas de façon arbitraire une précision maximale aux colonnes DECIMAL, sauf si vous avez
la certitude que votre application a besoin de cette précision. Les valeurs 128 bits utilisent deux fois
plus d’espace disque que les valeurs 64 bits et peuvent ralentir le temps d’exécution des requêtes.

Types à virgule flottante

Utilisez les types de données REAL et DOUBLE PRECISION pour stocker les valeurs numériques
avec une précision variable. Ces types sont des types inexacts, ce qui signifie que certaines valeurs
sont stockées comme approximations, de telle sorte que le stockage et le retour d’une valeur
spécifique peuvent se traduire par de légers écarts. Si vous avez besoin d’un stockage et d’un calcul
exacts (pour des montants monétaires, par exemple), utilisez le type de données DECIMAL.

REAL représente le format à virgule flottante à précision unique, conformément à la norme IEEE 754
pour l'arithmétique à virgule flottante. Il a une précision d’environ 6 chiffres et une plage d’environ
1E-37 à 1E+37. Vous pouvez également spécifier ce type de données sous la forme FLOAT4.

DOUBLE PRECISION représente le format de virgule flottante en double précision, conformément
à la norme IEEE 754 pour l’arithmétique binaire en virgule flottante. Il a une précision d’environ
15 chiffres et une plage d’environ 1E-307 à 1E+308. Vous pouvez également spécifier ce type de
données sous la forme FLOAT ou FLOAT8.

Calculs avec les valeurs numériques

DansAWS Clean Rooms, le calcul fait référence aux opérations mathématiques binaires : addition,
soustraction, multiplication et division. Cette section décrit les types de retour attendus pour ces
opérations, ainsi que la formule spécifique appliquée pour déterminer la précision et l’échelle lorsque
les types de données DECIMAL sont impliqués.

Lorsque des valeurs numériques sont calculées pendant le traitement des requêtes, vous pouvez
rencontrer des cas où le calcul est impossible et où la requête renvoie une erreur de dépassement de
capacité numérique. Vous pouvez également rencontrer des cas où l’échelle des valeurs calculées
varie ou est inattendue. Pour certaines opérations, vous pouvez utiliser le transtypage explicite

Types numériques 23

AWS Clean Rooms Référence SQL

(promotion de type) ou les paramètres de configuration de AWS Clean Rooms afin de contourner ces
problèmes.

Pour plus d’informations sur les résultats de calculs similaires avec les fonctions SQL, consultez AWS
Clean Rooms Fonctions Spark SQL.

Types de retour pour les calculs

Compte tenu de l'ensemble des types de données numériques pris en charge dansAWS Clean
Rooms, le tableau suivant indique les types de retour attendus pour les opérations d'addition,
de soustraction, de multiplication et de division. La première colonne sur la gauche du tableau
représente le premier opérande dans le calcul et la ligne du haut le second opérande.

Opérande 1 Opérande 2 Type de retour

SMALLINT ou SHORT SMALLINT ou SHORT SMALLINT ou SHORT

SMALLINT ou SHORT INTEGER INTEGER

SMALLINT ou SHORT BIGINT BIGINT

SMALLINT ou SHORT DECIMAL DECIMAL

SMALLINT ou SHORT FLOAT4 FLOAT8

SMALLINT ou SHORT FLOAT8 FLOAT8

INTEGER INTEGER INTEGER

INTEGER BIGINT ou LONG BIGINT ou LONG

INTEGER DECIMAL DECIMAL

INTEGER FLOAT4 FLOAT8

INTEGER FLOAT8 FLOAT8

BIGINT ou LONG BIGINT ou LONG BIGINT ou LONG

BIGINT ou LONG DECIMAL DECIMAL

BIGINT ou LONG FLOAT4 FLOAT8

Types numériques 24

AWS Clean Rooms Référence SQL

Opérande 1 Opérande 2 Type de retour

BIGINT ou LONG FLOAT8 FLOAT8

DECIMAL DECIMAL DECIMAL

DECIMAL FLOAT4 FLOAT8

DECIMAL FLOAT8 FLOAT8

FLOAT4 FLOAT8 FLOAT8

FLOAT8 FLOAT8 FLOAT8

Précision et échelle des résultats DECIMAL calculés

Le tableau suivant résume les règles de calcul de la précision et de l’échelle obtenues lorsque les
opérations mathématiques retournent des résultats DECIMAL. Dans ce tableau, p1 et s1 représentez
la précision et l'échelle du premier opérande d'un calcul. p2et s2 représentent la précision et l'échelle
du deuxième opérande. (Quels que soient les calculs, la précision maximale du résultat est de 38 et
l’échelle maximale du résultat de 38 également.)

Opération Précision et échelle du résultat

+ ou - Évolutivité = max(s1,s2)

Précision = max(p1-s1,p2-s2)+1+scale

* Évolutivité = s1+s2

Précision = p1+p2+1

/ Évolutivité = max(4,s1+p2-s2+1)

Précision = p1-s1+ s2+scale

Par exemple, les colonnes PRICEPAID et COMMISSION de la table SALES sont toutes deux des
colonnes DECIMAL(8,2). Si vous divisez PRICEPAID par COMMISSION (ou inversement), la formule
est appliquée comme suit :

Types numériques 25

AWS Clean Rooms Référence SQL

Precision = 8-2 + 2 + max(4,2+8-2+1)
= 6 + 2 + 9 = 17

Scale = max(4,2+8-2+1) = 9

Result = DECIMAL(17,9)

Le calcul suivant constitue la règle générale pour le calcul de la précision et de l’échelle obtenues
dans le cas des opérations effectuées sur les valeurs DECIMAL avec les opérateurs définis tels que
UNION, INTERSECT et EXCEPT, ou les fonctions comme COALESCE et DECODE :

Scale = max(s1,s2)
Precision = min(max(p1-s1,p2-s2)+scale,19)

Par exemple, une DEC1 table avec une colonne DECIMAL (7,2) est jointe à une DEC2 table avec
une colonne DECIMAL (15,3) pour créer une table. DEC3 Le schéma de DEC3 montre que la
colonne devient une colonne NUMERIC (15,3).

select * from dec1 union select * from dec2;

Dans l’exemple ci-dessus, la formule est appliquée comme suit :

Precision = min(max(7-2,15-3) + max(2,3), 19)
= 12 + 3 = 15

Scale = max(2,3) = 3

Result = DECIMAL(15,3)

Remarques sur les opérations de division

Pour les opérations de division, divide-by-zero les conditions renvoient des erreurs.

La limite d’échelle de 100 est appliquée après le calcul de la précision et de l’échelle. Si l’échelle de
résultat calculée est supérieure à 100, les résultats de la division sont mis à l’échelle comme suit :

• Précision = precision - (scale - max_scale)

• Évolutivité = max_scale

Types numériques 26

AWS Clean Rooms Référence SQL

Si la précision calculée est supérieure à la précision maximale (38), la précision est réduite à 38, et
l’échelle devient le résultat de : max(38 + scale - precision), min(4, 100))

Conditions de dépassement de capacité

Le dépassement de capacité est contrôlé pour tous les calculs numériques. Les données
DECIMAL avec une précision de 19 ou moins sont stockées en tant qu’entiers 64 bits. Les données
DECIMAL avec une précision supérieure à 19 sont stockées sous forme d’entiers 128 bits. La
précision maximale de toutes les valeurs DECIMAL est 38 et l’échelle maximale 37. Les erreurs de
dépassement de capacité se produisent quand une valeur dépasse ces limites, qui s’appliquent aux
jeux de résultats intermédiaires et finaux :

• Le casting explicite entraîne des erreurs de dépassement d'exécution lorsque des valeurs de
données spécifiques ne correspondent pas à la précision ou à l'échelle requises spécifiées par la
fonction de conversion. Par exemple, vous ne pouvez pas convertir toutes les valeurs de la colonne
PRICEPAID de la table SALES (une colonne DECIMAL (8,2)) et renvoyer un résultat DECIMAL
(7,3) :

select pricepaid::decimal(7,3) from sales;
ERROR: Numeric data overflow (result precision)

Cette erreur se produit car certaines des valeurs les plus élevées de la colonne PRICEPAID ne
peuvent pas être converties.

• Les opérations de multiplication produisent des résultats dans lesquels l’échelle du résultat est
la somme des échelles de chaque opérande. Si les deux opérandes ont une échelle de 4, par
exemple, l’échelle du résultat est 8, ce qui ne laisse que 10 chiffres à gauche de la virgule. Par
conséquent, il est relativement facile de se trouver en situation de dépassement de capacité lors de
la multiplication de deux grands nombres ayant une échelle significative.

Calculs numériques avec les types INTEGER et DECIMAL

Lorsque l'un des opérandes d'un calcul est de type INTEGER et que l'autre est DECIMAL, l'opérande
INTEGER est implicitement converti en DECIMAL.

• SMALLINT ou SHORT est converti en DECIMAL (5,0)

• INTEGER est converti en DECIMAL (10,0)

• BIGINT ou LONG est converti en DECIMAL (19,0)

Types numériques 27

AWS Clean Rooms Référence SQL

Par exemple, si vous multipliez SALES.COMMISSION, colonne DECIMAL(8,2) et SALES.QTYSOLD,
colonne SMALLINT, le calcul est converti comme suit :

DECIMAL(8,2) * DECIMAL(5,0)

Types caractères

Les types de données caractères incluent CHAR (caractère) et VARCHAR (caractère variable).

Rubriques

• CHAR ou CHARACTER

• VARCHAR ou CHARACTER VARYING

• Signification des blancs de fin

CHAR ou CHARACTER

Utilisez une colonne CHAR ou CHARACTER pour stocker les chaînes de longueur fixe. Ces chaînes
étant remplies de blancs, une colonne CHAR(10) occupe toujours 10 octets de stockage.

char(10)

Une colonne CHAR sans spécification de longueur se traduit par une colonne CHAR(1).

Les types de données CHAR et VARCHAR sont définis en termes d’octets, pas de caractères.
Comme une colonne CHAR ne peut contenir que des caractères d’un octet, une colonne CHAR(10)
peut contenir une chaîne d’une longueur maximale de 10 octets.

Name Stockage Plage (largeur de colonne)

CHAR ou CHARACTER Longueur de la
chaîne, blancs
de fin inclus (le
cas échéant)

4096 bytes

Types caractères 28

AWS Clean Rooms Référence SQL

VARCHAR ou CHARACTER VARYING

Utilisez une colonne VARCHAR ou CHARACTER VARYING pour stocker des chaînes de longueur
variable avec une limite fixe. Comme ces chaînes ne sont pas remplies avec des blancs, une colonne
VARCHAR(120) se compose d’un maximum de 120 caractères codés sur un octet, de 60 caractères
codés sur deux octets, de 40 caractères codés sur trois octets ou de 30 caractères codés sur quatre
octets.

varchar(120)

Les types de données VARCHAR sont définis en termes d'octets et non de caractères. Une donnée
VARCHAR peut contenir des caractères multioctets, jusqu’à un maximum de quatre octets par
caractère. Par exemple, une colonne VARCHAR(12) peut contenir 12 caractères codés sur un octet,
6 caractères codés sur deux octets, 4 caractères codés sur trois octets ou 3 caractères codés sur
quatre octets.

Name Stockage Plage (largeur de colonne)

VARCHAR ou CHARACTER
VARYING

4 octets + le
nombre total
d’octets des
caractères,
où chaque
caractère peut
être codé sur 1 à
4 octets.

65535 octets (64 K -1)

Signification des blancs de fin

Les types de données CHAR et VARCHAR stockent les chaînes de longueur maximale de n octets.
Toute tentative de stockage d'une chaîne plus longue dans une colonne de ce type entraîne une
erreur. Toutefois, si les caractères supplémentaires sont tous des espaces (blancs), la chaîne est
tronquée à la longueur maximale. Si la chaîne est plus courte que la longueur maximale, les valeurs
CHAR sont remplies de blancs, mais les valeurs VARCHAR stockent la chaîne sans blancs.

Types caractères 29

AWS Clean Rooms Référence SQL

Les blancs de fin des valeurs CHAR sont toujours insignifiants sur le plan sémantique. Ils sont
ignorés lorsque vous comparez deux valeurs CHAR, ne sont pas inclus dans les calculs LENGTH et
sont supprimés lorsque vous convertissez une valeur CHAR en un autre type de chaîne.

Les espaces de fin des valeurs VARCHAR et CHAR sont traités comme sans importance du point de
vue sémantique lorsque les valeurs sont comparées.

Les longueurs de calcul retournent la longueur des chaînes de caractères VARCHAR avec les
espaces de fin inclus dans la longueur. Les blancs de fin ne comptent pas dans la longueur des
chaînes de caractères de longueur fixe.

Types datetime

Les types de données Datetime incluent DATE, TIME, TIMESTAMP_LTZ et TIMESTAMP_NTZ.

Rubriques

• DATE

• TIMESTAMP_LTZ

• TIMESTAMP_NTZ

• Exemples avec les types datetime

• Littéraux de type date, heure et horodatage

• Littéraux de type interval

• Types de données et littéraux interval

DATE

Utilisez le type de données DATE pour stocker les dates calendaires simples sans horodatage.

Name Stockage Range Résolution

DATE 4 octets 4713 av. J.-C. à 294276 apr. J.-C. 1 jour

TIMESTAMP_LTZ

Utilisez le type de données TIMESTAMP_LTZ pour stocker les valeurs d'horodatage complètes qui
incluent la date, l'heure et le fuseau horaire local.

Types datetime 30

AWS Clean Rooms Référence SQL

TIMESTAMP représente des valeurs comprenant les valeurs des champsyear,,month,day, et hour
minutesecond, avec le fuseau horaire local de la session. La timestamp valeur représente un
point absolu dans le temps.

Dans Spark, TIMESTAMP est un alias spécifié par l'utilisateur associé à l'une des variantes
TIMESTAMP_LTZ et TIMESTAMP_NTZ. Vous pouvez définir le type d'horodatage par défaut
comme TIMESTAMP_LTZ (valeur par défaut) ou TIMESTAMP_NTZ via la configuration.
spark.sql.timestampType

TIMESTAMP_NTZ

Utilisez le type de données TIMESTAMP_NTZ pour stocker les valeurs d'horodatage complètes qui
incluent la date et l'heure, sans le fuseau horaire local.

TIMESTAMP représente des valeurs comprenant les valeurs des champsyear,month,day,
hourminute, et. second Toutes les opérations sont effectuées sans tenir compte du fuseau horaire.

Dans Spark, TIMESTAMP est un alias spécifié par l'utilisateur associé à l'une des variantes
TIMESTAMP_LTZ et TIMESTAMP_NTZ. Vous pouvez définir le type d'horodatage par défaut
comme TIMESTAMP_LTZ (valeur par défaut) ou TIMESTAMP_NTZ via la configuration.
spark.sql.timestampType

Exemples avec les types datetime

Les exemples suivants vous montrent comment utiliser les types de date/heure pris en charge
parAWS Clean Rooms.

Exemples de date

Les exemples suivants insèrent des dates qui ont des formats différents et affichent le résultat.

select * from datetable order by 1;

start_date | end_date

2008-06-01 | 2008-12-31
2008-06-01 | 2008-12-31

Si vous insérez une valeur d’horodatage dans une colonne DATE, la partie temps est ignorée et
seule la date est chargée.

Types datetime 31

AWS Clean Rooms Référence SQL

Exemples d’heure

Les exemples suivants insèrent des valeurs TIME et TIMETZ qui n’ont pas le même format et
affichent la sortie.

select * from timetable order by 1;
start_time | end_time

 19:11:19 | 20:41:19+00
 19:11:19 | 20:41:19+00

Littéraux de type date, heure et horodatage

Vous trouverez ci-dessous les règles d'utilisation des littéraux de date, d'heure et d'horodatage pris
en charge par AWS Clean Rooms Spark SQL.

Dates

Le tableau suivant présente les dates d'entrée qui sont des exemples valides de valeurs de date
littérales que vous pouvez charger dans AWS Clean Rooms des tables. La valeur MDY DateStyle
par défaut est supposée être en vigueur. Ce mode signifie que la valeur month précède la valeur day
dans les chaînes telles que 1999-01-08 et 01/02/00.

Note

Une date ou un horodatage littéral doit être placé entre guillemets lorsque vous le chargez
dans une table.

Date en entrée Date complète

8 janvier 1999 8 janvier 1999

1999-01-08 8 janvier 1999

1/8/1999 8 janvier 1999

01/02/00 2 janvier 2000

2000-Jan-31 31 janvier 2000

Types datetime 32

AWS Clean Rooms Référence SQL

Date en entrée Date complète

Jan-31-2000 31 janvier 2000

31-Jan-2000 31 janvier 2000

20080215 15 février 2008

080215 15 février 2008

2008.366 31 décembre 2008 (la partie à trois chiffres de
la date doit être comprise entre 001 et 366)

Times

Le tableau suivant indique les heures d'entrée qui sont des exemples valides de valeurs temporelles
littérales que vous pouvez charger dans AWS Clean Rooms des tables.

Heures en entrée Description (de la partie heure)

04:05:06.789 4:05 AM et 6,789 secondes

04:05:06 4:05 AM et 6 secondes

04:05 4:05 AM exactement

040506 4:05 AM et 6 secondes

04:05 AM 4:05 AM exactement ; AM est facultatif

04:05 PM 4:05 PM exactement ; la valeur d’heure doit
être inférieure à 12

16h05 4:05 PM exactement

Types datetime 33

AWS Clean Rooms Référence SQL

Valeurs datetime spéciales

Le tableau suivant indique les valeurs spéciales qui peuvent être utilisées comme littéraux de date/
heure et comme arguments de fonctions de date. Elles requièrent des apostrophes droites et sont
converties en valeurs timestamp régulières lors du traitement de la requête.

Valeur spéciale Description

now Correspond à l’heure de début de la transacti
on actuelle et retourne un horodatage avec une
précision de l’ordre de la microseconde.

today Correspond à la date appropriée et renvoie
un horodatage avec des zéros pour la partie
heure.

tomorrow Correspond à la date appropriée et renvoie
un horodatage avec des zéros pour la partie
heure.

yesterday Correspond à la date appropriée et renvoie
un horodatage avec des zéros pour la partie
heure.

Les exemples suivants montrent comment now et comment utiliser today la fonction DATE_ADD.

select date_add('today', 1);

date_add

2009-11-17 00:00:00
(1 row)

select date_add('now', 1);

date_add

2009-11-17 10:45:32.021394
(1 row)

Types datetime 34

AWS Clean Rooms Référence SQL

Littéraux de type interval

Vous trouverez ci-dessous les règles d'utilisation des littéraux d'intervalle pris en charge par AWS
Clean Rooms Spark SQL.

Utilisez un littéral de type interval pour identifier les périodes spécifiques, comme 12 hours ou 6
weeks. Vous pouvez utiliser ces littéraux de type interval dans les cas et les calculs qui impliquent
des expressions de type datetime.

Note

Vous ne pouvez pas utiliser le type de données INTERVAL pour les colonnes des AWS
Clean Rooms tables.

Un intervalle est exprimé comme la combinaison du mot clé INTERVAL avec une quantité numérique
et d’une partie date prise en charge ; par exemple : INTERVAL '7 days' ou INTERVAL '59
minutes'. Plusieurs quantités et unités peuvent être associées pour former un intervalle plus
précis ; par exemple : INTERVAL '7 days, 3 hours, 59 minutes'. Les abréviations et
les pluriels de chaque unité sont également pris en charge ; par exemple : 5 s, 5 second et 5
seconds sont des intervalles équivalents.

Si vous ne spécifiez pas une partie date, la valeur de l’intervalle correspond à des secondes. Vous
pouvez spécifier la valeur de la quantité sous forme de fraction (par exemple : 0.5 days).

Exemples

Les exemples suivants illustrent une série de calculs avec différentes valeurs d’intervalle.

L'exemple suivant ajoute 1 seconde à la date spécifiée.

select caldate + interval '1 second' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 00:00:01
(1 row)

L'exemple suivant ajoute 1 minute à la date spécifiée.

Types datetime 35

AWS Clean Rooms Référence SQL

select caldate + interval '1 minute' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 00:01:00
(1 row)

L'exemple suivant ajoute 3 heures et 35 minutes à la date spécifiée.

select caldate + interval '3 hours, 35 minutes' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 03:35:00
(1 row)

L'exemple suivant ajoute 52 semaines à la date spécifiée.

select caldate + interval '52 weeks' as dateplus from date
where caldate='12-31-2008';
dateplus

2009-12-30 00:00:00
(1 row)

L'exemple suivant ajoute 1 semaine, 1 heure, 1 minute et 1 seconde à la date spécifiée.

select caldate + interval '1w, 1h, 1m, 1s' as dateplus from date
where caldate='12-31-2008';
dateplus

2009-01-07 01:01:01
(1 row)

L'exemple suivant ajoute 12 heures (une demi-journée) à la date spécifiée.

select caldate + interval '0.5 days' as dateplus from date
where caldate='12-31-2008';
dateplus

Types datetime 36

AWS Clean Rooms Référence SQL

2008-12-31 12:00:00
(1 row)

L'exemple suivant soustrait 4 mois à compter du 31 mars 2023 et le résultat est le 30 novembre
2022. Le calcul prend en compte le nombre de jours dans un mois.

select date '2023-03-31' - interval '4 months';

?column?

2022-11-30 00:00:00

Types de données et littéraux interval

Vous pouvez utiliser un type de données interval pour stocker les durées dans des unités telles
que seconds, minutes, hours, days, months et years. Les types de données et les littéraux
interval peuvent être utilisés dans les calculs de date/heure, tels que l’ajout d’intervalles aux dates
et aux horodatages, la somme des intervalles et la soustraction d’un intervalle d’une date ou d’un
horodatage. Les littéraux interval peuvent être utilisés comme valeurs d’entrée pour intercaler les
colonnes de type de données d’une table.

Syntaxe du type de données interval

Pour spécifier un type de données interval afin de stocker une durée en années et en mois :

INTERVAL year_to_month_qualifier

Pour spécifier un type de données interval afin de stocker une durée en jours, heures, minutes et
secondes :

INTERVAL day_to_second_qualifier [(fractional_precision)]

Syntaxe du littéral interval

Pour spécifier un littéral interval afin de définir une durée en années et en mois :

INTERVAL quoted-string year_to_month_qualifier

Types datetime 37

AWS Clean Rooms Référence SQL

Pour spécifier un littéral interval afin de définir une durée en jours, heures, minutes et secondes :

INTERVAL quoted-string day_to_second_qualifier [(fractional_precision)]

Arguments

quoted-string

Spécifie une valeur numérique positive ou négative spécifiant une quantité et l’unité date/
heure en tant que chaîne d’entrée. Si la chaîne entre guillemets ne contient qu'un chiffre, elle
AWS Clean Rooms détermine les unités à partir du qualificatif year_to_month_qualifier ou du
day_to_second_qualifier. Par exemple, '23' MONTH représente 1 year 11 months, '-2'
DAY représente -2 days 0 hours 0 minutes 0.0 seconds, '1-2' MONTH représente 1
year 2 months et '13 day 1 hour 1 minute 1.123 seconds' SECOND représente 13
days 1 hour 1 minute 1.123 seconds. Pour plus d’informations sur les formats de sortie
d’un intervalle, consultez Styles d’intervalle.

year_to_month_qualifier

Spécifie la plage de l’intervalle. Si vous utilisez un qualificatif et que vous créez un intervalle dont
les unités de temps sont inférieures au qualificatif, AWS Clean Rooms les plus petites parties de
l'intervalle sont tronquées et supprimées. Les valeurs valides pour year_to_month_qualifier sont
les suivantes :

• YEAR

• MONTH

• YEAR TO MONTH

day_to_second_qualifier

Spécifie la plage de l’intervalle. Si vous utilisez un qualificatif et que vous créez un intervalle dont
les unités de temps sont inférieures au qualificatif, AWS Clean Rooms les plus petites parties de
l'intervalle sont tronquées et supprimées. Les valeurs valides pour day_to_second_qualifier sont
les suivantes :

• DAY

• HOUR

• MINUTE

• SECOND

• DAY TO HOUR

Types datetime 38

AWS Clean Rooms Référence SQL

• DAY TO MINUTE

• DAY TO SECOND

• HOUR TO MINUTE

• HOUR TO SECOND

• MINUTE TO SECOND

La sortie du littéral INTERVAL est tronquée au plus petit composant INTERVAL spécifié. Par
exemple, lorsque vous utilisez un qualificatif MINUTE, AWS Clean Rooms les unités de temps
inférieures à MINUTE sont supprimées.

select INTERVAL '1 day 1 hour 1 minute 1.123 seconds' MINUTE

La valeur résultante est tronquée à '1 day 01:01:00'.

fractional_precision

Paramètre facultatif qui spécifie le nombre de chiffres fractionnaires autorisés dans l’intervalle.
L’argument fractional_precision ne doit être spécifié que si votre intervalle contient SECOND. Par
exemple, SECOND(3) crée un intervalle qui n’autorise que trois chiffres fractionnaires, tels que
1,234 seconde. Le nombre maximum de chiffres fractionnaires est de six.

La configuration de session interval_forbid_composite_literals détermine si une erreur
est renvoyée lorsqu’un intervalle est spécifié avec les parties YEAR TO MONTH et DAY TO
SECOND.

Arithmétique des intervalles

Vous pouvez utiliser des valeurs interval avec d’autres valeurs datetime pour effectuer des opérations
arithmétiques. Les tableaux suivants décrivent les opérations disponibles et le type de données
résultant de chaque opération.

Note

Les opérations qui peuvent produire les résultats date et timestamp le font en fonction de
la plus petite unité de temps impliquée dans l’équation. Par exemple, lorsque vous ajoutez un
interval à une date, le résultat est une date, s’il s’agit d’un intervalle YEAR TO MONTH,
et un horodatage s’il s’agit d’un intervalle DAY TO SECOND.

Types datetime 39

AWS Clean Rooms Référence SQL

Les opérations où le premier opérande est un interval produisent les résultats suivants pour le
second opérande donné :

Opérateur Date Horodatage Interval Numérique

- N/A N/A Interval N/A

+ Date Date/Horo
datage.

Interval N/A

* N/A N/A N/A Interval

/ N/A N/A N/A Interval

Les opérations où le premier opérande est une date produisent les résultats suivants pour le second
opérande donné :

Opérateur Date Horodatage Interval Numérique

- Numérique Interval Date/Horo
datage.

Date

+ N/A N/A N/A N/A

Les opérations où le premier opérande est une timestamp produisent les résultats suivants pour le
second opérande donné :

Opérateur Date Horodatage Interval Numérique

- Numérique Interval Horodatage Horodatage

+ N/A N/A N/A N/A

Styles d’intervalle

• postgres : suit le style PostgreSQL. Il s’agit de l’option par défaut.

• postgres_verbose : suit le style détaillé PostgreSQL.

Types datetime 40

AWS Clean Rooms Référence SQL

• sql_standard : suit le style des littéraux interval SQL standard.

La commande suivante définit le style d’intervalle sur sql_standard.

SET IntervalStyle to 'sql_standard';

format de sortie postgres

Le format de sortie pour le style d’intervalle postgres est le suivant. Chaque valeur numérique peut
être négative.

'<numeric> <unit> [, <numeric> <unit> ...]'

select INTERVAL '1-2' YEAR TO MONTH::text

varchar

1 year 2 mons

select INTERVAL '1 2:3:4.5678' DAY TO SECOND::text

varchar

1 day 02:03:04.5678

format de sortie postgres_verbose

La syntaxe postgres_verbose est similaire à postgres, mais les sorties postgres_verbose contiennent
également l’unité de temps.

'[@] <numeric> <unit> [, <numeric> <unit> ...] [direction]'

select INTERVAL '1-2' YEAR TO MONTH::text

varchar

@ 1 year 2 mons

select INTERVAL '1 2:3:4.5678' DAY TO SECOND::text

Types datetime 41

AWS Clean Rooms Référence SQL

varchar

@ 1 day 2 hours 3 mins 4.56 secs

format de sortie sql_standard

Les valeurs interval year to month sont formatées comme suit. La spécification d’un signe négatif
avant l’intervalle indique que l’intervalle est une valeur négative et s’applique à l’ensemble de
l’intervalle.

'[-]yy-mm'

Les valeurs interval day to second sont formatées comme suit.

'[-]dd hh:mm:ss.ffffff'

SELECT INTERVAL '1-2' YEAR TO MONTH::text

varchar

1-2

select INTERVAL '1 2:3:4.5678' DAY TO SECOND::text

varchar

1 2:03:04.5678

Exemples de type de données interval

Les exemples suivants montrent comment utiliser les types de données INTERVAL avec des tables.

create table sample_intervals (y2m interval month, h2m interval hour to minute);
insert into sample_intervals values (interval '20' month, interval '2 days
 1:1:1.123456' day to second);
select y2m::text, h2m::text from sample_intervals;

Types datetime 42

AWS Clean Rooms Référence SQL

 y2m | h2m
---------------+-----------------
 1 year 8 mons | 2 days 01:01:00

update sample_intervals set y2m = interval '2' year where y2m = interval '1-8' year to
 month;
select * from sample_intervals;

 y2m | h2m
---------+-----------------
 2 years | 2 days 01:01:00

delete from sample_intervals where h2m = interval '2 1:1:0' day to second;
select * from sample_intervals;

 y2m | h2m
-----+-----

Exemples de littéraux interval

Les exemples suivants sont exécutés avec le style d’intervalle défini sur postgres.

L’exemple suivant montre comment créer un littéral INTERVAL de 1 an.

select INTERVAL '1' YEAR

intervaly2m

1 years 0 mons

Si vous spécifiez une quoted-string qui dépasse le qualificatif, les unités de temps restantes sont
tronquées par rapport à l’intervalle. Dans l’exemple suivant, un intervalle de 13 mois devient 1 an et
1 mois, mais le mois restant est omis en raison du qualificatif YEAR.

select INTERVAL '13 months' YEAR

intervaly2m

1 years 0 mons

Types datetime 43

AWS Clean Rooms Référence SQL

Si vous utilisez un qualificatif inférieur à votre chaîne d’intervalle, les unités restantes sont incluses.

select INTERVAL '13 months' MONTH

intervaly2m

1 years 1 mons

Si vous spécifiez une précision dans votre intervalle, le nombre de chiffres fractionnaires est tronqué
à la précision spécifiée.

select INTERVAL '1.234567' SECOND (3)

intervald2s

0 days 0 hours 0 mins 1.235 secs

Si vous ne spécifiez aucune précision, AWS Clean Rooms utilise la précision maximale de 6.

select INTERVAL '1.23456789' SECOND

intervald2s

0 days 0 hours 0 mins 1.234567 secs

L’exemple suivant montre comment créer un intervalle par plage.

select INTERVAL '2:2' MINUTE TO SECOND

intervald2s

0 days 0 hours 2 mins 2.0 secs

Les qualificatifs dictent les unités que vous spécifiez. Par exemple, même si l'exemple suivant utilise
la même chaîne entre guillemets de « 2:2 » que l'exemple précédent, il AWS Clean Rooms reconnaît
qu'il utilise des unités de temps différentes en raison du qualificatif.

select INTERVAL '2:2' HOUR TO MINUTE

intervald2s

Types datetime 44

AWS Clean Rooms Référence SQL

0 days 2 hours 2 mins 0.0 secs

Les abréviations et les pluriels de chaque unité sont également pris en charge. Par exemple, 5s, 5
second et 5 seconds sont des intervalles équivalents. Les unités prises en charge sont les années,
les mois, les heures, les minutes et les secondes.

select INTERVAL '5s' SECOND

intervald2s

0 days 0 hours 0 mins 5.0 secs

select INTERVAL '5 HOURS' HOUR

intervald2s

0 days 5 hours 0 mins 0.0 secs

select INTERVAL '5 h' HOUR

intervald2s

0 days 5 hours 0 mins 0.0 secs

Exemples de littéraux interval sans syntaxe de qualificatif

Note

Les exemples suivants illustrent l’utilisation d’un littéral interval sans qualificatif YEAR TO
MONTH ou DAY TO SECOND. Pour plus d’informations sur l’utilisation du littéral interval
recommandé avec un qualificatif, consultez Types de données et littéraux interval.

Utilisez un littéral de type interval pour identifier les périodes spécifiques, comme 12 hours ou 6
months. Vous pouvez utiliser ces littéraux de type interval dans les cas et les calculs qui impliquent
des expressions de type datetime.

Un littéral interval est exprimé comme la combinaison du mot clé INTERVAL avec une quantité
numérique et d’une partie date prise en charge ; par exemple : INTERVAL '7 days' ou INTERVAL

Types datetime 45

AWS Clean Rooms Référence SQL

'59 minutes'. Plusieurs quantités et unités peuvent être associées pour former un intervalle
plus précis ; par exemple : INTERVAL '7 days, 3 hours, 59 minutes'. Les abréviations
et les pluriels de chaque unité sont également pris en charge ; par exemple : 5 s, 5 second et 5
seconds sont des intervalles équivalents.

Si vous ne spécifiez pas une partie date, la valeur de l’intervalle correspond à des secondes. Vous
pouvez spécifier la valeur de la quantité sous forme de fraction (par exemple : 0.5 days).

Les exemples suivants illustrent une série de calculs avec différentes valeurs d’intervalle.

Ce qui suit ajoute 1 seconde à la date spécifiée.

select caldate + interval '1 second' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 00:00:01
(1 row)

Ce qui suit ajoute 1 minute à la date spécifiée.

select caldate + interval '1 minute' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 00:01:00
(1 row)

Ce qui suit ajoute 3 heures et 35 minutes à la date spécifiée.

select caldate + interval '3 hours, 35 minutes' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 03:35:00
(1 row)

Ce qui suit ajoute 52 semaines à la date spécifiée.

select caldate + interval '52 weeks' as dateplus from date

Types datetime 46

AWS Clean Rooms Référence SQL

where caldate='12-31-2008';
dateplus

2009-12-30 00:00:00
(1 row)

Ce qui suit ajoute 1 semaine, 1 heure, 1 minute, et 1 seconde à la date spécifiée.

select caldate + interval '1w, 1h, 1m, 1s' as dateplus from date
where caldate='12-31-2008';
dateplus

2009-01-07 01:01:01
(1 row)

Ce qui suit ajoute 12 heures (la moitié d’une journée) à la date spécifiée.

select caldate + interval '0.5 days' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 12:00:00
(1 row)

Ce qui suit soustrait 4 mois à compter du 15 février 2023 et le résultat est le 15 octobre 2022.

select date '2023-02-15' - interval '4 months';

?column?

2022-10-15 00:00:00

Ce qui suit soustrait 4 mois à compter du 31 mars 2023 et le résultat est le 30 novembre 2022. Le
calcul prend en compte le nombre de jours dans un mois.

select date '2023-03-31' - interval '4 months';

?column?

2022-11-30 00:00:00

Types datetime 47

AWS Clean Rooms Référence SQL

Type Boolean

Utilisez le type de données BOOLEAN pour stocker les valeurs true et false dans une colonne codée
sur un octet. Le tableau suivant décrit les trois états possibles pour une valeur booléenne et les
valeurs littérales qui entraînent cet état. Quelle que soit la chaîne en entrée, une colonne booléenne
stocke et émet « t » pour true et « f » pour false.

State Valeurs littérales
valides

Stockage

True TRUE 't'
'true' 'y'
'yes' '1'

1 octet

False FALSE 'f'
'false' 'n'
'no' '0'

1 octet

Je ne sais pas NULL 1 octet

Vous pouvez utiliser une comparaison IS pour vérifier une valeur booléenne uniquement sous la
forme d’un prédicat dans la clause WHERE. Vous ne pouvez pas utiliser la comparaison IS avec une
valeur booléenne dans la liste SELECT.

Exemples

Vous pouvez utiliser une colonne BOOLEAN pour enregistrer un état « actif/inactif » pour chaque
client dans une table CUSTOMER.

select * from customer;
custid | active_flag
-------+--------------
 100 | t

Dans cet exemple, la requête suivante sélectionne les utilisateurs du tableau USERS qui aiment le
sport mais pas le théâtre :

select firstname, lastname, likesports, liketheatre

Type Boolean 48

AWS Clean Rooms Référence SQL

from users
where likesports is true and liketheatre is false
order by userid limit 10;

firstname | lastname | likesports | liketheatre
----------+------------+------------+-------------
Alejandro | Rosalez | t | f
Akua | Mansa | t | f
Arnav | Desai | t | f
Carlos | Salazar | t | f
Diego | Ramirez | t | f
Efua | Owusu | t | f
John | Stiles | t | f
Jorge | Souza | t | f
Kwaku | Mensah | t | f
Kwesi | Manu | t | f
(10 rows)

L’exemple suivant sélectionne les utilisateurs de la table USERS pour lesquels on ignore s’ils aiment
la musique rock.

select firstname, lastname, likerock
from users
where likerock is unknown
order by userid limit 10;

firstname | lastname | likerock
----------+----------+----------
Alejandro | Rosalez |
Carlos | Salazar |
Diego | Ramirez |
John | Stiles |
Kwaku | Mensah |
Martha | Rivera |
Mateo | Jackson |
Paulo | Santos |
Richard | Roe |
Saanvi | Sarkar |
(10 rows)

L’exemple suivant renvoie une erreur parce qu’il utilise une comparaison IS dans la liste SELECT.

select firstname, lastname, likerock is true as "check"

Type Boolean 49

AWS Clean Rooms Référence SQL

from users
order by userid limit 10;

[Amazon](500310) Invalid operation: Not implemented

L'exemple suivant réussit car il utilise une comparaison égale (=) dans la liste SELECT au lieu de la
IS comparaison.

select firstname, lastname, likerock = true as "check"
from users
order by userid limit 10;

firstname | lastname | check
----------+-----------+------
Alejandro | Rosalez |
Carlos | Salazar |
Diego | Ramirez | true
John | Stiles |
Kwaku | Mensah | true
Martha | Rivera | true
Mateo | Jackson |
Paulo | Santos | false
Richard | Roe |
Saanvi | Sarkar |

Littéraux booléens

Les règles suivantes concernent l'utilisation des littéraux booléens pris en charge par AWS Clean
Rooms Spark SQL.

Utilisez un littéral booléen pour spécifier une valeur booléenne, telle que ou. TRUE FALSE

Syntaxe

TRUE | FALSE

Exemple

L'exemple suivant montre une colonne avec une valeur spécifiée deTRUE.

SELECT TRUE AS col;

Type Boolean 50

AWS Clean Rooms Référence SQL

+----+
| col|
+----+
|true|
+----+

Type binaire

Utilisez le type de données BINARY pour stocker et gérer des données binaires de longueur fixe et
non interprétées, offrant ainsi des fonctionnalités de stockage et de comparaison efficaces pour des
cas d'utilisation spécifiques.

Le type de données BINARY stocke un nombre fixe d'octets, quelle que soit la longueur réelle des
données stockées. La longueur maximale est généralement de 255 octets.

BINARY est utilisé pour stocker des données binaires brutes non interprétées, telles que des images,
des documents ou d'autres types de fichiers. Les données sont stockées exactement telles qu'elles
sont fournies, sans codage de caractères ni interprétation. Les données binaires stockées dans des
colonnes BINARY sont comparées et triées byte-by-byte en fonction des valeurs binaires réelles,
plutôt que des règles de codage de caractères ou de classement.

L'exemple de requête suivant montre la représentation binaire de la chaîne"abc". Chaque caractère
de la chaîne est représenté par son code ASCII au format hexadécimal : « a » est 0x61, « b »
est 0x62 et « c » est 0x63. Lorsqu'elles sont combinées, ces valeurs hexadécimales forment la
représentation binaire"616263".

SELECT 'abc'::binary;
binary

 616263

Type imbriqué

AWS Clean Roomsprend en charge les requêtes impliquant des données avec des types de données
imbriqués, en particulier les types de colonnes AWS Glue STRUCT, ARRAY et MAP. Seule la règle
d'analyse personnalisée prend en charge les types de données imbriqués.

Les types de données imbriqués ne sont notamment pas conformes à la structure tabulaire rigide du
modèle de données relationnel des bases de données SQL.

Type binaire 51

AWS Clean Rooms Référence SQL

Les types de données imbriqués contiennent des balises qui font référence à des entités distinctes
au sein des données. Elles peuvent contenir des valeurs complexes telles que des tableaux, des
structures imbriquées et d’autres structures complexes associées à des formats de sérialisation, tels
que JSON. Les types de données imbriqués prennent en charge jusqu'à 1 Mo de données pour un
champ ou un objet de type de données imbriqué individuel.

Rubriques

• Type de TABLEAU

• Type de carte

• Type de STRUCTURE

• Exemples de types de données imbriqués

Type de TABLEAU

Utilisez le type ARRAY pour représenter des valeurs comprenant une séquence d'éléments de
typeelementType.

array(elementType, containsNull)

containsNullÀ utiliser pour indiquer si les éléments d'un type ARRAY peuvent avoir des null
valeurs.

Type de carte

Utilisez le type MAP pour représenter des valeurs comprenant un ensemble de paires clé-valeur.

map(keyType, valueType, valueContainsNull)

keyType: le type de données des clés

valueType: le type de données des valeurs

Les clés ne sont pas autorisées à avoir null des valeurs. valueContainsNullÀ utiliser pour
indiquer si les valeurs de type MAP peuvent avoir des null valeurs.

Type de STRUCTURE

Utilisez le type STRUCT pour représenter des valeurs avec la structure décrite par une séquence de
StructFields (champs).

Type imbriqué 52

AWS Clean Rooms Référence SQL

struct(name, dataType, nullable)

StructField(nom, DataType, nullable) : représente un champ dans un. StructType

dataType: le type de données est un champ

name: le nom d'un champ

nullableÀ utiliser pour indiquer si les valeurs de ces champs peuvent avoir des null valeurs.

Exemples de types de données imbriqués

Pour le struct<given:varchar, family:varchar> type, il existe deux noms
d'attributs :given, etfamily, chacun correspondant à une varchar valeur.

Pour le array<varchar> type, le tableau est spécifié sous forme de liste devarchar.

Le array<struct<shipdate:timestamp, price:double>> type fait référence à une liste
d'éléments de struct<shipdate:timestamp, price:double> type.

Le type de map données se comporte comme un array destructs, où le nom d'attribut de chaque
élément du tableau est indiqué par key et correspond à un. value

Example

Par exemple, le map<varchar(20), varchar(20)> type est traité
commearray<struct<key:varchar(20), value:varchar(20)>>, où key et fait value
référence aux attributs de la carte dans les données sous-jacentes.

Pour plus d'informations sur le mode AWS Clean Rooms d'activation de la navigation dans les
tableaux et les structures, consultezNavigation.

Pour plus d'informations sur la manière AWS Clean Rooms d'activer l'itération sur des tableaux en
naviguant dans le tableau à l'aide de la clause FROM d'une requête, consultez. Désimbriquer des
requêtes

Compatibilité et conversion de types

Les rubriques suivantes décrivent le fonctionnement des règles de conversion de type et de
compatibilité des types de données dans AWS Clean Rooms Spark SQL.

Rubriques

Compatibilité et conversion de types 53

AWS Clean Rooms Référence SQL

• Compatibilité

• Compatibilité générale et règles de conversion

• Types de conversion implicite

Compatibilité

La correspondance des types de données et la correspondance des valeurs littérales et des
constantes avec les types de données se produisent lors de différentes opérations de base de
données, dont les suivantes :

• Opérations DML (Data Manipulation Language) sur les tables

• Requêtes UNION, INTERSECT et EXCEPT

• Expressions CASE

• Evaluation de prédicats, tels que LIKE et IN

• Evaluation de fonctions SQL qui effectuent des comparaisons ou des extractions de données

• Comparaisons avec les opérateurs mathématiques

Les résultats de ces opérations dépendent des règles de conversion de types et de la compatibilité
des types de données. La compatibilité implique que la mise en one-to-one correspondance d'une
certaine valeur et d'un certain type de données n'est pas toujours requise. Certains types de données
étant compatibles, une conversion implicite, ou coercition, est possible. Pour de plus amples
informations, veuillez consulter Types de conversion implicite. Lorsque les types de données sont
incompatibles, vous pouvez parfois convertir une valeur d’un type de données en un autre à l’aide
d’une fonction de conversion explicite.

Compatibilité générale et règles de conversion

Notez les règles de compatibilité et de conversion suivantes :

• En général, les types de données qui appartiennent à la même catégorie (comme les différents
types de données numériques) sont compatibles et peuvent être convertis implicitement.

Par exemple, avec une conversion implicite, vous pouvez insérer une valeur décimale dans une
colonne de type entier. La partie décimale est arrondie pour produire un nombre entier. Ou vous
pouvez extraire une valeur numérique, telle que 2008, d’une date et insérer cette valeur dans une
colonne de type entier.

Compatibilité et conversion de types 54

AWS Clean Rooms Référence SQL

• Les types de données numériques renforcent les conditions de débordement qui se produisent
lorsque vous tentez d'insérer out-of-range des valeurs. Par exemple, une valeur décimale avec une
précision de 5 ne peut contenir dans une colonne décimale dont la précision est 4. Un entier ou la
partie entière d'un nombre décimal n'est jamais tronqué. Cependant, la partie fractionnaire d'une
décimale peut être arrondie à la hausse ou à la baisse, selon le cas. Cependant, les résultats de
conversions explicites de valeurs sélectionnées dans les tables ne sont pas arrondis.

• Différents types de chaînes de caractères sont compatibles. Les chaînes de colonne VARCHAR
contenant des données à un octet et les chaînes de colonnes CHAR sont comparables et
implicitement convertibles. Les chaînes VARCHAR qui contiennent des données codées sur
plusieurs octets ne sont pas comparables. Vous pouvez également convertir une chaîne de
caractères en date, heure, horodatage ou valeur numérique si la chaîne est une valeur littérale
appropriée. Les espaces de début ou de fin sont ignorés. Inversement, vous pouvez convertir une
date, une heure, un horodatage ou une valeur numérique en une chaîne de caractères de longueur
fixe ou variable.

Note

Une chaîne de caractères que vous voulez convertir en type numérique doit comporter la
représentation en caractères d’un nombre. Par exemple, vous pouvez convertir les chaînes
'1.0' ou '5.9' en valeurs décimales, mais vous ne pouvez pas convertir la chaîne
'ABC' en un type numérique.

• Si vous comparez des valeurs DECIMAL à des chaînes de caractères, AWS Clean Rooms tente de
convertir la chaîne de caractères en valeur DECIMAL. Lors de la comparaison de toutes les autres
valeurs numériques avec des chaînes de caractères, les valeurs numériques sont converties en
chaînes de caractères. Pour effectuer la conversion inverse (par exemple, convertir des chaînes de
caractères en entiers ou convertir des valeurs DECIMALES en chaînes de caractères), utilisez une
fonction explicite, telle que Fonction CAST.

• Pour convertir les valeurs DECIMAL ou NUMERIC 64 bits en une plus grande précision, vous
devez utiliser une fonction de conversion explicite telle que les fonctions CAST ou CONVERT.

Types de conversion implicite

Il existe deux types de conversion implicite :

• Conversions implicites dans les affectations, telles que la définition de valeurs dans les
commandes INSERT ou UPDATE

Compatibilité et conversion de types 55

AWS Clean Rooms Référence SQL

• Conversions implicites dans les expressions, telles que les comparaisons dans la clause WHERE

Le tableau suivant répertorie les types de données qui peuvent être convertis implicitement dans
des assignations ou des expressions. Vous pouvez également utiliser une fonction de conversion
explicite pour exécuter ces conversions.

Type de départ Type d’arrivée

BOOLEAN

CHAR

DECIMAL (NUMERIC)

DOUBLE PRÉCISION (FLOAT8)

INTEGER

RÉEL (FLOAT4)

SMALLINT ou SHORT

BIGINT

VARCHAR

CHAR VARCHAR

CHAR

VARCHAR

TIMESTAMP

DATE

TIMESTAMPTZ

BIGINT ou LONG

CHAR

DOUBLE PRÉCISION (FLOAT8)

DECIMAL (NUMERIC)

ENTIER (INT)

Compatibilité et conversion de types 56

AWS Clean Rooms Référence SQL

Type de départ Type d’arrivée

RÉEL (FLOAT4)

SMALLINT ou SHORT

VARCHAR

BIGINT ou LONG

CHAR

DECIMAL (NUMERIC)

ENTIER (INT)

RÉEL (FLOAT4)

SMALLINT ou SHORT

DOUBLE PRÉCISION (FLOAT8)

VARCHAR

BIGINT ou LONG

BOOLEAN

CHAR

DECIMAL (NUMERIC)

DOUBLE PRÉCISION (FLOAT8)

RÉEL (FLOAT4)

SMALLINT ou SHORT

ENTIER (INT)

VARCHAR

BIGINT ou LONGRÉEL (FLOAT4)

CHAR

Compatibilité et conversion de types 57

AWS Clean Rooms Référence SQL

Type de départ Type d’arrivée

DECIMAL (NUMERIC)

ENTIER (INT)

SMALLINT ou SHORT

VARCHAR

BIGINT ou LONG

BOOLEAN

CHAR

DECIMAL (NUMERIC)

DOUBLE PRÉCISION (FLOAT8)

ENTIER (INT)

RÉEL (FLOAT4)

SMALLINT

VARCHAR

VARCHARTIME

TIMETZ

Note

Les conversions implicites entre DATE, TIME, TIMESTAMP_LTZ, TIMESTAMP_NTZ ou des
chaînes de caractères utilisent le fuseau horaire de la session en cours.
Le type de données VARBYTE ne peut pas être converti de façon implicite dans un autre
type de données. Pour de plus amples informations, veuillez consulter Fonction CAST.

Compatibilité et conversion de types 58

AWS Clean Rooms Référence SQL

AWS Clean Rooms Commandes SQL Spark

Les commandes SQL suivantes sont prises en charge dans AWS Clean Rooms Spark SQL :

Rubriques

• TABLE DE CACHE

• Indicateurs

• SELECT

TABLE DE CACHE

La commande CACHE TABLE met en cache les données d'une table existante ou crée et met en
cache une nouvelle table contenant les résultats des requêtes.

Note

Les données mises en cache sont conservées pendant toute la durée de la requête.

La syntaxe, les arguments et quelques exemples proviennent de la référence SQL d'Apache Spark.

Syntaxe

La commande CACHE TABLE prend en charge trois modèles de syntaxe :

Avec AS (sans parenthèses) : crée et met en cache une nouvelle table en fonction des résultats de la
requête.

CACHE TABLE cache_table_identifier AS query;

Avec AS et parenthèses : fonctionne de la même manière que la première syntaxe mais utilise des
parenthèses pour regrouper explicitement la requête.

CACHE TABLE cache_table_identifier AS (query);

Sans AS : met en cache une table existante à l'aide de l'instruction SELECT pour filtrer les lignes à
mettre en cache.

Commandes SQL 59

https://spark.apache.org/docs/latest/api/sql/

AWS Clean Rooms Référence SQL

CACHE TABLE cache_table_identifier query;

Où :

• Toutes les instructions doivent se terminer par un point-virgule (;)

• queryest généralement une instruction SELECT

• Les parenthèses autour de la requête sont facultatives avec AS

• Le mot clé AS est facultatif

Paramètres

identificateur de table de cache

Nom de la table mise en cache. Peut inclure un qualificatif de nom de base de données facultatif.

EN TANT QUE

Mot-clé utilisé lors de la création et de la mise en cache d'une nouvelle table à partir des résultats
d'une requête.

query

Une instruction SELECT ou une autre requête qui définit les données à mettre en cache.

Exemples

Dans les exemples suivants, la table mise en cache est conservée pendant toute la
durée de la requête. Après la mise en cache, les requêtes suivantes faisant référence
cache_table_identifier seront lues à partir de la version mise en cache plutôt que de
recalculer ou de lire à partir de celle-ci. sourceTable Cela peut améliorer les performances des
requêtes pour les données fréquemment consultées.

Création et mise en cache d'une table filtrée à partir des résultats de requête

Le premier exemple montre comment créer et mettre en cache une nouvelle table à partir des
résultats d'une requête. Cette commande utilise le AS mot clé sans parenthèses autour de
l'SELECTinstruction. Il crée une nouvelle table nommée « cache_table_identifier » contenant
uniquement les lignes de « sourceTable » dont le statut est « »active'. Il exécute la requête,
stocke les résultats dans la nouvelle table et met en cache le contenu de la nouvelle table. Le

TABLE DE CACHE 60

AWS Clean Rooms Référence SQL

« sourceTable » d'origine reste inchangé, et les requêtes suivantes doivent faire référence à
« cache_table_identifier » pour utiliser les données mises en cache.

CACHE TABLE cache_table_identifier AS
 SELECT * FROM sourceTable
 WHERE status = 'active';

Mettre en cache les résultats des requêtes avec des instructions SELECT entre parenthèses

Le deuxième exemple montre comment mettre en cache les résultats d'une requête sous la
forme d'une nouvelle table portant le nom spécifié (cache_table_identifier), en plaçant
l'SELECTinstruction entre parenthèses. Cette commande crée une nouvelle table nommée
« cache_table_identifier » contenant uniquement les lignes de « sourceTable » dont le
statut est « »active'. Il exécute la requête, stocke les résultats dans la nouvelle table et met en
cache le contenu de la nouvelle table. Le « sourceTable » original reste inchangé. Les requêtes
suivantes doivent faire référence à cache_table_identifier « » pour utiliser les données mises
en cache.

CACHE TABLE cache_table_identifier AS (
 SELECT * FROM sourceTable
 WHERE status = 'active'
);

Mettre en cache une table existante avec des conditions de filtre

Le troisième exemple montre comment mettre en cache une table existante en utilisant une syntaxe
différente. Cette syntaxe, qui omet le mot clé « AS » et les parenthèses, met généralement en cache
les lignes spécifiées dans une table existante nommée « cache_table_identifier » plutôt que
de créer une nouvelle table. L'SELECTinstruction agit comme un filtre pour déterminer les lignes à
mettre en cache.

Note

Le comportement exact de cette syntaxe varie selon les systèmes de base de données.
Vérifiez toujours la syntaxe correcte pour votre AWS service spécifique.

CACHE TABLE cache_table_identifier

TABLE DE CACHE 61

AWS Clean Rooms Référence SQL

SELECT * FROM sourceTable
WHERE status = 'active';

Indicateurs

Les astuces pour les analyses SQL fournissent des directives d'optimisation qui guident les stratégies
d'exécution des requêtes AWS Clean Rooms, vous permettant ainsi d'améliorer les performances
des requêtes et de réduire les coûts de calcul. Des indices suggèrent comment le moteur d'analyse
Spark doit générer son plan d'exécution.

Syntaxe

SELECT /*+ hint_name(parameters), hint_name(parameters) */ column_list
FROM table_name;

Les indices sont intégrés aux requêtes SQL à l'aide d'une syntaxe de type commentaire et doivent
être placés directement après le mot clé SELECT.

Types d'indices pris en charge

AWS Clean Rooms prend en charge deux catégories d'astuces : les astuces de jointure et les
astuces de partitionnement.

Rubriques

• Conseils de participation

• Conseils de partitionnement

Conseils de participation

Les conseils de jointure suggèrent des stratégies de jointure pour l'exécution des requêtes. La
syntaxe, les arguments et quelques exemples proviennent de la référence SQL Apache Spark pour
plus d'informations

DIFFUSER

Suggère d' AWS Clean Rooms utiliser la jointure par diffusion. La page de jointure contenant l'indice
sera diffusée quel que soit le autoBroadcastJoin seuil. Si les deux côtés de la jointure ont des indices
de diffusion, celui dont la taille est la plus petite (sur la base des statistiques) sera diffusé.

Indicateurs 62

https://spark.apache.org/docs/latest/sql-ref-syntax-qry-select-hints.html#join-hints

AWS Clean Rooms Référence SQL

Alias : BROADCASTJOIN, MAPJOIN

Paramètres : identificateurs de table (facultatif)

Exemples :

-- Broadcast a specific table
SELECT /*+ BROADCAST(students) */ e.name, s.course
FROM employees e JOIN students s ON e.id = s.id;

-- Broadcast multiple tables
SELECT /*+ BROADCASTJOIN(s, d) */ *
FROM employees e
JOIN students s ON e.id = s.id
JOIN departments d ON e.dept_id = d.id;

MERGE

Suggère d' AWS Clean Rooms utiliser le shuffle, le tri, la fusion, la jointure.

Alias : SHUFFLE_MERGE, MERGEJOIN

Paramètres : identificateurs de table (facultatif)

Exemples :

-- Use merge join for a specific table
SELECT /*+ MERGE(employees) */ *
FROM employees e JOIN students s ON e.id = s.id;

-- Use merge join for multiple tables
SELECT /*+ MERGEJOIN(e, s, d) */ *
FROM employees e
JOIN students s ON e.id = s.id
JOIN departments d ON e.dept_id = d.id;

SHUFFLE_HASH

Suggère d' AWS Clean Rooms utiliser la jointure par hachage automatique. Si les deux côtés ont
des indices de hachage combinés, l'optimiseur de requêtes choisit le côté le plus petit (basé sur les
statistiques) comme côté build.

Paramètres : identificateurs de table (facultatif)

Indicateurs 63

AWS Clean Rooms Référence SQL

Exemples :

-- Use shuffle hash join
SELECT /*+ SHUFFLE_HASH(students) */ *
FROM employees e JOIN students s ON e.id = s.id;

SHUFFLE_REPLICATE_FR

Suggère d' AWS Clean Rooms utiliser la jointure shuffle-and-replicate par boucle imbriquée.

Paramètres : identificateurs de table (facultatif)

Exemples :

-- Use shuffle-replicate nested loop join
SELECT /*+ SHUFFLE_REPLICATE_NL(students) */ *
FROM employees e JOIN students s ON e.id = s.id;

Conseils de résolution des problèmes dans Spark SQL

Le tableau suivant montre les scénarios courants dans lesquels les indices ne sont pas appliqués
dans SparkSQL. Pour plus d’informations, consultez the section called “Considérations et
restrictions”.

Cas d’utilisation Exemple de requête

Référence de table introuvable SELECT /*+ BROADCAST(fake_table) */ *
FROM employees e
INNER JOIN students s ON e.eid = s.sid;

La table ne participe pas à
l'opération de jointure

SELECT /*+ BROADCAST(s) */ *
FROM students s
WHERE s.age > 25;

Référence de table dans une
sous-requête imbriquée

SELECT /*+ BROADCAST(s) */ *
FROM employees e
INNER JOIN (SELECT * FROM students s WHERE s.age > 20)
 sub
ON e.eid = sub.sid;

Indicateurs 64

AWS Clean Rooms Référence SQL

Cas d’utilisation Exemple de requête

Nom de colonne au lieu de
référence de table

SELECT /*+ BROADCAST(e.eid) */ *
FROM employees e
INNER JOIN students s ON e.eid = s.sid;

Conseil sans paramètres
obligatoires

SELECT /*+ BROADCAST */ *
FROM employees e
INNER JOIN students s ON e.eid = s.sid;

Nom de la table de base au
lieu de l'alias de la table

SELECT /*+ BROADCAST(employees) */ *
FROM employees e
INNER JOIN students s ON e.eid = s.sid;

Conseils de partitionnement

Les conseils de partitionnement contrôlent la distribution des données entre les nœuds exécuteurs.
Lorsque plusieurs conseils de partitionnement sont spécifiés, plusieurs nœuds sont insérés dans le
plan logique, mais l'indicateur le plus à gauche est sélectionné par l'optimiseur.

COALESCE

Réduit le nombre de partitions au nombre de partitions spécifié.

Paramètres : valeur numérique (obligatoire) - doit être un entier positif compris entre 1 et 2147483647

Exemples :

-- Reduce to 5 partitions
SELECT /*+ COALESCE(5) */ employee_id, salary
FROM employees;

RÉPARTITION

Repartitionne les données sur le nombre de partitions spécifié à l'aide des expressions de
partitionnement spécifiées. Utilise la distribution circulaire.

Paramètres :

Indicateurs 65

AWS Clean Rooms Référence SQL

• Valeur numérique (facultatif) - nombre de partitions ; doit être un entier positif compris entre 1 et
2147483647

• Identifiants de colonne (facultatif) - colonnes à partitionner ; ces colonnes doivent exister dans le
schéma d'entrée.

• Si les deux sont spécifiés, la valeur numérique doit apparaître en premier

Exemples :

-- Repartition to 10 partitions
SELECT /*+ REPARTITION(10) */ *
FROM employees;

-- Repartition by column
SELECT /*+ REPARTITION(department) */ *
FROM employees;

-- Repartition to 8 partitions by department
SELECT /*+ REPARTITION(8, department) */ *
FROM employees;

-- Repartition by multiple columns
SELECT /*+ REPARTITION(8, department, location) */ *
FROM employees;

RÉPARTITION PAR PLAGE

Repartitionne les données sur le nombre de partitions spécifié en utilisant le partitionnement par
plage sur les colonnes spécifiées.

Paramètres :

• Valeur numérique (facultatif) - nombre de partitions ; doit être un entier positif compris entre 1 et
2147483647

• Identifiants de colonne (facultatif) - colonnes à partitionner ; ces colonnes doivent exister dans le
schéma d'entrée.

• Si les deux sont spécifiés, la valeur numérique doit apparaître en premier

Exemples :

Indicateurs 66

AWS Clean Rooms Référence SQL

SELECT /*+ REPARTITION_BY_RANGE(10) */ *
FROM employees;

-- Repartition by range on age column
SELECT /*+ REPARTITION_BY_RANGE(age) */ *
FROM employees;

-- Repartition to 5 partitions by range on age
SELECT /*+ REPARTITION_BY_RANGE(5, age) */ *
FROM employees;

-- Repartition by range on multiple columns
SELECT /*+ REPARTITION_BY_RANGE(5, age, salary) */ *
FROM employees;

RÉÉQUILIBRER

Rééquilibre les partitions de sortie des résultats de la requête afin que chaque partition soit d'une
taille raisonnable (ni trop petite ni trop grande). Il s'agit d'une opération très simple : s'il y a des biais,
les partitions asymétriques AWS Clean Rooms seront divisées pour qu'elles ne soient pas trop
grandes. Cette astuce est utile lorsque vous devez écrire le résultat d'une requête dans une table afin
d'éviter des fichiers trop petits ou trop volumineux.

Paramètres :

• Valeur numérique (facultatif) - nombre de partitions ; doit être un entier positif compris entre 1 et
2147483647

• Identifiants de colonne (facultatif) : les colonnes doivent apparaître dans la liste de sortie SELECT

• Si les deux sont spécifiés, la valeur numérique doit apparaître en premier

Exemples :

-- Rebalance to 10 partitions
SELECT /*+ REBALANCE(10) */ employee_id, name
FROM employees;

-- Rebalance by specific columns in output
SELECT /*+ REBALANCE(employee_id, name) */ employee_id, name
FROM employees;

Indicateurs 67

AWS Clean Rooms Référence SQL

-- Rebalance to 8 partitions by specific columns
SELECT /*+ REBALANCE(8, employee_id, name) */ employee_id, name, department
FROM employees;

Combiner plusieurs astuces

Vous pouvez spécifier plusieurs indices dans une seule requête en les séparant par des virgules :

-- Combine join and partitioning hints
SELECT /*+ BROADCAST(d), REPARTITION(8) */ e.name, d.dept_name
FROM employees e JOIN departments d ON e.dept_id = d.id;

-- Multiple join hints
SELECT /*+ BROADCAST(s), MERGE(d) */ *
FROM employees e
JOIN students s ON e.id = s.id
JOIN departments d ON e.dept_id = d.id;

-- Hints within separate hint blocks within the same query
SELECT /*+ REPARTITION(100) */ /*+ COALESCE(500) */ /*+ REPARTITION_BY_RANGE(3, c) */ *
 FROM t;

Considérations et restrictions

• Les indices sont des suggestions d'optimisation et non des commandes. L'optimiseur de
requêtes peut ignorer les indications basées sur des contraintes de ressources ou des conditions
d'exécution.

• Les conseils sont intégrés directement dans les chaînes de requête SQL pour les deux
CreateAnalysisTemplate et StartProtectedQuery APIs.

• Les indices doivent être placés directement après le mot clé SELECT.

• Les paramètres nommés ne sont pas pris en charge par des indices et déclencheront une
exception.

• Les noms de colonnes dans les indications REPARTITION et REPARTITION_BY_RANGE doivent
figurer dans le schéma d'entrée.

• Les noms des colonnes figurant dans les indices REBALANCE doivent apparaître dans la liste de
sortie SELECT.

• Les paramètres numériques doivent être des entiers positifs compris entre 1 et 2147483647. Les
notations scientifiques telles que 1e1 ne sont pas prises en charge

Indicateurs 68

AWS Clean Rooms Référence SQL

• Les indices ne sont pas pris en charge dans les requêtes SQL Differential Privacy.

• Les astuces pour les requêtes SQL ne sont pas prises en charge dans les PySpark jobs. Pour
fournir des directives pour les plans d'exécution d'une PySpark tâche, utilisez l'API de trame de
données. Consultez la documentation de DataFrame l'API Apache Spark pour plus d'informations.

SELECT

La commande SELECT renvoie des lignes provenant de tables et de fonctions définies par
l'utilisateur.

Les commandes, clauses et opérateurs d'ensemble SELECT SQL suivants sont pris en charge dans
AWS Clean Rooms Spark SQL :

Rubriques

• SELECT list

• Clause WITH

• Clause FROM

• Clause JOIN

• Clause WHERE

• Clause VALUES

• Clause GROUP BY

• Clause HAVING

• Définir les opérateurs

• Clause ORDER BY

• Exemples de sous-requête

• Sous-requêtes corrélées

La syntaxe, les arguments et quelques exemples proviennent de la référence SQL d'Apache Spark.

SELECT list

Les SELECT list noms des colonnes, des fonctions et des expressions que vous souhaitez renvoyer
par la requête. La liste représente le résultat de la requête.

SELECT 69

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.hint.html
https://spark.apache.org/docs/latest/api/sql/

AWS Clean Rooms Référence SQL

Syntaxe

SELECT
[DISTINCT] | expression [AS column_alias] [, ...]

Parameters

DISTINCT

Option qui élimine les lignes en double du jeu de résultats, en fonction de la correspondance des
valeurs dans une ou plusieurs colonnes.

expression

Expression formée d’une ou de plusieurs colonnes qui existent dans les tables référencées par la
requête. Une expression peut contenir des fonctions SQL. Par exemple :

coalesce(dimension, 'stringifnull') AS column_alias

AS column_alias

Nom temporaire de la colonne utilisé dans le jeu de résultats final. Le AS mot clé est facultatif. Par
exemple :

coalesce(dimension, 'stringifnull') AS dimensioncomplete

Si vous ne spécifiez pas un alias pour une expression qui n’est pas un nom de colonne simple, le jeu
de résultats applique un nom par défaut à cette colonne.

Note

L’alias est reconnu juste après sa définition dans la liste cible. Vous ne pouvez pas utiliser
d'alias dans d'autres expressions définies après lui dans la même liste de cibles.

Clause WITH

Une clause WITH est une clause facultative qui précède la liste SELECT d’une requête. La clause
WITH définit une ou plusieurs expressions common_table_expressions. Chaque expression de

SELECT 70

AWS Clean Rooms Référence SQL

table commune (CTE) définit une table temporaire, qui est similaire à la définition d’une vue. Vous
pouvez référencer ces tables temporaires dans la clause FROM. Elles ne sont utilisées que pendant
l’exécution de la requête à laquelle elles appartiennent. Chaque CTE de la clause WITH spécifie un
nom de table, une liste facultative de noms de colonne et une expression de requête correspondant à
une table (instruction SELECT).

Les sous-requêtes de clause WITH sont un moyen efficace de définir les tables qui peuvent être
utilisées tout au long de l’exécution d’une même requête. Dans tous les cas, les mêmes résultats
peuvent être obtenus à l’aide de sous-requêtes dans le corps principal de l’instruction SELECT,
mais les sous-requêtes de clause WITH peuvent être plus simples à lire et à écrire. Chaque fois que
possible, les sous-requêtes de clause WITH qui sont référencées plusieurs fois sont optimisées en
tant que sous-expressions courantes ; autrement dit, il peut être possible d’évaluer une sous-requête
WITH une fois et de réutiliser ses résultats. (Notez que les sous-expressions courantes ne sont pas
limitées à celles définies dans la clause WITH).

Syntaxe

[WITH common_table_expression [, common_table_expression , ...]]

où common_table_expression peut être non récursive. Voici la forme non-récursive :

CTE_table_name AS (query)

Parameters

common_table_expression

Définit une table temporaire que vous pouvez référencer dans Clause FROM et qui n’est utilisée
que pendant l’exécution de la requête à laquelle elle appartient.

CTE_table_name

Nom unique d’une table temporaire qui définit les résultats d’une sous-requête de clause WITH.
Vous ne pouvez pas utiliser de noms en double au sein d’une clause WITH. Chaque sous-requête
doit avoir un nom de table qui peut être référencé dans la Clause FROM.

query

Toute requête SELECT qui AWS Clean Rooms prend en charge. Consultez SELECT.

SELECT 71

AWS Clean Rooms Référence SQL

Notes d’utilisation

Vous pouvez utiliser une clause WITH dans l'instruction SQL suivante :

• SÉLECTIONNER, AVEC, UNIR, UNIR TOUT, INTERSECTER, INTERSECTER TOUT, SAUF OU
EXCEPTER TOUT

Si la clause FROM d’une requête qui contient une clause WITH ne fait pas référence à l’une des
tables définies par la clause WITH, la clause WITH est ignorée et la requête s’exécute normalement.

Une table définie par une sous-requête de clause WITH peut être référencée uniquement dans
la portée de la requête SELECT que commence la clause WITH. Par exemple, vous pouvez faire
référence à une telle table dans la clause FROM d’une sous-requête de la liste SELECT, la clause
WHERE ou la clause HAVING. Vous ne pouvez pas utiliser une clause WITH dans une sous-
requête et faire référence à sa table dans la clause FROM de la requête principale ou d’une autre
sous-requête. Ce modèle de requête entraîne un message d’erreur sous la forme relation
table_name doesn't exist pour la table de la clause WITH.

Vous ne pouvez pas spécifier une autre clause WITH à l’intérieur d’une sous-requête de clause
WITH.

Vous ne pouvez pas effectuer de références futures aux tables définies par des sous-requêtes de
clause WITH. Par exemple, la requête suivante renvoie une erreur en raison de la référence future à
la table W2 dans la définition de table W1 :

with w1 as (select * from w2), w2 as (select * from w1)
select * from sales;
ERROR: relation "w2" does not exist

Exemples

L’exemple suivant illustre le cas le plus simple possible d’une requête contenant une clause WITH. La
requête WITH nommée VENUECOPY sélectionne toutes les lignes de la table VENUE. La requête
principale, à son tour, sélectionne toutes les lignes de VENUECOPY. La table VENUECOPY existe
uniquement pendant la durée de cette requête.

with venuecopy as (select * from venue)
select * from venuecopy order by 1 limit 10;

SELECT 72

AWS Clean Rooms Référence SQL

 venueid | venuename | venuecity | venuestate | venueseats
---------+----------------------------+-----------------+------------+------------
1 | Toyota Park | Bridgeview | IL | 0
2 | Columbus Crew Stadium | Columbus | OH | 0
3 | RFK Stadium | Washington | DC | 0
4 | CommunityAmerica Ballpark | Kansas City | KS | 0
5 | Gillette Stadium | Foxborough | MA | 68756
6 | New York Giants Stadium | East Rutherford | NJ | 80242
7 | BMO Field | Toronto | ON | 0
8 | The Home Depot Center | Carson | CA | 0
9 | Dick's Sporting Goods Park | Commerce City | CO | 0
v 10 | Pizza Hut Park | Frisco | TX | 0
(10 rows)

L’exemple suivant montre une clause WITH qui produit deux tables, nommées VENUE_SALES et
TOP_VENUES. La deuxième table de requête WITH effectue la sélection à partir de la première. A
son tour, la clause WHERE du bloc de requête principal contient une sous-requête qui restreint la
table TOP_VENUES.

with venue_sales as
(select venuename, venuecity, sum(pricepaid) as venuename_sales
from sales, venue, event
where venue.venueid=event.venueid and event.eventid=sales.eventid
group by venuename, venuecity),

top_venues as
(select venuename
from venue_sales
where venuename_sales > 800000)

select venuename, venuecity, venuestate,
sum(qtysold) as venue_qty,
sum(pricepaid) as venue_sales
from sales, venue, event
where venue.venueid=event.venueid and event.eventid=sales.eventid
and venuename in(select venuename from top_venues)
group by venuename, venuecity, venuestate
order by venuename;

 venuename | venuecity | venuestate | venue_qty | venue_sales
------------------------+---------------+------------+-----------+-------------
August Wilson Theatre | New York City | NY | 3187 | 1032156.00

SELECT 73

AWS Clean Rooms Référence SQL

Biltmore Theatre | New York City | NY | 2629 | 828981.00
Charles Playhouse | Boston | MA | 2502 | 857031.00
Ethel Barrymore Theatre | New York City | NY | 2828 | 891172.00
Eugene O'Neill Theatre | New York City | NY | 2488 | 828950.00
Greek Theatre | Los Angeles | CA | 2445 | 838918.00
Helen Hayes Theatre | New York City | NY | 2948 | 978765.00
Hilton Theatre | New York City | NY | 2999 | 885686.00
Imperial Theatre | New York City | NY | 2702 | 877993.00
Lunt-Fontanne Theatre | New York City | NY | 3326 | 1115182.00
Majestic Theatre | New York City | NY | 2549 | 894275.00
Nederlander Theatre | New York City | NY | 2934 | 936312.00
Pasadena Playhouse | Pasadena | CA | 2739 | 820435.00
Winter Garden Theatre | New York City | NY | 2838 | 939257.00
(14 rows)

Les deux exemples suivants illustrent les règles sur la portée des références de table dans les sous-
requêtes de clause WITH. La première requête s’exécute, mais la deuxième échoue avec une erreur
prévue. La première requête a une sous-requête de clause WITH à l’intérieur de la liste SELECT de
la requête principale. La table définie par la clause WITH (HOLIDAYS) est référencée dans la clause
FROM de la sous-requête de la liste SELECT :

select caldate, sum(pricepaid) as daysales,
(with holidays as (select * from date where holiday ='t')
select sum(pricepaid)
from sales join holidays on sales.dateid=holidays.dateid
where caldate='2008-12-25') as dec25sales
from sales join date on sales.dateid=date.dateid
where caldate in('2008-12-25','2008-12-31')
group by caldate
order by caldate;

caldate | daysales | dec25sales
-----------+----------+------------
2008-12-25 | 70402.00 | 70402.00
2008-12-31 | 12678.00 | 70402.00
(2 rows)

La deuxième requête échoue, car elle tente de faire référence à la table HOLIDAYS de la requête
principale, ainsi que dans la sous-requête de liste SELECT. Les références de requête principale sont
hors de portée.

select caldate, sum(pricepaid) as daysales,

SELECT 74

AWS Clean Rooms Référence SQL

(with holidays as (select * from date where holiday ='t')
select sum(pricepaid)
from sales join holidays on sales.dateid=holidays.dateid
where caldate='2008-12-25') as dec25sales
from sales join holidays on sales.dateid=holidays.dateid
where caldate in('2008-12-25','2008-12-31')
group by caldate
order by caldate;

ERROR: relation "holidays" does not exist

Clause FROM

La clause FROM d’une requête répertorie les références de table (tables, vues et sous-requêtes) à
partir desquelles les données sont sélectionnées. Si plusieurs références de table sont répertoriées,
les tables doivent être jointes, à l’aide de la syntaxe appropriée de la clause FROM ou de la clause
WHERE. Si aucun critère de jointure n’est spécifié, le système traite la requête comme jointure
croisée (produit cartésien).

Rubriques

• Syntaxe

• Parameters

• Notes d’utilisation

Syntaxe

FROM table_reference [, ...]

où table_reference est l’une des références suivantes :

with_subquery_table_name | table_name | (subquery) [[AS] alias]
table_reference [NATURAL] join_type table_reference [USING (join_column [, ...])]
table_reference [INNER] join_type table_reference ON expr

Parameters

with_subquery_table_name

Table définie par une sous-requête dans la Clause WITH.

SELECT 75

AWS Clean Rooms Référence SQL

table_name

Nom d’une table ou d’une vue.

alias

Nom alternatif temporaire d’une table ou d’une vue. Un alias doit être fourni pour une table dérivée
d’une sous-requête. Dans les autres références de table, les alias sont facultatifs. Le AS mot clé
est toujours facultatif. Les alias de table offrent un raccourci pratique pour identifier les tables dans
d’autres parties d’une requête, telles que la clause WHERE.

Par exemple :

select * from sales s, listing l
where s.listid=l.listid

Si vous définissez un alias de table défini, l'alias doit être utilisé pour référencer cette table dans la
requête.

Par exemple, si la requête l'estSELECT "tbl"."col" FROM "tbl" AS "t", elle échouera
car le nom de la table est désormais essentiellement remplacé. Dans ce cas, une requête valide
seraitSELECT "t"."col" FROM "tbl" AS "t".

alias_colonne

Nom alternatif temporaire pour une colonne dans une table ou une vue.

sous-requête

Une expression de requête qui correspond à une table. La table existe uniquement pendant
la durée de la requête et reçoit généralement un nom ou un alias. Toutefois, l’alias n’est pas
obligatoire. Vous pouvez aussi définir des noms de colonnes pour les tables qui proviennent de
sous-requêtes. Il est important de nommer les alias de colonne lorsque vous souhaitez joindre les
résultats des sous-requêtes à d’autres tables et lorsque vous voulez sélectionner ou limiter les
colonnes ailleurs dans la requête.

Une sous-requête peut contenir une clause ORDER BY, mais cette clause peut n’avoir aucun
effet si une clause LIMIT ou OFFSET n’est pas également spécifiée.

NATURAL

Définit une jointure qui utilise automatiquement toutes les paires de colonnes portant le même
nom dans les deux tables comme colonnes de jointure. Aucune condition de jointure explicite

SELECT 76

AWS Clean Rooms Référence SQL

n’est nécessaire. Par exemple, si les tables CATEGORY et EVENT ont toutes deux des colonnes
nommées CATID, une jointure naturelle des tables est une jointure sur leurs colonnes CATID.

Note

Si une jointure NATURAL est spécifiée, mais qu’il n’y a aucune paire de colonnes portant
le même nom dans les tables à joindre, la requête se résout par défaut en une jointure
croisée.

join_type

Spécifiez l’un des types de jointure suivants :

• [INNER] JOIN

• LEFT [OUTER] JOIN

• RIGHT [OUTER] JOIN

• FULL [OUTER] JOIN

• CROSS JOIN

Les jointures croisées sont des jointures non qualifiées ; elles renvoient le produit cartésien des
deux tables.

Les jointures internes et externes sont des jointures qualifiées. Elles sont qualifiés implicitement
(en jointures naturelles), avec la syntaxe ON ou USING de la clause FROM, ou avec une
condition de clause WHERE.

Une jointure interne renvoie les lignes correspondantes uniquement, en fonction de la condition
de jointure ou d’une liste de colonnes de jointure. Une jointure externe renvoie toutes les lignes
que la jointure interne équivalente renvoyerait, plus les lignes non correspondantes de la table de
« gauche », de la table de « droite » ou des deux tables. La table de gauche est la première table
de la liste et la table de droite la deuxième table. Les lignes non correspondantes contiennent des
valeurs NULL pour combler les écarts dans les colonnes de sortie.

ON condition_jointure

Type de spécification de jointure où les colonnes de jointure sont définies comme condition qui
suit le mot-clé ON. Par exemple :

sales join listing

SELECT 77

AWS Clean Rooms Référence SQL

on sales.listid=listing.listid and sales.eventid=listing.eventid

USING (colonne_jointure [, ...])

Type de spécification de jointure où les colonnes de jointure sont affichées entre parenthèses. Si
plusieurs colonnes de jointure sont spécifiées, elles sont séparées par des virgules. Le mot-clé
USING doit précéder la liste. Par exemple :

sales join listing
using (listid,eventid)

Notes d’utilisation

Les colonnes de jointure doivent avoir des types de données comparables.

Une jointure NATURAL ou USING conserve seulement l’une de chaque paire de colonnes de jointure
dans le jeu de résultats intermédiaire.

Une jointure avec la syntaxe ON conserve les deux colonnes de jointure dans son jeu de résultats
intermédiaire.

Consultez également Clause WITH.

Clause JOIN

Une clause SQL JOIN permet de combiner les données de deux ou plusieurs tables sur la base
de champs communs. Les résultats peuvent ou non changer en fonction de la méthode de jointure
spécifiée. Les jointures externes gauche et droite conservent les valeurs de l’une des tables jointes
quand aucune correspondance n’est trouvée dans l’autre table.

La combinaison du type JOIN et de la condition de jointure détermine les lignes incluses dans le jeu
de résultats final. Les clauses SELECT et WHERE contrôlent ensuite les colonnes renvoyées et la
manière dont les lignes sont filtrées. Comprendre les différents types de JOIN et savoir comment
les utiliser efficacement est une compétence cruciale en SQL, car cela vous permet de combiner les
données de plusieurs tables de manière flexible et puissante.

Syntaxe

SELECT column1, column2, ..., columnn
FROM table1
join_type table2

SELECT 78

AWS Clean Rooms Référence SQL

ON table1.column = table2.column;

Parameters

SÉLECTIONNEZ la colonne 1, la colonne 2,..., la colonne N

Les colonnes que vous souhaitez inclure dans le jeu de résultats. Vous pouvez sélectionner des
colonnes dans l'une ou l'autre des tables impliquées dans le JOIN ou dans les deux.

À PARTIR DU TABLEAU 1

La première table (à gauche) de l'opération JOIN.

[JOINTURE | JOINTURE INTÉRIEURE | JOINTURE GAUCHE [EXTÉRIEURE] | JOINTURE DROITE
[EXTÉRIEURE] | JOINTURE [EXTÉRIEURE] COMPLÈTE] table2 :

Type de JOIN à exécuter. JOIN ou INNER JOIN renvoie uniquement les lignes dont les valeurs
correspondent dans les deux tables.

LEFT [OUTER] JOIN renvoie toutes les lignes du tableau de gauche, avec les lignes
correspondantes du tableau de droite.

RIGHT [OUTER] JOIN renvoie toutes les lignes du tableau de droite, avec les lignes
correspondantes du tableau de gauche.

FULL [OUTER] JOIN renvoie toutes les lignes des deux tables, qu'il y ait une correspondance ou
non.

CROSS JOIN crée un produit cartésien des lignes des deux tables.

SUR table1.column = table2.column

La condition de jointure, qui indique comment les lignes des deux tables sont mises en
correspondance. La condition de jointure peut être basée sur une ou plusieurs colonnes.

État où :

Clause facultative qui peut être utilisée pour filtrer davantage le jeu de résultats, en fonction d'une
condition spécifiée.

Exemple

L’exemple suivant est une jointure entre deux tables avec la clause USING. Dans ce cas, les
colonnes listid et eventid sont utilisées comme colonnes de jointure. Les résultats sont limités à
seulement cinq lignes.

SELECT 79

AWS Clean Rooms Référence SQL

select listid, listing.sellerid, eventid, listing.dateid, numtickets
from listing join sales
using (listid, eventid)
order by 1
limit 5;

listid | sellerid | eventid | dateid | numtickets
-------+----------+---------+--------+-----------
1 | 36861 | 7872 | 1850 | 10
4 | 8117 | 4337 | 1970 | 8
5 | 1616 | 8647 | 1963 | 4
5 | 1616 | 8647 | 1963 | 4
6 | 47402 | 8240 | 2053 | 18

Types de jointures

INNER

Il s'agit du type de jointure par défaut. Renvoie les lignes dont les valeurs correspondent dans les
deux références de table.

L'INNER JOIN est le type de jointure le plus couramment utilisé en SQL. Il s'agit d'un moyen puissant
de combiner les données de plusieurs tables sur la base d'une colonne ou d'un ensemble de
colonnes communs.

Syntaxe :

SELECT column1, column2, ..., columnn
FROM table1
INNER JOIN table2
ON table1.column = table2.column;

La requête suivante renverra toutes les lignes où une valeur customer_id correspond entre les tables
clients et commandes. Le jeu de résultats contiendra les colonnes customer_id, name, order_id et
order_date.

SELECT customers.customer_id, customers.name, orders.order_id, orders.order_date
FROM customers
INNER JOIN orders
ON customers.customer_id = orders.customer_id;

SELECT 80

AWS Clean Rooms Référence SQL

La requête suivante est une jointure interne (sans le mot-clé JOIN) entre la table LISTING et la table
SALES, où la valeur LISTID de la table LISTING est comprise entre 1 et 5. Cette requête met en
correspondance les valeurs de la colonne LISTID dans les tables LISTING (table de gauche) et
SALES (table de droite). Les résultats montrent que les valeurs LISTID 1, 4 et 5 correspondent aux
critères.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing, sales
where listing.listid = sales.listid
and listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

L’exemple suivant est une jointure interne avec la clause ON. Dans ce cas, les lignes NULL ne sont
pas renvoyées.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from sales join listing
on sales.listid=listing.listid and sales.eventid=listing.eventid
where listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

La requête suivante est une jointure interne de deux sous-requêtes de la clause FROM. La requête
recherche le nombre de billets vendus et invendus pour les différentes catégories d’événements
(concerts et spectacles). Les sous-requêtes de la clause FROM sont des sous-requêtes de table ;
elles peuvent renvoyer plusieurs lignes et colonnes.

select catgroup1, sold, unsold

SELECT 81

AWS Clean Rooms Référence SQL

from
(select catgroup, sum(qtysold) as sold
from category c, event e, sales s
where c.catid = e.catid and e.eventid = s.eventid
group by catgroup) as a(catgroup1, sold)
join
(select catgroup, sum(numtickets)-sum(qtysold) as unsold
from category c, event e, sales s, listing l
where c.catid = e.catid and e.eventid = s.eventid
and s.listid = l.listid
group by catgroup) as b(catgroup2, unsold)

on a.catgroup1 = b.catgroup2
order by 1;

catgroup1 | sold | unsold
----------+--------+--------
Concerts | 195444 |1067199
Shows | 149905 | 817736

GAUCHE [EXTÉRIEUR]

Renvoie toutes les valeurs de la référence de table de gauche et les valeurs correspondantes de
la référence de table de droite, ou ajoute NULL en cas d'absence de correspondance. Elle est
également appelée jointure extérieure gauche.

Il renvoie toutes les lignes de la table de gauche (première) et les lignes correspondantes de la
table de droite (deuxième). S'il n'y a aucune correspondance dans la bonne table, le jeu de résultats
contiendra des valeurs NULL pour les colonnes de la bonne table. Le mot clé OUTER peut être
omis, et la jointure peut être écrite simplement sous la forme LEFT JOIN. Le contraire d'une jointure
externe gauche est une jointure externe droite, qui renvoie toutes les lignes de la table de droite et les
lignes correspondantes de la table de gauche.

Syntaxe :

SELECT column1, column2, ..., columnn
FROM table1
LEFT [OUTER] JOIN table2
ON table1.column = table2.column;

La requête suivante renverra toutes les lignes de la table des clients, ainsi que les lignes
correspondantes de la table des commandes. Si un client n'a aucune commande, le jeu de résultats

SELECT 82

AWS Clean Rooms Référence SQL

inclura toujours les informations de ce client, avec des valeurs NULL pour les colonnes order_id et
order_date.

SELECT customers.customer_id, customers.name, orders.order_id, orders.order_date
FROM customers
LEFT OUTER JOIN orders
ON customers.customer_id = orders.customer_id;

La requête suivante est une jointure externe gauche. Les jointures externes gauche et droite
conservent les valeurs de l’une des tables jointes quand aucune correspondance n’est trouvée
dans l’autre table. Les tables gauche et droite sont la première et la deuxième répertoriées dans
la syntaxe. Les valeurs NULL sont utilisées pour combler les « écarts » du jeu de résultats. Cette
requête fait correspondre les valeurs de la colonne LISTID dans la table LISTING (la table de
gauche) et la table SALES (la table de droite). Les résultats montrent que LISTIDs 2 et 3 n'ont donné
lieu à aucune vente.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing left outer join sales on sales.listid = listing.listid
where listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 2 | NULL | NULL
 3 | NULL | NULL
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

DROIT [EXTÉRIEUR]

Renvoie toutes les valeurs de la référence de table de droite et les valeurs correspondantes de
la référence de table de gauche, ou ajoute NULL en cas d'absence de correspondance. Elle est
également appelée jointure extérieure droite.

Elle renvoie toutes les lignes de la table de droite (deuxième) et les lignes correspondantes de la
table de gauche (première). S'il n'y a aucune correspondance dans le tableau de gauche, le jeu de
résultats contiendra des valeurs NULL pour les colonnes du tableau de gauche. Le mot clé OUTER
peut être omis, et la jointure peut être écrite simplement sous la forme RIGHT JOIN. L'opposé d'une

SELECT 83

AWS Clean Rooms Référence SQL

jointure externe droite est une jointure externe gauche, qui renvoie toutes les lignes de la table de
gauche et les lignes correspondantes de la table de droite.

Syntaxe :

SELECT column1, column2, ..., columnn
FROM table1
RIGHT [OUTER] JOIN table2
ON table1.column = table2.column;

La requête suivante renverra toutes les lignes de la table des clients, ainsi que les lignes
correspondantes de la table des commandes. Si un client n'a aucune commande, le jeu de résultats
inclura toujours les informations de ce client, avec des valeurs NULL pour les colonnes order_id et
order_date.

SELECT orders.order_id, orders.order_date, customers.customer_id, customers.name
FROM orders
RIGHT OUTER JOIN customers
ON orders.customer_id = customers.customer_id;

La requête suivante est une jointure externe droite. Cette requête fait correspondre les valeurs de la
colonne LISTID dans la table LISTING (la table de gauche) et la table SALES (la table de droite). Les
résultats montrent que LISTIDs 1, 4 et 5 correspondent aux critères.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing right outer join sales on sales.listid = listing.listid
where listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

COMPLET [EXTÉRIEUR]

Renvoie toutes les valeurs des deux relations, en ajoutant les valeurs NULL du côté qui ne
correspond pas. Elle est également appelée jointure externe complète.

SELECT 84

AWS Clean Rooms Référence SQL

Il renvoie toutes les lignes des tables de gauche et de droite, qu'il y ait une correspondance ou
non. S'il n'y a pas de correspondance, le jeu de résultats contiendra des valeurs NULL pour les
colonnes de la table qui n'ont pas de ligne correspondante. Le mot clé OUTER peut être omis, et la
jointure peut être écrite simplement sous la forme FULL JOIN. La jointure externe complète est moins
couramment utilisée que la jointure externe gauche ou la jointure externe droite, mais elle peut être
utile dans certains scénarios où vous devez voir toutes les données des deux tables, même s'il n'y a
aucune correspondance.

Syntaxe :

SELECT column1, column2, ..., columnn
FROM table1
FULL [OUTER] JOIN table2
ON table1.column = table2.column;

La requête suivante renverra toutes les lignes des tables des clients et des commandes. Si un
client n'a aucune commande, le jeu de résultats inclura toujours les informations de ce client, avec
des valeurs NULL pour les colonnes order_id et order_date. Si aucun client n'est associé à une
commande, le jeu de résultats inclura cette commande, avec des valeurs NULL pour les colonnes
customer_id et name.

SELECT customers.customer_id, customers.name, orders.order_id, orders.order_date
FROM customers
FULL OUTER JOIN orders
ON customers.customer_id = orders.customer_id;

La requête suivante est une jointure complète. Les jointures complètes conservent les valeurs des
tables jointes lorsqu’aucune correspondance n’est trouvée dans l’autre table. Les tables gauche et
droite sont la première et la deuxième répertoriées dans la syntaxe. Les valeurs NULL sont utilisées
pour combler les « écarts » du jeu de résultats. Cette requête fait correspondre les valeurs de la
colonne LISTID dans la table LISTING (la table de gauche) et la table SALES (la table de droite). Les
résultats montrent que LISTIDs 2 et 3 n'ont donné lieu à aucune vente.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing full join sales on sales.listid = listing.listid
where listing.listid between 1 and 5
group by 1
order by 1;

SELECT 85

AWS Clean Rooms Référence SQL

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 2 | NULL | NULL
 3 | NULL | NULL
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

La requête suivante est une jointure complète. Cette requête fait correspondre les valeurs de la
colonne LISTID dans la table LISTING (la table de gauche) et la table SALES (la table de droite).
Seules les lignes qui ne génèrent aucune vente (LISTIDs 2 et 3) apparaissent dans les résultats.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing full join sales on sales.listid = listing.listid
where listing.listid between 1 and 5
and (listing.listid IS NULL or sales.listid IS NULL)
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 2 | NULL | NULL
 3 | NULL | NULL

[GAUCHE] SEMI

Renvoie les valeurs du côté gauche de la référence de table qui correspondent au côté droit. Elle est
également appelée demi-jointure gauche.

Elle renvoie uniquement les lignes de la table de gauche (première) qui ont une ligne correspondante
dans la table de droite (deuxième). Il ne renvoie aucune colonne du tableau de droite, uniquement les
colonnes du tableau de gauche. Le LEFT SEMI JOIN est utile lorsque vous souhaitez rechercher les
lignes d'une table qui correspondent dans une autre table, sans avoir à renvoyer les données de la
seconde table. Le LEFT SEMI JOIN est une alternative plus efficace à l'utilisation d'une sous-requête
avec une clause IN ou EXISTS.

Syntaxe :

SELECT column1, column2, ..., columnn
FROM table1
LEFT SEMI JOIN table2

SELECT 86

AWS Clean Rooms Référence SQL

ON table1.column = table2.column;

La requête suivante renverra uniquement les colonnes customer_id et name de la table des clients,
pour les clients qui ont au moins une commande dans la table des commandes. Le jeu de résultats
n'inclura aucune colonne du tableau des commandes.

SELECT customers.customer_id, customers.name
FROM customers
LEFT SEMI JOIN orders
ON customers.customer_id = orders.customer_id;

CROSS JOIN

Renvoie le produit cartésien de deux relations. Cela signifie que le jeu de résultats contiendra toutes
les combinaisons possibles de lignes des deux tableaux, sans qu'aucune condition ni aucun filtre ne
soient appliqués.

Le CROSS JOIN est utile lorsque vous devez générer toutes les combinaisons possibles de données
à partir de deux tables, par exemple dans le cas de la création d'un rapport qui affiche toutes les
combinaisons possibles d'informations sur les clients et les produits. Le CROSS JOIN est différent
des autres types de jointure (INNER JOIN, LEFT JOIN, etc.) car il ne comporte aucune condition de
jointure dans la clause ON. La condition de jointure n'est pas obligatoire pour une jointure croisée.

Syntaxe :

SELECT column1, column2, ..., columnn
FROM table1
CROSS JOIN table2;

La requête suivante renverra un jeu de résultats contenant toutes les combinaisons possibles de
customer_id, customer_name, product_id et product_name à partir des tables clients et produits. Si
le tableau des clients comporte 10 lignes et le tableau des produits 20 lignes, le jeu de résultats du
CROSS JOIN contiendra 10 x 20 = 200 lignes.

SELECT customers.customer_id, customers.name, products.product_id,
 products.product_name
FROM customers
CROSS JOIN products;

SELECT 87

AWS Clean Rooms Référence SQL

La requête suivante est une jointure croisée ou cartésienne de la table LISTING et de la table SALES
avec un prédicat pour limiter les résultats. Cette requête correspond aux valeurs des colonnes LISTID
de la table SALES et de la table LISTING pour LISTIDs 1, 2, 3, 4 et 5 dans les deux tables. Les
résultats montrent que 20 lignes correspondent aux critères.

select sales.listid as sales_listid, listing.listid as listing_listid
from sales cross join listing
where sales.listid between 1 and 5
and listing.listid between 1 and 5
order by 1,2;

sales_listid | listing_listid
-------------+---------------
1 | 1
1 | 2
1 | 3
1 | 4
1 | 5
4 | 1
4 | 2
4 | 3
4 | 4
4 | 5
5 | 1
5 | 1
5 | 2
5 | 2
5 | 3
5 | 3
5 | 4
5 | 4
5 | 5
5 | 5

ANTI-JOINTURE

Renvoie les valeurs de la référence de table de gauche qui ne correspondent pas à la référence de
table de droite. On l'appelle aussi « anti-jointure gauche ».

L'opération ANTI JOIN est une opération utile lorsque vous souhaitez rechercher les lignes d'une
table qui ne correspondent pas dans une autre table.

Syntaxe :

SELECT 88

AWS Clean Rooms Référence SQL

SELECT column1, column2, ..., columnn
FROM table1
LEFT ANTI JOIN table2
ON table1.column = table2.column;

La requête suivante renverra tous les clients qui n'ont pas passé de commande.

SELECT customers.customer_id, customers.name
FROM customers
LEFT ANTI JOIN orders
ON customers.customer_id = orders.customer_id
WHERE orders.order_id IS NULL;

NATURAL

Spécifie que les lignes issues des deux relations seront implicitement mises en correspondance sur
un pied d'égalité pour toutes les colonnes dont les noms sont identiques.

Il fait automatiquement correspondre les colonnes portant le même nom et le même type de données
entre les deux tables. Il n'est pas nécessaire de spécifier explicitement la condition de jointure dans
la clause ON. Il combine toutes les colonnes correspondantes entre les deux tables dans le jeu de
résultats.

Le NATURAL JOIN est un raccourci pratique lorsque les tables que vous joignez comportent des
colonnes portant le même nom et le même type de données. Cependant, il est généralement
recommandé d'utiliser le plus explicite INNER JOIN... Syntaxe ON pour rendre les conditions de
jointure plus explicites et plus faciles à comprendre.

Syntaxe :

SELECT column1, column2, ..., columnn
FROM table1
NATURAL JOIN table2;

L'exemple suivant est une jointure naturelle entre deux tablesdepartments, employees avec les
colonnes suivantes :

• employeestableau : employee_idfirst_name,last_name, department_id

• departmentstableau :department_id, department_name

SELECT 89

AWS Clean Rooms Référence SQL

La requête suivante renverra un jeu de résultats qui inclut le prénom, le nom de famille et le nom
du département pour toutes les lignes correspondantes entre les deux tables, en fonction de la
department_id colonne.

SELECT e.first_name, e.last_name, d.department_name
FROM employees e
NATURAL JOIN departments d;

L’exemple suivant est une jointure naturelle entre deux tables. Dans ce cas, les colonnes listid,
sellerid, eventid et dateid présentent des noms et des types de données identiques dans les deux
tables et sont donc utilisées comme colonnes de jointure. Les résultats sont limités à seulement cinq
lignes.

select listid, sellerid, eventid, dateid, numtickets
from listing natural join sales
order by 1
limit 5;

listid | sellerid | eventid | dateid | numtickets
-------+-----------+---------+--------+-----------
113 | 29704 | 4699 | 2075 | 22
115 | 39115 | 3513 | 2062 | 14
116 | 43314 | 8675 | 1910 | 28
118 | 6079 | 1611 | 1862 | 9
163 | 24880 | 8253 | 1888 | 14

Clause WHERE

La clause WHERE contient les conditions qui joignent les tables ou appliquent les prédicats aux
colonnes des tables. Les tables peuvent être à jointure interne en utilisant la syntaxe appropriée dans
la clause WHERE ou FROM. Les critères de jointure externe doivent être spécifiés dans la clause
FROM.

Syntaxe

[WHERE condition]

condition

Toute condition avec un résultat Boolean, comme une condition de jointure ou un prédicat sur une
colonne de table. Les exemples suivants sont des conditions de jointure valides :

SELECT 90

AWS Clean Rooms Référence SQL

sales.listid=listing.listid
sales.listid<>listing.listid

Les exemples suivants sont des conditions valides sur les colonnes des tables :

catgroup like 'S%'
venueseats between 20000 and 50000
eventname in('Jersey Boys','Spamalot')
year=2008
length(catdesc)>25
date_part(month, caldate)=6

Les conditions peuvent être simples ou complexes ; pour les conditions complexes, vous pouvez
utiliser des parenthèses afin d’isoler des unités logiques. Dans l’exemple suivant, la condition de
jointure est placée entre parenthèses.

where (category.catid=event.catid) and category.catid in(6,7,8)

Notes d’utilisation

Vous pouvez utiliser des alias dans la clause WHERE pour référencer les expressions de liste de
sélection.

Vous ne pouvez pas limiter les résultats des fonctions d’agrégation dans la clause WHERE ; utilisez à
cette fin la clause HAVING.

Les colonnes qui sont limités dans la clause WHERE doivent provenir de références de table de la
clause FROM.

Exemple

La requête suivante utilise une combinaison de différentes restrictions de clause WHERE, y compris
une condition de jointure pour les tables SALES et EVENT, un prédicat sur la colonne EVENTNAME
et deux prédicats sur la colonne STARTTIME.

select eventname, starttime, pricepaid/qtysold as costperticket, qtysold
from sales, event
where sales.eventid = event.eventid
and eventname='Hannah Montana'
and date_part(quarter, starttime) in(1,2)

SELECT 91

AWS Clean Rooms Référence SQL

and date_part(year, starttime) = 2008
order by 3 desc, 4, 2, 1 limit 10;

eventname | starttime | costperticket | qtysold
----------------+---------------------+-------------------+---------
Hannah Montana | 2008-06-07 14:00:00 | 1706.00000000 | 2
Hannah Montana | 2008-05-01 19:00:00 | 1658.00000000 | 2
Hannah Montana | 2008-06-07 14:00:00 | 1479.00000000 | 1
Hannah Montana | 2008-06-07 14:00:00 | 1479.00000000 | 3
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 | 1
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 | 2
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 | 4
Hannah Montana | 2008-05-01 19:00:00 | 497.00000000 | 1
Hannah Montana | 2008-05-01 19:00:00 | 497.00000000 | 2
Hannah Montana | 2008-05-01 19:00:00 | 497.00000000 | 4
(10 rows)

Clause VALUES

La clause VALUES est utilisée pour fournir un ensemble de valeurs de ligne directement dans la
requête, sans qu'il soit nécessaire de référencer une table.

La clause VALUES peut être utilisée dans les scénarios suivants :

• Vous pouvez utiliser la clause VALUES dans une instruction INSERT INTO pour spécifier les
valeurs des nouvelles lignes insérées dans un tableau.

• Vous pouvez utiliser la clause VALUES seule pour créer un jeu de résultats temporaire, ou un
tableau en ligne, sans qu'il soit nécessaire de référencer un tableau.

• Vous pouvez combiner la clause VALUES avec d'autres clauses SQL, telles que WHERE, ORDER
BY ou LIMIT, pour filtrer, trier ou limiter les lignes du jeu de résultats.

Cette clause est particulièrement utile lorsque vous devez insérer, interroger ou manipuler un petit
ensemble de données directement dans votre instruction SQL, sans avoir besoin de créer ou de
référencer une table permanente. Il vous permet de définir les noms des colonnes et les valeurs
correspondantes pour chaque ligne, ce qui vous permet de créer des ensembles de résultats
temporaires ou d'insérer des données à la volée, sans avoir à gérer une table séparée.

Syntaxe

VALUES (expression [, ...]) [table_alias]

SELECT 92

AWS Clean Rooms Référence SQL

Parameters

expression

Expression qui spécifie une combinaison d'une ou de plusieurs valeurs, opérateurs et fonctions
SQL aboutissant à une valeur.

alias de table

Alias qui spécifie un nom temporaire avec une liste de noms de colonne facultative.

Exemple

L'exemple suivant crée un tableau en ligne, un jeu de résultats temporaire semblable à un tableau
avec deux colonnes, et. col1 col2 La seule ligne du jeu de résultats contient les valeurs "one"
et1, respectivement. La SELECT * FROM partie de la requête extrait simplement toutes les
colonnes et lignes de ce jeu de résultats temporaire. Les noms des colonnes (col1etcol2) sont
automatiquement générés par le système de base de données, car la clause VALUES ne spécifie
pas explicitement les noms des colonnes.

SELECT * FROM VALUES ("one", 1);
+----+----+
|col1|col2|
+----+----+
| one| 1|
+----+----+

Si vous souhaitez définir des noms de colonnes personnalisés, vous pouvez le faire en utilisant une
clause AS après la clause VALUES, comme ceci :

SELECT * FROM (VALUES ("one", 1)) AS my_table (name, id);
+------+----+
| name | id |
+------+----+
| one | 1 |
+------+----+

Cela créerait un jeu de résultats temporaire avec les noms des colonnes name etid, au lieu de la
valeur par défaut col1 etcol2.

SELECT 93

AWS Clean Rooms Référence SQL

Clause GROUP BY

La clause GROUP BY identifie les colonnes de regroupement de la requête. Les colonnes de
regroupement doivent être déclarées lorsque la requête calcule les regroupements avec des
fonctions standard telles que SUM, AVG et COUNT. Si une fonction d'agrégation est présente dans
l'expression SELECT, toute colonne de l'expression SELECT qui ne figure pas dans une fonction
d'agrégation doit figurer dans la clause GROUP BY.

Pour de plus amples informations, veuillez consulter AWS Clean Rooms Fonctions Spark SQL.

Syntaxe

GROUP BY group_by_clause [, ...]

group_by_clause := {
 expr |
 ROLLUP (expr [, ...]) |
 }

Paramètres

expr

La liste des colonnes ou des expressions doit correspondre à la liste des expressions non
agrégées de la liste de sélection de la requête. Par exemple, imaginons la requête simple
suivante.

select listid, eventid, sum(pricepaid) as revenue,
count(qtysold) as numtix
from sales
group by listid, eventid
order by 3, 4, 2, 1
limit 5;

listid | eventid | revenue | numtix
-------+---------+---------+--------
89397 | 47 | 20.00 | 1
106590 | 76 | 20.00 | 1
124683 | 393 | 20.00 | 1
103037 | 403 | 20.00 | 1
147685 | 429 | 20.00 | 1

SELECT 94

AWS Clean Rooms Référence SQL

(5 rows)

Dans cette requête, la liste de sélection se compose de deux expressions d’agrégation. La
première utilise la fonction SUM et la seconde la fonction COUNT. Les deux autres colonnes,
LISTID et EVENTID, doivent être déclarées en tant que colonnes de regroupement.

Les expressions de la clause GROUP BY peuvent également faire référence à la liste de sélection
en utilisant des nombres ordinaux. Par exemple, l’exemple précédent peut être abrégé comme
suit.

select listid, eventid, sum(pricepaid) as revenue,
count(qtysold) as numtix
from sales
group by 1,2
order by 3, 4, 2, 1
limit 5;

listid | eventid | revenue | numtix
-------+---------+---------+--------
89397 | 47 | 20.00 | 1
106590 | 76 | 20.00 | 1
124683 | 393 | 20.00 | 1
103037 | 403 | 20.00 | 1
147685 | 429 | 20.00 | 1
(5 rows)

ROLLUP

Vous pouvez utiliser l'extension d'agrégation ROLLUP pour effectuer plusieurs opérations
GROUP BY dans une seule instruction. Pour plus d’informations sur les extensions d’agrégation
et les fonctions associées, consultez Extensions de regroupement.

Extensions de regroupement

AWS Clean Roomsprend en charge les extensions d'agrégation pour effectuer plusieurs opérations
GROUP BY dans une seule instruction.

GROUPING SETS

Calcule un ou plusieurs jeux de regroupement dans une seule instruction. Un jeu de regroupement
est l’ensemble d’une clause GROUP BY unique, un jeu de 0 colonne ou plus avec lequel vous

SELECT 95

AWS Clean Rooms Référence SQL

pouvez regrouper le jeu de résultats d’une requête. GROUP BY GROUPING SETS revient à exécuter
une requête UNION ALL sur un jeu de résultats groupé par différentes colonnes. Par exemple,
GROUP BY GROUPING SETS((a), (b)) est équivalent à GROUP BY a UNION ALL GROUP BY b.

L’exemple suivant renvoie le coût des produits de la table des commandes, regroupés par catégories
de produits et type de produits vendus.

SELECT category, product, sum(cost) as total
FROM orders
GROUP BY GROUPING SETS(category, product);

 category | product | total
----------------------+----------------------+-------
 computers | | 2100
 cellphones | | 1610
 | laptop | 2050
 | smartphone | 1610
 | mouse | 50

(5 rows)

ROLLUP

Suppose une hiérarchie dans laquelle les colonnes précédentes sont considérées comme les
parents des colonnes suivantes. ROLLUP regroupe les données par colonnes fournies et renvoie
des lignes de sous-totaux supplémentaires représentant les totaux à tous les niveaux de colonnes
de regroupement, en plus des lignes groupées. Par exemple, vous pouvez utiliser GROUP BY
ROLLUP((a), (b)) pour renvoyer un jeu de résultats regroupé d’abord par a, puis par b en supposant
que b est une sous-section de a. ROLLUP renvoie également une ligne contenant le jeu des résultats
sans regrouper les colonnes.

GROUP BY ROLLUP((a), (b)) équivaut à GROUP BY GROUPING SETS((a,b), (a), ()).

L’exemple suivant renvoie le coût des produits de la table des commandes, regroupés d’abord par
catégorie, puis par produit, le produit étant une subdivision de la catégorie.

SELECT category, product, sum(cost) as total
FROM orders
GROUP BY ROLLUP(category, product) ORDER BY 1,2;

SELECT 96

AWS Clean Rooms Référence SQL

 category | product | total
----------------------+----------------------+-------
 cellphones | smartphone | 1610
 cellphones | | 1610
 computers | laptop | 2050
 computers | mouse | 50
 computers | | 2100
 | | 3710
(6 rows)

CUBE

Regroupe les données par colonnes fournies et renvoie des lignes de sous-totaux supplémentaires
représentant les totaux à tous les niveaux de colonnes de regroupement, en plus des lignes
groupées. CUBE renvoie les mêmes lignes que ROLLUP, mais ajoute des lignes de sous-total
supplémentaires pour chaque combinaison de colonnes de regroupement non couverte par ROLLUP.
Par exemple, vous pouvez utiliserGROUP BY CUBE ((a), (b)) pour renvoyer un jeu de résultats
regroupé d’abord par a, puis par b en supposant que b est une sous-section de a, puis par b
uniquement. CUBE renvoie également une ligne contenant le jeu des résultats sans regrouper les
colonnes.

GROUP BY CUBE((a), (b)) équivaut à GROUP BY GROUPING SETS((a, b), (a), (b), ()).

L’exemple suivant renvoie le coût des produits de la table des commandes, regroupés d’abord par
catégorie, puis par produit, le produit étant une subdivision de la catégorie. Contrairement à l’exemple
précédent pour ROLLUP, l’instruction renvoie des résultats pour chaque combinaison de colonnes de
regroupement.

SELECT category, product, sum(cost) as total
FROM orders
GROUP BY CUBE(category, product) ORDER BY 1,2;

 category | product | total
----------------------+----------------------+-------
 cellphones | smartphone | 1610
 cellphones | | 1610
 computers | laptop | 2050
 computers | mouse | 50
 computers | | 2100
 | laptop | 2050
 | mouse | 50
 | smartphone | 1610

SELECT 97

AWS Clean Rooms Référence SQL

 | | 3710
(9 rows)

Clause HAVING

La clause HAVING applique une condition à l’ensemble des résultats groupés intermédiaires que
renvoie une requête.

Syntaxe

[HAVING condition]

Par exemple, vous pouvez limiter les résultats d’une fonction SUM :

having sum(pricepaid) >10000

La condition HAVING est appliquée après que toutes les conditions de la clause WHERE ont été
appliquées et que les opérations GROUP BY sont terminées.

La condition elle-même prend la même forme que celle de toute condition de clause WHERE.

Notes d’utilisation

• Toutes les colonnes référencées dans une condition de clause HAVING doivent être une colonne
de regroupement ou une colonne qui fait référence au résultat d’une fonction d’agrégation.

• Dans une clause HAVING, vous ne pouvez pas spécifier :

• Un nombre ordinal qui fait référence à un élément de la liste de sélection. Seules les clauses
GROUP BY et ORDER BY acceptent des nombres ordinaux.

Exemples

La requête suivante calcule la vente totale de billets pour tous les événements selon leur nom, puis
supprime les événements où le total des ventes est inférieur à 800 000 $ US. La condition HAVING
est appliquée aux résultats de la fonction d’agrégation de la liste de sélection : sum(pricepaid).

select eventname, sum(pricepaid)
from sales join event on sales.eventid = event.eventid
group by 1
having sum(pricepaid) > 800000

SELECT 98

AWS Clean Rooms Référence SQL

order by 2 desc, 1;

eventname | sum
------------------+-----------
Mamma Mia! | 1135454.00
Spring Awakening | 972855.00
The Country Girl | 910563.00
Macbeth | 862580.00
Jersey Boys | 811877.00
Legally Blonde | 804583.00
(6 rows)

La requête suivante calcule un ensemble de résultats similaire. Dans ce cas, toutefois, la condition
HAVING est appliquée à un regroupement qui n’est pas spécifié dans la liste de sélection :
sum(qtysold). Les événements qui n’ont pas vendu plus de 2 000 billets disparaissent du résultat
final.

select eventname, sum(pricepaid)
from sales join event on sales.eventid = event.eventid
group by 1
having sum(qtysold) >2000
order by 2 desc, 1;

eventname | sum
------------------+-----------
Mamma Mia! | 1135454.00
Spring Awakening | 972855.00
The Country Girl | 910563.00
Macbeth | 862580.00
Jersey Boys | 811877.00
Legally Blonde | 804583.00
Chicago | 790993.00
Spamalot | 714307.00
(8 rows)

Définir les opérateurs

Les opérateurs set sont utilisés pour comparer et fusionner les résultats de deux expressions de
requête distinctes.

AWS Clean RoomsSpark SQL prend en charge les opérateurs d'ensemble suivants répertoriés dans
le tableau suivant.

SELECT 99

AWS Clean Rooms Référence SQL

Opérateur du set

INTERSECT

TOUT CROISER

EXCEPT

SAUF TOUS

UNION

UNION TOUT

Par exemple, si vous voulez savoir quels utilisateurs d’un site web sont à la fois acheteurs et
vendeurs, mais que leurs noms d’utilisateur sont stockés dans des colonnes ou tables distinctes,
vous pouvez trouver l’intersection de ces deux types d’utilisateurs. Si vous voulez savoir quels
utilisateurs du site web sont acheteurs mais pas vendeurs, vous pouvez utiliser l’opérateur EXCEPT
pour trouver la différence entre les deux listes d’utilisateurs. Si vous souhaitez créer une liste de tous
les utilisateurs, quel que soit le rôle, vous pouvez utiliser l’opérateur UNION.

Note

Les clauses ORDER BY, LIMIT, SELECT TOP et OFFSET ne peuvent pas être utilisées dans
les expressions de requête fusionnées par les opérateurs d'ensemble UNION, UNION ALL,
INTERSECT et EXCEPT.

Rubriques

• Syntaxe

• Parameters

• Ordre d’évaluation des opérateurs ensemblistes

• Notes d’utilisation

• Exemple de requêtes UNION

• Exemple de requête UNION ALL

• Exemple de requêtes INTERSECT

SELECT 100

AWS Clean Rooms Référence SQL

• Exemple de requête EXCEPT

Syntaxe

subquery1
{ { UNION [ALL | DISTINCT] |
 INTERSECT [ALL | DISTINCT] |
 EXCEPT [ALL | DISTINCT] } subquery2 } [...] }

Parameters

sous-requête1, sous-requête2

Expression de requête qui correspond, sous la forme de sa liste de sélection, à une deuxième
expression de requête qui suit l'opérateur UNION, UNION ALL, INTERSECT, INTERSECT
ALL, EXCEPT ou EXCEPT ALL. Les deux expressions doivent comporter le même nombre de
colonnes de sortie avec des types de données compatibles ; sinon, les deux jeux de résultats
ne peuvent pas être comparés et fusionnés. Les opérations de définition n'autorisent pas la
conversion implicite entre différentes catégories de types de données. Pour de plus amples
informations, veuillez consulter Compatibilité et conversion de types.

Vous pouvez créer des requêtes qui contiennent un nombre illimité d’expressions de requête et
les lier avec les opérateurs UNION, INTERSECT et EXCEPT dans n’importe quelle combinaison.
Par exemple, la structure de requête suivante est valide, en supposant que les tables T1, T2 et T3
contiennent des ensembles de colonnes compatibles :

select * from t1
union
select * from t2
except
select * from t3

UNION [TOUS | DISTINCTS]

Opération de définition qui renvoie les lignes de deux expressions de requête, indépendamment
de savoir si les lignes proviennent de l’une ou des deux expressions.

SE CROISER [TOUS | DISTINCTS]

Opération de définition qui renvoie les lignes provenant de deux expressions de requête. Les
lignes qui ne sont pas retournées par les deux expressions sont ignorées.

SELECT 101

AWS Clean Rooms Référence SQL

SAUF [TOUS | DISTINCT]

Opération de définition qui renvoie les lignes qui dérivent de l’une de deux expressions de
requête. Pour être éligible pour le résultat, lignes doivent exister dans la première table de
résultats, pas dans la deuxième.

EXCEPT ALL ne supprime pas les doublons des lignes de résultats.

MINUS et EXCEPT sont des synonymes exacts.

Ordre d’évaluation des opérateurs ensemblistes

Les opérateurs ensemblistes UNION et EXCEPT sont associatifs à gauche. Si les parenthèses
ne sont pas spécifiées pour influer sur l’ordre de priorité, une combinaison de ces opérateurs
ensemblistes est évaluée de gauche à droite. Par exemple, dans la requête suivante, l’UNION de T1
et de T2 est évaluée en premier, puis l’opération EXCEPT est effectuée sur le résultat UNION :

select * from t1
union
select * from t2
except
select * from t3

L’opérateur INTERSECT est prioritaire sur les opérateurs UNION et EXCEPT quand une
combinaison d’opérateurs est utilisée dans la même requête. Par exemple, la requête suivante
permet d’évaluer l’intersection de T2 et de T3, puis d’unir le résultat à T1 :

select * from t1
union
select * from t2
intersect
select * from t3

Par l’ajout de parenthèses, vous pouvez appliquer un ordre d’évaluation différent. Dans le cas
suivant, le résultat de l’union de T1 et de T2 est croisé avec T3, et la requête est susceptible de
produire un résultat différent.

(select * from t1
union
select * from t2)
intersect

SELECT 102

AWS Clean Rooms Référence SQL

(select * from t3)

Notes d’utilisation

• Les noms de colonne retournés dans le résultat d’une opération ensembliste sont les noms de
colonne (ou alias) des tables de la première expression de requête. Comme ces noms de colonne
sont potentiellement trompeurs, en ce sens que les valeurs de la colonne proviennent de tables
de l’un ou de l’autre côté de l’opérateur ensembliste, il se peut que vous vouliez fournir des alias
descriptifs pour le jeu de résultats.

• Lorsque les requêtes avec opérateurs ensemblistes renvoient des résultats décimaux, les colonnes
de résultats correspondantes sont promues pour renvoyer les mêmes précision et échelle.
Par exemple, dans la requête suivante, où T1.REVENUE est une colonne DECIMAL(10,2) et
T2.REVENUE une colonne DECIMAL(8,4), le résultat décimal est promu en DECIMAL(12,4) :

select t1.revenue union select t2.revenue;

L’échelle est 4, parce que c’est l’échelle maximale des deux colonnes. La précision est 12 parce
que T1.REVENUE nécessite 8 chiffres à gauche de la virgule (12-4 = 8). Cette promotion de
type garantit que toutes les valeurs de chaque côté de l’UNION conviennent au résultat. Pour les
valeurs 64 bits, la précision de résultat maximale est de 19 et l’échelle de résultat maximale de
18. Pour les valeurs 128 bits, la précision de résultat maximale est de 38 et l’échelle de résultat
maximale de 37.

Si le type de données obtenu dépasse les limites de AWS Clean Rooms précision et d'échelle, la
requête renvoie une erreur.

• Pour les opérations ensemblistes, deux lignes sont traitées comme identiques si, pour chaque
paire correspondante de colonnes, les deux valeurs de données sont égales ou toutes deux NULL.
Par exemple, si les tables T1 et T2 contiennent une colonne et une ligne, et que la ligne a la valeur
NULL dans les deux tables, une opération INTERSECT sur ces tables renvoie cette ligne.

Exemple de requêtes UNION

Dans la requête UNION suivante, les lignes de la table SALES sont fusionnées avec les lignes de la
table LISTING. Trois colonnes compatibles sont sélectionnées à partir de chaque table ; dans ce cas,
les colonnes correspondantes ont les mêmes noms et types de données.

select listid, sellerid, eventid from listing

SELECT 103

AWS Clean Rooms Référence SQL

union select listid, sellerid, eventid from sales

listid | sellerid | eventid
--------+----------+---------
1 | 36861 | 7872
2 | 16002 | 4806
3 | 21461 | 4256
4 | 8117 | 4337
5 | 1616 | 8647

L’exemple suivant montre comment vous pouvez ajouter une valeur littérale à la sortie d’une requête
UNION afin que vous puissiez voir quelle expression de requête a généré chaque ligne du jeu de
résultats. La requête identifie les lignes de la première expression de requête comme « B » (pour
« buyers ») et les lignes de la deuxième expression de requête comme « S » (pour « sellers »).

La requête identifie les acheteurs et les vendeurs pour les transactions de billet égales ou
supérieures à 10 000 $ US. La seule différence entre les deux expressions de requête de chaque
côté de l’opérateur d’UNION est la colonne de jointure de la table SALES.

select listid, lastname, firstname, username,
pricepaid as price, 'S' as buyorsell
from sales, users
where sales.sellerid=users.userid
and pricepaid >=10000
union
select listid, lastname, firstname, username, pricepaid,
'B' as buyorsell
from sales, users
where sales.buyerid=users.userid
and pricepaid >=10000

listid | lastname | firstname | username | price | buyorsell
--------+----------+-----------+----------+-----------+-----------
209658 | Lamb | Colette | VOR15LYI | 10000.00 | B
209658 | West | Kato | ELU81XAA | 10000.00 | S
212395 | Greer | Harlan | GXO71KOC | 12624.00 | S
212395 | Perry | Cora | YWR73YNZ | 12624.00 | B
215156 | Banks | Patrick | ZNQ69CLT | 10000.00 | S
215156 | Hayden | Malachi | BBG56AKU | 10000.00 | B

SELECT 104

AWS Clean Rooms Référence SQL

L’exemple suivant utilise un opérateur UNION ALL, car les lignes dupliquées, s’il en existe, doivent
être conservées dans le résultat. Pour une série d'événements spécifique IDs, la requête renvoie
0 ligne ou plus pour chaque vente associée à chaque événement, et 0 ou 1 ligne pour chaque
annonce de cet événement. IDs Les événements sont propres à chaque ligne des tableaux LISTING
et EVENT, mais il peut y avoir plusieurs ventes pour la même combinaison d'événement et d'annonce
IDs dans le tableau SALES.

La troisième colonne du jeu de résultats identifie la source de la ligne. Si la source est la table
SALES, un « Yes » apparaît dans la colonne SALESROW. (SALESROW est un alias de SALES.
LISTID.) Si la ligne vient de la table LISTING, un « No » apparaît dans la colonne SALESROW.

Dans ce cas, le jeu de résultats se compose de trois lignes de vente pour affichage 500, événement
7787. En d’autres termes, trois transactions différentes ont eu lieu pour cette combinaison d’affichage
et d’événement. Les deux autres listes, 501 et 502, n'ont généré aucune vente. La seule ligne
produite par la requête pour ces listes IDs provient donc de la table LISTING (SALESROW =
« Non »).

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)
union all
select eventid, listid, 'No'
from listing
where listid in(500,501,502)

eventid | listid | salesrow
---------+--------+----------
7787 | 500 | No
7787 | 500 | Yes
7787 | 500 | Yes
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Si vous exécutez la même requête sans le mot-clé ALL, le résultat ne conserve qu’une seule des
transactions de vente.

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)
union

SELECT 105

AWS Clean Rooms Référence SQL

select eventid, listid, 'No'
from listing
where listid in(500,501,502)

eventid | listid | salesrow
---------+--------+----------
7787 | 500 | No
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Exemple de requête UNION ALL

L’exemple suivant utilise un opérateur UNION ALL, car les lignes dupliquées, s’il en existe, doivent
être conservées dans le résultat. Pour une série d'événements spécifique IDs, la requête renvoie
0 ligne ou plus pour chaque vente associée à chaque événement, et 0 ou 1 ligne pour chaque
annonce de cet événement. IDs Les événements sont propres à chaque ligne des tableaux LISTING
et EVENT, mais il peut y avoir plusieurs ventes pour la même combinaison d'événement et d'annonce
IDs dans le tableau SALES.

La troisième colonne du jeu de résultats identifie la source de la ligne. Si la source est la table
SALES, un « Yes » apparaît dans la colonne SALESROW. (SALESROW est un alias de SALES.
LISTID.) Si la ligne vient de la table LISTING, un « No » apparaît dans la colonne SALESROW.

Dans ce cas, le jeu de résultats se compose de trois lignes de vente pour affichage 500, événement
7787. En d’autres termes, trois transactions différentes ont eu lieu pour cette combinaison d’affichage
et d’événement. Les deux autres listes, 501 et 502, n'ont généré aucune vente. La seule ligne
produite par la requête pour ces listes IDs provient donc de la table LISTING (SALESROW =
« Non »).

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)
union all
select eventid, listid, 'No'
from listing
where listid in(500,501,502)

eventid | listid | salesrow
---------+--------+----------
7787 | 500 | No

SELECT 106

AWS Clean Rooms Référence SQL

7787 | 500 | Yes
7787 | 500 | Yes
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Si vous exécutez la même requête sans le mot-clé ALL, le résultat ne conserve qu’une seule des
transactions de vente.

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)
union
select eventid, listid, 'No'
from listing
where listid in(500,501,502)
eventid | listid | salesrow
---------+--------+----------
7787 | 500 | No
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Exemple de requêtes INTERSECT

Comparez l’exemple suivant avec le premier exemple UNION. La seule différence entre les deux
exemples est l’opérateur ensembliste qui est utilisé, mais les résultats sont très différents. Seule une
des lignes est la même :

235494 | 23875 | 8771

Il s’agit de la seule ligne du résultat limité de 5 lignes qui a été trouvé dans les deux tables.

select listid, sellerid, eventid from listing
intersect
select listid, sellerid, eventid from sales

listid | sellerid | eventid
--------+----------+---------
235494 | 23875 | 8771
235482 | 1067 | 2667

SELECT 107

AWS Clean Rooms Référence SQL

235479 | 1589 | 7303
235476 | 15550 | 793
235475 | 22306 | 7848

La requête suivante détecte les événements (pour lesquels des billets ont été vendus) qui se sont
déroulées dans des lieux de New York et de Los Angeles en mars. La différence entre les deux
expressions de requête est la contrainte sur la colonne VENUECITY.

select distinct eventname from event, sales, venue
where event.eventid=sales.eventid and event.venueid=venue.venueid
and date_part(month,starttime)=3 and venuecity='Los Angeles'
intersect
select distinct eventname from event, sales, venue
where event.eventid=sales.eventid and event.venueid=venue.venueid
and date_part(month,starttime)=3 and venuecity='New York City';

eventname

A Streetcar Named Desire
Dirty Dancing
Electra
Running with Annalise
Hairspray
Mary Poppins
November
Oliver!
Return To Forever
Rhinoceros
South Pacific
The 39 Steps
The Bacchae
The Caucasian Chalk Circle
The Country Girl
Wicked
Woyzeck

Exemple de requête EXCEPT

La table CATEGORY de la base de données contient les 11 lignes suivantes :

 catid | catgroup | catname | catdesc
-------+----------+-----------+--

SELECT 108

AWS Clean Rooms Référence SQL

 1 | Sports | MLB | Major League Baseball
 2 | Sports | NHL | National Hockey League
 3 | Sports | NFL | National Football League
 4 | Sports | NBA | National Basketball Association
 5 | Sports | MLS | Major League Soccer
 6 | Shows | Musicals | Musical theatre
 7 | Shows | Plays | All non-musical theatre
 8 | Shows | Opera | All opera and light opera
 9 | Concerts | Pop | All rock and pop music concerts
 10 | Concerts | Jazz | All jazz singers and bands
 11 | Concerts | Classical | All symphony, concerto, and choir concerts
(11 rows)

Supposons qu’une table CATEGORY_STAGE (table intermédiaire) contienne une seule ligne
supplémentaire :

 catid | catgroup | catname | catdesc
-------+----------+-----------+--
 1 | Sports | MLB | Major League Baseball
 2 | Sports | NHL | National Hockey League
 3 | Sports | NFL | National Football League
 4 | Sports | NBA | National Basketball Association
 5 | Sports | MLS | Major League Soccer
 6 | Shows | Musicals | Musical theatre
 7 | Shows | Plays | All non-musical theatre
 8 | Shows | Opera | All opera and light opera
 9 | Concerts | Pop | All rock and pop music concerts
 10 | Concerts | Jazz | All jazz singers and bands
 11 | Concerts | Classical | All symphony, concerto, and choir concerts
 12 | Concerts | Comedy | All stand up comedy performances
(12 rows)

renvoiez la différence entre les deux tables. En d’autres termes, renvoiez les lignes qui sont dans la
table CATEGORY_STAGE, mais pas dans la table CATEGORY :

select * from category_stage
except
select * from category;

catid | catgroup | catname | catdesc
-------+----------+---------+----------------------------------
 12 | Concerts | Comedy | All stand up comedy performances

SELECT 109

AWS Clean Rooms Référence SQL

(1 row)

La requête équivalente suivante utilise le synonyme MINUS.

select * from category_stage
minus
select * from category;

catid | catgroup | catname | catdesc
-------+----------+---------+----------------------------------
 12 | Concerts | Comedy | All stand up comedy performances
(1 row)

Si vous inversez l’ordre des expressions SELECT, la requête ne renvoie aucune ligne.

Clause ORDER BY

La clause ORDER BY trie le jeu de résultats d’une requête.

Note

L'expression ORDER BY la plus éloignée ne doit comporter que des colonnes figurant dans
la liste de sélection.

Rubriques

• Syntaxe

• Parameters

• Notes d’utilisation

• Exemples avec ORDER BY

Syntaxe

[ORDER BY expression [ASC | DESC]]
[NULLS FIRST | NULLS LAST]
[LIMIT { count | ALL }]
[OFFSET start]

SELECT 110

AWS Clean Rooms Référence SQL

Parameters

expression

Expression qui définit l'ordre de tri du résultat de la requête. Il se compose d'une ou de plusieurs
colonnes dans la liste de sélection. Les résultats sont retournés en fonction du classement UTF-8
binaire. Vous pouvez aussi spécifier les éléments suivants :

• Nombres ordinaux qui représentent la position des entrées de la liste de sélection (ou position
des colonnes de la table s’il n’existe aucune liste de sélection)

• Alias qui définissent les entrées de la liste de sélection

Lorsque la clause ORDER BY contient plusieurs expressions régulières, le jeu de résultats est
trié selon la première expression, puis la deuxième expression est appliquée aux lignes de la
première expression ayant des valeurs correspondantes, et ainsi de suite.

ASC | DESC

Option qui définit l’ordre de tri de l’expression, comme suit :

• ASC : croissant (par exemple, de faible à élevé pour les valeurs numériques et de « A » à « Z »
pour les chaînes de caractères). Si aucune option n’est spécifiée, les données sont triées dans
l’ordre croissant par défaut.

• DESC : descendantes (valeurs d’élevées à faibles pour les valeurs numériques ; de « Z » à
« A » pour les chaînes).

NULLS FIRST | NULLS LAST

Option qui spécifie si les valeurs NULL doivent être triées en premier, avant les valeurs non null,
ou en dernier, après les valeurs non null. Par défaut, les valeurs NULL sont triées et classées en
dernier par ordre croissant (ASC) et triées et classées en premier par ordre décroissant (DESC).

LIMIT nombre | ALL

Option qui contrôle le nombre de lignes triées renvoyées par la requête. Le nombre LIMIT doit être
un nombre entier positif ; la valeur maximale est 2147483647.

LIMIT 0 ne renvoie aucune ligne. Vous pouvez utiliser cette syntaxe à des fins de test, pour
vérifier qu’une requête s’exécute (sans afficher aucune ligne) ou pour renvoyer une liste de
colonnes d’une table. Une clause ORDER BY est redondante si vous utilisez LIMIT 0 pour
renvoyer une liste de colonnes. La valeur par défaut est LIMIT ALL.

SELECT 111

AWS Clean Rooms Référence SQL

OFFSET début

Option qui spécifie d’ignorer le nombre de lignes qui précèdent début avant de commencer à
renvoyer les lignes. Le nombre OFFSET doit être un nombre entier positif ; la valeur maximale
est 2147483647. Lorsqu’elles sont utilisées avec l’option LIMIT, les lignes OFFSET sont
ignorées avant de commencer à compter les lignes LIMIT qui sont retournées. Si l’option LIMIT
n’est pas utilisée, le nombre de lignes du jeu de résultats est diminué du nombre de lignes qui
sont ignorées. Comme les lignes ignorées par une clause OFFSET continuent de devoir être
analysées, il peut être inefficace de choisir une valeur OFFSET élevée.

Notes d’utilisation

Notez le comportement attendu suivant avec les clauses ORDER BY :

• Les valeurs NULL sont considérées comme « plus élevés » que toutes les autres valeurs.
Avec l’ordre de tri croissant par défaut, les valeurs NULL sont triées à la fin. Pour modifier ce
comportement, utilisez l’option NULLS FIRST.

• Lorsqu’une requête ne contient pas une clause ORDER BY, le système renvoie des jeux de
résultats sans classement prévisible des lignes. La même requête exécutée deux fois peut
renvoyer le même jeu de résultats dans un ordre différent.

• Les options LIMIT et OFFSET peuvent être utilisées sans clause ORDER BY ; cependant, pour
renvoyer un ensemble cohérent de lignes, utilisez ces options conjointement à ORDER BY.

• Dans tout système parallèleAWS Clean Rooms, par exemple, lorsque ORDER BY ne produit pas
d'ordre unique, l'ordre des lignes n'est pas déterministe. En d'autres termes, si l'expression ORDER
BY produit des valeurs dupliquées, l'ordre de retour de ces lignes peut varier d'un système à l'autre
ou d'une exécution AWS Clean Rooms à l'autre.

• AWS Clean Roomsne prend pas en charge les littéraux de chaîne dans les clauses ORDER BY.

Exemples avec ORDER BY

renvoiez les 11 lignes de la table CATEGORY, triées sur la deuxième colonne, CATGROUP. Pour les
résultats qui ont la même valeur CATGROUP, classez les valeurs de colonne CATDESC en fonction
de la longueur de la chaîne de caractères. Triez ensuite sur les colonnes CATID et CATNAME.

select * from category order by 2, 1, 3;

catid | catgroup | catname | catdesc

SELECT 112

AWS Clean Rooms Référence SQL

-------+----------+-----------+--
10 | Concerts | Jazz | All jazz singers and bands
9 | Concerts | Pop | All rock and pop music concerts
11 | Concerts | Classical | All symphony, concerto, and choir conce
6 | Shows | Musicals | Musical theatre
7 | Shows | Plays | All non-musical theatre
8 | Shows | Opera | All opera and light opera
5 | Sports | MLS | Major League Soccer
1 | Sports | MLB | Major League Baseball
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association
(11 rows)

renvoiez les colonnes sélectionnées de la table SALES, triées selon les valeurs QTYSOLD les plus
élevées. Limitez les résultats aux 10 lignes supérieures :

select salesid, qtysold, pricepaid, commission, saletime from sales
order by qtysold, pricepaid, commission, salesid, saletime desc

salesid | qtysold | pricepaid | commission | saletime
---------+---------+-----------+------------+---------------------
15401 | 8 | 272.00 | 40.80 | 2008-03-18 06:54:56
61683 | 8 | 296.00 | 44.40 | 2008-11-26 04:00:23
90528 | 8 | 328.00 | 49.20 | 2008-06-11 02:38:09
74549 | 8 | 336.00 | 50.40 | 2008-01-19 12:01:21
130232 | 8 | 352.00 | 52.80 | 2008-05-02 05:52:31
55243 | 8 | 384.00 | 57.60 | 2008-07-12 02:19:53
16004 | 8 | 440.00 | 66.00 | 2008-11-04 07:22:31
489 | 8 | 496.00 | 74.40 | 2008-08-03 05:48:55
4197 | 8 | 512.00 | 76.80 | 2008-03-23 11:35:33
16929 | 8 | 568.00 | 85.20 | 2008-12-19 02:59:33

renvoiez une liste de colonnes et aucune ligne à l’aide de la syntaxe LIMIT 0 :

select * from venue limit 0;
venueid | venuename | venuecity | venuestate | venueseats
---------+-----------+-----------+------------+------------
(0 rows)

SELECT 113

AWS Clean Rooms Référence SQL

Exemples de sous-requête

Les exemples suivants illustrent différentes façons par lesquelles les sous-requêtes conviennent
aux requêtes SELECT. Pour obtenir un autre exemple de l’utilisation des sous-requêtes, consultez
Exemple.

Sous-requête SELECT liste

L’exemple suivant contient une sous-requête dans la liste SELECT. Cette sous-requête est scalaire :
elle renvoie une et une seule colonne et une seule valeur, ce qui est répété dans le résultat pour
chaque ligne retournée à partir de la requête externe. La requête compare la valeur Q1SALES que
la sous-requête calcule aux valeurs des ventes des deux autres trimestres (2 et 3) en 2008, comme
défini par la requête externe.

select qtr, sum(pricepaid) as qtrsales,
(select sum(pricepaid)
from sales join date on sales.dateid=date.dateid
where qtr='1' and year=2008) as q1sales
from sales join date on sales.dateid=date.dateid
where qtr in('2','3') and year=2008
group by qtr
order by qtr;

qtr | qtrsales | q1sales
-------+-------------+-------------
2 | 30560050.00 | 24742065.00
3 | 31170237.00 | 24742065.00
(2 rows)

Sous-requête de clause WHERE

L’exemple suivant contient une sous-requête de table dans la clause WHERE. Cette sous-requête
produit plusieurs lignes. Dans ce cas, les lignes ne contiennent qu’une seule colonne, mais les sous-
requêtes de table peuvent contenir plusieurs colonnes et lignes, tout comme n’importe quelle autre
table.

La requête recherche les 10 meilleurs vendeurs en termes de nombre maximal de billets vendus.
La liste des 10 meilleurs est limitée par la sous-requête, qui supprime les utilisateurs qui résident
dans les villes où il y a des lieux de vente. Cette requête peut être écrite de différentes façons ; par
exemple, la sous-requête peut être réécrite comme jointure au sein de la requête principale.

SELECT 114

AWS Clean Rooms Référence SQL

select firstname, lastname, city, max(qtysold) as maxsold
from users join sales on users.userid=sales.sellerid
where users.city not in(select venuecity from venue)
group by firstname, lastname, city
order by maxsold desc, city desc
limit 10;

firstname | lastname | city | maxsold
-----------+-----------+----------------+---------
Noah | Guerrero | Worcester | 8
Isadora | Moss | Winooski | 8
Kieran | Harrison | Westminster | 8
Heidi | Davis | Warwick | 8
Sara | Anthony | Waco | 8
Bree | Buck | Valdez | 8
Evangeline | Sampson | Trenton | 8
Kendall | Keith | Stillwater | 8
Bertha | Bishop | Stevens Point | 8
Patricia | Anderson | South Portland | 8
(10 rows)

Sous-requêtes de clause WITH

Consultez Clause WITH.

Sous-requêtes corrélées

L’exemple suivant contient une sous-requête corrélée dans la clause WHERE ; ce genre de sous-
requête contient une ou plusieurs corrélations entre ses colonnes et les colonnes générés par la
requête externe. Dans ce cas, la corrélation est where s.listid=l.listid. Pour chaque ligne
que produit la requête externe, la sous-requête est exécutée pour qualifier ou disqualifier la ligne.

select salesid, listid, sum(pricepaid) from sales s
where qtysold=
(select max(numtickets) from listing l
where s.listid=l.listid)
group by 1,2
order by 1,2
limit 5;

salesid | listid | sum
--------+--------+----------

SELECT 115

AWS Clean Rooms Référence SQL

 27 | 28 | 111.00
 81 | 103 | 181.00
 142 | 149 | 240.00
 146 | 152 | 231.00
 194 | 210 | 144.00
(5 rows)

Modèles de sous-requêtes corrélées non pris en charge

Le planificateur de requête utilise une méthode de réécriture de requête appelée décorrélation de
sous-requête afin d’optimiser plusieurs modèles de sous-requêtes corrélées en vue de l’exécution
dans un environnement MPP. Certains types de sous-requêtes corrélées suivent des modèles qui
ne AWS Clean Rooms peuvent pas être décorrélés et qui ne sont pas compatibles. Les requêtes qui
contiennent les références de corrélation suivantes génèrent des erreurs :

• Les références de corrélation qui ignorent un bloc de requête, également appelées « références de
corrélation de niveau non hiérarchique ». Par exemple, dans la requête suivante, le bloc contenant
la référence de corrélation et le bloc ignoré sont connectés par un prédicat NOT EXISTS :

select event.eventname from event
where not exists
(select * from listing
where not exists
(select * from sales where event.eventid=sales.eventid));

Le bloc ignoré dans ce cas est la sous-requête sur la table LISTING. La référence de corrélation
correspond aux tables EVENT et SALES.

• Références de corrélation à partir d’une sous-requête qui fait partie d’une clause ON dans une
requête externe :

select * from category
left join event
on category.catid=event.catid and eventid =
(select max(eventid) from sales where sales.eventid=event.eventid);

La clause ON contient une référence de corrélation depuis SALES dans la sous-requête jusqu’à
EVENT dans la requête externe.

• Références de corrélation sensibles à la valeur nulle avec une table AWS Clean Rooms système.
Par exemple :

SELECT 116

AWS Clean Rooms Référence SQL

select attrelid
from my_locks sl, my_attribute
where sl.table_id=my_attribute.attrelid and 1 not in
(select 1 from my_opclass where sl.lock_owner = opcowner);

• Références de corrélation à partir d’une sous-requête contenant une fonction de fenêtrage.

select listid, qtysold
from sales s
where qtysold not in
(select sum(numtickets) over() from listing l where s.listid=l.listid);

• Références d’une colonne GROUP BY aux résultats d’une sous-requête corrélée. Par exemple :

select listing.listid,
(select count (sales.listid) from sales where sales.listid=listing.listid) as list
from listing
group by list, listing.listid;

• Références de corrélation à partir d’une sous-requête avec fonction d’agrégation et d’une clause
GROUP BY, connectée à la requête externe par un prédicat IN. (Cette restriction ne s’applique pas
aux fonctions d’agrégation MIN et MAX.) Par exemple :

select * from listing where listid in
(select sum(qtysold)
from sales
where numtickets>4
group by salesid);

AWS Clean Rooms Fonctions Spark SQL

AWS Clean Rooms Spark SQL prend en charge les fonctions SQL suivantes :

Rubriques

• Fonctions d’agrégation

• Fonctions de tableau

• Expressions conditionnelles

• Fonctions de constructeur

Fonctions SQL 117

AWS Clean Rooms Référence SQL

• Fonctions de formatage des types de données

• Fonctions de date et d’heure

• Fonctions de chiffrement et de déchiffrement

• Fonctions de hachage

• Fonctions Hyperloglog

• Fonctions JSON

• Fonctions mathématiques

• Fonctions scalaires

• Fonctions de chaîne

• Fonctions liées à la confidentialité

• Fonctions de fenêtrage

Fonctions d’agrégation

Les fonctions d'agrégation de AWS Clean Rooms Spark SQL sont utilisées pour effectuer des calculs
ou des opérations sur un groupe de lignes et renvoyer une valeur unique. Ils sont essentiels pour les
tâches d'analyse et de synthèse des données.

AWS Clean Rooms Spark SQL prend en charge les fonctions d'agrégation suivantes :

Rubriques

• Fonction ANY_VALUE

• Fonction APPROX COUNT_DISTINCT

• Fonction APPROX PERCENTILE

• Fonction AVG

• Fonction BOOL_AND

• Fonction BOOL_OR

• Fonction CARDINALITY

• Fonction COLLECT_LIST

• Fonction COLLECT_SET

• COUNTet COUNT DISTINCT fonctions

• Fonction COUNT

• Fonction MAX

Fonctions d’agrégation 118

AWS Clean Rooms Référence SQL

• Fonction MEDIAN

• Fonction MIN

• Fonction PERCENTILE

• Fonction SKEWNESS

• Fonctions STDDEV_SAMP et STDDEV_POP

• SUMet SUM DISTINCT fonctions

• Fonctions VAR_SAMP et VAR_POP

Fonction ANY_VALUE

La fonction ANY_VALUE renvoie n’importe quelle valeur des valeurs d’expression en entrée de
manière non déterministe. Cette fonction peut renvoyer la valeur NULL si l'expression en entrée
n'entraîne pas de renvoi de ligne.

Syntaxe

ANY_VALUE (expression[, isIgnoreNull])

Arguments

expression

Colonne cible ou expression sur laquelle la fonction opère. L’expression est l’un des types de
données suivants :

isIgnoreNull

Un booléen qui détermine si la fonction doit renvoyer uniquement des valeurs non nulles.

Renvoie

Renvoie le même type de données que expression.

Notes d’utilisation

Si une instruction qui spécifie la fonction ANY_VALUE d’une colonne inclut également une deuxième
référence de colonne, la deuxième colonne doit apparaître dans une clause GROUP BY ou être
incluse dans une fonction d’agrégation.

Fonctions d’agrégation 119

AWS Clean Rooms Référence SQL

Exemples

L'exemple suivant renvoie une instance de n'importe quel dateid endroit où se eventname trouve
leEagles.

select any_value(dateid) as dateid, eventname from event where eventname ='Eagles'
 group by eventname;

Voici les résultats.

dateid | eventname
-------+---------------
 1878 | Eagles

L'exemple suivant renvoie une instance de n'importe quel dateid endroit où eventname est
Eagles ouCold War Kids.

select any_value(dateid) as dateid, eventname from event where eventname in('Eagles',
 'Cold War Kids') group by eventname;

Voici les résultats.

dateid | eventname
-------+---------------
 1922 | Cold War Kids
 1878 | Eagles

Fonction APPROX COUNT_DISTINCT

APPROX COUNT_DISTINCT fournit un moyen efficace d'estimer le nombre de valeurs uniques dans
une colonne ou un ensemble de données.

Syntaxe

approx_count_distinct(expr[, relativeSD])

Arguments

expr

Expression ou colonne pour laquelle vous souhaitez estimer le nombre de valeurs uniques.

Fonctions d’agrégation 120

AWS Clean Rooms Référence SQL

Il peut s'agir d'une seule colonne, d'une expression complexe ou d'une combinaison de colonnes.

Membres de la famille D

Paramètre facultatif qui spécifie l'écart type relatif souhaité de l'estimation.

Il s'agit d'une valeur comprise entre 0 et 1, représentant l'erreur relative maximale acceptable de
l'estimation. Une valeur RelativeSD plus faible se traduira par une estimation plus précise mais
plus lente.

Si ce paramètre n'est pas fourni, une valeur par défaut (généralement autour de 0,05 ou 5 %) est
utilisée.

Renvoie

Renvoie la cardinalité estimée par HyperLogLog ++. RelativeSD définit l'écart type relatif maximal
autorisé.

exemple

La requête suivante estime le nombre de valeurs uniques dans la col1 colonne, avec un écart type
relatif de 1 % (0,01).

SELECT approx_count_distinct(col1, 0.01)

La requête suivante estime que la col1 colonne contient 3 valeurs uniques (les valeurs 1, 2 et 3).

SELECT approx_count_distinct(col1) FROM VALUES (1), (1), (2), (2), (3) tab(col1)

Fonction APPROX PERCENTILE

APPROX PERCENTILE est utilisé pour estimer la valeur percentile d'une expression ou d'une
colonne donnée sans avoir à trier l'ensemble de données dans son intégralité. Cette fonction est utile
dans les scénarios dans lesquels vous devez comprendre rapidement la distribution d'un ensemble
de données volumineux ou suivre des métriques basées sur des percentiles, sans les frais de calcul
liés à un calcul de percentile exact. Cependant, il est important de comprendre les compromis
entre vitesse et précision, et de choisir la tolérance d'erreur appropriée en fonction des exigences
spécifiques de votre cas d'utilisation.

Fonctions d’agrégation 121

AWS Clean Rooms Référence SQL

Syntaxe

APPROX_PERCENTILE(expr, percentile [, accuracy])

Arguments

expr

Expression ou colonne pour laquelle vous souhaitez estimer la valeur du percentile.

Il peut s'agir d'une seule colonne, d'une expression complexe ou d'une combinaison de colonnes.

percentile

La valeur du percentile que vous souhaitez estimer, exprimée sous la forme d'une valeur
comprise entre 0 et 1.

Par exemple, 0,5 correspondrait au 50e percentile (médiane).

précision

Paramètre facultatif qui spécifie la précision souhaitée de l'estimation du percentile. Il s'agit d'une
valeur comprise entre 0 et 1, représentant l'erreur relative maximale acceptable de l'estimation.
Une accuracy valeur inférieure se traduira par une estimation plus précise mais plus lente. Si
ce paramètre n'est pas fourni, une valeur par défaut (généralement autour de 0,05 ou 5 %) est
utilisée.

Renvoie

Renvoie le percentile approximatif de la colonne d'intervalle numérique ou ANSI col qui est la plus
petite valeur parmi les valeurs de col ordonnées (triées de la plus petite à la plus grande), de telle
sorte qu'un pourcentage maximum de valeurs de col ne soit inférieur à la valeur ou égal à cette
valeur.

La valeur du pourcentage doit être comprise entre 0,0 et 1,0. Le paramètre de précision (par défaut :
10000) est un littéral numérique positif qui contrôle la précision des approximations au détriment de la
mémoire.

Une valeur de précision plus élevée donne une meilleure précision, 1.0/accuracy c'est-à-dire
l'erreur relative de l'approximation.

Fonctions d’agrégation 122

AWS Clean Rooms Référence SQL

Lorsque le pourcentage est un tableau, chaque valeur du tableau de pourcentage doit être comprise
entre 0,0 et 1,0. Dans ce cas, renvoie le tableau de percentiles approximatif de la colonne col pour le
tableau de pourcentages donné.

Exemples

La requête suivante estime le 95e percentile de la response_time colonne, avec une erreur relative
maximale de 1 % (0,01).

SELECT APPROX_PERCENTILE(response_time, 0.95, 0.01) AS p95_response_time
FROM my_table;

La requête suivante estime les valeurs des 50e, 40e et 10e percentiles de la col colonne du tableau.
tab

SELECT approx_percentile(col, array(0.5, 0.4, 0.1), 100) FROM VALUES (0), (1), (2),
 (10) AS tab(col)

La requête suivante estime le 50e percentile (médiane) des valeurs de la colonne col.

SELECT approx_percentile(col, 0.5, 100) FROM VALUES (0), (6), (7), (9), (10) AS
 tab(col)

Fonction AVG

La AVG fonction renvoie la moyenne (moyenne arithmétique) des valeurs des expressions d'entrée.
La AVG fonction fonctionne avec des valeurs numériques et ignore les valeurs NULL.

Syntaxe

AVG (column)

Arguments

column

Colonne cible sur laquelle la fonction opère. La colonne est de l'un des types de données
suivants :

• SMALLINT

• INTEGER

Fonctions d’agrégation 123

AWS Clean Rooms Référence SQL

• BIGINT

• DECIMAL

• DOUBLE

• FLOAT

Types de données

Les types d'arguments pris en charge par la AVG fonction sont SMALLINT
INTEGERBIGINT,DECIMAL, etDOUBLE.

Les types de retour pris en charge par la AVG fonction sont les suivants :

• BIGINTpour tout argument de type entier

• DOUBLEpour un argument à virgule flottante

• Renvoie le même type de données que l'expression pour tout autre type d'argument

La précision par défaut pour le résultat d'une AVG fonction avec un DECIMAL argument est de 38.
L’échelle du résultat est identique à celle de l’argument. Par exemple, AVG une DEC(5,2) colonne
renvoie un type de DEC(38,2) données.

exemple

Trouvez la quantité moyenne vendue par transaction dans le SALES tableau.

select avg(qtysold) from sales;

Fonction BOOL_AND

La fonction BOOL_AND opère sur une seule colonne ou expression booléenne ou entière. Elle
applique une logique similaire aux fonctions BIT_AND et BIT_OR. Pour cette fonction, le type de
retour est une valeur booléenne (true ou false).

Si toutes les valeurs d’un ensemble sont true, la fonction BOOL_AND renvoie true (t). Si une valeur
est false, la fonction renvoie false (f).

Syntaxe

BOOL_AND ([DISTINCT | ALL] expression)

Fonctions d’agrégation 124

AWS Clean Rooms Référence SQL

Arguments

expression

Colonne cible ou expression sur laquelle la fonction opère. Cette expression doit comporter un
type de données BOOLEAN ou nombre entier. Le type de retour de la fonction est BOOLEAN.

DISTINCT | ALL

Avec l’argument DISTINCT, la fonction supprime toutes les valeurs en double de l’expression
spécifiée avant de calculer le résultat. Avec l’argument ALL, la fonction conserve toutes les
valeurs en double. La valeur par défaut est ALL.

Exemples

Vous pouvez utiliser les fonctions booléennes par rapport à des expressions booléennes ou à des
expressions de type nombre entier.

Par exemple, la requête suivante renvoie les résultats de la table USERS standard de la base de
données TICKIT, qui comporte plusieurs colonnes booléennes.

La fonction BOOL_AND renvoie false pour les cinq lignes. Tous les utilisateurs de chacun de ces
états n’aiment pas le sport.

select state, bool_and(likesports) from users
group by state order by state limit 5;

state | bool_and
------+---------
AB | f
AK | f
AL | f
AZ | f
BC | f
(5 rows)

Fonction BOOL_OR

La fonction BOOL_OR opère sur une seule colonne ou expression booléenne ou entière. Elle
applique une logique similaire aux fonctions BIT_AND et BIT_OR. Pour cette fonction, le type de
retour est une valeur booléenne (true, false ou NULL).

Fonctions d’agrégation 125

AWS Clean Rooms Référence SQL

Si une valeur d’un ensemble est true, la fonction BOOL_OR renvoie true (t). Si une valeur d’un
ensemble est false, la fonction renvoie false (f). La valeur NULL peut être renvoyée si la valeur
est inconnue.

Syntaxe

BOOL_OR ([DISTINCT | ALL] expression)

Arguments

expression

Colonne cible ou expression sur laquelle la fonction opère. Cette expression doit comporter un
type de données BOOLEAN ou nombre entier. Le type de retour de la fonction est BOOLEAN.

DISTINCT | ALL

Avec l’argument DISTINCT, la fonction supprime toutes les valeurs en double de l’expression
spécifiée avant de calculer le résultat. Avec l’argument ALL, la fonction conserve toutes les
valeurs en double. La valeur par défaut est ALL.

Exemples

Vous pouvez utiliser les fonctions booléennes avec des expressions booléennes ou des expressions
de type nombre entier. Par exemple, la requête suivante renvoie les résultats de la table USERS
standard de la base de données TICKIT, qui comporte plusieurs colonnes booléennes.

La fonction BOOL_OR renvoie true pour les cinq lignes. Au moins un utilisateur de chacun de ces
états aime le sport.

select state, bool_or(likesports) from users
group by state order by state limit 5;

state | bool_or
------+--------
AB | t
AK | t
AL | t
AZ | t
BC | t
(5 rows)

Fonctions d’agrégation 126

AWS Clean Rooms Référence SQL

L’exemple suivant renvoie la valeur NULL.

SELECT BOOL_OR(NULL = '123')
 bool_or

NULL

Fonction CARDINALITY

La fonction CARDINALITY renvoie la taille d'une expression ARRAY ou MAP (expr).

Cette fonction est utile pour déterminer la taille ou la longueur d'un tableau.

Syntaxe

cardinality(expr)

Arguments

expr

Expression ARRAY ou MAP.

Renvoie

Renvoie la taille d'un tableau ou d'une carte (INTEGER).

La fonction renvoie NULL une entrée nulle si elle sizeOfNull est définie sur false ou enabled est
définie surtrue.

Dans le cas contraire, la fonction renvoie -1 une entrée nulle. Avec les paramètres par défaut, la
fonction renvoie -1 une entrée nulle.

exemple

La requête suivante calcule la cardinalité, ou le nombre d'éléments, dans le tableau donné. Le
tableau ('b', 'd', 'c', 'a') comporte 4 éléments, donc le résultat de cette requête serait4.

SELECT cardinality(array('b', 'd', 'c', 'a'));
 4

Fonctions d’agrégation 127

AWS Clean Rooms Référence SQL

Fonction COLLECT_LIST

La fonction COLLECT_LIST collecte et renvoie une liste d'éléments non uniques.

Ce type de fonction est utile lorsque vous souhaitez collecter plusieurs valeurs d'un ensemble de
lignes dans une seule structure de données de type tableau ou liste.

Note

La fonction n'est pas déterministe car l'ordre des résultats collectés dépend de l'ordre des
lignes, qui peut être non déterministe après l'exécution d'une opération de brassage.

Syntaxe

collect_list(expr)

Arguments

expr

Expression de n'importe quel type.

Renvoie

Renvoie un ARRAY du type d'argument. L'ordre des éléments du tableau n'est pas déterministe.

Les valeurs NULL sont exclues.

Si DISTINCT est spécifié, la fonction collecte uniquement des valeurs uniques et est synonyme de
fonction d'collect_set agrégation.

exemple

La requête suivante rassemble toutes les valeurs de la colonne col dans une liste. La VALUES clause
est utilisée pour créer un tableau en ligne de trois lignes, où chaque ligne possède une seule colonne
col avec les valeurs 1, 2 et 1 respectivement. La collect_list() fonction est ensuite utilisée
pour agréger toutes les valeurs de la colonne col dans un seul tableau. La sortie de cette instruction
SQL serait le tableau[1,2,1], qui contient toutes les valeurs de la colonne col dans l'ordre dans
lequel elles apparaissent dans les données d'entrée.

Fonctions d’agrégation 128

AWS Clean Rooms Référence SQL

SELECT collect_list(col) FROM VALUES (1), (2), (1) AS tab(col);
 [1,2,1]

Fonction COLLECT_SET

La fonction COLLECT_SET collecte et renvoie un ensemble d'éléments uniques.

Cette fonction est utile lorsque vous souhaitez collecter toutes les valeurs distinctes d'un ensemble
de lignes dans une structure de données unique, sans inclure de doublons.

Note

La fonction n'est pas déterministe car l'ordre des résultats collectés dépend de l'ordre des
lignes, qui peut être non déterministe après l'exécution d'une opération de brassage.

Syntaxe

collect_set(expr)

Arguments

expr

Expression de n'importe quel type sauf MAP.

Renvoie

Renvoie un ARRAY du type d'argument. L'ordre des éléments du tableau n'est pas déterministe.

Les valeurs NULL sont exclues.

exemple

La requête suivante rassemble toutes les valeurs uniques de la colonne col dans un ensemble. La
VALUES clause est utilisée pour créer un tableau en ligne de trois lignes, où chaque ligne possède
une seule colonne col avec les valeurs 1, 2 et 1 respectivement. La collect_set() fonction est
ensuite utilisée pour agréger toutes les valeurs uniques de la colonne col en un seul ensemble. Le
résultat de cette instruction SQL serait le set[1,2], qui contient les valeurs uniques de la colonne
col. La valeur dupliquée de 1 n'est incluse qu'une seule fois dans le résultat.

Fonctions d’agrégation 129

AWS Clean Rooms Référence SQL

SELECT collect_set(col) FROM VALUES (1), (2), (1) AS tab(col);
 [1,2]

COUNTet COUNT DISTINCT fonctions

La COUNT fonction compte les lignes définies par l'expression. La COUNT DISTINCT fonction
calcule le nombre de valeurs non nulles distinctes dans une colonne ou une expression. Il élimine
toutes les valeurs dupliquées de l'expression spécifiée avant de procéder au décompte.

Syntaxe

COUNT (DISTINCT column)

Arguments

column

Colonne cible sur laquelle la fonction opère.

Types de données

La COUNT fonction et la COUNT DISTINCT fonction prennent en charge tous les types de données
d'arguments.

La COUNT DISTINCT fonction revientBIGINT.

Exemples

Comptez tous les utilisateurs de l'État de Floride.

select count (identifier) from users where state='FL';

Comptez tous les lieux uniques IDs à partir de la EVENT table.

select count (distinct venueid) as venues from event;

Fonction COUNT

La fonction COUNT compte les lignes définies par l’expression.

Fonctions d’agrégation 130

AWS Clean Rooms Référence SQL

La fonction COUNT présente les variantes suivantes.

• COUNT (*) compte toutes les lignes de la table cible, qu’elles comprennent des valeurs null ou non.

• COUNT (expression) calcule le nombre de lignes avec des valeurs non NULL dans une colonne
ou une expression spécifique.

• COUNT (DISTINCT expression) calcule le nombre de valeurs non NULL distinctes dans une
colonne ou une expression.

Syntaxe

COUNT(* | expression)

COUNT ([DISTINCT | ALL] expression)

Arguments

expression

Colonne cible ou expression sur laquelle la fonction opère. La fonction COUNT prend en charge
tous les types de données d’argument.

DISTINCT | ALL

Avec l’argument DISTINCT, la fonction supprime toutes les valeurs en double dans l’expression
spécifiée avant d’effectuer le compte. Avec l’argument ALL, la fonction conserve toutes les valeurs
en double de l’expression pour le compte. La valeur par défaut est ALL.

Type de retour

La fonction COUNT renvoie BIGINT.

Exemples

Pour compter tous les utilisateurs de l’état de Floride :

select count(*) from users where state='FL';

count

Fonctions d’agrégation 131

AWS Clean Rooms Référence SQL

510

Comptez tous les noms d’événements de la table EVENT :

select count(eventname) from event;

count

8798

Comptez tous les noms d’événements de la table EVENT :

select count(all eventname) from event;

count

8798

Comptez tous les lieux uniques dans le tableau IDs des ÉVÉNEMENTS :

select count(distinct venueid) as venues from event;

venues

204

Pour compter le nombre de fois où chaque vendeur a répertorié des lots de plus de quatre billets en
vente. Pour regrouper les résultats de l’ID du vendeur :

select count(*), sellerid from listing
where numtickets > 4
group by sellerid
order by 1 desc, 2;

count | sellerid
------+----------
12 | 6386
11 | 17304
11 | 20123
11 | 25428
...

Fonctions d’agrégation 132

AWS Clean Rooms Référence SQL

Fonction MAX

La fonction MAX renvoie la valeur maximale d’un ensemble de lignes. La fonction DISTINCT ou ALL
peut être utilisée, mais elle n’affecte pas le résultat.

Syntaxe

MAX ([DISTINCT | ALL] expression)

Arguments

expression

Colonne cible ou expression sur laquelle la fonction opère. L'expression est un type de données
numérique quelconque.

DISTINCT | ALL

Avec l’argument DISTINCT, la fonction supprime toutes les valeurs en double dans l’expression
spécifiée avant de calculer la valeur maximale. Avec l’argument ALL, la fonction conserve toutes
les valeurs en double de l’expression pour calculer la valeur maximale. La valeur par défaut est
ALL.

Types de données

Renvoie le même type de données que expression.

Exemples

Recherchez le prix le plus élevé payé de toutes les ventes :

select max(pricepaid) from sales;

max

12624.00
(1 row)

Pour trouver le prix le plus élevé payé par billet de toutes les ventes :

select max(pricepaid/qtysold) as max_ticket_price

Fonctions d’agrégation 133

AWS Clean Rooms Référence SQL

from sales;

max_ticket_price

2500.00000000
(1 row)

Fonction MEDIAN

Syntaxe

MEDIAN (median_expression)

Arguments

median_expression

Colonne cible ou expression sur laquelle la fonction opère.

Fonction MIN

La fonction MIN renvoie la valeur minimale d’un ensemble de lignes. La fonction DISTINCT ou ALL
peut être utilisée, mais elle n’affecte pas le résultat.

Syntaxe

MIN ([DISTINCT | ALL] expression)

Arguments

expression

Colonne cible ou expression sur laquelle la fonction opère. L'expression est un type de données
numérique quelconque.

DISTINCT | ALL

Avec l’argument DISTINCT, la fonction supprime toutes les valeurs en double dans l’expression
spécifiée avant de calculer la valeur minimale. Avec l’argument ALL, la fonction conserve toutes
les valeurs en double de l’expression pour calculer la valeur minimale. La valeur par défaut est
ALL.

Fonctions d’agrégation 134

AWS Clean Rooms Référence SQL

Types de données

Renvoie le même type de données que expression.

Exemples

Pour trouver le prix le plus bas payé de toutes les ventes :

select min(pricepaid) from sales;

min

20.00
(1 row)

Pour trouver le prix le plus bas payé par billet de toutes les ventes :

select min(pricepaid/qtysold)as min_ticket_price
from sales;

min_ticket_price

20.00000000
(1 row)

Fonction PERCENTILE

La fonction PERCENTILE est utilisée pour calculer la valeur percentile exacte en triant d'abord les
valeurs dans la col colonne, puis en recherchant la valeur spécifiée. percentage

La fonction PERCENTILE est utile lorsque vous devez calculer la valeur exacte du percentile et que
le coût de calcul est acceptable pour votre cas d'utilisation. Elle fournit des résultats plus précis que
la fonction APPROX_PERCENTILE, mais elle peut être plus lente, en particulier pour les grands
ensembles de données.

En revanche, la fonction APPROX_PERCENTILE est une alternative plus efficace qui peut fournir
une estimation de la valeur du percentile avec une tolérance d'erreur spécifiée, ce qui la rend plus
adaptée aux scénarios où la vitesse est une priorité supérieure à la précision absolue.

Syntaxe

percentile(col, percentage [, frequency])

Fonctions d’agrégation 135

AWS Clean Rooms Référence SQL

Arguments

col

Expression ou colonne pour laquelle vous souhaitez calculer la valeur du percentile.

pourcentage

La valeur du percentile que vous souhaitez calculer, exprimée sous la forme d'une valeur
comprise entre 0 et 1.

Par exemple, 0,5 correspondrait au 50e percentile (médiane).

fréquence

Paramètre facultatif qui spécifie la fréquence ou le poids de chaque valeur de la col colonne. S'il
est fourni, la fonction calculera le percentile en fonction de la fréquence de chaque valeur.

Renvoie

Renvoie la valeur percentile exacte de la colonne d'intervalle numérique ou ANSI col au pourcentage
donné.

La valeur du pourcentage doit être comprise entre 0,0 et 1,0.

La valeur de la fréquence doit être une intégrale positive

exemple

La requête suivante trouve la valeur supérieure ou égale à 30 % des valeurs de la col colonne. Les
valeurs étant 0 et 10, le 30e percentile est de 3,0, car il s'agit de la valeur supérieure ou égale à 30 %
des données.

SELECT percentile(col, 0.3) FROM VALUES (0), (10) AS tab(col);
 3.0

Fonction SKEWNESS

La fonction SKEWNESS renvoie la valeur d'asymétrie calculée à partir des valeurs d'un groupe.

L'asymétrie est une mesure statistique qui décrit l'asymétrie ou le manque de symétrie d'un ensemble
de données. Il fournit des informations sur la forme de la distribution des données.

Fonctions d’agrégation 136

AWS Clean Rooms Référence SQL

Cette fonction peut être utile pour comprendre les propriétés statistiques d'un ensemble de données
et éclairer les analyses ultérieures ou la prise de décision.

Syntaxe

skewness(expr)

Arguments

expr

Expression dont l'évaluation est une valeur numérique.

Renvoie

Renvoie DOUBLE.

Si DISTINCT est spécifié, la fonction ne fonctionne que sur un ensemble unique de valeurs expr.

Exemples

La requête suivante calcule l'asymétrie des valeurs de la colonne. col Dans cet exemple, la VALUES
clause est utilisée pour créer un tableau en ligne de quatre lignes, où chaque ligne possède une
seule colonne col avec les valeurs -10, -20, 100 et 1000. La skewness() fonction est ensuite
utilisée pour calculer l'asymétrie des valeurs de la colonne. col Le résultat, 1,1135657469022011,
représente le degré et la direction de l'asymétrie des données. Une valeur d'asymétrie positive
indique que les données sont inclinées vers la droite, la majeure partie des valeurs étant concentrée
sur le côté gauche de la distribution. Une valeur d'asymétrie négative indique que les données
sont inclinées vers la gauche, la majeure partie des valeurs étant concentrée sur le côté droit de la
distribution.

SELECT skewness(col) FROM VALUES (-10), (-20), (100), (1000) AS tab(col);
 1.1135657469022011

La requête suivante calcule l'asymétrie des valeurs de la colonne col. Comme dans l'exemple
précédent, la VALUES clause est utilisée pour créer un tableau en ligne de quatre lignes, où chaque
ligne possède une seule colonne col avec les valeurs -1000, -100, 10 et 20. La skewness()
fonction est ensuite utilisée pour calculer l'asymétrie des valeurs de la colonne. col Le résultat,
-1,1135657469022011, représente le degré et la direction de l'asymétrie des données. Dans ce cas,

Fonctions d’agrégation 137

AWS Clean Rooms Référence SQL

la valeur d'asymétrie négative indique que les données sont inclinées vers la gauche, la majeure
partie des valeurs étant concentrée sur le côté droit de la distribution.

SELECT skewness(col) FROM VALUES (-1000), (-100), (10), (20) AS tab(col);
 -1.1135657469022011

Fonctions STDDEV_SAMP et STDDEV_POP

Les fonctions STDDEV_SAMP et STDDEV_POP renvoient l’écart type entre l’échantillon et la
population d’un ensemble de valeurs numériques (nombre entier, décimale ou à virgule flottante). Le
résultat de la fonction STDDEV_SAMP est équivalent à la racine carré de la variance de l’échantillon
du même ensemble de valeurs.

STDDEV_SAMP et STDDEV sont des synonymes de la même fonction.

Syntaxe

STDDEV_SAMP | STDDEV ([DISTINCT | ALL] expression) STDDEV_POP ([DISTINCT |
 ALL] expression)

L'expression doit avoir un type de données numérique. Quel que soit le type de données de
l’expression, le type de retour de cette fonction est un nombre double précision.

Note

L’écart type est calculé à l’aide de l’arithmétique à virgule flottante, qui peut se traduire par
une légère imprécision.

Notes d’utilisation

Lorsque l’écart type de l’échantillon (STDDEV ou STDDEV_SAMP) est calculé pour une expression
qui se compose d’une seule valeur, le résultat de la fonction est NULL, pas 0.

Exemples

La requête suivante renvoie la moyenne des valeurs de la colonne VENUESEATS de la table
VENUE, suivie par l’écart type de l’échantillon et l’écart type de la population du même ensemble de
valeurs. VENUESEATS est une colonne INTEGER. L’échelle du résultat est réduite à 2 chiffres.

select avg(venueseats),

Fonctions d’agrégation 138

AWS Clean Rooms Référence SQL

cast(stddev_samp(venueseats) as dec(14,2)) stddevsamp,
cast(stddev_pop(venueseats) as dec(14,2)) stddevpop
from venue;

avg | stddevsamp | stddevpop
-------+------------+-----------
17503 | 27847.76 | 27773.20
(1 row)

La requête suivante renvoie l’écart type de l’échantillon pour la colonne COMMISSION de la table
SALES. COMMISSION est une virgule DECIMAL. L’échelle du résultat est réduite à 10 chiffres.

select cast(stddev(commission) as dec(18,10))
from sales;

stddev

130.3912659086
(1 row)

La requête suivante convertit l’écart type de l’échantillon de la colonne COMMISSION en un nombre
entier.

select cast(stddev(commission) as integer)
from sales;

stddev

130
(1 row)

La requête suivante renvoie l’écart type de l’échantillon et la racine carré de la variance de
l’échantillon pour la colonne COMMISSION. Les résultats de ces calculs sont identiques.

select
cast(stddev_samp(commission) as dec(18,10)) stddevsamp,
cast(sqrt(var_samp(commission)) as dec(18,10)) sqrtvarsamp
from sales;

stddevsamp | sqrtvarsamp
----------------+----------------

Fonctions d’agrégation 139

AWS Clean Rooms Référence SQL

130.3912659086 | 130.3912659086
(1 row)

SUMet SUM DISTINCT fonctions

La SUM fonction renvoie la somme des valeurs de colonne ou d'expression en entrée. La SUM
fonction fonctionne avec des valeurs numériques et ignore NULL les valeurs.

La SUM DISTINCT fonction élimine toutes les valeurs dupliquées de l'expression spécifiée avant de
calculer la somme.

Syntaxe

SUM (DISTINCT column)

Arguments

column

Colonne cible sur laquelle la fonction opère. La colonne contient tous les types de données
numériques.

Exemples

Trouvez la somme de toutes les commissions payées dans le SALES tableau.

select sum(commission) from sales

Trouvez la somme de toutes les commissions distinctes payées dans le SALES tableau.

select sum (distinct (commission)) from sales

Fonctions VAR_SAMP et VAR_POP

Les fonctions VAR_SAMP et VAR_POP renvoient la variance entre l’échantillon et la population d’un
ensemble de valeurs numériques (nombre entier, décimale ou à virgule flottante). Le résultat de la
fonction VAR_SAMP est équivalent au carré de l’écart type de l’échantillon du même ensemble de
valeurs.

VAR_SAMP et VARIANCE sont des synonymes de la même fonction.

Fonctions d’agrégation 140

AWS Clean Rooms Référence SQL

Syntaxe

VAR_SAMP | VARIANCE ([DISTINCT | ALL] expression)
VAR_POP ([DISTINCT | ALL] expression)

L’expression doit comporter un type de données de nombre entier, décimale ou à virgule flottante.
Quel que soit le type de données de l’expression, le type de retour de cette fonction est un nombre
double précision.

Note

Les résultats de ces fonctions peuvent varier entre les clusters d’entrepôts des données, en
fonction de la configuration du cluster dans chaque cas.

Notes d’utilisation

Lorsque l’écart type de l’échantillon (VARIANCE ou VAR_SAMP) est calculé pour une expression qui
se compose d’une valeur unique, le résultat de la fonction est NULL pas 0.

Exemples

La requête suivante renvoie la variance arrondie entre l’échantillon et la population de la colonne
NUMTICKETS dans la table LISTING.

select avg(numtickets),
round(var_samp(numtickets)) varsamp,
round(var_pop(numtickets)) varpop
from listing;

avg | varsamp | varpop
-----+---------+--------
10 | 54 | 54
(1 row)

La requête suivante exécute les mêmes calculs mais traduit les résultats en valeur décimales.

select avg(numtickets),
cast(var_samp(numtickets) as dec(10,4)) varsamp,
cast(var_pop(numtickets) as dec(10,4)) varpop

Fonctions d’agrégation 141

AWS Clean Rooms Référence SQL

from listing;

avg | varsamp | varpop
-----+---------+---------
10 | 53.6291 | 53.6288
(1 row)

Fonctions de tableau

Cette section décrit les fonctions de tableau pour SQL prises en charge dans AWS Clean Rooms.

Rubriques

• Fonction ARRAY

• Fonction ARRAY_CONTAINS

• Fonction ARRAY_DISTINCT

• Fonction ARRAY_EXCEPT

• Fonction ARRAY_INTERSECT

• Fonction ARRAY_JOIN

• Fonction ARRAY_REMOVE

• Fonction ARRAY_UNION

• Fonction EXPLODE

• Fonction FLATTEN

Fonction ARRAY

Crée un tableau avec les éléments donnés.

Syntaxe

ARRAY([expr1] [, expr2 [, ...]])

Argument

expr1, expr2

Expressions de tous types de données, à l'exception des types de date et d'heure. Les arguments
ne doivent pas nécessairement être du même type de données.

Fonctions de tableau 142

AWS Clean Rooms Référence SQL

Type de retour

La fonction array renvoie un ARRAY contenant les éléments de l'expression.

exemple

L'exemple suivant montre un tableau de valeurs numériques et un tableau de différents types de
données.

--an array of numeric values
select array(1,50,null,100);
 array

 [1,50,null,100]
(1 row)

--an array of different data types
select array(1,'abc',true,3.14);
 array

 [1,"abc",true,3.14]
(1 row)

Fonction ARRAY_CONTAINS

La fonction ARRAY_CONTAINS peut être utilisée pour effectuer des vérifications d'appartenance de
base sur les structures de données des tableaux. La fonction ARRAY_CONTAINS est utile lorsque
vous devez vérifier si une valeur spécifique est présente dans un tableau.

Syntaxe

array_contains(array, value)

Arguments

réseau

Un ARRAY à rechercher.

valeur

Expression dont le type partage le type le moins courant avec les éléments du tableau.

Fonctions de tableau 143

AWS Clean Rooms Référence SQL

Type de retour

La fonction ARRAY_CONTAINS renvoie une valeur BOOLEAN.

Si la valeur est NULL, le résultat est NULL.

Si un élément du tableau est NULL, le résultat est NULL si la valeur ne correspond à aucun autre
élément.

Exemples

L'exemple suivant vérifie si le tableau [1, 2, 3] contient la valeur4. Comme le [1, 2, 3 [array]
ne contient pas la valeur4, la fonction array_contains revient. false

SELECT array_contains(array(1, 2, 3), 4)
false

L'exemple suivant vérifie si le tableau [1, 2, 3] contient la valeur2. Comme le tableau [1, 2, 3]
contient la valeur2, la fonction array_contains est renvoyée. true

SELECT array_contains(array(1, 2, 3), 2);
 true

Fonction ARRAY_DISTINCT

La fonction ARRAY_DISTINCT peut être utilisée pour supprimer les valeurs dupliquées d'un tableau.
La fonction ARRAY_DISTINCT est utile lorsque vous devez supprimer les doublons d'un tableau et
utiliser uniquement les éléments uniques. Cela peut être utile dans les scénarios où vous souhaitez
effectuer des opérations ou des analyses sur un ensemble de données sans l'interférence de valeurs
répétées.

Syntaxe

array_distinct(array)

Arguments

réseau

Expression ARRAY.

Fonctions de tableau 144

AWS Clean Rooms Référence SQL

Type de retour

La fonction ARRAY_DISTINCT renvoie un ARRAY contenant uniquement les éléments uniques du
tableau d'entrée.

Exemples

Dans cet exemple, le tableau d'entrée [1, 2, 3, null, 3] contient une valeur dupliquée de3.
La array_distinct fonction supprime cette valeur dupliquée 3 et renvoie un nouveau tableau
contenant les éléments uniques :[1, 2, 3, null].

SELECT array_distinct(array(1, 2, 3, null, 3));
 [1,2,3,null]

Dans cet exemple, le tableau d'entrée [1, 2, 2, 3, 3, 3] contient des valeurs dupliquées de 2
et3. La array_distinct fonction supprime ces doublons et renvoie un nouveau tableau avec les
éléments uniques :. [1, 2, 3]

SELECT array_distinct(array(1, 2, 2, 3, 3, 3))
 [1,2,3]

Fonction ARRAY_EXCEPT

La fonction ARRAY_EXCEPT prend deux tableaux comme arguments et renvoie un nouveau tableau
contenant uniquement les éléments présents dans le premier tableau, mais pas dans le second
tableau.

Le ARRAY_EXCEPT est utile lorsque vous devez trouver les éléments uniques d'un tableau par
rapport à un autre. Cela peut être utile dans les scénarios où vous devez effectuer des opérations
similaires à des ensembles sur des tableaux, telles que la recherche de la différence entre deux
ensembles de données.

Syntaxe

array_except(array1, array2)

Arguments

matrice1

Un ARRAY de n'importe quel type avec des éléments comparables.

Fonctions de tableau 145

AWS Clean Rooms Référence SQL

tableau 2

Un TABLEAU d'éléments partageant le type le moins commun avec les éléments de array1.

Type de retour

La fonction ARRAY_EXCEPT renvoie un ARRAY de type correspondant à array1 sans doublons.

Exemples

Dans cet exemple, le premier tableau [1, 2, 3] contient les éléments 1, 2 et 3. Le second tableau
[2, 3, 4] contient les éléments 2, 3 et 4. La array_except fonction supprime les éléments 2 et 3
du premier tableau, puisqu'ils sont également présents dans le second tableau. Le résultat obtenu est
le tableau[1].

SELECT array_except(array(1, 2, 3), array(2, 3, 4))
 [1]

Dans cet exemple, le premier tableau [1, 2, 3] contient les éléments 1, 2 et 3. Le second tableau
[1, 3, 5] contient les éléments 1, 3 et 5. La array_except fonction supprime les éléments 1 et 3
du premier tableau, puisqu'ils sont également présents dans le second tableau. Le résultat obtenu est
le tableau[2].

SELECT array_except(array(1, 2, 3), array(1, 3, 5));
 [2]

Fonction ARRAY_INTERSECT

La fonction ARRAY_INTERSECT prend deux tableaux comme arguments et renvoie un nouveau
tableau contenant les éléments présents dans les deux tableaux d'entrée. Cette fonction est utile
lorsque vous devez trouver les éléments communs entre deux tableaux. Cela peut être utile dans les
scénarios où vous devez effectuer des opérations similaires à des ensembles sur des tableaux, telles
que la recherche de l'intersection entre deux ensembles de données.

Syntaxe

array_intersect(array1, array2)

Fonctions de tableau 146

AWS Clean Rooms Référence SQL

Arguments

matrice1

Un ARRAY de n'importe quel type avec des éléments comparables.

tableau 2

Un TABLEAU d'éléments partageant le type le moins commun avec les éléments de array1.

Type de retour

La fonction ARRAY_INTERSECT renvoie un ARRAY de type correspondant à array1 sans doublons
et sans éléments contenus à la fois dans array1 et array2.

Exemples

Dans cet exemple, le premier tableau [1, 2, 3] contient les éléments 1, 2 et 3. Le second tableau
[1, 3, 5] contient les éléments 1, 3 et 5. La fonction ARRAY_INTERSECT identifie les éléments
communs entre les deux tableaux, à savoir 1 et 3. Le tableau de sortie résultant est[1, 3].

SELECT array_intersect(array(1, 2, 3), array(1, 3, 5));
 [1,3]

Fonction ARRAY_JOIN

La fonction ARRAY_JOIN prend deux arguments : le premier argument est le tableau d'entrée qui
sera joint. Le deuxième argument est la chaîne de séparation qui sera utilisée pour concaténer les
éléments du tableau. Cette fonction est utile lorsque vous devez convertir un tableau de chaînes (ou
tout autre type de données) en une seule chaîne concaténée. Cela peut être utile dans les scénarios
où vous souhaitez présenter un tableau de valeurs sous la forme d'une seule chaîne formatée, par
exemple à des fins d'affichage ou pour un traitement ultérieur.

Syntaxe

array_join(array, delimiter[, nullReplacement])

Arguments

réseau

N'importe quel type ARRAY, mais ses éléments sont interprétés comme des chaînes.

Fonctions de tableau 147

AWS Clean Rooms Référence SQL

delimiter

Une CHAÎNE utilisée pour séparer les éléments du tableau concaténé.

Remplacement nul

Chaîne utilisée pour exprimer une valeur NULL dans le résultat.

Type de retour

La fonction ARRAY_JOIN renvoie une chaîne dans laquelle les éléments du tableau sont séparés
par un délimiteur et les éléments nuls sont remplacés par des éléments nuls. nullReplacement Si
nullReplacement ce paramètre est omis, null les éléments sont filtrés. Si un argument l'estNULL,
le résultat estNULL.

Exemples

Dans cet exemple, la fonction ARRAY_JOIN prend le tableau ['hello', 'world'] et
joint les éléments à l'aide du séparateur ' ' (un espace). Le résultat obtenu est la chaîne de
caractères'hello world'.

SELECT array_join(array('hello', 'world'), ' ');
 hello world

Dans cet exemple, la fonction ARRAY_JOIN prend le tableau ['hello', null, 'world'] et joint
les éléments à l'aide du séparateur ' ' (un espace). La null valeur est remplacée par la chaîne de
remplacement fournie ',' (une virgule). Le résultat obtenu est la chaîne de caractères'hello ,
world'.

SELECT array_join(array('hello', null ,'world'), ' ', ',');
 hello , world

Fonction ARRAY_REMOVE

La fonction ARRAY_REMOVE accepte deux arguments : le premier argument est le tableau d'entrée
dont les éléments seront supprimés. Le deuxième argument est la valeur qui sera supprimée du
tableau. Cette fonction est utile lorsque vous devez supprimer des éléments spécifiques d'un tableau.
Cela peut être utile dans les scénarios où vous devez effectuer un nettoyage ou un prétraitement des
données sur un tableau de valeurs.

Fonctions de tableau 148

AWS Clean Rooms Référence SQL

Syntaxe

array_remove(array, element)

Arguments

réseau

Un ARRAY.

élément

Expression d'un type partageant le type le moins commun avec les éléments du tableau.

Type de retour

La fonction ARRAY_REMOVE renvoie le type de résultat correspondant au type du tableau. Si
l'élément à supprimer l'estNULL, le résultat estNULL.

Exemples

Dans cet exemple, la fonction ARRAY_REMOVE prend le tableau [1, 2, 3, null, 3] et
supprime toutes les occurrences de la valeur 3. Le résultat obtenu est le tableau[1, 2, null].

SELECT array_remove(array(1, 2, 3, null, 3), 3);
 [1,2,null]

Fonction ARRAY_UNION

La fonction ARRAY_UNION prend deux tableaux comme arguments et renvoie un nouveau tableau
contenant les éléments uniques des deux tableaux d'entrée. Cette fonction est utile lorsque vous
devez combiner deux tableaux et éliminer les éléments dupliqués. Cela peut être utile dans les
scénarios où vous devez effectuer des opérations similaires à des ensembles sur des tableaux, telles
que la recherche de l'union entre deux ensembles de données.

Syntaxe

array_union(array1, array2)

Fonctions de tableau 149

AWS Clean Rooms Référence SQL

Arguments

matrice1

Un ARRAY.

tableau 2

Un ARRAY du même type que array1.

Type de retour

La fonction ARRAY_UNION renvoie un ARRAY du même type qu'un tableau.

exemple

Dans cet exemple, le premier tableau [1, 2, 3] contient les éléments 1, 2 et 3. Le second tableau
[1, 3, 5] contient les éléments 1, 3 et 5. La fonction ARRAY_UNION combine les éléments
uniques des deux tableaux pour obtenir le tableau de sortie. [1, 2, 3, 5] T

SELECT array_union(array(1, 2, 3), array(1, 3, 5));
 [1,2,3,5]

Fonction EXPLODE

La fonction EXPLODE est utilisée pour transformer une seule ligne contenant un tableau ou une
colonne de carte en plusieurs lignes, chaque ligne correspondant à un seul élément du tableau ou de
la carte.

Syntaxe

explode(expr)

Arguments

expr

Expression matricielle ou expression cartographique.

Fonctions de tableau 150

AWS Clean Rooms Référence SQL

Type de retour

La fonction EXPLODE renvoie un ensemble de lignes, chaque ligne représentant un élément unique
du tableau ou de la carte en entrée.

Le type de données des lignes de sortie dépend du type de données des éléments du tableau ou de
la carte en entrée.

Exemples

L'exemple suivant prend le tableau à une seule ligne [10, 20] et le transforme en deux lignes
distinctes, chacune contenant l'un des éléments du tableau (10 et 20).

SELECT explode(array(10, 20));

Dans le premier exemple, le tableau d'entrée a été directement transmis en tant qu'argument
àexplode(). Dans cet exemple, le tableau d'entrée est spécifié à l'aide de la => syntaxe, où le nom
de colonne (collection) est explicitement fourni.

SELECT explode(array(10, 20));

Les deux approches sont valides et permettent d'obtenir le même résultat, mais la seconde syntaxe
peut être plus utile lorsque vous devez faire exploser une colonne d'un ensemble de données plus
important, plutôt qu'un simple tableau littéral.

Fonction FLATTEN

La fonction FLATTEN est utilisée pour « aplatir » une structure de tableau imbriqué en un seul
tableau plat.

Syntaxe

flatten(arrayOfArrays)

Arguments

arrayOfArrays

Un tableau de tableaux.

Fonctions de tableau 151

AWS Clean Rooms Référence SQL

Type de retour

La fonction FLATTEN renvoie un tableau.

exemple

Dans cet exemple, l'entrée est un tableau imbriqué avec deux tableaux internes, et la sortie est un
seul tableau plat contenant tous les éléments des tableaux internes. La fonction FLATTEN prend le
tableau imbriqué [[1, 2], [3, 4]] et combine tous les éléments en un seul tableau. [1, 2, 3,
4]

SELECT flatten(array(array(1, 2), array(3, 4)));
 [1,2,3,4]

Expressions conditionnelles

En SQL, les expressions conditionnelles sont utilisées pour prendre des décisions en fonction de
certaines conditions. Ils vous permettent de contrôler le flux de vos instructions SQL et de renvoyer
différentes valeurs ou d'effectuer différentes actions en fonction de l'évaluation d'une ou de plusieurs
conditions.

AWS Clean Rooms prend en charge les expressions conditionnelles suivantes :

Rubriques

• Expression conditionnelle CASE

• COALESCEexpression

• La plus grande et la moins grande expression

• Expression IF

• Expression IS_NULL

• Expression IS_NOT_NULL

• Fonctions NVL et COALESCE

• NVL2 fonction

• Fonction NULLIF

Expressions conditionnelles 152

AWS Clean Rooms Référence SQL

Expression conditionnelle CASE

L'expression CASE est une expression conditionnelle, similaire aux if/then/else instructions trouvées
dans d'autres langages. L’expression CASE est utilisée pour spécifier un résultat lorsqu’il y a
plusieurs conditions. Utilisez CASE là où l’utilisation d’une expression SQL est valide, par exemple
dans une commande SELECT.

Il existe deux types d’expressions CASE : simple et recherchée.

• Dans les expressions CASE simples, une expression est comparée à une valeur. Lorsqu’une
correspondance est trouvée, l’action spécifiée dans la clause THEN est appliquée. Si aucune
correspondance n’est trouvée, l’action de la clause ELSE est appliquée.

• Dans les expressions CASE recherchées, chaque expression CASE est évaluée en fonction d’une
expression booléenne, et l’instruction CASE renvoie la première expression CASE correspondante.
Si aucune correspondance n’est trouvée parmi les clauses WHEN, l’action contenue dans la clause
ELSE est renvoyée.

Syntaxe

Instruction CASE simple utilisée pour mettre en correspondance des conditions :

CASE expression
 WHEN value THEN result
 [WHEN...]
 [ELSE result]
END

Instructions CASE recherchées utilisées pour évaluer chaque condition :

CASE
 WHEN condition THEN result
 [WHEN ...]
 [ELSE result]
END

Arguments

expression

Nom de la colonne ou n’importe quelle expression valide.

Expressions conditionnelles 153

AWS Clean Rooms Référence SQL

valeur

Valeur à laquelle l’expression est comparée, par exemple une constante numérique ou une
chaîne de caractères.

result

Valeur ou expression cible qui est renvoyée lorsqu’une expression ou une condition booléenne
est évaluée. Les types de données de toutes les expressions de résultat doivent pouvoir être
convertis en un seul type de sortie.

condition

Expression booléenne qui prend la valeur true ou false. Si la condition a la valeur true, la valeur
de l’expression CASE est le résultat qui suit la condition, et le reste de l’expression CASE n’est
pas traité. Si la condition a la valeur false, les clauses WHEN suivantes sont évaluées. Si aucune
condition WHEN n’a la valeur true en résultat, la valeur de l’expression CASE est le résultat de la
clause ELSE. Si la clause ELSE est omise et qu’aucune condition n’a la valeur true, le résultat est
null.

Exemples

Utilisez une expression CASE simple pour remplacer New York City par Big Apple dans une
requête sur la table de VENUE. Remplacer tous les autres noms de villes par other.

select venuecity,
 case venuecity
 when 'New York City'
 then 'Big Apple' else 'other'
 end
from venue
order by venueid desc;

venuecity | case
-----------------+-----------
Los Angeles | other
New York City | Big Apple
San Francisco | other
Baltimore | other
...

Expressions conditionnelles 154

AWS Clean Rooms Référence SQL

Utiliser une expression CASE recherchée pour affecter des numéros de groupes basés sur la valeur
PRICEPAID pour les vente de billets individuelles :

select pricepaid,
 case when pricepaid <10000 then 'group 1'
 when pricepaid >10000 then 'group 2'
 else 'group 3'
 end
from sales
order by 1 desc;

pricepaid | case
----------+---------
12624 | group 2
10000 | group 3
10000 | group 3
9996 | group 1
9988 | group 1
...

COALESCEexpression

Une COALESCE expression renvoie la valeur de la première expression de la liste qui n'est pas
nulle. Si toutes les expressions régulières sont null, le résultat est null. Lorsqu'une valeur non null est
trouvée, les expressions restantes de la liste ne sont pas évaluées.

Ce type d'expression s'avère utile lorsque vous souhaitez renvoyer une valeur de sauvegarde pour
quelque chose lorsque la valeur préférée est manquante ou null. Par exemple, une requête peut
renvoyer un des trois numéros de téléphone (portable, maison ou professionnel, dans l'ordre), selon
ce qui est trouvé en premier dans le tableau (non null).

Syntaxe

COALESCE (expression, expression, ...)

Exemples

Appliquez COALESCE l'expression à deux colonnes.

select coalesce(start_date, end_date)
from datetable

Expressions conditionnelles 155

AWS Clean Rooms Référence SQL

order by 1;

Le nom de colonne par défaut pour une expression NVL estCOALESCE. La requête suivante renvoie
les mêmes résultats.

select coalesce(start_date, end_date) from datetable order by 1;

La plus grande et la moins grande expression

Renvoie la valeur la plus grande ou la plus petite d’une liste d’un nombre quelconque d’expressions.

Syntaxe

GREATEST (value [, ...])
LEAST (value [, ...])

Paramètres

expression_list

Liste d’expressions séparées par des virgules, telles que des noms de colonnes. Les expressions
doivent toutes être converties dans un type de données commun. Les valeurs NULL de la liste
sont ignorées. Si toutes les expressions sont évaluées à NULL, le résultat est NULL.

Renvoie

Renvoie la plus grande (pour GREATEST) ou la plus petite (pour LEAST) valeur de la liste
d’expressions fournie.

exemple

L’exemple suivant renvoie la valeur la plus élevée dans l’ordre alphabétique pour firstname ou
lastname.

select firstname, lastname, greatest(firstname,lastname) from users
where userid < 10
order by 3;

 firstname | lastname | greatest

Expressions conditionnelles 156

AWS Clean Rooms Référence SQL

-----------+-----------+-----------
 Alejandro | Rosalez | Ratliff
 Carlos | Salazar | Carlos
 Jane | Doe | Doe
 John | Doe | Doe
 John | Stiles | John
 Shirley | Rodriguez | Rodriguez
 Terry | Whitlock | Terry
 Richard | Roe | Richard
 Xiulan | Wang | Wang
(9 rows)

Expression IF

La fonction conditionnelle IF renvoie l'une des deux valeurs en fonction d'une condition.

Cette fonction est une instruction de flux de contrôle courante utilisée dans SQL pour prendre des
décisions et renvoyer différentes valeurs en fonction de l'évaluation d'une condition. C'est utile pour
implémenter une logique if-else simple dans une requête.

Syntaxe

if(expr1, expr2, expr3)

Arguments

expr1

Condition ou expression évaluée. Si c'est le castrue, la fonction renverra la valeur de expr2. Si
expr1 l'estfalse, la fonction renverra la valeur de expr3.

expr2

Expression évaluée et renvoyée si expr1 l'est. true

expr3

Expression évaluée et renvoyée si expr1 l'est. false

Renvoie

Si la expr1 valeur est égale àtrue, renvoie expr2 ; dans le cas contraire, renvoieexpr3.

Expressions conditionnelles 157

AWS Clean Rooms Référence SQL

exemple

L'exemple suivant utilise la if() fonction pour renvoyer l'une des deux valeurs en fonction d'une
condition. La condition évaluée est 1 < 2true, c'est-à-dire que la première valeur 'a' est
renvoyée.

SELECT if(1 < 2, 'a', 'b');
 a]

Expression IS_NULL

L'expression IS_NULL conditionnelle est utilisée pour vérifier si une valeur est nulle.

Cette expression est synonyme deIS NULL.

Syntaxe

is_null(expr)

Arguments

expr

Expression de n'importe quel type.

Renvoie

L'expression IS_NULL conditionnelle renvoie une valeur booléenne. Si la valeur expr1 est
NULLtrue, renvoie, sinon renvoiefalse.

Exemples

L'exemple suivant vérifie si la valeur 1 est nulle et renvoie le résultat booléen true car 1 est une
valeur valide et non nulle.

SELECT is not null(1);
 true

L'exemple suivant sélectionne la id colonne dans le squirrels tableau, mais uniquement pour les
lignes où se trouve la colonne d'âgenull.

Expressions conditionnelles 158

AWS Clean Rooms Référence SQL

SELECT id FROM squirrels WHERE is_null(age)

Expression IS_NOT_NULL

L'expression IS_NOT_NULL conditionnelle est utilisée pour vérifier si une valeur n'est pas nulle.

Cette expression est synonyme deIS NOT NULL.

Syntaxe

is_not_null(expr)

Arguments

expr

Expression de n'importe quel type.

Renvoie

L'expression IS_NOT_NULL conditionnelle renvoie une valeur booléenne. Si expr1 ce n'est pas
NULL, renvoietrue, sinon renvoiefalse.

Exemples

L'exemple suivant vérifie si la valeur n'1est pas nulle et renvoie le résultat booléen true car 1 est
une valeur valide et non nulle.

SELECT is not null(1);
 true

L'exemple suivant sélectionne la id colonne dans le squirrels tableau, mais uniquement pour les
lignes où la colonne d'âge ne figure pasnull.

SELECT id FROM squirrels WHERE is_not_null(age)

Fonctions NVL et COALESCE

Renvoie la valeur de la première expression qui n’est pas nulle dans une série d’expressions.
Lorsqu’une valeur non nulle est trouvée, les expressions restantes de la liste ne sont pas évaluées.

Expressions conditionnelles 159

AWS Clean Rooms Référence SQL

NVL est identique à COALESCE. Ce sont des synonymes. Cette rubrique explique la syntaxe et
contient des exemples pour les deux.

Syntaxe

NVL(expression, expression, ...)

La syntaxe de COALESCE est identique :

COALESCE(expression, expression, ...)

Si toutes les expressions régulières sont null, le résultat est null.

Ces fonctions sont utiles lorsque vous souhaitez renvoyer une valeur secondaire lorsqu’une valeur
primaire est manquante ou nulle. Par exemple, une requête peut renvoyer le premier des trois
numéros de téléphone disponibles : portable, domicile ou travail. L’ordre des expressions dans la
fonction détermine l’ordre d’évaluation.

Arguments

expression

Expression, telle qu’un nom de colonne, à évaluer pour l’état null.

Type de retour

AWS Clean Rooms détermine le type de données de la valeur renvoyée en fonction des expressions
d'entrée. Si les types de données des expressions d’entrée n’ont pas de type commun, une erreur est
renvoyée.

Exemples

Si la liste contient des expressions entières, la fonction renvoie un entier.

SELECT COALESCE(NULL, 12, NULL);

coalesce

12

Cet exemple, qui est identique à l’exemple précédent, sauf qu’il utilise NVL, renvoie le même résultat.

Expressions conditionnelles 160

AWS Clean Rooms Référence SQL

SELECT NVL(NULL, 12, NULL);

coalesce

12

L’exemple suivant renvoie une chaîne de caractères.

SELECT COALESCE(NULL, 'AWS Clean Rooms', NULL);

coalesce

AWS Clean Rooms

L’exemple suivant génère une erreur car les types de données varient dans la liste d’expressions.
Dans ce cas, la liste contient à la fois un type de chaîne et un type de nombre.

SELECT COALESCE(NULL, 'AWS Clean Rooms', 12);
ERROR: invalid input syntax for integer: "AWS Clean Rooms"

NVL2 fonction

Renvoie l’une des deux valeurs selon qu’une expression spécifiée a pour valeur NULL ou NOT NULL.

Syntaxe

NVL2 (expression, not_null_return_value, null_return_value)

Arguments

expression

Expression, telle qu’un nom de colonne, à évaluer pour l’état null.

not_null_return_value

Valeur renvoyée si expression a une valeur NOT NULL. La valeur not_null_return_value doit avoir
le même type de données que expression ou être implicitement convertie en ce type de données.

null_return_value

Valeur renvoyée si expression a une valeur NULL. La valeur null_return_value doit avoir le même
type de données que expression ou être implicitement convertie en ce type de données.

Expressions conditionnelles 161

AWS Clean Rooms Référence SQL

Type de retour

Le type de NVL2 retour est déterminé comme suit :

• Si not_null_return_value ou null_return_value a une valeur null, le type de données de l’expression
non-null est renvoyé.

Si not_null_return_value et null_return_value n’ont pas de valeur null :

• Si not_null_return_value et null_return_value ont le même type de données que le type de données
renvoyé.

• Si not_null_return_value et null_return_value ont des types de données numériques distincts, le
type de données numériques compatible le plus petit est renvoyé.

• Si not_null_return_value et null_return_value ont des types de données datetime distincts, un type
de données d’horodatage est renvoyé.

• Si not_null_return_value et null_return_value ont des types de données de caractères distincts, le
type de données not_null_return_value est renvoyé.

• Si not_null_return_value et null_return_value ont des types de données numériques et non
numériques mixtes, le type de données de not_null_return_value est renvoyé.

Important

Dans les deux derniers cas où le type de données de not_null_return_value est renvoyé,
null_return_value est converti implicitement en ce type de données. Si les types de données
sont incompatibles, la fonction échoue.

Notes d’utilisation

En effet NVL2, le retour aura la valeur du paramètre not_null_return_value ou null_return_value, selon
ce qui est sélectionné par la fonction, mais aura le type de données not_null_return_value.

Par exemple, en supposant que column1 a la valeur NULL, les requêtes suivantes renverront la
même valeur. Cependant, le type de données de la valeur de retour DECODE sera INTEGER et le
type de données de la valeur de NVL2 retour sera VARCHAR.

select decode(column1, null, 1234, '2345');

Expressions conditionnelles 162

AWS Clean Rooms Référence SQL

select nvl2(column1, '2345', 1234);

exemple

L’exemple suivant modifie quelques exemples de données, puis évalue les deux champs pour fournir
des informations de contact aux utilisateurs :

update users set email = null where firstname = 'Aphrodite' and lastname = 'Acevedo';

select (firstname + ' ' + lastname) as name,
nvl2(email, email, phone) AS contact_info
from users
where state = 'WA'
and lastname like 'A%'
order by lastname, firstname;

name contact_info
--------------------+---
Aphrodite Acevedo (555) 555-0100
Caldwell Acevedo Nunc.sollicitudin@example.ca
Quinn Adams vel@example.com
Kamal Aguilar quis@example.com
Samson Alexander hendrerit.neque@example.com
Hall Alford ac.mattis@example.com
Lane Allen et.netus@example.com
Xander Allison ac.facilisis.facilisis@example.com
Amaya Alvarado dui.nec.tempus@example.com
Vera Alvarez at.arcu.Vestibulum@example.com
Yetta Anthony enim.sit@example.com
Violet Arnold ad.litora@example.comm
August Ashley consectetuer.euismod@example.com
Karyn Austin ipsum.primis.in@example.com
Lucas Ayers at@example.com

Fonction NULLIF

Compare les deux arguments et renvoie null si les arguments sont égaux. S'ils ne sont pas égaux, le
premier argument est renvoyé.

Expressions conditionnelles 163

AWS Clean Rooms Référence SQL

Syntaxe

L’expression NULLIF compare les deux arguments et renvoie la valeur nulle si les arguments sont
égaux. S'ils ne sont pas égaux, le premier argument est renvoyé. Cette expression est l’inverse de
l’expression NVL ou COALESCE.

NULLIF (expression1, expression2)

Arguments

expression1, expression2

Colonnes ou expressions cible qui sont comparées. Le type de retour est le identique au type de
la première expression.

Exemples

Dans l’exemple suivant, la requête renvoie la chaîne first car les arguments ne sont pas égaux.

SELECT NULLIF('first', 'second');

case

first

Dans l’exemple suivant, la requête renvoie NULL car les arguments littéraux de la chaîne sont égaux.

SELECT NULLIF('first', 'first');

case

NULL

Dans l’exemple suivant, la requête renvoie 1 car les arguments entiers ne sont pas égaux.

SELECT NULLIF(1, 2);

case

Expressions conditionnelles 164

AWS Clean Rooms Référence SQL

1

Dans l’exemple suivant, la requête renvoie NULL car les arguments entiers sont égaux.

SELECT NULLIF(1, 1);

case

NULL

Dans l’exemple suivant, la requête renvoie la valeur nulle lorsque les valeurs LISTID et SALESID
correspondent :

select nullif(listid,salesid), salesid
from sales where salesid<10 order by 1, 2 desc;

listid | salesid
--------+---------
 4 | 2
 5 | 4
 5 | 3
 6 | 5
 10 | 9
 10 | 8
 10 | 7
 10 | 6
 | 1
(9 rows)

Fonctions de constructeur

Une fonction de constructeur SQL est une fonction utilisée pour créer de nouvelles structures de
données, telles que des tableaux ou des cartes.

Ils prennent des valeurs d'entrée et renvoient un nouvel objet de structure de données. Les fonctions
de constructeur sont généralement nommées d'après le type de données qu'elles créent, tel que
ARRAY ou MAP.

Les fonctions de constructeur sont différentes des fonctions scalaires ou des fonctions d'agrégation,
qui opèrent sur des données existantes et renvoient une valeur unique. Les fonctions du constructeur

Fonctions de constructeur 165

AWS Clean Rooms Référence SQL

sont utilisées pour créer de nouvelles structures de données qui peuvent ensuite être utilisées dans le
cadre d'un traitement ou d'une analyse de données ultérieurs.

AWS Clean Rooms prend en charge les fonctions de constructeur suivantes :

Rubriques

• Fonction constructeur MAP

• Fonction constructeur NAMED_STRUCT

• Fonction constructeur STRUCT

Fonction constructeur MAP

La fonction constructeur MAP crée une carte avec les paires clé/valeur données.

Les fonctions de constructeur telles que MAP sont utiles lorsque vous devez créer de nouvelles
structures de données par programmation dans vos requêtes SQL. Ils vous permettent de créer des
structures de données complexes qui peuvent être utilisées dans le cadre d'un traitement ou d'une
analyse de données ultérieurs.

Syntaxe

map(key0, value0, key1, value1, ...)

Arguments

clé0

Expression de n'importe quel type comparable. Toutes les clés 0 doivent partager le type le moins
commun.

valeur0

Expression de n'importe quel type. Toutes les valeurs N doivent partager le type le moins
commun.

Renvoie

La fonction MAP renvoie une carte dont les touches sont saisies comme le type le moins courant de
clé0 et les valeurs saisies comme le type le moins courant de valeur0.

Fonctions de constructeur 166

AWS Clean Rooms Référence SQL

Exemples

L'exemple suivant crée une nouvelle carte avec deux paires clé-valeur : La clé 1.0 est associée à la
valeur. '2' La clé 3.0 est associée à la valeur'4'. La carte obtenue est ensuite renvoyée en tant
que sortie de l'instruction SQL.

SELECT map(1.0, '2', 3.0, '4');
 {1.0:"2",3.0:"4"}

Fonction constructeur NAMED_STRUCT

La fonction constructeur NAMED_STRUCT crée une structure avec les noms et valeurs de champs
donnés.

Les fonctions de constructeur telles que NAMED_STRUCT sont utiles lorsque vous devez créer de
nouvelles structures de données par programmation dans vos requêtes SQL. Ils vous permettent de
créer des structures de données complexes, telles que des structures ou des enregistrements, qui
peuvent être utilisées dans le cadre d'un traitement ou d'une analyse de données ultérieurs.

Syntaxe

named_struct(name1, val1, name2, val2, ...)

Arguments

nom1

Un champ de dénomination littéral STRING 1.

val1

Expression de n'importe quel type spécifiant la valeur du champ 1.

Renvoie

La fonction NAMED_STRUCT renvoie une structure dont le champ 1 correspond au type de val1.

Exemples

L'exemple suivant crée une nouvelle structure avec trois champs nommés : La valeur "a" 1 est
attribuée au champ. La valeur "b" est affectée au champ 2. Le champ "c" reçoit la valeur3. La
structure résultante est ensuite renvoyée en tant que sortie de l'instruction SQL.

Fonctions de constructeur 167

AWS Clean Rooms Référence SQL

SELECT named_struct("a", 1, "b", 2, "c", 3);
 {"a":1,"b":2,"c":3}

Fonction constructeur STRUCT

La fonction constructeur STRUCT crée une structure avec les valeurs de champ données.

Les fonctions de constructeur telles que STRUCT sont utiles lorsque vous devez créer de nouvelles
structures de données par programmation dans vos requêtes SQL. Ils vous permettent de créer des
structures de données complexes, telles que des structures ou des enregistrements, qui peuvent être
utilisées dans le cadre d'un traitement ou d'une analyse de données ultérieurs.

Syntaxe

struct(col1, col2, col3, ...)

Arguments

colonel 1

Nom de la colonne ou n’importe quelle expression valide.

Renvoie

La fonction STRUCT renvoie une structure dont field1 correspond au type de expr1.

Si les arguments sont des références nommées, les noms sont utilisés pour nommer le champ.
Sinon, les champs sont nommés ColN, où N est la position du champ dans la structure.

Exemples

L'exemple suivant crée une nouvelle structure avec trois champs : La valeur 1 est attribuée au
premier champ. La valeur 2 est attribuée au second champ. La valeur 3 est attribuée au troisième
champ. Par défaut, les champs de la structure résultante sont nommés col1 col2col3, et en
fonction de leur position dans la liste d'arguments. La structure résultante est ensuite renvoyée en
tant que sortie de l'instruction SQL.

SELECT struct(1, 2, 3);

Fonctions de constructeur 168

AWS Clean Rooms Référence SQL

 {"col1":1,"col2":2,"col3":3}

Fonctions de formatage des types de données

À l'aide d'une fonction de formatage des types de données, vous pouvez convertir des valeurs d'un
type de données à un autre. Pour chacune de ces fonctions, le premier argument est toujours la
valeur à formater et le second argument contient le modèle du nouveau format.

AWS Clean Rooms Spark SQL prend en charge plusieurs fonctions de formatage des types de
données.

Rubriques

• BASE64 fonction

• Fonction CAST

• Fonction DECODE

• Fonction ENCODE

• Fonction HEX

• Fonction STR_TO_MAP

• TO_CHAR

• Fonction TO_DATE

• TO_NUMBER

• UNBASE64 fonction

• Fonction UNHEX

• Chaînes de format datetime

• Chaînes de format numériques

BASE64 fonction

La BASE64 fonction convertit une expression en chaîne de base 64 en utilisant le codage de transfert
RFC2 045 Base64 pour le MIME.

Syntaxe

base64(expr)

Fonctions de formatage des types de données 169

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2045

AWS Clean Rooms Référence SQL

Arguments

expr

Une expression BINAIRE ou une CHAÎNE que la fonction interprétera comme BINAIRE.

Type de retour

STRING

Exemple

Pour convertir l'entrée de chaîne donnée en sa représentation codée en Base64, utilisez l'exemple
suivant. Le résultat est la représentation codée en Base64 de la chaîne d'entrée « Spark SQL », qui
est « u3bhcmsgu1fm ».

SELECT base64('Spark SQL');
 U3BhcmsgU1FM

Fonction CAST

La fonction CAST convertit un type de données en un autre type de données compatible. Par
exemple, vous pouvez convertir une chaîne en date ou un type numérique en chaîne. CAST effectue
une conversion d’exécution, ce qui signifie que la conversion ne modifie pas le type de données
d’une valeur dans une table source. Elle n'est modifiée que dans le contexte de la requête.

Certains types de données nécessitent une conversion explicite en d'autres types de données à l'aide
de la fonction CAST. D'autres types de données peuvent être convertis implicitement, dans le cadre
d'une autre commande, sans utiliser CAST. Consultez Compatibilité et conversion de types.

Syntaxe

Utilisez l’une de ces deux formes de syntaxes équivalentes pour convertir les expressions cast d’un
type de données à un autre.

CAST (expression AS type)

Fonctions de formatage des types de données 170

AWS Clean Rooms Référence SQL

Arguments

expression

Expression qui correspond à une ou plusieurs valeurs, par exemple un nom de colonne ou un
littéral. La conversion de valeurs null renvoie des valeurs null. L'expression ne peut pas contenir
de chaînes vides ou vides.

type

L'un des types de données pris en chargeTypes de données, à l'exception des types de données
BINARY et BINARY VARIING.

Type de retour

CAST renvoie le type de données spécifié par l’argument type.

Note

AWS Clean Rooms renvoie une erreur si vous essayez d'effectuer une conversion
problématique, telle qu'une conversion DECIMAL qui perd en précision, comme suit :

select 123.456::decimal(2,1);

ou une conversion INTEGER qui entraîne un dépassement de capacité :

select 12345678::smallint;

Exemples

Les deux requêtes suivantes sont équivalentes. Toutes deux convertissent une valeur décimale en
un nombre entier :

select cast(pricepaid as integer)
from sales where salesid=100;

pricepaid

162

Fonctions de formatage des types de données 171

AWS Clean Rooms Référence SQL

(1 row)

select pricepaid::integer
from sales where salesid=100;

pricepaid

162
(1 row)

Ce qui suit produit un résultat similaire. Il ne nécessite pas d’exemples de données pour s’exécuter :

select cast(162.00 as integer) as pricepaid;

pricepaid

162
(1 row)

Dans cet exemple, les valeurs d’une colonne d’horodatage sont converties en dates, ce qui entraîne
la suppression de l’horodatage de chaque résultat :

select cast(saletime as date), salesid
from sales order by salesid limit 10;

 saletime | salesid
-----------+---------
2008-02-18 | 1
2008-06-06 | 2
2008-06-06 | 3
2008-06-09 | 4
2008-08-31 | 5
2008-07-16 | 6
2008-06-26 | 7
2008-07-10 | 8
2008-07-22 | 9
2008-08-06 | 10

(10 rows)

Fonctions de formatage des types de données 172

AWS Clean Rooms Référence SQL

Si vous n’avez pas utilisé CAST comme illustré dans l’exemple précédent, les résultats incluraient
l’heure : 2008-02-18 02:36:48.

La requête suivante convertit des données de caractères variables en date. Elle ne nécessite pas
d’exemples de données pour s’exécuter.

select cast('2008-02-18 02:36:48' as date) as mysaletime;

mysaletime

2008-02-18
(1 row)

Dans cet exemple, les valeurs d’une colonne de dates sont converties en horodatages :

select cast(caldate as timestamp), dateid
from date order by dateid limit 10;

 caldate | dateid
--------------------+--------
2008-01-01 00:00:00 | 1827
2008-01-02 00:00:00 | 1828
2008-01-03 00:00:00 | 1829
2008-01-04 00:00:00 | 1830
2008-01-05 00:00:00 | 1831
2008-01-06 00:00:00 | 1832
2008-01-07 00:00:00 | 1833
2008-01-08 00:00:00 | 1834
2008-01-09 00:00:00 | 1835
2008-01-10 00:00:00 | 1836

(10 rows)

Dans un cas comme dans l'exemple précédent, vous pouvez obtenir un contrôle supplémentaire sur
le formatage de sortie en utilisantTO_CHAR.

Dans cet exemple, un nombre entier est converti en chaîne de caractères :

select cast(2008 as char(4));

bpchar

Fonctions de formatage des types de données 173

AWS Clean Rooms Référence SQL

2008

Dans cet exemple, une valeur DECIMAL(6,3) est convertie en valeur DECIMAL(4,1) :

select cast(109.652 as decimal(4,1));

numeric

109.7

Cet exemple montre une expression plus complexe. La colonne PRICEPAID (colonne
DECIMAL(8,2)) de la table SALES est convertie en une colonne DECIMAL(38,2) et les valeurs sont
multipliées par 100000000000000000000 :

select salesid, pricepaid::decimal(38,2)*100000000000000000000
as value from sales where salesid<10 order by salesid;

 salesid | value
---------+----------------------------
 1 | 72800000000000000000000.00
 2 | 7600000000000000000000.00
 3 | 35000000000000000000000.00
 4 | 17500000000000000000000.00
 5 | 15400000000000000000000.00
 6 | 39400000000000000000000.00
 7 | 78800000000000000000000.00
 8 | 19700000000000000000000.00
 9 | 59100000000000000000000.00

(9 rows)

Fonction DECODE

La fonction DECODE est l'équivalent de la fonction ENCODE, qui est utilisée pour convertir une
chaîne en format binaire à l'aide d'un codage de caractères spécifique. La fonction DECODE prend
les données binaires et les reconvertit en un format de chaîne lisible en utilisant le codage de
caractères spécifié.

Fonctions de formatage des types de données 174

AWS Clean Rooms Référence SQL

Cette fonction est utile lorsque vous devez travailler avec des données binaires stockées dans une
base de données et les présenter dans un format lisible par l'homme, ou lorsque vous devez convertir
des données entre différents codages de caractères.

Syntaxe

decode(expr, charset)

Arguments

expr

Expression BINAIRE codée dans un jeu de caractères.

jeu de caractères

Expression STRING.

Encodages de jeux de caractères pris en charge (sans distinction majuscules/minuscules) :'US-
ASCII','ISO-8859-1', 'UTF-8''UTF-16BE', 'UTF-16LE' et. 'UTF-16'

Type de retour

La fonction DECODE renvoie une chaîne.

Exemple

L'exemple suivant contient une table appelée messages avec une colonne appelée message_text
qui stocke les données des messages dans un format binaire à l'aide du codage de caractères
UTF-8. La fonction DECODE reconvertit les données binaires en un format de chaîne lisible. Le
résultat de cette requête est le texte lisible du message stocké dans la table des messages, avec
l'ID123, converti du format binaire en chaîne à l'aide du 'utf-8' codage.

SELECT decode(message_text, 'utf-8') AS message
FROM messages
WHERE message_id = 123;

Fonction ENCODE

La fonction ENCODE est utilisée pour convertir une chaîne en sa représentation binaire à l'aide d'un
codage de caractères spécifié.

Fonctions de formatage des types de données 175

AWS Clean Rooms Référence SQL

Cette fonction est utile lorsque vous devez travailler avec des données binaires ou lorsque vous
devez effectuer une conversion entre différents codages de caractères. Par exemple, vous pouvez
utiliser la fonction ENCODE lorsque vous stockez des données dans une base de données qui
nécessite un stockage binaire ou lorsque vous devez transférer des données entre des systèmes
utilisant des codages de caractères différents.

Syntaxe

encode(str, charset)

Arguments

str

Expression STRING à encoder.

jeu de caractères

Expression STRING spécifiant le codage.

Encodages de jeux de caractères pris en charge (sans distinction majuscules/minuscules) :'US-
ASCII','ISO-8859-1', 'UTF-8''UTF-16BE', 'UTF-16LE' et. 'UTF-16'

Type de retour

La fonction ENCODE renvoie une valeur BINAIRE.

Exemple

L'exemple suivant convertit la chaîne en sa représentation binaire 'abc' à l'aide du 'utf-8'
codage, ce qui, dans ce cas, renvoie la chaîne d'origine. Cela est dû au fait que le 'utf-8' codage
est un codage de caractères à largeur variable qui peut représenter l'ensemble du jeu de caractères
ASCII (y compris les lettres 'a''b', et'c') en utilisant un seul octet par caractère. Par conséquent,
la représentation binaire de 'abc' l'utilisation 'utf-8' est la même que celle de la chaîne d'origine.

SELECT encode('abc', 'utf-8');
 abc

Fonctions de formatage des types de données 176

AWS Clean Rooms Référence SQL

Fonction HEX

La fonction HEX convertit une valeur numérique (un entier ou un nombre à virgule flottante) en sa
représentation sous forme de chaîne hexadécimale correspondante.

L'hexadécimal est un système numérique qui utilise 16 symboles distincts (0-9 et A-F) pour
représenter des valeurs numériques. Il est couramment utilisé en informatique et en programmation
pour représenter des données binaires dans un format plus compact et lisible par l'homme.

Syntaxe

hex(expr)

Arguments

expr

Expression BIGINT, BINARY ou STRING.

Type de retour

HEX renvoie une chaîne. La fonction renvoie la représentation hexadécimale de l'argument.

Exemple

L'exemple suivant prend la valeur entière 17 en entrée et lui applique la fonction HEX (). La sortie
est11, qui est la représentation hexadécimale de la valeur d'entrée17.

SELECT hex(17);
 11

L'exemple suivant convertit la chaîne 'Spark_SQL' en sa représentation hexadécimale.
La sortie est537061726B2053514C, qui est la représentation hexadécimale de la chaîne
d'entrée'Spark_SQL'.

SELECT hex('Spark_SQL');
 537061726B2053514C

Dans cet exemple, la chaîne « Spark_SQL » est convertie comme suit :

Fonctions de formatage des types de données 177

AWS Clean Rooms Référence SQL

• 'S' -> 53

• « p » -> 70

• « a » -> 61

• 'r' -> 72 '

• k' -> 6 B

• « _ » -> 20

• 'S' -> 53

• « Q » -> 51

• « L' » -> 4C

La concaténation de ces valeurs hexadécimales donne le résultat final « ». 537061726B2053514C"

Fonction STR_TO_MAP

La fonction STR_TO_MAP est une fonction de conversion. string-to-map Il convertit une
représentation sous forme de chaîne d'une carte (ou d'un dictionnaire) en une structure de données
cartographique réelle.

Cette fonction est utile lorsque vous devez travailler avec des structures de données cartographiques
en SQL, mais les données sont initialement stockées sous forme de chaîne. En convertissant
la représentation sous forme de chaîne en une carte réelle, vous pouvez ensuite effectuer des
opérations et des manipulations sur les données cartographiques.

Syntaxe

str_to_map(text[, pairDelim[, keyValueDelim]])

Arguments

texte

Expression STRING qui représente la carte.

Pair Delim

Un littéral STRING facultatif qui indique comment séparer les entrées. La valeur par défaut est
une virgule ()','.

Fonctions de formatage des types de données 178

AWS Clean Rooms Référence SQL

keyValueDelim

Un littéral STRING facultatif qui indique comment séparer chaque paire clé-valeur. La valeur par
défaut est deux points (':').

Type de retour

La fonction STR_TO_MAP renvoie une carte de type STRING pour les clés et les valeurs. PairDelim
et PairDelim keyValueDelimsont tous deux traités comme des expressions régulières.

Exemple

L'exemple suivant prend la chaîne d'entrée et les deux arguments du séparateur, et convertit la
représentation sous forme de chaîne en une structure de données cartographique réelle. Dans cet
exemple spécifique, la chaîne d'entrée 'a:1,b:2,c:3' représente une carte avec les paires clé-
valeur suivantes : 'a' est la clé et '1' est la valeur. 'b'est la clé, et '2' c'est la valeur. 'c'est la
clé, et '3' c'est la valeur. Le ',' délimiteur est utilisé pour séparer les paires clé-valeur, et le ':'
délimiteur est utilisé pour séparer la clé et la valeur au sein de chaque paire. Le résultat de cette
requête est :{"a":"1","b":"2","c":"3"}. Il s'agit de la structure de données cartographiques
résultante'a', où les clés sont 'b''c', et, et les valeurs correspondantes sont '1''2', et'3'.

SELECT str_to_map('a:1,b:2,c:3', ',', ':');
 {"a":"1","b":"2","c":"3"}

L'exemple suivant montre que la fonction STR_TO_MAP s'attend à ce que la chaîne d'entrée soit
dans un format spécifique, avec les paires clé-valeur correctement délimitées. Si la chaîne d'entrée
ne correspond pas au format attendu, la fonction tentera tout de même de créer une carte, mais les
valeurs obtenues risquent de ne pas correspondre aux attentes.

SELECT str_to_map('a');
 {"a":null}

TO_CHAR

TO_CHAR convertit un horodatage ou une expression numérique en un format de données de
chaînes de caractères.

Fonctions de formatage des types de données 179

AWS Clean Rooms Référence SQL

Syntaxe

TO_CHAR (timestamp_expression | numeric_expression , 'format')

Arguments

timestamp_expression

Expression qui se traduit par une valeur de type TIMESTAMP ou TIMESTAMPTZ ou par une
valeur qui peut être implicitement convertie en un horodatage.

numeric_expression

Expression qui se traduit par une valeur de type de données numérique ou par une valeur qui
peut être implicitement convertie en un type numérique. Pour de plus amples informations,
veuillez consulter Types numériques. TO_CHAR insère un espace à gauche de la chaîne
numérique.

Note

TO_CHAR ne prend pas en charge les valeurs DECIMAL 128 bits.

format

Format de la nouvelle valeur. Pour connaître les formats valides, consultez Chaînes de format
datetime et Chaînes de format numériques.

Type de retour

VARCHAR

Exemples

L’exemple suivant convertit un horodatage en une valeur contenant la date et l’heure dans un format
comprenant le nom du mois rempli jusqu’à neuf caractères, le nom du jour de la semaine et le
numéro du jour du mois.

select to_char(timestamp '2009-12-31 23:15:59', 'MONTH-DY-DD-YYYY HH12:MIPM');
to_char

Fonctions de formatage des types de données 180

AWS Clean Rooms Référence SQL

DECEMBER -THU-31-2009 11:15PM

L’exemple suivant convertit un horodatage en une valeur avec le numéro du jour de l’année.

select to_char(timestamp '2009-12-31 23:15:59', 'DDD');

to_char

365

L’exemple suivant convertit un horodatage en un numéro de jour de la semaine ISO.

select to_char(timestamp '2022-05-16 23:15:59', 'ID');

to_char

1

L’exemple suivant extrait le nom du mois d’une date.

select to_char(date '2009-12-31', 'MONTH');

to_char

DECEMBER

L’exemple suivant convertit chaque valeur STARTTIME de la table EVENT en une chaîne composée
d’heures, de minutes et de secondes.

select to_char(starttime, 'HH12:MI:SS')
from event where eventid between 1 and 5
order by eventid;

to_char

02:30:00
08:00:00
02:30:00
02:30:00
07:00:00
(5 rows)

Fonctions de formatage des types de données 181

AWS Clean Rooms Référence SQL

L’exemple suivant convertit une valeur d’horodatage complète en un format différent.

select starttime, to_char(starttime, 'MON-DD-YYYY HH12:MIPM')
from event where eventid=1;

 starttime | to_char
---------------------+---------------------
 2008-01-25 14:30:00 | JAN-25-2008 02:30PM
(1 row)

L’exemple suivant convertit un littéral d’horodatage en une chaîne de caractères.

select to_char(timestamp '2009-12-31 23:15:59','HH24:MI:SS');
to_char

23:15:59
(1 row)

L’exemple suivant convertit un nombre en chaîne de caractères avec le signe moins à la fin.

select to_char(-125.8, '999D99S');
to_char

125.80-
(1 row)

L’exemple suivant convertit un nombre en chaîne de caractères avec le symbole de la devise.

select to_char(-125.88, '$S999D99');
to_char

$-125.88
(1 row)

L’exemple suivant convertit un nombre en une chaîne de caractères.

select to_char(-125.88, '$999D99PR');
to_char

$<125.88>

Fonctions de formatage des types de données 182

AWS Clean Rooms Référence SQL

(1 row)

L’exemple suivant convertit un nombre en chaîne numérale romaine.

select to_char(125, 'RN');
to_char

CXXV
(1 row)

L’exemple suivant affiche le jour de la semaine.

SELECT to_char(current_timestamp, 'FMDay, FMDD HH12:MI:SS');
 to_char

Wednesday, 31 09:34:26

L’exemple suivant affiche le suffixe ordinal d’un nombre.

SELECT to_char(482, '999th');
 to_char

 482nd

L’exemple suivant soustraie la commission du prix d’achat de la table des ventes. La différence est
ensuite arrondie et convertie en chiffres romains, comme indiqué dans la to_char colonne :

select salesid, pricepaid, commission, (pricepaid - commission)
as difference, to_char(pricepaid - commission, 'rn') from sales
group by sales.pricepaid, sales.commission, salesid
order by salesid limit 10;

 salesid | pricepaid | commission | difference | to_char
---------+-----------+------------+------------+-----------------
 1 | 728.00 | 109.20 | 618.80 | dcxix
 2 | 76.00 | 11.40 | 64.60 | lxv
 3 | 350.00 | 52.50 | 297.50 | ccxcviii
 4 | 175.00 | 26.25 | 148.75 | cxlix
 5 | 154.00 | 23.10 | 130.90 | cxxxi
 6 | 394.00 | 59.10 | 334.90 | cccxxxv
 7 | 788.00 | 118.20 | 669.80 | dclxx
 8 | 197.00 | 29.55 | 167.45 | clxvii

Fonctions de formatage des types de données 183

AWS Clean Rooms Référence SQL

 9 | 591.00 | 88.65 | 502.35 | dii
 10 | 65.00 | 9.75 | 55.25 | lv
(10 rows)

L'exemple suivant ajoute le symbole monétaire aux valeurs de différence indiquées dans la to_char
colonne :

select salesid, pricepaid, commission, (pricepaid - commission)
as difference, to_char(pricepaid - commission, 'l99999D99') from sales
group by sales.pricepaid, sales.commission, salesid
order by salesid limit 10;

salesid | pricepaid | commission | difference | to_char
--------+-----------+------------+------------+------------
 1 | 728.00 | 109.20 | 618.80 | $ 618.80
 2 | 76.00 | 11.40 | 64.60 | $ 64.60
 3 | 350.00 | 52.50 | 297.50 | $ 297.50
 4 | 175.00 | 26.25 | 148.75 | $ 148.75
 5 | 154.00 | 23.10 | 130.90 | $ 130.90
 6 | 394.00 | 59.10 | 334.90 | $ 334.90
 7 | 788.00 | 118.20 | 669.80 | $ 669.80
 8 | 197.00 | 29.55 | 167.45 | $ 167.45
 9 | 591.00 | 88.65 | 502.35 | $ 502.35
 10 | 65.00 | 9.75 | 55.25 | $ 55.25
(10 rows)

L’exemple suivant répertorie le siècle au cours duquel chaque vente a été effectuée.

select salesid, saletime, to_char(saletime, 'cc') from sales
order by salesid limit 10;

 salesid | saletime | to_char
---------+---------------------+---------
 1 | 2008-02-18 02:36:48 | 21
 2 | 2008-06-06 05:00:16 | 21
 3 | 2008-06-06 08:26:17 | 21
 4 | 2008-06-09 08:38:52 | 21
 5 | 2008-08-31 09:17:02 | 21
 6 | 2008-07-16 11:59:24 | 21
 7 | 2008-06-26 12:56:06 | 21
 8 | 2008-07-10 02:12:36 | 21
 9 | 2008-07-22 02:23:17 | 21
 10 | 2008-08-06 02:51:55 | 21

Fonctions de formatage des types de données 184

AWS Clean Rooms Référence SQL

(10 rows)

L’exemple suivant convertit chaque valeur STARTTIME de la table EVENT en une chaîne qui se
compose d’heures, de minutes, de secondes et d’un fuseau horaire.

select to_char(starttime, 'HH12:MI:SS TZ')
from event where eventid between 1 and 5
order by eventid;

to_char

02:30:00 UTC
08:00:00 UTC
02:30:00 UTC
02:30:00 UTC
07:00:00 UTC
(5 rows)

(10 rows)

L’exemple suivant illustre la mise en forme des secondes, millisecondes et microsecondes.

select sysdate,
to_char(sysdate, 'HH24:MI:SS') as seconds,
to_char(sysdate, 'HH24:MI:SS.MS') as milliseconds,
to_char(sysdate, 'HH24:MI:SS:US') as microseconds;

timestamp | seconds | milliseconds | microseconds
--------------------+----------+--------------+----------------
2015-04-10 18:45:09 | 18:45:09 | 18:45:09.325 | 18:45:09:325143

Fonction TO_DATE

TO_DATE convertit une date représentée par une chaîne de caractères en un type de données
DATE.

Syntaxe

TO_DATE (date_str)

TO_DATE (date_str, format)

Fonctions de formatage des types de données 185

AWS Clean Rooms Référence SQL

Arguments

date_str

Chaîne de date ou type de données pouvant être converti en chaîne de date.

format

Chaîne littérale qui correspond aux modèles de date/heure de Spark. Pour les modèles de date/
heure valides, voir Modèles de date/heure pour le formatage et l'analyse syntaxique.

Type de retour

TO_DATE renvoie une DATE, selon la valeur de format.

Si la conversion au format échoue, une erreur est renvoyée.

Exemples

L’instruction SQL suivante convertit la date 02 Oct 2001 en type de données de date.

select to_date('02 Oct 2001', 'dd MMM yyyy');

to_date

2001-10-02
(1 row)

L’instruction SQL suivante convertit la chaîne 20010631 en date.

select to_date('20010631', 'yyyyMMdd');

L’instruction SQL suivante convertit la chaîne 20010631 en date :

to_date('20010631', 'YYYYMMDD', TRUE);

Le résultat est une valeur nulle car le mois de juin ne compte que 30 jours.

to_date

NULL

Fonctions de formatage des types de données 186

https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html

AWS Clean Rooms Référence SQL

TO_NUMBER

TO_NUMBER convertit une chaîne en une valeur numérique (décimale).

Syntaxe

to_number(string, format)

Arguments

string

Chaîne à convertir. Le format doit être une valeur littérale.

format

Le deuxième argument est une chaîne de format qui indique comment la chaîne de caractères
doit être analysée afin de créer la valeur numérique. Par exemple, le format '99D999' spécifie
que la chaîne à convertir se compose de cinq chiffres, avec la virgule à la troisième position. Par
exemple, to_number('12.345','99D999') renvoie 12.345 comme une valeur numérique.
Pour obtenir la liste des formats valides, consultez Chaînes de format numériques.

Type de retour

TO_NUMBER renvoie un nombre DECIMAL.

Si la conversion au format échoue, une erreur est renvoyée.

Exemples

L’exemple suivant convertit la chaîne 12,454.8- en un nombre :

select to_number('12,454.8-', '99G999D9S');

to_number

-12454.8

L’exemple suivant convertit la chaîne $ 12,454.88 en un nombre :

select to_number('$ 12,454.88', 'L 99G999D99');

Fonctions de formatage des types de données 187

AWS Clean Rooms Référence SQL

to_number

12454.88

L’exemple suivant convertit la chaîne $ 2,012,454.88 en un nombre :

select to_number('$ 2,012,454.88', 'L 9,999,999.99');

to_number

2012454.88

UNBASE64 fonction

La UNBASE64 fonction convertit un argument d'une chaîne de base 64 en binaire.

Le codage Base64 est couramment utilisé pour représenter des données binaires (telles que des
images, des fichiers ou des informations cryptées) dans un format textuel sûr pour la transmission
sur différents canaux de communication (tels que le courrier électronique, les paramètres d'URL ou le
stockage de base de données).

La UNBASE64 fonction permet d'inverser ce processus et de récupérer les données binaires
d'origine. Ce type de fonctionnalité peut être utile dans les scénarios où vous devez travailler avec
des données codées au format Base64, par exemple lors de l'intégration à des systèmes externes ou
APIs lorsque vous utilisez Base64 comme mécanisme de transfert de données.

Syntaxe

unbase64(expr)

Arguments

expr

Expression STRING au format base64.

Type de retour

BINARY

Fonctions de formatage des types de données 188

AWS Clean Rooms Référence SQL

Exemple

Dans l'exemple suivant, la chaîne codée en Base64 'U3BhcmsgU1FM' est reconvertie en chaîne
d'origine. 'Spark SQL'

SELECT unbase64('U3BhcmsgU1FM');
 Spark SQL

Fonction UNHEX

La fonction UNHEX reconvertit une chaîne hexadécimale en sa représentation sous forme de chaîne
d'origine.

Cette fonction peut être utile dans les scénarios où vous devez travailler avec des données stockées
ou transmises dans un format hexadécimal, et vous devez restaurer la représentation de chaîne
d'origine pour un traitement ou un affichage ultérieurs.

La fonction UNHEX est le pendant de la fonction HEX.

Syntaxe

unhex(expr)

Arguments

expr

Expression de type STRING composée de caractères hexadécimaux.

Type de retour

UNHEX renvoie un BINARY.

Si la longueur de expr est impaire, le premier caractère est supprimé et le résultat est complété par
un octet nul. Si expr contient des caractères non hexadécimaux, le résultat est NULL.

Exemple

L'exemple suivant reconvertit une chaîne hexadécimale en sa représentation sous forme de chaîne
d'origine en utilisant conjointement les fonctions UNHEX () et DECODE (). La première partie de la
requête utilise la fonction UNHEX () pour convertir la chaîne hexadécimale '537061726B2053514C'
en sa représentation binaire. La deuxième partie de la requête utilise la fonction DECODE () pour

Fonctions de formatage des types de données 189

AWS Clean Rooms Référence SQL

reconvertir les données binaires obtenues par la fonction UNHEX () en chaîne, en utilisant le codage
de caractères « UTF-8 ». Le résultat de la requête est la chaîne originale 'Spark_SQL' qui a été
convertie en hexadécimal puis redevenue une chaîne.

SELECT decode(unhex('537061726B2053514C'), 'UTF-8');
 Spark SQL

Chaînes de format datetime

Vous pouvez utiliser des modèles de date/heure dans les scénarios courants suivants :

• Lorsque vous travaillez avec des sources de données CSV et JSON pour analyser et formater du
contenu date/heure

• Lors de la conversion entre des types de chaînes et des types de date ou d'horodatage à l'aide de
fonctions telles que :

• horodatage unix

• date_format

• to_unix_timestamp

• from_unixtime

• to_date

• to_timestamp

• from_utc_timestamp

• to_utc_timestamp

Utilisez les lettres types du tableau suivant pour l'analyse et le formatage de la date et de
l'horodatage.

Partie de date ou d’horodat
age

Signification Exemples

a Matin ou PM du jour, présenté
comme étant du matin au soir

PM

D Jour de l'année, présenté sous
forme de numéro à 3 chiffres

189

Fonctions de formatage des types de données 190

AWS Clean Rooms Référence SQL

Partie de date ou d’horodat
age

Signification Exemples

d Jour du mois, présenté sous
forme de nombre à 2 chiffres

28

E Jour de la semaine, présenté
sous forme de texte

mardi

Mardi

F Jour de la semaine aligné
dans le mois, présenté sous
forme de nombre à 1 chiffre

3

G Indicateur d'ère, présenté sous
forme de texte

AD

Anno Domini

h Heure du matin ou du soir,
présentée sous forme de
nombre à 2 chiffres

12

H Heure du jour, présentée sous
la forme d'un nombre à deux
chiffres compris entre 0 et 23

0

k Heure du jour, présentée sous
la forme d'un nombre à 2
chiffres compris entre 1 et 24

1

K Heure du matin ou du soir,
présentée sous forme de
nombre à 2 chiffres compris
entre 0 et 11

0

m Minute de l'heure, présentée
sous forme de nombre à 2
chiffres

30

Fonctions de formatage des types de données 191

AWS Clean Rooms Référence SQL

Partie de date ou d’horodat
age

Signification Exemples

M/L Mois de l'année, présenté
sous forme de mois

7

07

Juil

juillet

O Décalage de zone localisé par
rapport à l'UTC

GMT+8

GMT+ 8:00

UTC- 08:00

Q/Q Trimestre de l'année, présenté
sous forme de chiffre (1 à 4)
ou de texte

3

03

Q3

3e trimestre

s Seconde de minute, présentée
sous la forme d'un nombre à
deux chiffres

55

S Fraction de seconde,
présentée sous forme de
fraction

978

V Identifiant de fuseau horaire,
présenté sous forme d'identif
iant de zone

America/Los_Angeles

Z

08h30

Fonctions de formatage des types de données 192

AWS Clean Rooms Référence SQL

Partie de date ou d’horodat
age

Signification Exemples

x Décalage de zone par rapport
à UTC (Offset-X)

+0000

-08

-0830

- 08h30

-083015

- 08 H 30 min 15

X Décalage de zone par rapport
à l'UTC ; où Z est égal à zéro

Z

-08

-0830

- 08h30

-083015

- 08 H 30 min 15

y Année, présentée comme une
année

2020

20

z Nom du fuseau horaire,
présenté sous forme de texte

Heure normale du Pacifique

PST

Z Décalage de zone par rapport
à UTC (Offset-Z)

+0000

-0800

- 08h00

Fonctions de formatage des types de données 193

AWS Clean Rooms Référence SQL

Partie de date ou d’horodat
age

Signification Exemples

' Échappement pour le texte,
présenté sous forme de
délimiteur

N/A

'' Citation unique, présentée
sous forme littérale

'

[Début de section facultatif N/A

] Fin de section facultative N/A

Le nombre de lettres du modèle détermine le type de format :

Format du texte

• Utilisez 1 à 3 lettres pour la forme abrégée (par exemple, « Mon » pour le lundi)

• Utilisez exactement 4 lettres pour le formulaire complet (par exemple, « lundi »)

• N'utilisez pas 5 lettres ou plus, cela provoquerait une erreur

Format numérique (n)

• La valeur n représente le nombre maximum de lettres autorisées

• Pour les modèles à lettre unique :

• La sortie utilise un minimum de chiffres sans remplissage

• Pour plusieurs modèles de lettres :

• La sortie est complétée par des zéros pour correspondre à la largeur du nombre de lettres

• Lors de l'analyse, l'entrée doit contenir le nombre exact de chiffres

Format numérique/texte

• Pour 3 lettres ou plus, suivez les règles du format de texte

• Pour réduire le nombre de lettres, suivez les règles du format numérique

Fonctions de formatage des types de données 194

AWS Clean Rooms Référence SQL

Format de fraction

• Utilisez 1 à 9 caractères « S » (par exemple, SSSSSS)

• Pour l'analyse syntaxique :

• Acceptez les fractions comprises entre 1 et le nombre de caractères S

• Pour le formatage :

• Bloc avec des zéros correspondant au nombre de caractères S

• Supporte jusqu'à 6 chiffres pour une précision de la microseconde

• Peut analyser des nanosecondes mais tronque des chiffres supplémentaires

Format de l'année

• Le nombre de lettres définit la largeur de champ minimale pour le rembourrage

• Pour deux lettres :

• Imprime les deux derniers chiffres

• Analyse les années entre 2000 et 2099

• Pour moins de quatre lettres (sauf deux) :

• Affiche le signe uniquement pour les années négatives

• N'utilisez pas 7 lettres ou plus, cela provoquerait une erreur

Format du mois

• Utilisez « M » pour le formulaire standard ou « L » pour le formulaire autonome

• « M » ou « L » simple :

• Affiche les numéros des mois 1 à 12 sans rembourrage

• « MM » ou « LL » :

• Affiche les numéros des mois 01-12 avec rembourrage

• « MAMAN » :

• Affiche le nom abrégé du mois sous forme standard

• Doit faire partie d'un schéma de date complet

• « TOUT LE MONDE » :

• Affiche le nom abrégé du mois sous forme autonome

Fonctions de formatage des types de données 195

AWS Clean Rooms Référence SQL

• À utiliser pour le formatage mensuel uniquement

• « MMMM » :

• Affiche le nom complet du mois sous forme standard

• À utiliser pour les dates et les horodatages

• « TOUT LE MONDE » :

• Affiche le nom complet du mois sous forme autonome

• À utiliser pour le formatage mensuel uniquement

Formats de fuseau horaire

• Du matin au soir : utilisez une seule lettre

• ID de zone (V) : utilisez 2 lettres uniquement

• Noms de zone (z) :

• 1 à 3 lettres : affiche le nom court

• 4 lettres : affiche le nom complet

• N'utilisez pas 5 lettres ou plus

Formats de décalage

• X et x :

• 1 lettre : affiche l'heure (+01) ou l'heure/minute (+0130)

• 2 lettres : affiche les heures et les minutes sans deux points (+0130)

• 3 lettres : affiche les heures et les minutes avec deux points (+ 01:30)

• 4 lettres : Afficher hour-minute-second sans deux points (+013015)

• 5 lettres : Afficher hour-minute-second avec deux points (+ 01:30:15)

• X utilise « Z » pour un décalage nul

• x utilise « +00 », « +0000 » ou « + 00:00 » pour un décalage nul

• O:

• 1 lettre : affiche la forme abrégée (GMT+8)

• 4 lettres : affiche le formulaire complet (GMT+ 08:00)

• Z :

• 1 à 3 lettres : affiche les heures et les minutes sans deux points (+0130)

Fonctions de formatage des types de données 196

AWS Clean Rooms Référence SQL

• 4 lettres : affiche le formulaire localisé complet

• 5 lettres : Indique hour-minute-second avec deux points

Sections facultatives

• Utilisez des crochets [] pour marquer le contenu facultatif

• Vous pouvez imbriquer des sections facultatives

• Toutes les données valides apparaissent dans la sortie

• La saisie peut omettre des sections facultatives entières

Note

Les symboles « E », « F », « q » et « Q » ne fonctionnent que pour le formatage de la date
et de l'heure (comme date_format). Ne les utilisez pas pour l'analyse de la date et de l'heure
(comme to_timestamp).

Chaînes de format numériques

Les chaînes de format numérique suivantes s'appliquent à des fonctions telles que TO_NUMBER et
TO_CHAR.

• Pour des exemples de formatage de chaînes sous forme de nombres, consultez TO_NUMBER.

• Pour des exemples de formatage de nombres sous forme de chaînes, consultez TO_CHAR.

Format Description

9 Valeur numérique avec le nombre spécifié de
chiffres.

0 Valeur numérique commençant par des zéros.

. (point), D Virgule.

, (comma) Séparateur de milliers.

Fonctions de formatage des types de données 197

AWS Clean Rooms Référence SQL

Format Description

CC Code de siècle. Par exemple, le 21e siècle a
commencé le 2001-01-01 (pris en charge pour
TO_CHAR uniquement).

FM Mode de remplissage. Permet de supprimer les
zéros et les vides de remplissage.

PR Valeur négative entre crochets.

S Signe fixé à un nombre.

L Symbole de devise à la position spécifiée.

G Séparateur de groupe.

MI Signe moins à la position spécifiée pour les
numéros inférieurs à 0.

PL Signe plus à la position spécifiée pour les
numéros supérieurs à 0.

SG Signe plus ou moins à la position spécifiée.

RN Chiffre romains compris entre 1 et 3 999 (pris
en charge pour TO_CHAR uniquement).

TH ou th Suffixe de nombre ordinal. Ne convertit pas les
nombres ou les valeurs fractionnaires inférieurs
à zéro.

Fonctions de date et d’heure

Les fonctions de date et d'heure vous permettent d'effectuer un large éventail d'opérations sur les
données de date et d'heure, telles que l'extraction de parties d'une date, le calcul des dates, le
formatage des dates et des heures et l'utilisation de la date et de l'heure actuelles. Ces fonctions
sont essentielles pour les tâches telles que l'analyse des données, le reporting et la manipulation de
données impliquant des données temporelles.

Fonctions de date et d’heure 198

AWS Clean Rooms Référence SQL

AWS Clean Rooms prend en charge les fonctions de date et d'heure suivantes :

Rubriques

• Fonction ADD_MONTHS

• Fonction CONVERT_TIMEZONE

• Fonction CURRENT_DATE

• Fonction CURRENT_TIMESTAMP

• Fonction DATE_ADD

• Fonction DATE_DIFF

• Fonction DATE_PART

• Fonction DATE_TRUNC

• Fonction DAY

• Fonction DAYOFMONTH

• Fonction DAYOFWEEK

• Fonction DAYOFYEAR

• Fonction EXTRACT

• Fonction FROM_UTC_TIMESTAMP

• Fonction HOUR

• Fonction MINUTE

• Fonction MONTH

• DEUXIÈME fonction

• Fonction TIMESTAMP

• Fonction TO_TIMESTAMP

• Fonction YEAR

• Parties de date pour les fonctions de date ou d'horodatage

Fonction ADD_MONTHS

ADD_MONTHS ajoute le nombre de mois spécifié à une date, à une valeur d’horodatage ou à une
expression. La fonction DATE_ADD fournit une fonctionnalité similaire.

Fonctions de date et d’heure 199

AWS Clean Rooms Référence SQL

Syntaxe

ADD_MONTHS({date | timestamp}, integer)

Arguments

date | timestamp

Colonne date ou timestamp ou expression qui convertit implicitement en un horodatage ou
une date. Si la date est le dernier jour du mois, ou si le mois résultant est plus court, la fonction
renvoie le dernier jour du mois dans le résultat. Pour les autres dates, le résultat contient le même
nombre de jours que l’expression de date.

integer

Nombre entier positif ou négatif. Utilisez un nombre négatif pour soustraire des mois à partir de
dates.

Type de retour

TIMESTAMP

Exemple

La requête suivante utilise la fonction ADD_MONTHS à l’intérieur d’une fonction TRUNC. La fonction
TRUNC supprime l’heure du jour des résultats de ADD_MONTHS. La fonction ADD_MONTHS ajoute
12 mois à chaque valeur de la colonne CALDATE.

select distinct trunc(add_months(caldate, 12)) as calplus12,
trunc(caldate) as cal
from date
order by 1 asc;

 calplus12 | cal
------------+------------
 2009-01-01 | 2008-01-01
 2009-01-02 | 2008-01-02
 2009-01-03 | 2008-01-03
...
(365 rows)

Fonctions de date et d’heure 200

AWS Clean Rooms Référence SQL

Les exemples suivants illustrent le comportement lorsque la fonction ADD_MONTHS opère sur des
dates comportant des mois avec un nombre de jours différent.

select add_months('2008-03-31',1);

add_months

2008-04-30 00:00:00
(1 row)

select add_months('2008-04-30',1);

add_months

2008-05-31 00:00:00
(1 row)

Fonction CONVERT_TIMEZONE

CONVERT_TIMEZONE convertit un horodatage d’un fuseau horaire à un autre. La fonction s'ajuste
automatiquement à l'heure d'été.

Syntaxe

CONVERT_TIMEZONE (['source_timezone',] 'target_timezone', 'timestamp')

Arguments

source_timezone

(Facultatif) Fuseau horaire de l’horodatage actuel. La valeur par défaut est UTC.

target_timezone

Fuseau horaire du nouvel horodatage.

timestamp

Colonne timestamp ou expression qui convertit implicitement en un horodatage.

Fonctions de date et d’heure 201

AWS Clean Rooms Référence SQL

Type de retour

TIMESTAMP

Exemples

L’exemple suivant convertit la valeur d’horodatage du fuseau horaire UTC par défaut en HNP.

select convert_timezone('PST', '2008-08-21 07:23:54');

 convert_timezone

2008-08-20 23:23:54

L’exemple suivant convertit la valeur d’horodatage dans la colonne LISTTIME du fuseau horaire UTC
par défaut en HNP. Même si l’horodatage est à l’heure d’été, il est converti en heure normale, car le
fuseau horaire cible est spécifié comme abréviation (PST).

select listtime, convert_timezone('PST', listtime) from listing
where listid = 16;

 listtime | convert_timezone
--------------------+-------------------
2008-08-24 09:36:12 2008-08-24 01:36:12

L'exemple suivant convertit une colonne d'horodatage LISTTIME du fuseau horaire UTC par défaut
en fuseau horaire. US/Pacific Le fuseau horaire cible utilise un nom de fuseau horaire, et l’horodatage
se situe pendant la période l’heure d’été, donc la fonction renvoie l’heure.

select listtime, convert_timezone('US/Pacific', listtime) from listing
where listid = 16;

 listtime | convert_timezone
--------------------+---------------------
2008-08-24 09:36:12 | 2008-08-24 02:36:12

L’exemple suivant convertit une chaîne d’horodatage de l’EST à PST :

select convert_timezone('EST', 'PST', '20080305 12:25:29');

 convert_timezone

Fonctions de date et d’heure 202

AWS Clean Rooms Référence SQL

2008-03-05 09:25:29

L’exemple suivant convertit un horodatage à l’heure normale de l’est des États-Unis, car le fuseau
horaire cible utilise un nom de fuseau horaire (Amérique/New_York) et que l’horodatage est à l’heure
normale.

select convert_timezone('America/New_York', '2013-02-01 08:00:00');

 convert_timezone

2013-02-01 03:00:00
(1 row)

L’exemple suivant convertit un horodatage à l’heure d’été de l’est des États-Unis, car le fuseau
horaire cible utilise un nom de fuseau horaire (Amérique/New_York) et que l’horodatage est à l’heure
d’été.

select convert_timezone('America/New_York', '2013-06-01 08:00:00');

 convert_timezone

2013-06-01 04:00:00
(1 row)

L’exemple suivant illustre l’utilisation des décalages.

SELECT CONVERT_TIMEZONE('GMT','NEWZONE +2','2014-05-17 12:00:00') as newzone_plus_2,
CONVERT_TIMEZONE('GMT','NEWZONE-2:15','2014-05-17 12:00:00') as newzone_minus_2_15,
CONVERT_TIMEZONE('GMT','America/Los_Angeles+2','2014-05-17 12:00:00') as la_plus_2,
CONVERT_TIMEZONE('GMT','GMT+2','2014-05-17 12:00:00') as gmt_plus_2;

 newzone_plus_2 | newzone_minus_2_15 | la_plus_2 | gmt_plus_2
---------------------+---------------------+---------------------+---------------------
2014-05-17 10:00:00 | 2014-05-17 14:15:00 | 2014-05-17 10:00:00 | 2014-05-17 10:00:00
(1 row)

Fonction CURRENT_DATE

CURRENT_DATE renvoie une date dans le fuseau horaire de la session en cours (UTC par défaut)
au format par défaut :. YYYY-MM-DD

Fonctions de date et d’heure 203

AWS Clean Rooms Référence SQL

Note

CURRENT_DATE renvoie la date de début de la transaction en cours, pas le début de
l’instruction en cours. Imaginez un scénario où vous démarrez une transaction contenant
plusieurs instructions le 10/01/08 à 23h59, et où l’instruction contenant CURRENT_DATE
s’exécute le 10/02/08 à 00h00. CURRENT_DATE renvoie 10/01/08, et non 10/02/08.

Syntaxe

CURRENT_DATE

Type de retour

DATE

Exemple

L'exemple suivant renvoie la date actuelle (dans Région AWS laquelle la fonction s'exécute).

select current_date;

 date

2008-10-01

Fonction CURRENT_TIMESTAMP

CURRENT_TIMESTAMP renvoie la date et l'heure actuelles, y compris la date, l'heure et
(éventuellement) les millisecondes ou microsecondes.

Cette fonction est utile lorsque vous devez obtenir la date et l'heure actuelles, par exemple pour
enregistrer l'horodatage d'un événement, pour effectuer des calculs basés sur le temps ou pour
remplir des colonnes. date/time

Syntaxe

current_timestamp()

Fonctions de date et d’heure 204

AWS Clean Rooms Référence SQL

Type de retour

La fonction CURRENT_TIMESTAMP renvoie une DATE.

Exemple

L'exemple suivant renvoie la date et l'heure actuelles au moment où la requête est exécutée, soit le
25 avril 2020 à 15:49:11.914 (15:49:11.914 PM).

SELECT current_timestamp();
 2020-04-25 15:49:11.914

L'exemple suivant extrait la date et l'heure actuelles pour chaque ligne du squirrels tableau.

SELECT current_timestamp() FROM squirrels

Fonction DATE_ADD

Renvoie la date qui est postérieure de num_jours à la date de début.

Syntaxe

date_add(start_date, num_days)

Arguments

date_de début

La valeur de la date de début.

num_days

Le nombre de jours à ajouter (entier). Un nombre positif ajoute des jours, un nombre négatif
soustrait des jours.

Type de retour

DATE

Exemples

L'exemple suivant ajoute un jour à une date :

Fonctions de date et d’heure 205

AWS Clean Rooms Référence SQL

SELECT date_add('2016-07-30', 1);

Result:
2016-07-31

L'exemple suivant ajoute plusieurs jours.

SELECT date_add('2016-07-30', 5);

Result:
2016-08-04

Notes d’utilisation

Cette documentation concerne la fonction DATE_ADD de Spark SQL, qui fournit une interface plus
simple pour ajouter des jours aux dates par rapport à d'autres variantes SQL. Pour ajouter d'autres
intervalles tels que des mois ou des années, différentes fonctions peuvent être nécessaires.

Fonction DATE_DIFF

DATE_DIFF renvoie la différence entre les parties datées de deux expressions de date ou d'heure.

Syntaxe

date_diff(endDate, startDate)

Arguments

endDate

Expression DATE.

startDate

Expression DATE.

Type de retour

BIGINT

Fonctions de date et d’heure 206

AWS Clean Rooms Référence SQL

Exemples avec une colonne DATE

L’exemple suivant met en évidence la différence, en nombre de semaines, entre deux valeurs de date
littérales.

select date_diff(week,'2009-01-01','2009-12-31') as numweeks;

numweeks

52
(1 row)

L’exemple suivant permet de trouver la différence, en heures, entre deux valeurs littérales de date. Si
vous n’indiquez pas la valeur temporelle d’une date, celle-ci est fixée par défaut à 00:00:00.

select date_diff(hour, '2023-01-01', '2023-01-03 05:04:03');

date_diff

53
(1 row)

L’exemple suivant permet de trouver la différence, en jours, entre deux valeurs TIMESTAMETZ
littérales.

Select date_diff(days, 'Jun 1,2008 09:59:59 EST', 'Jul 4,2008 09:59:59 EST')

date_diff

33

L’exemple suivant permet de trouver la différence, en jours, entre deux dates figurant sur la même
ligne d’une table.

select * from date_table;

start_date | end_date
-----------+-----------
2009-01-01 | 2009-03-23
2023-01-04 | 2024-05-04
(2 rows)

Fonctions de date et d’heure 207

AWS Clean Rooms Référence SQL

select date_diff(day, start_date, end_date) as duration from date_table;

duration

 81
 486
(2 rows)

L’exemple suivant met en évidence la différence, dans le nombre de trimestres, entre une valeur
littérale dans le passé et la date du jour. Cet exemple suppose que la date du jour est le 5 juin 2008.
Vous pouvez nommer les parties de date intégralement ou les abréger. Le nom de colonne par défaut
de la fonction DATE_DIFF est DATE_DIFF.

select date_diff(qtr, '1998-07-01', current_date);

date_diff

40
(1 row)

L’exemple suivant joint les tables SALES et LISTING pour calculer combien de jours après leur mise
en vente des billets ont été vendus pour les listes 1000 à 1005. L’attente la plus longue pour les
ventes de ces listes a été 15 jours, et la plus courte a été de moins d’une journée (0 jour).

select priceperticket,
date_diff(day, listtime, saletime) as wait
from sales, listing where sales.listid = listing.listid
and sales.listid between 1000 and 1005
order by wait desc, priceperticket desc;

priceperticket | wait
---------------+------
 96.00 | 15
 123.00 | 11
 131.00 | 9
 123.00 | 6
 129.00 | 4
 96.00 | 4
 96.00 | 0
(7 rows)

Fonctions de date et d’heure 208

AWS Clean Rooms Référence SQL

Cet exemple calcule la moyenne du nombre d’heures que les vendeurs ont attendu pour toutes les
ventes de billets.

select avg(date_diff(hours, listtime, saletime)) as avgwait
from sales, listing
where sales.listid = listing.listid;

avgwait

465
(1 row)

Exemples avec une colonne TIME

L'exemple de table TIME_TEST suivant comporte une colonne TIME_VAL (type TIME) avec trois
valeurs insérées.

select time_val from time_test;

time_val

20:00:00
00:00:00.5550
00:58:00

L’exemple suivant montre comment trouver la différence en nombre d’heures entre la colonne
TIME_VAL et une valeur de temps littérale.

select date_diff(hour, time_val, time '15:24:45') from time_test;

 date_diff

 -5
 15
 15

L’exemple suivant montre comment trouver la différence en nombre de minutes entre deux valeurs de
temps littérales.

select date_diff(minute, time '20:00:00', time '21:00:00') as nummins;

nummins

Fonctions de date et d’heure 209

AWS Clean Rooms Référence SQL

60

Exemples avec une colonne TIMETZ

L'exemple de table TIMETZ_TEST suivant comporte une colonne TIMETZ_VAL (type TIMETZ) avec
trois valeurs insérées.

select timetz_val from timetz_test;

timetz_val

04:00:00+00
00:00:00.5550+00
05:58:00+00

L’exemple suivant montre comment trouver la différence en nombre d’heures entre une valeur
TIMETZ littérale et une valeur timez_val.

select date_diff(hours, timetz '20:00:00 PST', timetz_val) as numhours from
 timetz_test;

numhours

0
-4
1

L’exemple suivant montre comment trouver la différence en nombre d’heures entre deux valeurs
TIMETZ littérales.

select date_diff(hours, timetz '20:00:00 PST', timetz '00:58:00 EST') as numhours;

numhours

1

Fonction DATE_PART

DATE_PART extrait des valeurs date part d’une expression. DATE_PART est un synonyme de la
fonction PGDATE_PART.

Fonctions de date et d’heure 210

AWS Clean Rooms Référence SQL

Syntaxe

datepart(field, source)

Arguments

champ

La partie de la source qui doit être extraite et les valeurs de chaîne prises en charge sont les
mêmes que les champs de la fonction équivalente EXTRACT.

source

Colonne DATE ou INTERVAL à partir de laquelle le champ doit être extrait.

Type de retour

Si le champ est « DEUXIÈME », une décimale (8, 6). Dans tous les autres cas, un INTEGER.

Exemple

L'exemple suivant extrait le jour de l'année (DOY) à partir d'une valeur de date. La sortie indique que
le jour de l'année pour la date « 2019-08-12 » est. 224 Cela signifie que le 12 août 2019 est le 224e
jour de l'année 2019.

SELECT datepart('doy', DATE'2019-08-12');
 224

Fonction DATE_TRUNC

La fonction DATE_TRUNC tronque une expression d’horodatage ou littérale en fonction de la partie
de date que vous spécifiez, telle que l’heure, le jour ou le mois.

Syntaxe

date_trunc(format, datetime)

Arguments

format

Format représentant l'unité à tronquer. Les formats valides sont les suivants :

Fonctions de date et d’heure 211

AWS Clean Rooms Référence SQL

• « ANNÉE », « YYYY », « YY » - tronqués à la première date de l'année où le ts tombe, la partie
temporelle sera nulle

• « TRIMESTRE » : tronquez à la première date du trimestre où le ts tombe, la partie temporelle
sera nulle

• « MONTH », « MM », « MON » - tronquez à la première date du mois où le ts tombe, la partie
temporelle sera nulle

• « SEMAINE » : tronquez au lundi de la semaine où le ts tombe, le temps sera nul

• « JOUR », « DD » - mettez à zéro la partie horaire

• « HEURE » : zéro la minute et la seconde avec une fraction

• « MINUTE » : zéro la seconde avec une fraction

• « DEUXIÈME » - met à zéro la deuxième fraction

• « MILLISECOND » - mettez à zéro les microsecondes

• « MICROSECONDE » - tout reste

ts

Une valeur date/heure

Type de retour

Renvoie l'horodatage ts tronqué à l'unité spécifiée par le modèle de format

Exemples

L'exemple suivant tronque une valeur de date au début de l'année. Le résultat indique que la date
« 2015-03-05" a été tronquée en « 2015-01-01", ce qui correspond au début de l'année 2015.

SELECT date_trunc('YEAR', '2015-03-05');

 date_trunc

2015-01-01

Fonction DAY

La fonction DAY renvoie le jour du mois correspondant à la date/à l'horodatage.

Fonctions de date et d’heure 212

AWS Clean Rooms Référence SQL

Les fonctions d'extraction de date sont utiles lorsque vous devez travailler avec des composants
spécifiques d'une date ou d'un horodatage, par exemple lorsque vous effectuez des calculs basés sur
la date, que vous filtrez des données ou que vous formatez des valeurs de date.

Syntaxe

day(date)

Arguments

date

Expression DATE ou TIMESTAMP.

Renvoie

La fonction DAY renvoie un INTEGER.

Exemples

L'exemple suivant extrait le jour du mois (30) de la date saisie'2009-07-30'.

SELECT day('2009-07-30');
 30

L'exemple suivant extrait le jour du mois de la birthday colonne du squirrels tableau et renvoie
les résultats sous forme de sortie de l'instruction SELECT. Le résultat de cette requête sera une liste
de valeurs de jour, une pour chaque ligne du squirrels tableau, représentant le jour du mois pour
l'anniversaire de chaque écureuil.

SELECT day(birthday) FROM squirrels

Fonction DAYOFMONTH

La fonction DAYOFMONTH renvoie le jour du mois du date/timestamp (une valeur comprise entre 1
et 31, selon le mois et l'année).

La fonction DAYOFMONTH est similaire à la fonction DAY, mais leur nom et leur comportement sont
légèrement différents. La fonction DAY est plus couramment utilisée, mais la fonction DAYOFMONTH

Fonctions de date et d’heure 213

AWS Clean Rooms Référence SQL

peut être utilisée comme alternative. Ce type de requête peut être utile lorsque vous devez effectuer
une analyse basée sur la date ou un filtrage sur une table contenant des données de date ou
d'horodatage, par exemple pour extraire des composants spécifiques d'une date à des fins de
traitement ou de génération de rapports ultérieurs.

Syntaxe

dayofmonth(date)

Arguments

date

Expression DATE ou TIMESTAMP.

Renvoie

La fonction DAYOFMONTH renvoie un INTEGER.

Exemple

L'exemple suivant extrait le jour du mois (30) de la date saisie'2009-07-30'.

SELECT dayofmonth('2009-07-30');
 30

L'exemple suivant applique la fonction DAYOFMONTH à la birthday colonne du squirrels
tableau. Pour chaque ligne du squirrels tableau, le jour du mois indiqué dans la birthday
colonne sera extrait et renvoyé en sortie de l'instruction SELECT. Le résultat de cette requête sera
une liste de valeurs de jour, une pour chaque ligne du squirrels tableau, représentant le jour du
mois pour l'anniversaire de chaque écureuil.

SELECT dayofmonth(birthday) FROM squirrels

Fonction DAYOFWEEK

La fonction DAYOFWEEK saisit une date ou un horodatage et renvoie le jour de la semaine sous
forme de chiffre (1 pour le dimanche, 2 pour le lundi,..., 7 pour le samedi).

Fonctions de date et d’heure 214

AWS Clean Rooms Référence SQL

Cette fonction d'extraction de date est utile lorsque vous devez travailler avec des composants
spécifiques d'une date ou d'un horodatage, par exemple lorsque vous effectuez des calculs basés sur
la date, que vous filtrez des données ou que vous formatez des valeurs de date.

Syntaxe

dayofweek(date)

Arguments

date

Expression DATE ou TIMESTAMP.

Renvoie

La fonction DAYOFWEEK renvoie un INTEGER où

1 = dimanche

2 = lundi

3 = mardi

4 = mercredi

5 = jeudi

6 = Vendredi

7 = samedi

Exemples

L'exemple suivant extrait le jour de la semaine à partir de cette date, qui est 5 (représentant le jeudi).

SELECT dayofweek('2009-07-30');
 5

L'exemple suivant extrait le jour de la semaine de la birthday colonne du squirrels tableau
et renvoie les résultats sous forme de sortie de l'instruction SELECT. Le résultat de cette requête
sera une liste de valeurs du jour de la semaine, une pour chaque ligne du squirrels tableau,
représentant le jour de la semaine pour l'anniversaire de chaque écureuil.

Fonctions de date et d’heure 215

AWS Clean Rooms Référence SQL

SELECT dayofweek(birthday) FROM squirrels

Fonction DAYOFYEAR

La fonction DAYOFYEAR est une fonction d'extraction de date qui prend une date ou un horodatage
comme entrée et renvoie le jour de l'année (une valeur comprise entre 1 et 366, selon l'année et
selon qu'il s'agit d'une année bissextile).

Cette fonction est utile lorsque vous devez travailler avec des composants spécifiques d'une date
ou d'un horodatage, par exemple lorsque vous effectuez des calculs basés sur la date, lorsque vous
filtrez des données ou que vous formatez des valeurs de date.

Syntaxe

dayofyear(date)

Arguments

date

Expression DATE ou TIMESTAMP.

Renvoie

La fonction DAYOFYEAR renvoie un INTEGER (compris entre 1 et 366, selon l'année et selon qu'il
s'agit d'une année bissextile).

Exemples

L'exemple suivant extrait le jour de l'année (100) de la date d'entrée'2016-04-09'.

SELECT dayofyear('2016-04-09');
 100

L'exemple suivant extrait le jour de l'année de la birthday colonne du squirrels tableau et
renvoie les résultats sous forme de sortie de l'instruction SELECT.

SELECT dayofyear(birthday) FROM squirrels

Fonctions de date et d’heure 216

AWS Clean Rooms Référence SQL

Fonction EXTRACT

La fonction EXTRACT renvoie une partie de date ou d’heure à partir d’une valeur TIMESTAMP,
TIMESTAMPTZ, TIME ou TIMETZ. Les exemples incluent le jour, le mois, l’année, l’heure, la minute,
la seconde, la milliseconde ou la microseconde d’un horodatage.

Syntaxe

EXTRACT(datepart FROM source)

Arguments

datepart

Sous-champ d’une date ou d’une heure à extraire, tel que le jour, le mois, l’année, l’heure, la
minute, la seconde, la milliseconde ou la microseconde. Pour les valeurs possibles, consultez
Parties de date pour les fonctions de date ou d'horodatage.

source

Une colonne ou une expression qui évalue un type de données TIMESTAMP, TIMESTAMPTZ,
TIME ou TIMETZ.

Type de retour

INTEGER si la valeur source est de type TIMESTAMP, TIME ou TIMETZ.

DOUBLE PRECISION si la valeur source est de type TIMESTAMPTZ.

Exemples avec TIME

L'exemple de table TIME_TEST suivant comporte une colonne TIME_VAL (type TIME) avec trois
valeurs insérées.

select time_val from time_test;

time_val

20:00:00
00:00:00.5550
00:58:00

Fonctions de date et d’heure 217

AWS Clean Rooms Référence SQL

L’exemple suivant extrait les minutes de chaque time_val.

select extract(minute from time_val) as minutes from time_test;

minutes

 0
 0
 58

L’exemple suivant extrait les heures de chaque time_val.

select extract(hour from time_val) as hours from time_test;

hours

 20
 0
 0

Fonction FROM_UTC_TIMESTAMP

La fonction FROM_UTC_TIMESTAMP convertit la date d'entrée de l'UTC (temps universel
coordonné) vers le fuseau horaire spécifié.

Cette fonction est utile lorsque vous devez convertir des valeurs de date et d'heure de l'UTC vers
un fuseau horaire spécifique. Cela peut être important lorsque vous travaillez avec des données
provenant de différentes régions du monde et qui doivent être présentées à l'heure locale appropriée.

Syntaxe

from_utc_timestamp(timestamp, timezone

Arguments

timestamp

Une expression TIMESTAMP avec un horodatage UTC.

timezone

Expression STRING correspondant à un fuseau horaire valide dans lequel la date ou l'horodatage
en entrée doivent être convertis.

Fonctions de date et d’heure 218

AWS Clean Rooms Référence SQL

Renvoie

La fonction FROM_UTC_TIMESTAMP renvoie un TIMESTAMP.

Exemple

L'exemple suivant convertit la date d'entrée de l'heure UTC vers le fuseau horaire spécifié ('Asia/
Seoul'), qui dans ce cas est 9 heures avant l'heure UTC. Le résultat obtenu est la date et l'heure
dans le fuseau horaire de Séoul, qui est2016-08-31 09:00:00.

SELECT from_utc_timestamp('2016-08-31', 'Asia/Seoul');
 2016-08-31 09:00:00

Fonction HOUR

La fonction HOUR est une fonction d'extraction de l'heure qui prend une heure ou un horodatage en
entrée et renvoie le composant horaire (une valeur comprise entre 0 et 23).

Cette fonction d'extraction temporelle est utile lorsque vous devez travailler avec des composants
spécifiques d'une heure ou d'un horodatage, par exemple lorsque vous effectuez des calculs
temporels, que vous filtrez des données ou que vous formatez des valeurs temporelles.

Syntaxe

hour(timestamp)

Arguments

timestamp

Expression TIMESTAMP.

Renvoie

La fonction HOUR renvoie un INTEGER.

Exemple

L'exemple suivant extrait le composant horaire (12) de l'horodatage '2009-07-30 12:58:59'
d'entrée.

Fonctions de date et d’heure 219

AWS Clean Rooms Référence SQL

SELECT hour('2009-07-30 12:58:59');
 12

Fonction MINUTE

La fonction MINUTE est une fonction d'extraction de l'heure qui prend une heure ou un horodatage
comme entrée et renvoie le composant minute (une valeur comprise entre 0 et 60).

Syntaxe

minute(timestamp)

Arguments

timestamp

Une expression TIMESTAMP ou une CHAÎNE d'un format d'horodatage valide.

Renvoie

La fonction MINUTE renvoie un INTEGER.

Exemple

L'exemple suivant extrait le composant minute (58) de l'horodatage '2009-07-30 12:58:59'
d'entrée.

SELECT minute('2009-07-30 12:58:59');
 58

Fonction MONTH

La fonction MONTH est une fonction d'extraction de l'heure qui prend une heure ou un horodatage
comme entrée et renvoie le composant du mois (une valeur comprise entre 0 et 12).

Syntaxe

month(date)

Fonctions de date et d’heure 220

AWS Clean Rooms Référence SQL

Arguments

date

Une expression TIMESTAMP ou une CHAÎNE d'un format d'horodatage valide.

Renvoie

La fonction MONTH renvoie un INTEGER.

Exemple

L'exemple suivant extrait le composant du mois (7) de l'horodatage '2016-07-30' d'entrée.

SELECT month('2016-07-30');
 7

DEUXIÈME fonction

La fonction SECOND est une fonction d'extraction temporelle qui prend une heure ou un horodatage
en entrée et renvoie le second composant (une valeur comprise entre 0 et 60).

Syntaxe

second(timestamp)

Arguments

timestamp

Expression TIMESTAMP.

Renvoie

La fonction SECOND renvoie un INTEGER.

Exemple

L'exemple suivant extrait le deuxième composant (59) de l'horodatage '2009-07-30 12:58:59'
d'entrée.

SELECT second('2009-07-30 12:58:59');

Fonctions de date et d’heure 221

AWS Clean Rooms Référence SQL

 59

Fonction TIMESTAMP

La fonction TIMESTAMP prend une valeur (généralement un nombre) et la convertit en un type de
données d'horodatage.

Cette fonction est utile lorsque vous devez convertir une valeur numérique représentant une heure ou
une date en un type de données d'horodatage. Cela peut être utile lorsque vous travaillez avec des
données stockées dans un format numérique, comme les horodatages Unix ou l'heure d'époque.

Syntaxe

timestamp(expr)

Arguments

expr

Toute expression pouvant être convertie en TIMESTAMP.

Renvoie

La fonction TIMESTAMP renvoie un TIMESTAMP.

Exemple

L'exemple suivant convertit un timestamp numérique Unix (1632416400) en son type de données
d'horodatage correspondant : 22 septembre 2021 à 12 h 00 UTC.

SELECT timestamp(1632416400);
 2021-09-22 12:00:00 UTC

Fonction TO_TIMESTAMP

TO_TIMESTAMP convertit une chaîne TIMESTAMP en TIMESTAMPTZ.

Syntaxe

to_timestamp (timestamp)

Fonctions de date et d’heure 222

AWS Clean Rooms Référence SQL

to_timestamp (timestamp, format)

Arguments

timestamp

Chaîne d'horodatage ou type de données pouvant être converti en chaîne d'horodatage.

format

Chaîne littérale qui correspond aux modèles de date/heure de Spark. Pour les modèles de date/
heure valides, voir Modèles de date/heure pour le formatage et l'analyse syntaxique.

Type de retour

TIMESTAMP

Exemples

L'exemple suivant montre comment utiliser la fonction TO_TIMESTAMP pour convertir une chaîne
TIMESTAMP en TIMESTAMP.

select current_timestamp() as timestamp, to_timestamp(current_timestamp(), 'YYYY-MM-DD
 HH24:MI:SS') as second;

timestamp | second
-------------------------- ----------------------
2021-04-05 19:27:53.281812 | 2021-04-05 19:27:53+00

Il est possible de transmettre la partie TO_TIMESTAMP d’une date. Les autres parties de la date sont
définies sur des valeurs par défaut. L’heure est incluse dans la sortie :

SELECT TO_TIMESTAMP('2017','YYYY');

to_timestamp

2017-01-01 00:00:00+00

L'instruction SQL suivante convertit la chaîne « 2011-12-18 24:38:15 » en TIMESTAMP. Le résultat
est un horodatage qui tombe le jour suivant car le nombre d'heures est supérieur à 24 heures :

Fonctions de date et d’heure 223

https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html

AWS Clean Rooms Référence SQL

select to_timestamp('2011-12-18 24:38:15', 'YYYY-MM-DD HH24:MI:SS');

to_timestamp

2011-12-19 00:38:15+00

Fonction YEAR

La fonction YEAR est une fonction d'extraction de date qui prend une date ou un horodatage en
entrée et renvoie le composant annuel (un nombre à quatre chiffres).

Syntaxe

year(date)

Arguments

date

Expression DATE ou TIMESTAMP.

Renvoie

La fonction YEAR renvoie un INTEGER.

Exemple

L'exemple suivant extrait le composant annuel (2016) de la date d'entrée'2016-07-30'.

SELECT year('2016-07-30');
 2016

L'exemple suivant extrait le composant annuel de la birthday colonne du squirrels tableau et
renvoie les résultats sous forme de sortie de l'instruction SELECT. Le résultat de cette requête sera
une liste de valeurs annuelles, une pour chaque ligne du squirrels tableau, représentant l'année
de naissance de chaque écureuil.

SELECT year(birthday) FROM squirrels

Fonctions de date et d’heure 224

AWS Clean Rooms Référence SQL

Parties de date pour les fonctions de date ou d'horodatage

Le tableau suivant identifie les noms de partie de date et d’horodatage et les abréviations qui sont
acceptées comme arguments pour les fonctions suivantes :

• DATE_ADD

• DATE_DIFF

• DATE_PART

• EXTRACT

Partie de date ou de temps Abréviations

millénaire, millénaires mil

siècle, siècles s, siècle, siècles

décennie, décennies déc

époque époque (prise en charge par la EXTRACT)

année, années an, ans

trimestre, trimestres trim

mois mois

semaine, semaines s, sem

jour de la semaine jdls (pris en charge par les fonctions DATE_PART et Fonction
EXTRACT)

Renvoie un nombre entier compris entre 0 et 6, en commençant
par le dimanche.

Note

La partie de date DOW se comporte différemment de
la partie de date jour de la semaine (D) utilisée pour les
chaînes au format datetime. D s’appuie sur des nombres

Fonctions de date et d’heure 225

AWS Clean Rooms Référence SQL

Partie de date ou de temps Abréviations

entiers compris entre 1 et 7, où le dimanche est 1. Pour
de plus amples informations, veuillez consulter Chaînes
de format datetime.

jour de l’année dayofyear, doy, dy, yearday (prise en charge par la EXTRACT)

jour, jours d

heure, heures h

minute, minutes m, min

seconde, secondes s

milliseconde, millisecondes ms

microseconde, microseco
ndes

µs

timezone, timezone_hour,
timezone_minute

Pris en charge par la EXTRACT pour l’horodatage avec fuseau
horaire (TIMESTAMPTZ) uniquement.

Variations de résultats avec les secondes, les millisecondes et les microsecondes

Des différences mineures dans les résultats de la requête se produisent lorsque d’autres fonctions de
date spécifient les secondes, les millisecondes ou les microsecondes comme des parties de date :

• La fonction EXTRACT renvoie des nombres entiers pour la partie de date spécifiée uniquement,
sans tenir compte des parties de date de niveau supérieur et inférieur. Si la partie de date spécifiée
est les secondes, les millisecondes et les microsecondes ne figurent pas dans le résultat. Si la
partie de date spécifiée est les millisecondes, les secondes et les microsecondes ne sont pas
incluses. Si la partie de date spécifiée est les microsecondes, les secondes et les millisecondes ne
sont pas incluses.

• La fonction DATE_PART renvoie la seconde partie complète de l’horodatage, quelle que soit la
partie de date spécifiée, en renvoyant une valeur décimale ou un nombre entier comme requis.

Fonctions de date et d’heure 226

AWS Clean Rooms Référence SQL

Remarques sur CENTURY, EPOCH, DECADE et MIL

CENTURY ou CENTURIES

AWS Clean Rooms interprète un CENTURY comme commençant par l'année ## #1 et se
terminant par l'année : ###0

select extract (century from timestamp '2000-12-16 12:21:13');
date_part

20
(1 row)

select extract (century from timestamp '2001-12-16 12:21:13');
date_part

21
(1 row)

EPOCH

L' AWS Clean Rooms implémentation d'EPOCH est relative au 1970-01-01 00:00:00.000 quel que
soit le fuseau horaire dans lequel réside le cluster. Vous devrez peut-être décaler les résultats de
la différence en heures selon le fuseau horaire sur lequel se trouve le cluster.

DECADE ou DECADES

AWS Clean Rooms interprète le DECADE ou DECADES DATEPART en fonction du calendrier
commun. Par exemple, si le calendrier commun commence à partir de l’année 1, la première
décennie (décennie 1) est 0001-01-01 jusqu’au 0009-12-31, et la deuxième décennie
(décennie 2) du 0010-01-01 au 0019-12-31. Par exemple, la décennie 201 s’étend du 2000-01-01
au 2009-12-31 :

select extract(decade from timestamp '1999-02-16 20:38:40');
date_part

200
(1 row)

select extract(decade from timestamp '2000-02-16 20:38:40');
date_part

Fonctions de date et d’heure 227

AWS Clean Rooms Référence SQL

201
(1 row)

select extract(decade from timestamp '2010-02-16 20:38:40');
date_part

202
(1 row)

MIL ou MILS

AWS Clean Rooms interprète un MIL comme commençant par le premier jour de l'année #001 et
se terminant par le dernier jour de l'année #000 :

select extract (mil from timestamp '2000-12-16 12:21:13');
date_part

2
(1 row)

select extract (mil from timestamp '2001-12-16 12:21:13');
date_part

3
(1 row)

Fonctions de chiffrement et de déchiffrement

Les fonctions de chiffrement et de déchiffrement aident les développeurs SQL à protéger les données
sensibles contre tout accès non autorisé ou toute utilisation abusive en les convertissant entre une
forme lisible en texte clair et une forme chiffrée illisible.

AWS Clean Rooms Spark SQL prend en charge les fonctions de chiffrement et de déchiffrement
suivantes :

Rubriques

• Fonction AES_ENCRYPT

• Fonction AES_DECRYPT

Fonctions de chiffrement et de déchiffrement 228

AWS Clean Rooms Référence SQL

Fonction AES_ENCRYPT

La fonction AES_ENCRYPT est utilisée pour chiffrer les données à l'aide de l'algorithme AES
(Advanced Encryption Standard).

Syntaxe

aes_encrypt(expr, key[, mode[, padding[, iv[, aad]]]])

Arguments

expr

La valeur binaire à chiffrer.

key

Phrase secrète à utiliser pour chiffrer les données.

Les longueurs de clé de 16, 24 et 32 bits sont prises en charge.

mode

Spécifie le mode de chiffrement par blocs à utiliser pour chiffrer les messages.

Modes valides : ECB (électronique CodeBook), GCM (mode Galois/Counter), CBC (Cipher-Block
Chaining).

rembourrage

Spécifie comment ajouter des messages dont la longueur n'est pas un multiple de la taille du bloc.

Valeurs valides : PKCS, NONE, DEFAULT.

Le remplissage DEFAULT signifie PKCS (Public Key Cryptography Standards) pour ECB, NONE
pour GCM et PKCS pour CBC.

Les combinaisons prises en charge de (mode, rembourrage) sont (« ECB », « PKCS »),
(« GCM », « NONE ») et (« CBC », « PKCS »).

iv

Vecteur d'initialisation facultatif (IV). Compatible uniquement avec les modes CBC et GCM.

Fonctions de chiffrement et de déchiffrement 229

AWS Clean Rooms Référence SQL

Valeurs valides : 12 octets pour le GCM et 16 octets pour le CBC.

aad

Données authentifiées supplémentaires (AAD) facultatives. Compatible uniquement avec le mode
GCM. Il peut s'agir de n'importe quelle entrée libre et doit être fournie à la fois pour le chiffrement
et le déchiffrement.

Type de retour

La fonction AES_ENCRYPT renvoie une valeur cryptée de expr en utilisant AES dans un mode
donné avec le rembourrage spécifié.

Exemples

L'exemple suivant montre comment utiliser la fonction Spark SQL AES_ENCRYPT pour chiffrer
de manière sécurisée une chaîne de données (dans ce cas, le mot « Spark ») à l'aide d'une clé de
chiffrement spécifiée. Le texte chiffré obtenu est ensuite codé en Base64 pour faciliter son stockage
ou sa transmission.

SELECT base64(aes_encrypt('Spark', 'abcdefghijklmnop'));
 4A5jOAh9FNGwoMeuJukfllrLdHEZxA2DyuSQAWz77dfn

L'exemple suivant montre comment utiliser la fonction Spark SQL AES_ENCRYPT pour chiffrer
de manière sécurisée une chaîne de données (dans ce cas, le mot « Spark ») à l'aide d'une clé de
chiffrement spécifiée. Le texte chiffré obtenu est ensuite représenté au format hexadécimal, ce qui
peut être utile pour des tâches telles que le stockage, la transmission ou le débogage de données.

SELECT hex(aes_encrypt('Spark', '0000111122223333'));
 83F16B2AA704794132802D248E6BFD4E380078182D1544813898AC97E709B28A94

L'exemple suivant montre comment utiliser la fonction Spark SQL AES_ENCRYPT pour chiffrer
de manière sécurisée une chaîne de données (dans ce cas, « Spark SQL ») à l'aide d'une clé de
chiffrement, d'un mode de chiffrement et d'un mode de remplissage spécifiés. Le texte chiffré obtenu
est ensuite codé en Base64 pour faciliter son stockage ou sa transmission.

SELECT base64(aes_encrypt('Spark SQL', '1234567890abcdef', 'ECB', 'PKCS'));
 3lmwu+Mw0H3fi5NDvcu9lg==

Fonctions de chiffrement et de déchiffrement 230

AWS Clean Rooms Référence SQL

Fonction AES_DECRYPT

La fonction AES_DECRYPT est utilisée pour déchiffrer les données à l'aide de l'algorithme AES
(Advanced Encryption Standard).

Syntaxe

aes_decrypt(expr, key[, mode[, padding[, aad]]])

Arguments

expr

La valeur binaire à déchiffrer.

key

Phrase secrète à utiliser pour déchiffrer les données.

La phrase secrète doit correspondre à la clé utilisée à l'origine pour produire la valeur cryptée et
avoir une longueur de 16, 24 ou 32 octets.

mode

Spécifie le mode de chiffrement par blocs à utiliser pour déchiffrer les messages.

Modes valides : ECB, GCM, CBC.

rembourrage

Spécifie comment ajouter des messages dont la longueur n'est pas un multiple de la taille du bloc.

Valeurs valides : PKCS, NONE, DEFAULT.

Le rembourrage DEFAULT signifie PKCS pour ECB, NONE pour GCM et PKCS pour CBC.

aad

Données authentifiées supplémentaires (AAD) facultatives. Compatible uniquement avec le mode
GCM. Il peut s'agir de n'importe quelle entrée libre et doit être fournie à la fois pour le chiffrement
et le déchiffrement.

Type de retour

Renvoie une valeur déchiffrée de expr en utilisant AES en mode avec rembourrage.

Fonctions de chiffrement et de déchiffrement 231

AWS Clean Rooms Référence SQL

Exemples

L'exemple suivant montre comment utiliser la fonction Spark SQL AES_ENCRYPT pour chiffrer
de manière sécurisée une chaîne de données (dans ce cas, le mot « Spark ») à l'aide d'une clé de
chiffrement spécifiée. Le texte chiffré obtenu est ensuite codé en Base64 pour faciliter son stockage
ou sa transmission.

SELECT base64(aes_encrypt('Spark', 'abcdefghijklmnop'));
 4A5jOAh9FNGwoMeuJukfllrLdHEZxA2DyuSQAWz77dfn

L'exemple suivant montre comment utiliser la fonction Spark SQL AES_DECRYPT pour déchiffrer
des données précédemment chiffrées et codées en Base64. Le processus de déchiffrement
nécessite la clé de chiffrement et les paramètres appropriés (mode de chiffrement et mode de
remplissage) pour récupérer correctement les données en texte brut d'origine.

SELECT aes_decrypt(unbase64('3lmwu+Mw0H3fi5NDvcu9lg=='), '1234567890abcdef', 'ECB',
 'PKCS');
 Spark SQL

Fonctions de hachage

Une fonction de hachage est une fonction mathématique qui convertit une valeur d’entrée numérique
en une autre valeur.

AWS Clean Rooms Spark SQL prend en charge les fonctions de hachage suivantes :

Rubriques

• MD5 fonction

• Fonction SHA

• SHA1 fonction

• SHA2 fonction

• HASH64 fonction xx

MD5 fonction

Utilise la fonction de hachage MD5 cryptographique pour convertir une chaîne de longueur variable
en une chaîne de 32 caractères qui est une représentation textuelle de la valeur hexadécimale d'une
somme de contrôle de 128 bits.

Fonctions de hachage 232

AWS Clean Rooms Référence SQL

Syntaxe

MD5(string)

Arguments

string

Chaîne de longueur variable.

Type de retour

La MD5 fonction renvoie une chaîne de 32 caractères qui est une représentation textuelle de la
valeur hexadécimale d'une somme de contrôle de 128 bits.

Exemples

L'exemple suivant illustre la valeur de 128 bits de la chaîne « AWS Clean Rooms » :

select md5('AWS Clean Rooms');
md5

f7415e33f972c03abd4f3fed36748f7a
(1 row)

Fonction SHA

Synonyme de SHA1 fonction.

Consultez SHA1 fonction.

SHA1 fonction

La SHA1 fonction utilise la fonction de hachage SHA1 cryptographique pour convertir une chaîne de
longueur variable en une chaîne de 40 caractères qui est une représentation textuelle de la valeur
hexadécimale d'une somme de contrôle de 160 bits.

Syntaxe

SHA1 est un synonyme de. Fonction SHA

Fonctions de hachage 233

AWS Clean Rooms Référence SQL

SHA1(string)

Arguments

string

Chaîne de longueur variable.

Type de retour

La SHA1 fonction renvoie une chaîne de 40 caractères qui est une représentation textuelle de la
valeur hexadécimale d'une somme de contrôle de 160 bits.

exemple

L'exemple suivant renvoie la valeur de 160 bits du mot « AWS Clean Rooms » :

select sha1('AWS Clean Rooms');

SHA2 fonction

La SHA2 fonction utilise la fonction de hachage SHA2 cryptographique pour convertir une chaîne de
longueur variable en chaîne de caractères. La chaîne de caractères est une représentation textuelle
de la valeur hexadécimale du total de contrôle avec le nombre de bits spécifié.

Syntaxe

SHA2(string, bits)

Arguments

string

Chaîne de longueur variable.

integer

Nombre de bits dans les fonctions de hachage. Les valeurs valides sont 0 (identique à 256), 224,
256, 384 et 512.

Fonctions de hachage 234

AWS Clean Rooms Référence SQL

Type de retour

La SHA2 fonction renvoie une chaîne de caractères qui est une représentation textuelle de la valeur
hexadécimale de la somme de contrôle ou une chaîne vide si le nombre de bits n'est pas valide.

exemple

L'exemple suivant renvoie la valeur de 256 bits du mot « AWS Clean Rooms » :

select sha2('AWS Clean Rooms', 256);

HASH64 fonction xx

La fonction xxhash64 renvoie une valeur de hachage des arguments sur 64 bits.

La fonction xxhash64 () est une fonction de hachage non cryptographique conçue pour être rapide
et efficace. Il est souvent utilisé dans les applications de traitement et de stockage de données, où
un identifiant unique est nécessaire pour une donnée, mais le contenu exact des données n'a pas
besoin d'être gardé secret.

Dans le contexte d'une requête SQL, la fonction xxhash64 () peut être utilisée à diverses fins, par
exemple :

• Génération d'un identifiant unique pour une ligne d'un tableau

• Partitionnement des données en fonction d'une valeur de hachage

• Mise en œuvre de stratégies d'indexation ou de distribution de données personnalisées

Le cas d'utilisation spécifique dépendra des exigences de l'application et des données traitées.

Syntaxe

xxhash64(expr1, expr2, ...)

Arguments

expr1

Expression de n'importe quel type.

expr2

Expression de n'importe quel type.

Fonctions de hachage 235

AWS Clean Rooms Référence SQL

Renvoie

Renvoie une valeur de hachage des arguments sur 64 bits (BIGINT). La graine de haschisch est de
42.

exemple

L'exemple suivant génère une valeur de hachage de 64 bits (5602566077635097486) en fonction
de l'entrée fournie. Le premier argument est une valeur de chaîne, dans ce cas, le mot « Spark ». Le
deuxième argument est un tableau contenant la seule valeur entière 123. Le troisième argument est
une valeur entière représentant le point de départ de la fonction de hachage.

SELECT xxhash64('Spark', array(123), 2);
 5602566077635097486

Fonctions Hyperloglog

Les fonctions HyperLogLog (HLL) de SQL permettent d'estimer efficacement le nombre d'éléments
uniques (cardinalité) dans un ensemble de données volumineux, même lorsque l'ensemble réel
d'éléments uniques n'est pas stocké.

Les principaux avantages de l'utilisation des fonctions HLL sont les suivants :

• Efficacité de la mémoire : les esquisses HLL nécessitent beaucoup moins de mémoire que
le stockage de l'ensemble complet d'éléments uniques, ce qui les rend adaptées à de grands
ensembles de données.

• Informatique distribuée : les esquisses HLL peuvent être combinées entre plusieurs sources de
données ou nœuds de traitement, ce qui permet une estimation distribuée efficace du nombre
unique.

• Résultats approximatifs : HLL fournit une estimation du nombre unique approximative, avec un
compromis ajustable entre précision et utilisation de la mémoire (via le paramètre de précision).

Ces fonctions sont particulièrement utiles dans les scénarios où vous devez estimer le nombre
d'éléments uniques, tels que dans les applications d'analyse, d'entreposage de données et de
traitement de flux en temps réel.

AWS Clean Rooms prend en charge les fonctions HLL suivantes.

Rubriques

Fonctions Hyperloglog 236

AWS Clean Rooms Référence SQL

• Fonction HLL_SKETCH_AGG

• Fonction HLL_SKETCH_ESTIMATE

• Fonction HLL_UNION

• Fonction HLL_UNION_AGG

Fonction HLL_SKETCH_AGG

La fonction d'agrégation HLL_SKETCH_AGG crée une esquisse HLL à partir des valeurs de la
colonne spécifiée. Elle renvoie un type de données HLLSKETCH qui encapsule les valeurs des
expressions d'entrée.

La fonction d'agrégation HLL_SKETCH_AGG fonctionne avec tous les types de données et ignore les
valeurs NULL.

Lorsqu’il n’y a pas de lignes dans une table ou que toutes les lignes sont NULL, le schéma résultant
n’a pas de paires index-valeur telles que {"version":1,"logm":15,"sparse":{"indices":
[],"values":[]}}.

Syntaxe

HLL_SKETCH_AGG (aggregate_expression[, lgConfigK])

Argument

aggregate_expression

Toute expression de type INT, BIGINT, STRING ou BINARY par rapport à laquelle un comptage
unique sera effectué. Toutes NULL les valeurs sont ignorées.

LG Configk

Une constante INT optionnelle comprise entre 4 et 21 inclus avec 12 par défaut. Log-base-2 de K,
où K est le nombre de compartiments ou de fentes pour l'esquisse.

Type de retour

La fonction HLL_SKETCH_AGG renvoie un tampon BINAIRE non NULL contenant l' HyperLogLog
esquisse calculée en raison de la consommation et de l'agrégation de toutes les valeurs d'entrée du
groupe d'agrégation.

Fonctions Hyperloglog 237

AWS Clean Rooms Référence SQL

Exemples

Les exemples suivants utilisent l'algorithme HyperLogLog (HLL) pour estimer le nombre distinct de
valeurs dans la col colonne. La hll_sketch_agg(col, 12) fonction agrège les valeurs de la
colonne col pour créer une esquisse HLL avec une précision de 12. La hll_sketch_estimate()
fonction est ensuite utilisée pour estimer le nombre distinct de valeurs sur la base de l'esquisse HLL
générée. Le résultat final de la requête est 3, ce qui représente le nombre distinct estimé de valeurs
dans la col colonne. Dans ce cas, les valeurs distinctes sont 1, 2 et 3.

SELECT hll_sketch_estimate(hll_sketch_agg(col, 12))
 FROM VALUES (1), (1), (2), (2), (3) tab(col);
 3

L'exemple suivant utilise également l'algorithme HLL pour estimer le nombre distinct de valeurs
dans la col colonne, mais il ne spécifie pas de valeur de précision pour l'esquisse HLL. Dans
ce cas, il utilise la précision par défaut de 14. La hll_sketch_agg(col) fonction prend les
valeurs de la col colonne et crée une esquisse HyperLogLog (HLL), qui est une structure
de données compacte qui peut être utilisée pour estimer le nombre distinct d'éléments. La
hll_sketch_estimate(hll_sketch_agg(col)) fonction prend l'esquisse HLL créée à l'étape
précédente et calcule une estimation du nombre distinct de valeurs dans la col colonne. Le résultat
final de la requête est 3, ce qui représente le nombre distinct estimé de valeurs dans la col colonne.
Dans ce cas, les valeurs distinctes sont 1, 2 et 3.

SELECT hll_sketch_estimate(hll_sketch_agg(col))
FROM VALUES (1), (1), (2), (2), (3) tab(col);
3

Fonction HLL_SKETCH_ESTIMATE

La fonction HLL_SKETCH_ESTIMATE prend une esquisse HLL et estime le nombre d'éléments
uniques représentés par l'esquisse. Il utilise l'algorithme HyperLogLog (HLL) pour compter une
approximation probabiliste du nombre de valeurs uniques dans une colonne donnée, en consommant
une représentation binaire connue sous le nom de tampon d'esquisse précédemment générée par la
fonction HLL_SKETCH_AGG et en renvoyant le résultat sous la forme d'un grand entier.

L'algorithme d'esquisse HLL fournit un moyen efficace d'estimer le nombre d'éléments uniques,
même pour de grands ensembles de données, sans avoir à stocker l'ensemble complet des valeurs
uniques.

Fonctions Hyperloglog 238

AWS Clean Rooms Référence SQL

Les hll_union_agg fonctions hll_union et peuvent également combiner des esquisses en
consommant et en fusionnant ces tampons en tant qu'entrées.

Syntaxe

HLL_SKETCH_ESTIMATE (hllsketch_expression)

Argument

hllsketch_expression

BINARYExpression contenant une esquisse générée par HLL_SKETCH_AGG

Type de retour

La fonction HLL_SKETCH_ESTIMATE renvoie une valeur BIGINT correspondant au nombre distinct
approximatif représenté par l'esquisse en entrée.

Exemples

Les exemples suivants utilisent l'algorithme d'esquisse HyperLogLog (HLL) pour estimer la cardinalité
(nombre unique) des valeurs de la colonne. col La hll_sketch_agg(col, 12) fonction prend
la col colonne et crée une esquisse HLL avec une précision de 12 bits. L'esquisse HLL est une
structure de données approximative qui permet d'estimer efficacement le nombre d'éléments
uniques dans un ensemble. La hll_sketch_estimate() fonction prend l'esquisse HLL créée par
hll_sketch_agg et estime la cardinalité (nombre unique) des valeurs représentées par l'esquisse.
FROM VALUES (1), (1), (2), (2), (3) tab(col);Génère un ensemble de données de
test de 5 lignes, où la col colonne contient les valeurs 1, 1, 2, 2 et 3. Le résultat de cette requête est
le nombre unique estimé des valeurs de la col colonne, qui est de 3.

SELECT hll_sketch_estimate(hll_sketch_agg(col, 12))
 FROM VALUES (1), (1), (2), (2), (3) tab(col);
 3

La différence entre l'exemple suivant et le précédent est que le paramètre de précision (12 bits) n'est
pas spécifié dans l'appel de hll_sketch_agg fonction. Dans ce cas, la précision par défaut de
14 bits est utilisée, ce qui peut fournir une estimation plus précise du nombre unique par rapport à
l'exemple précédent qui utilisait 12 bits de précision.

Fonctions Hyperloglog 239

AWS Clean Rooms Référence SQL

SELECT hll_sketch_estimate(hll_sketch_agg(col))
FROM VALUES (1), (1), (2), (2), (3) tab(col);
3

Fonction HLL_UNION

La fonction HLL_UNION combine deux esquisses HLL en une seule esquisse unifiée. Il utilise
l'algorithme HyperLogLog (HLL) pour combiner deux esquisses en une seule. Les requêtes peuvent
utiliser les tampons obtenus pour calculer des nombres uniques approximatifs sous forme de longs
entiers avec la hll_sketch_estimate fonction.

Syntaxe

HLL_UNION ((expr1, expr2 [, allowDifferentLgConfigK]))

Argument

ExPRN

BINARYExpression contenant une esquisse générée par HLL_SKETCH_AGG.

allowDifferentLgConfiguration K

Expression BOOLEAN facultative contrôlant s'il faut autoriser la fusion de deux esquisses avec
des valeurs LGConfigk différentes. La valeur par défaut est false.

Type de retour

La fonction HLL_UNION renvoie une mémoire tampon BINAIRE contenant l' HyperLogLog
esquisse calculée à la suite de la combinaison des expressions d'entrée. Lorsque le
allowDifferentLgConfigK paramètre est définitrue, l'esquisse du résultat utilise la plus petite
des deux lgConfigK valeurs fournies.

Exemples

Les exemples suivants utilisent l'algorithme d'esquisse HyperLogLog (HLL) pour estimer le nombre
unique de valeurs sur deux colonnes col1 et col2 dans un ensemble de données.

La hll_sketch_agg(col1) fonction crée une esquisse HLL pour les valeurs uniques de la col1
colonne.

Fonctions Hyperloglog 240

AWS Clean Rooms Référence SQL

La hll_sketch_agg(col2) fonction crée une esquisse HLL pour les valeurs uniques de la
colonne col2.

La hll_union(...) fonction combine les deux esquisses HLL créées aux étapes 1 et 2 en une
seule esquisse HLL unifiée.

La hll_sketch_estimate(...) fonction prend l'esquisse HLL combinée et estime le nombre
unique de valeurs entre les deux col1 etcol2.

La FROM VALUES clause génère un ensemble de données de test de 5 lignes, col1 contenant les
valeurs 1, 1, 2, 2 et 3, et col2 contenant les valeurs 4, 4, 5, 5 et 6.

Le résultat de cette requête est le nombre unique estimé de valeurs entre les deux col1 etcol2,
qui est de 6. L'algorithme d'esquisse HLL fournit un moyen efficace d'estimer le nombre d'éléments
uniques, même pour de grands ensembles de données, sans avoir à stocker l'ensemble complet des
valeurs uniques. Dans cet exemple, la hll_union fonction est utilisée pour combiner les esquisses
HLL des deux colonnes, ce qui permet d'estimer le nombre unique pour l'ensemble de données,
plutôt que pour chaque colonne individuellement.

SELECT hll_sketch_estimate(
 hll_union(
 hll_sketch_agg(col1),
 hll_sketch_agg(col2)))
 FROM VALUES
 (1, 4),
 (1, 4),
 (2, 5),
 (2, 5),
 (3, 6) AS tab(col1, col2);
 6

La différence entre l'exemple suivant et le précédent est que le paramètre de précision (12 bits) n'est
pas spécifié dans l'appel de hll_sketch_agg fonction. Dans ce cas, la précision par défaut de
14 bits est utilisée, ce qui peut fournir une estimation plus précise du nombre unique par rapport à
l'exemple précédent qui utilisait 12 bits de précision.

SELECT hll_sketch_estimate(
 hll_union(
 hll_sketch_agg(col1, 14),
 hll_sketch_agg(col2, 14)))

Fonctions Hyperloglog 241

AWS Clean Rooms Référence SQL

 FROM VALUES
 (1, 4),
 (1, 4),
 (2, 5),
 (2, 5),
 (3, 6) AS tab(col1, col2);

Fonction HLL_UNION_AGG

La fonction HLL_UNION_AGG combine plusieurs esquisses HLL en une seule esquisse unifiée. Il
utilise l'algorithme HyperLogLog (HLL) pour combiner un groupe de croquis en un seul. Les requêtes
peuvent utiliser les tampons obtenus pour calculer des nombres uniques approximatifs à l'aide de la
hll_sketch_estimate fonction.

Syntaxe

HLL_UNION_AGG (expr [, allowDifferentLgConfigK])

Argument

expr

BINARYExpression contenant une esquisse générée par HLL_SKETCH_AGG.

allowDifferentLgConfiguration K

Expression BOOLEAN facultative contrôlant s'il faut autoriser la fusion de deux esquisses avec
des valeurs LGConfigk différentes. La valeur par défaut est false.

Type de retour

La fonction HLL_UNION_AGG renvoie une mémoire tampon BINAIRE contenant l' HyperLogLog
esquisse calculée en combinant les expressions d'entrée du même groupe. Lorsque le
allowDifferentLgConfigK paramètre est définitrue, l'esquisse du résultat utilise la plus petite
des deux lgConfigK valeurs fournies.

Exemples

Les exemples suivants utilisent l'algorithme d'esquisse HyperLogLog (HLL) pour estimer le nombre
unique de valeurs dans plusieurs esquisses HLL.

Fonctions Hyperloglog 242

AWS Clean Rooms Référence SQL

Le premier exemple estime le nombre unique de valeurs dans un ensemble de données.

SELECT hll_sketch_estimate(hll_union_agg(sketch, true))
 FROM (SELECT hll_sketch_agg(col) as sketch
 FROM VALUES (1) AS tab(col)
 UNION ALL
 SELECT hll_sketch_agg(col, 20) as sketch
 FROM VALUES (1) AS tab(col));
 1

La requête interne crée deux esquisses HLL :

• La première instruction SELECT crée une esquisse à partir d'une valeur unique de 1.

• La deuxième instruction SELECT crée une esquisse à partir d'une autre valeur unique de 1, mais
avec une précision de 20.

La requête externe utilise la fonction HLL_UNION_AGG pour combiner les deux esquisses en une
seule esquisse. Il applique ensuite la fonction HLL_SKETCH_ESTIMATE à cette esquisse combinée
pour estimer le nombre unique de valeurs.

Le résultat de cette requête est le nombre unique estimé des valeurs de la col colonne, qui est1.
Cela signifie que les deux valeurs d'entrée de 1 sont considérées comme uniques, même si elles ont
la même valeur.

Le deuxième exemple inclut un paramètre de précision différent pour la fonction HLL_UNION_AGG.
Dans ce cas, les deux esquisses HLL sont créées avec une précision de 14 bits, ce qui permet de les
combiner avec succès à l'aide hll_union_agg du true paramètre.

SELECT hll_sketch_estimate(hll_union_agg(sketch, true))
 FROM (SELECT hll_sketch_agg(col, 14) as sketch
 FROM VALUES (1) AS tab(col)
 UNION ALL
 SELECT hll_sketch_agg(col, 14) as sketch
 FROM VALUES (1) AS tab(col));
 1

Le résultat final de la requête est le nombre unique estimé, qui dans ce cas l'est également1. Cela
signifie que les deux valeurs d'entrée de 1 sont considérées comme uniques, même si elles ont la
même valeur.

Fonctions Hyperloglog 243

AWS Clean Rooms Référence SQL

Fonctions JSON

Lorsque vous avez besoin de stocker un ensemble relativement petit de paires clé-valeur, vous
pouvez économiser de l’espace en stockant les données au format JSON. Étant donné que les
chaînes au format JSON peuvent être stockées dans une seule colonne, l’utilisation de JSON peut
être plus efficace que de stocker vos données sous forme de table.

Example

Supposons, par exemple, que vous disposiez d'un tableau clairsemé, dans lequel vous devez
disposer de nombreuses colonnes pour représenter pleinement tous les attributs possibles.
Cependant, la plupart des valeurs de colonne sont NULL pour une ligne ou une colonne donnée. En
utilisant le JSON pour le stockage, vous pouvez peut-être stocker les données d'une ligne sous forme
de paires clé-valeur dans une seule chaîne JSON et éliminer les colonnes de table peu remplies.

En outre, vous pouvez facilement modifier les chaînes au format JSON pour stocker des paires
clé:valeur supplémentaires sans avoir besoin d’ajouter des colonnes à une table.

Nous vous conseillons d’utiliser JSON avec modération. Le JSON n'est pas un bon choix pour
stocker des ensembles de données plus volumineux car, en stockant des données disparates dans
une seule colonne, le JSON n'utilise pas l'architecture du magasin de AWS Clean Rooms colonnes.

JSON utilise des chaînes de texte codées UTF-8, les chaînes JSON peuvent donc être stockées
sous forme de types de données CHAR ou VARCHAR. Utilisez VARCHAR si les chaînes incluent
des caractères de plusieurs octets.

Les chaînes JSON doivent être au bon format JSON, selon les règles suivantes :

• Le JSON de niveau racine peut être un objet JSON ou un tableau JSON. Un objet JSON est un
ensemble non trié de paires clé:valeur séparées par des virgules délimitées par des accolades.

Par exemple, {"one":1, "two":2}

• Un tableau JSON est un ensemble ordonné de valeurs séparées par des virgules délimitées par
des crochets.

Voici un exemple : ["first", {"one":1}, "second", 3, null] .

• Les tableaux JSON utilisent un index de base zéro ; le premier élément d’un tableau se trouve à la
position 0. Dans une paire clé:valeur JSON, la clé est une chaîne entre guillemets doubles.

Fonctions JSON 244

AWS Clean Rooms Référence SQL

• Une valeur JSON peut être l’une des suivantes :

• Objet JSON

• un tableau JSON

• Chaîne entre guillemets

• Nombre (entier et à virgule flottante)

• Booléen

• Null

• Les objets vides et les tableaux vides sont des valeurs JSON valides.

• Les champs JSON sont sensibles à la casse.

• Les espace vides entre les éléments structurels JSON (tel que { }, []) sont ignorés.

Rubriques

• Fonction GET_JSON_OBJECT

• Fonction TO_JSON

Fonction GET_JSON_OBJECT

La fonction GET_JSON_OBJECT extrait un objet json à partir de. path

Syntaxe

get_json_object(json_txt, path)

Arguments

json_txt

Expression STRING contenant du JSON bien formé.

chemin

Un littéral STRING avec une expression de chemin JSON bien formée.

Renvoie

Renvoie une chaîne.

Fonctions JSON 245

AWS Clean Rooms Référence SQL

Une valeur NULL est renvoyée si l'objet est introuvable.

exemple

L'exemple suivant extrait une valeur d'un objet JSON. Le premier argument est une chaîne JSON
qui représente un objet simple avec une seule paire clé-valeur. Le deuxième argument est une
expression de chemin JSON. Le $ symbole représente la racine de l'objet JSON, et la .a partie
indique que nous voulons extraire la valeur associée à la clé a « ». La sortie de la fonction est « b »,
qui est la valeur associée à la touche « a » dans l'objet JSON d'entrée.

SELECT get_json_object('{"a":"b"}', '$.a');
 b

Fonction TO_JSON

La fonction TO_JSON convertit une expression d'entrée en une représentation sous forme de chaîne
JSON. La fonction gère la conversion de différents types de données (tels que des nombres, des
chaînes et des booléens) en leurs représentations JSON correspondantes.

La fonction TO_JSON est utile lorsque vous devez convertir des données structurées (telles que des
lignes de base de données ou des objets JSON) dans un format plus portable et autodescriptif tel que
JSON. Cela peut être particulièrement utile lorsque vous devez interagir avec d'autres systèmes ou
services qui attendent des données au format JSON.

Syntaxe

to_json(expr[, options])

Arguments

expr

Expression d'entrée que vous souhaitez convertir en chaîne JSON. Il peut s'agir d'une valeur,
d'une colonne ou de toute autre expression SQL valide.

options

Ensemble facultatif d'options de configuration qui peuvent être utilisées pour personnaliser le
processus de conversion JSON. Ces options peuvent inclure des éléments tels que la gestion des
valeurs nulles, la représentation de valeurs numériques et le traitement des caractères spéciaux.

Fonctions JSON 246

AWS Clean Rooms Référence SQL

Renvoie

Renvoie une chaîne JSON avec une valeur de structure donnée

Exemples

L'exemple suivant convertit une structure nommée (un type de données structurées) en chaîne
JSON. Le premier argument(named_struct('a', 1, 'b', 2)) est l'expression d'entrée
transmise à la to_json() fonction. Il crée une structure nommée avec deux champs : « a » avec
une valeur de 1, et « b » avec une valeur de 2. La fonction to_json () prend la structure nommée
comme argument et la convertit en une représentation sous forme de chaîne JSON. La sortie
est{"a":1,"b":2}, qui est une chaîne JSON valide qui représente la structure nommée.

SELECT to_json(named_struct('a', 1, 'b', 2));
 {"a":1,"b":2}

L'exemple suivant convertit une structure nommée contenant une valeur d'horodatage
en une chaîne JSON, avec un format d'horodatage personnalisé. Le premier argument
(named_struct('time', to_timestamp('2015-08-26', 'yyyy-MM-dd'))) crée une
structure nommée avec un seul champ « time » contenant la valeur d'horodatage. Le deuxième
argument (map('timestampFormat', 'dd/MM/yyyy')) crée une carte (dictionnaire clé-valeur)
avec une seule paire clé-valeur, où la clé est « TimestampFormat » et la valeur est « ». dd/MM/yyyy'.
This map is used to specify the desired format for the timestamp value when converting it to JSON.
The to_json() function converts the named struct into a JSON string. The second argument, the map,
is used to customize the timestamp format to 'dd/MM/yyyy La sortie est {"time":"26/08/2015"}
une chaîne JSON avec un seul champ « heure » contenant la valeur d'horodatage au format « dd/
MM/yyyy » souhaité.

SELECT to_json(named_struct('time', to_timestamp('2015-08-26', 'yyyy-MM-dd')),
 map('timestampFormat', 'dd/MM/yyyy'));
 {"time":"26/08/2015"}

Fonctions mathématiques

Cette section décrit les opérateurs mathématiques et les fonctions pris en charge dans AWS Clean
Rooms Spark SQL.

Rubriques

• Symboles d’opérateurs mathématiques

Fonctions mathématiques 247

AWS Clean Rooms Référence SQL

• Fonction ABS

• Fonction ACOS

• Fonction ASIN

• Fonction ATAN

• ATAN2 fonction

• Fonction CBRT

• Fonction CEILING (ou CEIL)

• Fonction COS

• Fonction COT

• Fonction DEGREES

• Fonction DIV

• Fonction EXP

• Fonction FLOOR

• Fonction LN

• Fonction LOG

• Fonction MOD

• Fonction PI

• Fonction POWER

• Fonction RADIANS

• Fonction RAND

• Fonction RANDOM

• Fonction ROUND

• Fonction SIGN

• Fonction SIN

• Fonction SQRT

• Fonction TRUNC

Symboles d’opérateurs mathématiques

Le tableau suivant répertorie les opérateurs mathématiques pris en charge.

Fonctions mathématiques 248

AWS Clean Rooms Référence SQL

Opérateurs pris en charge

Opérateur Description Exemple Résultat

+ addition 2 + 3 5

- soustraction 2-3 -1

* multiplic
ation

2 * 3 6

/ division 4 / 2 2

% modulo 5 % 4 1

^ puissance 2.0 ^ 3.0 8

Exemples

Calculez la commission payée plus des frais de gestion de 2$ pour une transaction donnée :

select commission, (commission + 2.00) as comm
from sales where salesid=10000;

commission | comm
-----------+-------
28.05 | 30.05
(1 row)

Calculer 20 % du prix de vente pour une transaction donnée :

select pricepaid, (pricepaid * .20) as twentypct
from sales where salesid=10000;

pricepaid | twentypct
----------+-----------
187.00 | 37.400
(1 row)

Fonctions mathématiques 249

AWS Clean Rooms Référence SQL

Prévoyez le nombre de billets vendus en fonction d'un modèle de croissance continue. Dans cet
exemple, la sous-requête renvoie le nombre de billets vendus en 2008. Ce résultat est multiplié de
façon exponentielle par un taux de croissance continu de 5 % sur 10 ans.

select (select sum(qtysold) from sales, date
where sales.dateid=date.dateid and year=2008)
^ ((5::float/100)*10) as qty10years;

qty10years

587.664019657491
(1 row)

Trouvez le prix total payé et les commissions pour les ventes dont le numéro de date est supérieur ou
égal à 2 000. Puis soustrayez la commission totale du prix total payé.

select sum (pricepaid) as sum_price, dateid,
sum (commission) as sum_comm, (sum (pricepaid) - sum (commission)) as value
from sales where dateid >= 2000
group by dateid order by dateid limit 10;

 sum_price | dateid | sum_comm | value
-----------+--------+----------+-----------
 364445.00 | 2044 | 54666.75 | 309778.25
 349344.00 | 2112 | 52401.60 | 296942.40
 343756.00 | 2124 | 51563.40 | 292192.60
 378595.00 | 2116 | 56789.25 | 321805.75
 328725.00 | 2080 | 49308.75 | 279416.25
 349554.00 | 2028 | 52433.10 | 297120.90
 249207.00 | 2164 | 37381.05 | 211825.95
 285202.00 | 2064 | 42780.30 | 242421.70
 320945.00 | 2012 | 48141.75 | 272803.25
 321096.00 | 2016 | 48164.40 | 272931.60
(10 rows)

Fonction ABS

ABS calcule la valeur absolue d’un nombre, où ce nombre peut être littéral ou une expression qui a
pour valeur un nombre.

Fonctions mathématiques 250

AWS Clean Rooms Référence SQL

Syntaxe

ABS (number)

Arguments

number

Nombre ou expression ayant pour valeur un nombre. Il peut s'agir de SMALLINT, INTEGER,
BIGINT, DECIMAL ou de type. FLOAT4 FLOAT8

Type de retour

ABS renvoie le même type de données que sont argument.

Exemples

Calculez la valeur absolue de -38 :

select abs (-38);
abs

38
(1 row)

Calculez la valeur absolue de (14-76) :

select abs (14-76);
abs

62
(1 row)

Fonction ACOS

ACOS est une fonction trigonométrique qui renvoie l’arc cosinus d’un nombre. La valeur de retour est
exprimée en radians et se situe entre 0 et PI.

Syntaxe

ACOS(number)

Fonctions mathématiques 251

AWS Clean Rooms Référence SQL

Arguments

number

Le paramètre d’entrée est un nombre DOUBLE PRECISION.

Type de retour

DOUBLE PRECISION

Exemples

Pour renvoyer l’arc cosinus de -1, utilisez l’exemple suivant.

SELECT ACOS(-1);

+-------------------+
| acos |
+-------------------+
| 3.141592653589793 |
+-------------------+

Fonction ASIN

ASIN est une fonction trigonométrique qui renvoie l’arc sinus d’un nombre. La valeur de retour est
exprimée en radians et se situe entre PI/2 et -PI/2.

Syntaxe

ASIN(number)

Arguments

number

Le paramètre d’entrée est un nombre DOUBLE PRECISION.

Type de retour

DOUBLE PRECISION

Fonctions mathématiques 252

AWS Clean Rooms Référence SQL

Exemples

Pour renvoyer l’arc sinus de 1, utilisez l’exemple suivant.

SELECT ASIN(1) AS halfpi;

+--------------------+
| halfpi |
+--------------------+
| 1.5707963267948966 |
+--------------------+

Fonction ATAN

ATAN est une fonction trigonométrique qui renvoie l’arc tangente d’un nombre. La valeur de retour
est exprimée en radians et se situe entre -PI et PI.

Syntaxe

ATAN(number)

Arguments

number

Le paramètre d’entrée est un nombre DOUBLE PRECISION.

Type de retour

DOUBLE PRECISION

Exemples

Pour renvoyer l’arc tangente de 1 et le multiplier par 4, utilisez l’exemple suivant.

SELECT ATAN(1) * 4 AS pi;

+-------------------+
| pi |
+-------------------+

Fonctions mathématiques 253

AWS Clean Rooms Référence SQL

| 3.141592653589793 |
+-------------------+

ATAN2 fonction

ATAN2 est une fonction trigonométrique qui renvoie l'arc tangente d'un nombre divisé par un autre
nombre. La valeur de retour est exprimée en radians et se situe entre PI/2 et -PI/2.

Syntaxe

ATAN2(number1, number2)

Arguments

number1

Nombre DOUBLE PRECISION.

number2

Nombre DOUBLE PRECISION.

Type de retour

DOUBLE PRECISION

Exemples

Pour renvoyer l’arc tangente de 2/2 et le multiplier par 4, utilisez l’exemple suivant.

SELECT ATAN2(2,2) * 4 AS PI;

+-------------------+
| pi |
+-------------------+
| 3.141592653589793 |
+-------------------+

Fonction CBRT

La fonction CBRT est une fonction mathématique qui calcule la racine cubique d'un nombre.

Fonctions mathématiques 254

AWS Clean Rooms Référence SQL

Syntaxe

CBRT (number)

Argument

CBRT prend un certain nombre DOUBLE PRECISION en tant qu'argument.

Type de retour

CBRT renvoie un nombre DOUBLE PRECISION.

Exemples

Calculez la racine cubique de la commission payée pour une transaction donnée :

select cbrt(commission) from sales where salesid=10000;

cbrt

3.03839539048843
(1 row)

Fonction CEILING (ou CEIL)

La fonction CEILING (ou CEIL) permet d’arrondir un nombre jusqu’au nombre entier supérieur
suivant. (Le Fonction FLOOR arrondit un nombre au nombre entier inférieur suivant.)

Syntaxe

CEIL | CEILING(number)

Arguments

number

Nombre ou expression ayant pour valeur un nombre. Il peut s'agir de SMALLINT, INTEGER,
BIGINT, DECIMAL ou de type. FLOAT4 FLOAT8

Type de retour

CEILING et CEIL renvoient le même type de données que leur argument.

Fonctions mathématiques 255

AWS Clean Rooms Référence SQL

Exemple

Calculez le plafond de la commission payée pour une transaction de vente donnée :

select ceiling(commission) from sales
where salesid=10000;

ceiling

29
(1 row)

Fonction COS

COS est une fonction trigonométrique qui renvoie le cosinus d’un nombre. La valeur de retour est
exprimée en radians et se situe entre -1 et 1, inclus.

Syntaxe

COS(double_precision)

Argument

number

Le paramètre d'entrée est un nombre double précision.

Type de retour

La fonction COS renvoie un nombre double précision.

Exemples

L'exemple suivant renvoie le cosinus de 0 :

select cos(0);
cos

1
(1 row)

L'exemple suivant renvoie le cosinus de PI :

Fonctions mathématiques 256

AWS Clean Rooms Référence SQL

select cos(pi());
cos

-1
(1 row)

Fonction COT

COT est une fonction trigonométrique qui renvoie la cotangente d’un nombre. Le paramètre d’entrée
doit être différent de zéro.

Syntaxe

COT(number)

Argument

number

Le paramètre d’entrée est un nombre DOUBLE PRECISION.

Type de retour

DOUBLE PRECISION

Exemples

Pour renvoyer la cotangente de 1, utilisez l’exemple suivant.

SELECT COT(1);

+--------------------+
| cot |
+--------------------+
| 0.6420926159343306 |
+--------------------+

Fonction DEGREES

Convertit un angle en radians en son équivalent en degrés.

Fonctions mathématiques 257

AWS Clean Rooms Référence SQL

Syntaxe

DEGREES(number)

Argument

number

Le paramètre d’entrée est un nombre DOUBLE PRECISION.

Type de retour

DOUBLE PRECISION

Exemple

Pour renvoyer l’équivalent en degrés de 0,5 radian, utilisez l’exemple suivant.

SELECT DEGREES(.5);

+-------------------+
| degrees |
+-------------------+
| 28.64788975654116 |
+-------------------+

Pour convertir PI radians en degrés, utilisez l’exemple suivant.

SELECT DEGREES(pi());

+---------+
| degrees |
+---------+
| 180 |
+---------+

Fonction DIV

L'opérateur DIV renvoie la partie intégrante de la division du dividende par diviseur.

Fonctions mathématiques 258

AWS Clean Rooms Référence SQL

Syntaxe

dividend div divisor

Arguments

dividende

Expression dont l'évaluation correspond à un chiffre ou à un intervalle.

divisor

Un intervalle correspondant de type if dividend est un intervalle, un intervalle numérique dans le
cas contraire.

Type de retour

BIGINT

Exemples

L'exemple suivant sélectionne deux colonnes dans la table des écureuils : la id colonne, qui contient
l'identifiant unique de chaque écureuil, et une calculated colonneage div 2, qui représente
la division entière de la colonne d'âge par 2. Le age div 2 calcul effectue une division entière
sur la age colonne, arrondissant ainsi l'âge au nombre entier pair le plus proche. Par exemple, si
la age colonne contient des valeurs telles que 3, 5, 7 et 10, elle contiendra les valeurs 1, 2, 3 et 5,
respectivement. age div 2

SELECT id, age div 2 FROM squirrels

Cette requête peut être utile dans les scénarios où vous devez regrouper ou analyser des données
en fonction de tranches d'âge, et vous souhaitez simplifier les valeurs d'âge en les arrondissant à
l'entier pair le plus proche. Le résultat obtenu fournirait l'âge id et l'âge divisés par 2 pour chaque
écureuil du squirrels tableau.

Fonction EXP

La fonction EXP implémente la fonction exponentielle pour une expression numérique, ou la base
du logarithme naturel, e, élevée à la puissance de l'expression. La fonction EXP est l’inverse de
Fonction LN.

Fonctions mathématiques 259

AWS Clean Rooms Référence SQL

Syntaxe

EXP (expression)

Argument

expression

L'expression doit être un type de données INTEGER, DECIMAL ou DOUBLE PRECISION.

Type de retour

EXP renvoie un nombre DOUBLE PRECISION.

Exemple

Utilisez la fonction EXP de planifier des ventes de billets selon un modèle de croissance continue.
Dans cet exemple, la sous-requête renvoie le nombre de billets vendus en 2008. Ce résultat est
multiplié par le résultat de la fonction EXP, qui spécifie une croissance continue de 7 % sur 10 ans.

select (select sum(qtysold) from sales, date
where sales.dateid=date.dateid
and year=2008) * exp((7::float/100)*10) qty2018;

qty2018

695447.483772222
(1 row)

Fonction FLOOR

La fonction FLOOR arrondit un nombre au nombre entier inférieur suivant.

Syntaxe

FLOOR (number)

Fonctions mathématiques 260

AWS Clean Rooms Référence SQL

Argument

number

Nombre ou expression ayant pour valeur un nombre. Il peut s'agir de SMALLINT, INTEGER,
BIGINT, DECIMAL ou de type. FLOAT4 FLOAT8

Type de retour

FLOOR renvoie le même type de données que sont argument.

Exemple

L'exemple montre la valeur de la commission payée pour une transaction de vente donnée avant et
après l'utilisation de la fonction FLOOR.

select commission from sales
where salesid=10000;

floor

28.05
(1 row)

select floor(commission) from sales
where salesid=10000;

floor

28
(1 row)

Fonction LN

La fonction LN renvoie le logarithme naturel du paramètre d'entrée.

Syntaxe

LN(expression)

Fonctions mathématiques 261

AWS Clean Rooms Référence SQL

Argument

expression

Colonne cible ou expression sur laquelle la fonction opère.

Note

Cette fonction renvoie une erreur pour certains types de données si l'expression fait
référence à une table AWS Clean Rooms créée par l'utilisateur ou à une table AWS Clean
Rooms système STL ou STV.

Les expressions régulières avec les types de données suivants génèrent une erreur si elles font
référence à une table créée par l’utilisateur ou à une table système.

• BOOLEAN

• CHAR

• DATE

• DECIMAL ou NUMERIC

• TIMESTAMP

• VARCHAR

Les expressions régulières avec les types de données suivants s’exécutent avec succès sur des
tables créées par l’utilisateur ou des tables système STL ou STV :

• BIGINT

• DOUBLE PRECISION

• INTEGER

• REAL

• SMALLINT

Type de retour

La fonction LN renvoie le même type que l'expression.

Exemple

L'exemple suivant renvoie le logarithme naturel, ou logarithme de base e, du nombre 2,718281828 :

Fonctions mathématiques 262

AWS Clean Rooms Référence SQL

select ln(2.718281828);
ln

0.9999999998311267
(1 row)

Notez que la réponse est presque égale à 1.

Cet exemple renvoie le logarithme naturel des valeurs de la colonne USERID de la table USERS :

select username, ln(userid) from users order by userid limit 10;

 username | ln
----------+-------------------
 JSG99FHE | 0
 PGL08LJI | 0.693147180559945
 IFT66TXU | 1.09861228866811
 XDZ38RDD | 1.38629436111989
 AEB55QTM | 1.6094379124341
 NDQ15VBM | 1.79175946922805
 OWY35QYB | 1.94591014905531
 AZG78YIP | 2.07944154167984
 MSD36KVR | 2.19722457733622
 WKW41AIW | 2.30258509299405
(10 rows)

Fonction LOG

Renvoie le logarithme de expr withbase.

Syntaxe

LOG(base, expr)

Argument

expr

L’expression doit comporter un type de données de nombre entier, décimale ou à virgule flottante.

Fonctions mathématiques 263

AWS Clean Rooms Référence SQL

base

Base pour le calcul du logarithme. Doit être un nombre positif (différent de 1) de type de données
à double précision.

Type de retour

La fonction LOG renvoie un nombre double précision.

Exemple

L'exemple suivant renvoie le logarithme de base 10 du chiffre 100 :

select log(10, 100);

2
(1 row)

Fonction MOD

Renvoie le reste de deux nombres, autrement dit une opération modulo. Pour calculer le résultat, le
premier paramètre est divisé par le second.

Syntaxe

MOD(number1, number2)

Arguments

number1

Le premier paramètre d'entrée est un nombre INTEGER, SMALLINT, BIGINT ou DECIMAL. Si un
paramètre est de type DECIMAL, l'autre paramètre doit également être un type DECIMAL. Si un
paramètre est un INTEGER, l'autre paramètre peut être un INTEGER, SMALLINT ou BIGINT. Les
deux paramètres peuvent également être SMALLINT ou BIGINT, mais un paramètre ne peut pas
être un SMALLINT si l'autre est un BIGINT.

number2

Le second paramètre est un nombre INTEGER, SMALLINT, BIGINT ou DECIMAL. Les mêmes
règles de type de données s’appliquent à number2 en ce qui concerne number1.

Fonctions mathématiques 264

AWS Clean Rooms Référence SQL

Type de retour

Les types de retour valides sont DECIMAL, INT, SMALLINT et BIGINT. Le type de retour de la
fonction MOD est le même type numérique que les paramètres d’entrée, si les deux paramètres
d’entrée sont de même type. Si un paramètre d'entrée est un INTEGER, toutefois, le type de retour
sera également un INTEGER.

Notes d’utilisation

Vous pouvez utiliser % comme opérateur modulo.

Exemples

L'exemple suivant renvoie le reste lorsqu'un nombre est divisé par un autre :

SELECT MOD(10, 4);

 mod

 2

L'exemple suivant renvoie un résultat décimal :

SELECT MOD(10.5, 4);

 mod

 2.5

Vous pouvez projeter les valeurs des paramètres :

SELECT MOD(CAST(16.4 as integer), 5);

 mod

 1

Vérifiez si le premier paramètre est pair en le divisant par 2 :

SELECT mod(5,2) = 0 as is_even;

Fonctions mathématiques 265

AWS Clean Rooms Référence SQL

 is_even

 false

Vous pouvez utiliser le % comme opérateur modulo :

SELECT 11 % 4 as remainder;

 remainder

 3

L'exemple suivant renvoie des informations pour les catégories impaires dans la table CATEGORY :

select catid, catname
from category
where mod(catid,2)=1
order by 1,2;

 catid | catname
-------+-----------
 1 | MLB
 3 | NFL
 5 | MLS
 7 | Plays
 9 | Pop
 11 | Classical

(6 rows)

Fonction PI

La fonction PI renvoie la valeur de pi à 14 décimales.

Syntaxe

PI()

Type de retour

DOUBLE PRECISION

Fonctions mathématiques 266

AWS Clean Rooms Référence SQL

Exemples

Pour renvoyer la valeur de pi, utilisez l’exemple suivant.

SELECT PI();

+-------------------+
| pi |
+-------------------+
| 3.141592653589793 |
+-------------------+

Fonction POWER

La fonction POWER est une fonction exponentielle qui élève une expression numérique à la
puissance d’une seconde expression numérique. Par exemple, 2 à la puissance 3 est calculé sous la
forme POWER(2,3), avec un résultat de 8.

Syntaxe

{POWER(expression1, expression2)

Arguments

expression1

Expression numérique à élever. Doit avoir le type de données INTEGER, DECIMAL ou FLOAT.

expression2

Puissance à laquelle élever expression1. Doit avoir le type de données INTEGER, DECIMAL ou
FLOAT.

Type de retour

DOUBLE PRECISION

Exemple

SELECT (SELECT SUM(qtysold) FROM sales, date
WHERE sales.dateid=date.dateid
AND year=2008) * POW((1+7::FLOAT/100),10) qty2010;

Fonctions mathématiques 267

AWS Clean Rooms Référence SQL

+-------------------+
| qty2010 |
+-------------------+
| 679353.7540885945 |
+-------------------+

Fonction RADIANS

La fonction RADIANS convertit un angle en degrés en son équivalent en radians.

Syntaxe

RADIANS(number)

Argument

number

Le paramètre d’entrée est un nombre DOUBLE PRECISION.

Type de retour

DOUBLE PRECISION

Exemple

Pour renvoyer l’équivalent en radians de 180 degrés, utilisez l’exemple suivant.

SELECT RADIANS(180);

+-------------------+
| radians |
+-------------------+
| 3.141592653589793 |
+-------------------+

Fonction RAND

La fonction RAND génère un nombre aléatoire à virgule flottante compris entre 0 et 1. La fonction
RAND génère un nouveau nombre aléatoire à chaque fois qu'elle est appelée.

Fonctions mathématiques 268

AWS Clean Rooms Référence SQL

Syntaxe

RAND()

Type de retour

RANDOM renvoie un DOUBLE.

Exemple

L'exemple suivant génère une colonne de nombres aléatoires à virgule flottante compris entre
0 et 1 pour chaque ligne du tableau. squirrels Le résultat obtenu serait une colonne unique
contenant une liste de valeurs décimales aléatoires, avec une valeur pour chaque ligne de la table
des écureuils.

SELECT rand() FROM squirrels

Ce type de requête est utile lorsque vous devez générer des nombres aléatoires, par exemple pour
simuler des événements aléatoires ou pour introduire le caractère aléatoire dans votre analyse de
données. Dans le contexte du squirrels tableau, il peut être utilisé pour attribuer des valeurs
aléatoires à chaque écureuil, qui pourraient ensuite être utilisées pour un traitement ou une analyse
plus poussés.

Fonction RANDOM

La fonction RANDOM génère une valeur aléatoire compris entre 0,0 (inclus) et 1,0 (exclusif).

Syntaxe

RANDOM()

Type de retour

RANDOM renvoie un nombre DOUBLE PRECISION.

Exemples

1. Calculez une valeur aléatoire comprise entre 0 et 99. Si le nombre aléatoire est de 0 à 1, cette
requête génère un nombre aléatoire de 0 à 100 :

Fonctions mathématiques 269

AWS Clean Rooms Référence SQL

select cast (random() * 100 as int);

INTEGER

24
(1 row)

2. Récupère un échantillon aléatoire uniforme de 10 éléments :

select *
from sales
order by random()
limit 10;

Maintenant, récupérez un échantillon aléatoire de 10 éléments, mais choisissez les éléments en
fonction de leur prix. Par exemple, un élément dont le prix est le double d'un autre a deux fois plus
de chance d'apparaître dans les résultats de la requête :

select *
from sales
order by log(1 - random()) / pricepaid
limit 10;

3. Cet exemple utilise la commande SET pour définir une valeur SEED afin que RANDOM génère
une séquence de nombres prévisible.

D’abord, renvoyez trois entiers RANDOM sans définir au préalable la valeur SEED :

select cast (random() * 100 as int);
INTEGER

6
(1 row)

select cast (random() * 100 as int);
INTEGER

68
(1 row)

select cast (random() * 100 as int);

Fonctions mathématiques 270

AWS Clean Rooms Référence SQL

INTEGER

56
(1 row)

A présent, définissez la valeur SEED sur .25 et renvoyez trois nombres RANDOM
supplémentaires :

set seed to .25;
select cast (random() * 100 as int);
INTEGER

21
(1 row)

select cast (random() * 100 as int);
INTEGER

79
(1 row)

select cast (random() * 100 as int);
INTEGER

12
(1 row)

Enfin, réinitialisez la valeur SEED sur .25 et vérifiez que RANDOM renvoie les mêmes résultats
que les trois appels précédents :

set seed to .25;
select cast (random() * 100 as int);
INTEGER

21
(1 row)

select cast (random() * 100 as int);
INTEGER

79
(1 row)

Fonctions mathématiques 271

AWS Clean Rooms Référence SQL

select cast (random() * 100 as int);
INTEGER

12
(1 row)

Fonction ROUND

La fonction ROUND arrondit des nombres à l’entier ou à la décimale la plus proche.

La fonction ROUND peut éventuellement inclure un second argument sous forme de nombre entier
permettant d'indiquer le nombre de décimales de l'arrondi, dans les deux sens. Lorsque vous ne
fournissez pas le second argument, la fonction arrondit au nombre entier le plus proche. Lorsque le
second argument >n est spécifié, la fonction arrondit au nombre le plus proche avec une précision de
n décimales.

Syntaxe

ROUND (number [, integer])

Argument

number

Nombre ou expression ayant pour valeur un nombre. Il peut s'agir du DECIMAL ou du FLOAT8
type. AWS Clean Rooms peut convertir d'autres types de données selon les règles de conversion
implicites.

integer (facultatif)

Nombre entier qui indique le nombre de décimales pour l'arrondi dans les deux sens.

Type de retour

ROUND renvoie le même type de données numériques en tant qu'argument(s) d'entrée.

Exemples

Arrondit la commission payée pour une transaction donnée au nombre entier le plus proche.

Fonctions mathématiques 272

AWS Clean Rooms Référence SQL

select commission, round(commission)
from sales where salesid=10000;

commission | round
-----------+-------
 28.05 | 28
(1 row)

Arrondit la commission payée pour une transaction donnée à la première décimale.

select commission, round(commission, 1)
from sales where salesid=10000;

commission | round
-----------+-------
 28.05 | 28.1
(1 row)

Pour la même requête, étendez la précision dans l'autre sens.

select commission, round(commission, -1)
from sales where salesid=10000;

commission | round
-----------+-------
 28.05 | 30
(1 row)

Fonction SIGN

La fonction SIGN renvoie le signe (positif ou négatif) d’un nombre. Le résultat de la fonction SIGN
est 1, -1 ou 0, ce qui indique le signe de l'argument.

Syntaxe

SIGN (number)

Fonctions mathématiques 273

AWS Clean Rooms Référence SQL

Argument

number

Nombre ou expression ayant pour valeur un nombre. C'est peut-être le DECIMALor FLOAT8
genre. AWS Clean Rooms peut convertir d'autres types de données selon les règles de
conversion implicites.

Type de retour

SIGN renvoie le même type de données numériques en tant qu'argument(s) d'entrée. Si l'entrée est
DECIMAL, la sortie est DECIMAL(1,0).

Exemples

Pour déterminer le signe de la commission payée pour une transaction donnée à partir de la table
SALES, utilisez l’exemple suivant.

SELECT commission, SIGN(commission)
FROM sales WHERE salesid=10000;

+------------+------+
| commission | sign |
+------------+------+
| 28.05 | 1 |
+------------+------+

Fonction SIN

SIN est une fonction trigonométrique qui renvoie le sinus d’un nombre. La valeur renvoyée est
comprise entre -1 et 1.

Syntaxe

SIN(number)

Argument

number

Nombre DOUBLE PRECISION en radians.

Fonctions mathématiques 274

AWS Clean Rooms Référence SQL

Type de retour

DOUBLE PRECISION

Exemple

Pour renvoyer le sinus de -PI, utilisez l’exemple suivant.

SELECT SIN(-PI());

+-------------------------+
| sin |
+-------------------------+
| -0.00000000000000012246 |
+-------------------------+

Fonction SQRT

La fonction SQRT renvoie la racine carrée d'une valeur numérique. La racine carrée est un nombre
multiplié par lui-même pour obtenir la valeur donnée.

Syntaxe

SQRT (expression)

Argument

expression

L’expression doit comporter un type de données de nombre entier, décimale ou à virgule flottante.
L'expression peut inclure des fonctions. Le système peut effectuer des conversions de type
implicites.

Type de retour

SQRT renvoie un nombre DOUBLE PRECISION.

Exemples

L'exemple suivant renvoie la racine carrée d'un nombre.

select sqrt(16);

Fonctions mathématiques 275

AWS Clean Rooms Référence SQL

sqrt

4

L'exemple suivant effectue une conversion de type implicite.

select sqrt('16');

sqrt

4

L'exemple suivant imbrique des fonctions pour effectuer une tâche plus complexe.

select sqrt(round(16.4));

sqrt

4

L'exemple suivant donne la longueur du rayon lorsque l'aire du cercle est indiquée. Il calcule le rayon
en pouces, par exemple, lorsque la surface est indiquée en pouces carrés. Dans l'exemple, l'aire est
de 20.

select sqrt(20/pi());

La valeur renvoyée est 5.046265044040321.

L'exemple suivant renvoie la racine carrée des valeurs de COMMISSION de la table SALES. La
colonne COMMISSION est une colonne DECIMAL. Cet exemple montre comment utiliser la fonction
dans une requête ayant une logique conditionnelle plus complexe.

select sqrt(commission)
from sales where salesid < 10 order by salesid;

sqrt

10.4498803820905
3.37638860322683
7.24568837309472

Fonctions mathématiques 276

AWS Clean Rooms Référence SQL

5.1234753829798
...

La requête suivante renvoie la racine carré arrondie du même ensemble de valeurs COMMISSION.

select salesid, commission, round(sqrt(commission))
from sales where salesid < 10 order by salesid;

salesid | commission | round
--------+------------+-------
 1 | 109.20 | 10
 2 | 11.40 | 3
 3 | 52.50 | 7
 4 | 26.25 | 5
...

Pour plus d'informations sur les exemples de données dans AWS Clean Rooms, consultez la section
Exemple de base de données.

Fonction TRUNC

La fonction TRUNC tronque les nombres à l'entier ou à la décimale précédente.

La fonction TRUNC peut éventuellement inclure un second argument : un nombre entier permettant
d'indiquer le nombre de décimales de l'arrondi, dans les deux sens. Lorsque vous ne fournissez
pas le second argument, la fonction arrondit au nombre entier le plus proche. Lorsque le second
argument >n est spécifié, la fonction arrondit au nombre le plus proche avec une précision de n
décimales. Cette fonction tronque également un horodatage et renvoie une date.

Syntaxe

TRUNC (number [, integer] |
timestamp)

Arguments

number

Nombre ou expression ayant pour valeur un nombre. Il peut s'agir du DECIMAL ou du FLOAT8
type. AWS Clean Rooms peut convertir d'autres types de données selon les règles de conversion
implicites.

Fonctions mathématiques 277

https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html

AWS Clean Rooms Référence SQL

integer (facultatif)

Nombre entier qui indique le nombre de décimales de précision, dans les deux sens. Si aucun
nombre entier n’est fourni, le nombre est tronqué en tant que nombre entier ; si un nombre entier
est spécifié, le nombre est tronqué à la décimale spécifiée.

timestamp

La fonction peut également renvoyer la date à partir d'un horodatage. (Pour renvoyer une valeur
d'horodatage avec 00:00:00 comme heure, envoyez le résultat de la fonction à un horodatage.)

Type de retour

TRUNC renvoie le même type de données que le premier argument d'entrée. Pour les horodatages,
TRUNC renvoie une date.

Exemples

Tronque la commission payée pour une transaction de vente donnée.

select commission, trunc(commission)
from sales where salesid=784;

commission | trunc
-----------+-------
 111.15 | 111

(1 row)

Tronque la même valeur de commission que la première décimale.

select commission, trunc(commission,1)
from sales where salesid=784;

commission | trunc
-----------+-------
 111.15 | 111.1

(1 row)

Tronque la commission avec une valeur négative pour le second argument ; 111.15 est arrondi à
110.

Fonctions mathématiques 278

AWS Clean Rooms Référence SQL

select commission, trunc(commission,-1)
from sales where salesid=784;

commission | trunc
-----------+-------
 111.15 | 110
(1 row)

Renvoyez la partie de date du résultat de la fonction SYSDATE (qui renvoie un horodatage) :

select sysdate;

timestamp

2011-07-21 10:32:38.248109
(1 row)

select trunc(sysdate);

trunc

2011-07-21
(1 row)

Appliquez la fonction TRUNC à une colonne TIMESTAMP. Le type de retour est une date.

select trunc(starttime) from event
order by eventid limit 1;

trunc

2008-01-25
(1 row)

Fonctions scalaires

Cette section décrit les fonctions scalaires prises en charge dans AWS Clean Rooms Spark SQL.
Une fonction scalaire est une fonction qui prend une ou plusieurs valeurs en entrée et renvoie une
seule valeur en sortie. Les fonctions scalaires fonctionnent sur des lignes ou des éléments individuels
et produisent un résultat unique pour chaque entrée.

Fonctions scalaires 279

AWS Clean Rooms Référence SQL

Les fonctions scalaires, telles que SIZE, sont différentes des autres types de fonctions SQL, telles
que les fonctions d'agrégation (count, sum, avg) et les fonctions de génération de tables (explode,
aplten). Ces autres types de fonctions fonctionnent sur plusieurs lignes ou génèrent plusieurs lignes,
tandis que les fonctions scalaires fonctionnent sur des lignes ou des éléments individuels.

Rubriques

• fonction SIZE

fonction SIZE

La fonction SIZE prend un tableau, une carte ou une chaîne existant comme argument et renvoie une
valeur unique représentant la taille ou la longueur de cette structure de données. Cela ne crée pas de
nouvelle structure de données. Il est utilisé pour interroger et analyser les propriétés des structures
de données existantes, plutôt que pour en créer de nouvelles.

Cette fonction est utile pour déterminer le nombre d'éléments d'un tableau ou la longueur d'une
chaîne. Cela peut être particulièrement utile lorsque vous travaillez avec des tableaux et d'autres
structures de données en SQL, car cela vous permet d'obtenir des informations sur la taille ou la
cardinalité des données.

Syntaxe

size(expr)

Arguments

expr

Expression ARRAY, MAP ou STRING.

Type de retour

La fonction SIZE renvoie un INTEGER.

exemple

Dans cet exemple, la fonction SIZE est appliquée au tableau ['b', 'd', 'c', 'a'] et renvoie la
valeur4, qui est le nombre d'éléments du tableau.

Fonctions scalaires 280

AWS Clean Rooms Référence SQL

SELECT size(array('b', 'd', 'c', 'a'));
 4

Dans cet exemple, la fonction SIZE est appliquée à la carte {'a': 1, 'b': 2} et renvoie la
valeur2, qui est le nombre de paires clé-valeur sur la carte.

SELECT size(map('a', 1, 'b', 2));
 2

Dans cet exemple, la fonction SIZE est appliquée à la chaîne 'hello world' et renvoie la
valeur11, qui est le nombre de caractères de la chaîne.

SELECT size('hello world');
11

Fonctions de chaîne

Fonctions de chaîne qui traitent et manipulent des chaînes de caractères ou des expressions qui
correspondent à des chaînes de caractères. Lorsque l’argument string de ces fonctions est une
valeur littérale, il doit être entre guillemets simples. Les types de données pris en charge sont CHAR
et VARCHAR.

La section suivante fournit les noms de fonctions, la syntaxe et les descriptions des fonctions prises
en charge. Tous les décalages en chaînes sont basés sur un.

Rubriques

• Opérateur (concaténation) ||

• Fonction BTRIM

• Fonction CONCAT

• Fonction FORMAT_STRING

• Fonctions LEFT et RIGHT

• Fonction LENGTH

• Fonction LOWER

• Fonctions LPAD et RPAD

• Fonction LTRIM

Fonctions de chaîne 281

AWS Clean Rooms Référence SQL

• Fonction POSITION

• Fonction REGEXP_COUNT

• Fonction REGEXP_INSTR

• Fonction REGEXP_REPLACE

• Fonction REGEXP_SUBSTR

• Fonction REPEAT

• Fonction REPLACE

• Fonction REVERSE

• Fonction RTRIM

• Fonction SPLIT

• Fonction SPLIT_PART

• Fonction SUBSTRING

• Fonction TRANSLATE

• Fonction TRIM

• Fonction UPPER

• Fonction UUID

Opérateur (concaténation) ||

Concatène deux expressions de chaque côté du symbole || et renvoie l’expression concaténée.

L'opérateur de concatentation est similaire à. Fonction CONCAT

Note

Pour la fonction CONCAT et l'opérateur de concaténation, si une expression ou les deux ont
la valeur null, le résultat de la concaténation est null.

Syntaxe

expression1 || expression2

Fonctions de chaîne 282

AWS Clean Rooms Référence SQL

Arguments

expression1, expression2

Les deux arguments peuvent être des chaînes de caractères de longueur fixe ou de longueur
variable ou des expressions.

Type de retour

L'opérateur || renvoie une chaîne. Le type de chaîne est identique à celui des arguments d'entrée.

exemple

L'exemple suivant concatène les champs FIRSTNAME et LASTNAME de la table USERS :

select firstname || ' ' || lastname
from users
order by 1
limit 10;

concat

Aaron Banks
Aaron Booth
Aaron Browning
Aaron Burnett
Aaron Casey
Aaron Cash
Aaron Castro
Aaron Dickerson
Aaron Dixon
Aaron Dotson
(10 rows)

Pour concaténer des colonnes susceptibles de contenir des valeurs nulles, utilisez l’expression
Fonctions NVL et COALESCE. L’exemple suivant utilise NVL pour renvoyer un 0 chaque fois que la
valeur NULL est rencontrée.

select venuename || ' seats ' || nvl(venueseats, 0)
from venue where venuestate = 'NV' or venuestate = 'NC'
order by 1
limit 10;

Fonctions de chaîne 283

AWS Clean Rooms Référence SQL

seating

Ballys Hotel seats 0
Bank of America Stadium seats 73298
Bellagio Hotel seats 0
Caesars Palace seats 0
Harrahs Hotel seats 0
Hilton Hotel seats 0
Luxor Hotel seats 0
Mandalay Bay Hotel seats 0
Mirage Hotel seats 0
New York New York seats 0

Fonction BTRIM

La fonction BTRIM tronque une chaîne en supprimant les espaces de début et de fin ou en
supprimant les caractères de début et de fin qui correspondent à une chaîne spécifiée de manière
facultative.

Syntaxe

BTRIM(string [, trim_chars])

Arguments

string

Chaîne VARCHAR d’entrée à tronquer.

trim_chars

Chaîne VARCHAR contenant les caractères à mettre en correspondance.

Type de retour

La fonction BTRIM renvoie une chaîne VARCHAR.

Exemples

L’exemple suivant tronque les espaces de début et de fin de la chaîne ' abc ' :

Fonctions de chaîne 284

AWS Clean Rooms Référence SQL

select ' abc ' as untrim, btrim(' abc ') as trim;

untrim | trim
----------+------
 abc | abc

L’exemple suivant supprime les chaînes 'xyz' de début et de fin de la chaîne
'xyzaxyzbxyzcxyz'. Les occurrences de début et de fin de 'xyz' sont supprimées, mais celles
qui se trouvent à l’intérieur de la chaîne sont conservées.

select 'xyzaxyzbxyzcxyz' as untrim,
btrim('xyzaxyzbxyzcxyz', 'xyz') as trim;

 untrim | trim
-----------------+-----------
 xyzaxyzbxyzcxyz | axyzbxyzc

L’exemple suivant supprime les parties de début et de fin de la chaîne
'setuphistorycassettes' qui correspondent à l’un des caractères de la liste trim_chars 'tes'.
Tout caractère t, e ou s précédant un autre caractère qui ne figure pas dans la liste trim_chars au
début ou à la fin de la chaîne d’entrée est supprimé.

SELECT btrim('setuphistorycassettes', 'tes');

 btrim

 uphistoryca

Fonction CONCAT

La fonction CONCAT concatène deux expressions et renvoie l’expression résultante. Pour
concaténer plus de deux expressions, utilisez les fonction CONCAT imbriquées. L'opérateur de
concaténation (||) entre deux expressions donne les mêmes résultats que la fonction CONCAT.

Note

Pour la fonction CONCAT et l'opérateur de concaténation, si une expression ou les deux ont
la valeur null, le résultat de la concaténation est null.

Fonctions de chaîne 285

AWS Clean Rooms Référence SQL

Syntaxe

CONCAT (expression1, expression2)

Arguments

expression1, expression2

Les deux arguments peuvent être une chaîne de caractères de longueur fixe, une chaîne de
caractères de longueur variable, une expression binaire ou une expression qui a pour résultat
l’une de ces entrées.

Type de retour

CONCAT renvoie une expression. Le type de données de l’expression est le même que celui des
arguments d’entrée.

Si les expressions d'entrée sont de types différents, AWS Clean Rooms essaie de convertir
implicitement l'une des expressions. Si des valeurs ne peuvent pas être converties, une erreur est
renvoyée.

Exemples

L’exemple suivant concatène deux littéraux caractères :

select concat('December 25, ', '2008');

concat

December 25, 2008
(1 row)

La requête suivante, utilisant l’opérateur || au lieu de CONCAT, produit le même résultat :

select 'December 25, '||'2008';

concat

December 25, 2008
(1 row)

Fonctions de chaîne 286

AWS Clean Rooms Référence SQL

L'exemple suivant illustre l'utilisation des fonctions CONCAT pour concaténer trois chaînes de
caractères :

select concat('Thursday, ', concat('December 25, ', '2008'));

concat

Thursday, December 25, 2008
(1 row)

Pour concaténer des colonnes susceptibles de contenir des valeurs nulles, utilisez la fonction
Fonctions NVL et COALESCE. L’exemple suivant utilise NVL pour renvoyer un 0 chaque fois que la
valeur NULL est rencontrée.

select concat(venuename, concat(' seats ', nvl(venueseats, 0))) as seating
from venue where venuestate = 'NV' or venuestate = 'NC'
order by 1
limit 5;

seating

Ballys Hotel seats 0
Bank of America Stadium seats 73298
Bellagio Hotel seats 0
Caesars Palace seats 0
Harrahs Hotel seats 0
(5 rows)

La requête suivante concatène les valeurs CITY et STATE de la table VENUE :

select concat(venuecity, venuestate)
from venue
where venueseats > 75000
order by venueseats;

concat

DenverCO
Kansas CityMO
East RutherfordNJ
LandoverMD

Fonctions de chaîne 287

AWS Clean Rooms Référence SQL

(4 rows)

La requête suivante utilise des fonctions CONCAT imbriquées. La requête concatène les valeurs
CITY et STATE de la table VENUE, mais délimite la chaîne qui en résulte par une virgule et un
espace :

select concat(concat(venuecity,', '),venuestate)
from venue
where venueseats > 75000
order by venueseats;

concat

Denver, CO
Kansas City, MO
East Rutherford, NJ
Landover, MD
(4 rows)

Fonction FORMAT_STRING

La fonction FORMAT_STRING crée une chaîne formatée en remplaçant les espaces réservés dans
une chaîne modèle par les arguments fournis. Elle renvoie une chaîne formatée à partir de chaînes
de format de style printf.

La fonction FORMAT_STRING fonctionne en remplaçant les espaces réservés dans la chaîne du
modèle par les valeurs correspondantes passées en arguments. Ce type de formatage de chaîne
peut être utile lorsque vous devez créer dynamiquement des chaînes qui incluent un mélange de
texte statique et de données dynamiques, par exemple lors de la génération de messages de sortie,
de rapports ou d'autres types de texte informatif. La fonction FORMAT_STRING fournit un moyen
concis et lisible de créer ces types de chaînes formatées, ce qui facilite la maintenance et la mise à
jour du code qui génère le résultat.

Syntaxe

format_string(strfmt, obj, ...)

Fonctions de chaîne 288

AWS Clean Rooms Référence SQL

Arguments

strfmt

Expression STRING.

obj

Une chaîne ou une expression numérique.

Type de retour

FORMAT_STRING renvoie une chaîne.

exemple

L'exemple suivant contient un modèle de chaîne contenant deux espaces réservés : %d pour une
valeur décimale (entier) et %s pour une valeur de chaîne. L'%despace réservé est remplacé par
la valeur décimale (entier) (100), et l'espace réservé %s est remplacé par la valeur de chaîne
(). "days" La sortie est une chaîne modèle dont les espaces réservés sont remplacés par les
arguments fournis :"Hello World 100 days".

SELECT format_string("Hello World %d %s", 100, "days");
 Hello World 100 days

Fonctions LEFT et RIGHT

Ces fonctions renvoient le nombre de caractères spécifié le plus à gauche ou le plus à droite dans
une chaîne de caractères.

Le chiffre est basé sur le nombre de caractères, pas d’octets, de sorte que les caractères à plusieurs
octets soient comptés comme des caractères seuls.

Syntaxe

LEFT (string, integer)

RIGHT (string, integer)

Fonctions de chaîne 289

AWS Clean Rooms Référence SQL

Arguments

string

Chaîne de caractères ou expression qui a pour valeur une chaîne de caractères.

integer

Nombre entier positif.

Type de retour

LEFT et RIGHT renvoient une chaîne VARCHAR.

exemple

L'exemple suivant renvoie les 5 caractères les plus à gauche et les 5 caractères les plus à droite à
partir de noms d'événements IDs compris entre 1 000 et 1 005 :

select eventid, eventname,
left(eventname,5) as left_5,
right(eventname,5) as right_5
from event
where eventid between 1000 and 1005
order by 1;

eventid | eventname | left_5 | right_5
--------+----------------+--------+---------
 1000 | Gypsy | Gypsy | Gypsy
 1001 | Chicago | Chica | icago
 1002 | The King and I | The K | and I
 1003 | Pal Joey | Pal J | Joey
 1004 | Grease | Greas | rease
 1005 | Chicago | Chica | icago
(6 rows)

Fonction LENGTH

Fonction LOWER

Convertit une chaîne en minuscules. LOWER prend en charge les caractères à plusieurs octets
UTF-8, à concurrence de quatre octets au maximum par caractère.

Fonctions de chaîne 290

AWS Clean Rooms Référence SQL

Syntaxe

LOWER(string)

Argument

string

Le paramètre d'entrée est une chaîne VARCHAR (ou tout autre type de données, tel que CHAR,
qui peut être implicitement converti en VARCHAR).

Type de retour

La fonction LOWER renvoie une chaîne de caractères qui est du même type que la chaîne d'entrée.

Exemples

L'exemple suivant convertit le champ CATNAME en minuscules :

select catname, lower(catname) from category order by 1,2;

 catname | lower
----------+-----------
Classical | classical
Jazz | jazz
MLB | mlb
MLS | mls
Musicals | musicals
NBA | nba
NFL | nfl
NHL | nhl
Opera | opera
Plays | plays
Pop | pop
(11 rows)

Fonctions LPAD et RPAD

Ces fonctions ajoutent des caractères en préfixe ou en suffixe à une chaîne, en fonction d’une
longueur spécifiée.

Fonctions de chaîne 291

AWS Clean Rooms Référence SQL

Syntaxe

LPAD (string1, length, [string2])

RPAD (string1, length, [string2])

Arguments

string1

Chaîne de caractères ou expression qui a pour valeur une chaîne de caractères, comme le nom
d'une colonne de caractères.

longueur

Nombre entier qui définit la longueur du résultat de la fonction. La longueur d’une chaîne est
basée sur le nombre de caractères, pas d’octets, afin que les caractères à plusieurs octets soient
comptés comme des caractères seuls. Si string1 dépasse la longueur spécifiée, il est tronqué (à
droite). Si length est un nombre négatif, le résultat de la fonction est une chaîne vide.

string2

Un ou plusieurs caractères ajoutés en préfixe ou en suffixe à string1. Cet argument est facultatif.
S'il n'est pas spécifié, les espaces sont utilisés.

Type de retour

Ces fonctions renvoient un type de données VARCHAR.

Exemples

Tronquez un ensemble spécifié de noms d'événements à 20 caractères et ajoutez des espaces
comme préfixes aux noms plus courts :

select lpad(eventname,20) from event
where eventid between 1 and 5 order by 1;

 lpad

 Salome
 Il Trovatore

Fonctions de chaîne 292

AWS Clean Rooms Référence SQL

 Boris Godunov
 Gotterdammerung
La Cenerentola (Cind
(5 rows)

Tronquez le même ensemble de noms d'événements à 20 caractères, mais ajoutez 0123456789
comme suffixe aux noms plus courts.

select rpad(eventname,20,'0123456789') from event
where eventid between 1 and 5 order by 1;

 rpad

Boris Godunov0123456
Gotterdammerung01234
Il Trovatore01234567
La Cenerentola (Cind
Salome01234567890123
(5 rows)

Fonction LTRIM

Supprime les caractères du début d’une chaîne de caractères. Supprime la chaîne la plus longue
ne contenant que des caractères de la liste des caractères supprimés. Le découpage est terminé
lorsqu'aucun caractère de découpage n'apparaît dans la chaîne d'entrée.

Syntaxe

LTRIM(string [, trim_chars])

Arguments

string

Une colonne de chaîne, une expression ou un littéral de chaîne à supprimer.

trim_chars

Une colonne, une expression ou un littéral de chaîne qui représente les caractères à supprimer
au début de la chaîne. Si la valeur n’est pas spécifiée, un espace est utilisé comme caractère de
séparation.

Fonctions de chaîne 293

AWS Clean Rooms Référence SQL

Type de retour

La fonction LTRIM renvoie une chaîne de caractères qui est du même type que la chaîne d’entrée
(CHAR ou VARCHAR).

Exemples

L’exemple suivant supprime l’année de la colonne listime. Les caractères supprimés dans la
chaîne littérale '2008-' indiquent les caractères à supprimer à partir de la gauche. Si vous utilisez
les caractères de suppression '028-', vous obtiendrez le même résultat.

select listid, listtime, ltrim(listtime, '2008-')
from listing
order by 1, 2, 3
limit 10;

listid | listtime | ltrim
-------+---------------------+----------------
 1 | 2008-01-24 06:43:29 | 1-24 06:43:29
 2 | 2008-03-05 12:25:29 | 3-05 12:25:29
 3 | 2008-11-01 07:35:33 | 11-01 07:35:33
 4 | 2008-05-24 01:18:37 | 5-24 01:18:37
 5 | 2008-05-17 02:29:11 | 5-17 02:29:11
 6 | 2008-08-15 02:08:13 | 15 02:08:13
 7 | 2008-11-15 09:38:15 | 11-15 09:38:15
 8 | 2008-11-09 05:07:30 | 11-09 05:07:30
 9 | 2008-09-09 08:03:36 | 9-09 08:03:36
 10 | 2008-06-17 09:44:54 | 6-17 09:44:54

LTRIM supprime les caractères de trim_chars lorsqu’ils apparaissent au début de la chaîne.
L’exemple suivant supprime les caractères C, D et G lorsqu’ils figurent au début de VENUENAME,
qui est une colonne VARCHAR.

select venueid, venuename, ltrim(venuename, 'CDG')
from venue
where venuename like '%Park'
order by 2
limit 7;

venueid | venuename | btrim
--------+----------------------------+--------------------------
 121 | ATT Park | ATT Park
 109 | Citizens Bank Park | itizens Bank Park

Fonctions de chaîne 294

AWS Clean Rooms Référence SQL

 102 | Comerica Park | omerica Park
 9 | Dick's Sporting Goods Park | ick's Sporting Goods Park
 97 | Fenway Park | Fenway Park
 112 | Great American Ball Park | reat American Ball Park
 114 | Miller Park | Miller Park

L’exemple suivant utilise le caractère de suppression 2 qui est extrait de la colonne venueid.

select ltrim('2008-01-24 06:43:29', venueid)
from venue where venueid=2;

ltrim

008-01-24 06:43:29

L’exemple suivant ne supprime aucun caractère car 2 est trouvé avant le caractère de suppression
'0'.

select ltrim('2008-01-24 06:43:29', '0');

ltrim

2008-01-24 06:43:29

L’exemple suivant utilise le caractère de suppression d’espace par défaut et supprime les deux
espaces du début de la chaîne.

select ltrim(' 2008-01-24 06:43:29');

ltrim

2008-01-24 06:43:29

Fonction POSITION

Renvoie l’emplacement de la sous-chaîne spécifiée dans une chaîne.

Syntaxe

POSITION(substring IN string)

Fonctions de chaîne 295

AWS Clean Rooms Référence SQL

Arguments

substring

Sous-chaîne à rechercher dans la chaîne.

string

Chaîne ou colonne à rechercher.

Type de retour

La fonction POSITION renvoie un nombre entier correspondant à la position de la sous-chaîne
(base 1, pas base 0). La position est basée sur le nombre de caractères, pas d’octets, de sorte que
les caractères à plusieurs octets soient comptés comme des caractères seuls.

Notes d’utilisation

POSITION renvoie 0 si la sous-chaîne n'est pas trouvée dans la chaîne POSITION :

select position('dog' in 'fish');

position

 0
(1 row)

Exemples

L'exemple suivant montre la position de la chaîne fish dans le mot dogfish :

select position('fish' in 'dogfish');

position

 4
(1 row)

L'exemple suivant renvoie le nombre de transactions commerciales avec une COMMISSION de plus
de 999,00 dans la table SALES :

select distinct position('.' in commission), count (position('.' in commission))

Fonctions de chaîne 296

AWS Clean Rooms Référence SQL

from sales where position('.' in commission) > 4 group by position('.' in commission)
order by 1,2;

position | count
---------+-------
 5 | 629
(1 row)

Fonction REGEXP_COUNT

Recherche un modèle d’expression régulière dans une chaîne et renvoie un nombre entier indiquant
le nombre de fois où le modèle est présent dans la chaîne. Si aucune correspondance n'est trouvée,
la fonction renvoie 0.

Syntaxe

REGEXP_COUNT (source_string, pattern [, position [, parameters]])

Arguments

source_string

Expression de chaîne, comme un nom de colonne, à rechercher.

pattern

Chaîne littérale qui représente un modèle d’expression régulière.

position

Nombre entier positif qui indique à quel endroit de source_string commencer la recherche. La
position est basée sur le nombre de caractères, pas d’octets, de sorte que les caractères à
plusieurs octets soient comptés comme des caractères seuls. La valeur par défaut est 1. Si
position est inférieur à 1, la recherche commence au premier caractère de source_string. Si
position est supérieur au nombre de caractères de source_string, le résultat est 0.

parameters

Un ou plusieurs littéraux de chaîne qui indiquent comment la fonction correspond au modèle. Les
valeurs possibles sont les suivantes :

• c : réaliser une correspondance avec respect de la casse. Par défaut, la correspondance avec
respect de la casse est utilisée.

Fonctions de chaîne 297

AWS Clean Rooms Référence SQL

• i : réaliser une correspondance avec non-respect de la casse.

• p – Interpréter le modèle avec le type d’expression PCRE (Perl Compatible Regular
Expression).

Type de retour

Entier

exemple

L'exemple suivant compte le nombre de fois que se produit une séquence de trois lettres.

SELECT regexp_count('abcdefghijklmnopqrstuvwxyz', '[a-z]{3}');

 regexp_count

 8

L'exemple suivant compte le nombre de fois que le nom de domaine de niveau supérieur est org ou
edu.

SELECT email, regexp_count(email,'@[^.]*\\.(org|edu)')FROM users
ORDER BY userid LIMIT 4;

 email | regexp_count
---+--------------
 Etiam.laoreet.libero@sodalesMaurisblandit.edu | 1
 Suspendisse.tristique@nonnisiAenean.edu | 1
 amet.faucibus.ut@condimentumegetvolutpat.ca | 0
 sed@lacusUtnec.ca | 0

L'exemple suivant compte les occurrences de la chaîne FOX, en utilisant une correspondance avec
respect de la casse.

SELECT regexp_count('the fox', 'FOX', 1, 'i');

 regexp_count

 1

Fonctions de chaîne 298

AWS Clean Rooms Référence SQL

L'exemple suivant utilise un modèle écrit dans le type PCRE pour localiser des mots contenant au
moins un chiffre et une lettre minuscule. Il utilise l'opérateur ?=, qui a une connotation « anticipée »
spécifique au type PCRE. Cet exemple compte le nombre d'occurrences de ces mots, avec une
correspondance avec respect de la casse.

SELECT regexp_count('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 'p');

 regexp_count

 2

L'exemple suivant utilise un modèle écrit dans le type PCRE pour localiser des mots contenant au
moins un chiffre et une lettre minuscule. Il utilise l'opérateur ?=, qui a une connotation spécifique au
type PCRE. Cet exemple compte le nombre d'occurrences de ces mots, mais diffère de l'exemple
précédent car il utilise une correspondance avec non-respect de la casse.

SELECT regexp_count('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 'ip');

 regexp_count

 3

Fonction REGEXP_INSTR

Recherche un modèle d’expression régulière dans une chaîne et renvoie un nombre entier qui
indique la position de début de la sous-chaîne correspondante. Si aucune correspondance n'est
trouvée, la fonction renvoie 0. REGEXP_SUBSTR est similaire à la fonction POSITION, mais vous
permet de rechercher un modèle d’expression régulière dans une chaîne.

Syntaxe

REGEXP_INSTR (source_string, pattern [, position [, occurrence] [, option
 [, parameters]]]])

Arguments

source_string

Expression de chaîne, comme un nom de colonne, à rechercher.

Fonctions de chaîne 299

AWS Clean Rooms Référence SQL

pattern

Chaîne littérale qui représente un modèle d’expression régulière.

position

Nombre entier positif qui indique à quel endroit de source_string commencer la recherche. La
position est basée sur le nombre de caractères, pas d’octets, de sorte que les caractères à
plusieurs octets soient comptés comme des caractères seuls. La valeur par défaut est 1. Si
position est inférieur à 1, la recherche commence au premier caractère de source_string. Si
position est supérieur au nombre de caractères de source_string, le résultat est 0.

occurrence

Nombre entier positif qui indique quelle occurrence du modèle utiliser. REGEXP_INSTR ignore les
occurrence -1 premières correspondances. La valeur par défaut est 1. Si occurrence est inférieur
à 1 ou supérieur au nombre de caractères de la chaîne source_string, la recherche est ignorée et
le résultat est 0.

option

Valeur qui indique s'il faut renvoyer la position du premier caractère de la correspondance (0) ou
celle du premier caractère après la fin de la correspondance (1). Toute valeur de chaîne autre que
zéro est similaire à la valeur 1. La valeur par défaut est 0.

parameters

Un ou plusieurs littéraux de chaîne qui indiquent comment la fonction correspond au modèle. Les
valeurs possibles sont les suivantes :

• c : réaliser une correspondance avec respect de la casse. Par défaut, la correspondance avec
respect de la casse est utilisée.

• i : réaliser une correspondance avec non-respect de la casse.

• e : extraire une sous-chaîne à l’aide d’une sous-expression.

Si pattern inclut une sous-expression, REGEXP_INSTR met en correspondance une sous-
chaîne à l’aide de la première sous-expression incluse dans pattern. REGEXP_INSTR
considère uniquement la première sous-expression ; les autres sous-expressions sont ignorées.
Si le modèle n’inclut pas de sous-expression, REGEXP_INSTR ignore le paramètre « e ».

• p – Interpréter le modèle avec le type d’expression PCRE (Perl Compatible Regular
Expression).

Fonctions de chaîne 300

AWS Clean Rooms Référence SQL

Type de retour

Entier

exemple

L'exemple suivant recherche le caractère @ qui commence par un nom de domaine et renvoie la
position de début de la première correspondance.

SELECT email, regexp_instr(email, '@[^.]*')
FROM users
ORDER BY userid LIMIT 4;

 email | regexp_instr
---+--------------
 Etiam.laoreet.libero@example.com | 21
 Suspendisse.tristique@nonnisiAenean.edu | 22
 amet.faucibus.ut@condimentumegetvolutpat.ca | 17
 sed@lacusUtnec.ca | 4

L'exemple suivant recherche des variantes du mot Center et renvoie la position du début de la
première correspondance.

SELECT venuename, regexp_instr(venuename,'[cC]ent(er|re)$')
FROM venue
WHERE regexp_instr(venuename,'[cC]ent(er|re)$') > 0
ORDER BY venueid LIMIT 4;

 venuename | regexp_instr
-----------------------+--------------
 The Home Depot Center | 16
 Izod Center | 6
 Wachovia Center | 10
 Air Canada Centre | 12

L'exemple suivant recherche la position de départ de la première occurrence de la chaîne FOX, à
l'aide d'une logique de correspondance avec respect de la casse.

SELECT regexp_instr('the fox', 'FOX', 1, 1, 0, 'i');

 regexp_instr

Fonctions de chaîne 301

AWS Clean Rooms Référence SQL

 5

L'exemple suivant utilise un modèle écrit en PCRE pour localiser des mots contenant au moins un
chiffre et une lettre minuscule. Il utilise l'opérateur ?=, qui a une connotation « anticipée » spécifique
au type PCRE. Cet exemple montre comment trouver la position de départ du deuxième mot de ce
type.

SELECT regexp_instr('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 0, 'p');

 regexp_instr

 21

L'exemple suivant utilise un modèle écrit en PCRE pour localiser des mots contenant au moins un
chiffre et une lettre minuscule. Il utilise l'opérateur ?=, qui a une connotation « anticipée » spécifique
au type PCRE. Cet exemple recherche la position de départ du deuxième mot de ce type, mais
diffère de l’exemple précédent car il utilise une correspondance avec non-respect de la casse.

SELECT regexp_instr('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 0, 'ip');

 regexp_instr

 15

Fonction REGEXP_REPLACE

Recherche un modèle d’expression régulière dans une chaîne et remplace chaque occurrence du
modèle par la chaîne spécifiée. REGEXP_REPLACE est similaire à la Fonction REPLACE, mais vous
permet de rechercher un modèle d’expression régulière dans une chaîne.

REGEXP_REPLACE est similaire à la Fonction TRANSLATE et la Fonction REPLACE, sauf que
TRANSLATE fait plusieurs remplacements de caractère unique et REPLACE remplace une chaîne
entière par une autre chaîne, tandis que REGEXP_REPLACE vous permet de rechercher un modèle
d’expression régulière dans une chaîne.

Fonctions de chaîne 302

AWS Clean Rooms Référence SQL

Syntaxe

REGEXP_REPLACE (source_string, pattern [, replace_string [, position [, parameters
]]])

Arguments

source_string

Expression de chaîne, comme un nom de colonne, à rechercher.

pattern

Chaîne littérale qui représente un modèle d’expression régulière.

replace_string

Expression de chaîne, comme un nom de colonne, qui va remplacer chaque occurrence de
modèle. La valeur par défaut est une chaîne vide ("").

position

Nombre entier positif qui indique à quel endroit de source_string commencer la recherche. La
position est basée sur le nombre de caractères, pas d’octets, de sorte que les caractères à
plusieurs octets soient comptés comme des caractères seuls. La valeur par défaut est 1. Si
position est inférieur à 1, la recherche commence au premier caractère de source_string. Si
position est supérieure au nombre de caractères de source_string, le résultat est source_string.

parameters

Un ou plusieurs littéraux de chaîne qui indiquent comment la fonction correspond au modèle. Les
valeurs possibles sont les suivantes :

• c : réaliser une correspondance avec respect de la casse. Par défaut, la correspondance avec
respect de la casse est utilisée.

• i : réaliser une correspondance avec non-respect de la casse.

• p – Interpréter le modèle avec le type d’expression PCRE (Perl Compatible Regular
Expression).

Type de retour

VARCHAR

Fonctions de chaîne 303

AWS Clean Rooms Référence SQL

Si pattern ou replace_string a la valeur NULL, le retour est NULL.

exemple

L'exemple suivant supprime le caractère @ et le nom de domaine des adresses e-mail.

SELECT email, regexp_replace(email, '@.*\\.(org|gov|com|edu|ca)$')
FROM users
ORDER BY userid LIMIT 4;

 email | regexp_replace
---+----------------
 Etiam.laoreet.libero@sodalesMaurisblandit.edu | Etiam.laoreet.libero
 Suspendisse.tristique@nonnisiAenean.edu | Suspendisse.tristique
 amet.faucibus.ut@condimentumegetvolutpat.ca | amet.faucibus.ut
 sed@lacusUtnec.ca | sed

L'exemple suivant remplace les noms de domaine des adresses e-mail par cette valeur :
internal.company.com.

SELECT email, regexp_replace(email, '@.*\\.[[:alpha:]]{2,3}',
'@internal.company.com') FROM users
ORDER BY userid LIMIT 4;

 email | regexp_replace

+--
 Etiam.laoreet.libero@sodalesMaurisblandit.edu |
 Etiam.laoreet.libero@internal.company.com
 Suspendisse.tristique@nonnisiAenean.edu |
 Suspendisse.tristique@internal.company.com
 amet.faucibus.ut@condimentumegetvolutpat.ca | amet.faucibus.ut@internal.company.com
 sed@lacusUtnec.ca | sed@internal.company.com

L'exemple suivant remplace toutes les occurrences de la chaîne FOX dans la valeur quick brown
fox, à l'aide d'une correspondance avec respect de la casse.

SELECT regexp_replace('the fox', 'FOX', 'quick brown fox', 1, 'i');

 regexp_replace

Fonctions de chaîne 304

AWS Clean Rooms Référence SQL

 the quick brown fox

L'exemple suivant utilise un modèle écrit dans le type PCRE pour localiser des mots contenant au
moins un chiffre et une lettre minuscule. Il utilise l'opérateur ?=, qui a une connotation « anticipée »
spécifique au type PCRE. Cet exemple remplace chaque occurrence de mot de ce type par la valeur
[hidden].

SELECT regexp_replace('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 '[hidden]', 1, 'p');

 regexp_replace

 [hidden] plain A1234 [hidden]

L'exemple suivant utilise un modèle écrit dans le type PCRE pour localiser des mots contenant au
moins un chiffre et une lettre minuscule. Il utilise l'opérateur ?=, qui a une connotation « anticipée »
spécifique au type PCRE. Cet exemple remplace chaque occurrence de mot de ce type par la valeur
[hidden], mais diffère de l'exemple précédent car il utilise une correspondance avec non-respect
de la casse.

SELECT regexp_replace('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 '[hidden]', 1, 'ip');

 regexp_replace

 [hidden] plain [hidden] [hidden]

Fonction REGEXP_SUBSTR

Renvoie les caractères d’une chaîne en y recherchant un modèle d’expression régulière.
REGEXP_SUBSTR est similaire à la fonction Fonction SUBSTRING, mais vous permet de
rechercher un modèle d’expression régulière dans une chaîne. Si la fonction ne trouve pas
correspondance entre l’expression régulière et aucun caractère de la chaîne, elle renvoie une chaîne
vide.

Syntaxe

REGEXP_SUBSTR (source_string, pattern [, position [, occurrence [, parameters]]])

Fonctions de chaîne 305

AWS Clean Rooms Référence SQL

Arguments

source_string

Expression de chaîne à rechercher.

pattern

Chaîne littérale qui représente un modèle d’expression régulière.

position

Nombre entier positif qui indique à quel endroit de source_string commencer la recherche. La
position est basée sur le nombre de caractères, pas d’octets, de sorte que les caractères à
plusieurs octets soient comptés comme des caractères seuls. La valeur par défaut est 1. Si
position est inférieur à 1, la recherche commence au premier caractère de source_string. Si
position est supérieure au nombre de caractères de source_string, le résultat est une chaîne vide
("").

occurrence

Nombre entier positif qui indique quelle occurrence du modèle utiliser. REGEXP_SUBSTR ignore
les occurrence -1 premières correspondances. La valeur par défaut est 1. Si occurrence est
inférieur à 1 ou supérieur au nombre de caractères de la chaîne source_string, la recherche est
ignorée et le résultat est NULL.

parameters

Un ou plusieurs littéraux de chaîne qui indiquent comment la fonction correspond au modèle. Les
valeurs possibles sont les suivantes :

• c : réaliser une correspondance avec respect de la casse. Par défaut, la correspondance avec
respect de la casse est utilisée.

• i : réaliser une correspondance avec non-respect de la casse.

• e : extraire une sous-chaîne à l’aide d’une sous-expression.

Si pattern inclut une sous-expression, REGEXP_SUBSTR met en correspondance une sous-
chaîne à l’aide de la première sous-expression incluse dans pattern. Une sous-expression est
une expression dans le modèle qui est mise entre parenthèses. Par exemple, le modèle 'This
is a (\\w+)' met en correspondance la première expression avec la chaîne 'This is
a ' suivie d’un mot. Au lieu de renvoyer le modèle, REGEXP_SUBSTR avec le paramètre e
renvoie uniquement la chaîne contenue dans la sous-expression.

Fonctions de chaîne 306

AWS Clean Rooms Référence SQL

REGEXP_SUBSTR considère uniquement la première sous-expression ; les autres sous-
expressions sont ignorées. Si le modèle n’inclut pas de sous-expression, REGEXP_SUBSTR
ignore le paramètre « e ».

• p – Interpréter le modèle avec le type d’expression PCRE (Perl Compatible Regular
Expression).

Type de retour

VARCHAR

exemple

L’exemple suivant renvoie la partie d’une adresse e-mail comprise entre le caractère @ et l’extension
du domaine.

SELECT email, regexp_substr(email,'@[^.]*')
FROM users
ORDER BY userid LIMIT 4;

 email | regexp_substr
---+--------------------------
 Etiam.laoreet.libero@sodalesMaurisblandit.edu | @sodalesMaurisblandit
 Suspendisse.tristique@nonnisiAenean.edu | @nonnisiAenean
 amet.faucibus.ut@condimentumegetvolutpat.ca | @condimentumegetvolutpat
 sed@lacusUtnec.ca | @lacusUtnec

L'exemple suivant renvoie la partie de l'entrée correspondant à la première occurrence de la chaîne
FOX, à l'aide d'une correspondance avec respect de la casse.

SELECT regexp_substr('the fox', 'FOX', 1, 1, 'i');

 regexp_substr

 fox

L'exemple suivant renvoie la première partie de l'entrée qui commence par des lettres minuscules. Il
est fonctionnellement identique à la même instruction SELECT sans le paramètre c.

SELECT regexp_substr('THE SECRET CODE IS THE LOWERCASE PART OF 1931abc0EZ.', '[a-z]+',
 1, 1, 'c');

Fonctions de chaîne 307

AWS Clean Rooms Référence SQL

 regexp_substr

 abc

L’exemple suivant utilise un modèle écrit dans le type PCRE pour localiser des mots contenant au
moins un chiffre et une lettre minuscule. Il utilise l'opérateur ?=, qui a une connotation « anticipée »
spécifique au type PCRE. Cet exemple renvoie la partie de l’entrée correspondant au deuxième mot
de ce type.

SELECT regexp_substr('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 'p');

 regexp_substr

 a1234

L’exemple suivant utilise un modèle écrit dans le type PCRE pour localiser des mots contenant au
moins un chiffre et une lettre minuscule. Il utilise l’opérateur ?=, qui a une connotation « anticipée »
spécifique au type PCRE. Cet exemple renvoie la partie de l’entrée correspondant au deuxième mot
de ce type, mais diffère de l’exemple précédent car il utilise une correspondance avec non-respect de
la casse.

SELECT regexp_substr('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 'ip');

 regexp_substr

 A1234

L’exemple suivant utilise une sous-expression pour rechercher la deuxième chaîne correspondant au
modèle 'this is a (\\w+)' à l’aide d’une correspondance avec respect de la casse. Il renvoie la
sous-expression entre parenthèses.

select regexp_substr(
 'This is a cat, this is a dog. This is a mouse.',
 'this is a (\\w+)', 1, 2, 'ie');

 regexp_substr

Fonctions de chaîne 308

AWS Clean Rooms Référence SQL

 dog

Fonction REPEAT

Répète une chaîne le nombre de fois spécifié. Si le paramètre d’entrée est numérique, REPEAT le
traite sous forme de chaîne.

Syntaxe

REPEAT(string, integer)

Arguments

string

Le premier paramètre d’entrée est la chaîne à répéter.

integer

Le deuxième paramètre est un nombre entier indiquant combien de fois répéter la chaîne.

Type de retour

La fonction REPEAT renvoie une chaîne.

Exemples

L'exemple suivant répète la valeur de la colonne CATID dans la table CATEGORY à trois reprises :

select catid, repeat(catid,3)
from category
order by 1,2;

 catid | repeat
-------+--------
 1 | 111
 2 | 222
 3 | 333
 4 | 444
 5 | 555
 6 | 666
 7 | 777

Fonctions de chaîne 309

AWS Clean Rooms Référence SQL

 8 | 888
 9 | 999
 10 | 101010
 11 | 111111
(11 rows)

Fonction REPLACE

Remplace toutes les occurrences d’un jeu de caractères au sein d’une chaîne existante par d’autres
caractères spécifiés.

REPLACE est similaire à la Fonction TRANSLATE et la Fonction REGEXP_REPLACE, sauf que
TRANSLATE fait plusieurs remplacements de caractère unique et REGEXP_REPLACE vous permet
de rechercher un modèle d’expression régulière dans une chaîne, tandis que REPLACE remplace
une chaîne entière par une autre chaîne.

Syntaxe

REPLACE(string1, old_chars, new_chars)

Arguments

string

Chaîne CHAR ou VARCHAR à rechercher

old_chars

Chaîne CHAR ou VARCHAR à remplacer.

new_chars

Nouvelle chaîne CHAR ou VARCHAR remplaçant l'ancienne chaîne old_string.

Type de retour

VARCHAR

Si old_chars ou new_chars a la valeur NULL, le retour est NULL.

Exemples

L'exemple suivant convertit la chaîne Shows en Theatre dans le champ CATGROUP :

Fonctions de chaîne 310

AWS Clean Rooms Référence SQL

select catid, catgroup,
replace(catgroup, 'Shows', 'Theatre')
from category
order by 1,2,3;

 catid | catgroup | replace
-------+----------+----------
 1 | Sports | Sports
 2 | Sports | Sports
 3 | Sports | Sports
 4 | Sports | Sports
 5 | Sports | Sports
 6 | Shows | Theatre
 7 | Shows | Theatre
 8 | Shows | Theatre
 9 | Concerts | Concerts
 10 | Concerts | Concerts
 11 | Concerts | Concerts
(11 rows)

Fonction REVERSE

La fonction REVERSE s’applique à une chaîne et renvoie les caractères dans l’ordre inverse. Par
exemple, reverse('abcde') renvoie edcba. Cette fonction s’applique aux types de données
numérique et de date, ainsi qu’aux types de données de caractère. Toutefois, dans la plupart des
cas, elle a une valeur pratique pour les chaînes de caractères.

Syntaxe

REVERSE (expression)

Argument

expression

Expression avec un type de données de caractère, date, horodatage ou numérique qui représente
la cible de l'inversion de caractères. Toutes les expressions régulières sont implicitement
converties en chaînes de caractères de longueur variable. Les espaces de fin des chaînes de
caractères à largeur fixe sont ignorés.

Fonctions de chaîne 311

AWS Clean Rooms Référence SQL

Type de retour

REVERSE renvoie un VARCHAR.

Exemples

Sélectionnez cinq noms de ville distincts et leur noms inversés correspondants à partir de la table
USERS :

select distinct city as cityname, reverse(cityname)
from users order by city limit 5;

cityname | reverse
---------+----------
Aberdeen | needrebA
Abilene | enelibA
Ada | adA
Agat | tagA
Agawam | mawagA
(5 rows)

Sélectionnez cinq ventes IDs et leur transformation inversée correspondante IDs sous forme de
chaînes de caractères :

select salesid, reverse(salesid)::varchar
from sales order by salesid desc limit 5;

salesid | reverse
--------+---------
 172456 | 654271
 172455 | 554271
 172454 | 454271
 172453 | 354271
 172452 | 254271
(5 rows)

Fonction RTRIM

La fonction RTRIM supprime un ensemble spécifié de caractères à partir de la fin d’une chaîne.
Supprime la chaîne la plus longue ne contenant que des caractères de la liste des caractères
supprimés. Le découpage est terminé lorsqu'aucun caractère de découpage n'apparaît dans la
chaîne d'entrée.

Fonctions de chaîne 312

AWS Clean Rooms Référence SQL

Syntaxe

RTRIM(string, trim_chars)

Arguments

string

Une colonne de chaîne, une expression ou un littéral de chaîne à supprimer.

trim_chars

Colonne de chaîne, expression ou littéral de chaîne représentant les caractères à supprimer à
la fin de la chaîne. Si la valeur n’est pas spécifiée, un espace est utilisé comme caractère de
séparation.

Type de retour

Chaîne qui a le même type de données que l’argument string.

exemple

L’exemple suivant tronque les espaces de début et de fin de la chaîne ' abc ' :

select ' abc ' as untrim, rtrim(' abc ') as trim;

untrim | trim
----------+------
 abc | abc

L’exemple suivant supprime les chaînes 'xyz' de fin de la chaîne 'xyzaxyzbxyzcxyz'. Les
occurrences de fin de 'xyz' sont supprimées, mais celles qui se trouvent à l’intérieur de la chaîne
sont conservées.

select 'xyzaxyzbxyzcxyz' as untrim,
rtrim('xyzaxyzbxyzcxyz', 'xyz') as trim;

 untrim | trim
-----------------+-----------
 xyzaxyzbxyzcxyz | xyzaxyzbxyzc

Fonctions de chaîne 313

AWS Clean Rooms Référence SQL

L’exemple suivant supprime les parties de fin de la chaîne 'setuphistorycassettes' qui
correspondent à l’un des caractères de la liste trim_chars 'tes'. Tout caractère t, e ou s précédant
un autre caractère qui ne figure pas dans la liste trim_chars à la fin de la chaîne d’entrée est
supprimé.

SELECT rtrim('setuphistorycassettes', 'tes');

 rtrim

 setuphistoryca

L’exemple suivant tronque les caractères « Park » à la fin de VENUENAME le cas échéant :

select venueid, venuename, rtrim(venuename, 'Park')
from venue
order by 1, 2, 3
limit 10;

venueid | venuename | rtrim
--------+----------------------------+-------------------------
 1 | Toyota Park | Toyota
 2 | Columbus Crew Stadium | Columbus Crew Stadium
 3 | RFK Stadium | RFK Stadium
 4 | CommunityAmerica Ballpark | CommunityAmerica Ballp
 5 | Gillette Stadium | Gillette Stadium
 6 | New York Giants Stadium | New York Giants Stadium
 7 | BMO Field | BMO Field
 8 | The Home Depot Center | The Home Depot Cente
 9 | Dick's Sporting Goods Park | Dick's Sporting Goods
 10 | Pizza Hut Park | Pizza Hut

Notez que RTRIM supprime les caractères P, a, r ou k lorsqu’ils apparaissent à la fin d’un
VENUENAME.

Fonction SPLIT

La fonction SPLIT vous permet d'extraire des sous-chaînes d'une chaîne plus grande et de les utiliser
sous forme de tableau. La fonction SPLIT est utile lorsque vous devez décomposer une chaîne en
composants individuels en fonction d'un délimiteur ou d'un modèle spécifique.

Fonctions de chaîne 314

AWS Clean Rooms Référence SQL

Syntaxe

split(str, regex, limit)

Arguments

str

Expression de chaîne à diviser.

regex

Chaîne représentant une expression régulière. La chaîne regex doit être une expression régulière
Java.

limit

Expression entière qui contrôle le nombre de fois que l'expression régulière est appliquée.

• limit > 0 : la longueur du tableau résultant ne sera pas supérieure à la limite, et la dernière
entrée du tableau résultant contiendra toutes les entrées au-delà de la dernière regex
correspondante.

• limit <= 0 : regex sera appliquée autant de fois que possible, et le tableau résultant peut être de
n'importe quelle taille.

Type de retour

La fonction SPLIT renvoie un ARRAY<STRING>.

Si limit > 0 : La longueur du tableau résultant ne sera pas supérieure à la limite, et la dernière
entrée du tableau résultant contiendra toutes les entrées au-delà de la dernière expression régulière
correspondante.

if limit <= 0 : regex sera appliquée autant de fois que possible, et le tableau résultant peut être de
n'importe quelle taille.

exemple

Dans cet exemple, la fonction SPLIT divise la chaîne d'entrée 'oneAtwoBthreeC' là où
elle rencontre les caractères 'A''B', ou 'C' (comme spécifié par le modèle d'expression
régulière'[ABC]'). Le résultat obtenu est un tableau de quatre éléments : "one""two","three",
et une chaîne vide"".

Fonctions de chaîne 315

AWS Clean Rooms Référence SQL

SELECT split('oneAtwoBthreeC', '[ABC]');
 ["one","two","three",""]

Fonction SPLIT_PART

Divise une chaîne sur le délimiteur spécifié et renvoie la partie à la position spécifiée.

Syntaxe

SPLIT_PART(string, delimiter, position)

Arguments

string

Colonne de chaîne, expression ou littéral de chaîne à fractionner. La chaîne peut être CHAR ou
VARCHAR.

delimiter

Chaîne de délimiteur indiquant les sections de la chaîne d’entrée.

Si delimiter est un littéral, mettez-le entre guillemets simples.

position

Position de la partie de chaîne à renvoyer (à partir de 1). Doit être un nombre entier supérieur à 0.
Si la valeur de position est supérieure au nombre de parties de chaîne, SPLIT_PART renvoie une
chaîne vide. Si délimiteur est introuvable dans chaîne, alors la valeur renvoyée contient le contenu
de la partie spécifiée, qui pourrait être la chaîne entière ou une valeur vide.

Type de retour

Chaîne CHAR ou VARCHAR, la même que le paramètre string.

Exemples

L’exemple suivant fractionne un littéral de chaîne en différentes parties en utilisant le délimiteur $ et
renvoie la seconde partie.

select split_part('abcdefghi','$',2)

Fonctions de chaîne 316

AWS Clean Rooms Référence SQL

split_part

def

L’exemple suivant fractionne un littéral de chaîne en différentes parties en utilisant le délimiteur $. Il
renvoie une chaîne vide, car la partie 4 est introuvable.

select split_part('abcdefghi','$',4)

split_part

L’exemple suivant fractionne un littéral de chaîne en différentes parties en utilisant le délimiteur #. Il
renvoie la chaîne entière, qui correspond à la première partie, car le délimiteur est introuvable.

select split_part('abcdefghi','#',1)

split_part

abcdefghi

L’exemple suivant divise le champ d’horodatage LISTTIME en composants d’année, de mois et de
date.

select listtime, split_part(listtime,'-',1) as year,
split_part(listtime,'-',2) as month,
split_part(split_part(listtime,'-',3),' ',1) as day
from listing limit 5;

 listtime | year | month | day
---------------------+------+-------+------
 2008-03-05 12:25:29 | 2008 | 03 | 05
 2008-09-09 08:03:36 | 2008 | 09 | 09
 2008-09-26 05:43:12 | 2008 | 09 | 26
 2008-10-04 02:00:30 | 2008 | 10 | 04
 2008-01-06 08:33:11 | 2008 | 01 | 06

L’exemple suivant sélectionne le champ d’horodatage LISTTIME et le divise sur le caractère '-'
pour obtenir le mois (la deuxième partie de la chaîne LISTTIME), puis compte le nombre d’entrées de
chaque mois :

Fonctions de chaîne 317

AWS Clean Rooms Référence SQL

select split_part(listtime,'-',2) as month, count(*)
from listing
group by split_part(listtime,'-',2)
order by 1, 2;

 month | count
-------+-------
 01 | 18543
 02 | 16620
 03 | 17594
 04 | 16822
 05 | 17618
 06 | 17158
 07 | 17626
 08 | 17881
 09 | 17378
 10 | 17756
 11 | 12912
 12 | 4589

Fonction SUBSTRING

Renvoie le sous-ensemble d’une chaîne sur la base de la position de départ spécifiée.

Si l’entrée est une chaîne de caractères, la position de départ et le nombre de caractères extraits sont
basés sur les caractères, pas les octets, afin que les caractères à plusieurs octets soient comptés
comme des caractères uniques. Si l’entrée est une expression binaire, la position de départ et la
sous-chaîne extraite sont basées sur des octets. Vous ne pouvez pas spécifier de longueur négative,
mais vous pouvez spécifier une position de début négative.

Syntaxe

SUBSTRING(charactestring FROM start_position [FOR numbecharacters])

SUBSTRING(charactestring, start_position, numbecharacters)

SUBSTRING(binary_expression, start_byte, numbebytes)

SUBSTRING(binary_expression, start_byte)

Fonctions de chaîne 318

AWS Clean Rooms Référence SQL

Arguments

chaîne de caractères

Chaîne à rechercher. Les types de données non-caractères sont traités comme une chaîne.

start_position

Position au sein de la chaîne à laquelle commencer l’extraction, à partir de 1. La position de début
start_position est basée sur le nombre de caractères, pas d’octets, de sorte que les caractères à
plusieurs octets soient comptés comme des caractères seuls. Ce numéro peut être négatif.

caractères numériques

Nombre de caractères à extraire (longueur de la sous-chaîne). Le nombre de caractères est basé
sur le nombre de caractères, et non sur le nombre d'octets, de sorte que les caractères multi-
octets sont considérés comme des caractères uniques. Ce numéro ne peut pas être négatif.

start_byte

Position au sein de l’expression binaire à laquelle commencer l’extraction, à partir de 1. Ce
numéro peut être négatif.

nombre d'octets

Nombre d’octets à extraire, c’est-à-dire la longueur de la sous-chaîne. Ce numéro ne peut pas
être négatif.

Type de retour

VARCHAR

Notes d'utilisation pour les chaînes de caractères

L’exemple suivant renvoie une chaîne de quatre caractères commençant par le sixième caractère.

select substring('caterpillar',6,4);
substring

pill
(1 row)

Si le nombre de caractères start_position + dépasse la longueur de la chaîne, SUBSTRING renvoie
une sous-chaîne commençant par la position de départ jusqu'à la fin de la chaîne. Par exemple :

Fonctions de chaîne 319

AWS Clean Rooms Référence SQL

select substring('caterpillar',6,8);
substring

pillar
(1 row)

Si start_position est négatif ou égal à 0, la fonction SUBSTRING renvoie une sous-
chaîne commençant au premier caractère de la chaîne d’une longueur de start_position +
numbecharacters -1. Par exemple :

select substring('caterpillar',-2,6);
substring

cat
(1 row)

Si start_position + numbecharacters -1 est inférieur ou égal à zéro, SUBSTRING renvoie une
chaîne vide. Par exemple :

select substring('caterpillar',-5,4);
substring

(1 row)

Exemples

L’exemple suivant renvoie le mois de la chaîne LISTTIME dans la table LISTING :

select listid, listtime,
substring(listtime, 6, 2) as month
from listing
order by 1, 2, 3
limit 10;

 listid | listtime | month
--------+---------------------+-------
 1 | 2008-01-24 06:43:29 | 01
 2 | 2008-03-05 12:25:29 | 03
 3 | 2008-11-01 07:35:33 | 11
 4 | 2008-05-24 01:18:37 | 05

Fonctions de chaîne 320

AWS Clean Rooms Référence SQL

 5 | 2008-05-17 02:29:11 | 05
 6 | 2008-08-15 02:08:13 | 08
 7 | 2008-11-15 09:38:15 | 11
 8 | 2008-11-09 05:07:30 | 11
 9 | 2008-09-09 08:03:36 | 09
 10 | 2008-06-17 09:44:54 | 06
(10 rows)

L’exemple suivant est le même que ci-dessus, mais utilise l’option FROM...FOR :

select listid, listtime,
substring(listtime from 6 for 2) as month
from listing
order by 1, 2, 3
limit 10;

 listid | listtime | month
--------+---------------------+-------
 1 | 2008-01-24 06:43:29 | 01
 2 | 2008-03-05 12:25:29 | 03
 3 | 2008-11-01 07:35:33 | 11
 4 | 2008-05-24 01:18:37 | 05
 5 | 2008-05-17 02:29:11 | 05
 6 | 2008-08-15 02:08:13 | 08
 7 | 2008-11-15 09:38:15 | 11
 8 | 2008-11-09 05:07:30 | 11
 9 | 2008-09-09 08:03:36 | 09
 10 | 2008-06-17 09:44:54 | 06
(10 rows)

Vous ne pouvez pas utiliser SUBSTRING pour extraire de manière prévisible le préfixe d’une chaîne
pouvant contenir des caractères à plusieurs octets, car vous devez spécifier la longueur d’une chaîne
de plusieurs octets basée sur le nombre d’octets, pas sur le nombre de caractères. Pour extraire le
segment de début d’une chaîne en fonction de la longueur en octets, vous pouvez utiliser la fonction
CAST sur la chaîne au format VARCHAR(byte_length) pour tronquer la chaîne, où byte_length est
la longueur requise. L’exemple suivant extrait les 5 premiers octets de la chaîne 'Fourscore and
seven'.

select cast('Fourscore and seven' as varchar(5));

varchar

Fonctions de chaîne 321

AWS Clean Rooms Référence SQL

Fours

L’exemple suivant renvoie le prénom Ana qui apparaît après le dernier espace de la chaîne d’entrée
Silva, Ana.

select reverse(substring(reverse('Silva, Ana'), 1, position(' ' IN reverse('Silva,
 Ana'))))

 reverse

 Ana

Fonction TRANSLATE

Pour une expression données, remplace toutes les occurrences de caractères spécifiés par des
produits de remplacement spécifiés. Les caractères existants sont mappés à des caractères
de remplacement en fonction de leurs positions dans les arguments characters_to_replace et
characters_to_substitute. Si le nombre de caractères spécifiés dans l’argument characters_to_replace
est supérieur à celui de l’argument characters_to_substitute, les caractères supplémentaires depuis
l’argument characters_to_replace sont omis dans la valeur de retour.

TRANSLATE est similaire à la Fonction REPLACE et la Fonction REGEXP_REPLACE, sauf que
REPLACE remplace une chaîne entière par une autre chaîne et que REGEXP_REPLACE vous
permet de rechercher un modèle d’expression régulière dans une chaîne, tandis que TRANSLATE
fait plusieurs remplacements de caractère unique.

Si un argument a la valeur null, le retour est NULL.

Syntaxe

TRANSLATE (expression, characters_to_replace, characters_to_substitute)

Arguments

expression

Expression à traduire.

characters_to_replace

Chaîne contenant les caractères à remplacer.

Fonctions de chaîne 322

AWS Clean Rooms Référence SQL

characters_to_substitute

Chaîne contenant les caractères à remplacer.

Type de retour

VARCHAR

Exemples

L'exemple suivant remplace plusieurs caractères dans une chaîne :

select translate('mint tea', 'inea', 'osin');

translate

most tin

L'exemple suivant remplace le signe (@) par un point dans toutes les valeurs d'une colonne :

select email, translate(email, '@', '.') as obfuscated_email
from users limit 10;

email obfuscated_email

Etiam.laoreet.libero@sodalesMaurisblandit.edu
 Etiam.laoreet.libero.sodalesMaurisblandit.edu
amet.faucibus.ut@condimentumegetvolutpat.ca
 amet.faucibus.ut.condimentumegetvolutpat.ca
turpis@accumsanlaoreet.org turpis.accumsanlaoreet.org
ullamcorper.nisl@Cras.edu ullamcorper.nisl.Cras.edu
arcu.Curabitur@senectusetnetus.com arcu.Curabitur.senectusetnetus.com
ac@velit.ca ac.velit.ca
Aliquam.vulputate.ullamcorper@amalesuada.org
 Aliquam.vulputate.ullamcorper.amalesuada.org
vel.est@velitegestas.edu vel.est.velitegestas.edu
dolor.nonummy@ipsumdolorsit.ca dolor.nonummy.ipsumdolorsit.ca
et@Nunclaoreet.ca et.Nunclaoreet.ca

L'exemple suivant remplace des espaces par des traits de soulignement et supprime les périodes de
toutes les valeurs d'une colonne :

Fonctions de chaîne 323

AWS Clean Rooms Référence SQL

select city, translate(city, ' .', '_') from users
where city like 'Sain%' or city like 'St%'
group by city
order by city;

city translate
--------------+------------------
Saint Albans Saint_Albans
Saint Cloud Saint_Cloud
Saint Joseph Saint_Joseph
Saint Louis Saint_Louis
Saint Paul Saint_Paul
St. George St_George
St. Marys St_Marys
St. Petersburg St_Petersburg
Stafford Stafford
Stamford Stamford
Stanton Stanton
Starkville Starkville
Statesboro Statesboro
Staunton Staunton
Steubenville Steubenville
Stevens Point Stevens_Point
Stillwater Stillwater
Stockton Stockton
Sturgis Sturgis

Fonction TRIM

Tronque une chaîne en supprimant les espaces de début et de fin ou en supprimant les caractères de
début et de fin qui correspondent à une chaîne spécifiée de manière facultative.

Syntaxe

TRIM([BOTH] [trim_chars FROM] string

Arguments

trim_chars

(Facultatif) Caractères à tronquer à partir de la chaîne. Si ce paramètre est oublié, les blancs sont
tronqués.

Fonctions de chaîne 324

AWS Clean Rooms Référence SQL

string

Chaîne à tronquer.

Type de retour

La fonction TRIM renvoie une chaîne VARCHAR ou CHAR. Si vous utilisez la fonction TRIM avec
une commande SQL, les résultats sont AWS Clean Rooms implicitement convertis en VARCHAR.
Si vous utilisez la fonction TRIM dans la liste SELECT pour une fonction SQL, AWS Clean Rooms
elle ne convertit pas implicitement les résultats et vous devrez peut-être effectuer une conversion
explicite pour éviter une erreur de non-concordance des types de données. Consultez la Fonction
CAST fonction pour plus d'informations sur les conversions explicites.

exemple

L’exemple suivant tronque les espaces de début et de fin de la chaîne ' abc ' :

select ' abc ' as untrim, trim(' abc ') as trim;

untrim | trim
----------+------
 abc | abc

L'exemple suivant supprime les guillemets qui entourent de la chaîne "dog" :

select trim('"' FROM '"dog"');

btrim

dog

TRIM supprime les caractères de trim_chars qui apparaissent au début de la chaîne. L'exemple
suivant supprime les caractères C, D et G lorsqu'ils figurent au début de VENUENAME, qui est une
colonne VARCHAR.

select venueid, venuename, trim(venuename, 'CDG')
from venue
where venuename like '%Park'
order by 2
limit 7;

Fonctions de chaîne 325

AWS Clean Rooms Référence SQL

venueid | venuename | btrim
--------+----------------------------+--------------------------
 121 | ATT Park | ATT Park
 109 | Citizens Bank Park | itizens Bank Park
 102 | Comerica Park | omerica Park
 9 | Dick's Sporting Goods Park | ick's Sporting Goods Park
 97 | Fenway Park | Fenway Park
 112 | Great American Ball Park | reat American Ball Park
 114 | Miller Park | Miller Park

Fonction UPPER

Convertit la valeur en majuscules. UPPER prend en charge les caractères à plusieurs octets UTF-8,
à concurrence de quatre octets au maximum par caractère.

Syntaxe

UPPER(string)

Arguments

string

Le paramètre d'entrée est une chaîne VARCHAR (ou tout autre type de données, tel que CHAR,
qui peut être implicitement converti en VARCHAR).

Type de retour

La fonction UPPER renvoie une chaîne de caractères qui est du même type que la chaîne d'entrée.

Exemples

L'exemple suivant convertit le champ CATNAME en majuscules :

select catname, upper(catname) from category order by 1,2;

 catname | upper
----------+-----------
Classical | CLASSICAL
Jazz | JAZZ

Fonctions de chaîne 326

AWS Clean Rooms Référence SQL

MLB | MLB
MLS | MLS
Musicals | MUSICALS
NBA | NBA
NFL | NFL
NHL | NHL
Opera | OPERA
Plays | PLAYS
Pop | POP
(11 rows)

Fonction UUID

La fonction UUID génère un identifiant unique universel (UUID).

UUIDs sont des identifiants uniques à l'échelle mondiale qui sont couramment utilisés pour fournir
des identifiants uniques à diverses fins, telles que :

• Identification des enregistrements de base de données ou d'autres entités de données.

• Génération de noms ou de clés uniques pour des fichiers, des répertoires ou d'autres ressources.

• Suivi et corrélation des données entre les systèmes distribués.

• Fournir des identifiants uniques pour les paquets réseau, les composants logiciels ou d'autres
actifs numériques.

La fonction UUID génère une valeur UUID unique avec une probabilité très élevée, même sur
des systèmes distribués et sur de longues périodes. UUIDs sont généralement générés à l'aide
d'une combinaison de l'horodatage actuel, de l'adresse réseau de l'ordinateur et d'autres données
aléatoires ou pseudo-aléatoires, ce qui garantit qu'il est très peu probable que chaque UUID généré
entre en conflit avec un autre UUID.

Dans le contexte d'une requête SQL, la fonction UUID peut être utilisée pour générer des identifiants
uniques pour les nouveaux enregistrements insérés dans une base de données, ou pour fournir
des clés uniques pour le partitionnement des données, l'indexation ou à d'autres fins nécessitant un
identifiant unique.

Note

La fonction UUID n'est pas déterministe.

Fonctions de chaîne 327

AWS Clean Rooms Référence SQL

Syntaxe

uuid()

Arguments

La fonction UUID ne prend aucun argument.

Type de retour

UUID renvoie une chaîne d'identifiant unique universel (UUID). La valeur est renvoyée sous la forme
d'une chaîne UUID canonique de 36 caractères.

exemple

L'exemple suivant génère un identifiant unique universel (UUID). La sortie est une chaîne de 36
caractères représentant un identifiant unique universel.

SELECT uuid();
 46707d92-02f4-4817-8116-a4c3b23e6266

Fonctions liées à la confidentialité

AWS Clean Rooms fournit des fonctions qui vous aident à respecter les spécifications suivantes en
matière de respect de la vie privée.

• Global Privacy Platform (GPP) — Spécification de l'Interactive Advertising Bureau (IAB) qui établit
un cadre mondial normalisé pour la confidentialité en ligne et l'utilisation des données. Pour plus
d'informations sur les spécifications techniques du GPP, consultez la documentation de la Global
Privacy Platform sur GitHub.

• Cadre de transparence et de consentement (TCF) — Élément clé du GPP, lancé en 2020,
qui fournit un cadre technique standardisé pour aider les entreprises à se conformer aux
réglementations en matière de confidentialité telles que le règlement général sur la protection des
données (RGPD) de l'UE. Le TCF permet aux clients d'accorder ou de refuser leur consentement à
la collecte et au traitement des données. Pour plus d'informations sur les spécifications techniques
du TCF, consultez la documentation du TCF sur. GitHub

Rubriques

• Fonction consent_gpp_v1_decode

Fonctions liées à la confidentialité 328

https://github.com/InteractiveAdvertisingBureau/Global-Privacy-Platform
https://github.com/InteractiveAdvertisingBureau/Global-Privacy-Platform
https://github.com/InteractiveAdvertisingBureau/GDPR-Transparency-and-Consent-Framework/tree/master/TCFv2

AWS Clean Rooms Référence SQL

• Fonction consent_tcf_v2_decode

Fonction consent_gpp_v1_decode

La consent_gpp_v1_decode fonction est utilisée pour décoder les données de consentement
de la Global Privacy Platform (GPP) v1. Il prend la chaîne de consentement codée en entrée et
renvoie les données de consentement décodées, qui incluent des informations sur les préférences
de confidentialité et les choix de consentement de l'utilisateur. Cette fonction est utile lorsque vous
travaillez avec des données qui incluent des informations de consentement GPP v1, car elle vous
permet d'accéder aux données de consentement et de les analyser dans un format structuré.

Syntaxe

consent_gpp_v1_decode(gpp_string)

Arguments

gpp_string

La chaîne de consentement GPP v1 codée.

Renvoie

Le dictionnaire renvoyé inclut les paires clé-valeur suivantes :

• version: version de la spécification GPP utilisée (actuellement 1).

• cmpId: ID de la plateforme de gestion du consentement (CMP) qui a codé la chaîne de
consentement.

• cmpVersion: version du CMP qui a codé la chaîne de consentement.

• consentScreen: ID de l'écran dans l'interface utilisateur CMP où l'utilisateur a donné son
consentement.

• consentLanguage: Le code de langue des informations de consentement.

• vendorListVersion: version de la liste des fournisseurs utilisée.

• publisherCountryCode: le code du pays de l'éditeur.

• purposeConsent: liste d'entiers représentant les objectifs auxquels l'utilisateur a consenti.

• purposeLegitimateInterest: Une liste des objectifs IDs pour lesquels l'intérêt légitime de
l'utilisateur a été communiqué de manière transparente.

Fonctions liées à la confidentialité 329

AWS Clean Rooms Référence SQL

• specialFeatureOptIns: liste d'entiers représentant les fonctionnalités spéciales que l'utilisateur
a choisies.

• vendorConsent: liste des fournisseurs IDs auxquels l'utilisateur a donné son accord.

• vendorLegitimateInterest: Liste des fournisseurs IDs pour lesquels l'intérêt légitime de
l'utilisateur a été communiqué de manière transparente.

exemple

L'exemple suivant prend un seul argument, qui est la chaîne de consentement codée. Il renvoie un
dictionnaire contenant les données de consentement décodées, y compris des informations sur les
préférences de confidentialité de l'utilisateur, les choix de consentement et d'autres métadonnées.

SELECT * FROM consent_gpp_v1_decode('ABCDEFGHIJK');

La structure de base des données de consentement renvoyées comprend des informations sur la
version de la chaîne de consentement, les détails de la CMP (Consent Management Platform), le
consentement de l'utilisateur et les choix d'intérêts légitimes pour différents objectifs et fournisseurs,
ainsi que d'autres métadonnées.

{
 "version": 1,
 "cmpId": 12,
 "cmpVersion": 34,
 "consentScreen": 5,
 "consentLanguage": "en",
 "vendorListVersion": 89,
 "publisherCountryCode": "US",
 "purposeConsent": [1],
 "purposeLegitimateInterests": [1],
 "specialFeatureOptins": [1],
 "vendorConsent": [1],
 "vendorLegitimateInterests": [1]}
}

Fonction consent_tcf_v2_decode

La consent_tcf_v2_decode fonction est utilisée pour décoder les données de consentement
du Transparency and Consent Framework (TCF) v2. Il prend la chaîne de consentement codée en
entrée et renvoie les données de consentement décodées, qui incluent des informations sur les

Fonctions liées à la confidentialité 330

AWS Clean Rooms Référence SQL

préférences de confidentialité et les choix de consentement de l'utilisateur. Cette fonction est utile
lorsque vous travaillez avec des données qui incluent des informations de consentement TCF v2,
car elle vous permet d'accéder aux données de consentement et de les analyser dans un format
structuré.

Syntaxe

consent_tcf_v2_decode(tcf_string)

Arguments

tcf_string

La chaîne de consentement TCF v2 codée.

Renvoie

La consent_tcf_v2_decode fonction renvoie un dictionnaire contenant les données de
consentement décodées à partir d'une chaîne de consentement TCF (Transparency and Consent
Framework) v2.

Le dictionnaire renvoyé inclut les paires clé-valeur suivantes :

Segment principal

• version: version de la spécification TCF utilisée (actuellement 2).

• created: date et heure de création de la chaîne de consentement.

• lastUpdated: date et heure de dernière mise à jour de la chaîne de consentement.

• cmpId: ID de la plateforme de gestion du consentement (CMP) qui a codé la chaîne de
consentement.

• cmpVersion: version du CMP qui a codé la chaîne de consentement.

• consentScreen: ID de l'écran dans l'interface utilisateur CMP où l'utilisateur a donné son
consentement.

• consentLanguage: Le code de langue des informations de consentement.

• vendorListVersion: version de la liste des fournisseurs utilisée.

• tcfPolicyVersion: version de la politique TCF sur laquelle est basée la chaîne de
consentement.

Fonctions liées à la confidentialité 331

AWS Clean Rooms Référence SQL

• isServiceSpecific: valeur booléenne indiquant si le consentement est spécifique à un service
en particulier ou s'applique à tous les services.

• useNonStandardStacks: valeur booléenne indiquant si des piles non standard sont utilisées.

• specialFeatureOptIns: liste d'entiers représentant les fonctionnalités spéciales que l'utilisateur
a choisies.

• purposeConsent: liste d'entiers représentant les objectifs auxquels l'utilisateur a consenti.

• purposesLITransparency: Une liste d'entiers représentant les objectifs pour lesquels
l'utilisateur a exprimé un intérêt légitime en termes de transparence.

• purposeOneTreatment: valeur booléenne indiquant si l'utilisateur a demandé le « traitement
dans un seul but » (c'est-à-dire que tous les objectifs sont traités de la même manière).

• publisherCountryCode: le code du pays de l'éditeur.

• vendorConsent: liste des fournisseurs IDs auxquels l'utilisateur a donné son accord.

• vendorLegitimateInterest: Liste des fournisseurs IDs pour lesquels l'intérêt légitime de
l'utilisateur a été communiqué de manière transparente.

• pubRestrictionEntry: liste des restrictions imposées aux éditeurs. Ce champ contient l'ID
d'objectif, le type de restriction et la liste des fournisseurs concernés IDs par cette restriction
d'objectif.

Segment de fournisseurs divulgué

• disclosedVendors: liste d'entiers représentant les fournisseurs qui ont été divulgués à
l'utilisateur.

Segment destiné aux éditeurs

• pubPurposesConsent: une liste d'entiers représentant les objectifs spécifiques à l'éditeur pour
lesquels l'utilisateur a donné son consentement.

• pubPurposesLITransparency: une liste de nombres entiers représentant les objectifs
spécifiques à l'éditeur pour lesquels l'utilisateur a fait preuve de transparence en matière d'intérêts
légitimes.

• customPurposesConsent: liste d'entiers représentant les objectifs personnalisés pour lesquels
l'utilisateur a donné son consentement.

• customPurposesLITransparency: Une liste d'entiers représentant les objectifs personnalisés
pour lesquels l'utilisateur a accordé la transparence à ses intérêts légitimes.

Fonctions liées à la confidentialité 332

AWS Clean Rooms Référence SQL

Ces données de consentement détaillées peuvent être utilisées pour comprendre et respecter les
préférences de confidentialité de l'utilisateur lorsqu'il travaille avec des données personnelles.

exemple

L'exemple suivant prend un seul argument, qui est la chaîne de consentement codée. Il renvoie un
dictionnaire contenant les données de consentement décodées, y compris des informations sur les
préférences de confidentialité de l'utilisateur, les choix de consentement et d'autres métadonnées.

from aws_clean_rooms.functions import consent_tcf_v2_decode

consent_string = "CO1234567890abcdef"
consent_data = consent_tcf_v2_decode(consent_string)

print(consent_data)

La structure de base des données de consentement renvoyées comprend des informations sur la
version de la chaîne de consentement, les détails de la CMP (Consent Management Platform), le
consentement de l'utilisateur et les choix d'intérêts légitimes pour différents objectifs et fournisseurs,
ainsi que d'autres métadonnées.

 /** core segment **/
 version: 2,
 created: "2023-10-01T12:00:00Z",
 lastUpdated: "2023-10-01T12:00:00Z",
 cmpId: 1234,
 cmpVersion: 5,
 consentScreen: 1,
 consentLanguage: "en",
 vendorListVersion: 2,
 tcfPolicyVersion: 2,
 isServiceSpecific: false,
 useNonStandardStacks: false,
 specialFeatureOptIns: [1, 2, 3],
 purposeConsent: [1, 2, 3],
 purposesLITransparency: [1, 2, 3],
 purposeOneTreatment: true,
 publisherCountryCode: "US",
 vendorConsent: [1, 2, 3],
 vendorLegitimateInterest: [1, 2, 3],
 pubRestrictionEntry: [

Fonctions liées à la confidentialité 333

AWS Clean Rooms Référence SQL

 { purpose: 1, restrictionType: 2, restrictionDescription: "Example
 restriction" },
],

 /** disclosed vendor segment **/
 disclosedVendors: [1, 2, 3],

 /** publisher purposes segment **/
 pubPurposesConsent: [1, 2, 3],
 pubPurposesLITransparency: [1, 2, 3],
 customPurposesConsent: [1, 2, 3],
 customPurposesLITransparency: [1, 2, 3],
};

Fonctions de fenêtrage

En utilisant les fonctions de fenêtrage, vous pouvez créer des requêtes d’analyse commerciale
plus efficacement. Les fonctions de fenêtrage fonctionnent sur une partition ou « fenêtre » d’un
ensemble de résultats et renvoient une valeur pour chaque ligne de cette fenêtre. En revanche, les
fonctions non fenêtrées effectuent leurs calculs sur chaque ligne du jeu de résultats. Contrairement
aux fonctions de groupe qui regroupent les lignes de résultats, les fonctions de fenêtrage conservent
toutes les lignes de l’expression de table.

Les valeurs renvoyées sont calculées en utilisant les valeurs des ensembles de lignes de cette
fenêtre. Pour chaque ligne de la table, la fenêtre définit un ensemble de lignes qui est utilisé pour
calculer des attributs supplémentaires. Une fenêtre est définie à l’aide d’une spécification de
fenêtrage (clause OVER) et s’appuie sur trois concepts principaux :

• Le partitionnement de fenêtrage qui constitue des groupes de lignes (clause PARTITION)

• L’ordonnancement de fenêtrage, qui définit un ordre ou une séquence de lignes dans chaque
partition (clause ORDER BY)

• Les cadres de fenêtrage, qui sont définis par rapport à chaque ligne afin de limiter davantage
l’ensemble de lignes (spécification ROWS)

Les fonctions de fenêtrage constituent le dernier ensemble d’opérations effectuées dans une
requête à l’exception de la clause ORDER BY finale. Toutes les jointures et toutes les clauses
WHERE, GROUP BY et HAVING doivent être terminées avant que les fonctions de fenêtrage soient
traitées. Par conséquent, les fonctions de fenêtrage peuvent s’afficher uniquement dans la liste de
sélection ou la clause ORDER BY. Vous pouvez utiliser plusieurs fonctions de fenêtrage dans une

Fonctions de fenêtrage 334

AWS Clean Rooms Référence SQL

seule requête avec différentes clauses de cadre. Vous pouvez également utiliser des fonctions de
fenêtrage dans d’autres expressions scalaires, telles que CASE.

Récapitulatif de la syntaxe de la fonction de fenêtrage

Les fonctions de fenêtre suivent la syntaxe standard suivante.

function (expression) OVER (
[PARTITION BY expr_list]
[ORDER BY order_list [frame_clause]])

Ici, function est l’une des fonctions décrites dans cette section.

L’expr_list se présente comme suit.

expression | column_name [, expr_list]

L’order_list se présente comme suit.

expression | column_name [ASC | DESC]
[NULLS FIRST | NULLS LAST]
[, order_list]

La frame_clause se présente comme suit.

ROWS
{ UNBOUNDED PRECEDING | unsigned_value PRECEDING | CURRENT ROW } |

{ BETWEEN
{ UNBOUNDED PRECEDING | unsigned_value { PRECEDING | FOLLOWING } | CURRENT ROW}
AND
{ UNBOUNDED FOLLOWING | unsigned_value { PRECEDING | FOLLOWING } | CURRENT ROW }}

Arguments

fonction

La fonction de fenêtrage. Pour plus d’informations, consultez les descriptions de chaque fonction.

OVER

La clause qui définit la spécification du fenêtrage. La clause OVER est obligatoire pour les
fonctions de fenêtrage et différencie les fonctions de fenêtrage d’autres fonctions SQL.

Fonctions de fenêtrage 335

AWS Clean Rooms Référence SQL

PARTITION BY expr_list

(Facultatif) La clause PARTITION BY subdivise le jeu de résultats en partitions, comme la clause
GROUP BY. Si une clause de partition est présente, la fonction est calculée pour les lignes de
chaque partition. Si aucune clause de partition n’est spécifiée, une seule partition contient la
totalité de la table et la fonction est calculée pour cette table complète.

Les fonctions de rang DENSE_RANK, NTILE, RANK et ROW_NUMBER, nécessitent une
comparaison globale de toutes les lignes du jeu de résultats. Lorsqu’une clause PARTITION BY
est utilisée, l’optimiseur de requête peut exécuter chaque agrégation en parallèle en répartissant
la charge de travail sur plusieurs tranches selon les partitions. Si la clause PARTITION BY n’est
pas présente, l’étape d’agrégation doit être exécutée en série sur une seule tranche, ce qui
peut avoir une incidence négative importante sur les performances, surtout pour des clusters de
grande taille.

AWS Clean Roomsne prend pas en charge les littéraux de chaîne dans les clauses PARTITION
BY.

ORDER BY order_list

(Facultatif) La fonction de fenêtrage est appliquée aux lignes de chaque partition triées selon la
spécification d’ordre de ORDER BY. Cette clause ORDER BY est distincte et sans aucun lien
avec une clause ORDER BY dans la frame_clause. La clause ORDER BY peut être utilisée sans
la clause PARTITION BY.

Pour les fonctions de rang, la clause ORDER BY identifie les mesures des valeurs de rang. Pour
les fonctions d’agrégation, les lignes partitionnées doivent être ordonnées avant que la fonction
d’agrégation soit calculée pour chaque cadre. Pour en savoir plus sur les types de fonction de
fenêtrage, consultez Fonctions de fenêtrage.

Les identificateurs de colonnes ou les expressions qui correspondent aux identificateurs de
colonnes sont requis dans la liste d’ordre. Ni les constantes, ni les expressions constantes ne
peuvent être utilisées pour remplacer les noms de colonnes.

Les valeurs NULLS sont traitées comme leur propre groupe, triées et classées selon l’option
NULLS FIRST ou NULLS LAST. Par défaut, les valeurs NULL sont triées et classées en dernier
par ordre croissant (ASC) et triées et classées en premier par ordre décroissant (DESC).

AWS Clean Roomsne prend pas en charge les littéraux de chaîne dans les clauses ORDER BY.

Si la clause ORDER BY est omise, l’ordre des lignes est non déterministe.

Fonctions de fenêtrage 336

AWS Clean Rooms Référence SQL

Note

Dans tout système parallèleAWS Clean Rooms, par exemple lorsqu'une clause ORDER
BY ne produit pas un ordre unique et total des données, l'ordre des lignes n'est pas
déterministe. En d'autres termes, si l'expression ORDER BY produit des valeurs
dupliquées (ordre partiel), l'ordre de retour de ces lignes peut varier d'une exécution AWS
Clean Rooms à l'autre. De leur côté, les fonctions de fenêtrage peuvent renvoyer des
résultats inattendus ou incohérents. Pour de plus amples informations, veuillez consulter
Ordonnancement unique des données pour les fonctions de fenêtrage.

column_name

Nom d’une colonne à partitionner ou à ordonner.

ASC | DESC

Option qui définit l’ordre de tri de l’expression, comme suit :

• ASC : croissant (par exemple, de faible à élevé pour les valeurs numériques et de « A » à « Z »
pour les chaînes de caractères). Si aucune option n’est spécifiée, les données sont triées dans
l’ordre croissant par défaut.

• DESC : descendantes (valeurs d’élevées à faibles pour les valeurs numériques ; de « Z » à
« A » pour les chaînes).

NULLS FIRST | NULLS LAST

Option qui spécifie si les valeurs NULLS devraient être classés en premier, avant les valeurs
non NULL, ou en dernier, après les valeurs non NULL. Par défaut, les valeurs NULLS sont
triées et classées en dernier par ordre croissant (ASC) et triées et classées en premier par ordre
décroissant (DESC).

frame_clause

Pour les fonctions d’agrégation, la clause de cadre affine l’ensemble de lignes dans la fenêtre
d’une fonction lorsque vous utilisez ORDER BY. Elle vous permet d’inclure ou d’exclure des
ensembles de lignes dans le résultat ordonné. La clause de cadre se compose du mot-clé ROWS
et des spécificateurs associés.

La clause frame ne s’applique pas aux fonctions de classement. En outre, la clause de cadre
n’est pas requise lorsqu’aucune clause ORDER BY n’est utilisée dans la clause OVER pour une

Fonctions de fenêtrage 337

AWS Clean Rooms Référence SQL

fonction d’agrégation. Si une clause ORDER BY est utilisée pour une fonction d’agrégation, une
clause de cadre explicite est requise.

Si aucune clause ORDER BY n’est spécifiée, le cadre implicite est sans limite : équivalent à
ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

ROWS

Cette clause définit le cadre de fenêtrage en spécifiant un décalage physique de la ligne actuelle.

Cette clause spécifie les lignes de la fenêtre ou de la partition actuelle auxquelles la valeur de la
ligne actuelle doit être associée. Elle utilise des arguments qui spécifient la position de la ligne, qui
peut être avant ou après la ligne actuelle. Le point de référence de tous les cadres de fenêtrage
est la ligne actuelle. Chaque ligne devient la ligne actuelle à son tour à mesure que le cadre de
fenêtrage avance dans la partition.

Le cadre peut être un simple ensemble de lignes allant jusqu’à et incluant la ligne actuelle.

{UNBOUNDED PRECEDING | offset PRECEDING | CURRENT ROW}

Ou il peut s’agir d’un ensemble de lignes situées entre les deux limites.

BETWEEN
{ UNBOUNDED PRECEDING | offset { PRECEDING | FOLLOWING } | CURRENT ROW }
AND
{ UNBOUNDED FOLLOWING | offset { PRECEDING | FOLLOWING } | CURRENT ROW }

UNBOUNDED PRECEDING indique que la fenêtre commence à la première ligne de la partition ;
offset PRECEDING indique que la fenêtre commence un certain nombre de lignes équivalant à la
valeur de décalage avant la ligne actuelle. UNBOUNDED PRECEDING est la valeur par défaut.

CURRENT ROW indique que la fenêtre commence ou se termine à la ligne actuelle.

UNBOUNDED FOLLOWING indique que la fenêtre se termine à la dernière ligne de la partition ;
offset FOLLOWING indique que la fenêtre se termine un certain nombre de lignes équivalant à la
valeur de décalage après la ligne actuelle.

offset identifie un nombre physique de lignes avant ou après la ligne actuelle. Dans ce cas, offset
doit être une constante ayant une valeur numérique positive. Par exemple, 5 FOLLOWING arrête
les 5 lignes du cadre après la ligne actuelle.

Fonctions de fenêtrage 338

AWS Clean Rooms Référence SQL

Là où BETWEEN n’est pas spécifié, le cadre est implicitement délimité par la ligne actuelle. Par
exemple, ROWS 5 PRECEDING est égal à ROWS BETWEEN 5 PRECEDING AND CURRENT
ROW. En outre, ROWS UNBOUNDED FOLLOWING est égal à ROWS BETWEEN CURRENT ROW AND
UNBOUNDED FOLLOWING.

Note

Vous ne pouvez pas spécifier un cadre dans lequel la limite de début est supérieure à la
limite de fin. Par exemple, vous ne pouvez pas spécifier l’un des cadres suivants.

between 5 following and 5 preceding
between current row and 2 preceding
between 3 following and current row

Ordonnancement unique des données pour les fonctions de fenêtrage

Si une clause ORDER BY pour une fonction de fenêtrage ne génère pas d’ordonnancement unique
et total des données, l’ordre des lignes est non déterministe. Si l’expression ORDER BY génère des
valeurs en double (ordonnancement partiel), l’ordre de ces lignes qui est renvoyé peut varier lors
de plusieurs exécutions. Dans ce cas, les fonctions de fenêtrage peuvent également renvoyer des
résultats inattendus ou incohérents.

Par exemple, la requête suivante renvoie des résultats différents sur plusieurs exécutions. Ces
différents résultats se produisent parce que order by dateid ne produit pas d’ordonnancement
unique des données pour la fonction de fenêtrage SUM.

select dateid, pricepaid,
sum(pricepaid) over(order by dateid rows unbounded preceding) as sumpaid
from sales
group by dateid, pricepaid;

dateid | pricepaid | sumpaid
--------+-----------+-------------
1827 | 1730.00 | 1730.00
1827 | 708.00 | 2438.00
1827 | 234.00 | 2672.00
...

select dateid, pricepaid,

Fonctions de fenêtrage 339

AWS Clean Rooms Référence SQL

sum(pricepaid) over(order by dateid rows unbounded preceding) as sumpaid
from sales
group by dateid, pricepaid;

dateid | pricepaid | sumpaid
--------+-----------+-------------
1827 | 234.00 | 234.00
1827 | 472.00 | 706.00
1827 | 347.00 | 1053.00
...

Dans ce cas, l’ajout d’une seconde colonne ORDER BY à la fonction de fenêtrage peut permettre de
résoudre le problème.

select dateid, pricepaid,
sum(pricepaid) over(order by dateid, pricepaid rows unbounded preceding) as sumpaid
from sales
group by dateid, pricepaid;

dateid | pricepaid | sumpaid
--------+-----------+---------
1827 | 234.00 | 234.00
1827 | 337.00 | 571.00
1827 | 347.00 | 918.00
...

Fonctions prises en charge

AWS Clean RoomsSpark SQL prend en charge deux types de fonctions de fenêtre : l'agrégation et le
classement.

Vous trouverez ci-dessous les fonctions d’agrégation prises en charge :

• Fonction de fenêtrage CUME_DIST

• Fonction de fenêtrage DENSE_RANK

• Fonction de fenêtre FIRST

• Fonction de fenêtrage FIRST_VALUE

• Fonction de fenêtrage LAG

• Fonction LAST window

• Fonction de fenêtrage LAST_VALUE

Fonctions de fenêtrage 340

AWS Clean Rooms Référence SQL

• Fonction de fenêtrage LEAD

Vous trouverez ci-dessous les fonctions de classement prises en charge :

• Fonction de fenêtrage DENSE_RANK

• Fonction de fenêtrage PERCENT_RANK

• Fonction de fenêtrage RANK

• Fonction de fenêtrage ROW_NUMBER

Exemple de tableau contenant des exemples de fonctions de fenêtrage

Vous trouverez des exemples de fonctions de fenêtrage spécifiques avec la description de chaque
fonction. Certains exemples utilisent une table nommée WINSALES, qui contient 11 lignes, comme
indiqué dans le tableau suivant.

SALESID DATEID SELLERID BUYERID QTY QTY_SHIPP
ED

30001 8/2/2003 3 B 10 10

10001 12/24/2003 1 C 10 10

10005 12/24/2003 1 A 30

40001 1/9/2004 4 A 40

10006 1/18/2004 1 C 10

20001 2/12/2004 2 B 20 20

40005 2/12/2004 4 A 10 10

20002 2/16/2004 2 C 20 20

30003 4/18/2004 3 B 15

30004 4/18/2004 3 B 20

30007 9/7/2004 3 C 30

Fonctions de fenêtrage 341

AWS Clean Rooms Référence SQL

Fonction de fenêtrage CUME_DIST

Calcule la distribution cumulée d’une valeur au sein d’une fenêtre ou une partition. En supposant que
l’ordre est croissant, la distribution cumulée est déterminée à l’aide de la formule suivante :

count of rows with values <= x / count of rows in the window or partition

où x est égal à la valeur de la ligne actuelle de la colonne spécifiée dans la clause ORDER BY. Le jeu
de données suivant illustre l’utilisation de cette formule :

Row# Value Calculation CUME_DIST
1 2500 (1)/(5) 0.2
2 2600 (2)/(5) 0.4
3 2800 (3)/(5) 0.6
4 2900 (4)/(5) 0.8
5 3100 (5)/(5) 1.0

La plage de valeur de retour est comprise entre >0 et 1, inclus.

Syntaxe

CUME_DIST ()
OVER (
[PARTITION BY partition_expression]
[ORDER BY order_list]
)

Arguments

OVER

Clause qui spécifie le partitionnement de fenêtrage. La clause OVER ne peut pas contenir de
spécification de cadre de fenêtrage.

PARTITION BY partition_expression

Facultatif. Expression qui définit la plage d’enregistrements de chaque groupe dans la clause
OVER.

ORDER BY order_list

Expression permettant de calculer la distribution cumulée. L’expression doit disposer d’un type de
données numériques ou être convertible implicitement en une. Si ORDER BY n’est pas spécifié, la
valeur de retour est 1 pour toutes les lignes.

Fonctions de fenêtrage 342

AWS Clean Rooms Référence SQL

Si ORDER BY ne génère pas d’ordonnancement unique, l’ordre des lignes est non déterministe.
Pour de plus amples informations, veuillez consulter Ordonnancement unique des données pour
les fonctions de fenêtrage.

Type de retour

FLOAT8

Exemples

L’exemple suivant calcule la distribution cumulée de la quantité par vendeur :

select sellerid, qty, cume_dist()
over (partition by sellerid order by qty)
from winsales;

sellerid qty cume_dist
--
1 10.00 0.33
1 10.64 0.67
1 30.37 1
3 10.04 0.25
3 15.15 0.5
3 20.75 0.75
3 30.55 1
2 20.09 0.5
2 20.12 1
4 10.12 0.5
4 40.23 1

Pour obtenir une description de la table WINSALES, consultez Exemple de tableau contenant des
exemples de fonctions de fenêtrage.

Fonction de fenêtrage DENSE_RANK

La fonction de fenêtrage DENSE_RANK détermine le rang d’une valeur dans un groupe de valeurs,
en fonction de l’expression ORDER BY dans la clause OVER. Si la clause PARTITION BY facultative
est présente, les rangs sont réinitialisés pour chaque groupe de lignes. Les lignes avec des valeurs
égales pour les critères de rang reçoivent le même rang. La fonction DENSE_RANK diffère de RANK
sur un point : si deux lignes ou plus sont à égalité, il n'y a pas d'écart dans la séquence des valeurs
classées. Par exemple, si deux lignes sont classées 1, le prochain rang est 2.

Fonctions de fenêtrage 343

AWS Clean Rooms Référence SQL

Vous pouvez avoir des fonctions de rang avec différentes clauses PARTITION BY et ORDER BY
dans la même requête.

Syntaxe

DENSE_RANK () OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list]
)

Arguments

()

La fonction ne prend pas d’arguments, mais les parenthèses vides sont obligatoires.

OVER

Clauses de fenêtrage pour la fonction DENSE_RANK.

PARTITION BY expr_list

Facultatif. Une ou plusieurs expressions qui définissent le fenêtrage.

ORDER BY order_list

Facultatif. Expression sur laquelle sont basées les valeurs de rang. Si aucune clause PARTITION
BY n’est spécifiée, ORDER BY utilise toute la table. Si ORDER BY n’est pas spécifié, la valeur de
retour est 1 pour toutes les lignes.

Si ORDER BY ne génère pas d’ordonnancement unique, l’ordre des lignes est non déterministe.
Pour de plus amples informations, veuillez consulter Ordonnancement unique des données pour
les fonctions de fenêtrage.

Type de retour

INTEGER

Exemples

L'exemple suivant montre le classement de la table en fonction de la quantité vendue (par ordre
décroissant) et l'affectation d'un rang dense et d'un rang standard à chaque ligne. Les résultats sont
triés une fois que les résultats de la fonction de fenêtrage sont appliqués.

Fonctions de fenêtrage 344

AWS Clean Rooms Référence SQL

select salesid, qty,
dense_rank() over(order by qty desc) as d_rnk,
rank() over(order by qty desc) as rnk
from winsales
order by 2,1;

salesid | qty | d_rnk | rnk
---------+-----+-------+-----
10001 | 10 | 5 | 8
10006 | 10 | 5 | 8
30001 | 10 | 5 | 8
40005 | 10 | 5 | 8
30003 | 15 | 4 | 7
20001 | 20 | 3 | 4
20002 | 20 | 3 | 4
30004 | 20 | 3 | 4
10005 | 30 | 2 | 2
30007 | 30 | 2 | 2
40001 | 40 | 1 | 1
(11 rows)

Notez la différence entre les rangs affectés au même ensemble de lignes lorsque les fonctions
DENSE_RANK et RANK sont utilisées côte à côte dans la même requête. Pour obtenir une
description de la table WINSALES, consultez Exemple de tableau contenant des exemples de
fonctions de fenêtrage.

L'exemple suivant montre le partitionnement de la table en fonction de chaque SELLERID, le
classement de chaque partition selon la quantité (par ordre décroissant) et l'affectation d'un rang
dense à chaque ligne. Les résultats sont triés une fois que les résultats de la fonction de fenêtrage
sont appliqués.

select salesid, sellerid, qty,
dense_rank() over(partition by sellerid order by qty desc) as d_rnk
from winsales
order by 2,3,1;

salesid | sellerid | qty | d_rnk
---------+----------+-----+-------
10001 | 1 | 10 | 2
10006 | 1 | 10 | 2
10005 | 1 | 30 | 1
20001 | 2 | 20 | 1

Fonctions de fenêtrage 345

AWS Clean Rooms Référence SQL

20002 | 2 | 20 | 1
30001 | 3 | 10 | 4
30003 | 3 | 15 | 3
30004 | 3 | 20 | 2
30007 | 3 | 30 | 1
40005 | 4 | 10 | 2
40001 | 4 | 40 | 1
(11 rows)

Pour obtenir une description de la table WINSALES, consultez Exemple de tableau contenant des
exemples de fonctions de fenêtrage.

Fonction de fenêtre FIRST

À partir d'un ensemble ordonné de lignes, FIRST renvoie la valeur de l'expression spécifiée par
rapport à la première ligne du cadre de fenêtre.

Pour savoir comment sélectionner la dernière ligne du cadre, consultez Fonction LAST window.

Syntaxe

FIRST(expression)[IGNORE NULLS | RESPECT NULLS]
OVER (
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]
)

Arguments

expression

Colonne cible ou expression sur laquelle la fonction opère.

IGNORE NULLS

Lorsque cette option est utilisée avec FIRST, la fonction renvoie la première valeur du cadre qui
n'est pas NULL (ou NULL si toutes les valeurs sont NULL).

RESPECT NULLS

Indique que les valeurs nulles AWS Clean Rooms doivent être incluses dans la détermination de
la ligne à utiliser. La clause RESPECT NULLS est prise en charge par défaut, si vous ne spécifiez
pas IGNORE NULLS.

Fonctions de fenêtrage 346

AWS Clean Rooms Référence SQL

OVER

Présente les clauses de fenêtrage de la fonction.

PARTITION BY expr_list

Définit la fenêtre de la fonction en termes d’une ou de plusieurs expressions.

ORDER BY order_list

Trie les lignes dans chaque partition. Si aucune clause PARTITION BY n’est spécifiée, ORDER
BY trie toute la table. Si vous spécifiez une clause ORDER BY, vous devez également spécifier
une frame_clause.

Les résultats de la fonction FIRST dépendent de l'ordre des données. Les résultats sont non
déterministes dans les cas suivants :

• Quand aucune clause ORDER BY n’est spécifiée et qu’une partition contient deux valeurs
différentes pour une expression

• Lorsque l’expression a des valeurs différentes qui correspondent à la même valeur dans la liste
ORDER BY.

frame_clause

Si une clause ORDER BY est utilisée pour une fonction d’agrégation, une clause de cadre
explicite est requise. La clause de cadre affine l’ensemble de lignes dans la fenêtre d’une fonction,
en incluant ou en excluant des ensembles de lignes du résultat ordonné. La clause de cadre se
compose du mot-clé ROWS et des spécificateurs associés. Consultez Récapitulatif de la syntaxe
de la fonction de fenêtrage.

Type de retour

Ces fonctions prennent en charge les expressions qui utilisent des types de AWS Clean Rooms
données primitifs. Le type de retour est identique au type de données de l’expression.

Exemples

L’exemple suivant renvoie le nombre de places de chaque site dans la table VENUE, avec les
résultats classés par capacité (d’élevée à faible). La fonction FIRST permet de sélectionner le nom du
lieu qui correspond à la première ligne du cadre : dans ce cas, la rangée avec le plus grand nombre
de places. Les résultats sont partitionnés par État, lorsque la valeur VENUESTATE change, une
nouvelle première valeur est donc sélectionnée. Le cadre de fenêtrage est illimité. La même première
valeur est donc sélectionnée pour chaque ligne de chaque partition.

Fonctions de fenêtrage 347

AWS Clean Rooms Référence SQL

Pour la Californie, Qualcomm Stadium possède le plus grand nombre de places (70561), ce nom
est donc la première valeur de toutes les lignes dans la partition CA.

select venuestate, venueseats, venuename,
first(venuename)
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)
order by venuestate;

venuestate | venueseats | venuename | first
-----------+------------+--------------------------------
+------------------------------
CA | 70561 | Qualcomm Stadium | Qualcomm Stadium
CA | 69843 | Monster Park | Qualcomm Stadium
CA | 63026 | McAfee Coliseum | Qualcomm Stadium
CA | 56000 | Dodger Stadium | Qualcomm Stadium
CA | 45050 | Angel Stadium of Anaheim | Qualcomm Stadium
CA | 42445 | PETCO Park | Qualcomm Stadium
CA | 41503 | AT&T Park | Qualcomm Stadium
CA | 22000 | Shoreline Amphitheatre | Qualcomm Stadium
CO | 76125 | INVESCO Field | INVESCO Field
CO | 50445 | Coors Field | INVESCO Field
DC | 41888 | Nationals Park | Nationals Park
FL | 74916 | Dolphin Stadium | Dolphin Stadium
FL | 73800 | Jacksonville Municipal Stadium | Dolphin Stadium
FL | 65647 | Raymond James Stadium | Dolphin Stadium
FL | 36048 | Tropicana Field | Dolphin Stadium
...

Fonction de fenêtrage FIRST_VALUE

Étant donné un ensemble de lignes ordonné, FIRST_VALUE renvoie la valeur de l’expression
spécifiée concernant la première ligne du cadre de fenêtrage d’un ensemble de lignes ordonné.

Pour savoir comment sélectionner la dernière ligne du cadre, consultez Fonction de fenêtrage
LAST_VALUE.

Syntaxe

FIRST_VALUE(expression)[IGNORE NULLS | RESPECT NULLS]

Fonctions de fenêtrage 348

AWS Clean Rooms Référence SQL

OVER (
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]
)

Arguments

expression

Colonne cible ou expression sur laquelle la fonction opère.

IGNORE NULLS

Lorsque cette option est utilisée avec FIRST_VALUE, la fonction renvoie la première valeur du
cadre qui n’est pas NULL (ou NULL si toutes les valeurs sont NULL).

RESPECT NULLS

Indique que les valeurs nulles AWS Clean Rooms doivent être incluses dans la détermination de
la ligne à utiliser. La clause RESPECT NULLS est prise en charge par défaut, si vous ne spécifiez
pas IGNORE NULLS.

OVER

Présente les clauses de fenêtrage de la fonction.

PARTITION BY expr_list

Définit la fenêtre de la fonction en termes d’une ou de plusieurs expressions.

ORDER BY order_list

Trie les lignes dans chaque partition. Si aucune clause PARTITION BY n’est spécifiée, ORDER
BY trie toute la table. Si vous spécifiez une clause ORDER BY, vous devez également spécifier
une frame_clause.

Les résultats de la fonction FIRST_VALUE dépendent de l’ordre des données. Les résultats sont
non déterministes dans les cas suivants :

• Quand aucune clause ORDER BY n’est spécifiée et qu’une partition contient deux valeurs
différentes pour une expression

• Lorsque l’expression a des valeurs différentes qui correspondent à la même valeur dans la liste
ORDER BY.

Fonctions de fenêtrage 349

AWS Clean Rooms Référence SQL

frame_clause

Si une clause ORDER BY est utilisée pour une fonction d’agrégation, une clause de cadre
explicite est requise. La clause de cadre affine l’ensemble de lignes dans la fenêtre d’une fonction,
en incluant ou en excluant des ensembles de lignes du résultat ordonné. La clause de cadre se
compose du mot-clé ROWS et des spécificateurs associés. Consultez Récapitulatif de la syntaxe
de la fonction de fenêtrage.

Type de retour

Ces fonctions prennent en charge les expressions qui utilisent des types de AWS Clean Rooms
données primitifs. Le type de retour est identique au type de données de l’expression.

Exemples

L’exemple suivant renvoie le nombre de places de chaque site dans la table VENUE, avec les
résultats classés par capacité (d’élevée à faible). La fonction FIRST_VALUE permet de sélectionner
le nom du lieu qui correspond à la première ligne du cadre : dans le cas présent, la ligne comportant
le plus grand nombre de places. Les résultats sont partitionnés par État, lorsque la valeur
VENUESTATE change, une nouvelle première valeur est donc sélectionnée. Le cadre de fenêtrage
est illimité. La même première valeur est donc sélectionnée pour chaque ligne de chaque partition.

Pour la Californie, Qualcomm Stadium possède le plus grand nombre de places (70561), ce nom
est donc la première valeur de toutes les lignes dans la partition CA.

select venuestate, venueseats, venuename,
first_value(venuename)
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)
order by venuestate;

venuestate | venueseats | venuename | first_value
-----------+------------+--------------------------------
+------------------------------
CA | 70561 | Qualcomm Stadium | Qualcomm Stadium
CA | 69843 | Monster Park | Qualcomm Stadium
CA | 63026 | McAfee Coliseum | Qualcomm Stadium
CA | 56000 | Dodger Stadium | Qualcomm Stadium

Fonctions de fenêtrage 350

AWS Clean Rooms Référence SQL

CA | 45050 | Angel Stadium of Anaheim | Qualcomm Stadium
CA | 42445 | PETCO Park | Qualcomm Stadium
CA | 41503 | AT&T Park | Qualcomm Stadium
CA | 22000 | Shoreline Amphitheatre | Qualcomm Stadium
CO | 76125 | INVESCO Field | INVESCO Field
CO | 50445 | Coors Field | INVESCO Field
DC | 41888 | Nationals Park | Nationals Park
FL | 74916 | Dolphin Stadium | Dolphin Stadium
FL | 73800 | Jacksonville Municipal Stadium | Dolphin Stadium
FL | 65647 | Raymond James Stadium | Dolphin Stadium
FL | 36048 | Tropicana Field | Dolphin Stadium
...

Fonction de fenêtrage LAG

La fonction de fenêtrage LAG renvoie les valeurs pour une ligne avec un décalage donné au-dessus
(avant) de la ligne actuelle dans la partition.

Syntaxe

LAG (value_expr [, offset])
[IGNORE NULLS | RESPECT NULLS]
OVER ([PARTITION BY window_partition] ORDER BY window_ordering)

Arguments

value_expr

Colonne cible ou expression sur laquelle la fonction opère.

offset

Paramètre facultatif qui spécifie le nombre de lignes avant la ligne actuelle pour lesquelles
renvoyer des valeurs. Le décalage peut être un nombre entier constant ou une expression qui a
pour valeur un nombre entier. Si vous ne spécifiez pas de décalage, AWS Clean Rooms utilisez 1
comme valeur par défaut. Un décalage de 0 indique la ligne actuelle.

IGNORE NULLS

Spécification facultative qui indique que les valeurs nulles AWS Clean Rooms doivent être
ignorées lors de la détermination de la ligne à utiliser. Les valeurs NULL sont incluses si IGNORE
NULLS n’est pas répertorié.

Fonctions de fenêtrage 351

AWS Clean Rooms Référence SQL

Note

Vous pouvez utiliser une expression NVL ou COALESCE pour remplacer les valeurs
NULL par une autre valeur.

RESPECT NULLS

Indique que les valeurs nulles AWS Clean Rooms doivent être incluses dans la détermination de
la ligne à utiliser. La clause RESPECT NULLS est prise en charge par défaut, si vous ne spécifiez
pas IGNORE NULLS.

OVER

Spécifie le partitionnement de fenêtrage et d’ordonnancement. La clause OVER ne peut pas
contenir de spécification de cadre de fenêtrage.

PARTITION BY window_partition

Argument facultatif qui définit la plage d’enregistrements de chaque groupe de la clause OVER.

ORDER BY window_ordering

Trie les lignes dans chaque partition.

La fonction de fenêtre LAG prend en charge les expressions qui utilisent n'importe quel type de AWS
Clean Rooms données. Le type de retour est identique au type value_expr.

Exemples

L’exemple suivant présente la quantité de billets vendus à l’acheteur ayant l’ID d’acheteur 3 et l’heure
à laquelle l’acheteur 3 a acheté les billets. Pour comparer chaque vente à la vente précédente de
l’acheteur 3, la requête renvoie la quantité précédente vendue pour chaque vente. Dans la mesure où
il n’y a aucun achat avant le 16/01/2008, la première quantité précédente vendue a la valeur null :

select buyerid, saletime, qtysold,
lag(qtysold,1) over (order by buyerid, saletime) as prev_qtysold
from sales where buyerid = 3 order by buyerid, saletime;

buyerid | saletime | qtysold | prev_qtysold
---------+---------------------+---------+--------------
3 | 2008-01-16 01:06:09 | 1 |

Fonctions de fenêtrage 352

AWS Clean Rooms Référence SQL

3 | 2008-01-28 02:10:01 | 1 | 1
3 | 2008-03-12 10:39:53 | 1 | 1
3 | 2008-03-13 02:56:07 | 1 | 1
3 | 2008-03-29 08:21:39 | 2 | 1
3 | 2008-04-27 02:39:01 | 1 | 2
3 | 2008-08-16 07:04:37 | 2 | 1
3 | 2008-08-22 11:45:26 | 2 | 2
3 | 2008-09-12 09:11:25 | 1 | 2
3 | 2008-10-01 06:22:37 | 1 | 1
3 | 2008-10-20 01:55:51 | 2 | 1
3 | 2008-10-28 01:30:40 | 1 | 2
(12 rows)

Fonction LAST window

À partir d'un ensemble ordonné de lignes, la fonction LAST renvoie la valeur de l'expression par
rapport à la dernière ligne du cadre.

Pour savoir comment sélectionner la première ligne du cadre, consultez Fonction de fenêtre FIRST.

Syntaxe

LAST(expression)[IGNORE NULLS | RESPECT NULLS]
OVER (
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]
)

Arguments

expression

Colonne cible ou expression sur laquelle la fonction opère.

IGNORE NULLS

La fonction renvoie la dernière valeur du cadre qui n’est pas NULL (ou NULL si toutes les valeurs
sont NULL).

RESPECT NULLS

Indique que les valeurs nulles AWS Clean Rooms doivent être incluses dans la détermination de
la ligne à utiliser. La clause RESPECT NULLS est prise en charge par défaut, si vous ne spécifiez
pas IGNORE NULLS.

Fonctions de fenêtrage 353

AWS Clean Rooms Référence SQL

OVER

Présente les clauses de fenêtrage de la fonction.

PARTITION BY expr_list

Définit la fenêtre de la fonction en termes d’une ou de plusieurs expressions.

ORDER BY order_list

Trie les lignes dans chaque partition. Si aucune clause PARTITION BY n’est spécifiée, ORDER
BY trie toute la table. Si vous spécifiez une clause ORDER BY, vous devez également spécifier
une frame_clause.

Les résultats dépendent de l’ordre des données. Les résultats sont non déterministes dans les cas
suivants :

• Quand aucune clause ORDER BY n’est spécifiée et qu’une partition contient deux valeurs
différentes pour une expression

• Lorsque l’expression a des valeurs différentes qui correspondent à la même valeur dans la liste
ORDER BY.

frame_clause

Si une clause ORDER BY est utilisée pour une fonction d’agrégation, une clause de cadre
explicite est requise. La clause de cadre affine l’ensemble de lignes dans la fenêtre d’une fonction,
en incluant ou en excluant des ensembles de lignes du résultat ordonné. La clause de cadre se
compose du mot-clé ROWS et des spécificateurs associés. Consultez Récapitulatif de la syntaxe
de la fonction de fenêtrage.

Type de retour

Ces fonctions prennent en charge les expressions qui utilisent des types de AWS Clean Rooms
données primitifs. Le type de retour est identique au type de données de l’expression.

Exemples

L’exemple suivant renvoie le nombre de places de chaque site dans la table VENUE, avec les
résultats classés par capacité (d’élevée à faible). La fonction LAST permet de sélectionner le nom
de la salle correspondant à la dernière ligne du cadre : dans ce cas, la rangée comportant le moins
de places. Les résultats étant partitionnés par État, lorsque la valeur de VENUESTATE change, une
nouvelle dernière valeur est sélectionnée. Comme le cadre de fenêtrage est illimité, la même dernière
valeur est sélectionnée pour chaque ligne de chaque partition.

Fonctions de fenêtrage 354

AWS Clean Rooms Référence SQL

Pour la Californie, Shoreline Amphitheatre est renvoyé pour chaque ligne de la partition, car il
possède le plus petit nombre de places (22000).

select venuestate, venueseats, venuename,
last(venuename)
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)
order by venuestate;

venuestate | venueseats | venuename | last
-----------+------------+--------------------------------
+------------------------------
CA | 70561 | Qualcomm Stadium | Shoreline Amphitheatre
CA | 69843 | Monster Park | Shoreline Amphitheatre
CA | 63026 | McAfee Coliseum | Shoreline Amphitheatre
CA | 56000 | Dodger Stadium | Shoreline Amphitheatre
CA | 45050 | Angel Stadium of Anaheim | Shoreline Amphitheatre
CA | 42445 | PETCO Park | Shoreline Amphitheatre
CA | 41503 | AT&T Park | Shoreline Amphitheatre
CA | 22000 | Shoreline Amphitheatre | Shoreline Amphitheatre
CO | 76125 | INVESCO Field | Coors Field
CO | 50445 | Coors Field | Coors Field
DC | 41888 | Nationals Park | Nationals Park
FL | 74916 | Dolphin Stadium | Tropicana Field
FL | 73800 | Jacksonville Municipal Stadium | Tropicana Field
FL | 65647 | Raymond James Stadium | Tropicana Field
FL | 36048 | Tropicana Field | Tropicana Field
...

Fonction de fenêtrage LAST_VALUE

Pour un ensemble de lignes ordonnées, la fonction LAST_VALUE renvoie la valeur de l’expression
par rapport à la dernière ligne du cadre.

Pour savoir comment sélectionner la première ligne du cadre, consultez Fonction de fenêtrage
FIRST_VALUE.

Syntaxe

LAST_VALUE(expression)[IGNORE NULLS | RESPECT NULLS]

Fonctions de fenêtrage 355

AWS Clean Rooms Référence SQL

OVER (
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]
)

Arguments

expression

Colonne cible ou expression sur laquelle la fonction opère.

IGNORE NULLS

La fonction renvoie la dernière valeur du cadre qui n’est pas NULL (ou NULL si toutes les valeurs
sont NULL).

RESPECT NULLS

Indique que les valeurs nulles AWS Clean Rooms doivent être incluses dans la détermination de
la ligne à utiliser. La clause RESPECT NULLS est prise en charge par défaut, si vous ne spécifiez
pas IGNORE NULLS.

OVER

Présente les clauses de fenêtrage de la fonction.

PARTITION BY expr_list

Définit la fenêtre de la fonction en termes d’une ou de plusieurs expressions.

ORDER BY order_list

Trie les lignes dans chaque partition. Si aucune clause PARTITION BY n’est spécifiée, ORDER
BY trie toute la table. Si vous spécifiez une clause ORDER BY, vous devez également spécifier
une frame_clause.

Les résultats dépendent de l’ordre des données. Les résultats sont non déterministes dans les cas
suivants :

• Quand aucune clause ORDER BY n’est spécifiée et qu’une partition contient deux valeurs
différentes pour une expression

• Lorsque l’expression a des valeurs différentes qui correspondent à la même valeur dans la liste
ORDER BY.

Fonctions de fenêtrage 356

AWS Clean Rooms Référence SQL

frame_clause

Si une clause ORDER BY est utilisée pour une fonction d’agrégation, une clause de cadre
explicite est requise. La clause de cadre affine l’ensemble de lignes dans la fenêtre d’une fonction,
en incluant ou en excluant des ensembles de lignes du résultat ordonné. La clause de cadre se
compose du mot-clé ROWS et des spécificateurs associés. Consultez Récapitulatif de la syntaxe
de la fonction de fenêtrage.

Type de retour

Ces fonctions prennent en charge les expressions qui utilisent des types de AWS Clean Rooms
données primitifs. Le type de retour est identique au type de données de l’expression.

Exemples

L’exemple suivant renvoie le nombre de places de chaque site dans la table VENUE, avec les
résultats classés par capacité (d’élevée à faible). La fonction LAST_VALUE permet de sélectionner
le nom du lieu qui correspond à la dernière ligne du cadre : dans le cas présent, il s’agit de la ligne
présentant le plus petit nombre de places. Les résultats étant partitionnés par État, lorsque la valeur
de VENUESTATE change, une nouvelle dernière valeur est sélectionnée. Comme le cadre de
fenêtrage est illimité, la même dernière valeur est sélectionnée pour chaque ligne de chaque partition.

Pour la Californie, Shoreline Amphitheatre est renvoyé pour chaque ligne de la partition, car il
possède le plus petit nombre de places (22000).

select venuestate, venueseats, venuename,
last_value(venuename)
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)
order by venuestate;

venuestate | venueseats | venuename | last_value
-----------+------------+--------------------------------
+------------------------------
CA | 70561 | Qualcomm Stadium | Shoreline Amphitheatre
CA | 69843 | Monster Park | Shoreline Amphitheatre
CA | 63026 | McAfee Coliseum | Shoreline Amphitheatre
CA | 56000 | Dodger Stadium | Shoreline Amphitheatre

Fonctions de fenêtrage 357

AWS Clean Rooms Référence SQL

CA | 45050 | Angel Stadium of Anaheim | Shoreline Amphitheatre
CA | 42445 | PETCO Park | Shoreline Amphitheatre
CA | 41503 | AT&T Park | Shoreline Amphitheatre
CA | 22000 | Shoreline Amphitheatre | Shoreline Amphitheatre
CO | 76125 | INVESCO Field | Coors Field
CO | 50445 | Coors Field | Coors Field
DC | 41888 | Nationals Park | Nationals Park
FL | 74916 | Dolphin Stadium | Tropicana Field
FL | 73800 | Jacksonville Municipal Stadium | Tropicana Field
FL | 65647 | Raymond James Stadium | Tropicana Field
FL | 36048 | Tropicana Field | Tropicana Field
...

Fonction de fenêtrage LEAD

La fonction de fenêtrage LEAD renvoie les valeurs pour une ligne avec un décalage donné au-
dessous (après) de la ligne actuelle dans la partition.

Syntaxe

LEAD (value_expr [, offset])
[IGNORE NULLS | RESPECT NULLS]
OVER ([PARTITION BY window_partition] ORDER BY window_ordering)

Arguments

value_expr

Colonne cible ou expression sur laquelle la fonction opère.

offset

Paramètre facultatif qui spécifie le nombre de lignes sous la ligne actuelle pour lesquelles
renvoyer des valeurs. Le décalage peut être un nombre entier constant ou une expression qui a
pour valeur un nombre entier. Si vous ne spécifiez pas de décalage, AWS Clean Rooms utilisez 1
comme valeur par défaut. Un décalage de 0 indique la ligne actuelle.

IGNORE NULLS

Spécification facultative qui indique que les valeurs nulles AWS Clean Rooms doivent être
ignorées lors de la détermination de la ligne à utiliser. Les valeurs NULL sont incluses si IGNORE
NULLS n’est pas répertorié.

Fonctions de fenêtrage 358

AWS Clean Rooms Référence SQL

Note

Vous pouvez utiliser une expression NVL ou COALESCE pour remplacer les valeurs
NULL par une autre valeur.

RESPECT NULLS

Indique que les valeurs nulles AWS Clean Rooms doivent être incluses dans la détermination de
la ligne à utiliser. La clause RESPECT NULLS est prise en charge par défaut, si vous ne spécifiez
pas IGNORE NULLS.

OVER

Spécifie le partitionnement de fenêtrage et d’ordonnancement. La clause OVER ne peut pas
contenir de spécification de cadre de fenêtrage.

PARTITION BY window_partition

Argument facultatif qui définit la plage d’enregistrements de chaque groupe de la clause OVER.

ORDER BY window_ordering

Trie les lignes dans chaque partition.

La fonction de fenêtre LEAD prend en charge les expressions qui utilisent n'importe quel type de
AWS Clean Rooms données. Le type de retour est identique au type value_expr.

Exemples

L’exemple suivant fournit la commission pour les événements de la table SALES pour les billets ont
été vendus sur le 1er janvier 2008 et le 2 janvier 2008 et la commission payée pour la vente des
billets de la vente suivante.

select eventid, commission, saletime,
lead(commission, 1) over (order by saletime) as next_comm
from sales where saletime between '2008-01-01 00:00:00' and '2008-01-02 12:59:59'
order by saletime;

eventid | commission | saletime | next_comm
---------+------------+---------------------+-----------
6213 | 52.05 | 2008-01-01 01:00:19 | 106.20
7003 | 106.20 | 2008-01-01 02:30:52 | 103.20

Fonctions de fenêtrage 359

AWS Clean Rooms Référence SQL

8762 | 103.20 | 2008-01-01 03:50:02 | 70.80
1150 | 70.80 | 2008-01-01 06:06:57 | 50.55
1749 | 50.55 | 2008-01-01 07:05:02 | 125.40
8649 | 125.40 | 2008-01-01 07:26:20 | 35.10
2903 | 35.10 | 2008-01-01 09:41:06 | 259.50
6605 | 259.50 | 2008-01-01 12:50:55 | 628.80
6870 | 628.80 | 2008-01-01 12:59:34 | 74.10
6977 | 74.10 | 2008-01-02 01:11:16 | 13.50
4650 | 13.50 | 2008-01-02 01:40:59 | 26.55
4515 | 26.55 | 2008-01-02 01:52:35 | 22.80
5465 | 22.80 | 2008-01-02 02:28:01 | 45.60
5465 | 45.60 | 2008-01-02 02:28:02 | 53.10
7003 | 53.10 | 2008-01-02 02:31:12 | 70.35
4124 | 70.35 | 2008-01-02 03:12:50 | 36.15
1673 | 36.15 | 2008-01-02 03:15:00 | 1300.80
...
(39 rows)

Fonction de fenêtrage PERCENT_RANK

Calcule le rang en pourcentage d’une ligne donnée. Le rang en pourcentage est déterminé à l’aide de
la formule suivante :

(x - 1) / (the number of rows in the window or partition - 1)

où x est le rang de la ligne actuelle. Le jeu de données suivant illustre l’utilisation de cette formule :

Row# Value Rank Calculation PERCENT_RANK
1 15 1 (1-1)/(7-1) 0.0000
2 20 2 (2-1)/(7-1) 0.1666
3 20 2 (2-1)/(7-1) 0.1666
4 20 2 (2-1)/(7-1) 0.1666
5 30 5 (5-1)/(7-1) 0.6666
6 30 5 (5-1)/(7-1) 0.6666
7 40 7 (7-1)/(7-1) 1.0000

La plage de valeur de retour est comprise entre 0 et 1, inclus. La première ligne de n’importe quel jeu
dispose d’une fonction PERCENT_RANK spécifiée sur 0.

Syntaxe

PERCENT_RANK ()

Fonctions de fenêtrage 360

AWS Clean Rooms Référence SQL

OVER (
[PARTITION BY partition_expression]
[ORDER BY order_list]
)

Arguments

()

La fonction ne prend pas d’arguments, mais les parenthèses vides sont obligatoires.

OVER

Clause qui spécifie le partitionnement de fenêtrage. La clause OVER ne peut pas contenir de
spécification de cadre de fenêtrage.

PARTITION BY partition_expression

Facultatif. Expression qui définit la plage d’enregistrements de chaque groupe dans la clause
OVER.

ORDER BY order_list

Facultatif. Expression permettant de calculer le rang en pourcentage. L’expression doit disposer
d’un type de données numériques ou être convertible implicitement en une. Si ORDER BY n’est
pas spécifié, la valeur de retour est 0 pour toutes les lignes.

Si ORDER BY ne génère pas d’ordonnancement unique, l’ordre des lignes est non déterministe.
Pour de plus amples informations, veuillez consulter Ordonnancement unique des données pour
les fonctions de fenêtrage.

Type de retour

FLOAT8

Exemples

L’exemple suivant calcule le rang en pourcentage des volumes de ventes de chaque vendeur :

select sellerid, qty, percent_rank()
over (partition by sellerid order by qty)
from winsales;

Fonctions de fenêtrage 361

AWS Clean Rooms Référence SQL

sellerid qty percent_rank
--
1 10.00 0.0
1 10.64 0.5
1 30.37 1.0
3 10.04 0.0
3 15.15 0.33
3 20.75 0.67
3 30.55 1.0
2 20.09 0.0
2 20.12 1.0
4 10.12 0.0
4 40.23 1.0

Pour obtenir une description de la table WINSALES, consultez Exemple de tableau contenant des
exemples de fonctions de fenêtrage.

Fonction de fenêtrage RANK

La fonction de fenêtrage RANK détermine le rang d’une valeur dans un groupe de valeurs, en
fonction de l’expression ORDER BY dans la clause OVER. Si la clause PARTITION BY facultative est
présente, les rangs sont réinitialisés pour chaque groupe de lignes. Les lignes présentant des valeurs
égales pour les critères de classement reçoivent le même classement. AWS Clean Roomsajoute le
nombre de lignes égales au rang égal pour calculer le rang suivant. Les rangs peuvent donc ne pas
être des nombres consécutifs. Par exemple, si deux lignes sont classées 1, le prochain rang est 3.

La fonction RANK diffère de Fonction de fenêtrage DENSE_RANK sur un point : pour DENSE_RANK,
si deux lignes ou plus sont à égalité, il n’y a aucun écart dans la séquence des valeurs classées. Par
exemple, si deux lignes sont classées 1, le prochain rang est 2.

Vous pouvez avoir des fonctions de rang avec différentes clauses PARTITION BY et ORDER BY
dans la même requête.

Syntaxe

RANK () OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list]
)

Fonctions de fenêtrage 362

AWS Clean Rooms Référence SQL

Arguments

()

La fonction ne prend pas d’arguments, mais les parenthèses vides sont obligatoires.

OVER

Clauses de fenêtrage de la fonction RANK.

PARTITION BY expr_list

Facultatif. Une ou plusieurs expressions qui définissent le fenêtrage.

ORDER BY order_list

Facultatif. Définit les colonnes sur lesquelles les valeurs de rang sont basées. Si aucune clause
PARTITION BY n’est spécifiée, ORDER BY utilise toute la table. Si ORDER BY n’est pas spécifié,
la valeur de retour est 1 pour toutes les lignes.

Si ORDER BY ne génère pas d’ordonnancement unique, l’ordre des lignes est non déterministe.
Pour de plus amples informations, veuillez consulter Ordonnancement unique des données pour
les fonctions de fenêtrage.

Type de retour

INTEGER

Exemples

L’exemple suivant montre le classement de la table selon la quantité vendue (croissant par défaut) et
l’affectation d’un rang à chaque ligne. 1 est la valeur classée la plus élevée. Les résultats sont triés
une fois que les résultats de la fonction de fenêtrage sont appliqués:

select salesid, qty,
rank() over (order by qty) as rnk
from winsales
order by 2,1;

salesid | qty | rnk
--------+-----+-----
10001 | 10 | 1
10006 | 10 | 1
30001 | 10 | 1

Fonctions de fenêtrage 363

AWS Clean Rooms Référence SQL

40005 | 10 | 1
30003 | 15 | 5
20001 | 20 | 6
20002 | 20 | 6
30004 | 20 | 6
10005 | 30 | 9
30007 | 30 | 9
40001 | 40 | 11
(11 rows)

Notez que la clause externe ORDER BY de cet exemple inclut les colonnes 2 et 1 pour garantir
que les résultats AWS Clean Rooms sont systématiquement triés chaque fois que cette requête est
exécutée. Par exemple, les lignes avec les ventes IDs 10001 et 10006 ont des valeurs QTY et RNK
identiques. L’ordonnancement du résultat final défini par la colonne 1 garantit que la ligne 10001
précède toujours 10006. Pour obtenir une description de la table WINSALES, consultez Exemple de
tableau contenant des exemples de fonctions de fenêtrage.

Dans l’exemple suivant, l’ordonnancement est inversé pour la fonction de fenêtrage (order by qty
desc). A présent, la valeur de rang la plus élevée s’applique à la valeur QTY la plus élevée.

select salesid, qty,
rank() over (order by qty desc) as rank
from winsales
order by 2,1;

 salesid | qty | rank
---------+-----+-----
 10001 | 10 | 8
 10006 | 10 | 8
 30001 | 10 | 8
 40005 | 10 | 8
 30003 | 15 | 7
 20001 | 20 | 4
 20002 | 20 | 4
 30004 | 20 | 4
 10005 | 30 | 2
 30007 | 30 | 2
 40001 | 40 | 1
(11 rows)

Pour obtenir une description de la table WINSALES, consultez Exemple de tableau contenant des
exemples de fonctions de fenêtrage.

Fonctions de fenêtrage 364

AWS Clean Rooms Référence SQL

L’exemple suivant montre le partitionnement de la table en fonction de chaque SELLERID, le
classement de chaque partition selon la quantité (par ordre décroissant) et l’affectation d’un rang
à chaque ligne. Les résultats sont triés une fois que les résultats de la fonction de fenêtrage sont
appliqués.

select salesid, sellerid, qty, rank() over
(partition by sellerid
order by qty desc) as rank
from winsales
order by 2,3,1;

salesid | sellerid | qty | rank
--------+----------+-----+-----
 10001 | 1 | 10 | 2
 10006 | 1 | 10 | 2
 10005 | 1 | 30 | 1
 20001 | 2 | 20 | 1
 20002 | 2 | 20 | 1
 30001 | 3 | 10 | 4
 30003 | 3 | 15 | 3
 30004 | 3 | 20 | 2
 30007 | 3 | 30 | 1
 40005 | 4 | 10 | 2
 40001 | 4 | 40 | 1
(11 rows)

Fonction de fenêtrage ROW_NUMBER

Détermine le nombre ordinal de la ligne actuelle au sein d'un groupe de lignes, à partir de 1, en
fonction de l'expression ORDER BY de la clause OVER. Si la clause PARTITION BY facultative est
présente, les nombres ordinaux sont réinitialisés pour chaque groupe de lignes. Les lignes avec des
valeurs égales pour les expressions ORDER BY reçoivent des numéros de lignes différentes de
manière non déterministe.

Syntaxe

ROW_NUMBER () OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list]
)

Fonctions de fenêtrage 365

AWS Clean Rooms Référence SQL

Arguments

()

La fonction ne prend pas d’arguments, mais les parenthèses vides sont obligatoires.

OVER

Clauses de fenêtrage pour la fonction ROW_NUMBER.

PARTITION BY expr_list

Facultatif. Une ou plusieurs expressions qui définissent la fonction ROW_NUMBER.

ORDER BY order_list

Facultatif. Expression qui définit les colonnes sur lesquelles sont basées les numéros de lignes. Si
aucune clause PARTITION BY n’est spécifiée, ORDER BY utilise toute la table.

Si ORDER BY ne génère pas d’ordonnancement unique ou n’est pas spécifiée, l’ordre des lignes
est non déterministe. Pour de plus amples informations, veuillez consulter Ordonnancement
unique des données pour les fonctions de fenêtrage.

Type de retour

BIGINT

Exemples

L’exemple suivant présente la partition de la table par SELLERID et classe chaque partition par QTY
(en ordre croissant), puis affecte un numéro de ligne à chaque ligne. Les résultats sont triés une fois
que les résultats de la fonction de fenêtrage sont appliqués.

select salesid, sellerid, qty,
row_number() over
(partition by sellerid
 order by qty asc) as row
from winsales
order by 2,4;

 salesid | sellerid | qty | row
---------+----------+-----+-----
 10006 | 1 | 10 | 1
 10001 | 1 | 10 | 2

Fonctions de fenêtrage 366

AWS Clean Rooms Référence SQL

 10005 | 1 | 30 | 3
 20001 | 2 | 20 | 1
 20002 | 2 | 20 | 2
 30001 | 3 | 10 | 1
 30003 | 3 | 15 | 2
 30004 | 3 | 20 | 3
 30007 | 3 | 30 | 4
 40005 | 4 | 10 | 1
 40001 | 4 | 40 | 2
(11 rows)

Pour obtenir une description de la table WINSALES, consultez Exemple de tableau contenant des
exemples de fonctions de fenêtrage.

AWS Clean Rooms Conditions SQL de Spark

Les conditions sont des déclarations d'une ou plusieurs expressions et opérateurs logiques dont la
valeur est vraie, fausse ou inconnue. Les conditions sont également appelées parfois prédicats.

Syntaxe

comparison_condition
| logical_condition
| range_condition
| pattern_matching_condition
| null_condition
| EXISTS_condition
| IN_condition

Note

Toutes les comparaisons de chaîne et correspondances du modèle LIKE sont sensibles à la
casse. Par exemple, « A » et « a » ne correspondent pas. Cependant, vous pouvez effectuer
une correspondance de modèle non sensible à la casse à l’aide du prédicat ILIKE.

Les conditions SQL suivantes sont prises en charge dans AWS Clean Rooms Spark SQL.

Rubriques

• Opérateurs de comparaison

Conditions SQL 367

AWS Clean Rooms Référence SQL

• Conditions logiques

• Conditions de correspondance de modèles

• Condition de plage BETWEEN

• Condition null

• Condition EXISTS

• Condition IN

Opérateurs de comparaison

Les conditions de comparaison établissent des relations logiques entre deux valeurs. Toutes les
conditions de comparaison sont des opérateurs binaires avec un type de retour booléen.

AWS Clean Rooms Spark SQL prend en charge les opérateurs de comparaison décrits dans le
tableau suivant.

Opérateur Syntaxe Description

! !expression L'NOTopérateur logique. Utilisé
pour annuler une expressio
n booléenne, c'est-à-dire
qu'elle renvoie le contraire de
la valeur de l'expression.

Le ! L'opérateur peut
également être combiné
avec d'autres opérateurs
logiques, tels que AND et OR,
pour créer des expressions
booléennes plus complexes.

< a < b L'opérateur inférieur à la
comparaison. Utilisé pour
comparer deux valeurs et
déterminer si la valeur de
gauche est inférieure à la
valeur de droite.

Opérateurs de comparaison 368

AWS Clean Rooms Référence SQL

Opérateur Syntaxe Description

> a > b L'opérateur supérieur à la
comparaison. Permet de
comparer deux valeurs et
de déterminer si la valeur de
gauche est supérieure à celle
de droite.

<= a <= b Opérateur de comparaison
inférieur ou égal à. Utilisé pour
comparer deux valeurs et
renvoie true si la valeur de
gauche est inférieure ou égale
à la valeur de droite, et dans le
false cas contraire.

>= a >= b Opérateur de comparaison
supérieur ou égal à. Utilisé
pour comparer deux valeurs
et déterminer si la valeur de
gauche est supérieure ou
égale à la valeur de droite.

= a = b L'opérateur de comparaison
d'égalité, qui compare deux
valeurs et renvoie true si
elles sont égales, et false
sinon.

<> ou != a <> b ou a != b L'opérateur de comparaison
non égal à, qui compare deux
valeurs et renvoie true si
elles ne sont pas égales, et
dans le false cas contraire.

Opérateurs de comparaison 369

AWS Clean Rooms Référence SQL

Opérateur Syntaxe Description

== a == b L'opérateur de comparais
on d'égalité standard, qui
compare deux valeurs et
renvoie true si elles sont
égales, et false sinon.

Note

L'opérateur ==
distingue les
majuscules et
minuscules lors de
la comparaison de
valeurs de chaînes. Si
vous devez effectuer
une comparaison sans
distinction majuscule
s/minuscules, vous
pouvez utiliser des
fonctions telles que
UPPER () ou LOWER
() pour convertir les
valeurs au même
majuscule avant la
comparaison.

Exemples

Voici quelques exemples simples de conditions de comparaison :

a = 5
a < b
min(x) >= 5
qtysold = any (select qtysold from sales where dateid = 1882

Opérateurs de comparaison 370

AWS Clean Rooms Référence SQL

La requête suivante renvoie les valeurs d'identification de tous les écureuils qui ne cherchent pas de
nourriture actuellement.

SELECT id FROM squirrels
WHERE !is_foraging

La requête suivante renvoie les sites de plus de 10 000 places dans le tableau VENUE :

select venueid, venuename, venueseats from venue
where venueseats > 10000
order by venueseats desc;

venueid | venuename | venueseats
---------+--------------------------------+------------
83 | FedExField | 91704
 6 | New York Giants Stadium | 80242
79 | Arrowhead Stadium | 79451
78 | INVESCO Field | 76125
69 | Dolphin Stadium | 74916
67 | Ralph Wilson Stadium | 73967
76 | Jacksonville Municipal Stadium | 73800
89 | Bank of America Stadium | 73298
72 | Cleveland Browns Stadium | 73200
86 | Lambeau Field | 72922
...
(57 rows)

Cet exemple sélectionne les utilisateurs (USERID) de la table USERS qui aiment la musique rock :

select userid from users where likerock = 't' order by 1 limit 5;

userid

3
5
6
13
16
(5 rows)

Cet exemple sélectionne les utilisateurs (USERID) de la table USERS pour lesquels on ignore s’ils
aiment la musique rock :

Opérateurs de comparaison 371

AWS Clean Rooms Référence SQL

select firstname, lastname, likerock
from users
where likerock is unknown
order by userid limit 10;

firstname | lastname | likerock
----------+----------+----------
Rafael | Taylor |
Vladimir | Humphrey |
Barry | Roy |
Tamekah | Juarez |
Mufutau | Watkins |
Naida | Calderon |
Anika | Huff |
Bruce | Beck |
Mallory | Farrell |
Scarlett | Mayer |
(10 rows

Exemples avec une colonne TIME

La table d'exemple TIME_TEST suivante comporte une colonne TIME_VAL (type TIME) dans laquelle
trois valeurs ont été insérées.

select time_val from time_test;

time_val

20:00:00
00:00:00.5550
00:58:00

L'exemple suivant extrait les heures de chaque timetz_val.

select time_val from time_test where time_val < '3:00';
 time_val

 00:00:00.5550
 00:58:00

L’exemple suivant compare deux littéraux de type heure.

Opérateurs de comparaison 372

AWS Clean Rooms Référence SQL

select time '18:25:33.123456' = time '18:25:33.123456';
 ?column?

 t

Exemples avec une colonne TIMETZ

L'exemple de tableau TIMETZ_TEST suivant comporte une colonne TIMETZ_VAL (type TIMETZ)
dans laquelle trois valeurs ont été insérées.

select timetz_val from timetz_test;

timetz_val

04:00:00+00
00:00:00.5550+00
05:58:00+00

L’exemple suivant sélectionne uniquement les valeurs TIMETZ inférieures à 3:00:00 UTC. La
comparaison est effectuée après la conversion de la valeur en UTC.

select timetz_val from timetz_test where timetz_val < '3:00:00 UTC';

 timetz_val

 00:00:00.5550+00

L’exemple suivant compare deux littéraux TIMETZ. Le fuseau horaire n’est pas pris en compte pour
la comparaison.

select time '18:25:33.123456 PST' < time '19:25:33.123456 EST';

 ?column?

 t

Conditions logiques

Les conditions logiques combinent le résultat de deux conditions pour produire un résultat unique.
Toutes les conditions logiques sont des opérateurs binaires avec un type de retour booléen.

Conditions logiques 373

AWS Clean Rooms Référence SQL

Syntaxe

expression
{ AND | OR }
expression
NOT expression

Les conditions logiques utilisent une logique booléenne à trois valeurs où la valeur nulle représente
une relation inconnue. Le tableau suivant décrit les résultats des conditions logiques, où E1 et E2
représentent des expressions :

E1 E2 E1 AND E2 E1 OR E2 NOT E2

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE TRUE

TRUE UNKNOWN UNKNOWN TRUE UNKNOWN

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

FALSE UNKNOWN FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN TRUE

UNKNOWN FALSE FALSE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN

L’opérateur NOT est analysé avant AND et l’opérateur AND est évalué avant l’opérateur OR. Les
parenthèses utilisées peuvent remplacer cet ordre d’évaluation par défaut.

Exemples

L’exemple suivant retourne USERID et USERNAME de la table USERS où l’utilisateur aime à la fois
Las Vegas et les sports :

select userid, username from users

Conditions logiques 374

AWS Clean Rooms Référence SQL

where likevegas = 1 and likesports = 1
order by userid;

userid | username
--------+----------
1 | JSG99FHE
67 | TWU10MZT
87 | DUF19VXU
92 | HYP36WEQ
109 | FPL38HZK
120 | DMJ24GUZ
123 | QZR22XGQ
130 | ZQC82ALK
133 | LBN45WCH
144 | UCX04JKN
165 | TEY68OEB
169 | AYQ83HGO
184 | TVX65AZX
...
(2128 rows)

L’exemple suivant retourne USERID et USERNAME de la table USERS où l’utilisateur aime Las
Vegas, ou les sports, ou les deux. Cette requête renvoie toutes les données de sortie de l’exemple
précédent, plus les utilisateurs qui aiment uniquement Las Vegas ou le sport.

select userid, username from users
where likevegas = 1 or likesports = 1
order by userid;

userid | username
--------+----------
1 | JSG99FHE
2 | PGL08LJI
3 | IFT66TXU
5 | AEB55QTM
6 | NDQ15VBM
9 | MSD36KVR
10 | WKW41AIW
13 | QTF33MCG
15 | OWU78MTR
16 | ZMG93CDD
22 | RHT62AGI
27 | KOY02CVE

Conditions logiques 375

AWS Clean Rooms Référence SQL

29 | HUH27PKK
...
(18968 rows)

La requête suivante utilise des parenthèses autour de la condition OR pour trouver les salles de New
York ou de Californie où Macbeth a été joué :

select distinct venuename, venuecity
from venue join event on venue.venueid=event.venueid
where (venuestate = 'NY' or venuestate = 'CA') and eventname='Macbeth'
order by 2,1;

venuename | venuecity
--+---------------
Geffen Playhouse | Los Angeles
Greek Theatre | Los Angeles
Royce Hall | Los Angeles
American Airlines Theatre | New York City
August Wilson Theatre | New York City
Belasco Theatre | New York City
Bernard B. Jacobs Theatre | New York City
...

La suppression des parenthèses de cet exemple modifie la logique et les résultats de la requête.

Les exemples suivants utilisent l’opérateur NOT :

select * from category
where not catid=1
order by 1;

catid | catgroup | catname | catdesc
-------+----------+-----------+--
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association
5 | Sports | MLS | Major League Soccer
...

L’exemple suivant utilise une condition NOT suivie d’une condition AND :

select * from category

Conditions logiques 376

AWS Clean Rooms Référence SQL

where (not catid=1) and catgroup='Sports'
order by catid;

catid | catgroup | catname | catdesc
-------+----------+---------+---------------------------------
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association
5 | Sports | MLS | Major League Soccer
(4 rows)

Conditions de correspondance de modèles

Un opérateur de correspondance de modèles recherche dans une chaîne un modèle spécifié dans
l'expression conditionnelle et renvoie vrai ou faux selon qu'il trouve une correspondance. AWS Clean
Rooms Spark SQL utilise les méthodes suivantes pour faire correspondre les modèles :

• Expressions LIKE

L’opérateur LIKE compare une expression de chaîne, comme un nom de colonne, avec un modèle
qui utilise les caractères génériques % (pourcentage) et _ (soulignement). La correspondance de
modèle LIKE couvre toute la chaîne. LIKE effectue une correspondance en distinguant majuscules
et minuscules.

Rubriques

• LIKE

• RLIKE

LIKE

L’opérateur LIKE compare une expression de chaîne, comme un nom de colonne, avec un modèle
qui utilise les caractères génériques % (pourcentage) et _ (soulignement). La correspondance
de modèle LIKE couvre toute la chaîne. Pour faire correspondre une séquence à n’importe quel
emplacement au sein d’une chaîne, le modèle doit commencer et finir par un signe %.

LIKE fait la distinction majuscules/minuscules.

Conditions de correspondance de modèles 377

AWS Clean Rooms Référence SQL

Syntaxe

expression [NOT] LIKE | pattern [ESCAPE 'escape_char']

Arguments

expression

Expression de caractère UTF-8 valide, comme un nom de colonne.

LIKE

LIKE effectue une correspondance sensible à la casse. Pour effectuer une correspondance de
modèle non sensible à la casse pour les caractères codés sur plusieurs octets, utilisez la fonction
LOWER sur expression et pattern avec une condition LIKE.

Contrairement aux prédicats de comparaison, tels que = et <>, les prédicats LIKE n'ignorent pas
implicitement les espaces de fin. Pour ignorer les espaces de fin, utilisez RTRIM ou convertissez
explicitement une colonne CHAR en VARCHAR.

L'~~opérateur est équivalent à LIKE. De plus, l'!~~opérateur est équivalent à NOT LIKE.

pattern

Expression de caractère UTF-8 valide avec le modèle à mettre en correspondance.

escape_char

Expression de caractère qui utilise une séquence d’échappement pour les méta-caractères du
modèle. La valeur par défaut est deux barres obliques inverses (’\\ »).

Si pattern ne contient pas de méta-caractères, le modèle représente uniquement la chaîne elle-
même ; dans ce cas, LIKE agit de même que l’opérateur d’égalité.

Les expressions de caractère peuvent avoir CHAR ou VARCHAR comme type de données. En cas
de différence, AWS Clean Rooms convertit pattern en type de données expression.

LIKE prend en charge les méta-caractères de correspondance de modèle suivants :

Opérateur Description

% Met en correspondance une séquence de zéro ou plusieurs caractères.

Conditions de correspondance de modèles 378

AWS Clean Rooms Référence SQL

Opérateur Description

_ Met en correspondance un seul caractère.

Exemples

Le tableau suivant montre des exemples de correspondance de modèle avec LIKE :

Expression Renvoie

'abc' LIKE 'abc' True

'abc' LIKE 'a%' True

'abc' LIKE '_B_' False

'abc' LIKE 'c%' False

L’exemple suivant recherche toutes les villes dont le nom commence par « E » :

select distinct city from users
where city like 'E%' order by city;
city

East Hartford
East Lansing
East Rutherford
East St. Louis
Easthampton
Easton
Eatontown
Eau Claire
...

L’exemple suivant recherche les utilisateurs dont le nom contient « ten » :

select distinct lastname from users
where lastname like '%ten%' order by lastname;
lastname

Conditions de correspondance de modèles 379

AWS Clean Rooms Référence SQL

Christensen
Wooten
...

L'exemple suivant trouve des villes dont les troisième et quatrième caractères sont « ea » . :

select distinct city from users where city like '__EA%' order by city;
city

Brea
Clearwater
Great Falls
Ocean City
Olean
Wheaton
(6 rows)

L’exemple suivant utilise la chaîne d’échappement par défaut (\\) pour rechercher les chaînes qui
incluent « start_» (texte start suivi d’un trait de soulignement _) :

select tablename, "column" from my_table_def

where "column" like '%start_%'
limit 5;

 tablename | column
-------------------+---------------
 my_s3client | start_time
 my_tr_conflict | xact_start_ts
 my_undone | undo_start_ts
 my_unload_log | start_time
 my_vacuum_detail | start_row
(5 rows)

L’exemple suivant spécifie « ^ » comme caractère d’échappement, puis utilise ce dernier pour
rechercher des chaînes qui incluent « start_ » (texte start suivi d’un trait de soulignement _) :

select tablename, "column" from my_table_def

where "column" like '%start^_%' escape '^'

Conditions de correspondance de modèles 380

AWS Clean Rooms Référence SQL

limit 5;

 tablename | column
-------------------+---------------
 my_s3client | start_time
 my_tr_conflict | xact_start_ts
 my_undone | undo_start_ts
 my_unload_log | start_time
 my_vacuum_detail | start_row
(5 rows)

RLIKE

L'opérateur RLIKE vous permet de vérifier si une chaîne correspond à un modèle d'expression
régulière spécifié.

Renvoie true si str correspondregexp, ou false non.

Syntaxe

rlike(str, regexp)

Arguments

str

Une expression sous forme de chaîne

expression régulière

Expression sous forme de chaîne. La chaîne regex doit être une expression régulière Java.

Les littéraux de chaîne (y compris les modèles de regex) ne sont pas échappés dans notre
analyseur SQL. Par exemple, pour correspondre à « \ abc », une expression régulière pour
regexp peut être « ^ \ abc$ ».

Exemples

L'exemple suivant définit la valeur du paramètre spark.sql.parser.escapedStringLiterals
de configuration surtrue. Ce paramètre est spécifique au moteur Spark SQL. Le
spark.sql.parser.escapedStringLiterals paramètre de Spark SQL contrôle la façon

Conditions de correspondance de modèles 381

AWS Clean Rooms Référence SQL

dont l'analyseur SQL gère les chaînes littérales échappées. Lorsqu'il est défini surtrue, l'analyseur
interprète les barres obliques inversées (\) dans les chaînes littérales comme des caractères
d'échappement, ce qui vous permet d'inclure des caractères spéciaux tels que des nouvelles lignes,
des tabulations et des guillemets dans les valeurs de vos chaînes.

SET spark.sql.parser.escapedStringLiterals=true;
spark.sql.parser.escapedStringLiterals true

Par exemple, avecspark.sql.parser.escapedStringLiterals=true, vous pouvez utiliser la
chaîne littérale suivante dans votre requête SQL :

SELECT 'Hello, world!\n'

Le caractère de nouvelle ligne \n serait interprété comme un caractère de nouvelle ligne littéral dans
la sortie.

L'exemple suivant effectue une correspondance avec un modèle d'expression régulière. Le premier
argument est passé à l'opérateur RLIKE. Il s'agit d'une chaîne qui représente le chemin d'un
fichier, où le nom d'utilisateur réel est remplacé par le modèle '****'. Le deuxième argument est
le modèle d'expression régulière utilisé pour la correspondance. La sortie (true) indique que la
première chaîne ('%SystemDrive%\Users****') correspond au modèle d'expression régulière
('%SystemDrive%\\Users.*').

SELECT rlike('%SystemDrive%\Users\John', '%SystemDrive%\Users.*');
true

Condition de plage BETWEEN

Une condition BETWEEN teste les expressions pour l’inclusion dans une plage de valeurs, à l’aide des
mots-clés BETWEEN et AND.

Syntaxe

expression [NOT] BETWEEN expression AND expression

Les expressions peuvent être de type de données numeric, character ou datetime, mais elles doivent
être compatibles. La plage est inclusive.

Condition de plage BETWEEN 382

AWS Clean Rooms Référence SQL

Exemples

Le premier exemple comptabilise le nombre de transactions ayant enregistré des ventes de 2, 3 ou
4 billets :

select count(*) from sales
where qtysold between 2 and 4;

count

104021
(1 row)

La condition de la plage comprend les valeurs de début et de fin.

select min(dateid), max(dateid) from sales
where dateid between 1900 and 1910;

min | max
-----+-----
1900 | 1910

La première expression d’une condition de plage doit être la valeur inférieure et la deuxième
expression la valeur supérieure. L’exemple suivant retourne toujours zéro ligne en raison des valeurs
des expressions :

select count(*) from sales
where qtysold between 4 and 2;

count

0
(1 row)

Cependant, l’application du modificateur NOT inverse la logique et génère le nombre de toutes les
lignes :

select count(*) from sales
where qtysold not between 4 and 2;

Condition de plage BETWEEN 383

AWS Clean Rooms Référence SQL

count

172456
(1 row)

La requête suivante retourne une liste des salles avec 20 000 à 50 000 places :

select venueid, venuename, venueseats from venue
where venueseats between 20000 and 50000
order by venueseats desc;

venueid | venuename | venueseats
---------+-------------------------------+------------
116 | Busch Stadium | 49660
106 | Rangers BallPark in Arlington | 49115
96 | Oriole Park at Camden Yards | 48876
...
(22 rows)

L’exemple suivant illustre l’utilisation de BETWEEN pour les valeurs de date :

select salesid, qtysold, pricepaid, commission, saletime
from sales
where eventid between 1000 and 2000
 and saletime between '2008-01-01' and '2008-01-03'
order by saletime asc;

salesid | qtysold | pricepaid | commission | saletime
--------+---------+-----------+------------+---------------
 65082 | 4 | 472 | 70.8 | 1/1/2008 06:06
 110917 | 1 | 337 | 50.55 | 1/1/2008 07:05
 112103 | 1 | 241 | 36.15 | 1/2/2008 03:15
 137882 | 3 | 1473 | 220.95 | 1/2/2008 05:18
 40331 | 2 | 58 | 8.7 | 1/2/2008 05:57
 110918 | 3 | 1011 | 151.65 | 1/2/2008 07:17
 96274 | 1 | 104 | 15.6 | 1/2/2008 07:18
 150499 | 3 | 135 | 20.25 | 1/2/2008 07:20
 68413 | 2 | 158 | 23.7 | 1/2/2008 08:12

Notez que même si la plage de BETWEEN est inclusive, les dates ont par défaut une valeur horaire
de 00:00:00. La seule ligne valide du 3 janvier pour l’exemple de requête serait une ligne dont
saletime est 1/3/2008 00:00:00.

Condition de plage BETWEEN 384

AWS Clean Rooms Référence SQL

Condition null

Le NULL tests de condition pour détecter les valeurs nulles, lorsqu'une valeur est manquante ou
inconnue.

Syntaxe

expression IS [NOT] NULL

Arguments

expression

N’importe quelle expression telle qu’une colonne.

IS NULL

Condition vraie lorsque la valeur de l’expression est null et fausse quand elle a une valeur.

IS NOT NULL

Condition fausse lorsque la valeur de l’expression est null et vraie quand elle a une valeur.

exemple

Cet exemple indique le nombre de fois où la table SALES contient null dans le champ QTYSOLD :

select count(*) from sales
where qtysold is null;
count

0
(1 row)

Condition EXISTS

Les conditions EXIST testent l’existence de lignes dans une sous-requête et retournent la valeur true
si la requête renvoie au moins une ligne. Si NOT n’est pas spécifié, la condition retourne true si une
sous-requête ne renvoie aucune ligne.

Condition null 385

AWS Clean Rooms Référence SQL

Syntaxe

[NOT] EXISTS (table_subquery)

Arguments

EXISTS

Est vraie lorsque la table_subquery retourne au moins une ligne.

NOT EXISTS

Est vraie lorsque la table_subquery ne retourne pas de lignes.

table_subquery

Une sous-requête qui analyse une table avec une ou plusieurs colonnes et une ou plusieurs
lignes.

exemple

Cet exemple retourne tous les identificateurs de date, une fois chacun, pour chaque date où une
vente a eu lieu :

select dateid from date
where exists (
select 1 from sales
where date.dateid = sales.dateid
)
order by dateid;

dateid

1827
1828
1829
...

Condition IN

Un IN condition teste l'appartenance d'une valeur à un ensemble de valeurs ou à une sous-requête.

Condition IN 386

AWS Clean Rooms Référence SQL

Syntaxe

expression [NOT] IN (expr_list | table_subquery)

Arguments

expression

Une expression de type numeric, character ou datetime évaluée par rapport à expr_list ou
table_subquery et qui doit être compatible avec le type de données de cette liste ou sous-requête.

expr_list

Une ou plusieurs expressions délimitées par des virgules, ou un ou plusieurs ensembles
d’expressions délimitées par des virgules et entourées par des parenthèses.

table_subquery

Une sous-requête qui correspond à une table avec une ou plusieurs lignes, mais est limitée à une
seule colonne dans la liste de sélection.

IN | NOT IN

IN retourne la valeur true si l’expression est membre de la liste d’expressions ou de la requête.
NOT IN retourne la valeur true si l’expression n’est pas membre. IN et NOT IN retournent la valeur
NULL et aucune ligne n’est retournée dans les cas suivants : si expression génère null, s’il n’y
a aucune expr_list correspondante ou si les valeurs de table_subquery et au moins l’une de ces
lignes de comparaison entraînent une valeur null.

Exemples

Les conditions suivantes sont vraies uniquement pour les valeurs répertoriées :

qtysold in (2, 4, 5)
date.day in ('Mon', 'Tues')
date.month not in ('Oct', 'Nov', 'Dec')

Optimisation pour les grandes listes IN

Afin d’optimiser les performances des requêtes, une liste IN qui inclut plus de 10 valeurs est analysée
en interne comme un ensemble (array) scalaire. Les listes IN avec moins de 10 valeurs sont évaluées

Condition IN 387

AWS Clean Rooms Référence SQL

comme une série de prédicats OR. Cette optimisation est prise en charge pour les types de données
SMALLINT, INTEGER, BIGINT, REAL, DOUBLE PRECISION, BOOLEAN, CHAR, VARCHAR,
DATE, TIMESTAMP et TIMESTAMPTZ.

Examinez la sortie EXPLAIN de la requête pour voir l’effet de cette optimisation. Par exemple :

explain select * from sales
QUERY PLAN
--
XN Seq Scan on sales (cost=0.00..6035.96 rows=86228 width=53)
Filter: (salesid = ANY ('{1,2,3,4,5,6,7,8,9,10,11}'::integer[]))
(2 rows)

Condition IN 388

AWS Clean Rooms Référence SQL

Interrogation de données imbriquées
AWS Clean Rooms offre un accès compatible avec SQL aux données relationnelles et imbriquées.

AWS Clean Rooms utilise la notation en pointillés et un indice de tableau pour la navigation par
chemin lors de l'accès à des données imbriquées. Il permet également de FROM éléments de clause
à itérer sur des tableaux et à utiliser pour les opérations de désimbrication. Les rubriques suivantes
décrivent les différents modèles de requête qui associent l'utilisation du type de array/struct/map
données à la navigation par chemin et par tableau, à la dénidification et aux jointures.

Rubriques

• Navigation

• Désimbriquer des requêtes

• Sémantique laxiste

• Types d’introspection

Navigation

AWS Clean Rooms permet de naviguer dans des tableaux et des structures en utilisant
respectivement la notation [...] entre crochets et points. En outre, vous pouvez mélanger la
navigation dans des structures en utilisant notation par points avec la navigation dans des tableaux
en utilisant la notation entre crochets.

Example

Par exemple, l'exemple de requête suivant suppose que la colonne de données du c_orders
tableau est un tableau doté d'une structure et d'un attribut nomméo_orderkey.

SELECT cust.c_orders[0].o_orderkey FROM customer_orders_lineitem AS cust;

Vous pouvez utiliser la notation par points et crochets dans tous les types de requêtes, comme le
filtrage, la jointure et l’agrégation. Vous pouvez utiliser ces notations dans une requête dans laquelle
il y a normalement des références de colonne.

Example

L’exemple suivant utilise une instruction SELECT qui filtre les résultats.

Navigation 389

AWS Clean Rooms Référence SQL

SELECT count(*) FROM customer_orders_lineitem WHERE c_orders[0].o_orderkey IS NOT NULL;

Example

L’exemple suivant utilise la notation par points et crochets dans les clauses GROUP BY et ORDER
BY :

SELECT c_orders[0].o_orderdate,
 c_orders[0].o_orderstatus,
 count(*)
FROM customer_orders_lineitem
WHERE c_orders[0].o_orderkey IS NOT NULL
GROUP BY c_orders[0].o_orderstatus,
 c_orders[0].o_orderdate
ORDER BY c_orders[0].o_orderdate;

Désimbriquer des requêtes

Pour désimbriquer les requêtes, AWS Clean Rooms active l'itération sur des tableaux. Pour ce faire,
il navigue dans le tableau à l’aide de la clause FROM d’une requête.

Example

En utilisant l’exemple précédent, le suivant itère sur les valeurs de l’attribut pour c_orders.

SELECT o FROM customer_orders_lineitem c, c.c_orders o;

La syntaxe de désimbrication est une extension de la clause FROM. Dans SQL standard, la clause
FROM x (AS) y signifie que y itère sur chaque tuple dans la relation x. Dans ce cas, x fait
référence à une relation et y fait référence à un alias pour la relation x. De même, la syntaxe de
désimbrication à l'aide de l'élément de clause FROM x (AS) y implique une y itération sur chaque
valeur d'une expression matricielle. x Dans ce cas, x est une expression de tableau et y un alias
pourx.

L’opérande de gauche peut également utiliser la notation par points et crochets pour la navigation
régulière.

Example

Dans l'exemple précédent :

Désimbriquer des requêtes 390

AWS Clean Rooms Référence SQL

• customer_orders_lineitem cest l'itération sur la table de customer_order_lineitem
base

• c.c_orders oest l'itération sur le c.c_orders array

Pour itérer sur l’attribut o_lineitems, qui est un tableau dans un tableau, vous ajoutez plusieurs
clauses.

SELECT o, l FROM customer_orders_lineitem c, c.c_orders o, o.o_lineitems l;

AWS Clean Rooms prend également en charge un index de tableau lors de l'itération sur le tableau
à l'aide du AT mot clé. La clause x AS y AT z itère sur le tableau x et génère le champz, qui est
l'index du tableau.

Example

L’exemple suivant illustre le fonctionnement d’un index de tableau.

SELECT c_name,
 orders.o_orderkey AS orderkey,
 index AS orderkey_index
FROM customer_orders_lineitem c, c.c_orders AS orders AT index
ORDER BY orderkey_index;
c_name | orderkey | orderkey_index
-------------------+----------+----------------
Customer#000008251 | 3020007 | 0
Customer#000009452 | 4043971 | 0 (2 rows)

Example

L’exemple suivant itère sur un tableau scalaire

CREATE TABLE bar AS SELECT json_parse('{"scalar_array": [1, 2.3, 45000000]}') AS data;

SELECT index, element FROM bar AS b, b.data.scalar_array AS element AT index;

 index | element
-------+----------
 0 | 1
1 | 2.3
2 | 45000000

Désimbriquer des requêtes 391

AWS Clean Rooms Référence SQL

(3 rows)

Example

L’exemple suivant itère sur un tableau de plusieurs niveaux. L’exemple utilise plusieurs clauses
de désimbrication (unnest) pour effectuer une itération dans les tableaux les plus intérieurs. La
f.multi_level_array AS le tableau itère. multi_level_array La matrice AS élément est
l'itération sur les tableaux qu'il contient. multi_level_array

CREATE TABLE foo AS SELECT json_parse('[[1.1, 1.2], [2.1, 2.2], [3.1, 3.2]]') AS
 multi_level_array;

SELECT array, element FROM foo AS f, f.multi_level_array AS array, array AS element;

 array | element
-----------+---------
 [1.1,1.2] | 1.1
 [1.1,1.2] | 1.2
 [2.1,2.2] | 2.1
 [2.1,2.2] | 2.2
 [3.1,3.2] | 3.1
 [3.1,3.2] | 3.2
(6 rows)

Sémantique laxiste

Par défaut, les opérations de navigation sur des valeurs de données imbriquées renvoient une valeur
nulle au lieu de renvoyer une erreur lorsque la navigation n'est pas valide. La navigation par objet
n'est pas valide si la valeur de données imbriquée n'est pas un objet ou si la valeur de données
imbriquée est un objet mais ne contient pas le nom d'attribut utilisé dans la requête.

Example

Par exemple, la requête suivante accède à un nom d'attribut non valide dans la colonne de données
imbriquée : c_orders

SELECT c.c_orders.something FROM customer_orders_lineitem c;

La navigation dans le tableau renvoie la valeur nulle si la valeur des données imbriquées n'est pas un
tableau ou si l'index du tableau est hors limites.

Sémantique laxiste 392

AWS Clean Rooms Référence SQL

Example

La requête suivante renvoie la valeur null car elle c_orders[1][1] est hors limites.

SELECT c.c_orders[1][1] FROM customer_orders_lineitem c;

Types d’introspection

Les colonnes de type de données imbriquées prennent en charge les fonctions d'inspection qui
renvoient le type et d'autres informations de type concernant la valeur. AWS Clean Rooms prend en
charge les fonctions booléennes suivantes pour les colonnes de données imbriquées :

• DECIMAL_PRECISION

• DECIMAL_SCALE

• IS_ARRAY

• IS_BIGINT

• IS_CHAR

• IS_DECIMAL

• IS_FLOAT

• IS_INTEGER

• IS_OBJECT

• IS_SCALAR

• IS_SMALLINT

• IS_VARCHAR

• JSON_TYPEOF

Toutes ces fonctions renvoient false si la valeur d’entrée est nulle. IS_SCALAR, IS_OBJECT et
IS_ARRAY s’excluent mutuellement et couvrent toutes les valeurs possibles à l’exception de
null. Pour déduire les types correspondant aux données, AWS Clean Rooms utilisez la fonction
JSON_TYPEOF qui renvoie le type (le niveau supérieur de) la valeur de données imbriquée, comme
indiqué dans l'exemple suivant :

SELECT JSON_TYPEOF(r_nations) FROM region_nations;
 json_typeof

Types d’introspection 393

AWS Clean Rooms Référence SQL

array
(1 row)

SELECT JSON_TYPEOF(r_nations[0].n_nationkey) FROM region_nations;
 json_typeof

 number

Types d’introspection 394

AWS Clean Rooms Référence SQL

Historique du document pour la référence AWS Clean
Rooms SQL
Le tableau suivant décrit les versions de documentation de la référence AWS Clean Rooms SQL.

Pour recevoir les notifications sur les mises à jour de cette documentation, vous pouvez vous
abonner au Flux RSS. Pour vous abonner aux mises à jour RSS, votre navigateur doit disposer d’un
plug-in RSS activé.

Modification Description Date

Spark SQL prend en charge
les astuces

AWS Clean Rooms Spark
SQL prend en charge les
indications de requête afin
d'optimiser les performances
des requêtes et de réduire les
coûts de calcul.

20 janvier 2026

Spark SQL prend en charge la
table de cache

AWS Clean Rooms Spark
SQL prend en charge la
commande CACHE TABLE,
qui permet aux clients de
mettre en cache des tables
existantes ou de créer et de
mettre en cache de nouvelles
tables à partir des résultats de
requêtes pour améliorer les
performances des requêtes.

22 octobre 2025

Spark SQL prend en charge
les fonctions FIRST et LAST
Window

AWS Clean Rooms Spark
SQL prend en charge les
fonctions Windows suivantes :
FIRST et LAST.

12 juin 2025

Mises à jour de la documenta
tion sur les fonctions SQL

Mise à jour uniquement
destinée à la documentation
afin de refléter avec précision

20 mai 2025

395

https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-hints-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-hints-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-cache-table.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-cache-table.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/Window_functions.html#Window_function_supported
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/Window_functions.html#Window_function_supported
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/Window_functions.html#Window_function_supported
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html

AWS Clean Rooms Référence SQL

les fonctions Spark SQL
prises en charge. Suppressi
on de la documentation
concernant 25 fonctions non
prises en charge, notamment
<=> operator, SIMILAR TO,
LISTAGG et ARRAY_INSERT.
Les noms de fonctions ont
été corrigés, de DATEADD
à DATE_ADD, DATEDIFF
à DATE_DIFF, ISNULL à
IS_NULL et ISNOTNULL à
IS_NOT_NULL. Correction
d'une faute de frappe dans les
exemples DATE_PART.

AWS Clean Rooms SQL
Spark

Les clients peuvent désormais
exécuter des requêtes à
l'aide de certaines condition
s, fonctions, commandes et
conventions SQL prises en
charge par le moteur d'analyse
Spark SQL.

29 octobre 2024

Commandes SQL et fonctions
SQL — mise à jour

Des exemples ont été
ajoutés pour la clause
JOIN, l'opérateur EXCEPT
set, l'expression condition
nelle CASE et les fonctions
suivantes : ANY_VALUE
, NVL et COALESCE,
NULLIF, CAST, CONVERT,
CONVERT_TIMEZONE,
EXTRACT, MOD, SIGN,
CONCAT, FIRST_VALUE et
LAST_VALUE.

28 février 2024

396

https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html

AWS Clean Rooms Référence SQL

Fonctions SQL - mise à jour AWS Clean Rooms prend
désormais en charge les
fonctions SQL suivantes :
Array, SUPER et VARBYTE.
Les fonctions mathémati
ques suivantes sont
désormais prises en charge :
ACOS, ASIN, ATAN, COT
ATAN2, DEXP, PI, POW,
RADIANS et SIN. Les
fonctions JSON suivantes
sont désormais prises en
charge : CAN_JSON_PARSE,
JSON_PARSE et JSON_SERI
ALIZE.

6 octobre 2023

Support des types de données
imbriqués

AWS Clean Rooms prend
désormais en charge les types
de données imbriqués.

30 août 2023

Règles de dénomination SQL -
mise à jour

Modification concernant
uniquement la documenta
tion pour clarifier les noms de
colonnes réservées.

16 août 2023

Disponibilité générale La référence AWS Clean
Rooms SQL est désormais
disponible pour tous.

31 juillet 2023

397

https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-functions-topic.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/nested-data-type.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/nested-data-type.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-ref-naming.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-ref-naming.html

AWS Clean Rooms Référence SQL

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le
contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

cccxcviii

	AWS Clean Rooms
	Table of Contents
	Vue d'ensemble de SQL dans AWS Clean Rooms
	Conventions du guide de référence SQL
	Règles de dénomination SQL
	Noms et colonnes d'associations de tables configurés
	Mots réservés

	Prise en charge des types de données par le moteur SQL
	Types de données numériques
	Types de données booléennes
	Types de données de date et d’heure
	Types de données de caractères
	Types de données structurées

	AWS Clean Rooms SQL Spark
	Littéraux
	+ Opérateur (concaténation)
	Syntaxe
	Arguments
	exemple

	Types de données
	Caractères multioctets
	Types numériques
	Types d’entier
	Type DECIMAL ou NUMERIC
	Notes sur l’utilisation des colonnes DECIMAL ou NUMERIC 128 bits

	Types à virgule flottante
	Calculs avec les valeurs numériques
	Types de retour pour les calculs
	Précision et échelle des résultats DECIMAL calculés
	Remarques sur les opérations de division
	Conditions de dépassement de capacité
	Calculs numériques avec les types INTEGER et DECIMAL

	Types caractères
	CHAR ou CHARACTER
	VARCHAR ou CHARACTER VARYING
	Signification des blancs de fin

	Types datetime
	DATE
	TIMESTAMP_LTZ
	TIMESTAMP_NTZ
	Exemples avec les types datetime
	Exemples de date
	Exemples d’heure

	Littéraux de type date, heure et horodatage
	Dates
	Times
	Valeurs datetime spéciales

	Littéraux de type interval
	Exemples

	Types de données et littéraux interval
	Syntaxe du type de données interval
	Syntaxe du littéral interval
	Arguments
	Arithmétique des intervalles
	Styles d’intervalle
	Exemples de type de données interval
	Exemples de littéraux interval
	Exemples de littéraux interval sans syntaxe de qualificatif

	Type Boolean
	Exemples
	Littéraux booléens
	Syntaxe
	Exemple

	Type binaire
	Type imbriqué
	Type de TABLEAU
	Type de carte
	Type de STRUCTURE
	Exemples de types de données imbriqués

	Compatibilité et conversion de types
	Compatibilité
	Compatibilité générale et règles de conversion
	Types de conversion implicite

	AWS Clean Rooms Commandes SQL Spark
	TABLE DE CACHE
	Syntaxe
	Paramètres
	Exemples
	Création et mise en cache d'une table filtrée à partir des résultats de requête
	Mettre en cache les résultats des requêtes avec des instructions SELECT entre parenthèses
	Mettre en cache une table existante avec des conditions de filtre

	Indicateurs
	Syntaxe
	Types d'indices pris en charge
	Conseils de participation
	DIFFUSER
	MERGE
	SHUFFLE_HASH
	SHUFFLE_REPLICATE_FR
	Conseils de résolution des problèmes dans Spark SQL

	Conseils de partitionnement
	COALESCE
	RÉPARTITION
	RÉPARTITION PAR PLAGE
	RÉÉQUILIBRER

	Combiner plusieurs astuces
	Considérations et restrictions

	SELECT
	SELECT list
	Syntaxe
	Parameters

	Clause WITH
	Syntaxe
	Parameters
	Notes d’utilisation
	Exemples

	Clause FROM
	Syntaxe
	Parameters
	Notes d’utilisation

	Clause JOIN
	Syntaxe
	Parameters
	Exemple
	Types de jointures
	INNER
	GAUCHE [EXTÉRIEUR]
	DROIT [EXTÉRIEUR]
	COMPLET [EXTÉRIEUR]
	[GAUCHE] SEMI
	CROSS JOIN
	ANTI-JOINTURE
	NATURAL

	Clause WHERE
	Syntaxe
	condition
	Notes d’utilisation
	Exemple

	Clause VALUES
	Syntaxe
	Parameters
	Exemple

	Clause GROUP BY
	Syntaxe
	Paramètres
	Extensions de regroupement
	GROUPING SETS
	ROLLUP
	CUBE

	Clause HAVING
	Syntaxe
	Notes d’utilisation
	Exemples

	Définir les opérateurs
	Syntaxe
	Parameters
	Ordre d’évaluation des opérateurs ensemblistes
	Notes d’utilisation
	Exemple de requêtes UNION
	Exemple de requête UNION ALL
	Exemple de requêtes INTERSECT
	Exemple de requête EXCEPT

	Clause ORDER BY
	Syntaxe
	Parameters
	Notes d’utilisation
	Exemples avec ORDER BY

	Exemples de sous-requête
	Sous-requête SELECT liste
	Sous-requête de clause WHERE
	Sous-requêtes de clause WITH

	Sous-requêtes corrélées
	Modèles de sous-requêtes corrélées non pris en charge

	AWS Clean Rooms Fonctions Spark SQL
	Fonctions d’agrégation
	Fonction ANY_VALUE
	Syntaxe
	Arguments
	Renvoie
	Notes d’utilisation
	Exemples

	Fonction APPROX COUNT_DISTINCT
	Syntaxe
	Arguments
	Renvoie
	exemple

	Fonction APPROX PERCENTILE
	Syntaxe
	Arguments
	Renvoie
	Exemples

	Fonction AVG
	Syntaxe
	Arguments
	Types de données
	exemple

	Fonction BOOL_AND
	Syntaxe
	Arguments
	Exemples

	Fonction BOOL_OR
	Syntaxe
	Arguments
	Exemples

	Fonction CARDINALITY
	Syntaxe
	Arguments
	Renvoie
	exemple

	Fonction COLLECT_LIST
	Syntaxe
	Arguments
	Renvoie
	exemple

	Fonction COLLECT_SET
	Syntaxe
	Arguments
	Renvoie
	exemple

	COUNTet COUNT DISTINCT fonctions
	Syntaxe
	Arguments
	Types de données
	Exemples

	Fonction COUNT
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction MAX
	Syntaxe
	Arguments
	Types de données
	Exemples

	Fonction MEDIAN
	Syntaxe
	Arguments

	Fonction MIN
	Syntaxe
	Arguments
	Types de données
	Exemples

	Fonction PERCENTILE
	Syntaxe
	Arguments
	Renvoie
	exemple

	Fonction SKEWNESS
	Syntaxe
	Arguments
	Renvoie
	Exemples

	Fonctions STDDEV_SAMP et STDDEV_POP
	Syntaxe
	Notes d’utilisation
	Exemples

	SUMet SUM DISTINCT fonctions
	Syntaxe
	Arguments
	Exemples

	Fonctions VAR_SAMP et VAR_POP
	Syntaxe
	Notes d’utilisation
	Exemples

	Fonctions de tableau
	Fonction ARRAY
	Syntaxe
	Argument
	Type de retour
	exemple

	Fonction ARRAY_CONTAINS
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction ARRAY_DISTINCT
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction ARRAY_EXCEPT
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction ARRAY_INTERSECT
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction ARRAY_JOIN
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction ARRAY_REMOVE
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction ARRAY_UNION
	Syntaxe
	Arguments
	Type de retour
	exemple

	Fonction EXPLODE
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction FLATTEN
	Syntaxe
	Arguments
	Type de retour
	exemple

	Expressions conditionnelles
	Expression conditionnelle CASE
	Syntaxe
	Arguments
	Exemples

	COALESCEexpression
	Syntaxe
	Exemples

	La plus grande et la moins grande expression
	Syntaxe
	Paramètres
	Renvoie
	exemple

	Expression IF
	Syntaxe
	Arguments
	Renvoie
	exemple

	Expression IS_NULL
	Syntaxe
	Arguments
	Renvoie
	Exemples

	Expression IS_NOT_NULL
	Syntaxe
	Arguments
	Renvoie
	Exemples

	Fonctions NVL et COALESCE
	Syntaxe
	Arguments
	Type de retour
	Exemples

	NVL2 fonction
	Syntaxe
	Arguments
	Type de retour
	Notes d’utilisation
	exemple

	Fonction NULLIF
	Syntaxe
	Arguments
	Exemples

	Fonctions de constructeur
	Fonction constructeur MAP
	Syntaxe
	Arguments
	Renvoie
	Exemples

	Fonction constructeur NAMED_STRUCT
	Syntaxe
	Arguments
	Renvoie
	Exemples

	Fonction constructeur STRUCT
	Syntaxe
	Arguments
	Renvoie
	Exemples

	Fonctions de formatage des types de données
	BASE64 fonction
	Syntaxe
	Arguments
	Type de retour
	Exemple

	Fonction CAST
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction DECODE
	Syntaxe
	Arguments
	Type de retour
	Exemple

	Fonction ENCODE
	Syntaxe
	Arguments
	Type de retour
	Exemple

	Fonction HEX
	Syntaxe
	Arguments
	Type de retour
	Exemple

	Fonction STR_TO_MAP
	Syntaxe
	Arguments
	Type de retour
	Exemple

	TO_CHAR
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction TO_DATE
	Syntaxe
	Arguments
	Type de retour
	Exemples

	TO_NUMBER
	Syntaxe
	Arguments
	Type de retour
	Exemples

	UNBASE64 fonction
	Syntaxe
	Arguments
	Type de retour
	Exemple

	Fonction UNHEX
	Syntaxe
	Arguments
	Type de retour
	Exemple

	Chaînes de format datetime
	Chaînes de format numériques

	Fonctions de date et d’heure
	Fonction ADD_MONTHS
	Syntaxe
	Arguments
	Type de retour
	Exemple

	Fonction CONVERT_TIMEZONE
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction CURRENT_DATE
	Syntaxe
	Type de retour
	Exemple

	Fonction CURRENT_TIMESTAMP
	Syntaxe
	Type de retour
	Exemple

	Fonction DATE_ADD
	Syntaxe
	Arguments
	Type de retour
	Exemples
	Notes d’utilisation

	Fonction DATE_DIFF
	Syntaxe
	Arguments
	Type de retour
	Exemples avec une colonne DATE
	Exemples avec une colonne TIME
	Exemples avec une colonne TIMETZ

	Fonction DATE_PART
	Syntaxe
	Arguments
	Type de retour
	Exemple

	Fonction DATE_TRUNC
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction DAY
	Syntaxe
	Arguments
	Renvoie
	Exemples

	Fonction DAYOFMONTH
	Syntaxe
	Arguments
	Renvoie
	Exemple

	Fonction DAYOFWEEK
	Syntaxe
	Arguments
	Renvoie
	Exemples

	Fonction DAYOFYEAR
	Syntaxe
	Arguments
	Renvoie
	Exemples

	Fonction EXTRACT
	Syntaxe
	Arguments
	Type de retour
	Exemples avec TIME

	Fonction FROM_UTC_TIMESTAMP
	Syntaxe
	Arguments
	Renvoie
	Exemple

	Fonction HOUR
	Syntaxe
	Arguments
	Renvoie
	Exemple

	Fonction MINUTE
	Syntaxe
	Arguments
	Renvoie
	Exemple

	Fonction MONTH
	Syntaxe
	Arguments
	Renvoie
	Exemple

	DEUXIÈME fonction
	Syntaxe
	Arguments
	Renvoie
	Exemple

	Fonction TIMESTAMP
	Syntaxe
	Arguments
	Renvoie
	Exemple

	Fonction TO_TIMESTAMP
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction YEAR
	Syntaxe
	Arguments
	Renvoie
	Exemple

	Parties de date pour les fonctions de date ou d'horodatage
	Variations de résultats avec les secondes, les millisecondes et les microsecondes
	Remarques sur CENTURY, EPOCH, DECADE et MIL

	Fonctions de chiffrement et de déchiffrement
	Fonction AES_ENCRYPT
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction AES_DECRYPT
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonctions de hachage
	MD5 fonction
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction SHA
	SHA1 fonction
	Syntaxe
	Arguments
	Type de retour
	exemple

	SHA2 fonction
	Syntaxe
	Arguments
	Type de retour
	exemple

	HASH64 fonction xx
	Syntaxe
	Arguments
	Renvoie
	exemple

	Fonctions Hyperloglog
	Fonction HLL_SKETCH_AGG
	Syntaxe
	Argument
	Type de retour
	Exemples

	Fonction HLL_SKETCH_ESTIMATE
	Syntaxe
	Argument
	Type de retour
	Exemples

	Fonction HLL_UNION
	Syntaxe
	Argument
	Type de retour
	Exemples

	Fonction HLL_UNION_AGG
	Syntaxe
	Argument
	Type de retour
	Exemples

	Fonctions JSON
	Fonction GET_JSON_OBJECT
	Syntaxe
	Arguments
	Renvoie
	exemple

	Fonction TO_JSON
	Syntaxe
	Arguments
	Renvoie
	Exemples

	Fonctions mathématiques
	Symboles d’opérateurs mathématiques
	Opérateurs pris en charge
	Exemples

	Fonction ABS
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction ACOS
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction ASIN
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction ATAN
	Syntaxe
	Arguments
	Type de retour
	Exemples

	ATAN2 fonction
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction CBRT
	Syntaxe
	Argument
	Type de retour
	Exemples

	Fonction CEILING (ou CEIL)
	Syntaxe
	Arguments
	Type de retour
	Exemple

	Fonction COS
	Syntaxe
	Argument
	Type de retour
	Exemples

	Fonction COT
	Syntaxe
	Argument
	Type de retour
	Exemples

	Fonction DEGREES
	Syntaxe
	Argument
	Type de retour
	Exemple

	Fonction DIV
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction EXP
	Syntaxe
	Argument
	Type de retour
	Exemple

	Fonction FLOOR
	Syntaxe
	Argument
	Type de retour
	Exemple

	Fonction LN
	Syntaxe
	Argument
	Type de retour
	Exemple

	Fonction LOG
	Syntaxe
	Argument
	Type de retour
	Exemple

	Fonction MOD
	Syntaxe
	Arguments
	Type de retour
	Notes d’utilisation
	Exemples

	Fonction PI
	Syntaxe
	Type de retour
	Exemples

	Fonction POWER
	Syntaxe
	Arguments
	Type de retour
	Exemple

	Fonction RADIANS
	Syntaxe
	Argument
	Type de retour
	Exemple

	Fonction RAND
	Syntaxe
	Type de retour
	Exemple

	Fonction RANDOM
	Syntaxe
	Type de retour
	Exemples

	Fonction ROUND
	Syntaxe
	Argument
	Type de retour
	Exemples

	Fonction SIGN
	Syntaxe
	Argument
	Type de retour
	Exemples

	Fonction SIN
	Syntaxe
	Argument
	Type de retour
	Exemple

	Fonction SQRT
	Syntaxe
	Argument
	Type de retour
	Exemples

	Fonction TRUNC
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonctions scalaires
	fonction SIZE
	Syntaxe
	Arguments
	Type de retour
	exemple

	Fonctions de chaîne
	Opérateur (concaténation) ||
	Syntaxe
	Arguments
	Type de retour
	exemple

	Fonction BTRIM
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction CONCAT
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction FORMAT_STRING
	Syntaxe
	Arguments
	Type de retour
	exemple

	Fonctions LEFT et RIGHT
	Syntaxe
	Arguments
	Type de retour
	exemple

	Fonction LENGTH
	Fonction LOWER
	Syntaxe
	Argument
	Type de retour
	Exemples

	Fonctions LPAD et RPAD
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction LTRIM
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction POSITION
	Syntaxe
	Arguments
	Type de retour
	Notes d’utilisation
	Exemples

	Fonction REGEXP_COUNT
	Syntaxe
	Arguments
	Type de retour
	exemple

	Fonction REGEXP_INSTR
	Syntaxe
	Arguments
	Type de retour
	exemple

	Fonction REGEXP_REPLACE
	Syntaxe
	Arguments
	Type de retour
	exemple

	Fonction REGEXP_SUBSTR
	Syntaxe
	Arguments
	Type de retour
	exemple

	Fonction REPEAT
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction REPLACE
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction REVERSE
	Syntaxe
	Argument
	Type de retour
	Exemples

	Fonction RTRIM
	Syntaxe
	Arguments
	Type de retour
	exemple

	Fonction SPLIT
	Syntaxe
	Arguments
	Type de retour
	exemple

	Fonction SPLIT_PART
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction SUBSTRING
	Syntaxe
	Arguments
	Type de retour
	Notes d'utilisation pour les chaînes de caractères
	Exemples

	Fonction TRANSLATE
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction TRIM
	Syntaxe
	Arguments
	Type de retour
	exemple

	Fonction UPPER
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction UUID
	Syntaxe
	Arguments
	Type de retour
	exemple

	Fonctions liées à la confidentialité
	Fonction consent_gpp_v1_decode
	Syntaxe
	Arguments
	Renvoie
	exemple

	Fonction consent_tcf_v2_decode
	Syntaxe
	Arguments
	Renvoie
	exemple

	Fonctions de fenêtrage
	Récapitulatif de la syntaxe de la fonction de fenêtrage
	Arguments

	Ordonnancement unique des données pour les fonctions de fenêtrage
	Fonctions prises en charge
	Exemple de tableau contenant des exemples de fonctions de fenêtrage
	Fonction de fenêtrage CUME_DIST
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction de fenêtrage DENSE_RANK
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction de fenêtre FIRST
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction de fenêtrage FIRST_VALUE
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction de fenêtrage LAG
	Syntaxe
	Arguments
	Exemples

	Fonction LAST window
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction de fenêtrage LAST_VALUE
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction de fenêtrage LEAD
	Syntaxe
	Arguments
	Exemples

	Fonction de fenêtrage PERCENT_RANK
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction de fenêtrage RANK
	Syntaxe
	Arguments
	Type de retour
	Exemples

	Fonction de fenêtrage ROW_NUMBER
	Syntaxe
	Arguments
	Type de retour
	Exemples

	AWS Clean Rooms Conditions SQL de Spark
	Opérateurs de comparaison
	Exemples
	Exemples avec une colonne TIME
	Exemples avec une colonne TIMETZ

	Conditions logiques
	Syntaxe
	Exemples

	Conditions de correspondance de modèles
	LIKE
	Syntaxe
	Arguments
	Exemples

	RLIKE
	Syntaxe
	Arguments
	Exemples

	Condition de plage BETWEEN
	Syntaxe
	Exemples

	Condition null
	Syntaxe
	Arguments
	exemple

	Condition EXISTS
	Syntaxe
	Arguments
	exemple

	Condition IN
	Syntaxe
	Arguments
	Exemples
	Optimisation pour les grandes listes IN

	Interrogation de données imbriquées
	Navigation
	Désimbriquer des requêtes
	Sémantique laxiste
	Types d’introspection

	Historique du document pour la référence AWS Clean Rooms SQL
	

