Creating GPU-accelerated vector indexes - Amazon OpenSearch Service

Creating GPU-accelerated vector indexes

After enabling GPU-acceleration on your domain or collection, create vector indexes that can take advantage of GPU processing.

Note

When you create a domain with GPU-acceleration enabled, the index.knn.remote_index_build.enabled setting is true by default. You don't need to explicitly set this setting when creating indexes. For collections, you must explicitly specify a value for this setting.

Creating index with GPU-acceleration

The following example creates a vector index optimized for GPU processing. This index stores 768-dimensional vectors (common for text embeddings).

PUT my-vector-index { "settings": { "index.knn": true, "index.knn.remote_index_build.enabled": true }, "mappings": { "properties": { "vector_field": { "type": "knn_vector", "dimension": 768 }, "text": { "type": "text" } } } }

Key configuration elements:

  • "index.knn": true - Enables k-nearest neighbor functionality

  • "index.knn.remote_index_build.enabled": true - Enables GPU processing for this index. When the domain has GPU-acceleration enabled, not specifying this setting defaults to true. For collections, you must explicitly specify a value for this setting.

  • "dimension": 768 - Specifies vector size (adjust based on your embedding model)

Creating index without GPU-acceleration

The following example creates a vector index where GPU processing is disabled. This index stores 768-dimensional vectors (common for text embeddings).

PUT my-vector-index { "settings": { "index.knn": true, "index.knn.remote_index_build.enabled": false }, "mappings": { "properties": { "vector_field": { "type": "knn_vector", "dimension": 768 }, "text": { "type": "text" } } } }