
Guía para desarrolladores

AWS SDK de cifrado de bases de datos

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS SDK de cifrado de bases de datos Guía para desarrolladores

AWS SDK de cifrado de bases de datos: Guía para desarrolladores

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Las marcas comerciales y la imagen comercial de Amazon no se pueden utilizar en relación con
ningún producto o servicio que no sea de Amazon, de ninguna manera que pueda causar confusión
entre los clientes y que menosprecie o desacredite a Amazon. Todas las demás marcas registradas
que no son propiedad de Amazon son propiedad de sus respectivos propietarios, que pueden o no
estar afiliados, conectados o patrocinados por Amazon.

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Table of Contents
¿Qué es el SDK AWS de cifrado de bases de datos? ... 1

Desarrollado en repositorios de código abierto .. 3
Compatibilidad y mantenimiento ... 3
Envío de comentarios .. 4
Conceptos .. 4

Cifrado de sobre ... 5
Clave de datos .. 7
Clave de encapsulación ... 7
Conjuntos de claves ... 8
Funciones criptográficas ... 9
Descripción de material .. 10
Contexto de cifrado .. 10
Administrador de materiales criptográficos .. 11
Cifrado simétrico y asimétrico .. 11
Compromiso clave .. 12
Firmas digitales ... 13

Funcionamiento .. 14
Cifra y firma .. 15
Descifrado y verificación ... 16

Conjuntos de algoritmos admitidos ... 17
Conjunto de algoritmos predeterminado .. 20
AES-GCM sin firmas digitales ECDSA .. 21

Interactuando con AWS KMS .. 23
Configuración del SDK ... 25

Selección de un lenguaje de programación .. 25
Seleccionar las claves de encapsulamiento ... 25
Crear un filtro de detección ... 27
Trabajar con bases de datos de varios inquilinos .. 28
Crear balizas firmadas .. 29

Almacenes de claves ... 37
La terminología y los conceptos del almacén de claves .. 37
Implementación de permisos de privilegio mínimo ... 38
Crear un almacén de claves ... 39
Configurar las acciones del almacén de claves ... 40

iii

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Configure las acciones de su almacén de claves .. 41
Creación de claves de ramificaciones .. 44
Rote la clave de rama activa .. 48

Conjuntos de claves ... 51
Cómo funcionan los conjuntos de claves ... 52
AWS KMS llaveros .. 53

Permisos necesarios para los conjuntos de claves de AWS KMS .. 54
Identificarse AWS KMS keys en un AWS KMS llavero ... 55
Crear un anillo de claves AWS KMS ... 56
Uso de varias regiones AWS KMS keys ... 59
Uso de un anillo de claves de detección AWS KMS ... 61
Uso de un anillo de claves de detección AWS KMS regional ... 64

AWS KMS Llaveros jerárquicos .. 66
Funcionamiento ... 69
Requisitos previos ... 71
Permisos necesarios ... 71
Elige una memoria caché ... 72
Crear un conjunto de claves jerárquico ... 81
Uso del conjunto de claves jerárquico para el cifrado para búsquedas 88

AWS KMS Llaveros ECDH ... 92
AWS KMS Permisos necesarios para los llaveros ECDH ... 93
Crear un conjunto de claves ECDH AWS KMS ... 94
Creación de un conjunto de claves AWS KMS de detección del ECDH 98

Conjunto de claves de AES sin formato ... 100
Conjunto de claves de RSA sin formato ... 103
Llaveros ECDH sin procesar ... 106

Creación de un conjunto de claves ECDH sin procesar .. 108
Conjuntos de claves múltiples ... 117

Cifrado para búsquedas ... 121
¿Las balizas son adecuadas para mi conjunto de datos? .. 122
Situación de cifrado para búsquedas .. 125
Balizas .. 127

Balizas estándar ... 127
Balizas compuestas .. 129

Planificación de balizas ... 130
Consideraciones para bases de datos de multitenencia .. 132

iv

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Elección de un tipo de baliza ... 132
Elegir la longitud de una baliza .. 139
Elección de un nombre de baliza ... 146

Configuración de las balizas ... 146
Configuración de balizas estándar ... 147
Configuración de balizas compuestas .. 157
Configuraciones de ejemplo ... 168

Uso de balizas ... 172
Balizas de consulta ... 175

Cifrado con capacidad de búsqueda para bases de datos multitenencia 177
Consulta de balizas en una base de datos de multitenencia ... 180

Amazon DynamoDB ... 182
cifrado del cliente o del lado del servidor ... 183
¿Qué campos se cifran y se firman? .. 185

Cifrado de valores de atributos .. 186
Firma del elemento ... 187

Cifrado con capacidad de búsqueda en DynamoDB .. 187
Configurar índices secundarios con balizas ... 188
Probando las salidas de balizas .. 189

Actualización de su modelo de datos ... 195
Agregue SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributos nuevos
ENCRYPT_AND_SIGN y SIGN_ONLY .. 197
Elimine los atributos existentes .. 197
Cambie un ENCRYPT_AND_SIGN atributo existente a SIGN_ONLY o
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT .. 198
Cambie un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo SIGN_ONLY o
existente a ENCRYPT_AND_SIGN ... 199
Añada un atributo DO_NOTHING nuevo ... 199
Cambio de un atributo SIGN_ONLY existente a
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT .. 200
Cambio de un atributo SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT existente a
SIGN_ONLY ... 201

Lenguajes de programación .. 202
Java ... 202
.NET .. 239
Rust ... 256

v

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Legacy .. 262
AWS Compatibilidad con la versión SDK de cifrado de bases de datos para DynamoDB 262
Funcionamiento ... 263
Conceptos ... 266
Proveedor de materiales criptográficos .. 271
Lenguajes de programación ... 302
Cambiar el modelo de datos .. 330
Solución de problemas ... 335

Cambio de nombre del cliente de cifrado de DynamoDB ... 340
Referencia ... 342

Formato de descripción del material ... 342
AWS KMS Detalles técnicos del llavero jerárquico .. 346

Historial de documentos ... 348
... cccli

vi

AWS SDK de cifrado de bases de datos Guía para desarrolladores

¿Qué es el SDK AWS de cifrado de bases de datos?

Nuestra biblioteca de cifrado del lado del cliente pasó a llamarse SDK de cifrado de bases de
AWS datos. En esta guía para desarrolladores, se sigue proporcionando información sobre el
cliente de cifrado de DynamoDB.

El SDK AWS de cifrado de bases de datos es un conjunto de bibliotecas de software que le permiten
incluir el cifrado del lado del cliente en el diseño de su base de datos. El SDK de cifrado AWS de
bases de datos proporciona soluciones de cifrado a nivel de registro. Usted especifica qué campos
se cifran y qué campos se incluyen en las firmas que garantizan la autenticidad de sus datos. El
cifrado de sus datos en tránsito y en reposo confidenciales ayuda a garantizar que los datos de texto
no cifrado no estén disponibles para ningún tercero, incluido AWS. El SDK de cifrado de bases de
datos de AWS se suministra gratuitamente con la licencia Apache 2.0.

Esta guía para desarrolladores proporciona una descripción general conceptual del SDK de cifrado
de AWS bases de datos, que incluye una introducción a su arquitectura, detalles sobre cómo protege
los datos, en qué se diferencia del cifrado del lado del servidor y orientación sobre la selección de los
componentes fundamentales de la aplicación para ayudarle a empezar.

El SDK AWS de cifrado de bases de datos es compatible con Amazon DynamoDB con cifrado a nivel
de atributos.

El SDK AWS de cifrado de bases de datos ofrece las siguientes ventajas:

Diseñado especialmente para aplicaciones de bases de datos

No es necesario ser un experto en criptografía para utilizar el SDK de cifrado de AWS bases de
datos. Las implementaciones incluyen métodos de ayudante que se diseñaron para funcionar con
sus aplicaciones existentes.

Después de crear y configurar los componentes requeridos, el cliente de cifrado descifra y firma
los registros de forma transparente cuando los agrega a una base de datos y los verifica y los
descifra cuando los recupera.

Incluye cifrado y firma seguros

El SDK de cifrado de AWS bases de datos incluye implementaciones seguras que cifran los
valores de los campos de cada registro mediante una clave de cifrado de datos única y, a

1

AWS SDK de cifrado de bases de datos Guía para desarrolladores

continuación, firman el registro para protegerlo contra cambios no autorizados, como añadir o
eliminar campos o intercambiar valores cifrados.

Utiliza materiales criptográficos desde cualquier origen

El SDK AWS de cifrado de bases de datos utiliza conjuntos de claves para generar, cifrar y
descifrar la clave de cifrado de datos única que protege su registro. Los conjuntos de claves
determinan las claves de encapsulación que cifran esa clave de datos.

Puede utilizar claves de encapsulación de cualquier fuente, incluidos los servicios de criptografía,
como AWS Key Management Service (AWS KMS) o AWS CloudHSM. El SDK AWS de cifrado de
bases de datos no requiere ningún servicio Cuenta de AWS ni ningún otro. AWS

Compatibilidad para el almacenamiento en caché de materiales criptográficos

El anillo de claves AWS KMS jerárquico es una solución de almacenamiento en caché de
materiales criptográficos que reduce el número de AWS KMS llamadas mediante el uso de claves
de rama AWS KMS protegidas que se conservan en una tabla de Amazon DynamoDB y, a
continuación, el almacenamiento en caché local de los materiales de clave de rama utilizados
en las operaciones de cifrado y descifrado. Le permite proteger sus materiales criptográficos con
una clave KMS de cifrado simétrico sin tener que llamar cada vez que cifra o descifra un registro.
AWS KMS El anillo de claves AWS KMS jerárquico es una buena opción para las aplicaciones
que necesitan minimizar las llamadas. AWS KMS

Cifrado para búsquedas

Puede diseñar bases de datos que puedan buscar registros cifrados sin necesidad de descifrar
toda la base de datos. Según el modelo de amenazas y los requisitos de consulta, puede utilizar
el cifrado con capacidad de búsqueda para realizar búsquedas de coincidencias exactas o
consultas complejas más personalizadas en la base de datos cifrada.

Compatibilidad para esquemas de bases de datos de multitenencia

El SDK AWS de cifrado de bases de datos le permite proteger los datos almacenados en bases
de datos con un esquema compartido al aislar a cada usuario con materiales de cifrado distintos.
Si tiene varios usuarios que realizan operaciones de cifrado en su base de datos, utilice uno de
los AWS KMS anillos de claves para proporcionar a cada usuario una clave distinta para utilizarla
en sus operaciones criptográficas. Para obtener más información, consulte Trabajar con bases de
datos de varios inquilinos.

2

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Compatibilidad para actualizaciones de esquemas fluidas

Al configurar el SDK de cifrado de AWS bases de datos, proporciona acciones criptográficas
que indican al cliente qué campos debe cifrar y firmar, qué campos debe firmar (pero no cifrar)
y cuáles debe ignorar. Una vez que haya utilizado el SDK de cifrado de bases de datos de AWS
para proteger sus registros, podrá seguir realizando cambios en el modelo de datos. Puede
actualizar sus acciones criptográficas, como agregar o eliminar campos cifrados, en una sola
implementación.

Desarrollado en repositorios de código abierto

El SDK AWS de cifrado de bases de datos está desarrollado en repositorios de código abierto.
GitHub Puede usar estos repositorios para ver el código, leer y enviar los problemas y encontrar
información específica de la implementación.

El SDK AWS de cifrado de bases de datos para DynamoDB

• El repositorio aws-database-encryption-sdk-dynamodb GitHub es compatible con las versiones
más recientes del SDK de cifrado de AWS bases de datos para DynamoDB en Java, .NET y Rust.

El SDK AWS de cifrado de bases de datos para DynamoDB es un producto de Dafny, un
lenguaje compatible con la verificación en el que se escriben las especificaciones, el código para
implementarlas y las pruebas para probarlas. El resultado es una biblioteca que implementa las
características del SDK de cifrado de bases de datos de AWS para DynamoDB en un marco que
garantiza la corrección funcional.

Compatibilidad y mantenimiento

El SDK AWS de cifrado de bases de datos utiliza la misma política de mantenimiento que el AWS
SDK y las herramientas, incluidas las fases de control de versiones y ciclo de vida. Como práctica
recomendada, le recomendamos que utilice la última versión disponible del SDK de cifrado de bases
de datos de AWS para la implementación de su base de datos y que la actualice a medida que se
publiquen nuevas versiones.

Para obtener más información, consulte la política de mantenimiento AWS SDKs y las herramientas
en la Guía de referencia de herramientas AWS SDKs y herramientas.

Desarrollado en repositorios de código abierto 3

https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/dafny-lang/dafny/blob/master/README.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Envío de comentarios

Agradecemos sus comentarios. Si tiene una pregunta o comentario, o un problema del que informar,
utilice los siguientes recursos.

Si descubre una posible vulnerabilidad de seguridad en el SDK de cifrado de AWS bases de datos,
notifíquelo al personal AWS de seguridad. No cree una GitHub emisión pública.

Para enviar comentarios sobre esta documentación, utilice el enlace de comentarios de cualquier
página.

AWS Conceptos del SDK de encriptación de bases

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

En este tema se explican los conceptos y la terminología utilizados en el SDK de cifrado de AWS
bases de datos.

Para saber cómo interactúan los componentes del SDK de cifrado de AWS bases de datos,
consulteCómo funciona el SDK AWS de cifrado de bases de datos.

Para obtener más información sobre el SDK AWS de cifrado de bases de datos, consulte los
siguientes temas.

• Descubra cómo el SDK AWS de cifrado de bases de datos utiliza el cifrado de sobres para
proteger sus datos.

• Obtenga información sobre los elementos del cifrado de sobre: las claves de datos que protegen
sus registros y las claves de encapsulación que protegen sus claves de datos.

• Obtenga información sobre los conjuntos de claves que determinan qué claves de encapsulación
debe utilizar.

• Obtenga información sobre el contexto de cifrado que agrega integridad a su proceso de cifrado.

• Obtenga información sobre la descripción del material que los métodos de cifrado agregan a su
registro.

Envío de comentarios 4

https://aws.amazon.com/security/vulnerability-reporting/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• Obtenga información sobre las acciones criptográficas que indican al SDK de cifrado de bases de
datos de AWS qué campos debe cifrar y firmar.

Temas

• Cifrado de sobre

• Clave de datos

• Clave de encapsulación

• Conjuntos de claves

• Funciones criptográficas

• Descripción de material

• Contexto de cifrado

• Administrador de materiales criptográficos

• Cifrado simétrico y asimétrico

• Compromiso clave

• Firmas digitales

Cifrado de sobre

La seguridad de los datos cifrados depende en parte de la protección de la clave de datos que
permite descifrarlos. Una práctica recomendada aceptada para proteger la clave de datos consiste
en cifrarla. Para ello, necesita otra clave de cifrado, conocida como clave de cifrado clave o clave de
encapsulamiento. Esta práctica de utilizar una clave de encapsulamiento para cifrar las claves de
datos se denomina cifrado de sobre.

Protección de las claves de datos

El SDK AWS de cifrado de bases de datos cifra cada campo con una clave de datos única. A
continuación, cifra cada clave de datos con la clave de encapsulación que especifique. Almacena
las claves de datos cifradas en la descripción del material.

Para especificar la clave de encapsulación, utilice un conjunto de claves.

Cifrado de sobre 5

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Cifrado de los mismos datos con varias claves múltiples

Puede cifrar la clave de datos con varias claves de encapsulación. Es posible que desee
proporcionar diferentes claves de encapsulación para distintos usuarios, o claves de
encapsulación de diferentes tipos o en diferentes ubicaciones. Cada una de las claves de
encapsulamiento cifra la misma clave de datos. El SDK AWS de cifrado de bases de datos
almacena todas las claves de datos cifrados junto con los campos cifrados de la descripción del
material.

Para descifrar los datos, debe proporcionar al menos una clave de encapsulación que pueda
descifrar las claves de datos cifrados.

Combinación de los puntos fuertes de varios algoritmos

Para cifrar los datos, de forma predeterminada, el SDK de cifrado de AWS bases de datos utiliza
un conjunto de algoritmos con cifrado simétrico AES-GCM, una función de derivación de claves
basada en HMAC (HKDF) y firma ECDSA. Para cifrar la clave de datos, puede especificar un
algoritmo de cifrado simétrico o asimétrico adecuado a su clave de encapsulamiento.

En general, los algoritmos de cifrado de clave simétrica son más rápidos y producen textos
cifrados más pequeños que el cifrado de clave pública o asimétrico. Sin embargo, los algoritmos
de clave pública proporcionan una separación inherente de las funciones. Para combinar las
fortalezas de cada uno, puede cifrar la clave de datos con el cifrado de clave pública.

Recomendamos utilizar AWS KMS uno de los anillos de claves siempre que sea posible. Al
usar el AWS KMS llavero, puede optar por combinar los puntos fuertes de varios algoritmos
especificando un RSA asimétrico AWS KMS key como clave de empaquetado. También puede
utilizar una clave de KMS de cifrado simétrico.

Cifrado de sobre 6

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Clave de datos

Una clave de datos es una clave de cifrado que el SDK de cifrado de AWS bases de datos utiliza
para cifrar los campos de un registro que están marcados ENCRYPT_AND_SIGN en las acciones
criptográficas. Cada clave de datos es una matriz de bytes que es conforme a los requisitos para
claves criptográficas. El SDK AWS de cifrado de bases de datos utiliza una clave de datos única para
cifrar cada atributo.

No es necesario especificar, generar, implementar, extender, proteger ni usar claves de datos.
El SDK de cifrado de bases de datos de AWS hace ese trabajo por usted cuando llama a las
operaciones de cifrado y descifrado.

Para proteger sus claves de datos, el SDK de cifrado AWS de bases de datos las cifra en una o más
claves de cifrado clave conocidas como claves de empaquetado. Una vez que el SDK de cifrado de
AWS bases de datos utiliza las claves de datos de texto simple para cifrar los datos, las elimina de la
memoria lo antes posible. Almacena las claves de datos cifradas en la descripción del material. Para
obtener más información, consulte Cómo funciona el SDK AWS de cifrado de bases de datos.

Tip

En el SDK de cifrado AWS de bases de datos, distinguimos las claves de datos de las
claves de cifrado de datos. Como práctica recomendada, todos los conjuntos de algoritmos
compatibles utilizan una función de derivación de clave. La función de derivación de clave
toma una clave de datos como entrada y devuelve las claves de cifrado de datos que son las
que se utilizan realmente para cifrar los registros. Por este motivo, a menudo decimos que
los datos se cifran "bajo" una clave de datos, en lugar de "por" una clave de datos.

Cada clave de datos cifrados incluye metadatos, incluido el identificador de la clave de
encapsulamiento que la cifró. Estos metadatos permiten que el SDK de cifrado de AWS bases de
datos identifique las claves de empaquetado válidas al descifrar.

Clave de encapsulación

Una clave de encapsulación es una clave de cifrado por clave que el SDK de cifrado de bases de
datos de AWS utiliza para cifrar la clave de datos que cifra los registros. Cada clave de datos de
texto no cifrado se puede cifrar en una o varias claves maestras. Usted determina qué claves de
encapsulación se utilizan para proteger sus datos al configurar un conjunto de claves.

Clave de datos 7

https://en.wikipedia.org/wiki/Key_derivation_function

AWS SDK de cifrado de bases de datos Guía para desarrolladores

El SDK de cifrado de AWS bases de datos admite varias claves de empaquetado que se utilizan
habitualmente, como AWS Key Management Service(AWS KMS) las claves KMS de cifrado simétrico
(incluidas las claves multirregionales) y las AWS KMS claves KMS RSA asimétricas, las claves
AES-GCM (Advanced Encryption Standard/Galois Counter Mode) sin procesar y las claves RSA sin
procesar. Recomendamos utilizar claves KMS siempre que sea posible. Para decidir qué clave de
encapsulación debe usar, consulte Seleccionar claves de encapsulación.

Cuando se utiliza el cifrado de sobre, es necesario proteger las claves de encapsulación contra el
acceso no autorizado. Esto lo puede hacer de cualquiera de las siguientes maneras:

• Utilice un servicio diseñado para este fin, como AWS Key Management Service (AWS KMS).

• Utilice un módulo de seguridad de hardware (HSM) como los que ofrece AWS CloudHSM.

• Utilice otras herramientas y servicios de administración de claves.

Si no tiene un sistema de administración de claves, le recomendamos que lo haga. AWS KMS El
SDK AWS de cifrado de bases de datos se integra AWS KMS para ayudarle a proteger y utilizar sus
claves de empaquetado.

Conjuntos de claves

Para especificar las claves de encapsulación que utiliza para el cifrado y el descifrado, utilice un
conjunto de claves Puede usar los conjuntos de claves que proporciona el SDK AWS de cifrado de
bases de datos o diseñar sus propias implementaciones.

Un conjunto de claves genera, cifra y descifra claves de datos. También genera las claves MAC
que se utilizan para calcular los códigos de autenticación de mensajes basados en hash (HMACs)
de la firma. Al definir un conjunto de claves, puede especificar las claves de encapsulamiento que
cifran sus claves de datos. La mayoría de los conjuntos de claves especifican al menos una clave de
encapsulamiento o un servicio que proporciona y protege las claves de encapsulamiento. Al cifrar, el
SDK de cifrado AWS de bases de datos utiliza todas las claves de empaquetado especificadas en el

Conjuntos de claves 8

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/asymmetric-key-specs.html#key-spec-rsa
https://docs.aws.amazon.com/kms/latest/developerguide/asymmetric-key-specs.html#key-spec-rsa
https://aws.amazon.com/kms/
https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

conjunto de claves para cifrar la clave de datos. Si necesita ayuda para elegir y usar los conjuntos de
claves que define el SDK de cifrado de AWS bases de datos, consulte Uso de conjuntos de claves.

Funciones criptográficas

Las acciones criptográficas indican al encriptador qué acciones debe realizar en cada campo de un
registro.

Los valores de las acciones criptográficas pueden ser uno de los siguientes:

• Encrypt and sign: cifre el campo. Incluya el campo cifrado en la firma.

• Sign only: incluya el campo en la firma.

• Firmar e incluir en el contexto de cifrado: incluya el campo en el contexto de firma y cifrado.

De forma predeterminada, la partición y las claves de clasificación son el único atributo incluido
en el contexto de cifrado. Podría considerar la posibilidad de definir campos adicionales para
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT que el proveedor del identificador de clave
de rama de su conjunto de claves AWS KMS jerárquicas pueda identificar qué clave de rama
es necesaria para el descifrado a partir del contexto de cifrado. Para obtener más información,
consulte el proveedor de ID de clave de sucursal.

Note

Para utilizar la acción SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT criptográfica,
debe utilizar la versión 3.3 o posterior del SDK de cifrado de AWS bases de datos.
Implemente la nueva versión en todos los lectores antes de actualizar su modelo de datos
para SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT incluirla.

• Do nothing: no cifre ni incluya el campo en la firma.

Para cualquier campo que pueda almacenar datos confidenciales, utilice Encrypt and sign. Para
los valores de clave principal (por ejemplo, una clave de partición y una clave de clasificación en
una tabla de DynamoDB), utilice Sign only o Sign and include in encryption context. Si especifica
algún signo e incluye atributos en el contexto de cifrado, los atributos de partición y ordenación
también deben ser Firmar e incluir en el contexto de cifrado. No es necesario especificar acciones
criptográficas para la descripción del material. El SDK AWS de cifrado de bases de datos firma
automáticamente el campo en el que está almacenada la descripción del material.

Funciones criptográficas 9

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Elija sus acciones criptográficas con cuidado. En caso de duda, use Encrypt and
sign. Una vez que haya utilizado el SDK de cifrado de AWS bases de datos para
proteger sus registros ENCRYPT_AND_SIGNSIGN_ONLY, no podrá cambiar un
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT campo o un campo existente ni cambiar la
acción criptográfica asignada a un DO_NOTHING campo existente. DO_NOTHING Sin embargo, aún
puede realizar otros cambios en su modelo de datos. Por ejemplo, puede agregar o eliminar campos
cifrados en una sola implementación.

Descripción de material

La descripción del material sirve como encabezado de un registro cifrado. Al cifrar y firmar campos
con el SDK de cifrado de AWS bases de datos, el cifrador registra la descripción del material a
medida que reúne los materiales criptográficos y almacena la descripción del material en un campo
nuevo (aws_dbe_head) que el cifrador añade al registro.

La descripción del material es una estructura de datos con formato portátil que contiene copias
cifradas de las claves de datos y otra información, como los algoritmos de cifrado, el contexto de
cifrado y las instrucciones de cifrado y firma. El encriptador registra la descripción del material
mientras reúne los materiales criptográficos para el cifrado y la firma. Posteriormente, cuando
necesita reunir los materiales criptográficos para verificar y descifrar un campo, utiliza la descripción
del material como guía.

Almacenar las claves de datos cifrados y los campos cifrados simplifica la operación de descifrado y
evita tener que almacenar y administrar claves de datos cifradas de forma independiente de los datos
que cifran.

Para obtener información técnica sobre la descripción del material, consulteFormato de descripción
del material.

Contexto de cifrado

Para mejorar la seguridad de sus operaciones criptográficas, el SDK de cifrado de AWS bases de
datos incluye un contexto de cifrado en todas las solicitudes de cifrado y firma de un registro.

Un contexto de cifrado es un conjunto de pares de nombre-valor que contienen datos autenticados
adicionales no secretos y arbitrarios. El SDK AWS de cifrado de bases de datos incluye el nombre
lógico de la base de datos y los valores de la clave principal (por ejemplo, una clave de partición y
una clave de clasificación en una tabla de DynamoDB) en el contexto de cifrado. Cuando se cifra y

Descripción de material 10

AWS SDK de cifrado de bases de datos Guía para desarrolladores

firma un campo, el contexto de cifrado se vincula criptográficamente a los datos cifrados, de tal forma
que se requiere el mismo contexto de cifrado para descifrar los datos.

Si utiliza un conjunto de AWS KMS claves, el SDK de cifrado de AWS bases de datos también utiliza
el contexto de cifrado para proporcionar datos autenticados (AAD) adicionales en las llamadas que
realiza el conjunto de claves. AWS KMS

Cuando se utiliza el conjunto de algoritmo predeterminado, el administrador de materiales
criptográficos (CMM) agrega un par nombre-valor al contexto de cifrado que consta de un nombre
reservado, aws-crypto-public-key, y un valor que representa la clave de verificación pública. La
clave de verificación pública se guarda en la descripción del material.

Administrador de materiales criptográficos

El administrador de materiales criptográficos (CMM) reúne los materiales criptográficos que se
utilizan para cifrar, descifrar y firmar los datos. Siempre que utilice el conjunto de algoritmos
predeterminado, los materiales criptográficos incluyen claves de datos cifrados y de texto no cifrado,
claves de firma simétricas y una clave de firma asimétrica. Nunca se interactúa directamente con el
CMM. Los métodos de cifrado y descifrado se encargan de ello.

Como el CMM actúa como enlace entre el SDK de cifrado de AWS bases de datos y un
conjunto de claves, es un punto ideal para la personalización y la ampliación, por ejemplo, como
apoyo a la aplicación de políticas. Puede especificar un CMM de forma explícita, pero no es
obligatorio. Al especificar un conjunto de claves, el SDK de cifrado de bases de datos de AWS
crea automáticamente un CMM predeterminado para usted. El CMM predeterminado obtiene los
materiales de cifrado o descifrado del conjunto de claves que especifique. Esto podría requerir una
llamada a un servicio criptográfico como AWS Key Management Service (AWS KMS).

Cifrado simétrico y asimétrico

El cifrado simétrico utiliza la misma clave para cifrar y descifrar datos.

El cifrado asimétrico utiliza un par de claves de datos relacionados matemáticamente. Una clave del
par cifra los datos; solo la otra clave del par puede descifrarlos.

El SDK de cifrado AWS de bases de datos utiliza el cifrado por sobres. Cifra los datos con una
clave de datos simétrica. Cifra la clave de datos simétrica con una o más claves de encapsulación
simétricas o asimétricas. Agrega una descripción del material al registro que incluye al menos una
copia cifrada de la clave de datos.

Administrador de materiales criptográficos 11

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Cifrar los datos (cifrado simétrico)

Para cifrar los datos, el SDK de cifrado de AWS bases de datos utiliza una clave de datos
simétrica y un conjunto de algoritmos que incluye un algoritmo de cifrado simétrico. Para descifrar
los datos, el SDK de cifrado de AWS bases de datos utiliza la misma clave de datos y el mismo
conjunto de algoritmos.

Cifrar la clave de datos (cifrado simétrico o asimétrico)

El conjunto de claves que se proporciona a una operación de cifrado y descifrado determina
cómo se cifra y descifra la clave de datos simétrica. Puede elegir un conjunto de claves que utilice
cifrado simétrico, como un anillo de AWS KMS claves con una clave KMS de cifrado simétrico, o
uno que utilice cifrado asimétrico, como un AWS KMS anillo de claves con una clave KMS RSA
asimétrica.

Compromiso clave

El SDK AWS de cifrado de bases de datos admite el compromiso de claves (también conocido como
robustez), una propiedad de seguridad que garantiza que cada texto cifrado solo se pueda descifrar
en un único texto plano. Para ello, el compromiso clave garantiza que solo se utilice la clave de
datos que cifró el registro para descifrarlo. El SDK de cifrado AWS de bases de datos incluye un
compromiso clave para todas las operaciones de cifrado y descifrado.

La mayoría de los cifrados simétricos modernos (incluido el AES) cifran el texto sin formato con una
única clave secreta, como la clave de datos única que el SDK de cifrado de AWS bases de datos
utiliza para cifrar cada campo de texto sin formato marcado en un registro. ENCRYPT_AND_SIGN Al
descifrar este registro con la misma clave de datos, se obtiene un texto no cifrado idéntico al original.
El descifrado con una clave diferente suele fallar. Aunque es difícil, técnicamente es posible descifrar
un texto cifrado con dos claves diferentes. En raras ocasiones, es posible encontrar una clave que
pueda descifrar parcialmente el texto cifrado y convertirlo en un texto no cifrado diferente, pero aún
inteligible.

El SDK de cifrado AWS de bases de datos siempre cifra cada atributo con una clave de datos
única. Puede cifrar esa clave de datos con varias claves de encapsulación, pero las claves de
encapsulación siempre cifran la misma clave de datos. Sin embargo, un registro cifrado sofisticado y
creado manualmente puede contener diferentes claves de datos, cada una cifrada con una clave de
encapsulación diferente. Por ejemplo, si un usuario descifra el registro cifrado, devuelve 0x0 (falso),
mientras que otro usuario que descifra el mismo registro cifrado obtiene 0x1 (verdadero).

Compromiso clave 12

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Para evitar esta situación, el SDK de cifrado AWS de bases de datos incluye la asignación de claves
al cifrar y descifrar. El método de cifrado vincula criptográficamente la clave de datos única que
produjo el texto cifrado con el compromiso clave, un código de autenticación de mensajes basado
en hash (HMAC) que se calcula sobre la descripción del material mediante una derivación de la
clave de datos. A continuación, almacena el compromiso de clave en la descripción del material.
Cuando descifra un registro con un compromiso de clave, el SDK de cifrado de AWS bases de datos
comprueba que la clave de datos es la única clave de ese registro cifrado. Si se produce un error en
la verificación de la clave de datos, se produce un error en la operación de descifrado.

Firmas digitales

El SDK AWS de cifrado de bases de datos cifra los datos mediante un algoritmo de cifrado
autenticado, el AES-GCM, y el proceso de descifrado verifica la integridad y autenticidad de un
mensaje cifrado sin utilizar una firma digital. Dado que el AES-GCM utiliza claves simétricas,
cualquier persona que pueda descifrar la clave de datos utilizada para descifrar el texto cifrado
también podría crear manualmente un nuevo texto cifrado, lo que podría suponer un problema de
seguridad. Por ejemplo, si utilizas una AWS KMS key como clave de empaquetado, un usuario con
kms:Decrypt permisos podría crear textos cifrados sin necesidad de llamar. kms:Encrypt

Para evitar este problema, el conjunto de algoritmos predeterminado agrega una firma ECDSA
(algoritmo de firma digital con curva elíptica) a los registros cifrados. El conjunto de algoritmos
predeterminado cifra los campos del registro marcados ENCRYPT_AND_SIGN con un algoritmo de
cifrado autenticado, el AES-GCM. A continuación, calcula los códigos de autenticación de mensajes
basados en hash (HMACs) y las firmas ECDSA asimétricas en los campos del registro marcados
con, y. ENCRYPT_AND_SIGN SIGN_ONLY SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT El
proceso de descifrado utiliza las firmas para comprobar que un usuario autorizado haya cifrado el
registro.

Cuando se utiliza el conjunto de algoritmos predeterminado, el SDK AWS de cifrado de bases de
datos genera una clave privada temporal y una clave pública para cada registro cifrado. El SDK AWS
de cifrado de bases de datos almacena la clave pública en la descripción del material y descarta la
clave privada. Esto garantiza que nadie pueda crear otra firma que se verifique con la clave pública.
El algoritmo vincula la clave pública a la clave de datos cifrados como datos autenticados adicionales
en la descripción del material, lo que impide que los usuarios que solo pueden descifrar campos
alteren la clave pública o afecten a la verificación de la firma.

El SDK AWS de cifrado de bases de datos siempre incluye la verificación HMAC. Las firmas digitales
ECDSA están habilitadas de forma predeterminada, pero no son obligatorias. Si los usuarios

Firmas digitales 13

AWS SDK de cifrado de bases de datos Guía para desarrolladores

que cifran los datos y los que los descifran tienen el mismo nivel de confianza, podría considerar
la posibilidad de utilizar un conjunto de algoritmos que no incluya firmas digitales para mejorar
su rendimiento. Para obtener más información sobre cómo seleccionar conjuntos de algoritmos
alternativos, consulte Elegir un conjunto de algoritmos.

Note

Si un conjunto de claves no delimita entre cifradores y descifradores, las firmas digitales no
proporcionan ningún valor criptográfico.

AWS KMS Los anillos de claves, incluido el AWS KMS anillo de claves RSA asimétrico, pueden
distinguir entre cifradores y descifradores en función de las políticas clave y de IAM. AWS KMS

Debido a su naturaleza criptográfica, los siguientes conjuntos de claves no pueden distinguir entre
cifradores y descifradores:

• AWS KMS Anillo de claves jerárquico

• AWS KMS llavero ECDH

• Conjunto de claves de AES sin formato

• Conjunto de claves de RSA sin formato

• Llavero ECDH sin procesar

Cómo funciona el SDK AWS de cifrado de bases de datos

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de bases de datos. AWS En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

El SDK AWS de cifrado de bases de datos proporciona bibliotecas de cifrado del lado del cliente
diseñadas específicamente para proteger los datos que se almacenan en las bases de datos. Las
bibliotecas incluyen implementaciones seguras que puede ampliar o utilizar sin hacer ningún cambio.
Para obtener más información sobre la definición y el uso de componentes personalizados, consulte
el GitHub repositorio de la implementación de la base de datos.

Funcionamiento 14

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Los flujos de trabajo de esta sección explican cómo el SDK AWS de cifrado de bases de datos cifra,
firma, descifra y verifica los datos de la base de datos. Estos flujos de trabajo describen el proceso
básico mediante elementos abstractos y las características predeterminadas. Para obtener más
información sobre cómo funciona el SDK AWS de cifrado de bases de datos con la implementación
de la base de datos, consulte el tema Qué se cifra en la base de datos.

El SDK AWS de cifrado de bases de datos utiliza el cifrado de sobres para proteger sus datos.
Cada registro se cifra con una clave de datos única. La clave de datos se utiliza para obtener una
clave de cifrado de datos única para cada campo marcado ENCRYPT_AND_SIGN en sus acciones
criptográficas. A continuación, las claves de encapsulación que especifique cifran una copia de la
clave de datos. Para descifrar el registro cifrado, el SDK de cifrado de AWS bases de datos utiliza
las claves de empaquetado que especifique para descifrar al menos una clave de datos cifrada. A
continuación, puede descifrar el texto cifrado y devolver una entrada de texto no cifrado.

Para obtener más información sobre los términos utilizados en el SDK de cifrado de AWS bases de
datos, consulte. AWS Conceptos del SDK de encriptación de bases

Cifra y firma

En esencia, el SDK de cifrado de AWS bases de datos es un cifrador de registros que cifra, firma,
verifica y descifra los registros de la base de datos. Recibe información acerca de los registros e
instrucciones sobre qué elementos hay que cifrar y firmar. Obtiene los materiales de cifrado, y las
instrucciones sobre su uso, desde un administrador de materiales criptográficos configurado a partir
de la clave de encapsulación que especifique.

En el siguiente tutorial se describe cómo el SDK de cifrado de AWS bases de datos cifra y firma las
entradas de datos.

1. El administrador de materiales criptográficos proporciona al SDK de cifrado de AWS bases de
datos claves de cifrado de datos únicas: una clave de datos en texto plano, una copia de la clave
de datos cifrada con la clave de empaquetado especificada y una clave MAC.

Note

Puede cifrar la clave de datos con varias claves de encapsulación. Cada una de las
claves de encapsulación cifra una copia independiente de la clave de datos. El SDK
AWS de cifrado de bases de datos almacena todas las claves de datos cifrados en la
descripción del material. El SDK de cifrado de bases de datos de AWS agrega un nuevo
campo (aws_dbe_head) al registro que almacena la descripción del material.

Cifra y firma 15

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Se obtiene una clave MAC para cada copia cifrada de la clave de datos. Las claves MAC
no se almacenan en la descripción del material. En su lugar, el método de descifrado
utiliza las claves de encapsulación para volver a derivar las claves MAC.

2. El método de cifrado cifra cada campo marcado como ENCRYPT_AND_SIGN en las acciones
criptográficas especificadas.

3. El método de cifrado deriva un commitKey de la clave de datos y lo utiliza para generar un valor
de compromiso de clave y, a continuación, descarta la clave de datos.

4. El método de cifrado agrega una descripción del material al registro. La descripción del material
contiene las claves de datos cifrados y la información adicional sobre el registro cifrado. Para
obtener una lista completa de la información incluida en la descripción del material, consulte
Formato de la descripción del material.

5. El método de cifrado utiliza las claves MAC devueltas en el paso 1 para calcular los
valores del código de autenticación de mensajes basado en hash (HMAC) mediante la
canonicalización de la descripción del material, el contexto de cifrado y cada campo marcado
o SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT las ENCRYPT_AND_SIGN acciones
SIGN_ONLY criptográficas. Los valores del HMAC se almacenan en un campo nuevo
(aws_dbe_foot) que el método de cifrado agrega al registro.

6. El método de cifrado calcula una firma ECDSA mediante la canonicalización de la descripción
del material, el contexto de cifrado y cada campo marcado ENCRYPT_AND_SIGN o, y almacena
las firmas ECDSA en el campo. SIGN_ONLY SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
aws_dbe_foot

Note

Las firmas ECDSA están habilitadas de forma predeterminada, pero no son obligatorias.

7. El método de cifrado almacena el registro cifrado y firmado en la base de datos

Descifrado y verificación

1. El administrador de materiales criptográficos (CMM) proporciona el método de descifrado con los
materiales de descifrado almacenados en la descripción del material, incluida la clave de datos
de texto no cifrado y la clave MAC asociada.

Descifrado y verificación 16

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• El CMM descifra la clave de datos cifrada mediante las claves de encapsulación del
conjunto de claves especificado y devuelve la clave de datos en texto no cifrado.

2. El método de descifrado compara y verifica el valor de compromiso clave en la descripción del
material.

3. El método de descifrado verifica las firmas en el campo de la firma.

Identifica los campos que están marcados ENCRYPT_AND_SIGN o los que aparecen en la lista
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT de campos no autenticados permitidos
que haya definido. SIGN_ONLY El método de descifrado utiliza la clave MAC devuelta en
el paso 1 para volver a calcular y comparar los valores HMAC de los campos marcados, o.
ENCRYPT_AND_SIGN SIGN_ONLY SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT A
continuación, verifica las firmas del ECDSA mediante la clave pública almacenada en el contexto
de cifrado.

4. El método de descifrado usa la clave de datos en texto no cifrado para descifrar cada valor
marcado ENCRYPT_AND_SIGN. A continuación, el SDK AWS de cifrado de bases de datos
descarta la clave de datos de texto simple.

5. El método de descifrado devuelve el registro en texto no cifrado.

Conjuntos de algoritmos compatibles en el SDK de cifrado AWS de
bases de datos

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Un conjunto de algoritmos es un conjunto de algoritmos criptográficos y sus valores relacionados.
Los sistemas criptográficos utilizan la implementación del algoritmo para generar el texto cifrado.

El SDK AWS de cifrado de bases de datos utiliza un conjunto de algoritmos para cifrar y firmar los
campos de la base de datos. Todos los conjuntos de algoritmos compatibles utilizan el algoritmo
Advanced Encryption Standard (AES) con Galois/Counter Mode (GCM), conocido como AES-GCM,
para cifrar los datos sin procesar. El AWS SDK de cifrado de bases de datos admite claves de cifrado
de 256 bits. La longitud de la etiqueta de autenticación es siempre de 16 bytes.

Conjuntos de algoritmos admitidos 17

AWS SDK de cifrado de bases de datos Guía para desarrolladores

AWS Paquetes de algoritmos del SDK de cifrado de bases de datos

Algoritmo Algoritmo
de cifrado

Longitud
de la clave
de datos
(en bits)

Algoritmo
de
derivación
de clave

Algoritmo
de firma
simétrica

Algoritmo
de firma
asimétrica.

Compromis
o clave

Predeterm
inado/a

AES-GCM 256 HKDF con
SHA-512

HMAC-
SHA-384

ECDSA
con P-384
y SHA-384

HKDF con
SHA-512

AES-GCM
sin firmas
digitales
ECDSA

AES-GCM 256 HKDF con
SHA-512

HMAC-
SHA-384

Ninguno HKDF con
SHA-512

Algoritmo de cifrado

El nombre y el modo del algoritmo de cifrado que se utilizó. Los conjuntos de algoritmos del SDK
de cifrado AWS de bases de datos utilizan el algoritmo del estándar de cifrado avanzado (AES)
con el modo Galois/Counter (GCM).

Longitud de la clave de datos

La longitud de la clave de datos en bits. El SDK de cifrado AWS de bases de datos admite claves
de datos de 256 bits. La clave de datos se utiliza como entrada para una función de derivación
de extract-and-expand claves (HKDF) basada en HMAC. El resultado de la HKDF se utiliza como
clave de cifrado de datos en el algoritmo de cifrado.

Algoritmo de derivación de clave

La función de derivación de extract-and-expand claves basada en HMAC (HKDF) se utiliza para
obtener la clave de cifrado de datos. El SDK de cifrado AWS de bases de datos utiliza el HKDF
definido en el RFC 5869.

• La función hash utilizada es SHA-512

• Para el paso de extracción:

• No se utiliza sal. Según el RFC, la sal se establece en una cadena de ceros.

• El material de codificación de entrada es la clave de datos del conjunto de claves.

Conjuntos de algoritmos admitidos 18

https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• Para el paso de expansión:

• La clave pseudoaleatoria de entrada es el resultado del paso de extracción.

• La etiqueta de clave son los bytes codificados en UTF-8 de la cadena DERIVEKEY en el
orden de bytes big endian.

• La información de entrada es una concatenación del ID de algoritmo seguido de la etiqueta
de clave (en ese orden).

• La longitud del material de salida para las claves es la Longitud de la clave de datos. Este
resultado se utiliza como clave de cifrado de datos en el algoritmo de cifrado.

Algoritmo de firma simétrica

El algoritmo del código de autenticación de mensajes basado en hash (HMAC) se utiliza
para generar una firma simétrica. Todos los conjuntos de algoritmos compatibles incluyen la
verificación HMAC.

El SDK AWS de cifrado de bases de datos serializa la descripción del material
y todos los campos marcados con ENCRYPT_AND_SIGN o. SIGN_ONLY
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT A continuación, utiliza el HMAC con un
algoritmo de función hash criptográfica (SHA-384) para firmar la canonicalización.

La firma HMAC simétrica se almacena en un campo nuevo (aws_dbe_foot) que el SDK de
cifrado de bases de datos agrega al registro. AWS

Algoritmo de firma asimétrica.

El algoritmo de firma utilizado para generar una firma digital asimétrica.

El SDK AWS de cifrado de bases de datos serializa la descripción del material
y todos los campos marcados con ENCRYPT_AND_SIGN o. SIGN_ONLY
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT A continuación, utiliza el algoritmo de
firma digital de curva elíptica (ECDSA) con las siguientes especificaciones para firmar la
canonicalización:

• La curva elíptica utilizada es la P-384, tal como se define en el Estándar de Firma Digital (DSS)
(FIPS PUB 186-4).

• La función hash utilizada es SHA-384.

La firma ECDSA asimétrica se almacena con la firma HMAC simétrica en el campo.
aws_dbe_foot

Las firmas digitales ECDSA se incluyen de forma predeterminada, pero no son obligatorias.

Conjuntos de algoritmos admitidos 19

http://doi.org/10.6028/NIST.FIPS.186-4

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Compromiso clave

La función de derivación de extract-and-expand claves (HKDF) basada en HMAC que se utiliza
para derivar la clave de confirmación.

• La función hash utilizada es SHA-512

• Para el paso de extracción:

• No se utiliza sal. Según el RFC, la sal se establece en una cadena de ceros.

• El material de codificación de entrada es la clave de datos del conjunto de claves.

• Para el paso de expansión:

• La clave pseudoaleatoria de entrada es el resultado del paso de extracción.

• La información de entrada son los bytes codificados en UTF-8 de la COMMITKEY cadena en
orden de bytes endiano grande.

• La longitud del material de codificación de salida es de 256 bits. Esta salida se utiliza como
clave de confirmación.

La clave de confirmación calcula la confirmación del registro, un hash distinto del código de
autenticación de mensajes (HMAC) basado en hash de 256 bits, sobre la descripción del material.
Para obtener una explicación técnica sobre cómo añadir un compromiso clave a un conjunto de
algoritmos, consulte Key Committing AEADs in Cryptology ePrint Archive.

Conjunto de algoritmos predeterminado

De forma predeterminada, el SDK de cifrado de AWS bases de datos utiliza un conjunto de
algoritmos con AES-GCM, una función de derivación de extract-and-expand claves basada en HMAC
(HKDF), verificación de HMAC, firmas digitales ECDSA, compromiso de claves y una clave de cifrado
de 256 bits.

El conjunto de algoritmos predeterminado incluye la verificación HMAC (firmas simétricas) y las
firmas digitales ECDSA (firmas asimétricas). Estas firmas se almacenan en un campo nuevo
(aws_dbe_foot) que el SDK de cifrado de AWS bases de datos agrega al registro. Las firmas
digitales ECDSA son especialmente útiles cuando la política de autorización permite que un conjunto
de usuarios cifre los datos y otro grupo diferente los descifre.

El conjunto de algoritmos predeterminado también deriva de un compromiso clave: un hash
HMAC que vincula la clave de datos al registro. El valor de compromiso clave es un HMAC que se
calcula a partir de la descripción del material y la clave de confirmación. A continuación, el valor de
compromiso clave se almacena en la descripción del material. El compromiso clave garantiza que

Conjunto de algoritmos predeterminado 20

https://eprint.iacr.org/2020/1153

AWS SDK de cifrado de bases de datos Guía para desarrolladores

cada texto cifrado se descifre en un solo texto no cifrado. Para ello, validan la clave de datos utilizada
como entrada en el algoritmo de cifrado. Al cifrar, el conjunto de algoritmos obtiene un HMAC de
compromiso clave. Antes de descifrar, validan que la clave de datos produzca el mismo compromiso
de clave HMAC. En caso contrario, el comando de descifrado genera un error.

AES-GCM sin firmas digitales ECDSA

Si bien es probable que el conjunto de algoritmos predeterminado sea adecuado para la mayoría de
las aplicaciones, puede elegir un conjunto de algoritmos alternativo. Por ejemplo, algunos modelos
de confianza quedarían satisfechos con un conjunto de algoritmos sin firmas digitales ECDSA. Utilice
este conjunto solo cuando los usuarios que cifran datos y los usuarios que los descifran sean de la
misma confianza.

Todos los conjuntos de algoritmos del SDK de cifrado de AWS bases de datos incluyen la
verificación HMAC (firmas simétricas). La única diferencia es que el conjunto de algoritmos AES-
GCM sin la firma digital ECDSA carece de la firma asimétrica, lo que proporciona un nivel adicional
de autenticidad y no repudio.

Por ejemplo, si tiene varias claves de empaquetado en su conjunto de claves, y descifra un registro
con ellas wrappingKeyA wrappingKeyBwrappingKeyC, la firma simétrica HMAC verifica que el
registro lo cifró un usuario con wrappingKeyA acceso a. wrappingKeyA Si utilizó el conjunto de
algoritmos predeterminado, HMACs proporcione la misma verificación y, ademáswrappingKeyA,
utilice la firma digital ECDSA para garantizar que el registro lo haya cifrado un usuario con permisos
de cifrado para ello. wrappingKeyA

Para seleccionar el conjunto de algoritmos AES-GCM sin firmas digitales, incluya el siguiente
fragmento en la configuración de cifrado.

Java

El siguiente fragmento especifica el conjunto de algoritmos AES-GCM sin firmas digitales ECDSA.
Para obtener más información, consulte the section called “La configuración de cifrado”.

.algorithmSuiteId(
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384)

C# / .NET

El siguiente fragmento especifica el conjunto de algoritmos AES-GCM sin firmas digitales ECDSA.
Para obtener más información, consulte the section called “La configuración de cifrado”.

AES-GCM sin firmas digitales ECDSA 21

AWS SDK de cifrado de bases de datos Guía para desarrolladores

AlgorithmSuiteId =
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384

Rust

El siguiente fragmento especifica el conjunto de algoritmos AES-GCM sin firmas digitales ECDSA.
Para obtener más información, consulte the section called “La configuración de cifrado”.

.algorithm_suite_id(
 DbeAlgorithmSuiteId::AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)

AES-GCM sin firmas digitales ECDSA 22

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Uso del SDK AWS de cifrado de bases de datos con AWS
KMS

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Para usar el SDK AWS de cifrado de bases de datos, debe configurar un conjunto de claves
y especificar una o más claves de empaquetado. Si no tiene una infraestructura de claves, le
recomendamos que use AWS Key Management Service (AWS KMS).

El SDK AWS de cifrado de bases de datos admite dos tipos de conjuntos de AWS KMS claves. El
conjunto de claves de AWS KMS tradicional utiliza AWS KMS keys para generar, cifrar y descifrar
claves de datos. Puede utilizar claves de cifrado simétrico (SYMMETRIC_DEFAULT) o asimétricas
de RSA KMS. Como el SDK AWS de cifrado de bases de datos cifra y firma todos los registros
con una clave de datos única, el conjunto de AWS KMS claves debe requerir cada operación
AWS KMS de cifrado y descifrado. Para las aplicaciones que necesitan minimizar el número de
llamadas AWS KMS, el SDK de cifrado de AWS bases de datos también admite el conjunto de
claves jerárquico.AWS KMS El anillo de claves jerárquico es una solución de almacenamiento en
caché de materiales criptográficos que reduce el número de AWS KMS llamadas mediante el uso de
claves de rama AWS KMS protegidas que se conservan en una tabla de Amazon DynamoDB y, a
continuación, el almacenamiento en caché local de los materiales de clave de rama utilizados en las
operaciones de cifrado y descifrado. Recomendamos utilizar los anillos de claves siempre que sea
posible. AWS KMS

Para interactuar con él AWS KMS, el SDK AWS de cifrado de bases de datos requiere el AWS KMS
módulo del AWS SDK para Java.

Para prepararse para usar el SDK de cifrado AWS de bases de datos con AWS KMS

1. Cree un Cuenta de AWS. Para obtener más información, consulte ¿Cómo creo y activo una
nueva cuenta de Amazon Web Services? en el Centro de AWS conocimiento.

2. Cree un cifrado AWS KMS key simétrico. Para obtener más información, consulte Creación de
claves en la Guía para desarrolladores de AWS Key Management Service .

23

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Tip

Para usarlo AWS KMS key mediante programación, necesitará el nombre de recurso
de Amazon (ARN) del. AWS KMS key Para obtener ayuda para encontrar el ARN de
una AWS KMS key, consulte Búsqueda del ID y el ARN de la clave en la Guía para
desarrolladores de AWS Key Management Service .

3. Genere un ID de clave de acceso y una clave de acceso de seguridad. Puede utilizar el
identificador de clave de acceso y la clave de acceso secreta de un usuario de IAM o bien
puede utilizarlos AWS Security Token Service para crear una nueva sesión con credenciales de
seguridad temporales que incluyan un identificador de clave de acceso, una clave de acceso
secreta y un token de sesión. Como práctica recomendada de seguridad, le recomendamos
que utilice credenciales temporales en lugar de las credenciales a largo plazo asociadas a sus
cuentas de usuario de IAM o usuario AWS (raíz).

Para crear un usuario de IAM con una clave de acceso, consulte Creación de usuarios de IAM
en la Guía del usuario de IAM.

Para obtener más información acerca de las credenciales de seguridad temporales, consulte
Credenciales de seguridad temporales en la guía del usuario de IAM.

4. Configure sus AWS credenciales siguiendo las instrucciones del AWS SDK para JavaID de la
clave de acceso y la clave de acceso secreta que generó en el paso 3. Si generó credenciales
temporales, también tendrá que especificar el token de sesión.

Este procedimiento le AWS SDKs permite firmar las solicitudes AWS por usted. Los ejemplos
de código del SDK AWS de cifrado de bases de datos con los que interactúan se AWS KMS
supone que ha completado este paso.

24

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Configuración del SDK de cifrado AWS de bases de datos

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

El SDK AWS de cifrado de bases de datos está diseñado para ser fácil de usar. Si bien el SDK AWS
de cifrado de bases de datos tiene varias opciones de configuración, los valores predeterminados
se eligen cuidadosamente para que sean prácticos y seguros para la mayoría de las aplicaciones.
Sin embargo, es posible que deba ajustar la configuración para mejorar el rendimiento o incluir una
característica personalizada en el diseño.

Temas

• Selección de un lenguaje de programación

• Seleccionar las claves de encapsulamiento

• Crear un filtro de detección

• Trabajar con bases de datos de varios inquilinos

• Crear balizas firmadas

Selección de un lenguaje de programación

El SDK AWS de cifrado de bases de datos para DynamoDB está disponible en varios lenguajes
de programación. Las implementaciones del lenguaje están diseñadas para ser totalmente
interoperables y ofrecer las mismas características, aunque pueden implementarse de diferentes
maneras. Por lo general, se utiliza la biblioteca que es compatible con su aplicación.

Seleccionar las claves de encapsulamiento

El SDK AWS de cifrado de bases de datos genera una clave de datos simétrica única para cifrar
cada campo. No necesita configurar, administrar ni usar las claves de datos. El SDK AWS de cifrado
de bases de datos lo hace por usted.

Sin embargo, debe seleccionar una o más claves de encapsulación para cifrar cada clave de datos.
El SDK de cifrado de bases de datos de AWS admite claves KMS de cifrado simétrico y claves

Selección de un lenguaje de programación 25

AWS SDK de cifrado de bases de datos Guía para desarrolladores

RSA KMS asimétricas de AWS Key Management Service(AWS KMS). También es compatible con
las claves simétricas AES y las claves asimétricas RSA que proporciona en diferentes tamaños.
Usted es responsable de la seguridad y durabilidad de las claves de empaquetado, por lo que le
recomendamos que utilice una clave de cifrado en un módulo de seguridad de hardware o en un
servicio de infraestructura de claves, por ejemplo AWS KMS.

Para especificar las claves de encapsulación para el cifrado y el descifrado, utilice un conjunto de
claves. Según el tipo de conjunto de claves que utilice, puede especificar una clave de encapsulación
o varias claves de empaquetado del mismo tipo o de diferentes tipos. Si utiliza varias claves de
encapsulación para encapsular una clave de datos, cada clave de encapsulación cifrará una copia de
la misma clave de datos. Las claves de datos cifradas (una por clave de encapsulación) se guardan
en la descripción del material que se almacena junto al campo cifrado. Para descifrar los datos, el
SDK de cifrado de AWS bases de datos debe utilizar primero una de sus claves de empaquetado
para descifrar una clave de datos cifrada.

Recomendamos utilizar uno de los AWS KMS llaveros siempre que sea posible. El SDK AWS de
cifrado de bases de datos proporciona el AWS KMS anillo de claves y el anillo de claves AWS KMS
jerárquico, lo que reduce la cantidad de llamadas realizadas. AWS KMS Para especificar una AWS
KMS key en un conjunto de claves, utilice un identificador de clave compatible. AWS KMS Si utiliza
el conjunto de claves AWS KMS jerárquico, debe especificar el ARN de clave. Para obtener más
información sobre los identificadores clave de una AWS KMS clave, consulte los identificadores clave
en la Guía para desarrolladores.AWS Key Management Service

• Al cifrar con un AWS KMS anillo de claves, puede especificar cualquier identificador de clave
válido (ARN de clave, nombre de alias, ARN de alias o ID de clave) para una clave KMS de cifrado
simétrico. Si usa una clave de RSA KMS asimétrica, debe especificar la clave ARN.

Si especifica un nombre de alias o un ARN de alias para una clave de KMS al cifrar, el SDK de
cifrado de bases de datos de AWS guarda el ARN de clave actualmente asociado a ese alias; no
lo guarda. Los cambios en el alias no afectan a la clave KMS utilizada para descifrar las claves de
datos.

• De forma predeterminada, el conjunto de AWS KMS claves descifra los registros en modo estricto
(en el que se especifican determinadas claves de KMS). Debe usar el ARN de una clave para
identificar AWS KMS keys para descifrar.

Al cifrar con un AWS KMS anillo de claves, el SDK de cifrado de AWS bases de datos almacena
la clave ARN de la descripción del material junto con AWS KMS key la clave de datos cifrados. Al
descifrar en modo estricto, el SDK de cifrado de AWS bases de datos comprueba que aparezca

Seleccionar las claves de encapsulamiento 26

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS SDK de cifrado de bases de datos Guía para desarrolladores

la misma clave ARN en el anillo de claves antes de intentar utilizar la clave de empaquetado para
descifrar la clave de datos cifrados. Si utiliza un identificador de clave diferente, el SDK de cifrado
de AWS bases de datos no lo reconocerá ni utilizará AWS KMS key, aunque los identificadores
hagan referencia a la misma clave.

• Al descifrar en modo de descubrimiento, no especifique ninguna clave de encapsulación. En
primer lugar, el SDK de cifrado de AWS bases de datos intenta descifrar el registro con la
clave ARN almacenada en la descripción del material. Si eso no funciona, el SDK de cifrado de
AWS bases de datos solicita AWS KMS descifrar el registro con la clave de KMS que lo cifró,
independientemente de quién sea el propietario de esa clave de KMS o de quién tenga acceso a
ella.

Para especificar una clave AES sin procesar o un par de claves RSA sin procesar como clave de
encapsulación en un conjunto de claves, debe especificar un espacio de nombres y un nombre.
Al descifrar, debe utilizar exactamente el mismo espacio de nombres y el mismo nombre para
cada clave de encapsulación sin procesar que utilizó al cifrar. Si usa un espacio de nombres o un
nombre diferente, el SDK de cifrado de AWS bases de datos no reconocerá ni usará la clave de
empaquetado, aunque el material de la clave sea el mismo.

Crear un filtro de detección

Al descifrar datos cifrados con claves KMS, se recomienda descifrarlos en modo estricto, es decir,
limitar las claves de encapsulamiento utilizadas solo a las que especifique. Sin embargo, si es
necesario, también puede descifrar en el modo de detección, en el que no se especifica ninguna
clave de encapsulamiento. En este modo, AWS KMS puede descifrar la clave de datos cifrada con la
clave de KMS que la cifró, independientemente de quién sea el propietario o el que tenga acceso a
esa clave de KMS.

Si debe descifrar en modo de descubrimiento, le recomendamos que utilice siempre un filtro de
descubrimiento, que limite las claves de KMS que se pueden usar a las de una partición Cuenta de
AWS AND específica. El filtro de detección es opcional, pero es una práctica recomendada.

Utilice la siguiente tabla para determinar el valor de partición de su filtro de detección.

Región Partición

Regiones de AWS aws

Crear un filtro de detección 27

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Región Partición

Regiones de China aws-cn

AWS GovCloud (US) Regions aws-us-gov

En el siguiente ejemplo, se muestra cómo crear un filtro de detección. Antes de usar el código,
sustituya los valores de ejemplo por valores válidos para su partición Cuenta de AWS y.

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();

C# / .NET

var discoveryFilter = new DiscoveryFilter
{
 Partition = "aws",
 AccountIds = 111122223333
};

Rust

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .partition("aws")
 .account_ids(111122223333)
 .build()?;

Trabajar con bases de datos de varios inquilinos
Con el SDK AWS de cifrado de bases de datos, puede configurar el cifrado del lado del cliente para
las bases de datos con un esquema compartido aislando cada inquilino con materiales de cifrado
distintos. Al considerar una base de datos de multitenencia, tómese un tiempo para revisar sus
requisitos de seguridad y cómo podría afectarlos la multitenencia. Por ejemplo, el uso de una base

Trabajar con bases de datos de varios inquilinos 28

AWS SDK de cifrado de bases de datos Guía para desarrolladores

de datos multiusuario podría afectar a su capacidad de combinar el SDK de cifrado de AWS bases
de datos con otra solución de cifrado del lado del servidor.

Si tiene varios usuarios que realizan operaciones de cifrado en su base de datos, puede usar uno de
los AWS KMS anillos de claves para proporcionar a cada usuario una clave distinta para utilizarla en
sus operaciones criptográficas. Administrar las claves de datos de una solución de cifrado del cliente
multitenencia puede resultar complicado. Recomendamos organizar los datos por inquilino siempre
que sea posible. Si el inquilino se identifica mediante los valores de la clave principal (por ejemplo, la
clave de partición de una tabla de Amazon DynamoDB), la administración de las claves resulta más
sencilla.

Puede usar el anillo de AWS KMS claves para aislar a cada inquilino con un anillo de claves distinto
y. AWS KMS AWS KMS keys Según el volumen de AWS KMS llamadas realizadas por inquilino, es
posible que desee utilizar el anillo de claves AWS KMS jerárquico para minimizar las llamadas a.
AWS KMS El anillo de claves AWS KMS jerárquico es una solución de almacenamiento en caché
de materiales criptográficos que reduce el número de AWS KMS llamadas mediante el uso de
claves de rama AWS KMS protegidas que se conservan en una tabla de Amazon DynamoDB y, a
continuación, el almacenamiento en caché local de los materiales de clave de rama utilizados en las
operaciones de cifrado y descifrado. Debe utilizar el conjunto de claves jerárquico para implementar
un cifrado con capacidad de búsqueda en su base de datos AWS KMS .

Crear balizas firmadas
El SDK AWS de cifrado de bases de datos utiliza balizas estándar y balizas compuestas para
proporcionar soluciones de cifrado con capacidad de búsqueda que le permiten buscar registros
cifrados sin descifrar toda la base de datos consultada. Sin embargo, el SDK de cifrado AWS
de bases de datos también admite balizas firmadas que se pueden configurar completamente
a partir de campos firmados de texto simple. Las balizas firmadas son un tipo de baliza
compuesta que indexan y realizan consultas complejas en SIGN_ONLY los campos y campos.
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Por ejemplo, si tiene una base de datos de multitenencia, puede que desee crear una baliza firmada
que le permita consultar en la base de datos los registros cifrados por la clave de un inquilino
específico. Para obtener más información, consulte Consulta de balizas en una base de datos de
multitenencia.

Debe utilizar el conjunto de claves AWS KMS jerárquico para crear balizas firmadas.

Para configurar una baliza firmada, proporcione los siguientes valores.

Crear balizas firmadas 29

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Java

Configuración de baliza compuesta

El siguiente ejemplo define las listas de piezas firmadas localmente dentro de la configuración de
baliza firmada.

List<CompoundBeacon> compoundBeaconList = new ArrayList<>();
CompoundBeacon exampleCompoundBeacon = CompoundBeacon.builder()
 .name("compoundBeaconName")
 .split(".")
 .signed(signedPartList)
 .constructors(constructorList)
 .build();
compoundBeaconList.add(exampleCompoundBeacon);

Definición de la versión de baliza

El siguiente ejemplo define las listas de piezas firmadas de forma global en la versión de baliza.
Para obtener más información sobre cómo definir la versión de baliza, consulte Uso de balizas.

 List<BeaconVersion> beaconVersions = new ArrayList<>();
beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .signedParts(signedPartList)
 .version(1) // MUST be 1
 .keyStore(keyStore)
 .keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branchKeyId)
 .cacheTTL(6000)
 .build())
 .build())
 .build()
);

C# / .NET

Consulte el ejemplo de código completo: .cs BeaconConfig

Configuración de baliza firmada

Crear balizas firmadas 30

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/complexexample/BeaconConfig.cs

AWS SDK de cifrado de bases de datos Guía para desarrolladores

El siguiente ejemplo define las listas de piezas firmadas localmente dentro de la configuración de
baliza firmada.

var compoundBeaconList = new List<CompoundBeacon>();
var exampleCompoundBeacon = new CompoundBeacon
 {
 Name = "compoundBeaconName",
 Split = ".",
 Signed = signedPartList,
 Constructors = constructorList
 };
compoundBeaconList.Add(exampleCompoundBeacon);

Definición de la versión de baliza

El siguiente ejemplo define las listas de piezas firmadas de forma global en la versión de baliza.
Para obtener más información sobre cómo definir la versión de baliza, consulte Uso de balizas.

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = keyStore,
 KeySource = new BeaconKeySource
 {
 Single = new SingleKeyStore
 {
 KeyId = branchKeyId,
 CacheTTL = 6000
 }
 }
 }
};

Puede definir las piezas firmadas en listas definidas local o globalmente. Siempre que sea posible, le
recomendamos que defina las piezas firmadas en una lista global en la versión de baliza. Al definir
las partes firmadas de forma global, puede definir cada parte una vez y, a continuación, reutilizarlas

Crear balizas firmadas 31

AWS SDK de cifrado de bases de datos Guía para desarrolladores

en varias configuraciones de balizas compuestas. Si solo piensa utilizar una parte firmada una vez,
puede definirla en una lista local en la configuración de baliza firmada. Puede hacer referencia a
partes locales y globales en su lista de constructores.

Si define sus listas de piezas firmadas de forma global, debe proporcionar una lista de piezas de
construcción que identifique todas las formas posibles en que la baliza firmada puede ensamblar los
campos de la configuración de la baliza.

Note

Para definir listas de piezas firmadas de forma global, debe utilizar la versión 3.2 o posterior
del SDK de cifrado de AWS bases de datos. Implemente la nueva versión en todos los
lectores antes de definir cualquier pieza nueva a nivel mundial.
No puede actualizar las configuraciones de balizas existentes para definir listas de piezas
firmadas a nivel mundial.

Nombre de la baliza

El nombre que utilizas al consultar la baliza.

El nombre de una baliza firmada no puede ser el mismo nombre que el de un campo sin cifrar. No
puede haber dos balizas con el mismo nombre de baliza.

Carácter dividido

El personaje que se usa para separar las partes que componen su baliza firmada.

El carácter dividido no puede aparecer en los valores de texto no cifrado de ninguno de los
campos a partir de los que se construye la baliza firmada.

Lista de piezas firmadas

Identifica los campos firmados incluidos en la baliza firmada.

Cada parte debe incluir un nombre, una fuente y un prefijo. La fuente es el
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT campo SIGN_ONLY o que identifica la pieza.
La fuente debe ser un nombre de campo o un índice que haga referencia al valor de un campo
anidado. Si el nombre de la pieza identifica la fuente, puede omitirla y el SDK de cifrado de AWS
bases de datos utilizará automáticamente el nombre como fuente. Recomendamos especificar la
fuente como nombre de la pieza siempre que sea posible. El prefijo puede ser cualquier cadena,

Crear balizas firmadas 32

AWS SDK de cifrado de bases de datos Guía para desarrolladores

pero debe ser único. Dos partes firmadas de una baliza firmada no pueden tener el mismo prefijo.
Recomendamos utilizar un valor corto que distinga la pieza de otras partes servidas por la baliza
compuesta.

Recomendamos definir las piezas firmadas de forma global siempre que sea posible. Podría
considerar la posibilidad de definir una pieza firmada de forma local si solo tiene intención de
utilizarla en una baliza compuesta. Una pieza definida localmente no puede tener el mismo prefijo
o nombre que una pieza definida globalmente.

Java

List<SignedPart> signedPartList = new ArrayList<>);
 SignedPart signedPartExample = SignedPart.builder()
 .name("signedFieldName")
 .prefix("S-")
 .build();
 signedPartList.add(signedPartExample);

C# / .NET

var signedPartsList = new List<SignedPart>
{
 new SignedPart { Name = "signedFieldName1", Prefix = "S-" },
 new SignedPart { Name = "signedFieldName2", Prefix = "SF-" }
};

Lista de constructores (opcional)

Identifique los constructores que definen las diferentes formas en que la baliza firmada puede
ensamblar las piezas firmadas.

Si no especifica una lista de constructores, el SDK de cifrado AWS de bases de datos ensambla
la baliza firmada con el siguiente constructor predeterminado.

• Todas las piezas firmadas en el orden en que se agregaron a la lista de piezas firmadas

• Todas las piezas son obligatorias

Constructores

Cada constructor es una lista ordenada de piezas del constructor que define una forma
de ensamblar la baliza firmada. Las piezas del constructor se unen en el orden en que se
agregan a la lista, con cada parte separada por el carácter dividido especificado.

Crear balizas firmadas 33

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Cada parte del constructor nombra una parte firmada y define si esa parte es obligatoria u
opcional dentro del constructor. Por ejemplo, si desea consultar una baliza firmada sobre
Field1, Field1.Field2 yField1.Field2.Field3, marcar Field2 y Field3 como
opcional y crear un constructor.

Cada constructor debe tener como mínimo una pieza requerida. Recomendamos hacer que la
primera parte de cada constructor sea obligatoria para poder usar el operador BEGINS_WITH
en las consultas.

Un constructor tiene éxito si todas las piezas requeridas están presentes en el registro. Al
escribir un registro nuevo, la baliza firmada utiliza la lista de constructores para determinar
si la baliza se puede ensamblar a partir de los valores proporcionados. Intente ensamblar la
baliza en el orden en que se agregaron los constructores a la lista de constructores y utilice el
primer constructor que lo haga correctamente. Si ningún constructor tiene éxito, la baliza no se
graba en el registro.

Todos los lectores y redactores deben especificar el mismo orden de constructores para
garantizar que los resultados de sus consultas sean correctos.

Utilice los siguientes procedimientos para especificar su propia lista de constructores.

1. Cree una pieza constructora para cada pieza firmada para definir si esa pieza es necesaria o
no.

El nombre de la pieza constructora debe ser el nombre del campo firmado.

El siguiente ejemplo ilustra cómo crear una pieza de construcción para un campo firmado.

Java

ConstructorPart field1ConstructorPart = ConstructorPart.builder()
 .name("Field1")
 .required(true)
 .build();

C# / .NET

var field1ConstructorPart = new ConstructorPart { Name = "Field1", Required
 = true };

Crear balizas firmadas 34

AWS SDK de cifrado de bases de datos Guía para desarrolladores

2. Cree un constructor para cada una de las formas posibles de ensamblar la baliza firmada
utilizando las partes constructoras que creó en el paso 1.

Por ejemplo, si desea consultar sobre Field1.Field2.Field3 y
Field4.Field2.Field3, debe crear dos constructores. Tanto Field1 como Field4
pueden ser necesarios porque están definidos en dos constructores distintos.

Java

// Create a list for Field1.Field2.Field3 queries
List<ConstructorPart> field123ConstructorPartList = new ArrayList<>();
field123ConstructorPartList.add(field1ConstructorPart);
field123ConstructorPartList.add(field2ConstructorPart);
field123ConstructorPartList.add(field3ConstructorPart);
Constructor field123Constructor = Constructor.builder()
 .parts(field123ConstructorPartList)
 .build();
// Create a list for Field4.Field2.Field1 queries
List<ConstructorPart> field421ConstructorPartList = new ArrayList<>();
field421ConstructorPartList.add(field4ConstructorPart);
field421ConstructorPartList.add(field2ConstructorPart);
field421ConstructorPartList.add(field1ConstructorPart);
Constructor field421Constructor = Constructor.builder()
 .parts(field421ConstructorPartList)
 .build();

C# / .NET

// Create a list for Field1.Field2.Field3 queries
 var field123ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field1ConstructorPart,
 field2ConstructorPart, field3ConstructorPart }
};
// Create a list for Field4.Field2.Field1 queries
var field421ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field4ConstructorPart,
 field2ConstructorPart, field1ConstructorPart }
};

3. Cree una lista de constructores que incluya todos los constructores que creó en el Paso 2.

Crear balizas firmadas 35

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Java

List<Constructor> constructorList = new ArrayList<>();
constructorList.add(field123Constructor)
constructorList.add(field421Constructor)

C# / .NET

var constructorList = new List<Constructor>
{
 field123Constructor,
 field421Constructor
};

4. Especifique el constructorList cuando cree su baliza firmada.

Crear balizas firmadas 36

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Almacenes de claves en el SDK de cifrado AWS de bases
de datos

En el SDK AWS de cifrado de bases de datos, un almacén de claves es una tabla de Amazon
DynamoDB que conserva los datos jerárquicos utilizados por el conjunto de claves jerárquicas.AWS
KMS El almacén de claves ayuda a reducir el número de llamadas que necesita realizar para realizar
operaciones criptográficas con el anillo AWS KMS de claves jerárquico.

El almacén de claves conserva y administra las claves de ramificación que el conjunto de claves
jerárquico utiliza para cifrar sobres y proteger las claves de cifrado de datos. El almacén de claves
almacena la clave de rama activa y todas las versiones anteriores de la clave de rama. La clave de
rama activa es la versión más reciente de la clave de rama. El conjunto de claves jerárquico utiliza
una clave de cifrado de datos única para cada solicitud de cifrado y cifra cada clave de cifrado de
datos con una clave de empaquetado única derivada de la clave de sucursal activa. El conjunto de
claves jerárquico depende de la jerarquía establecida entre las claves de ramificación activas y las
claves de encapsulamiento derivadas.

La terminología y los conceptos del almacén de claves

Almacén de claves

La tabla de DynamoDB que conserva datos jerárquicos, como claves de bifurcación y baliza.

Clave raíz

Una clave KMS de cifrado simétrico que genera y protege las claves de sucursal y baliza del
almacén de claves.

Clave de sucursal

Clave de datos que se reutiliza para obtener una clave de empaquetado única para el cifrado de
sobres. Puede crear varias claves de rama en un almacén de claves, pero cada clave de rama
solo puede tener una versión de clave de rama activa a la vez. La clave de rama activa es la
versión más reciente de la clave de rama.

Las claves de bifurcación se derivan del AWS KMS keys uso de la
GenerateDataKeyWithoutPlaintext operación kms:.

La terminología y los conceptos del almacén de claves 37

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Clave de encapsulamiento

Una clave de datos única que se utiliza para cifrar la clave de cifrado de datos que se utiliza en
las operaciones de cifrado.

Las claves de empaquetado se derivan de las claves de ramificación. Para obtener más
información sobre el proceso de obtención de claves, consulte los detalles técnicos del conjunto
de claves AWS KMS jerárquicas.

Clave de cifrado de datos

Clave de datos que se utiliza en las operaciones de cifrado. El conjunto de claves jerárquico
utiliza una clave de cifrado de datos única para cada solicitud de cifrado.

Clave de baliza

Clave de datos que se utiliza para generar balizas para el cifrado con capacidad de búsqueda.
Para obtener más información, consulte Cifrado con capacidad de búsqueda.

Implementación de permisos de privilegio mínimo

Cuando utilice un almacén de claves y anillos de claves AWS KMS jerárquicos, le recomendamos
que siga el principio del privilegio mínimo definiendo las siguientes funciones:

Administrador del almacén de claves

Los administradores del almacén de claves son responsables de crear y administrar el almacén
de claves y las claves de sucursal que conserva y protege. Los administradores del almacén
de claves deben ser los únicos usuarios con permisos de escritura en la tabla de Amazon
DynamoDB que sirve como almacén de claves. Deben ser los únicos usuarios con acceso a
operaciones de administrador privilegiadas, como CreateKeyy. VersionKey Solo puede
realizar estas operaciones si configura estáticamente las acciones del almacén de claves.

CreateKeyes una operación privilegiada que puede añadir un nuevo ARN de clave de KMS a
su lista de almacenes de claves permitidos. Esta clave KMS puede crear nuevas claves de rama
activas. Recomendamos limitar el acceso a esta operación porque, una vez que se agrega una
clave KMS al almacén de claves de la sucursal, no se puede eliminar.

Usuario del almacén de claves

En la mayoría de los casos de uso, el usuario del almacén de claves solo interactúa con el
almacén de claves a través del anillo de claves jerárquico mientras cifra, descifra, firma y

Implementación de permisos de privilegio mínimo 38

AWS SDK de cifrado de bases de datos Guía para desarrolladores

verifica los datos. Como resultado, solo necesitan permisos de lectura para la tabla de Amazon
DynamoDB que sirve como almacén de claves. Los usuarios del almacén de claves solo deberían
necesitar acceder a las operaciones de uso que posibilitan las operaciones criptográficas,
comoGetActiveBranchKey, yGetBranchKeyVersion. GetBeaconKey No necesitan
permisos para crear o administrar las claves de sucursal que utilizan.

Puedes realizar operaciones de uso cuando las acciones de tu almacén de claves estén
configuradas de forma estática o cuando estén configuradas para su detección. No puede realizar
operaciones de administrador (niVersionKey) cuando CreateKey las acciones del almacén de
claves están configuradas para su descubrimiento.

Si el administrador del almacén de claves de la sucursal ha incluido varias claves de KMS en
el almacén de claves de la sucursal, se recomienda que los usuarios del almacén de claves
configuren las acciones del almacén de claves para su detección, de modo que su conjunto de
claves jerárquico pueda utilizar varias claves de KMS.

Crear un almacén de claves

Antes de poder crear claves de rama o utilizar un conjunto de claves AWS KMS jerárquico, debe
crear su almacén de claves, una tabla de Amazon DynamoDB que gestione y proteja las claves de
rama.

Important

No elimine la tabla de DynamoDB en la que se conservan las claves de rama. Si elimina esta
tabla, no podrá descifrar ningún dato cifrado con el anillo de claves jerárquico.

Siga los procedimientos de creación de una tabla de la Guía para desarrolladores de Amazon
DynamoDB y utilice los siguientes valores de cadena obligatorios para la clave de partición y la clave
de clasificación.

Clave de partición Clave de clasificación

Tabla base branch-key-id type

Crear un almacén de claves 39

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Nombre del almacén de claves lógicas

Al asignar un nombre a la tabla de DynamoDB que sirve como almacén de claves, es importante
tener en cuenta el nombre del almacén de claves lógico que especificará al configurar las acciones
del almacén de claves. El nombre del almacén de claves lógico actúa como identificador del almacén
de claves y no se puede cambiar una vez que el primer usuario lo haya definido inicialmente. Debe
especificar siempre el mismo nombre de almacén de claves lógico en las acciones del almacén de
claves.

Debe haber una one-to-one correlación entre el nombre de la tabla de DynamoDB y el nombre del
almacén de claves lógicas. El nombre del almacén de claves lógico está enlazado criptográficamente
a todos los datos almacenados en la tabla para simplificar las operaciones de restauración de
DynamoDB. Si bien el nombre del almacén de claves lógicas puede ser diferente del nombre
de la tabla de DynamoDB, se recomienda encarecidamente especificar el nombre de la tabla de
DynamoDB como nombre del almacén de claves lógicas. En caso de que el nombre de la tabla
cambie después de restaurar la tabla de DynamoDB a partir de una copia de seguridad, el nombre
del almacén de claves lógicas se puede asignar al nombre de la nueva tabla de DynamoDB para
garantizar que el anillo de claves jerárquico pueda seguir accediendo al almacén de claves.

No incluya información confidencial o delicada en el nombre del almacén de claves lógico. El nombre
del almacén de claves lógico se muestra en texto plano en AWS KMS CloudTrail eventos como.
tablename

Pasos a seguir a continuación

1. the section called “Configurar las acciones del almacén de claves”

2. the section called “Creación de claves de ramificaciones”

3. Cree un conjunto de claves AWS KMS jerárquico

Configurar las acciones del almacén de claves

Las acciones del almacén de claves determinan qué operaciones pueden realizar los usuarios y
cómo su conjunto de claves AWS KMS jerárquico utiliza las claves KMS permitidas incluidas en su
almacén de claves. El SDK AWS de cifrado de bases de datos admite las siguientes configuraciones
de acciones de almacenamiento de claves.

Configurar las acciones del almacén de claves 40

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Estático

Al configurar el almacén de claves de forma estática, el almacén de claves solo puede
usar la clave de KMS asociada al ARN de clave de KMS que se proporciona al configurar
kmsConfiguration el almacén de claves. Se produce una excepción si se encuentra un ARN
de clave de KMS diferente al crear, versionar u obtener una clave de rama.

Puede especificar una clave de KMS multirregional en su nombrekmsConfiguration, pero todo
el ARN de la clave, incluida la región, se conserva en las claves de rama derivadas de la clave de
KMS. No puedes especificar una clave en una región diferente, debes proporcionar exactamente
la misma clave multirregional para que los valores coincidan.

Al configurar de forma estática las acciones del almacén de claves, puede realizar operaciones
de uso (GetActiveBranchKeyGetBranchKeyVersion,GetBeaconKey) y operaciones
administrativas (CreateKeyyVersionKey). CreateKeyes una operación privilegiada que
puede añadir un nuevo ARN de clave de KMS a su lista de almacenes de claves permitidos. Esta
clave KMS puede crear nuevas claves de rama activas. Recomendamos limitar el acceso a esta
operación porque, una vez que se agrega una clave KMS al almacén de claves, no se puede
eliminar.

Discovery

Al configurar las acciones del almacén de claves para la detección, el almacén de claves puede
usar cualquier AWS KMS key ARN que esté incluido en la lista de permitidos del almacén
de claves. Sin embargo, se produce una excepción cuando se encuentra una clave KMS
multirregional y la región del ARN de la clave no coincide con la región AWS KMS del cliente que
se está utilizando.

Al configurar el almacén de claves para la detección, no puede realizar operaciones
administrativas, como CreateKey y. VersionKey Solo puede realizar las operaciones de uso
que permiten las operaciones de cifrado, descifrado, firma y verificación. Para obtener más
información, consulte the section called “Implementación de permisos de privilegio mínimo”.

Configure las acciones de su almacén de claves

Antes de configurar las acciones del almacén de claves, asegúrese de que se cumplen los siguientes
requisitos previos.

• Determine qué operaciones debe realizar. Para obtener más información, consulte the section
called “Implementación de permisos de privilegio mínimo”.

Configure las acciones de su almacén de claves 41

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• Elija un nombre de almacén de claves lógico

Debe haber una one-to-one correlación entre el nombre de la tabla de DynamoDB y el
nombre del almacén de claves lógicas. El nombre del almacén de claves lógico está enlazado
criptográficamente a todos los datos almacenados en la tabla para simplificar las operaciones de
restauración de DynamoDB. No se puede cambiar una vez que el primer usuario lo haya definido
inicialmente. Debe especificar siempre el mismo nombre de almacén de claves lógico en las
acciones del almacén de claves. Para obtener más información, consulte logical key store name.

Configuración estática

El siguiente ejemplo configura estáticamente las acciones del almacén de claves. Debe especificar
el nombre de la tabla de DynamoDB que sirve como almacén de claves, un nombre lógico para el
almacén de claves y el ARN de clave KMS que identifica una clave KMS de cifrado simétrico.

Note

Tenga en cuenta detenidamente el ARN de la clave de KMS que especifique al configurar de
forma estática el servicio de almacén de claves. La CreateKey operación agrega el ARN de
la clave KMS a la lista de permitidos del almacén de claves de la sucursal. Una vez que se
agrega una clave KMS al almacén de claves de la sucursal, no se puede eliminar.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())
 .ddbTableName(keyStoreName)
 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .kmsKeyArn(kmsKeyArn)
 .build())
 .build()).build();

C# / .NET

var kmsConfig = new KMSConfiguration { KmsKeyArn = kmsKeyArn };
 var keystoreConfig = new KeyStoreConfig

Configure las acciones de su almacén de claves 42

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = kmsConfig,
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Rust

let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let key_store_config = KeyStoreConfig::builder()
 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
 .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)
 .kms_configuration(KmsConfiguration::KmsKeyArn(kms_key_arn.to_string()))
 .build()?;

let keystore = keystore_client::Client::from_conf(key_store_config)?;

Configuración de descubrimiento

El siguiente ejemplo configura las acciones del almacén de claves para la detección. Debe
especificar el nombre de la tabla de DynamoDB que sirve como almacén de claves y un nombre de
almacén de claves lógico.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())
 .ddbTableName(keyStoreName)
 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .discovery(Discovery.builder().build())
 .build())
 .build()).build();

Configure las acciones de su almacén de claves 43

AWS SDK de cifrado de bases de datos Guía para desarrolladores

C# / .NET

var keystoreConfig = new KeyStoreConfig
 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = new KMSConfiguration {Discovery = new Discovery()},
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Rust

let key_store_config = KeyStoreConfig::builder()
 .kms_client(kms_client)
 .ddb_client(ddb_client)
 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)

 .kms_configuration(KmsConfiguration::Discovery(Discovery::builder().build()?))
 .build()?;

Creación de una clave de rama activa

Una clave de sucursal es una clave de datos derivada de una AWS KMS key que el conjunto de
claves AWS KMS jerárquico utiliza para reducir el número de llamadas realizadas. AWS KMS La
clave de rama activa es la versión más reciente de la clave de rama. El conjunto de claves jerárquico
genera una clave de datos única para cada solicitud de cifrado y cifra cada clave de datos con una
clave de encapsulamiento única derivada de la clave de rama activa.

Para crear una nueva clave de rama activa, debe configurar de forma estática las acciones del
almacén de claves. CreateKeyes una operación privilegiada que agrega el ARN de clave KMS
especificado en la configuración de acciones del almacén de claves a la lista de permitidos del
almacén de claves. A continuación, la clave KMS se utiliza para generar la nueva clave de rama
activa. Recomendamos limitar el acceso a esta operación porque, una vez que se agrega una clave
KMS al almacén de claves, no se puede eliminar.

Creación de claves de ramificaciones 44

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Recomendamos utilizar la CreateKey operación a través de la interfaz de KeyStore administración
del plano de control de la aplicación. Este enfoque se alinea con prácticas recomendadas para la
administración clave.

No cree claves de bifurcación en el plano de datos. Esta práctica puede provocar:

• Llamadas innecesarias a AWS KMS

• Múltiples llamadas simultáneas AWS KMS en entornos de alta concurrencia

• Varias TransactWriteItems llamadas a la tabla de DynamoDB de respaldo.

La CreateKey operación incluye una comprobación del estado de la TransactWriteItems
llamada para evitar que se sobrescriban las claves de rama existentes. Sin embargo, la creación
de claves en el plano de datos aún puede provocar un uso ineficiente de los recursos y posibles
problemas de rendimiento.

Puede permitir incluir una clave de KMS en su almacén de claves o puede incluir varias claves de
KMS actualizando el ARN de la clave de KMS que especifique en la configuración de acciones de
su almacén de claves y volviendo a llamar. CreateKey Si permites incluir en la lista varias claves
de KMS, los usuarios de tu almacén de claves deben configurar sus acciones de almacenamiento
de claves para su detección, de modo que puedan usar cualquiera de las claves permitidas del
almacén de claves al que tienen acceso. Para obtener más información, consulte the section called
“Configurar las acciones del almacén de claves”.

Permisos de necesarios

Para crear claves de rama, necesitas los ReEncrypt permisos kms:
GenerateDataKeyWithoutPlaintext y kms: en la clave KMS especificada en las acciones de tu
almacén de claves.

Creación de una clave de rama

La siguiente operación crea una nueva clave de rama activa con la clave de KMS que especificó en
la configuración de acciones del almacén de claves y agrega la clave de rama activa a la tabla de
DynamoDB que sirve como almacén de claves.

Al llamar a CreateKey, puede optar por especificar los siguientes valores opcionales.

• branchKeyIdentifier: define una branch-key-id personalizada.

Creación de claves de ramificaciones 45

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Para crear una branch-key-id personalizada, también debe incluir un contexto de cifrado
adicional con el parámetro encryptionContext.

• encryptionContext: define un conjunto opcional de pares clave-valor no secretos que
proporciona datos autenticados adicionales (AAD) en el contexto de cifrado incluido en la llamada
a kms:. GenerateDataKeyWithoutPlaintext

Este contexto de cifrado adicional se muestra con el prefijo aws-crypto-ec:.

Java

final Map<String, String> additionalEncryptionContext =
 Collections.singletonMap("Additional Encryption Context for",
 "custom branch key id");

 final String BranchKey = keystore.CreateKey(
 CreateKeyInput.builder()
 .branchKeyIdentifier(custom-branch-key-id) //OPTIONAL
 .encryptionContext(additionalEncryptionContext) //OPTIONAL

 .build()).branchKeyIdentifier();

C# / .NET

var additionalEncryptionContext = new Dictionary<string, string>();
 additionalEncryptionContext.Add("Additional Encryption Context for", "custom
 branch key id");

 var branchKeyId = keystore.CreateKey(new CreateKeyInput
 {
 BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL
 EncryptionContext = additionalEncryptionContext // OPTIONAL
 });

Rust

let additional_encryption_context = HashMap::from([
 ("Additional Encryption Context for".to_string(), "custom branch key
 id".to_string())
]);

Creación de claves de ramificaciones 46

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

let branch_key_id = keystore.create_key()
 .branch_key_identifier("custom-branch-key-id") // OPTIONAL
 .encryption_context(additional_encryption_context) // OPTIONAL
 .send()
 .await?
 .branch_key_identifier
 .unwrap();

En primer lugar, la operación CreateKey genera los siguientes valores.

• Un identificador único universal (UUID) de la versión 4 para el branch-key-id (a menos que
haya especificado una branch-key-id personalizada).

• Un UUID de la versión 4 para la versión de clave de rama

• Una timestamp en el formato de fecha y hora ISO 8601 en hora universal coordinada (UTC).

A continuación, la CreateKey operación llama a kms: GenerateDataKeyWithoutPlaintext mediante
la siguiente solicitud.

{
 "EncryptionContext": {
 "branch-key-id" : "branch-key-id",
 "type" : "type",
 "create-time" : "timestamp",
 "logical-key-store-name" : "the logical table name for your key store",
 "kms-arn" : the KMS key ARN,
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 },
 "KeyId": "the KMS key ARN you specified in your key store actions",
 "NumberOfBytes": "32"
 }

Note

La operación CreateKey crea una clave de rama activa y una clave de baliza, incluso si no
ha configurado la base de datos para el cifrado con capacidad de búsqueda. Ambas claves
se almacenan en el almacén de claves. Para obtener más información, consulte Uso del
conjunto de claves jerárquico para el cifrado para búsquedas.

Creación de claves de ramificaciones 47

https://www.ietf.org/rfc/rfc4122.txt
https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

A continuación, la CreateKey operación llama a kms: ReEncrypt para crear un registro activo para
la clave de rama mediante la actualización del contexto de cifrado.

Por último, la CreateKey operación llama a ddb: TransactWriteItems para escribir un nuevo
elemento que conserve la clave de rama en la tabla que creó en el paso 2. El objeto tiene los
siguientes atributos:

{
 "branch-key-id" : branch-key-id,
 "type" : "branch:ACTIVE",
 "enc" : the branch key returned by the GenerateDataKeyWithoutPlaintext call,
 "version": "branch:version:the branch key version UUID",
 "create-time" : "timestamp",
 "kms-arn" : "the KMS key ARN you specified in Step 1",
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 }

Rote la clave de rama activa

Solo puede haber una versión activa para cada clave de rama a la vez. Por lo general, cada versión
de clave de rama activa se utiliza para satisfacer múltiples solicitudes. Sin embargo, usted controla el
grado en que se reutilizan las claves de rama activas y determina la frecuencia con la que se gira la
clave de rama activa.

Las claves de rama no se utilizan para cifrar claves de datos de texto simple. Se utilizan para obtener
las claves de encapsulamiento únicas que cifran las claves de datos de texto no cifrado. El proceso
de derivación de la clave de encapsulamiento produce una clave de encapsulamiento única de
32 bytes con 28 bytes de asignación al azar. Esto significa que una clave de ramificación puede
obtener más de 79 octillones, o 296, claves de encapsulamiento únicas antes de que se produzca un
desgaste criptográfico. A pesar de este riesgo de agotamiento muy bajo, es posible que deba rotar la
clave de rama activa debido a reglas comerciales o contractuales o regulaciones gubernamentales.

La versión activa de la clave de rama permanece activa hasta que la rotes. Las versiones anteriores
de la clave de encapsulamiento, no se utilizarán para realizar operaciones de cifrado ni para
obtener nuevas claves de encapsulamiento, pero sí se pueden consultar y proporcionar claves de
encapsulamiento para descifrar las claves de datos que cifraron mientras estaban activas.

Rote la clave de rama activa 48

https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Warning

La eliminación de las claves de ramificación en los entornos de prueba es irreversible. No
puede recuperar las claves de rama eliminadas. Al eliminar y volver a crear claves de rama
con el mismo ID en entornos de prueba, pueden producirse los siguientes problemas:

• Es posible que los materiales de las pruebas anteriores permanezcan en la memoria caché

• Algunos hosts o subprocesos de prueba pueden cifrar los datos mediante claves de rama
eliminadas

• Los datos cifrados con ramas eliminadas no se pueden descifrar el cifrado con ramas
eliminadas

Para evitar errores de cifrado en las pruebas de integración:

• Restablezca la referencia jerárquica del conjunto de claves antes de crear nuevas claves
de rama, O

• Utilice una clave de bifurcación única IDs para cada prueba

Permisos necesarios

Para rotar las claves de ramificación, necesitas ReEncrypt los permisos kms:
GenerateDataKeyWithoutPlaintext y kms: en la clave KMS especificada en las acciones de tu
almacén de claves.

Gire la clave de rama activa

Utilice la VersionKey operación para rotar la clave de rama activa. Al girar la clave de rama activa,
se crea una nueva clave de rama para sustituir a la versión anterior. La branch-key-id no cambia
al girar la clave de rama activa. Debe especificar la branch-key-id que identifica la clave de rama
activa actual cuando llama a VersionKey.

Java

keystore.VersionKey(
 VersionKeyInput.builder()
 .branchKeyIdentifier("branch-key-id")
 .build()
);

Rote la clave de rama activa 49

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

C# / .NET

 keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});

Rust

keystore.version_key()
 .branch_key_identifier(branch_key_id)
 .send()
 .await?;

Rote la clave de rama activa 50

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Conjuntos de claves

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

El SDK AWS de cifrado de bases de datos utiliza anillos de claves para realizar el cifrado de sobres.
Los conjuntos de claves generan, cifran y descifran claves de datos. Según el conjunto de claves que
se utilice, se determinará el origen de las claves de datos únicas que protegen cada registro cifrado
y las claves de encapsulación que cifran dichas claves de datos. Al cifrar especifica un conjunto de
claves y al descifrar usa ese mismo conjunto de claves u otro conjunto de claves.

Puede utilizar cada conjunto de claves de forma individual o combinar conjuntos de claves en un
conjunto de claves múltiple. Aunque la mayoría de los conjuntos de claves pueden generar, cifrar
y descifrar claves de datos, podría crear un conjunto de claves que realice solo una operación
particular, por ejemplo, un conjunto de claves que solo genere claves de datos y utilizar dicho
conjunto de claves en combinación con otros.

Le recomendamos que utilice un anillo de claves que proteja las claves de empaquetado y lleve a
cabo operaciones criptográficas dentro de un límite seguro, como el anillo de AWS KMS claves, que
utiliza AWS KMS keys ese anillo que nunca deja AWS Key Management Service() sin cifrar.AWS
KMS También puede crear un conjunto de claves que utilice claves empaquetadoras almacenadas
en los módulos de seguridad del hardware (HSMs) o protegidas por otros servicios de claves
maestras.

Su conjunto de claves determina las claves de encapsulamiento que protegen sus claves de datos
y, en última instancia, sus datos. Utilice las claves de encapsulación más seguras que resulten
prácticas para su tarea. Siempre que sea posible, utilice las claves de encapsulación que están
protegidas por un módulo de seguridad de hardware (HSM) o una infraestructura de administración
de claves, como las claves KMS en AWS Key Management Service (AWS KMS) o claves de cifrado
en AWS CloudHSM.

El SDK AWS de cifrado de bases de datos proporciona varios llaveros y configuraciones de llaveros,
y usted puede crear sus propios llaveros personalizados. También puede crear un conjunto de claves
múltiple que incluya uno o más conjuntos de claves del mismo tipo o de uno diferente.

Temas

51

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• Cómo funcionan los conjuntos de claves

• AWS KMS llaveros

• AWS KMS Llaveros jerárquicos

• AWS KMS Llaveros ECDH

• Conjunto de claves de AES sin formato

• Conjunto de claves de RSA sin formato

• Llaveros ECDH sin procesar

• Conjuntos de claves múltiples

Cómo funcionan los conjuntos de claves

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Al cifrar y firmar un campo de la base de datos, el SDK de cifrado de bases de AWS datos solicita
al conjunto de claves los materiales de cifrado. Este devuelve una clave en texto no cifrado, una
copia de dicha clave cifrada por cada una de las claves de encapsulación del conjunto de claves y
una clave MAC que está asociada a la clave de datos. El SDK AWS de cifrado de bases de datos
utiliza la clave de texto sin formato para cifrar los datos y, a continuación, elimina la clave de datos
de texto sin formato de la memoria lo antes posible. A continuación, el SDK de cifrado de bases de
datos de AWS agrega una descripción que incluye las claves de datos cifrados y otra información,
como las instrucciones de cifrado y firma. El SDK AWS de cifrado de bases de datos utiliza la
clave MAC para calcular los códigos de autenticación de mensajes basados en hash (HMACs)
mediante la canonicalización de la descripción del material y de todos los campos marcados con o.
ENCRYPT_AND_SIGN SIGN_ONLY

Al descifrar datos, puede utilizar el mismo conjunto de claves que utilizó para cifrar los datos o uno
diferente. Para descifrar los datos, un conjunto de claves de descifrado debe tener acceso al menos
una clave de encapsulación del conjunto de claves de cifrado.

El SDK AWS de cifrado de bases de datos pasa las claves de datos cifradas de la descripción
del material al conjunto de claves y pide al conjunto de claves que descifre cualquiera de ellas. El
conjunto de claves utiliza sus claves de encapsulación para descifrar una de las claves de datos

Cómo funcionan los conjuntos de claves 52

AWS SDK de cifrado de bases de datos Guía para desarrolladores

cifradas y devuelve una clave de datos en texto no cifrado. El SDK de cifrado de bases de datos de
AWS utiliza la clave de datos en texto no cifrado para descifrar los datos. Si ninguna de las claves
de encapsulación del conjunto de claves puede descifrar ninguna de las claves de datos cifradas, se
producirá un error en la operación de descifrado.

Puede utilizar un único conjunto de claves o además combinar conjuntos de claves del mismo tipo o
de un tipo distinto en un conjunto de claves múltiple. Al cifrar los datos, el conjunto de claves múltiple
devuelve una copia de la clave de datos cifrada por todas las claves de encapsulación en todos
los conjuntos de claves que componen el conjunto de claves múltiples y una clave MAC que está
asociada a la clave de datos. Puede descifrar los datos utilizando un conjunto de claves configurado
con cualquiera de las claves de encapsulación del conjunto de claves múltiples.

AWS KMS llaveros

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Un conjunto de AWS KMS claves utiliza el cifrado simétrico o el RSA asimétrico AWS KMS keyspara
generar, cifrar y descifrar las claves de datos. AWS Key Management Service (AWS KMS) protege
las claves KMS y realiza operaciones criptográficas dentro del límite del FIPS. Siempre que sea
posible, le recomendamos que utilice un AWS KMS anillo de claves o un anillo de claves con
propiedades de seguridad similares.

También puede usar una clave KMS simétrica multirregional en un anillo de claves. AWS KMS Para
obtener más detalles y ejemplos sobre el uso de varias AWS KMS keys regiones, consulte. Uso
de varias regiones AWS KMS keys Para obtener más información sobre las claves de regiones
múltiples, consulte Uso de claves de multirregiones en la Guía para desarrolladores de AWS Key
Management Service .

AWS KMS Los llaveros pueden incluir dos tipos de llaves de embalaje:

• Clave generadora: genera una clave de datos en texto no cifrado y la cifra. Un conjunto de claves
que cifra datos debe tener una clave generadora.

• Claves adicionales: cifra la clave de datos de texto sin formato que generó la clave del generador.
AWS KMS los llaveros pueden tener cero o más claves adicionales.

AWS KMS llaveros 53

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Debe tener una clave generadora para cifrar los registros. Cuando un conjunto de AWS KMS claves
tiene solo una AWS KMS clave, esa clave se usa para generar y cifrar la clave de datos.

Como todos los llaveros, los AWS KMS llaveros se pueden utilizar de forma independiente o en un
llavero múltiple con otros llaveros del mismo tipo o de un tipo diferente.

Temas

• Permisos necesarios para los conjuntos de claves de AWS KMS

• Identificarse AWS KMS keys en un AWS KMS llavero

• Crear un anillo de claves AWS KMS

• Uso de varias regiones AWS KMS keys

• Uso de un anillo de claves de detección AWS KMS

• Uso de un anillo de claves de detección AWS KMS regional

Permisos necesarios para los conjuntos de claves de AWS KMS

El SDK AWS de cifrado de bases de datos no requiere ni Cuenta de AWS depende de ninguno.
Servicio de AWS Sin embargo, para usar un AWS KMS conjunto de claves, necesita tener Cuenta de
AWS los siguientes permisos mínimos AWS KMS keys en su conjunto de claves.

• Para cifrar con un AWS KMS anillo de claves, necesita el GenerateDataKey permiso kms: en la
clave del generador. Necesita el permiso KMS:Encrypt para todas las claves adicionales del anillo
de claves. AWS KMS

• Para descifrar con un AWS KMS anillo de claves, necesita el permiso KMS:Decrypt en al menos
una clave del anillo de claves. AWS KMS

• Para cifrar con un conjunto de claves múltiples compuesto por AWS KMS anillos de claves,
necesita el permiso kms: en la clave generadora del conjunto de claves del generador.
GenerateDataKey Necesita el permiso KMS:Encrypt para el resto de claves de todos los demás
conjuntos de claves. AWS KMS

• Para cifrar con un AWS KMS anillo de claves RSA asimétrico, no necesita kms: GenerateDataKey
ni KMS:Encrypt porque debe especificar el material de clave pública que desea utilizar para el
cifrado al crear el anillo de claves. No se realizan llamadas AWS KMS al cifrar con este anillo de
claves. Para descifrar con un AWS KMS anillo de claves RSA asimétrico, necesita el permiso
KMS:Decrypt.

Permisos necesarios para los conjuntos de claves de AWS KMS 54

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Para obtener información detallada sobre los permisos AWS KMS keys, consulte Autenticación y
control de acceso en la Guía para desarrolladores.AWS Key Management Service

Identificarse AWS KMS keys en un AWS KMS llavero

Un AWS KMS llavero puede incluir uno o más. AWS KMS keys Para especificar un elemento AWS
KMS key en un conjunto de AWS KMS claves, utilice un identificador de AWS KMS clave compatible.
Los identificadores clave que puede utilizar para identificar un elemento de un AWS KMS key
conjunto de claves varían según la operación y la implementación del idioma. Para obtener más
información sobre los identificadores clave de una AWS KMS key, consulte Identificadores clave en
la Guía para desarrolladores de AWS Key Management Service .

Como práctica recomendada, utilice el identificador de clave más práctico que sea práctico para su
tarea.

• Para cifrar con un AWS KMS anillo de claves, puede utilizar un ID de clave, un ARN de clave, un
nombre de alias o un ARN de alias para cifrar los datos.

Note

Si especifica un nombre de alias o un ARN de alias para una clave de KMS en un conjunto
de claves de cifrado, la operación de cifrado guarda el ARN de clave actualmente asociado
al alias en los metadatos de la clave de datos cifrada. No guarda el alias. Los cambios en
el alias no afectan a la clave de KMS utilizada para descifrar las claves de datos cifrados.

• Para descifrar con un AWS KMS anillo de claves, debe usar un ARN de clave para
identificarlo. AWS KMS keys Para obtener más información, consulte Seleccionar las claves de
encapsulamiento.

• En un conjunto de claves usado para cifrar y descifrar, debe usar el ARN de una clave para
identificar AWS KMS keys.

Al descifrar, el SDK de cifrado de AWS bases de datos busca en el conjunto de AWS KMS claves
una AWS KMS key que pueda descifrar una de las claves de datos cifrados. En concreto, el SDK
AWS de cifrado de bases de datos utiliza el siguiente patrón para cada clave de datos cifrada de la
descripción del material.

• El SDK AWS de cifrado de bases de datos obtiene la clave ARN de la clave AWS KMS key que
cifró la clave de datos de los metadatos de la descripción del material.

Identificarse AWS KMS keys en un AWS KMS llavero 55

https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• El SDK AWS de cifrado de bases de datos busca en el conjunto de claves de descifrado un ARN
AWS KMS key con una clave coincidente.

• Si encuentra un ARN AWS KMS key con una clave coincidente en el anillo de claves, el SDK de
cifrado de AWS bases de datos solicita usar la clave KMS AWS KMS para descifrar la clave de
datos cifrados.

• De lo contrario, pasa a la siguiente clave de datos cifrada, si la hay.

Crear un anillo de claves AWS KMS

Puede configurar cada AWS KMS llavero con uno AWS KMS key o varios AWS KMS keys en la
misma o en una diferente Cuentas de AWS . Regiones de AWS La AWS KMS key debe ser una
clave de cifrado simétrico (SYMMETRIC_DEFAULT) o una clave asimétrica RSA KMS. También puede
utilizar una clave KMS de múltiples regiones de cifrado simétrico. Puedes usar uno o más AWS KMS
llaveros en un llavero múltiple.

Puede crear un conjunto de AWS KMS claves que cifre y descifre los datos, o puede crear anillos
de AWS KMS claves específicos para cifrar o descifrar. Al crear un conjunto de AWS KMS claves
para cifrar datos, debe especificar una clave generadora, que es aquella que se utiliza para generar
una clave de datos en AWS KMS key texto plano y cifrarla. La clave de datos no está relacionada
matemáticamente con la clave de KMS. A continuación, si lo desea, puede especificar otras claves
adicionales AWS KMS keys que cifren la misma clave de datos en texto plano. Para descifrar un
campo cifrado protegido por este anillo de claves, el anillo de claves de descifrado que utilice debe
incluir al menos una de las AWS KMS keys definidas en el anillo de claves, o no. AWS KMS keys(Un
anillo de AWS KMS claves sin un número se conoce como anillo de claves de AWS KMS keys
detección).AWS KMS

Todas las claves de encapsulación de un conjunto de claves de cifrado o de varios conjunto de
claves deben poder cifrar la clave de datos. Si alguna clave de encapsulación no se cifra, el método
de cifrado falla. Como resultado, la persona que llama debe tener los permisos necesarios para todas
las claves del conjunto de claves. Si utiliza un conjunto de claves de detección para cifrar los datos,
solo o en un conjunto de claves múltiple, la operación de cifrado no se realizará correctamente.

Los ejemplos siguientes utilizan el CreateAwsKmsMrkMultiKeyring método
para crear un AWS KMS anillo de claves con una clave KMS de cifrado simétrico. El
CreateAwsKmsMrkMultiKeyring método crea automáticamente el AWS KMS cliente y garantiza
que el conjunto de claves gestione correctamente tanto las claves de una sola región como las de

Crear un anillo de claves AWS KMS 56

AWS SDK de cifrado de bases de datos Guía para desarrolladores

varias regiones. En estos ejemplos, se utiliza una clave ARNs para identificar las claves del KMS.
Para obtener más información, consulte Identificarse AWS KMS keys en un AWS KMS llavero

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyArn)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput
{
 Generator = kmsKeyArn
};
var awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Rust

let provider_config = MaterialProvidersConfig::builder().build()?;
let mat_prov = client::Client::from_conf(provider_config)?;
let kms_keyring = mat_prov
 .create_aws_kms_mrk_multi_keyring()
 .generator(kms_key_id)
 .send()
 .await?;

En los ejemplos siguientes, se utiliza el CreateAwsKmsRsaKeyring método para crear un AWS
KMS anillo de claves con una clave RSA KMS asimétrica. Para crear un AWS KMS anillo de claves
RSA asimétrico, proporcione los siguientes valores.

• kmsClient: crea un cliente nuevo AWS KMS

• kmsKeyID: el ARN clave que identifica su clave RSA KMS asimétrica

Crear un anillo de claves AWS KMS 57

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• publicKey: a ByteBuffer de un archivo PEM codificado en UTF-8 que representa la clave pública
de la clave a la que se le pasó kmsKeyID

• encryptionAlgorithm: el algoritmo de cifrado debe ser o RSAES_OAEP_SHA_256
RSAES_OAEP_SHA_1

Java

 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
 CreateAwsKmsRsaKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .kmsKeyId(rsaKMSKeyArn)
 .publicKey(publicKey)
 .encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
 .build();
IKeyring awsKmsRsaKeyring =
 matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsRsaKeyringInput = new CreateAwsKmsRsaKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = rsaKMSKeyArn,
 PublicKey = publicKey,
 EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};
IKeyring awsKmsRsaKeyring =
 matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_rsa_keyring = mpl
 .create_aws_kms_rsa_keyring()

Crear un anillo de claves AWS KMS 58

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 .kms_key_id(rsa_kms_key_arn)
 .public_key(public_key)

 .encryption_algorithm(aws_sdk_kms::types::EncryptionAlgorithmSpec::RsaesOaepSha256)
 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
 .send()
 .await?;

Uso de varias regiones AWS KMS keys

Puede utilizar varias regiones AWS KMS keys como claves de empaquetado en el SDK de cifrado
de AWS bases de datos. Si cifra con una clave multirregional en una Región de AWS, puede
desencriptar utilizando una clave multirregional relacionada en otra diferente. Región de AWS

Las claves KMS multirregionales son un conjunto de AWS KMS keys diferentes claves Regiones
de AWS que tienen el mismo material y el mismo identificador de clave. Puede usar estas claves
relacionadas como si fueran la misma clave en diferentes regiones. Las claves multirregionales son
compatibles con los escenarios habituales de recuperación ante desastres y copias de seguridad,
que requieren el cifrado en una región y el descifrado en una región diferente sin necesidad de
realizar una llamada entre regiones. AWS KMS Para obtener más información sobre las claves de
regiones múltiples, consulte Uso de claves de multirregiones en la Guía para desarrolladores de
AWS Key Management Service .

Para admitir claves multirregionales, el SDK de cifrado de AWS bases de datos incluye conjuntos de
claves. AWS KMS multi-Region-aware El método CreateAwsKmsMrkMultiKeyring admite claves
de una sola región y de múltiples regiones.

• En el caso de las claves de una sola región, el multi-Region-aware símbolo se comporta igual
que el anillo de claves de una sola región. AWS KMS Intenta descifrar el texto cifrado únicamente
con la clave de región única que cifró los datos. Para simplificar su experiencia con el conjunto de
AWS KMS claves, le recomendamos que utilice CreateAwsKmsMrkMultiKeyring este método
siempre que utilice una clave KMS de cifrado simétrico.

• En el caso de las claves multirregionales, el multi-Region-aware símbolo intenta descifrar el
texto cifrado con la misma clave multirregional que cifró los datos o con la clave multirregional
relacionada en la región que especifique.

En los multi-Region-aware anillos de claves que contienen más de una clave KMS, puede especificar
varias claves de una o varias regiones. Sin embargo, solo puede especificar una clave de cada

Uso de varias regiones AWS KMS keys 59

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

conjunto de claves de múltiples regiones relacionadas. Si especifica más de un identificador de clave
con el mismo ID de clave, se produce un error en la llamada al constructor.

En los siguientes ejemplos, se crea un AWS KMS anillo de claves con una clave KMS multirregional.
Los ejemplos especifican una clave multirregional como clave generadora y una clave de región
única como clave secundaria.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(multiRegionKeyArn)
 .kmsKeyIds(Collections.singletonList(kmsKeyArn))
 .build();
IKeyring awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput
{
 Generator = multiRegionKeyArn,
 KmsKeyIds = new List<String> { kmsKeyArn }
};
var awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let aws_kms_mrk_multi_keyring = mpl
 .create_aws_kms_mrk_multi_keyring()
 .generator(multiRegion_key_arn)
 .kms_key_ids(vec![key_arn.to_string()])
 .send()
 .await?;

Uso de varias regiones AWS KMS keys 60

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Si utiliza conjuntos de AWS KMS claves multirregionales, puede descifrar el texto cifrado en modo
estricto o en modo de descubrimiento. Para descifrar el texto cifrado en modo estricto, cree una
instancia del símbolo multi-Region-aware con la clave ARN de la clave multirregión relacionada
en la región en la que esté descifrando el texto cifrado. Si especifica la clave ARN de una clave
multirregional relacionada en una región diferente (por ejemplo, la región en la que se cifró el
registro), el multi-Region-aware símbolo realizará una llamada entre regiones para dicha clave. AWS
KMS key

Al descifrar en modo estricto, el multi-Region-aware símbolo requiere una clave ARN. Solo acepta un
ARN de clave de cada conjunto de claves de varias regiones relacionadas.

También puede descifrar en modo de detección con claves de múltiples regiones de AWS KMS . Al
descifrar en modo de detección, no especifique ningún AWS KMS keys. (Para obtener información
sobre los conjuntos de claves de AWS KMS detección de una sola región, consulte.) Uso de un anillo
de claves de detección AWS KMS

Si ha cifrado con una clave multirregional, el multi-Region-aware símbolo en el modo de
descubrimiento intentará descifrarse utilizando una clave multirregional relacionada en la región
local. Si no existe ninguno, se produce un error en la llamada. En el modo de detección, el SDK de
cifrado AWS de bases de datos no intentará realizar una llamada entre regiones para obtener la
clave multirregional utilizada para el cifrado.

Uso de un anillo de claves de detección AWS KMS

Al descifrar, se recomienda especificar las claves de empaquetado que puede usar el SDK de cifrado
AWS de bases de datos. Para seguir esta práctica recomendada, utilice un conjunto de claves de
AWS KMS descifrado que limite las claves de AWS KMS empaquetado a las que especifique. Sin
embargo, también puede crear un anillo de claves de AWS KMS detección, es decir, un anillo de
AWS KMS claves que no especifique ninguna clave de empaquetado.

El SDK AWS de cifrado de bases de datos proporciona un conjunto de claves de AWS KMS
detección estándar y un conjunto de claves de detección para claves de varias regiones. AWS KMS
Para obtener información sobre cómo usar claves de varias regiones con el SDK de cifrado de bases
de datos de AWS , consulte Uso de varias regiones AWS KMS keys.

Como no especifica ninguna clave de encapsulación, un conjunto de claves de detección no puede
cifrar los datos. Si utiliza un conjunto de claves de detección para cifrar los datos, solo o en un
conjunto de claves múltiple, la operación de cifrado no se realizará correctamente.

Uso de un anillo de claves de detección AWS KMS 61

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Al descifrar, un conjunto de claves de detección permite al SDK de cifrado de AWS bases de datos
solicitar AWS KMS el descifrado de cualquier clave de datos cifrada utilizando la clave AWS KMS
key que la cifró, independientemente de quién sea su propietario o tenga acceso a ella. AWS KMS
key La llamada se realiza correctamente solo si el intermediario tiene permiso de kms:Decrypt
sobre la AWS KMS key.

Important

Si incluye un conjunto de claves de AWS KMS detección en un conjunto de claves de
descifrado múltiple, el conjunto de claves de descubrimiento anula todas las restricciones
de claves de KMS especificadas en otros conjuntos de claves del conjunto de claves
múltiples. El conjunto de claves múltiples se comporta como el menos restrictivo. Si utiliza un
conjunto de claves de detección para cifrar datos, solo o en un conjunto de claves múltiple, la
operación de cifrado no se realizará correctamente

El SDK de cifrado de AWS bases de datos incluye un conjunto de claves de detección para mayor
comodidad. AWS KMS No obstante, recomendamos que utilice un conjunto de claves más limitado
siempre que sea posible por los siguientes motivos.

• Autenticidad: un AWS KMS conjunto de claves de detección puede utilizar cualquier clave AWS
KMS key que se haya utilizado para cifrar una clave de datos en la descripción del material,
siempre que la persona que llama tenga permiso para usarla para descifrarla. AWS KMS key Es
posible que esta no sea la AWS KMS key que pretende usar la persona que llama. Por ejemplo,
es posible que una de las claves de datos cifradas se haya cifrado con un sistema menos seguro
AWS KMS key que cualquiera pueda utilizar.

• Latencia y rendimiento: un conjunto de claves de AWS KMS detección puede ser
considerablemente más lento que otros, ya que el SDK de cifrado de AWS bases de datos intenta
descifrar todas las claves de datos cifradas, incluidas las cifradas en otras regiones y AWS KMS
keys en otras regiones, Cuentas de AWS y AWS KMS keys que la persona que llama no tiene
permiso para utilizarlas para el descifrado.

Si utiliza un conjunto de claves de detección, le recomendamos que utilice un filtro de detección para
limitar las claves de KMS que se pueden usar a las de las particiones Y especificadas. Cuentas de
AWS Para obtener ayuda para encontrar el ID y la partición de su cuenta, consulte Sus Cuenta de
AWS identificadores y el formato ARN en. Referencia general de AWS

Uso de un anillo de claves de detección AWS KMS 62

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Los siguientes ejemplos de código crean una instancia de un conjunto de claves de AWS KMS
detección con un filtro de detección que limita las claves de KMS que el SDK de cifrado de AWS
bases de datos puede utilizar a las de la partición y la aws cuenta de ejemplo. 111122223333

Antes de usar este código, sustituya los valores del ejemplo Cuenta de AWS y de la partición por
valores válidos para la partición y. Cuenta de AWS Si sus claves de KMS se encuentran en regiones
de China, use el valor de la partición de aws-cn. Si las claves KMS están en AWS GovCloud (US)
Regions, use el valor de la partición de aws-us-gov. Para todas las demás Regiones de AWS,
utilice el valor de la partición de aws.

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

C# / .NET

// Create discovery filter
var discoveryFilter = new DiscoveryFilter
{
 Partition = "aws",
 AccountIds = 111122223333
};
// Create the discovery keyring
var createAwsKmsMrkDiscoveryMultiKeyringInput = new
 CreateAwsKmsMrkDiscoveryMultiKeyringInput
{
 DiscoveryFilter = discoveryFilter
};
var decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Uso de un anillo de claves de detección AWS KMS 63

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Rust

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .partition("aws")
 .account_ids(111122223333)
 .build()?;

// Create the discovery keyring
let decrypt_keyring = mpl
 .create_aws_kms_mrk_discovery_multi_keyring()
 .discovery_filter(discovery_filter)
 .send()
 .await?;

Uso de un anillo de claves de detección AWS KMS regional

Un conjunto de claves de detección AWS KMS regional es un conjunto de claves que no especifica
las claves ARNs de KMS. En su lugar, permite que el SDK AWS de cifrado de bases de datos
descifre utilizando únicamente las claves de KMS, en particular. Regiones de AWS

Al descifrar con un conjunto de claves de detección AWS KMS regional, el SDK de cifrado de
AWS bases de datos descifra cualquier clave de datos cifrada que se haya cifrado con una AWS
KMS key de las especificadas. Región de AWS Para tener éxito, la persona que llama debe tener
kms:Decrypt permiso en al menos una de las claves de datos especificadas Región de AWS que
cifraron una clave de datos. AWS KMS keys

Al igual que otros conjuntos de claves de detección, el conjunto de claves de detección regional
no tiene ningún efecto sobre el cifrado. Solo funciona cuando se descifran campos cifrados. Si
utiliza un conjunto de claves de detección regional en un conjunto de claves múltiples que se utiliza
para cifrar y descifrar, solo es efectivo al descifrar. Si utiliza un conjunto de claves de detección
multirregional para cifrar los datos, solo o en un conjunto de claves múltiples, la operación de cifrado
no se realizará correctamente.

Important

Si incluye un conjunto de claves de detección AWS KMS regional en un conjunto de
claves de descifrado múltiple, el conjunto de claves de detección regional anula todas las
restricciones de claves de KMS especificadas en otros anillos de claves del conjunto de

Uso de un anillo de claves de detección AWS KMS regional 64

AWS SDK de cifrado de bases de datos Guía para desarrolladores

claves múltiples. El conjunto de claves múltiples se comporta como el menos restrictivo.
Cuando se utiliza un conjunto de claves de detección de AWS KMS en un conjunto de claves
múltiple, no tiene ningún efecto sobre el cifrado.

El conjunto de claves de detección regional del SDK de cifrado de AWS bases de datos solo intenta
descifrar las claves de KMS de la región especificada. Cuando se utiliza un conjunto de claves
de detección, se configura la región en el cliente. AWS KMS Estas implementaciones del SDK de
cifrado de AWS bases de datos no filtran las claves de KMS por región, pero AWS KMS no permiten
descifrar las claves de KMS de fuera de la región especificada.

Si utiliza un conjunto de claves de detección, le recomendamos que utilice un filtro de detección para
limitar las claves de KMS utilizadas en el descifrado a las de las particiones Y especificadas. Cuentas
de AWS

Por ejemplo, el código siguiente crea un conjunto de claves de detección AWS KMS regional con
un filtro de detección. Este conjunto de claves limita el SDK de cifrado de AWS bases de datos a las
claves KMS de la cuenta 111122223333 de la región EE.UU. Oeste (Oregón) (us-west-2).

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .regions("us-west-2")
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

C# / .NET

// Create discovery filter
var discoveryFilter = new DiscoveryFilter
{

Uso de un anillo de claves de detección AWS KMS regional 65

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 Partition = "aws",
 AccountIds = 111122223333
};
// Create the discovery keyring
var createAwsKmsMrkDiscoveryMultiKeyringInput = new
 CreateAwsKmsMrkDiscoveryMultiKeyringInput
{
 DiscoveryFilter = discoveryFilter,
 Regions = us-west-2
};
var decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Rust

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .partition("aws")
 .account_ids(111122223333)
 .build()?;

// Create the discovery keyring
let decrypt_keyring = mpl
 .create_aws_kms_mrk_discovery_multi_keyring()
 .discovery_filter(discovery_filter)
 .regions(us-west-2)
 .send()
 .await?;

AWS KMS Llaveros jerárquicos

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de bases de AWS datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

AWS KMS Llaveros jerárquicos 66

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Note

A partir del 24 de julio de 2023, no se admiten las claves de rama creadas durante la versión
preliminar para desarrolladores. Crea nuevas claves de rama para seguir usando el almacén
de claves que creaste durante la versión preliminar para desarrolladores.

Con el conjunto de claves AWS KMS jerárquico, puede proteger sus materiales criptográficos con
una clave KMS de cifrado simétrico sin tener que llamar AWS KMS cada vez que cifra o descifra
un registro. Es una buena opción para las aplicaciones que necesitan minimizar las llamadas y las
aplicaciones que pueden reutilizar algunos materiales criptográficos sin infringir sus requisitos de
seguridad. AWS KMS

El anillo de claves jerárquico es una solución de almacenamiento en caché de materiales
criptográficos que reduce el número de AWS KMS llamadas mediante el uso de claves de rama
AWS KMS protegidas que se conservan en una tabla de Amazon DynamoDB y, a continuación, el
almacenamiento en caché local de los materiales de clave de rama utilizados en las operaciones de
cifrado y descifrado. La tabla de DynamoDB sirve como almacén de claves que administra y protege
las claves de rama. Almacena la clave de rama activa y todas las versiones anteriores de la clave de
rama. La clave de rama activa es la versión más reciente de la clave de rama. El conjunto de claves
jerárquico utiliza una clave de cifrado de datos única para cada solicitud de cifrado y cifra cada clave
de cifrado de datos con una clave de empaquetado única derivada de la clave de rama activa. El
conjunto de claves jerárquico depende de la jerarquía establecida entre las claves de ramificación
activas y las claves de encapsulamiento derivadas.

El conjunto de claves jerárquico suele utilizar cada versión de clave de rama para satisfacer múltiples
solicitudes. Sin embargo, usted controla el grado en que se reutilizan las claves de rama activas
y determina la frecuencia con la que se gira la clave de rama activa. La versión activa de la clave
de rama permanece activa hasta que la gire. Las versiones anteriores de la clave de rama activa
no se utilizarán para realizar operaciones de cifrado, pero sí se pueden consultar y utilizar en las
operaciones de descifrado.

Al crear una instancia del conjunto de claves jerárquico, se crea una caché local. Se especifica
un límite de caché que define el tiempo máximo durante el que los materiales de las claves de
ramificación se almacenan en la caché local antes de que caduquen y se expulsen de la caché. El
conjunto de claves jerárquico realiza una AWS KMS llamada para descifrar la clave de bifurcación y
reunir los materiales de la clave de bifurcación la primera vez que se especifica a en una operación.
branch-key-id A continuación, los materiales de la clave de rama se almacenan en la memoria

AWS KMS Llaveros jerárquicos 67

AWS SDK de cifrado de bases de datos Guía para desarrolladores

caché local y se reutilizan para todas las operaciones de cifrado y descifrado que la branch-key-
id especifique hasta que caduque el límite de la memoria caché. Almacenar los materiales de las
claves de rama en la memoria caché local reduce las llamadas. AWS KMS Por ejemplo, considere
un límite de caché de 15 minutos. Si realizas 10 000 operaciones de cifrado dentro de ese límite de
caché, el conjunto de AWS KMS claves tradicional necesitaría realizar 10 000 AWS KMS llamadas
para cumplir con 10 000 operaciones de cifrado. Si tiene uno activobranch-key-id, el conjunto de
claves jerárquico solo necesita realizar una AWS KMS llamada para realizar 10 000 operaciones de
cifrado.

La memoria caché local separa los materiales de cifrado de los materiales de descifrado. Los
materiales de cifrado se ensamblan a partir de la clave de rama activa y se reutilizan en todas
las operaciones de cifrado hasta que caduque el límite de la memoria caché. Los materiales
de descifrado se recopilan a partir del identificador de la clave de ramificación y la versión que
se identifica en los metadatos del campo cifrado, y se reutilizan para todas las operaciones de
descifrado relacionadas con el identificador y la versión de la clave de bifurcación hasta que venza
el límite de memoria caché. La memoria caché local puede almacenar varias versiones de la misma
clave de rama a la vez. Cuando la caché local está configurada para usar unabranch key ID supplier,
también puede almacenar materiales de claves de rama de varias claves de rama activas a la vez.

Note

Todas las menciones del conjunto de claves jerárquico en el SDK de cifrado de AWS bases
de datos se refieren al conjunto de claves AWS KMS jerárquico.

Temas

• Funcionamiento

• Requisitos previos

• Permisos necesarios

• Elige una memoria caché

• Crear un conjunto de claves jerárquico

• Uso del conjunto de claves jerárquico para el cifrado para búsquedas

AWS KMS Llaveros jerárquicos 68

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Funcionamiento

Los siguientes tutoriales describen cómo el conjunto de claves jerárquico reúne los materiales de
cifrado y descifrado, y las diferentes llamadas que realiza el conjunto de claves para las operaciones
de cifrado y descifrado. Para obtener detalles técnicos sobre los procesos de derivación de claves
de ajuste y cifrado de claves de datos de texto no cifrado, consulte Detalles técnicos del conjunto de
claves jerárquico de AWS KMS.

Cifra y firma

El siguiente tutorial describe cómo el conjunto de claves jerárquico reúne los materiales de cifrado y
obtiene una clave de encapsulamiento única.

1. El método de cifrado solicita materiales de cifrado al conjunto de claves jerárquico. El
conjunto de claves genera una clave de datos en texto plano y, a continuación, comprueba
si hay materiales de clave de ramificación válidos en la caché local para generar la clave de
empaquetado. Si hay materiales de clave de bifurcación válidos, el llavero continúa con el paso
4.

2. Si no hay ningún material de clave de bifurcación válido, el conjunto de claves jerárquico
consulta el almacén de claves para encontrar la clave de bifurcación activa.

a. El almacén de claves llama AWS KMS para descifrar la clave de rama activa y devuelve
la clave de rama activa en texto plano. Los datos que identifican la clave de rama activa
se serializan para proporcionar datos autenticados adicionales (AAD) en la llamada de
descifrado a AWS KMS.

b. El almacén de claves devuelve la clave de rama en texto simple y los datos que la
identifican, como la versión de la clave de rama.

3. El conjunto de claves jerárquico reúne los materiales de las claves de rama (las versiones de las
claves de rama y las claves de rama en texto no cifrado) y guarda una copia de los mismos en la
memoria caché local.

4. El conjunto de claves jerárquico obtiene una clave de ajuste única de la clave de rama de texto
simple y de una sal aleatoria de 16 bytes. Utiliza la clave de encapsulación derivada para cifrar
una copia de la clave de datos de texto no cifrado.

El método de cifrado utiliza los materiales de cifrado para cifrar y firmar el registro. Para obtener más
información sobre cómo se cifran y firman los registros en el SDK de cifrado de bases de datos de
AWS , consulte Encrypt and sign.

Funcionamiento 69

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Descifrado y verificación

En el siguiente tutorial, se describe cómo el conjunto de claves jerárquico reúne los materiales de
descifrado y descifra la clave de datos cifrados.

1. El método de descifrado identifica la clave de datos cifrada en el campo de descripción del
material del registro cifrado y la pasa al conjunto de claves jerárquico.

2. El conjunto de claves jerárquico deserializa los datos que identifican la clave de datos cifrada,
incluida la versión de la clave de rama, la sal de 16 bytes y otra información que describe cómo
se cifró la clave de datos.

Para obtener más información, consulte AWS KMS Detalles técnicos del llavero jerárquico.

3. El conjunto de claves jerárquico comprueba si hay materiales de clave de rama válidos en la
caché local que coincidan con la versión de clave de rama identificada en el paso 2. Si hay
materiales de clave de rama válidos, el conjunto de claves continúa con el paso 6.

4. Si no hay ningún material de clave de rama válido, el conjunto de claves jerárquico consulta en
el almacén de claves la clave de rama que coincida con la versión de clave de rama identificada
en el paso 2.

a. El almacén de claves llama AWS KMS para descifrar la clave de bifurcación y devuelve
la clave de bifurcación activa en texto plano. Los datos que identifican la clave de rama
activa se serializan para proporcionar datos autenticados adicionales (AAD) en la llamada
de descifrado a AWS KMS.

b. El almacén de claves devuelve la clave de rama en texto simple y los datos que la
identifican, como la versión de la clave de rama.

5. El conjunto de claves jerárquico reúne los materiales de las claves de rama (las versiones de las
claves de rama y las claves de rama en texto no cifrado) y guarda una copia de los mismos en la
memoria caché local.

6. El conjunto de claves jerárquico utiliza los materiales de clave de rama ensamblados y la sal de
16 bytes identificada en el paso 2 para reproducir la clave de encapsulamiento única que cifró la
clave de datos.

7. El conjunto de claves jerárquico utiliza la clave de encapsulación para descifrar la clave de datos
y devuelve la clave de datos en texto no cifrado.

Funcionamiento 70

AWS SDK de cifrado de bases de datos Guía para desarrolladores

El método de descifrado utiliza los materiales de descifrado y la clave de datos de texto no cifrado
para descifrar y verificar el registro. Para obtener más información sobre cómo se descifran y
verifican los registros en el SDK de cifrado AWS de bases de datos, consulte Descifrar y verificar.

Requisitos previos

Antes de crear y utilizar un conjunto de claves jerárquico, asegúrese de que se cumplen los
siguientes requisitos previos.

• Usted, o el administrador del almacén de claves, ha creado un almacén de claves y ha creado al
menos una clave de rama activa.

• Ha configurado las acciones de su almacén de claves.

Note

La forma en que configure las acciones del almacén de claves determina qué operaciones
puede realizar y qué claves de KMS puede utilizar el conjunto de claves jerárquico. Para
obtener más información, consulte Acciones del almacén de claves.

• Dispone de los AWS KMS permisos necesarios para acceder y utilizar las llaves del almacén
de claves y de la sucursal. Para obtener más información, consulte the section called “Permisos
necesarios”.

• Ha revisado los tipos de caché compatibles y ha configurado el tipo de caché que mejor se adapta
a sus necesidades. Para obtener más información, consulte the section called “Elige una memoria
caché”

Permisos necesarios

El SDK de cifrado de AWS bases de Cuenta de AWS datos no requiere ni depende de ninguno
Servicio de AWS. Sin embargo, para usar un conjunto de claves jerárquico, necesita Cuenta de AWS
los siguientes permisos mínimos en los AWS KMS key cifrados simétricos de su almacén de claves.

• Para cifrar y descifrar datos con el anillo de claves jerárquico, necesita KMS:Decrypt.

• Para crear y rotar claves de ramificación, necesita kms: y kms:. GenerateDataKeyWithoutPlaintext
ReEncrypt

Requisitos previos 71

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Para obtener más información sobre cómo controlar el acceso a las llaves de su sucursal y al
almacén de claves, consultethe section called “Implementación de permisos de privilegio mínimo”.

Elige una memoria caché

El conjunto de claves jerárquico reduce la cantidad de llamadas AWS KMS realizadas al almacenar
en caché local los materiales de las claves de sucursal que se utilizan en las operaciones de cifrado
y descifrado. Antes de crear su conjunto de claves jerárquico, debe decidir qué tipo de caché desea
utilizar. Puedes usar la caché predeterminada o personalizarla para que se adapte mejor a tus
necesidades.

El conjunto de claves jerárquico admite los siguientes tipos de caché:

• the section called “Caché predeterminada”

• the section called “MultiThreaded caché”

• the section called “StormTracking caché”

• the section called “Caché compartida”

Caché predeterminada

La mayoría de usuarios no necesitará modificar sus requisitos de subprocesamiento. La caché
predeterminada está diseñada para admitir entornos con muchos subprocesos múltiples. Cuando
caduca una entrada de materiales de clave de bifurcación, la caché predeterminada impide que
varios subprocesos llamen, AWS KMS ya que notifica a un subproceso que la entrada de materiales
de clave de bifurcación va a caducar con 10 segundos de antelación. Esto garantiza que solo un
subproceso envíe una solicitud AWS KMS para actualizar la caché.

La memoria StormTracking caché predeterminada y la caché admiten el mismo modelo de
subprocesos, pero solo es necesario especificar la capacidad de entrada para utilizar la memoria
caché predeterminada. Para personalizaciones de caché más detalladas, utilice la. the section called
“StormTracking caché”

A menos que desee personalizar el número de entradas de materiales clave de rama que se pueden
almacenar en la memoria caché local, no necesita especificar un tipo de memoria caché al crear el
conjunto de claves jerárquico. Si no especifica un tipo de caché, el conjunto de claves jerárquico
utiliza el tipo de caché predeterminado y establece la capacidad de entrada en 1000.

Para personalizar la caché predeterminada, especifique los siguientes valores:

Elige una memoria caché 72

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• Capacidad de entrada: limita el número de entradas de materiales clave de rama que se pueden
almacenar en la caché local.

Java

.cache(CacheType.builder()
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())

C# / .NET

CacheType defaultCache = new CacheType
{
 Default = new DefaultCache{EntryCapacity = 100}
};

Rust

let cache: CacheType = CacheType::Default(
 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

MultiThreaded caché

La MultiThreaded memoria caché se puede utilizar de forma segura en entornos de subprocesos
múltiples, pero no proporciona ninguna funcionalidad para minimizar las llamadas de Amazon AWS
KMS DynamoDB. Como resultado, cuando una entrada de materiales clave de rama caduque, se
notificará a todos los subprocesos al mismo tiempo. Esto puede provocar varias AWS KMS llamadas
para actualizar la memoria caché.

Para usar la MultiThreaded caché, especifique los siguientes valores:

• Capacidad de entrada: limita el número de entradas de materiales clave de rama que se pueden
almacenar en la caché local.

• Tamaño de la cola de poda de entrada: define el número de entradas que se deben podar si se
alcanza la capacidad de entrada.

Elige una memoria caché 73

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Java

.cache(CacheType.builder()
 .MultiThreaded(MultiThreadedCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)
 .build())

C# / .NET

CacheType multithreadedCache = new CacheType
{
 MultiThreaded = new MultiThreadedCache
 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1
 }
};

Rust

CacheType::MultiThreaded(
 MultiThreadedCache::builder()
 .entry_capacity(100)
 .entry_pruning_tail_size(1)
 .build()?)

StormTracking caché

La StormTracking memoria caché está diseñada para soportar entornos con muchos subprocesos
múltiples. Cuando una entrada de materiales de clave de rama caduca, la StormTracking caché
evita que varios subprocesos AWS KMS llamen, ya que notifica a un subproceso que la entrada de
materiales de clave de rama va a caducar con antelación. Esto garantiza que solo un subproceso
envíe una solicitud AWS KMS para actualizar la caché.

Para usar la StormTracking caché, especifique los siguientes valores:

• Capacidad de entrada: limita el número de entradas de materiales clave de rama que se pueden
almacenar en la caché local.

Elige una memoria caché 74

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Valor predeterminado: 1000 entradas

• Tamaño de la cola de poda de entrada: define el número de entradas de materiales clave para la
rama que se deben podar a la vez.

Valor predeterminado: 1 entrada

• Período de gracia: define el número de segundos antes de la caducidad durante los que se intenta
actualizar los materiales clave de la rama.

Valor predeterminado: 10 segundos

• Intervalo de gracia: define el número de segundos entre los intentos de actualizar los materiales
clave de la rama.

Valor predeterminado: 1 segundo

• Amplificador: define el número de intentos simultáneos que se pueden realizar para actualizar los
materiales clave de la rama.

Valor predeterminado: 20 intentos

• En tiempo de vuelo hasta la vida útil (TTL): define el número de segundos hasta que se agota el
tiempo de espera para intentar actualizar los materiales clave de la rama. Cada vez que la caché
devuelve NoSuchEntry en respuesta a un GetCacheEntry, se considera que esa clave de rama
está en tránsito hasta que se escribe la misma clave con una entrada PutCache.

Valor predeterminado: 10 segundos

• Suspender: define el número de segundos que un hilo debe permanecer inactivo si fanOut se
supera.

Valor predeterminado: 20 milisegundos

Java

.cache(CacheType.builder()
 .StormTracking(StormTrackingCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)
 .gracePeriod(10)
 .graceInterval(1)
 .fanOut(20)
 .inFlightTTL(10)

Elige una memoria caché 75

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 .sleepMilli(20)
 .build())

C# / .NET

CacheType stormTrackingCache = new CacheType
{
 StormTracking = new StormTrackingCache
 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1,
 FanOut = 20,
 GraceInterval = 1,
 GracePeriod = 10,
 InFlightTTL = 10,
 SleepMilli = 20
 }
};

Rust

CacheType::StormTracking(
 StormTrackingCache::builder()
 .entry_capacity(100)
 .entry_pruning_tail_size(1)
 .grace_period(10)
 .grace_interval(1)
 .fan_out(20)
 .in_flight_ttl(10)
 .sleep_milli(20)
 .build()?)

Caché compartida

De forma predeterminada, el conjunto de claves jerárquico crea una nueva caché local cada
vez que se crea una instancia del conjunto de claves. Sin embargo, la caché compartida puede
ayudar a conservar la memoria, ya que permite compartir una caché entre varios conjuntos de
claves jerárquicos. En lugar de crear una nueva caché de materiales criptográficos para cada
conjunto de claves jerárquico que cree una instancia, la caché compartida solo almacena una
caché en la memoria, que puede ser utilizada por todos los anillos de claves jerárquicos que hacen

Elige una memoria caché 76

AWS SDK de cifrado de bases de datos Guía para desarrolladores

referencia a ella. La caché compartida ayuda a optimizar el uso de la memoria al evitar la duplicación
de materiales criptográficos entre los conjuntos de claves. En cambio, los conjuntos de claves
jerárquicos pueden acceder a la misma caché subyacente, lo que reduce el consumo total de
memoria.

Al crear la caché compartida, se sigue definiendo el tipo de caché. Puede especificar un the
section called “Caché predeterminada”the section called “MultiThreaded caché”, o the section
called “StormTracking caché” como tipo de caché, o sustituirlo por cualquier caché personalizada
compatible.

Particiones

Varios conjuntos de claves jerárquicos pueden utilizar una única caché compartida. Al crear un
conjunto de claves jerárquico con una caché compartida, puede definir un ID de partición opcional.
El ID de partición distingue qué anillo de claves jerárquico está escribiendo en la memoria caché.
Si dos anillos de claves jerárquicos hacen referencia al mismo ID de partición y al mismo ID de
clave de ramalogical key store name, los dos anillos de claves compartirán las mismas entradas
de caché en la caché. Si crea dos anillos de claves jerárquicos con la misma caché compartida,
pero con una partición diferente IDs, cada conjunto de claves solo accederá a las entradas de la
caché desde su propia partición designada dentro de la caché compartida. Las particiones actúan
como divisiones lógicas dentro de la caché compartida, lo que permite que cada conjunto de claves
jerárquico funcione de forma independiente en la partición designada, sin interferir con los datos
almacenados en la otra partición.

Si tiene intención de reutilizar o compartir las entradas de la caché de una partición, debe definir
su propio identificador de partición. Al pasar el ID de la partición a su conjunto de claves jerárquico,
el conjunto de claves puede reutilizar las entradas de la caché que ya están presentes en la caché
compartida, sin tener que recuperar y volver a autorizar los materiales de las claves de rama. Si no
especifica un identificador de partición, se asignará automáticamente un identificador de partición
único al conjunto de claves cada vez que cree una instancia del conjunto de claves jerárquico.

Los siguientes procedimientos muestran cómo crear una caché compartida con el tipo de caché
predeterminado y pasarla a un anillo de claves jerárquico.

1. Cree una CryptographicMaterialsCache (CMC) mediante la biblioteca de proveedores de
materiales (MPL).

Elige una memoria caché 77

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Java

// Instantiate the MPL
final MaterialProviders matProv =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

// Create a CacheType object for the Default cache
final CacheType cache =
 CacheType.builder()
 .Default(DefaultCache.builder().entryCapacity(100).build())
 .build();

// Create a CMC using the default cache
final CreateCryptographicMaterialsCacheInput cryptographicMaterialsCacheInput =
 CreateCryptographicMaterialsCacheInput.builder()
 .cache(cache)
 .build();

final ICryptographicMaterialsCache sharedCryptographicMaterialsCache =
 matProv.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

C# / .NET

// Instantiate the MPL
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create a CacheType object for the Default cache
var cache = new CacheType { Default = new DefaultCache{EntryCapacity = 100} };

// Create a CMC using the default cache
var cryptographicMaterialsCacheInput = new
 CreateCryptographicMaterialsCacheInput {Cache = cache};

var sharedCryptographicMaterialsCache =
 materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

Rust

// Instantiate the MPL

Elige una memoria caché 78

AWS SDK de cifrado de bases de datos Guía para desarrolladores

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create a CacheType object for the default cache
let cache: CacheType = CacheType::Default(
 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

// Create a CMC using the default cache
let shared_cryptographic_materials_cache: CryptographicMaterialsCacheRef = mpl.
 create_cryptographic_materials_cache()
 .cache(cache)
 .send()
 .await?;

2. Cree un CacheType objeto para la caché compartida.

Pase lo sharedCryptographicMaterialsCache que creó en el paso 1 al nuevo
CacheType objeto.

Java

// Create a CacheType object for the sharedCryptographicMaterialsCache
final CacheType sharedCache =
 CacheType.builder()
 .Shared(sharedCryptographicMaterialsCache)
 .build();

C# / .NET

// Create a CacheType object for the sharedCryptographicMaterialsCache
var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache };

Rust

// Create a CacheType object for the shared_cryptographic_materials_cache
let shared_cache: CacheType =
 CacheType::Shared(shared_cryptographic_materials_cache);

Elige una memoria caché 79

AWS SDK de cifrado de bases de datos Guía para desarrolladores

3. Pasa el sharedCache objeto del paso 2 a tu llavero jerárquico.

Al crear un conjunto de claves jerárquico con una caché compartida, si lo desea, puede definir
un conjunto de claves jerárquico partitionID para compartir las entradas de la caché entre
varios anillos de claves jerárquicos. Si no especifica un identificador de partición, el conjunto
de claves jerárquico asigna automáticamente al conjunto de claves un identificador de partición
único.

Note

Sus conjuntos de claves jerárquicos compartirán las mismas entradas de caché en una
caché compartida si crea dos o más conjuntos de claves que hagan referencia al mismo
identificador de partición y al mismo identificador de clave de rama. logical key store
name Si no desea que varios conjuntos de claves compartan las mismas entradas de
caché, debe utilizar un identificador de partición único para cada conjunto de claves
jerárquico.

En el siguiente ejemplo, se crea un conjunto de claves jerárquico con un límite branch key ID
supplier de memoria caché de 600 segundos. Para obtener más información sobre los valores
definidos en la siguiente configuración de anillo de claves jerárquico, consulte. the section called
“Crear un conjunto de claves jerárquico”

Java

// Create the Hierarchical keyring
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(sharedCache)
 .partitionID(partitionID)
 .build();
final IKeyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Elige una memoria caché 80

AWS SDK de cifrado de bases de datos Guía para desarrolladores

C# / .NET

// Create the Hierarchical keyring
var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 Cache = sharedCache,
 TtlSeconds = 600,
 PartitionId = partitionID
};
var keyring =
 materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Rust

// Create the Hierarchical keyring
let keyring1 = mpl
 .create_aws_kms_hierarchical_keyring()
 .key_store(key_store1)
 .branch_key_id(branch_key_id.clone())
 // CryptographicMaterialsCacheRef is an Rc (Reference Counted), so if you
 clone it to
 // pass it to different Hierarchical Keyrings, it will still point to the
 same
 // underlying cache, and increment the reference count accordingly.
 .cache(shared_cache.clone())
 .ttl_seconds(600)
 .partition_id(partition_id.clone())
 .send()
 .await?;

Crear un conjunto de claves jerárquico

Para crear un conjunto de claves jerárquico, debe proporcionar los siguientes valores:

• Un nombre de almacén de claves

El nombre de la tabla de DynamoDB que usted o el administrador del almacén de claves crearon
para que sirviera de almacén de claves.

Crear un conjunto de claves jerárquico 81

AWS SDK de cifrado de bases de datos Guía para desarrolladores

•

Un tiempo de vida límite de la memoria caché (TTL)

La cantidad de tiempo en segundos que se puede utilizar una entrada de material de clave de la
memoria caché local antes de que caduque. El límite de caché TTL determina la frecuencia con
la que el cliente llama AWS KMS para autorizar el uso de las claves de sucursal. El valor debe
ser mayor que cero. Una vez expirado el límite de caché TTL, la entrada no se sirve nunca y se
desalojará de la caché local.

• Un identificador de clave de rama

Puede configurar de forma estática la clave de sucursal branch-key-id que identifique
una única clave de rama activa en su almacén de claves o proporcionar un proveedor de
identificadores de clave de sucursal.

El proveedor del identificador de la clave de sucursal utiliza los campos almacenados en el
contexto de cifrado para determinar qué clave de sucursal se necesita para descifrar un registro.
De forma predeterminada, solo las claves de partición y clasificación se incluyen en el contexto de
cifrado. Sin embargo, puede utilizar la acción SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
criptográfica para incluir campos adicionales en el contexto de cifrado.

Recomendamos encarecidamente utilizar un proveedor de ID de clave de sucursal para las bases
de datos multiusuario, en las que cada inquilino tiene su propia clave de sucursal. Puedes usar el
identificador de clave de sucursal del proveedor para crear un nombre descriptivo para tu clave IDs
de sucursal y así poder reconocer fácilmente el identificador de clave de sucursal correcto para un
inquilino específico. Por ejemplo, el nombre descriptivo le permite hacer referencia a una clave de
rama como tenant1 en lugar deb3f61619-4d35-48ad-a275-050f87e15122.

Para las operaciones de descifrado, puede configurar de forma estática un único conjunto de
claves jerárquicas para restringir el descifrado a un único usuario, o puede utilizar el proveedor
del identificador de clave de sucursal para identificar qué inquilino es responsable de descifrar un
registro.

• (Opcional) Una caché

Si desea personalizar el tipo de caché o el número de entradas de materiales clave de rama que
se pueden almacenar en la caché local, especifique el tipo de caché y la capacidad de entrada al
inicializar el conjunto de claves.

Crear un conjunto de claves jerárquico 82

AWS SDK de cifrado de bases de datos Guía para desarrolladores

El conjunto de claves jerárquico admite los siguientes tipos de caché: predeterminada
MultiThreaded StormTracking, y compartida. Para obtener más información y ejemplos que
demuestren cómo definir cada tipo de caché, consulte. the section called “Elige una memoria
caché”

Si no especifica una caché, el conjunto de claves jerárquico utiliza automáticamente el tipo de
caché predeterminado y establece la capacidad de entrada en 1000.

• (Opcional) Un ID de partición

Si especifica elthe section called “Caché compartida”, puede definir opcionalmente un ID de
partición. El ID de partición distingue qué conjunto de claves jerárquico está escribiendo en la
memoria caché. Si pretende reutilizar o compartir las entradas de la caché de una partición, debe
definir su propio ID de partición. Puede especificar cualquier cadena para el ID de la partición. Si
no especifica un identificador de partición, se asigna automáticamente un identificador de partición
único al conjunto de claves en el momento de la creación.

Para obtener más información, consulte Partitions.

Note

Sus conjuntos de claves jerárquicos compartirán las mismas entradas de caché en una
caché compartida si crea dos o más conjuntos de claves que hagan referencia al mismo
identificador de partición y al mismo identificador de clave de logical key store name rama.
Si no desea que varios conjuntos de claves compartan las mismas entradas de caché,
debe utilizar un identificador de partición único para cada conjunto de claves jerárquico.

• (Opcional) Una lista de tokens de concesión

Si controla el acceso a la clave KMS de su conjunto de claves jerárquico mediante concesiones,
debe proporcionar todos los tokens de concesión necesarios al inicializar el conjunto de claves.

Cree un conjunto de claves jerárquico con un ID de clave de rama estático

Los siguientes ejemplos muestran cómo crear un anillo de claves jerárquico con un identificador de
clave de rama estáticothe section called “Caché predeterminada”, el TTL con un límite de caché de
600 segundos.

Crear un conjunto de claves jerárquico 83

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(branchKeyStoreName)
 .branchKeyId(branch-key-id)
 .ttlSeconds(600)
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .branch_key_id(branch_key_id)
 .key_store(branch_key_store_name)
 .ttl_seconds(600)
 .send()
 .await?;

Crear un conjunto de claves jerárquico 84

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Cree un conjunto de claves jerárquico con un proveedor de ID de clave de sucursal

Los siguientes procedimientos muestran cómo crear un anillo de claves jerárquico con un proveedor
de ID de sucursal.

1. Cree un proveedor de ID de clave de sucursal

En el siguiente ejemplo, se crean nombres descriptivos para las dos claves de rama creadas en
el paso 1 y se pide CreateDynamoDbEncryptionBranchKeyIdSupplier la creación de un
proveedor de ID de clave de rama con el SDK de cifrado de AWS bases de datos para el cliente
DynamoDB.

Java

// Create friendly names for each branch-key-id
class ExampleBranchKeyIdSupplier implements IDynamoDbKeyBranchKeyIdSupplier {
 private static String branchKeyIdForTenant1;
 private static String branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {
 this.branchKeyIdForTenant1 = tenant1Id;
 this.branchKeyIdForTenant2 = tenant2Id;
 }
// Create the branch key ID supplier
final DynamoDbEncryption ddbEnc = DynamoDbEncryption.builder()
 .DynamoDbEncryptionConfig(DynamoDbEncryptionConfig.builder().build())
 .build();
final BranchKeyIdSupplier branchKeyIdSupplier =
 ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 CreateDynamoDbEncryptionBranchKeyIdSupplierInput.builder()
 .ddbKeyBranchKeyIdSupplier(new ExampleBranchKeyIdSupplier(branch-
key-ID-tenant1, branch-key-ID-tenant2))
 .build()).branchKeyIdSupplier();

C# / .NET

// Create friendly names for each branch-key-id
 class ExampleBranchKeyIdSupplier : DynamoDbKeyBranchKeyIdSupplierBase {
 private String _branchKeyIdForTenant1;
 private String _branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {

Crear un conjunto de claves jerárquico 85

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 this._branchKeyIdForTenant1 = tenant1Id;
 this._branchKeyIdForTenant2 = tenant2Id;
 }
// Create the branch key ID supplier
var ddbEnc = new DynamoDbEncryption(new DynamoDbEncryptionConfig());
var branchKeyIdSupplier = ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 new CreateDynamoDbEncryptionBranchKeyIdSupplierInput
 {
 DdbKeyBranchKeyIdSupplier = new ExampleBranchKeyIdSupplier(branch-key-
ID-tenant1, branch-key-ID-tenant2)
 }).BranchKeyIdSupplier;

Rust

// Create friendly names for each branch_key_id
pub struct ExampleBranchKeyIdSupplier {
 branch_key_id_for_tenant1: String,
 branch_key_id_for_tenant2: String,
}

impl ExampleBranchKeyIdSupplier {
 pub fn new(tenant1_id: &str, tenant2_id: &str) -> Self {
 Self {
 branch_key_id_for_tenant1: tenant1_id.to_string(),
 branch_key_id_for_tenant2: tenant2_id.to_string(),
 }
 }
}

// Create the branch key ID supplier
let dbesdk_config = DynamoDbEncryptionConfig::builder().build()?;
let dbesdk = dbesdk_client::Client::from_conf(dbesdk_config)?;
let supplier = ExampleBranchKeyIdSupplier::new(tenant1_branch_key_id,
 tenant2_branch_key_id);

let branch_key_id_supplier = dbesdk
 .create_dynamo_db_encryption_branch_key_id_supplier()
 .ddb_key_branch_key_id_supplier(supplier)
 .send()
 .await?
 .branch_key_id_supplier
 .unwrap();

Crear un conjunto de claves jerárquico 86

AWS SDK de cifrado de bases de datos Guía para desarrolladores

2. Crear un conjunto de claves jerárquico

En los ejemplos siguientes se inicializa un conjunto de claves jerárquico con el proveedor de
claves de sucursal creado en el paso 1, un TLL con un límite de caché de 600 segundos y un
tamaño máximo de caché de 1000.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(CacheType.builder() //OPTIONAL
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600,
 Cache = new CacheType
 {
 Default = new DefaultCache { EntryCapacity = 100 }
 }
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;

Crear un conjunto de claves jerárquico 87

AWS SDK de cifrado de bases de datos Guía para desarrolladores

let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .branch_key_id_supplier(branch_key_id_supplier)
 .key_store(key_store)
 .ttl_seconds(600)
 .send()
 .await?;

Uso del conjunto de claves jerárquico para el cifrado para búsquedas

El cifrado para búsquedas le permite buscar registros cifrados sin necesidad de descifrar toda la
base de datos. Esto se logra indexando el valor de texto no cifrado de un campo cifrado con una
baliza. Para implementar un cifrado para búsquedas, debe utilizar un conjunto de claves jerárquico.

La operación CreateKey de almacenamiento de claves genera tanto una clave de rama como una
clave de baliza. La clave de rama se utiliza en las operaciones de cifrado y descifrado de registros.
La clave de baliza se utiliza para generar balizas.

La clave de sucursal y la clave de baliza están protegidas por el mismo código AWS KMS key que
especificó al crear el servicio de almacenamiento de claves. Una vez que la CreateKey operación
llama AWS KMS para generar la clave de sucursal, llama a kms: GenerateDataKeyWithoutPlaintext
una segunda vez para generar la clave de baliza mediante la siguiente solicitud.

{
 "EncryptionContext": {
 "branch-key-id" : "branch-key-id",
 "type" : type,
 "create-time" : "timestamp",
 "logical-key-store-name" : "the logical table name for your key store",
 "kms-arn" : the KMS key ARN,
 "hierarchy-version" : 1
 },
 "KeyId": "the KMS key ARN",
 "NumberOfBytes": "32"
}

Uso del conjunto de claves jerárquico para el cifrado para búsquedas 88

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Tras generar ambas claves, la CreateKey operación llama a ddb: TransactWriteItems para escribir
dos nuevos elementos que conservarán la clave de rama y la clave de baliza en tu almacén de
claves de sucursal.

Al configurar una baliza estándar, el SDK de cifrado de AWS bases de datos consulta la clave de
la baliza en el almacén de claves. A continuación, utiliza una función de derivación de extract-and-
expand claves (HKDF) basada en HMAC para combinar la clave de baliza con el nombre de la baliza
estándar y crear la clave HMAC para una baliza determinada.

A diferencia de las llaves de sucursal, solo hay una versión de clave de baliza por branch-key-id
almacén de claves. La clave de la baliza nunca se rota.

Definir la fuente de claves de baliza

Al definir la versión de la baliza para las balizas estándar y compuestas, debe identificar la clave de
la baliza y definir un tiempo de vida útil (TTL) límite de caché para los materiales de la clave de la
baliza. Los materiales de las claves de baliza se almacenan en una caché local independiente de las
claves de rama. El siguiente fragmento muestra cómo definir la keySource para la base de datos de
un solo inquilino. Identifique la clave de su baliza por el branch-key-id que está asociada.

Java

keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branch-key-id)
 .cacheTTL(6000)
 .build())
 .build())

C# / .NET

KeySource = new BeaconKeySource
{
 Single = new SingleKeyStore
 {
 KeyId = branch-key-id,
 CacheTTL = 6000
 }
}

Uso del conjunto de claves jerárquico para el cifrado para búsquedas 89

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html
https://en.wikipedia.org/wiki/HKDF

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Rust

 .key_source(BeaconKeySource::Single(
 SingleKeyStore::builder()
 // `keyId` references a beacon key.
 // For every branch key we create in the keystore,
 // we also create a beacon key.
 // This beacon key is not the same as the branch key,
 // but is created with the same ID as the branch key.
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .build()?,
))

Definición de la fuente de la baliza en una base de multitenencia

Si tiene una base de datos de multitenencia, debe especificar los siguientes valores al configurar
la keySource.

•

keyFieldName

Define el nombre del campo que almacena la clave branch-key-id asociada a la baliza
utilizada para generar las balizas para un inquilino determinado. El keyFieldName puede
ser cualquier cadena, pero debe ser única para todos los demás campos de la base de datos.
Cuando se escriben nuevos registros en la base de datos, en este campo se almacena la
branch-key-id de baliza utilizada para generar las balizas de ese registro. Debe incluir
este campo en sus consultas de baliza e identificar los materiales clave de baliza adecuados
necesarios para volver a calcular la baliza. Para obtener más información, consulte Consulta de
balizas en una base de datos de multitenencia.

• CacheTTL

El tiempo en segundos que se puede utilizar una entrada de materiales clave de baliza en la
caché de balizas local antes de que caduque. Este valor debe ser mayor que cero. Cuando el
TTL límite de caché vence, la entrada se expulsa de la caché local.

• (Opcional) Una caché

Uso del conjunto de claves jerárquico para el cifrado para búsquedas 90

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Si desea personalizar el tipo de caché o el número de entradas de materiales clave de rama
que se pueden almacenar en la caché local, especifique el tipo de caché y la capacidad de
entrada al inicializar el conjunto de claves.

El conjunto de claves jerárquico admite los siguientes tipos de caché: predeterminada,
MultiThreaded StormTracking, y compartida. Para obtener más información y ejemplos que
demuestren cómo definir cada tipo de caché, consulte. the section called “Elige una memoria
caché”

Si no especifica una caché, el conjunto de claves jerárquico utiliza automáticamente el tipo de
caché predeterminado y establece la capacidad de entrada en 1000.

En el siguiente ejemplo, se crea un conjunto de claves jerárquico con un proveedor de ID de
rama, un límite de caché de 600 segundos y una capacidad de entrada de 1000.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(branchKeyStoreName)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(CacheType.builder() //OPTIONAL
 .Default(DefaultCache.builder()
 .entryCapacity(1000)
 .build())
 .build();
final IKeyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600,
 Cache = new CacheType

Uso del conjunto de claves jerárquico para el cifrado para búsquedas 91

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 {
 Default = new DefaultCache { EntryCapacity = 1000 }
 }
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let provider_config = MaterialProvidersConfig::builder().build()?;
 let mat_prov = client::Client::from_conf(provider_config)?;
 let kms_keyring = mat_prov
 .create_aws_kms_hierarchical_keyring()
 .branch_key_id(branch_key_id)
 .key_store(key_store)
 .ttl_seconds(600)
 .send()
 .await?;

AWS KMS Llaveros ECDH

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de bases de AWS datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Important

El conjunto de claves AWS KMS ECDH solo está disponible en la versión 1.5.0 o posterior de
la biblioteca de proveedores de materiales.

Un anillo de claves AWS KMS ECDH utiliza un acuerdo de claves asimétrico AWS KMS keyspara
obtener una clave de empaquetado simétrico compartida entre dos partes. En primer lugar, el
conjunto de claves utiliza el algoritmo de acuerdo de claves Elliptic Curve Diffie-Hellman (ECDH)
para obtener un secreto compartido a partir de la clave privada del par de claves KMS del
remitente y la clave pública del destinatario. A continuación, el conjunto de claves utiliza el secreto
compartido para obtener la clave de empaquetado compartida que protege las claves de cifrado
de datos. La función de derivación de claves que utiliza el SDK de cifrado de AWS bases de datos

AWS KMS Llaveros ECDH 92

https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

(KDF_CTR_HMAC_SHA384) para derivar la clave de empaquetado compartida cumple con las
recomendaciones del NIST para la derivación de claves.

La función de derivación de claves devuelve 64 bytes de material de creación de claves. Para
garantizar que ambas partes utilicen el material de codificación correcto, el SDK de cifrado de
AWS bases de datos utiliza los primeros 32 bytes como clave de compromiso y los últimos 32
bytes como clave de empaquetado compartida. Al descifrar, si el conjunto de claves no puede
reproducir la misma clave de compromiso y la misma clave de empaquetado compartida que
están almacenadas en el campo de descripción del material del registro cifrado, la operación no se
realizará correctamente. Por ejemplo, si cifra un registro con un conjunto de claves configurado con
la clave privada de Alice y la clave pública de Bob, un conjunto de claves configurado con la clave
privada de Bob y la clave pública de Alice reproducirá la misma clave de compromiso y clave de
empaquetado compartida y podrá descifrar el registro. Si la clave pública de Bob no proviene de
un par de claves KMS, entonces Bob puede crear un conjunto de claves ECDH sin procesar para
descifrar el registro.

El anillo de claves AWS KMS ECDH cifra los registros con una clave simétrica mediante AES-
GCM. A continuación, la clave de datos se cifra sobre con la clave de empaquetado compartida
derivada mediante AES-GCM. Cada anillo de claves AWS KMS ECDH solo puede tener una clave de
empaquetado compartida, pero puede incluir varios anillos de claves AWS KMS ECDH, solos o con
otros, en un conjunto de claves múltiples.

Temas

• AWS KMS Permisos necesarios para los llaveros ECDH

• Crear un conjunto de claves ECDH AWS KMS

• Creación de un conjunto de claves AWS KMS de detección del ECDH

AWS KMS Permisos necesarios para los llaveros ECDH

El SDK AWS de cifrado de bases de datos no requiere una AWS cuenta y no depende de ningún
AWS servicio. Sin embargo, para usar un AWS KMS conjunto de claves ECDH, necesita una AWS
cuenta y los siguientes permisos mínimos AWS KMS keys en su conjunto de claves. Los permisos
varían en función del esquema de acuerdo de claves que utilice.

• Para cifrar y descifrar registros mediante el esquema de acuerdo de
KmsPrivateKeyToStaticPublicKey claves, necesita kms: GetPublicKey y kms:
DeriveSharedSecret en el par de claves KMS asimétricas del remitente. Si proporciona

AWS KMS Permisos necesarios para los llaveros ECDH 93

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

directamente la clave pública codificada en DER del remitente al crear una instancia de su
conjunto de claves, solo necesitará el DeriveSharedSecret permiso kms: en el par de claves KMS
asimétricas del remitente.

• Para descifrar registros mediante el esquema de acuerdo de KmsPublicKeyDiscovery claves,
necesita los GetPublicKey permisos kms: DeriveSharedSecret y kms: en el par de claves KMS
asimétricas especificado.

Crear un conjunto de claves ECDH AWS KMS

Para crear un conjunto de claves AWS KMS ECDH que cifre y descifre los datos, debe utilizar el
esquema de acuerdo de claves. KmsPrivateKeyToStaticPublicKey Para inicializar un anillo
de claves AWS KMS ECDH con el esquema de acuerdo de KmsPrivateKeyToStaticPublicKey
claves, proporcione los siguientes valores:

• ID del remitente AWS KMS key

Debe identificar un par de claves KMS de curva elíptica (ECC) asimétrica recomendado por el
NIST con un valor de. KeyUsage KEY_AGREEMENT La clave privada del remitente se utiliza para
obtener el secreto compartido.

• (Opcional) Clave pública del remitente

Debe ser una clave pública X.509 codificada en DER, también conocida como
SubjectPublicKeyInfo (SPKI), según se define en el RFC 5280.

La AWS KMS GetPublicKeyoperación devuelve la clave pública de un par de claves KMS
asimétricas en el formato codificado DER requerido.

Para reducir el número de AWS KMS llamadas que realiza tu llavero, puedes proporcionar
directamente la clave pública del remitente. Si no se proporciona ningún valor para la clave pública
del remitente, el llavero llama AWS KMS para recuperar la clave pública del remitente.

• La clave pública del destinatario

Debe proporcionar la clave pública X.509 codificada en DER del destinatario, también conocida
como SubjectPublicKeyInfo (SPKI), tal como se define en el RFC 5280.

La AWS KMS GetPublicKeyoperación devuelve la clave pública de un par de claves KMS
asimétricas en el formato codificado DER requerido.

• Especificación de curva

Crear un conjunto de claves ECDH AWS KMS 94

https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Identifica la especificación de la curva elíptica en los pares de claves especificados. Los pares de
claves del remitente y del destinatario deben tener la misma especificación de curva.

Valores válidos: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Opcional) Una lista de tokens de concesión

Si controla el acceso a la clave KMS de su conjunto de claves AWS KMS ECDH mediante
concesiones, debe proporcionar todos los símbolos de concesión necesarios al inicializar el
conjunto de claves.

C# / .NET

En el siguiente ejemplo, se crea un anillo de claves AWS KMS ECDH con la clave KMS del
remitente, la clave pública del remitente y la clave pública del destinatario. En este ejemplo, se
utiliza el senderPublicKey parámetro opcional para proporcionar la clave pública del remitente.
Si no proporciona la clave pública del remitente, el conjunto de claves llama AWS KMS para
recuperar la clave pública del remitente. Los pares de claves del remitente y del destinatario están
en la ECC_NIST_P256 curva.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations
{
 KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput
 {
 SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 SenderPublicKey = BobPublicKey,
 RecipientPublicKey = AlicePublicKey
 }
};

var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{

Crear un conjunto de claves ECDH AWS KMS 95

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = staticConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

En el siguiente ejemplo, se crea un conjunto de claves AWS KMS ECDH con la clave KMS del
remitente, la clave pública del remitente y la clave pública del destinatario. En este ejemplo, se
utiliza el senderPublicKey parámetro opcional para proporcionar la clave pública del remitente.
Si no proporciona la clave pública del remitente, el conjunto de claves llama AWS KMS para
recuperar la clave pública del remitente. Los pares de claves del remitente y del destinatario están
en la ECC_NIST_P256 curva.

// Retrieve public keys
// Must be DER-encoded X.509 public keys
ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab");
 ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

// Create the AWS KMS ECDH static keyring
 final CreateAwsKmsEcdhKeyringInput senderKeyringInput =
 CreateAwsKmsEcdhKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPrivateKeyToStaticPublicKey(
 KmsPrivateKeyToStaticPublicKeyInput.builder()
 .senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")
 .senderPublicKey(BobPublicKey)
 .recipientPublicKey(AlicePublicKey)
 .build()).build()).build();

Rust

En el siguiente ejemplo, se crea un conjunto de claves AWS KMS ECDH con la clave KMS del
remitente, la clave pública del remitente y la clave pública del destinatario. En este ejemplo,

Crear un conjunto de claves ECDH AWS KMS 96

AWS SDK de cifrado de bases de datos Guía para desarrolladores

se utiliza el sender_public_key parámetro opcional para proporcionar la clave pública del
remitente. Si no proporciona la clave pública del remitente, el conjunto de claves llama AWS KMS
para recuperar la clave pública del remitente.

// Retrieve public keys
// Must be DER-encoded X.509 keys
let public_key_file_content_sender =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_SENDER))?;
let parsed_public_key_file_content_sender = parse(public_key_file_content_sender)?;
let public_key_sender_utf8_bytes = parsed_public_key_file_content_sender.contents();

let public_key_file_content_recipient =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content_recipient =
 parse(public_key_file_content_recipient)?;
let public_key_recipient_utf8_bytes =
 parsed_public_key_file_content_recipient.contents();

// Create KmsPrivateKeyToStaticPublicKeyInput
let kms_ecdh_static_configuration_input =
 KmsPrivateKeyToStaticPublicKeyInput::builder()
 .sender_kms_identifier(arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab)
 // Must be a UTF8 DER-encoded X.509 public key
 .sender_public_key(public_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let kms_ecdh_static_configuration =
 KmsEcdhStaticConfigurations::KmsPrivateKeyToStaticPublicKey(kms_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH keyring
let kms_ecdh_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client)
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_static_configuration)
 .send()

Crear un conjunto de claves ECDH AWS KMS 97

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 .await?;

Creación de un conjunto de claves AWS KMS de detección del ECDH

Al descifrar, se recomienda especificar las claves que puede utilizar el SDK de cifrado de AWS bases
de datos. Para seguir esta práctica recomendada, utilice un anillo de claves AWS KMS ECDH con
el esquema de acuerdo de KmsPrivateKeyToStaticPublicKey claves. Sin embargo, también
puede crear un conjunto de claves de detección de AWS KMS ECDH, es decir, un conjunto de claves
de AWS KMS ECDH que pueda descifrar cualquier registro en el que la clave pública del par de
claves KMS especificado coincida con la clave pública del destinatario almacenada en el campo de
descripción del material del registro cifrado.

Important

Al descifrar los registros mediante el esquema de acuerdo de KmsPublicKeyDiscovery
claves, acepta todas las claves públicas, independientemente de quién sea su propietario.

Para inicializar un conjunto de claves del AWS KMS ECDH con el esquema de acuerdo de
KmsPublicKeyDiscovery claves, proporcione los siguientes valores:

• ID del destinatario AWS KMS key

Debe identificar un par de claves KMS de curva elíptica (ECC) asimétrica recomendado por el
NIST con un valor de. KeyUsage KEY_AGREEMENT

• Especificación de curva

Identifica la especificación de la curva elíptica en el par de claves KMS del destinatario.

Valores válidos: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Opcional) Una lista de tokens de concesión

Si controla el acceso a la clave KMS de su conjunto de claves AWS KMS ECDH mediante
concesiones, debe proporcionar todos los símbolos de concesión necesarios al inicializar el
conjunto de claves.

Creación de un conjunto de claves AWS KMS de detección del ECDH 98

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

C# / .NET

En el siguiente ejemplo, se crea un anillo de claves de detección de AWS KMS ECDH con un
par de claves KMS en la ECC_NIST_P256 curva. Debe tener los DeriveSharedSecret permisos
kms: GetPublicKey y kms: en el key pair de claves KMS especificado. Este conjunto de claves
puede descifrar cualquier registro en el que la clave pública del par de claves KMS especificado
coincida con la clave pública del destinatario almacenada en el campo de descripción del material
del registro cifrado.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create the AWS KMS ECDH discovery keyring
var discoveryConfiguration = new KmsEcdhStaticConfigurations
{
 KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput
 {
 RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
 }

};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = discoveryConfiguration
};
var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

En el siguiente ejemplo, se crea un anillo de claves de detección de AWS KMS ECDH con un
par de claves KMS en la ECC_NIST_P256 curva. Debe tener los DeriveSharedSecret permisos
kms: GetPublicKey y kms: en el key pair de claves KMS especificado. Este conjunto de claves
puede descifrar cualquier registro en el que la clave pública del par de claves KMS especificado
coincida con la clave pública del destinatario almacenada en el campo de descripción del material
del registro cifrado.

// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput =
 CreateAwsKmsEcdhKeyringInput.builder()

Creación de un conjunto de claves AWS KMS de detección del ECDH 99

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPublicKeyDiscovery(
 KmsPublicKeyDiscoveryInput.builder()
 .recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321").build()
).build())
 .build();

Rust

// Create KmsPublicKeyDiscoveryInput
let kms_ecdh_discovery_static_configuration_input =
 KmsPublicKeyDiscoveryInput::builder()
 .recipient_kms_identifier(ecc_recipient_key_arn)
 .build()?;

let kms_ecdh_discovery_static_configuration =
 KmsEcdhStaticConfigurations::KmsPublicKeyDiscovery(kms_ecdh_discovery_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH discovery keyring
let kms_ecdh_discovery_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client.clone())
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_discovery_static_configuration)
 .send()
 .await?;

Conjunto de claves de AES sin formato

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Conjunto de claves de AES sin formato 100

AWS SDK de cifrado de bases de datos Guía para desarrolladores

El SDK AWS de cifrado de bases de datos le permite utilizar una clave simétrica AES que se
proporciona como clave de empaquetado para proteger la clave de datos. Debe generar, almacenar
y proteger el material clave, preferiblemente en un módulo de seguridad de hardware (HSM) o en
un sistema de administración de claves. Utilice un conjunto de claves de AES sin procesar cuando
necesite proporcionar la clave de encapsulamiento y cifre las claves de datos de forma local o fuera
de línea.

El conjunto de claves de AES sin formato usa el algoritmo AES-GCM y una clave de
encapsulamiento que especifique como matriz de bytes para cifrar claves de datos. Puede
especificar una sola clave de encapsulación en cada conjunto de claves de AES sin formato, pero
puede incluir varios conjuntos de claves de AES sin formato en cada conjunto de claves múltiples.

Nombres y espacios de nombres clave

Para identificar la clave de AES, el conjunto de claves de AES sin formato utiliza un espacio de
nombres de claves y nombre de clave que usted facilite. Estos valores no son secretos. Aparecen
en texto plano en la descripción del material que el SDK de cifrado AWS de bases de datos
añade al registro. Recomendamos utilizar un espacio de nombres clave en su HSM o sistema de
administración de claves y un nombre de clave que identifique la clave AES en ese sistema.

Note

El espacio de nombres de clave y el nombre de clave son equivalentes a los campos ID de
proveedor (o proveedor) e ID de clave del. JceMasterKey

Si crea diferentes conjuntos de claves para cifrar y descifrar un campo determinado, el espacio de
nombres y los valores de los nombres son fundamentales. Si el espacio de nombres y el nombre de
la clave del conjunto de claves de descifrado no coinciden exactamente y distinguen mayúsculas de
minúsculas entre el espacio de nombres de la clave y el nombre de la clave del conjunto de claves
de cifrado, no se utiliza el conjunto de claves de descifrado, incluso si los bytes del material de la
clave son idénticos.

Por ejemplo, puede definir un conjunto de claves de AES sin procesar con el espacio de nombres
HSM_01 y el nombre de la clave AES_256_012. A continuación, utilice ese conjunto de claves para
cifrar algunos datos. Para descifrar esos datos, cree un conjunto de claves de AES sin procesar con
el mismo espacio de nombres, nombre de clave y material de clave.

Conjunto de claves de AES sin formato 101

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Los siguientes ejemplos muestran cómo crear un conjunto de claves de AES sin formato. La
AESWrappingKey variable representa el material clave que proporciona.

Java

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder()
 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

C# / .NET

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

// This example uses the key generator in Bouncy Castle to generate the key
 material.
// In production, use key material from a secure source.
var aesWrappingKey = new
 MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

// Create the keyring
var keyringInput = new CreateRawAesKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 WrappingKey = AESWrappingKey,
 WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
};

var matProv = new MaterialProviders(new MaterialProvidersConfig());
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;

Conjunto de claves de AES sin formato 102

AWS SDK de cifrado de bases de datos Guía para desarrolladores

let mpl = mpl_client::Client::from_conf(mpl_config)?;
let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name("AES_256_012")
 .key_namespace("HSM_01")
 .wrapping_key(aes_key_bytes)
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

Conjunto de claves de RSA sin formato

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

El conjunto de claves de RSA sin formato realiza un cifrado y descifrado asimétrico de las claves de
datos en la memoria local con las claves privadas y públicas de RSA que especifique. Debe generar,
almacenar y proteger la clave privada, preferiblemente en un módulo de seguridad de hardware
(HSM) o en un sistema de administración de claves. La función de cifrado cifra la clave de datos
bajo la clave pública de RSA. La función de descifrado descifra la clave de datos utilizando la clave
privada. Puede seleccionar de entre los diversos modos de rellenado de RSA.

Un conjunto de claves de RSA sin formato que cifra y descifra debe incluir una clave pública
asimétrica y un par de claves privadas. Sin embargo, puede cifrar datos con un conjunto de claves de
RSA sin formato que solo tenga una clave pública y puede descifrar datos con un conjunto de claves
de RSA sin formato que solo tenga una clave privada. Y puede incluir cualquier conjunto de claves
de RSA sin formato en un conjunto de claves múltiple. Si configura un conjunto de claves de RSA
sin procesar con una clave pública y una privada, asegúrese de que formen parte del mismo par de
claves.

El conjunto de claves RSA sin procesar es equivalente al del RSA e interactúa con él SDK de cifrado
de AWS para Java cuando se utiliza con claves de cifrado asimétricas RSA. JceMasterKey

Conjunto de claves de RSA sin formato 103

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Note

El conjunto de claves RSA no admite claves de KMS asimétricas. Para usar claves RSA KMS
asimétricas, cree un conjunto de claves de AWS KMS.

Espacios de nombres y nombres

Para identificar el par de claves, el conjunto de claves de RSA sin formato utiliza un espacio de
nombres y nombre que usted facilite. Estos valores no son secretos. Aparecen en texto plano
en la descripción del material que el SDK de cifrado de AWS bases de datos añade al registro.
Recomendamos usar el espacio de nombres y el nombre de clave que identifican el par de claves
RSA (o su clave privada) en su HSM o sistema de administración de claves.

Note

El espacio de nombres de clave y el nombre de clave son equivalentes a los campos ID de
proveedor (o proveedor) e ID de clave del. JceMasterKey

Si crea diferentes conjuntos de claves para cifrar y descifrar un registro determinado, el espacio
de nombres y los valores de los nombres son fundamentales. Si el espacio de nombres de clave
y el nombre de clave del conjunto de claves de descifrado no coinciden exactamente y distinguen
mayúsculas de minúsculas entre el espacio de nombres de clave y el nombre de clave del conjunto
de claves de cifrado, no se utiliza el conjunto de claves de descifrado, incluso si las claves son del
mismo par de claves.

El espacio de nombres de clave y el nombre de clave del material clave de los conjuntos de claves
de cifrado y descifrado deben ser los mismos independientemente de que el conjunto de claves
contenga la clave pública RSA, la clave privada RSA o ambas claves del par de claves. Por ejemplo,
supongamos que cifra los datos con un conjunto de claves de RSA sin procesar para una clave
pública RSA con el espacio de nombres HSM_01 y el nombre de la clave RSA_2048_06. Para
descifrar esos datos, cree un conjunto de claves de RSA sin procesar con la clave privada (o el
mismo par de claves) y el mismo espacio de nombres y nombre de claves.

Modo de relleno

Conjunto de claves de RSA sin formato 104

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Debe especificar un modo de relleno para los conjunto de claves RSA sin formato utilizados
para el cifrado y descifrado, o utilizar características de la implementación de su lenguaje que lo
especifiquen por usted.

AWS Encryption SDK Admite los siguientes modos de relleno, sujetos a las limitaciones de cada
idioma. Recomendamos un modo de relleno OAEP, especialmente el OAEP con relleno SHA-256
y SHA-256. MGF1 El modo de relleno solo se admite por motivos de compatibilidad con versiones
anteriores. PKCS1

• OAEP con relleno SHA-1 y SHA-1 MGF1

• OAEP con relleno SHA-256 y SHA-256 MGF1

• OAEP con relleno SHA-384 y SHA-384 MGF1

• OAEP con relleno SHA-512 y SHA-512 MGF1

• PKCS1 Acolchado v1.5

El siguiente ejemplo de Java muestra cómo crear un conjunto de claves RSA sin procesar con la
clave pública y privada de un par de claves RSA y el OAEP con SHA-256 y con el modo de relleno
SHA-256. MGF1 RSAPublicKeyRSAPrivateKeyLas variables y representan el material clave que
proporciona.

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder()
 .keyName("RSA_2048_06")
 .keyNamespace("HSM_01")
 .paddingScheme(PaddingScheme.OAEP_SHA256_MGF1)
 .publicKey(RSAPublicKey)
 .privateKey(RSAPrivateKey)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

C# / .NET

var keyNamespace = "HSM_01";
var keyName = "RSA_2048_06";

Conjunto de claves de RSA sin formato 105

https://tools.ietf.org/html/rfc8017#section-7.1
https://tools.ietf.org/html/rfc8017#section-7.2

AWS SDK de cifrado de bases de datos Guía para desarrolladores

// Get public and private keys from PEM files
var publicKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));
var privateKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));

// Create the keyring input
var keyringInput = new CreateRawRsaKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 PaddingScheme = PaddingScheme.OAEP_SHA512_MGF1,
 PublicKey = publicKey,
 PrivateKey = privateKey
};

// Create the keyring
var matProv = new MaterialProviders(new MaterialProvidersConfig());
var rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let raw_rsa_keyring = mpl
 .create_raw_rsa_keyring()
 .key_name("RSA_2048_06")
 .key_namespace("HSM_01")
 .padding_scheme(PaddingScheme::OaepSha256Mgf1)
 .public_key(RSA_public_key)
 .private_key(RSA_private_key)
 .send()
 .await?;

Llaveros ECDH sin procesar

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de bases de AWS datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Llaveros ECDH sin procesar 106

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Important

El conjunto de claves ECDH sin procesar solo está disponible en la versión 1.5.0 de la
biblioteca de proveedores de materiales.

El anillo de claves ECDH sin procesar utiliza los pares de claves público-privadas de curva
elíptica que usted proporciona para obtener una clave de empaquetado compartida entre dos
partes. En primer lugar, el conjunto de claves obtiene un secreto compartido mediante la clave
privada del remitente, la clave pública del destinatario y el algoritmo de acuerdo de claves
Elliptic Curve Diffie-Hellman (ECDH). A continuación, el conjunto de claves utiliza el secreto
compartido para obtener la clave de empaquetado compartida que protege las claves de cifrado
de datos. La función de derivación de claves que utiliza el SDK de cifrado de AWS bases de datos
(KDF_CTR_HMAC_SHA384) para derivar la clave de empaquetado compartida cumple con las
recomendaciones del NIST para la derivación de claves.

La función de derivación de claves devuelve 64 bytes de material de creación de claves. Para
garantizar que ambas partes utilicen el material de codificación correcto, el SDK de cifrado de AWS
bases de datos utiliza los primeros 32 bytes como clave de compromiso y los últimos 32 bytes como
clave de empaquetado compartida. Al descifrar, si el conjunto de claves no puede reproducir la
misma clave de compromiso y la misma clave de empaquetado compartida que están almacenadas
en el campo de descripción del material del registro cifrado, la operación falla. Por ejemplo, si cifra
un registro con un conjunto de claves configurado con la clave privada de Alice y la clave pública
de Bob, un conjunto de claves configurado con la clave privada de Bob y la clave pública de Alice
reproducirá la misma clave de compromiso y clave de empaquetado compartida y podrá descifrar el
registro. Si la clave pública de Bob proviene de un AWS KMS key par, Bob puede crear un conjunto
de claves AWS KMS ECDH para descifrar el registro.

El conjunto de claves ECDH sin procesar cifra los registros con una clave simétrica mediante AES-
GCM. A continuación, la clave de datos se cifra sobre con la clave de empaquetado compartida
derivada mediante AES-GCM. Cada anillo de claves ECDH sin procesar solo puede tener una clave
de empaquetado compartida, pero puede incluir varios anillos de claves ECDH sin procesar, solos o
con otros, en un conjunto de claves múltiples.

Usted es responsable de generar, almacenar y proteger sus claves privadas, preferiblemente en un
módulo de seguridad de hardware (HSM) o en un sistema de administración de claves. Los pares
de claves del remitente y del destinatario deben estar en la misma curva elíptica. El SDK AWS de
cifrado de bases de datos admite las siguientes especificaciones de curva elíptica:

Llaveros ECDH sin procesar 107

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• ECC_NIST_P256

• ECC_NIST_P384

• ECC_NIST_P512

Creación de un conjunto de claves ECDH sin procesar

El anillo de claves ECDH sin procesar admite tres esquemas de acuerdo clave:, y.
RawPrivateKeyToStaticPublicKey EphemeralPrivateKeyToStaticPublicKey
PublicKeyDiscovery El esquema de acuerdo de claves que seleccione determina qué
operaciones criptográficas puede realizar y cómo se ensamblan los materiales de codificación.

Temas

• RawPrivateKeyToStaticPublicKey

• EphemeralPrivateKeyToStaticPublicKey

• PublicKeyDiscovery

RawPrivateKeyToStaticPublicKey

Utilice el esquema de acuerdo de RawPrivateKeyToStaticPublicKey claves para configurar
de forma estática la clave privada del remitente y la clave pública del destinatario en el conjunto de
claves. Este esquema de acuerdo de claves puede cifrar y descifrar registros.

Para inicializar un conjunto de claves ECDH sin procesar con el esquema de acuerdo de
RawPrivateKeyToStaticPublicKey claves, proporcione los siguientes valores:

• Clave privada del remitente

Debe proporcionar la clave privada codificada en PEM del remitente (PrivateKeyInfo estructuras
PKCS #8), tal como se define en el RFC 5958.

• La clave pública del destinatario

Debe proporcionar la clave pública X.509 codificada en DER del destinatario, también conocida
como SubjectPublicKeyInfo (SPKI), tal como se define en el RFC 5280.

Puede especificar la clave pública de un par de claves KMS de un acuerdo de claves asimétrico o
la clave pública de un par de claves generado fuera de AWS.

• Especificación de curva

Creación de un conjunto de claves ECDH sin procesar 108

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Identifica la especificación de la curva elíptica en los pares de claves especificados. Los pares de
claves del remitente y del destinatario deben tener la misma especificación de curva.

Valores válidos: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var BobPrivateKey = new MemoryStream(new byte[] { });
 var AlicePublicKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH static keyring
 var staticConfiguration = new RawEcdhStaticConfigurations()
 {
 RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput
 {
 SenderStaticPrivateKey = BobPrivateKey,
 RecipientPublicKey = AlicePublicKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = staticConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

El siguiente ejemplo de Java utiliza el esquema de acuerdo de
RawPrivateKeyToStaticPublicKey claves para configurar estáticamente la clave privada del
remitente y la clave pública del destinatario. Ambos pares de claves están en la ECC_NIST_P256
curva.

private static void StaticRawKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()

Creación de un conjunto de claves ECDH sin procesar 109

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair senderKeys = GetRawEccKey();
 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH static keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .RawPrivateKeyToStaticPublicKey(
 RawPrivateKeyToStaticPublicKeyInput.builder()
 // Must be a PEM-encoded private key

 .senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded()))
 // Must be a DER-encoded X.509 public key

 .recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded()))
 .build()
)
 .build()
).build();

 final IKeyring staticKeyring =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Rust

El siguiente ejemplo de Python usa el esquema de acuerdo de
raw_ecdh_static_configuration claves para configurar estáticamente la clave privada del
remitente y la clave pública del destinatario. Ambos pares de claves deben estar en la misma
curva.

// Create keyring input
let raw_ecdh_static_configuration_input =
 RawPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .sender_static_private_key(private_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)

Creación de un conjunto de claves ECDH sin procesar 110

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 .build()?;

let raw_ecdh_static_configuration =
 RawEcdhStaticConfigurations::RawPrivateKeyToStaticPublicKey(raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH static keyring
let raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(raw_ecdh_static_configuration)
 .send()
 .await?;

EphemeralPrivateKeyToStaticPublicKey

Los conjuntos de EphemeralPrivateKeyToStaticPublicKey claves configurados con el
esquema de acuerdo de claves crean un nuevo par de claves localmente y derivan una clave de
empaquetado compartida única para cada llamada de cifrado.

Este esquema de acuerdo de claves solo puede cifrar registros. Para descifrar los registros cifrados
con el esquema de acuerdo de EphemeralPrivateKeyToStaticPublicKey claves, debe utilizar
un esquema de acuerdo de claves de descubrimiento configurado con la clave pública del mismo
destinatario. Para descifrar, puede usar un anillo de claves ECDH sin procesar con el algoritmo de
acuerdo de claves o, si la PublicKeyDiscoveryclave pública del destinatario proviene de un par
de claves KMS de acuerdo de claves asimétrico, puede usar un anillo de claves AWS KMS ECDH
con el esquema de acuerdo de claves. KmsPublicKeyDiscovery

Para inicializar un conjunto de claves ECDH sin procesar con el esquema de acuerdo de claves,
proporcione los siguientes valoresEphemeralPrivateKeyToStaticPublicKey:

• Clave pública del destinatario

Debe proporcionar la clave pública X.509 codificada en DER del destinatario, también conocida
como SubjectPublicKeyInfo (SPKI), tal como se define en el RFC 5280.

Puede especificar la clave pública de un par de claves KMS de un acuerdo de claves asimétrico o
la clave pública de un par de claves generado fuera de AWS.

Creación de un conjunto de claves ECDH sin procesar 111

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• Especificación de curva

Identifica la especificación de la curva elíptica en la clave pública especificada.

Al cifrar, el anillo de claves crea un nuevo par de claves en la curva especificada y utiliza la nueva
clave privada y la clave pública especificada para obtener una clave de empaquetado compartida.

Valores válidos: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

En el siguiente ejemplo, se crea un anillo de claves ECDH sin procesar con el
EphemeralPrivateKeyToStaticPublicKey esquema de acuerdo de claves.
Al cifrar, el anillo de claves creará un nuevo par de claves localmente en la curva
especificadaECC_NIST_P256.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePublicKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH ephemeral keyring
 var ephemeralConfiguration = new RawEcdhStaticConfigurations()
 {
 EphemeralPrivateKeyToStaticPublicKey = new
 EphemeralPrivateKeyToStaticPublicKeyInput
 {
 RecipientPublicKey = AlicePublicKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = ephemeralConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

En el siguiente ejemplo, se crea un anillo de claves ECDH sin procesar con el
EphemeralPrivateKeyToStaticPublicKey esquema de acuerdo de claves.

Creación de un conjunto de claves ECDH sin procesar 112

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Al cifrar, el anillo de claves creará un nuevo par de claves localmente en la curva
especificadaECC_NIST_P256.

private static void EphemeralRawEcdhKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 ByteBuffer recipientPublicKey = getPublicKeyBytes();

 // Create the Raw ECDH ephemeral keyring
 final CreateRawEcdhKeyringInput ephemeralInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .EphemeralPrivateKeyToStaticPublicKey(
 EphemeralPrivateKeyToStaticPublicKeyInput.builder()
 .recipientPublicKey(recipientPublicKey)
 .build()
)
 .build()
).build();

 final IKeyring ephemeralKeyring =
 materialProviders.CreateRawEcdhKeyring(ephemeralInput);
}

Rust

En el siguiente ejemplo, se crea un anillo de claves ECDH sin procesar con el
ephemeral_raw_ecdh_static_configuration esquema de acuerdo de claves. Al cifrar, el
anillo de claves creará un nuevo par de claves localmente en la curva especificada.

// Create EphemeralPrivateKeyToStaticPublicKeyInput
let ephemeral_raw_ecdh_static_configuration_input =
 EphemeralPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

Creación de un conjunto de claves ECDH sin procesar 113

AWS SDK de cifrado de bases de datos Guía para desarrolladores

let ephemeral_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::EphemeralPrivateKeyToStaticPublicKey(ephemeral_raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH ephemeral private key keyring
let ephemeral_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(ephemeral_raw_ecdh_static_configuration)
 .send()
 .await?;

PublicKeyDiscovery

Al descifrar, se recomienda especificar las claves de empaquetado que puede usar el SDK de cifrado
de AWS bases de datos. Para seguir esta práctica recomendada, utilice un conjunto de claves
ECDH que especifique tanto la clave privada del remitente como la clave pública del destinatario.
Sin embargo, también puede crear un conjunto de claves de detección de ECDH sin procesar, es
decir, un conjunto de claves ECDH sin procesar que pueda descifrar cualquier registro en el que la
clave pública de la clave especificada coincida con la clave pública del destinatario almacenada en
el campo de descripción del material del registro cifrado. Este esquema de acuerdo de claves solo
puede descifrar registros.

Important

Al descifrar registros mediante el esquema de acuerdo de PublicKeyDiscovery claves,
acepta todas las claves públicas, independientemente de quién sea su propietario.

Para inicializar un conjunto de claves ECDH sin procesar con el esquema de acuerdo de
PublicKeyDiscovery claves, proporcione los siguientes valores:

• Clave privada estática del destinatario

Debe proporcionar la clave privada codificada en PEM del destinatario (PrivateKeyInfo estructuras
PKCS #8), tal como se define en el RFC 5958.

Creación de un conjunto de claves ECDH sin procesar 114

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• Especificación de curva

Identifica la especificación de la curva elíptica en la clave privada especificada. Los pares de
claves del remitente y del destinatario deben tener la misma especificación de curva.

Valores válidos: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

En el siguiente ejemplo, se crea un anillo de claves ECDH sin procesar con el esquema de
acuerdo de PublicKeyDiscovery claves. Este conjunto de claves puede descifrar cualquier
registro en el que la clave pública de la clave privada especificada coincida con la clave pública
del destinatario almacenada en el campo de descripción del material del registro cifrado.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePrivateKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH discovery keyring
 var discoveryConfiguration = new RawEcdhStaticConfigurations()
 {
 PublicKeyDiscovery = new PublicKeyDiscoveryInput
 {
 RecipientStaticPrivateKey = AlicePrivateKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = discoveryConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

En el siguiente ejemplo, se crea un anillo de claves ECDH sin procesar con el
PublicKeyDiscovery esquema de acuerdo de claves. Este conjunto de claves puede descifrar
cualquier registro en el que la clave pública de la clave privada especificada coincida con la clave
pública del destinatario almacenada en el campo de descripción del material del registro cifrado.

Creación de un conjunto de claves ECDH sin procesar 115

AWS SDK de cifrado de bases de datos Guía para desarrolladores

private static void RawEcdhDiscovery() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH discovery keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .PublicKeyDiscovery(
 PublicKeyDiscoveryInput.builder()
 // Must be a PEM-encoded private key

 .recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded()))
 .build()
)
 .build()
).build();

 final IKeyring publicKeyDiscovery =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Rust

En el siguiente ejemplo, se crea un anillo de claves ECDH sin procesar con el
discovery_raw_ecdh_static_configuration esquema de acuerdo de claves. Este
conjunto de claves puede descifrar cualquier mensaje en el que la clave pública de la clave
privada especificada coincida con la clave pública del destinatario almacenada en el texto cifrado
del mensaje.

// Create PublicKeyDiscoveryInput
let discovery_raw_ecdh_static_configuration_input =
 PublicKeyDiscoveryInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .recipient_static_private_key(private_key_recipient_utf8_bytes)

Creación de un conjunto de claves ECDH sin procesar 116

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 .build()?;

let discovery_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::PublicKeyDiscovery(discovery_raw_ecdh_static_configuration_input);

// Create raw ECDH discovery private key keyring
let discovery_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(discovery_raw_ecdh_static_configuration)
 .send()
 .await?;

Conjuntos de claves múltiples

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Puede combinar conjuntos de claves en un conjuntos de claves múltiple. Un conjunto de claves
múltiple es un conjunto de claves que consta de uno o varios conjuntos de claves individuales
del mismo tipo o de un tipo distinto. El efecto equivale a utilizar varios conjuntos de claves en una
serie. Cuando se utiliza un conjunto de claves múltiple para cifrar datos, cualquiera de las claves de
encapsulamiento en cualquiera de los conjuntos de claves puede descifrar dichos datos.

Cuando crea un conjunto de claves múltiple para cifrar datos, designa uno de los conjuntos de
claves como conjunto de claves generador. Los conjuntos de claves restantes se conocen como
conjuntos de claves secundarios. El conjunto de claves generador genera y cifra la clave de datos
de texto no cifrado. A continuación, todas las claves de encapsulamiento de todos los conjuntos
de claves secundarios cifran la misma clave de datos en texto no cifrado. El conjunto de claves
múltiple devuelve la clave de texto no cifrado y una clave de datos cifrada para cada clave de
encapsulamiento del conjunto de claves múltiple. Si el anillo de claves del generador es un anillo de
claves de KMS, la clave del generador del anillo de claves genera y cifra la AWS KMS clave de texto
simple. A continuación, todas las demás claves del AWS KMS keys conjunto de AWS KMS claves y
todas las claves de empaquetado de todos los anillos secundarios del conjunto de claves múltiples
cifran la misma clave de texto sin formato.

Conjuntos de claves múltiples 117

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Al descifrar, el SDK de cifrado de AWS bases de datos utiliza los anillos de claves para intentar
descifrar una de las claves de datos cifrados. Los conjuntos de claves se llaman en el orden en que
están especificados en el conjunto de claves múltiple. El procesamiento se detiene tan pronto como
cualquier clave de cualquier conjunto de claves pueda descifrar una clave de datos cifrada.

Para crear un conjunto de claves múltiple, en primer lugar, instancie los conjunto de claves
secundarios. En este ejemplo, utilizamos un anillo de claves y un AWS KMS anillo de claves AES sin
procesar, pero puede combinar cualquier conjunto de claves compatible en un conjunto de claves
múltiples.

Java

// 1. Create the raw AES keyring.
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateRawAesKeyringInput createRawAesKeyringInput =
 CreateRawAesKeyringInput.builder()
 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// 2. Create the AWS KMS keyring.
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyArn)
 .build();
IKeyring awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

C# / .NET

// 1. Create the raw AES keyring.
var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createRawAesKeyringInput = new CreateRawAesKeyringInput
{

Conjuntos de claves múltiples 118

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 KeyName = "keyName",
 KeyNamespace = "myNamespaces",
 WrappingKey = AESWrappingKey,
 WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
};
var rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// 2. Create the AWS KMS keyring.
// We create a MRK multi keyring, as this interface also supports
// single-region KMS keys,
// and creates the KMS client for us automatically.
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput
{
 Generator = keyArn
};
var awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Rust

// 1. Create the raw AES keyring
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name("AES_256_012")
 .key_namespace("HSM_01")
 .wrapping_key(aes_key_bytes)
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

// 2. Create the AWS KMS keyring
let aws_kms_mrk_multi_keyring = mpl
 .create_aws_kms_mrk_multi_keyring()
 .generator(key_arn)
 .send()
 .await?;

Conjuntos de claves múltiples 119

AWS SDK de cifrado de bases de datos Guía para desarrolladores

A continuación, cree el conjunto de claves múltiple y especifique su conjunto de claves generador, si
lo hay. En este ejemplo, creamos un llavero múltiple en el que el llavero es el llavero generador y el
AWS KMS llavero AES el llavero secundario.

Java

El CreateMultiKeyringInput constructor de Java permite definir un llavero generador y un
llavero secundario. El objeto resultante createMultiKeyringInput es inmutable.

final CreateMultiKeyringInput createMultiKeyringInput =
 CreateMultiKeyringInput.builder()
 .generator(awsKmsMrkMultiKeyring)
 .childKeyrings(Collections.singletonList(rawAesKeyring))
 .build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

C# / .NET

El constructor CreateMultiKeyringInput de .NET permite definir un conjunto de claves
generador y conjuntos de claves secundarios. El objeto resultante CreateMultiKeyringInput
es inmutable.

var createMultiKeyringInput = new CreateMultiKeyringInput
{
 Generator = awsKmsMrkMultiKeyring,
 ChildKeyrings = new List<IKeyring> { rawAesKeyring }
};
var multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Rust

let multi_keyring = mpl
 .create_multi_keyring()
 .generator(aws_kms_mrk_multi_keyring)
 .child_keyrings(vec![raw_aes_keyring.clone()])
 .send()
 .await?;

Ahora, puede utilizar el conjunto de claves múltiple para cifrar y descifrar datos.

Conjuntos de claves múltiples 120

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Cifrado para búsquedas

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

El cifrado para búsquedas le permite buscar registros cifrados sin tener que descifrar toda la base de
datos. Esto se logra mediante balizas, que crean un mapa entre el valor de texto no cifrado escrito
en un campo y el valor cifrado que realmente está almacenado en la base de datos. El SDK AWS de
cifrado de bases de datos almacena la baliza en un campo nuevo que se añade al registro. Según el
tipo de baliza que utilice, puede realizar búsquedas de coincidencias exactas o consultas complejas
más personalizadas en sus datos cifrados.

Note

El cifrado con capacidad de búsqueda del SDK AWS de cifrado de bases de datos difiere del
cifrado simétrico con capacidad de búsqueda definido en la investigación académica, como
el cifrado simétrico con capacidad de búsqueda.

Una baliza es una etiqueta de código de autenticación de mensajes basado en hash (HMAC)
truncada que crea un mapa entre el texto no cifrado y los valores cifrados de un campo. Al escribir un
valor nuevo en un campo cifrado que está configurado para el cifrado con capacidad de búsqueda, el
SDK de cifrado de AWS bases de datos calcula un HMAC sobre el valor del texto sin formato. Esta
salida del HMAC coincide uno a uno (1:1) con el valor de texto no cifrado de ese campo. La salida
del HMAC se trunca para que varios valores de texto no cifrado distintos se asignen a la misma
etiqueta HMAC truncada. Estos falsos positivos limitan la capacidad de un usuario no autorizado
para identificar información distintiva sobre el valor del texto no cifrado. Al consultar una baliza, el
SDK de cifrado de bases de datos de AWS filtra automáticamente estos falsos positivos y devuelve
el resultado de la consulta en texto no cifrado.

El número medio de falsos positivos generados por cada baliza viene determinado por la longitud
de la baliza restante tras el truncamiento. Si necesita ayuda para determinar la longitud de la baliza
adecuada para su implementación, consulte Determinar la longitud de la baliza.

121

https://dl.acm.org/doi/10.1145/1180405.1180417

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Note

El cifrado para búsquedas está diseñado para implementarse en bases de datos nuevas y
despobladas. Cualquier baliza configurada en una base de datos existente solo mapeará los
nuevos registros cargados en la base de datos; no hay forma de que una baliza mapee los
datos ya existentes.

Temas

• ¿Las balizas son adecuadas para mi conjunto de datos?

• Situación de cifrado para búsquedas

¿Las balizas son adecuadas para mi conjunto de datos?

El uso de balizas para realizar consultas sobre datos cifrados reduce los costos de rendimiento
asociados a las bases de datos cifradas del cliente. Cuando se utilizan balizas, existe un equilibrio
inherente entre la eficacia de las consultas y la cantidad de información que se revela sobre la
distribución de los datos. La baliza no altera el estado cifrado del campo. Al cifrar y firmar un campo
con el SDK de cifrado de AWS bases de datos, el valor de texto sin formato del campo nunca se
expone a la base de datos. La base de datos almacena el valor cifrado y la asignación al azar del
campo.

Las balizas se almacenan junto a los campos cifrados a partir de los cuales se calculan. Esto
significa que, incluso si un usuario no autorizado no puede ver los valores de texto no cifrado de un
campo cifrado, podría realizar un análisis estadístico de las balizas para obtener más información
sobre la distribución del conjunto de datos y, en casos extremos, identificar los valores de texto
no cifrado a los que se asigna una baliza. La forma en que configura su baliza puede mitigar
estos riesgos. En particular, elegir la longitud de baliza correcta puede ayudarle a preservar la
confidencialidad de su conjunto de datos.

Seguridad en comparación con rendimiento

• Cuanto menor sea la longitud de la baliza, más seguridad se preservará.

• Cuanto mayor sea la longitud de la baliza, más rendimiento se preservará.

¿Las balizas son adecuadas para mi conjunto de datos? 122

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Es posible que el cifrado para búsquedas no proporcione los niveles deseados de rendimiento y
seguridad para todos los conjunto de datos. Revise su modelo de amenazas, sus requisitos de
seguridad y sus necesidades de rendimiento antes de configurar cualquier baliza.

Tenga en cuenta los siguientes requisitos de exclusividad del conjunto de datos al determinar si el
cifrado para búsquedas es adecuado para su conjunto de datos.

Distribución

El grado de seguridad que conserva una baliza depende de la distribución del conjunto de datos.
Al configurar un campo cifrado para un cifrado que permita realizar búsquedas, el SDK de cifrado
de AWS bases de datos calcula un HMAC a partir de los valores de texto sin formato escritos
en ese campo. Todas las balizas calculadas para un campo determinado se calculan con la
misma clave, con la excepción de las bases de datos de multitenencia, que utilizan una clave
distinta para cada inquilino. Esto significa que si se escribe el mismo valor de texto no cifrado
en el campo varias veces, se crea la misma etiqueta HMAC para cada instancia de ese valor de
texto no cifrado.

Debe evitar crear balizas a partir de campos que contengan valores muy comunes. Por ejemplo,
considere una base de datos que almacene la dirección de todos los residentes del estado de
Illinois. Si crea una baliza a partir del campo City cifrado, la baliza calculada sobre “Chicago”
estará sobrerrepresentada debido al porcentaje alto de la población de Illinois que vive en
Chicago. Incluso si un usuario no autorizado solo puede leer los valores cifrados y los valores
de la baliza, podría identificar qué registros contienen datos de los residentes de Chicago si la
baliza conserva esta distribución. Para minimizar la cantidad de información distintiva revelada
sobre su distribución, debe truncar suficientemente la baliza. La longitud de baliza necesaria para
ocultar esta distribución desigual supone unos costos de rendimiento significativos que podrían
no satisfacer las necesidades de la aplicación.

Debe analizar detenidamente la distribución del conjunto de datos para determinar en qué medida
es necesario truncar las balizas. La longitud de la baliza que queda después del truncamiento
se correlaciona directamente con la cantidad de información estadística que se puede identificar
sobre su distribución. Es posible que tengas que elegir longitudes de baliza más cortas para
minimizar suficientemente la cantidad de información distintiva que se revela sobre tu conjunto de
datos.

En casos extremos, no se puede calcular la longitud de una baliza para un conjunto de datos
distribuido de forma desigual que equilibre eficazmente el rendimiento y la seguridad. Por
ejemplo, no debe construir una baliza a partir de un campo que almacene el resultado de

¿Las balizas son adecuadas para mi conjunto de datos? 123

AWS SDK de cifrado de bases de datos Guía para desarrolladores

un examen médico para detectar una enfermedad rara. Como NEGATIVE se espera que los
resultados sean significativamente más frecuentes en el conjunto de datos, POSITIVE los
resultados se pueden identificar fácilmente por su poca frecuencia. Es muy difícil ocultar la
distribución cuando el campo solo tiene dos valores posibles. Si utiliza una longitud de baliza
lo suficientemente corta como para ocultar la distribución, todos los valores de texto no cifrado
se asignan a la misma etiqueta HMAC. Si utiliza una longitud de baliza más larga, es obvio qué
balizas se asignan a valores POSITIVE de texto no cifrado.

Correlación

Le recomendamos encarecidamente que evite construir balizas distintas a partir de campos con
valores relacionados entre sí. Las balizas construidas a partir de campos relacionados entre
sí requieren longitudes de baliza más cortas para minimizar suficientemente la cantidad de
información revelada sobre la distribución de cada conjunto de datos a un usuario no autorizado.
Debe analizar detenidamente el conjunto de datos, incluida su entropía y la distribución conjunta
de los valores relacionados entre sí, para determinar en qué medida deben truncarse las balizas.
Si la longitud de baliza resultante no satisface sus necesidades de rendimiento, es posible que las
balizas no sean adecuadas para su conjunto de datos.

Por ejemplo, no debe construir dos balizas independientes a partir de los campos City y
ZIPCode, ya que es probable que el código postal esté asociado a una sola ciudad. Por lo
general, los falsos positivos que genera una baliza limitan la capacidad de un usuario no
autorizado de identificar información distintiva sobre su conjunto de datos. Sin embargo, la
correlación entre los campos City y ZIPCode significa que un usuario no autorizado puede
identificar fácilmente qué resultados son falsos positivos y distinguir los distintos códigos postales.

También debe evitar crear balizas a partir de campos que contengan los mismos valores de
texto no cifrado. Por ejemplo, no debe crear una baliza a partir de los campos mobilePhone
y preferredPhone porque es probable que contengan los mismos valores. Si crea balizas
distintas a partir de ambos campos, el SDK de cifrado AWS de bases de datos crea las balizas
para cada campo con claves diferentes. Esto da como resultado dos etiquetas HMAC diferentes
para el mismo valor de texto no cifrado. Es poco probable que las dos balizas distintas tengan
los mismos falsos positivos y un usuario no autorizado podría distinguir números de teléfono
diferentes.

Incluso si su conjunto de datos contiene campos relacionados entre sí o tiene una distribución
desigual, es posible que pueda construir balizas que preserven la confidencialidad del conjunto de
datos mediante longitudes de baliza más cortas. Sin embargo, la longitud de la baliza no garantiza

¿Las balizas son adecuadas para mi conjunto de datos? 124

AWS SDK de cifrado de bases de datos Guía para desarrolladores

que cada valor único del conjunto de datos produzca una serie de falsos positivos que minimicen
de forma efectiva la cantidad de información distintiva que se revela sobre el conjunto de datos.
La longitud de la baliza solo estima el número medio de falsos positivos producidos. Cuanto más
desigualmente esté distribuido el conjunto de datos, menos eficaz será la longitud de la baliza para
determinar el número medio de falsos positivos producidos.

Considere detenidamente la distribución de los campos a partir de los cuales construye las balizas
y considere cuánto necesitará truncar la longitud de la baliza para cumplir con sus requisitos de
seguridad. En los siguientes temas de este capítulo, se parte del supuesto de que las balizas están
distribuidas uniformemente y no contienen datos relacionados entre sí.

Situación de cifrado para búsquedas
En el ejemplo siguiente, se muestra una solución de cifrado sencilla para búsquedas. En la
aplicación, es posible que los campos de ejemplo utilizados en este ejemplo no cumplan con las
recomendaciones de unicidad de distribución y correlación para las balizas. Puede utilizar este
ejemplo como referencia mientras lee en este capítulo acerca de los conceptos de cifrado para
búsquedas.

Considere una base de datos denominada Employees que rastrea los datos de los empleados
de una empresa. Cada registro de la base de datos contiene campos denominados EmployeeID
LastName, FirstName, y Address. Cada campo de la Employees base de datos se identifica
mediante la clave principal EmployeeID.

A continuación, se muestra un ejemplo de un registro de texto no cifrado de la base de datos.

{
 "EmployeeID": 101,
 "LastName": "Jones",
 "FirstName": "Mary",
 "Address": {
 "Street": "123 Main",
 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345
 }
}

Si marcó los campos LastName y FirstName como ENCRYPT_AND_SIGN en sus acciones
criptográficas, los valores de estos campos se cifrarán localmente antes de cargarlos en la base de

Situación de cifrado para búsquedas 125

AWS SDK de cifrado de bases de datos Guía para desarrolladores

datos. Los datos cifrados que se cargan son completamente asignados al azar y la base de datos no
los reconoce como protegidos. Simplemente detecta las entradas de datos típicas. Esto significa que
el registro que está realmente almacenado en la base de datos podría tener el siguiente aspecto.

{
 "PersonID": 101,
 "LastName": "1d76e94a2063578637d51371b363c9682bad926cbd",
 "FirstName": "21d6d54b0aaabc411e9f9b34b6d53aa4ef3b0a35",
 "Address": {
 "Street": "123 Main",
 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345
 }
}

Si necesita consultar en la base de datos las coincidencias exactas en el LastName campo,
configure una baliza estándar con un nombre LastNameque asigne los valores de texto sin formato
escritos en el LastName campo a los valores cifrados almacenados en la base de datos.

Esta baliza se calcula HMACs a partir de los valores de texto sin formato del LastName campo.
Cada salida del HMAC se trunca para que ya no coincida exactamente con el valor del texto no
cifrado. Por ejemplo, el hash completo y el hash truncado Jones pueden tener el siguiente aspecto.

Hash completo

2aa4e9b404c68182562b6ec761fcca5306de527826a69468885e59dc36d0c3f824bdd44cab45526f70a2a18322000264f5451acf75f9f817e2b35099d408c833

Hash truncado

b35099d408c833

Una vez configurada la baliza estándar, puede realizar búsquedas de igualdad en el campo
LastName. Por ejemplo, si desea buscarJones, utilice la LastNamebaliza para realizar la siguiente
consulta.

LastName = Jones

El SDK AWS de cifrado de bases de datos filtra automáticamente los falsos positivos y devuelve el
resultado de la consulta en texto plano.

Situación de cifrado para búsquedas 126

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Balizas

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Una baliza es una etiqueta de código de autenticación de mensajes basado en hash (HMAC)
truncada que crea un mapa entre el valor de texto no cifrado escrito en un campo y el valor cifrado
que está realmente almacenado en la base de datos. La baliza no altera el estado cifrado del campo.
La baliza calcula un HMAC sobre el valor de texto no cifrado del campo y lo almacena junto con el
valor cifrado. Esta salida del HMAC coincide uno a uno (1:1) con el valor de texto no cifrado de ese
campo. La salida del HMAC se trunca para que varios valores de texto no cifrado distintos se asignen
a la misma etiqueta HMAC truncada. Estos falsos positivos limitan la capacidad de un usuario no
autorizado para identificar información distintiva sobre el valor del texto no cifrado.

Las balizas solo se pueden crear a partir de campos marcados ENCRYPT_AND_SIGN o
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT en tus SIGN_ONLY acciones criptográficas.
La baliza en sí no está firmada ni cifrada. No se puede construir una baliza con campos marcados
DO_NOTHING.

El tipo de baliza que configure determinará el tipo de consultas que podrá realizar. Existen dos tipos
de balizas que admiten el cifrado para búsquedas. Las balizas estándar realizan búsquedas de
igualdad. Las balizas compuestas combinan cadenas literales de texto no cifrado y balizas estándar
para realizar operaciones complejas de bases de datos. Después de configurar las balizas, debe
configurar un índice secundario para cada baliza antes de poder buscar en los campos cifrados. Para
obtener más información, consulte Configurar índices secundarios con balizas.

Temas

• Balizas estándar

• Balizas compuestas

Balizas estándar

Las balizas estándar son la forma más sencilla de implementar el cifrado para búsquedas en su
base de datos. Solo pueden realizar búsquedas de igualdad para un único campo virtual o cifrado.

Balizas 127

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Para obtener información sobre cómo configurar balizas estándar, consulte Configuración de balizas
estándar.

El campo a partir del cual se construye una baliza estándar se denomina la fuente de baliza.
Identifica la ubicación de los datos que la baliza necesita mapear. La fuente de la baliza puede ser
un campo cifrado o un campo virtual. La fuente de baliza de cada baliza estándar debe ser única. No
puede configurar dos balizas con la misma fuente de baliza.

Las balizas estándar se pueden utilizar para realizar búsquedas de igualdad en un campo cifrado o
virtual. O bien, se pueden usar para construir balizas compuestas para realizar operaciones de bases
de datos más complejas. Para ayudarlo a organizar y administrar las balizas estándar, el SDK de
cifrado de AWS bases de datos proporciona los siguientes estilos de balizas opcionales que definen
el uso previsto de una baliza estándar. Para obtener más información, consulte Definición de estilos
de baliza.

Puede crear una baliza estándar que realice búsquedas de igualdad para un único campo cifrado, o
puede crear una baliza estándar que realice búsquedas de igualdad en la concatenación de varios
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT campos y ENCRYPT_AND_SIGNSIGN_ONLY,
creando un campo virtual.

Campos virtuales

Un campo virtual es un campo conceptual creado a partir de uno o más campos de origen.
Al crear un campo virtual no se graba un campo nuevo en el registro. El campo virtual no se
almacena de forma explícita en la base de datos. Se utiliza en la configuración de baliza estándar
para dar instrucciones a la baliza sobre cómo identificar un segmento específico de un campo o
concatenar varios campos de un registro para realizar una consulta específica. Un campo virtual
requiere al menos un campo cifrado.

Note

El siguiente ejemplo muestra los tipos de transformaciones y consultas que se pueden
realizar con un campo virtual. En la aplicación, es posible que los campos de ejemplo
utilizados en este ejemplo no cumplan con las recomendaciones de unicidad de
distribución y correlación para las balizas.

Balizas estándar 128

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Por ejemplo, si desea realizar búsquedas de igualdad en la concatenación de los campos
FirstName y LastName, puede crear uno de los siguientes campos virtuales.

• Un campo virtual NameTag, construido a partir de la primera letra del campo FirstName,
seguida del campo LastName, todo en minúsculas. Este campo virtual le permite realizar
consultas NameTag=mjones.

• Un campo virtual LastFirst, que se construye a partir del campo LastName, seguido del
campo FirstName. Este campo virtual le permite realizar consultas LastFirst=JonesMary.

O bien, si desea realizar búsquedas de igualdad en un segmento específico de un campo cifrado,
cree un campo virtual que identifique el segmento que desea consultar.

Por ejemplo, si desea consultar un campo IPAddress cifrado con los tres primeros segmentos
de la dirección IP, cree el siguiente campo virtual.

• Un campo virtual IPSegment, construido a partir de Segments(‘.’, 0, 3). Este campo
virtual le permite realizar consultas IPSegment=192.0.2. La consulta devuelve todos los
registros con un valor IPAddress que comienza por “192.0.2”.

Los campos virtuales deben ser únicos. No se pueden construir dos campos virtuales a partir
exactamente de los mismos campos de origen.

Para obtener ayuda para configurar los campos virtuales y las balizas que los utilizan, consulte
Creación de un campo virtual.

Balizas compuestas

Las balizas compuestas crean índices que mejoran el rendimiento de las consultas y permiten
realizar operaciones de base de datos más complejas. Puede utilizar balizas compuestas para
combinar cadenas literales de texto no cifrado y balizas estándar para realizar consultas complejas
en registros cifrados, como consultar dos tipos de registros diferentes desde un único índice o
consultar una combinación de campos con una clave de clasificación. Para ver más ejemplos de
soluciones de baliza compuesta, consulte Elegir un tipo de baliza.

Las balizas compuestas se pueden construir a partir de balizas estándar o de una combinación
de balizas estándar y campos señalizados. Se construyen a partir de una lista de piezas.
Todas las balizas compuestas deben incluir una lista de partes cifradas que identifique los
ENCRYPT_AND_SIGN campos incluidos en la baliza. Cada ENCRYPT_AND_SIGN campo debe
identificarse mediante una baliza estándar. Las balizas compuestas más complejas también
pueden incluir una lista de partes firmadas que identifique el texto sin formato SIGN_ONLY o

Balizas compuestas 129

AWS SDK de cifrado de bases de datos Guía para desarrolladores

SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT los campos incluidos en la baliza, y una lista de
partes constructivas que identifique todas las formas posibles en que la baliza compuesta puede
ensamblar los campos.

Note

El SDK AWS de cifrado de bases de datos también admite balizas firmadas que se
pueden configurar completamente a partir de texto sin formato SIGN_ONLY y campos.
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Las balizas firmadas son un tipo de
baliza compuesta que indexan y realizan consultas complejas en campos firmados, pero no
cifrados. Para obtener más información, consulte Crear balizas firmadas.

Para obtener ayuda para configurar balizas compuestas, consulte Configuración de balizas
compuestas.

La forma en que configure su baliza compuesta determina los tipos de consultas que puede realizar.
Por ejemplo, puede hacer que algunas partes cifradas y firmadas sean opcionales para permitir una
mayor flexibilidad en sus consultas. Para obtener más información sobre los tipos de consultas que
pueden realizar las balizas compuestas, consulte Balizas de consulta.

Planificación de balizas

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Las balizas están diseñadas para su implementación en bases de datos nuevas y despobladas.
Cualquier baliza configurada en una base de datos existente solo mapeará los nuevos registros
escritos en la base de datos. Las balizas se calculan a partir del valor de texto no cifrado de un
campo. Una vez cifrado el campo, la baliza no tiene forma de mapear los datos existentes. Una vez
que haya escrito nuevos registros con una baliza, no puede actualizar la configuración de la baliza.
Sin embargo, puede agregar balizas nuevas para los campos nuevos que agregue a su registro.

Para implementar un cifrado que permita realizar búsquedas, debe usar el conjunto de claves de
AWS KMS jerárquico para generar, cifrar y descifrar las claves de datos que se utilizan para proteger

Planificación de balizas 130

AWS SDK de cifrado de bases de datos Guía para desarrolladores

sus registros. Para obtener más información, consulte Uso del conjunto de claves jerárquico para el
cifrado para búsquedas.

Antes de poder configurar balizas para el cifrado para búsquedas, debe revisar sus requisitos de
cifrado, los patrones de acceso a las bases de datos y el modelo de amenazas para determinar cuál
es la mejor solución para su base de datos.

El tipo de baliza que configure determina el tipo de consultas que puede realizar. La longitud de
la baliza que especifique en la configuración de baliza estándar determina el número esperado
de falsos positivos producidos para una baliza determinada. Recomendamos encarecidamente
identificar y planificar los tipos de consultas que debe realizar antes de configurar las balizas. Una
vez que haya utilizado una baliza, la configuración no se puede actualizar.

Le recomendamos encarecidamente que revise y complete las siguientes tareas antes de configurar
cualquier baliza.

• Determine si las balizas son adecuadas para su conjunto de datos

• Elija un tipo de baliza

• Elija una longitud de baliza

• Elija un nombre de baliza

Recuerde los siguientes requisitos de exclusividad de las balizas al planificar la solución de cifrado
para búsquedas para su base de datos.

• Cada baliza estándar debe tener una fuente de baliza única

No se pueden construir varias balizas estándar a partir del mismo campo virtual o cifrado.

Sin embargo, se puede usar una única baliza estándar para construir múltiples balizas
compuestas.

• Evite crear un campo virtual con campos de origen que se superpongan con las balizas estándar
existentes

La construcción de una baliza estándar a partir de un campo virtual que contiene un campo de
origen que se utilizó para crear otra baliza estándar puede reducir la seguridad de ambas balizas.

Para obtener más información, consulte Aspectos de seguridad para campos virtuales.

Planificación de balizas 131

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Consideraciones para bases de datos de multitenencia

Para consultar las balizas configuradas en una base de datos de multitenencia, debe incluir el
campo que almacena la branch-key-id asociada al inquilino que cifró el registro en la consulta.
Este campo se define al definir la fuente de la clave de la baliza. Para que la consulta se realice
correctamente, el valor de este campo debe identificar los materiales clave de baliza adecuados
necesarios para volver a calcular la baliza.

Antes de configurar las balizas, debe decidir cómo las va a incluir branch-key-id en las consultas.
Para obtener más información sobre las diferentes formas en que puede incluirlos branch-key-id
en sus consultas, visite Consulta de balizas en una base de datos de multitenencia.

Elección de un tipo de baliza

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Con el cifrado que permite realizar búsquedas, puede buscar registros cifrados asignando con una
baliza los valores de texto no cifrado de un campo cifrado. El tipo de baliza que configure determina
el tipo de consultas que puede realizar.

Recomendamos encarecidamente identificar y planificar los tipos de consultas que debe realizar
antes de configurar las balizas. Después de configurar las balizas, debe configurar un índice
secundario para cada baliza antes de poder buscar en los campos cifrados. Para obtener más
información, consulte Configurar índices secundarios con balizas.

Las balizas crean un mapa entre el valor de texto no cifrado escrito en un campo y el valor cifrado
que está realmente almacenado en la base de datos. No se pueden comparar los valores de dos
balizas estándar, aunque contengan el mismo texto no cifrado subyacente. Las dos balizas estándar
generarán dos etiquetas HMAC diferentes para los mismos valores de texto no cifrado. Como
resultado, las balizas estándar no pueden realizar las siguientes consultas.

• beacon1 = beacon2

• beacon1 IN (beacon2)

• value IN (beacon1, beacon2, ...)

• CONTAINS(beacon1, beacon2)

Consideraciones para bases de datos de multitenencia 132

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Solo puede realizar las consultas anteriores si compara las partes firmadas de las balizas
compuestas, con la excepción del CONTAINS operador, que puede utilizar con las balizas
compuestas para identificar el valor total de un campo cifrado o firmado que contenga la baliza
ensamblada. Al comparar partes firmadas, si lo desea, puede incluir el prefijo de una parte cifrada,
pero no puede incluir el valor cifrado de un campo. Para obtener más información sobre los tipos de
consultas que pueden realizar las balizas estándar y compuestas, consulte Consulta de balizas.

Tenga en cuenta las siguientes soluciones de cifrado con capacidad de búsqueda al revisar
los patrones de acceso a la base de datos. Los siguientes ejemplos definen qué baliza se debe
configurar para satisfacer los diferentes requisitos de cifrado y consulta.

Balizas estándar

Las balizas estándar solo pueden realizar búsquedas de igualdad. Puede utilizar balizas estándar
para llevar a cabo las siguientes consultas.

Consulte un único campo cifrado

Si desea identificar los registros que contienen un valor específico para un campo cifrado, cree un
indicador estándar.

Ejemplos

Para el siguiente ejemplo, considere una base de datos denominada UnitInspection que
rastrea los datos de inspección de una planta de producción. Cada registro de la base de datos
contiene campos denominados work_id, inspection_date, inspector_id_last4 y unit.
El ID completo del inspector es un número comprendido entre 0 y 99 999 999. Sin embargo, para
garantizar que el conjunto de datos se distribuya de manera uniforme, inspector_id_last4
solo almacena los últimos cuatro dígitos del ID del inspector. Cada campo de la base de datos se
identifica mediante la clave principal work_id. Los campos inspector_id_last4 y unit están
marcados ENCRYPT_AND_SIGN en las acciones criptográficas.

A continuación, se muestra un ejemplo de una entrada de texto no cifrado en la UnitInspection
base de datos.

{
 "work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
 "inspection_date": 2023-06-07,
 "inspector_id_last4": 8744,
 "unit": 229304973450

Elección de un tipo de baliza 133

AWS SDK de cifrado de bases de datos Guía para desarrolladores

}

Consulte un único campo cifrado de un registro

Si es necesario cifrar el campo inspector_id_last4, pero aun así necesita
consultarlo para obtener coincidencias exactas, cree una baliza estándar a partir del
campo inspector_id_last4. A continuación, utilice la baliza estándar para crear un
índice secundario. Puede utilizar este índice secundario para realizar consultas en el
inspector_id_last4 campo cifrado.

Para obtener ayuda para configurar balizas estándar, consulte Configuración de balizas estándar.

Consulte un campo virtual

Un campo virtual es un campo conceptual creado a partir de uno o más campos de origen. Si
desea realizar búsquedas de igualdad para un segmento específico de un campo cifrado o realizar
búsquedas de igualdad en la concatenación de varios campos, cree una baliza estándar a partir de
un campo virtual. Todos los campos virtuales deben incluir al menos un campo de origen cifrado.

Ejemplos

Los siguientes ejemplos crean campos virtuales para la base de datos de Employees. A
continuación, se muestra un ejemplo de un registro de texto no cifrado de la base de datos de
Employees.

{
 "EmployeeID": 101,
 "SSN": 000-00-0000,
 "LastName": "Jones",
 "FirstName": "Mary",
 "Address": {
 "Street": "123 Main",
 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345
 }
}

Consulte un segmento de un campo cifrado

En este ejemplo, el campo SSN está cifrado.

Elección de un tipo de baliza 134

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Si desea consultar el campo SSN con los últimos cuatro dígitos de un número de seguro social,
cree un campo virtual que identifique el segmento que desea consultar.

Un Last4SSN campo virtual, creado a partir de Suffix(4), le permite realizar
consultasLast4SSN=0000. Utilice este campo virtual para construir una baliza estándar. A
continuación, utilice la baliza estándar para crear un índice secundario. Puede utilizar este índice
secundario para realizar consultas en el campo virtual. Esta consulta devuelve todos los registros
con un valor SSN que termina en los últimos cuatro dígitos que especificó.

Consulte la concatenación de varios campos

Note

El siguiente ejemplo muestra los tipos de transformaciones y consultas que se pueden
realizar con un campo virtual. En la aplicación, es posible que los campos de ejemplo
utilizados en este ejemplo no cumplan con las recomendaciones de unicidad de
distribución y correlación para las balizas.

Si desea realizar búsquedas de igualdad en una concatenación de los campos FirstName
y LastName, puede crear un campo NameTag virtual, construido a partir de la primera letra
del campo FirstName, seguida del campo LastName, todo en minúsculas. Utilice este
campo virtual para construir una baliza estándar. A continuación, utilice la baliza estándar
para crear un índice secundario. Puede utilizar este índice secundario para realizar consultas
NameTag=mjones en el campo virtual.

Al menos uno de los campos de origen debe estar cifrado. Bien sea FirstName o
LastName puede estar cifrado, o ambos pueden estar cifrados. Todos los campos fuente
de texto sin formato deben marcarse como acciones criptográficas SIGN_ONLY o figurar
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT en ellas.

Para obtener ayuda para configurar los campos virtuales y las balizas que los utilizan, consulte
Creación de un campo virtual.

Balizas compuestas

Las balizas compuestas crean un índice a partir de cadenas literales de texto no cifrado y balizas
estándar para realizar operaciones complejas de bases de datos. Puede utilizar balizas compuestas
para realizar las siguientes consultas.

Elección de un tipo de baliza 135

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Consulte una combinación de campos cifrados en un único índice

Si necesita consultar una combinación de campos cifrados en un único índice, cree una baliza
compuesta que combine las balizas estándar individuales creadas para cada campo cifrado para
formar un índice único.

Tras configurar la baliza compuesta, puede crear un índice secundario que especifique la baliza
compuesta como clave de partición para realizar consultas de coincidencia exacta o con una clave
de clasificación para realizar consultas más complejas. Los índices secundarios que especifican la
baliza compuesta como clave de clasificación pueden realizar consultas de coincidencia exacta y
consultas complejas más personalizadas.

Ejemplos

Para los siguientes ejemplos, considere una base de datos denominada UnitInspection que
rastrea los datos de inspección de una instalación de producción. Cada registro de la base de datos
contiene campos denominados work_id, inspection_date, inspector_id_last4 y unit.
El ID completo del inspector es un número comprendido entre 0 y 99 999 999. Sin embargo, para
garantizar que el conjunto de datos se distribuya de manera uniforme, inspector_id_last4
solo almacena los últimos cuatro dígitos del ID del inspector. Cada campo de la base de datos se
identifica mediante la clave principal work_id. Los campos inspector_id_last4 y unit están
marcados ENCRYPT_AND_SIGN en las acciones criptográficas.

A continuación, se muestra un ejemplo de una entrada de texto no cifrado en la base de datos
UnitInspection.

{
 "work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
 "inspection_date": 2023-06-07,
 "inspector_id_last4": 8744,
 "unit": 229304973450
}

Realice búsquedas de igualdad en una combinación de campos cifrados

Si desea consultar en la UnitInspection base de datos las coincidencias exactas en
inspector_id_last4.unit, cree primero balizas estándar distintas para los campos
inspector_id_last4 y unit. A continuación, cree una baliza compuesta a partir de las dos
balizas estándar.

Elección de un tipo de baliza 136

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Después de configurar la baliza compuesta, cree un índice secundario que especifique la baliza
compuesta como clave de partición. Utilice este índice secundario para buscar coincidencias
exactas en inspector_id_last4.unit. Por ejemplo, puede consultar esta baliza para
encontrar una lista de las inspecciones que un inspector realizó en una unidad determinada.

Realice consultas complejas en una combinación de campos cifrados

Si desea consultar la UnitInspection base de datos en inspector_id_last4 y
inspector_id_last4.unit, primero, cree balizas estándar distintas para los campos
inspector_id_last4 y unit. A continuación, cree una baliza compuesta a partir de las dos
balizas estándar.

Después de configurar la baliza compuesta, cree un índice secundario que especifique la baliza
compuesta como clave de clasificación. Utilice este índice secundario para consultar en la
UnitInspection base de datos las entradas que comiencen por un inspector determinado o
consulte la base de datos para obtener una lista de todas las unidades dentro de un rango de ID
de unidades específico que fueron inspeccionadas por un inspector determinado. También puede
realizar búsquedas de coincidencias exactas en inspector_id_last4.unit.

Para obtener ayuda para configurar balizas compuestas, consulte Configuración de balizas
compuestas.

Consulte una combinación de campos cifrados y de texto no cifrado en un único índice

Si necesita consultar una combinación de campos cifrados y de texto no cifrado en un
solo índice, cree un indicador compuesto que combine balizas estándar individuales y
campos de texto no cifrado para formar un índice único. Los campos de texto sin formato
utilizados para construir la baliza compuesta deben estar marcados SIGN_ONLY o figurar
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT en sus acciones criptográficas.

Después de configurar la baliza compuesta, puede crear un índice secundario que especifique
la baliza compuesta como clave de partición para realizar consultas de coincidencia exacta o
con una clave de clasificación para realizar consultas más complejas. Los índices secundarios
que especifican la baliza compuesta como clave de clasificación pueden realizar consultas de
coincidencia exacta y consultas complejas más personalizadas.

Ejemplos

Para los siguientes ejemplos, considere una base de datos denominada UnitInspection que
rastrea los datos de inspección de una instalación de producción. Cada registro de la base de datos

Elección de un tipo de baliza 137

AWS SDK de cifrado de bases de datos Guía para desarrolladores

contiene campos denominados work_id, inspection_date, inspector_id_last4 y unit.
El ID completo del inspector es un número comprendido entre 0 y 99 999 999. Sin embargo, para
garantizar que el conjunto de datos se distribuya de manera uniforme, inspector_id_last4
solo almacena los últimos cuatro dígitos del ID del inspector. Cada campo de la base de datos se
identifica mediante la clave principal work_id. Los campos inspector_id_last4 y unit están
marcados ENCRYPT_AND_SIGN en las acciones criptográficas.

A continuación, se muestra un ejemplo de una entrada de texto no cifrado en la base de datos
UnitInspection.

{
 "work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
 "inspection_date": 2023-06-07,
 "inspector_id_last4": 8744,
 "unit": 229304973450
}

Realice búsquedas de igualdad en una combinación de campos

Si desea consultar en la base de datos de UnitInspection las inspecciones realizadas por
un inspector específico en una fecha específica, cree primero una baliza estándar para el campo
inspector_id_last4. El campo inspector_id_last4 está marcado ENCRYPT_AND_SIGN
en las acciones criptográficas. Todas las partes cifradas requieren su propia baliza estándar.
El campo inspection_date está marcado SIGN_ONLY y no requiere una baliza estándar.
A continuación, cree una baliza compuesta desde el campoinspection_date y la baliza
inspector_id_last4 estándar.

Después de configurar la baliza compuesta, cree un índice secundario que especifique la baliza
compuesta como clave de partición. Utilice este índice secundario para consultar en las bases
de datos los registros que coincidan exactamente con un inspector y una fecha de inspección
determinados. Por ejemplo, puede consultar la base de datos para obtener una lista de todas las
inspecciones que el inspector cuya ID termina en 8744 realizó en una fecha específica.

Realice consultas complejas en una combinación de campos

Si desea consultar en la base de datos las inspecciones realizadas dentro de un intervalo
de inspection_date, o consultar en la base de datos las inspecciones realizadas
en un determinado ámbito inspection_date limitado por inspector_id_last4 o
inspector_id_last4.unit, primero, cree balizas estándar distintas para los campos

Elección de un tipo de baliza 138

AWS SDK de cifrado de bases de datos Guía para desarrolladores

inspector_id_last4 y unit. A continuación, cree una baliza compuesta a partir del campo
inspection_date de texto no cifrado y de las dos balizas estándar.

Después de configurar la baliza compuesta, cree un índice secundario que especifique la baliza
compuesta como clave de clasificación. Utilice este índice secundario para realizar consultas
sobre las inspecciones realizadas en fechas específicas por un inspector específico. Por ejemplo,
puede consultar la base de datos para obtener una lista de todas las unidades inspeccionadas
en la misma fecha. O bien, puede consultar la base de datos para obtener una lista de todas
las inspecciones realizadas en una unidad específica en un intervalo determinado de fechas de
inspección.

Para obtener ayuda para configurar balizas compuestas, consulte Configuración de balizas
compuestas.

Elegir la longitud de una baliza

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Al escribir un valor nuevo en un campo cifrado que está configurado para el cifrado con capacidad
de búsqueda, el SDK de cifrado de AWS bases de datos calcula un HMAC sobre el valor del texto
simple. Esta salida del HMAC coincide uno a uno (1:1) con el valor de texto no cifrado de ese campo.
La salida del HMAC se trunca para que varios valores de texto no cifrado distintos se asignen a
la misma etiqueta HMAC truncada. Estas colisiones, o falsos positivos, limitan la capacidad de un
usuario no autorizado de identificar información distintiva sobre el valor del texto no cifrado.

El número medio de falsos positivos generados por cada baliza viene determinado por la longitud de
la baliza restante tras el truncamiento. Solo es necesario definir la longitud de la baliza al configurar
las balizas estándar. Las balizas compuestas utilizan las longitudes de baliza de las balizas estándar
con las que están construidas.

La baliza no altera el estado cifrado del campo. Sin embargo, cuando se utilizan balizas, existe un
equilibrio inherente entre la eficacia de las consultas y la cantidad de información que se revela sobre
la distribución de los datos.

Elegir la longitud de una baliza 139

AWS SDK de cifrado de bases de datos Guía para desarrolladores

El objetivo del cifrado con capacidad de búsqueda es reducir los costos de rendimiento asociados a
las bases de datos cifradas del cliente mediante el uso de balizas para realizar consultas sobre datos
cifrados. Las balizas se almacenan junto a los campos cifrados a partir de los cuales se calculan.
Esto significa que pueden revelar información distintiva sobre la distribución de su conjunto de
datos. En casos extremos, un usuario no autorizado podría analizar la información revelada sobre su
distribución y utilizarla para identificar el valor de texto no cifrado de un campo. Elegir la longitud de
baliza correcta puede ayudar a mitigar estos riesgos y preservar la confidencialidad de la distribución.

Revise su modelo de amenazas para determinar el nivel de seguridad que necesita. Por ejemplo,
cuantas más personas tengan acceso a su base de datos, pero que no deberían tener acceso a los
datos en texto no cifrado, más querrá proteger la confidencialidad de la distribución de su conjunto de
datos. Para aumentar la confidencialidad, una baliza debe generar más falsos positivos. El aumento
de la confidencialidad reduce el rendimiento de las consultas.

Seguridad en comparación con rendimiento

• Una longitud de baliza demasiado larga produce muy pocos falsos positivos y podría revelar
información distintiva sobre la distribución del conjunto de datos.

• Una longitud de baliza demasiado corta produce demasiados falsos positivos y aumenta el costo
de rendimiento de las consultas, porque requiere un análisis más amplio de la base de datos.

Al determinar la longitud de baliza adecuada para su solución, debe encontrar una longitud que
preserve adecuadamente la seguridad de sus datos sin afectar el rendimiento de las consultas
más de lo estrictamente necesario. El grado de seguridad que conserva una baliza depende de
la distribución del conjunto de datos y de la correlación de los campos a partir de los cuales se
construyen las balizas. En los temas siguientes, se parte del supuesto de que las balizas están
distribuidas de manera uniforme y no contienen datos relacionados entre sí.

Temas

• Calcular la longitud de la baliza

• Ejemplo

Calcular la longitud de la baliza

La longitud de la baliza se define en bits y se refiere al número de bits de la etiqueta HMAC que se
conservan tras el truncamiento. La longitud de baliza recomendada varía en función de la distribución
del conjunto de datos, la presencia de valores relacionados entre sí y los requisitos específicos de

Elegir la longitud de una baliza 140

AWS SDK de cifrado de bases de datos Guía para desarrolladores

seguridad y rendimiento. Si su conjunto de datos está distribuido de manera uniforme, puede usar
las siguientes ecuaciones y procedimientos para ayudarse a identificar la mejor longitud de baliza
para su implementación. Estas ecuaciones solo estiman el número promedio de falsos positivos
que producirá la baliza, pero no garantizan que cada valor único del conjunto de datos produzca un
número específico de falsos positivos.

Note

La eficacia de estas ecuaciones depende de la distribución del conjunto de datos. Si su
conjunto de datos no está distribuido uniformemente, consulte ¿Las balizas son adecuadas
para mi conjunto de datos?.
En general, cuanto más lejos esté el conjunto de datos de una distribución uniforme, más
necesitará acortar la longitud de la baliza.

1.

Calcula la población

La población es el número esperado de valores únicos en el campo a partir del cual se
construye la baliza estándar, no el número total esperado de valores almacenados en el campo.
Por ejemplo, considere un Room campo cifrado que identifique la ubicación de las reuniones de
los empleados. Se espera que el Room campo almacene 100 000 valores en total, pero solo hay
50 salas diferentes que los empleados pueden reservar para reuniones. Esto significa que la
población es de 50 porque solo hay 50 valores únicos posibles que se pueden almacenar en el
Room campo.

Note

Si la baliza estándar se construye a partir de un campo virtual, la población utilizada para
calcular la longitud de la baliza es el número de combinaciones únicas creadas por el
campo virtual.

Al estimar la población, asegúrese de tener en cuenta el crecimiento proyectado del conjunto de
datos. Una vez que haya escrito nuevos registros con la baliza, no podrá actualizar la longitud de
la baliza. Revise su modelo de amenazas y cualquier solución de base de datos existente para

Elegir la longitud de una baliza 141

AWS SDK de cifrado de bases de datos Guía para desarrolladores

crear una estimación del número de valores únicos que espera que este campo almacene en los
próximos cinco años.

Su población no tiene por qué ser precisa. En primer lugar, identifique el número de valores
únicos en su base de datos actual o calcule el número de valores únicos que espera almacenar
durante el primer año. A continuación, utilice las siguientes preguntas para determinar el
crecimiento proyectado de los valores únicos en los próximos cinco años.

• ¿Espera que los valores únicos se multipliquen por 10?

• ¿Espera que los valores únicos se multipliquen por 100?

• ¿Espera que los valores únicos se multipliquen por 1000?

La diferencia entre los valores únicos 50 000 y 60 000 no es significativa y ambos darán como
resultado la misma longitud de baliza recomendada. Sin embargo, la diferencia entre los valores
únicos 50 000 y 500 000 afectará considerablemente la longitud de baliza recomendada.

Considere la posibilidad de revisar los datos públicos sobre la frecuencia de los tipos de datos
más comunes, como los códigos postales o los apellidos. Por ejemplo, hay 41 707 códigos
postales en los Estados Unidos. La población que utilice debe ser proporcional a su propia base
de datos. Si el ZIPCode campo de la base de datos incluye datos de todos los Estados Unidos,
puede definir su población como 41 707, incluso si el ZIPCode campo no tiene actualmente 41
707 valores únicos. Si el ZIPCode campo de la base de datos solo incluye datos de un estado y
siempre incluirá datos de un solo estado, entonces puede definir su población como el número
total de códigos postales de ese estado en lugar de 41 704.

2. Calcule el rango recomendado para el número esperado de colisiones

Para determinar la longitud de baliza adecuada para un campo determinado, primero debe
identificar un rango adecuado para el número esperado de colisiones. El número esperado de
colisiones representa el número promedio esperado de valores únicos de texto no cifrado que
se asignan a una etiqueta HMAC concreta. El número esperado de falsos positivos para un valor
único de texto no cifrado es uno menos que el número esperado de colisiones.

Recomendamos que el número esperado de colisiones sea mayor o igual a dos e inferior a la
raíz cuadrada de la población. Las siguientes ecuaciones solo funcionan si la población tiene 16
o más valores únicos.

2 ≤ number of collisions < √(Population)

Elegir la longitud de una baliza 142

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Si el número de colisiones es inferior a dos, la baliza producirá muy pocos falsos positivos.
Recomendamos dos como número mínimo de colisiones esperadas porque significa que, en
promedio, cada valor único del campo generará al menos un falso positivo al asignarlo a otro
valor único.

3. Calcule el rango recomendado para las longitudes de baliza

Tras identificar el número mínimo y máximo de colisiones esperadas, utilice la siguiente
ecuación para identificar un rango de longitudes de baliza adecuadas.

number of collisions = Population * 2-(beacon length)

En primer lugar, calcule la longitud de la baliza, donde el número de colisiones esperadas es
igual a dos (el número mínimo recomendado de colisiones esperadas).

2 = Population * 2-(beacon length)

A continuación, calcule la longitud de la baliza, donde el número esperado de colisiones es igual
a la raíz cuadrada de tu población (el número máximo recomendado de colisiones esperadas).

√(Population) = Population * 2-(beacon length)

Recomendamos redondear el resultado que produce esta ecuación a la longitud de baliza
más corta. Por ejemplo, si la ecuación produce una longitud de baliza de 15,6, recomendamos
redondear ese valor a 15 bits en lugar de redondearlo al alza a 16 bits.

4. Elija una longitud de baliza

Estas ecuaciones solo identifican un rango recomendado de longitudes de baliza para su
campo. Recomendamos utilizar una longitud de baliza más corta para preservar la seguridad
del conjunto de datos siempre que sea posible. Sin embargo, la longitud de la baliza que utilice
realmente viene determinada por el modelo de amenaza. Tenga en cuenta sus requisitos de
rendimiento al revisar su modelo de amenazas para determinar la mejor longitud de baliza para
su campo.

El uso de una longitud de baliza más corta reduce el rendimiento de las consultas, mientras que
el uso de una longitud de baliza más larga reduce la seguridad. En general, si el conjunto de
datos está distribuido de forma desigual, o si se construyen balizas distintas a partir de campos

Elegir la longitud de una baliza 143

AWS SDK de cifrado de bases de datos Guía para desarrolladores

relacionados entre sí, es necesario utilizar longitudes de baliza más cortas para minimizar la
cantidad de información revelada sobre la distribución de los conjunto de datos.

Si revisa su modelo de amenazas y decide que cualquier información distintiva revelada sobre
la distribución de un campo no representa una amenaza para su seguridad general, puede optar
por utilizar una longitud de baliza superior al rango recomendado que calculó. Por ejemplo, si ha
calculado el rango recomendado de longitudes de baliza para un campo de 9 a 16 bits, puede
optar por utilizar una longitud de baliza de 24 bits para evitar cualquier pérdida de rendimiento.

Elija la longitud de la baliza con cuidado. Una vez que haya escrito nuevos registros con la
baliza, no podrá actualizar la longitud de la baliza.

Ejemplo

Considere una base de datos que marcara el unit campo como ENCRYPT_AND_SIGN parte de
las acciones criptográficas. Para configurar una baliza estándar para el unit campo, necesitamos
determinar el número esperado de falsos positivos y la longitud de la baliza para el unit campo.

1. Haga un estimado de la población

Tras revisar nuestro modelo de amenazas y nuestra solución de base de datos actual,
esperamos que el unit campo acabe teniendo 100 000 valores únicos.

Esto significa que la Población = 100 000.

2. Calcule el rango recomendado para el número esperado de colisiones.

Para este ejemplo, el número esperado de colisiones debe estar entre 2 y 316.

2 ≤ number of collisions < √(Population)

a. 2 ≤ number of collisions < √(100,000)

b. 2 ≤ number of collisions < 316

3. Calcule el rango recomendado para la longitud de la baliza.

Para este ejemplo, la longitud de la baliza debe estar entre 9 y 16 bits.

Elegir la longitud de una baliza 144

AWS SDK de cifrado de bases de datos Guía para desarrolladores

number of collisions = Population * 2-(beacon length)

a. Calcule la longitud de la baliza cuando el número esperado de colisiones sea igual al
mínimo identificado en el Paso 2.

2 = 100,000 * 2-(beacon length)

Longitud de la baliza = 15,6 o 15 bits

b. Calcule la longitud de la baliza cuando el número esperado de colisiones sea igual al
máximo identificado en el Paso 2.

316 = 100,000 * 2-(beacon length)

Longitud de la baliza = 8,3 u 8 bits

4. Determine la longitud de baliza adecuada para sus requisitos de seguridad y rendimiento.

Por cada bit inferior a 15, el costo de rendimiento y la seguridad se duplican.

• 16 bits

• En promedio, cada valor único se asignará a otras 1,5 unidades.

• Seguridad: dos registros con la misma etiqueta HMAC truncada tienen un 66% de
probabilidades de tener el mismo valor de texto no cifrado.

• Rendimiento: una consulta recuperará 15 registros por cada 10 registros que realmente
haya solicitado.

• 14 bits

• En promedio, cada valor único se asignará a otras 6,1 unidades.

• Seguridad: dos registros con la misma etiqueta HMAC truncada tienen un 33% de
probabilidades de tener el mismo valor de texto no cifrado.

• Rendimiento: una consulta recuperará 30 registros por cada 10 registros que realmente
haya solicitado.

Elegir la longitud de una baliza 145

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Elección de un nombre de baliza

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Cada baliza se identifica con un nombre de baliza único. Una vez configurada una baliza, el nombre
de la baliza es el nombre que se utiliza para consultar un campo cifrado. El nombre de una baliza
puede ser el mismo nombre que un campo cifrado o un campo virtual, pero no puede ser el mismo
nombre que un campo no cifrado. Dos balizas diferentes no pueden tener el mismo nombre de
baliza.

Para ver ejemplos que muestran cómo nombrar y configurar balizas, consulte Configuración de
balizas.

Denominación de baliza estándar

Al nombrar las balizas estándar, recomendamos encarecidamente que el nombre de la baliza se
refiera a la fuente de la baliza siempre que sea posible. Esto significa que el nombre de la baliza y el
nombre del campo cifrado o virtual a partir del cual se construye la baliza estándar son los mismos.
Por ejemplo, si va a crear una baliza estándar para un campo cifrado denominado LastName, el
nombre de la baliza también debería ser LastName.

Si el nombre de la baliza es el mismo que el de la fuente de la baliza, puede omitirla de la
configuración y el SDK de cifrado de AWS bases de datos utilizará automáticamente el nombre de la
baliza como fuente de la baliza.

Configuración de las balizas

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Elección de un nombre de baliza 146

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Existen dos tipos de balizas que admiten el cifrado para búsquedas. Las balizas estándar realizan
búsquedas de igualdad. Son la forma más sencilla de implementar el cifrado para búsquedas en
su base de datos. Las balizas compuestas combinan cadenas literales de texto no cifrado y balizas
estándar para realizar consultas más complejas.

Las balizas están diseñadas para su implementación en bases de datos nuevas y despobladas.
Cualquier baliza configurada en una base de datos existente solo mapeará los nuevos registros
escritos en la base de datos. Las balizas se calculan a partir del valor de texto no cifrado de un
campo. Una vez cifrado el campo, la baliza no tiene forma de mapear los datos existentes. Una vez
que haya escrito nuevos registros con una baliza, no puede actualizar la configuración de la baliza.
Sin embargo, puede agregar balizas nuevas para los campos nuevos que agregue a su registro.

Una vez determinados los patrones de acceso, la configuración de las balizas debería ser el
segundo paso de la implementación de la base de datos. A continuación, después de configurar
todas las balizas, debe crear un conjunto de claves AWS KMS jerárquico, definir la versión de
las balizas, configurar un índice secundario para cada baliza, definir las acciones criptográficas y
configurar la base de datos y el cliente del SDK de cifrado de bases de datos. AWS Para obtener
más información, consulte Utilizar balizas.

Para facilitar la definición de la versión de baliza, recomendamos crear listas de balizas estándar
y compuestas. Agregue cada baliza que cree a la lista de balizas estándar o compuestas
correspondiente a medida que las vaya configurando.

Temas

• Configuración de balizas estándar

• Configuración de balizas compuestas

• Configuraciones de ejemplo

Configuración de balizas estándar

Las balizas estándar son la forma más sencilla de implementar el cifrado para búsquedas en su base
de datos. Solo pueden realizar búsquedas de igualdad para un único campo virtual o cifrado.

Ejemplo de sintaxis de configuración

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();

Configuración de balizas estándar 147

AWS SDK de cifrado de bases de datos Guía para desarrolladores

StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beaconName")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C# / .NET

var standardBeaconList = new List<StandardBeacon>();
StandardBeacon exampleStandardBeacon = new StandardBeacon
 {
 Name = "beaconName",
 Length = 10
 };
standardBeaconList.Add(exampleStandardBeacon);

Rust

let standard_beacon_list = vec![

 StandardBeacon::builder().name("beacon_name").length(beacon_length_in_bits).build()?,

Para configurar una baliza estándar, proporcione los siguientes valores.

Nombre de la baliza

El nombre que se utiliza al consultar un campo cifrado.

El nombre de un indicador puede ser el mismo nombre que un campo cifrado o un campo
virtual, pero no puede ser el mismo nombre que un campo no cifrado. Siempre que sea posible,
recomendamos encarecidamente utilizar el nombre del campo cifrado o el campo virtual con el
que se construye la baliza estándar. Dos balizas diferentes no pueden tener el mismo nombre de
baliza. Para obtener ayuda para determinar el mejor nombre de baliza para su implementación,
consulte Elegir un nombre de baliza.

Longitud de la baliza

El número de bits del valor hash de la baliza que se conservan tras el truncamiento.

Configuración de balizas estándar 148

AWS SDK de cifrado de bases de datos Guía para desarrolladores

La longitud de la baliza determina el número medio de falsos positivos producidos por una
baliza determinada. Para obtener más información y ayuda para determinar la longitud de baliza
adecuada para su implementación, consulte Determinar la longitud de la baliza.

Fuente de la baliza (opcional)

El campo a partir del cual se construye una baliza estándar.

La fuente de la baliza debe ser un nombre de campo o un índice que haga referencia al valor
de un campo anidado. Si el nombre de la baliza es el mismo que el de la fuente de la baliza,
puede omitir la fuente de la baliza de la configuración y el SDK de cifrado de AWS bases de datos
utilizará automáticamente el nombre de la baliza como fuente de la baliza.

Creación de un campo virtual

Para crear un campo virtual, debe proporcionar un nombre para el campo virtual y una lista de los
campos de origen. El orden en que se agregan los campos de origen a la lista de piezas virtuales
determina el orden en que se concatenan para crear el campo virtual. El siguiente ejemplo concatena
dos campos de origen en su totalidad para crear un campo virtual.

Note

Recomendamos comprobar que los campos virtuales producen el resultado esperado antes
de rellenar la base de datos. Para obtener más información, consulte Probar los resultados
de las balizas.

Java

Consulta el ejemplo de código completo: VirtualBeaconSearchableEncryptionExample.java

List<VirtualPart> virtualPartList = new ArrayList<>();
 virtualPartList.add(sourceField1);
 virtualPartList.add(sourceField2);

VirtualField virtualFieldName = VirtualField.builder()
 .name("virtualFieldName")
 .parts(virtualPartList)
 .build();

List<VirtualField> virtualFieldList = new ArrayList<>();

Configuración de balizas estándar 149

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/VirtualBeaconSearchableEncryptionExample.java

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 virtualFieldList.add(virtualFieldName);

C# / .NET

Vea el ejemplo de código completo: .cs VirtualBeaconSearchableEncryptionExample

var virtualPartList = new List<VirtualPart> { sourceField1, sourceField2 };

var virtualFieldName = new VirtualField
{
 Name = "virtualFieldName",
 Parts = virtualPartList
};

var virtualFieldList = new List<VirtualField> { virtualFieldName };

Rust

Consulta el ejemplo de código completo: virtual_beacon_searchable_encryption.rs

let virtual_part_list = vec![source_field_one, source_field_two];

let state_and_has_test_result_field = VirtualField::builder()
 .name("virtual_field_name")
 .parts(virtual_part_list)
 .build()?;

let virtual_field_list = vec![virtual_field_name];

Para crear un campo virtual con un segmento específico de un campo de origen, debe definir esa
transformación antes de agregar el campo de origen a la lista de piezas virtuales.

Aspectos de seguridad para campos virtuales

Las balizas no alteran el estado cifrado del campo. Sin embargo, cuando se utilizan balizas, existe un
equilibrio inherente entre la eficacia de las consultas y la cantidad de información que se revela sobre
la distribución de los datos. La forma en que configura su baliza determina el nivel de seguridad que
preserva esa baliza.

Evite crear un campo virtual con campos de origen que se superpongan con las balizas estándar
existentes. La creación de campos virtuales que incluyan un campo de origen que ya se haya

Configuración de balizas estándar 150

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/VirtualBeaconSearchableEncryptionExample.cs
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/virtual_beacon_searchable_encryption.rs

AWS SDK de cifrado de bases de datos Guía para desarrolladores

utilizado para crear una baliza estándar puede reducir el nivel de seguridad de ambas balizas. La
medida en que se reduzca la seguridad depende del nivel de entropía agregado por los campos de
origen adicionales. El nivel de entropía está determinado por la distribución de valores únicos en el
campo de origen adicional y el número de bits que el campo de origen adicional aporta al tamaño
total del campo virtual.

Puede usar la población y la longitud de la baliza para determinar si los campos de origen de un
campo virtual preservan la seguridad del conjunto de datos. La población es el número esperado de
valores únicos en un campo. Su población no tiene por qué ser precisa. Para obtener ayuda para
estimar la población de un campo, consulte Estimar la población.

Considere el siguiente ejemplo al revisar la seguridad de sus campos virtuales.

• Beacon1 se construye a partir de FieldA. FieldAtiene una población superior a 2 (longitud de

Beacon1).

• Beacon2 se construye a partir de VirtualField, que se construye a partir de FieldA, FieldB,
FieldC y FieldD. Juntos, FieldB, FieldC y FieldD tienen una población superior a 2N

Beacon2 preserva la seguridad tanto de Beacon1 como de Beacon2 si se cumplen las siguientes
afirmaciones:

N ≥ (Beacon1 length)/2

y

N ≥ (Beacon2 length)/2

Definir estilos de balizas

Las balizas estándar se pueden utilizar para realizar búsquedas de igualdad en un campo cifrado o
virtual. O bien, se pueden usar para construir balizas compuestas para realizar operaciones de bases
de datos más complejas. Para ayudarlo a organizar y administrar las balizas estándar, el SDK de
cifrado de AWS bases de datos proporciona los siguientes estilos de balizas opcionales que definen
el uso previsto de una baliza estándar.

Configuración de balizas estándar 151

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Note

Para definir los estilos de balizas, debe usar la versión 3.2 o posterior del SDK de cifrado
de AWS bases de datos. Implemente la nueva versión en todos los lectores antes de añadir
estilos de baliza a las configuraciones de baliza.

PartOnly

Una baliza estándar definida como solo se PartOnly puede utilizar para definir una parte cifrada
de una baliza compuesta. No se puede consultar directamente una baliza PartOnly estándar.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beaconName")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .partOnly(PartOnly.builder().build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C#/.NET

new StandardBeacon
{
 Name = "beaconName",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 PartOnly = new PartOnly()
 }
}

Rust

StandardBeacon::builder()
 .name("beacon_name")

Configuración de balizas estándar 152

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 .length(beacon_length_in_bits)
 .style(BeaconStyle::PartOnly(PartOnly::builder().build()?))
 .build()?

Shared

De forma predeterminada, cada baliza estándar genera una clave HMAC única para el cálculo de
la baliza. Como resultado, no se puede realizar una búsqueda de igualdad en los campos cifrados
de dos balizas estándar independientes. Una baliza estándar definida como Shared utiliza la
clave HMAC de otra baliza estándar para sus cálculos.

Por ejemplo, si necesita comparar beacon1 campos con otros beacon2 campos, defínalo
beacon2 como un Shared indicador que utilice la clave HMAC de beacon1 para sus cálculos.

Note

Tenga en cuenta sus necesidades de seguridad y rendimiento antes de configurar
cualquier Shared baliza. Sharedlas balizas pueden aumentar la cantidad de información
estadística que se puede identificar sobre la distribución del conjunto de datos. Por
ejemplo, pueden revelar qué campos compartidos contienen el mismo valor de texto sin
formato.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beacon2")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .shared(Shared.builder().other("beacon1").build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C#/.NET

new StandardBeacon

Configuración de balizas estándar 153

AWS SDK de cifrado de bases de datos Guía para desarrolladores

{
 Name = "beacon2",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 Shared = new Shared { Other = "beacon1" }
 }
}

Rust

StandardBeacon::builder()
 .name("beacon2")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::Shared(
 Shared::builder().other("beacon1").build()?,
))
 .build()?

AsSet

De forma predeterminada, si el valor de un campo es un conjunto, el SDK de cifrado de
AWS bases de datos calcula una única baliza estándar para el conjunto. Como resultado,
no se puede realizar la consulta CONTAINS(a, :value) si a hay un campo cifrado. Una
baliza estándar definida como AsSet calcula los valores de baliza estándar individuales
para cada elemento individual del conjunto y almacena el valor de la baliza en el elemento
como un conjunto. Esto permite que el SDK AWS de cifrado de bases de datos realice la
consultaCONTAINS(a, :value).

Para definir una baliza AsSet estándar, los elementos del conjunto deben ser de la misma
población para que todos puedan utilizar la misma longitud de baliza. El conjunto de balizas
podría tener menos elementos que el conjunto de texto sin formato si se produjeran colisiones al
calcular los valores de las balizas.

Note

Tenga en cuenta sus necesidades de seguridad y rendimiento antes de configurar
cualquier AsSet baliza. AsSetlas balizas pueden aumentar la cantidad de información

Configuración de balizas estándar 154

AWS SDK de cifrado de bases de datos Guía para desarrolladores

estadística que se puede identificar sobre la distribución del conjunto de datos. Por
ejemplo, pueden revelar el tamaño del conjunto de texto sin formato.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beaconName")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .asSet(AsSet.builder().build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C#/.NET

new StandardBeacon
{
 Name = "beaconName",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 AsSet = new AsSet()
 }
}

Rust

StandardBeacon::builder()
 .name("beacon_name")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::AsSet(AsSet::builder().build()?))
 .build()?

Configuración de balizas estándar 155

AWS SDK de cifrado de bases de datos Guía para desarrolladores

SharedSet

Una baliza estándar definida como SharedSet combina las AsSet funciones Shared y para
que puedas realizar búsquedas de igualdad en los valores cifrados de un conjunto y un campo.
Esto permite que el SDK de cifrado de AWS bases de datos realice la consulta CONTAINS(a,
b) cuando a hay un conjunto cifrado y b un campo cifrado.

Note

Tenga en cuenta sus necesidades de seguridad y rendimiento antes de configurar
cualquier Shared baliza. SharedSetlas balizas pueden aumentar la cantidad de
información estadística que se puede identificar sobre la distribución del conjunto de
datos. Por ejemplo, pueden revelar el tamaño del conjunto de texto sin formato o qué
campos compartidos contienen el mismo valor de texto sin formato.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beacon2")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .sharedSet(SharedSet.builder().other("beacon1").build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C#/.NET

new StandardBeacon
{
 Name = "beacon2",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 SharedSet = new SharedSet { Other = "beacon1" }
 }

Configuración de balizas estándar 156

AWS SDK de cifrado de bases de datos Guía para desarrolladores

}

Rust

StandardBeacon::builder()
 .name("beacon2")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::SharedSet(
 SharedSet::builder().other("beacon1").build()?,
))
 .build()?

Configuración de balizas compuestas

Las balizas compuestas combinan cadenas literales de texto no cifrado y balizas estándar para
realizar operaciones complejas de bases de datos, como consultar dos tipos de registros diferentes
desde un único índice o consultar una combinación de campos con una clave de clasificación.
Las balizas compuestas se pueden construir a partir de ENCRYPT_AND_SIGNSIGN_ONLY, y
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT campos. Debe crear una baliza estándar para
cada campo cifrado incluido en la baliza compuesta.

Note

Se recomienda comprobar que las balizas compuestas producen el resultado esperado antes
de rellenar la base de datos. Para obtener más información, consulte Probar las salidas de
las balizas.

Ejemplo de sintaxis de configuración

Java

Configuración de baliza compuesta

El siguiente ejemplo define las listas de piezas cifradas y firmadas localmente dentro de la
configuración de baliza compuesta.

List<CompoundBeacon> compoundBeaconList = new ArrayList<>();
CompoundBeacon exampleCompoundBeacon = CompoundBeacon.builder()

Configuración de balizas compuestas 157

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 .name("compoundBeaconName")
 .split(".")
 .encrypted(encryptedPartList)
 .signed(signedPartList)
 .constructors(constructorList)
 .build();
compoundBeaconList.add(exampleCompoundBeacon);

Definición de la versión de baliza

El siguiente ejemplo define las listas de piezas cifradas y firmadas de forma global en la versión
de baliza. Para obtener más información sobre cómo definir la versión de baliza, consulte Uso de
balizas.

 List<BeaconVersion> beaconVersions = new ArrayList<>();
beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .encryptedParts(encryptedPartList)
 .signedParts(signedPartList)
 .version(1) // MUST be 1
 .keyStore(keyStore)
 .keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branchKeyId)
 .cacheTTL(6000)
 .build())
 .build())
 .build()
);

C# / .NET

Consulte el ejemplo de código completo: .cs BeaconConfig

Configuración de baliza compuesta

El siguiente ejemplo define las listas de piezas cifradas y firmadas localmente dentro de la
configuración de baliza compuesta.

var compoundBeaconList = new List<CompoundBeacon>();

Configuración de balizas compuestas 158

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/complexexample/BeaconConfig.cs

AWS SDK de cifrado de bases de datos Guía para desarrolladores

var exampleCompoundBeacon = new CompoundBeacon
 {
 Name = "compoundBeaconName",
 Split = ".",
 Encrypted = encryptedPartList,
 Signed = signedPartList,
 Constructors = constructorList
 };
compoundBeaconList.Add(exampleCompoundBeacon);

Definición de la versión de baliza

El siguiente ejemplo define las listas de piezas cifradas y firmadas de forma global en la versión
de baliza. Para obtener más información sobre cómo definir la versión de baliza, consulte Uso de
balizas.

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 EncryptedParts = encryptedPartsList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = keyStore,
 KeySource = new BeaconKeySource
 {
 Single = new SingleKeyStore
 {
 KeyId = branchKeyId,
 CacheTTL = 6000
 }
 }
 }
};

Rust

Consulte el ejemplo de código completo: beacon_config.rs

Configuración de baliza compuesta

Configuración de balizas compuestas 159

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/complexexample/beacon_config.rs

AWS SDK de cifrado de bases de datos Guía para desarrolladores

El siguiente ejemplo define las listas de piezas cifradas y firmadas localmente dentro de la
configuración de baliza compuesta.

let compound_beacon_list = vec![
 CompoundBeacon::builder()
 .name("compound_beacon_name")
 .split(".")
 .encrypted(encrypted_parts_list)
 .signed(signed_parts_list)
 .constructors(constructor_list)
 .build()?

Definición de la versión de baliza

El siguiente ejemplo define las listas de piezas cifradas y firmadas de forma global en la versión
de baliza. Para obtener más información sobre cómo definir la versión de baliza, consulte Uso de
balizas.

let beacon_versions = BeaconVersion::builder()
 .standard_beacons(standard_beacon_list)
 .compound_beacons(compound_beacon_list)
 .encrypted_parts(encrypted_parts_list)
 .signed_parts(signed_parts_list)
 .version(1) // MUST be 1
 .key_store(key_store.clone())
 .key_source(BeaconKeySource::Single(
 SingleKeyStore::builder()
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .build()?,
))
 .build()?;
let beacon_versions = vec![beacon_versions];

Puede definir las partes cifradas y las partes firmadas en listas definidas local o globalmente.
Siempre que sea posible, le recomendamos que defina las partes cifradas y firmadas en una lista
global en la versión de baliza. Al definir las partes cifradas y firmadas de forma global, puede definir
cada parte una vez y, a continuación, reutilizarlas en varias configuraciones de balizas compuestas.
Si solo piensa utilizar una parte cifrada o firmada una vez, puede definirla en una lista local en la

Configuración de balizas compuestas 160

AWS SDK de cifrado de bases de datos Guía para desarrolladores

configuración de baliza compuesta. Puede hacer referencia a partes locales y globales en su lista de
constructores.

Si define sus listas de piezas cifradas y firmadas de forma global, debe proporcionar una lista de las
partes constructoras que identifique todas las formas posibles en que la baliza compuesta puede
ensamblar los campos de la configuración de la baliza compuesta.

Note

Para definir listas de piezas cifradas y firmadas de forma global, debe utilizar la versión 3.2 o
posterior del SDK de cifrado de AWS bases de datos. Implemente la nueva versión en todos
los lectores antes de definir cualquier pieza nueva a nivel mundial.
No puede actualizar las configuraciones de balizas existentes para definir listas de piezas
cifradas y firmadas a nivel mundial.

Para configurar una baliza compuesta, proporcione los siguientes valores.

Nombre de la baliza

El nombre que se utiliza al consultar un campo cifrado.

El nombre de un indicador puede ser el mismo nombre que un campo cifrado o un campo virtual,
pero no puede ser el mismo nombre que un campo no cifrado. No puede haber dos balizas con el
mismo nombre de baliza. Para obtener ayuda para determinar el mejor nombre de baliza para su
implementación, consulte Elección de un nombre de baliza.

Carácter dividido

El personaje que se usa para separar las partes que conforman su baliza compuesta.

El carácter dividido no puede aparecer en los valores de texto no cifrado de ninguno de los
campos a partir de los que se construye la baliza compuesta.

Lista de piezas cifradas

Identifica los campos ENCRYPT_AND_SIGN incluidos en la baliza compuesta.

Cada pieza debe incluir un nombre y un prefijo. El nombre de la pieza debe ser el nombre de
la baliza estándar construida a partir del campo cifrado. El prefijo puede ser cualquier cadena,
pero debe ser único. Una parte cifrada no puede tener el mismo prefijo que una parte firmada.

Configuración de balizas compuestas 161

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Recomendamos utilizar un valor corto que distinga la pieza de otras partes servidas por la baliza
compuesta.

Recomendamos definir las piezas cifradas de forma global siempre que sea posible. Podría
considerar la posibilidad de definir una parte cifrada de forma local si solo pretende utilizarla en
una baliza compuesta. Una parte cifrada definida localmente no puede tener el mismo prefijo o
nombre que una parte cifrada definida globalmente.

Java

List<EncryptedPart> encryptedPartList = new ArrayList<>);
EncryptedPart encryptedPartExample = EncryptedPart.builder()
 .name("standardBeaconName")
 .prefix("E-")
 .build();
encryptedPartList.add(encryptedPartExample);

C# / .NET

var encryptedPartList = new List<EncryptedPart>();
var encryptedPartExample = new EncryptedPart
 {
 Name = "compoundBeaconName",
 Prefix = "E-"
 };
encryptedPartList.Add(encryptedPartExample);

Rust

let encrypted_parts_list = vec![
 EncryptedPart::builder()
 .name("standard_beacon_name")
 .prefix("E-")
 .build()?
];

Lista de piezas firmadas

Identifica los campos firmados incluidos en la baliza compuesta.

Configuración de balizas compuestas 162

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Note

Las partes firmadas son opcionales. Puede configurar una baliza compuesta que no haga
referencia a ninguna parte firmada.

Cada parte debe incluir un nombre, una fuente y un prefijo. La fuente es el
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT campo SIGN_ONLY o que identifica la pieza.
La fuente debe ser un nombre de campo o un índice que haga referencia al valor de un campo
anidado. Si el nombre de la pieza identifica la fuente, puede omitirla y el SDK de cifrado de AWS
bases de datos utilizará automáticamente el nombre como fuente. Recomendamos especificar la
fuente como nombre de la pieza siempre que sea posible. El prefijo puede ser cualquier cadena,
pero debe ser único. Una pieza firmada no puede tener el mismo prefijo que una parte cifrada.
Recomendamos utilizar un valor corto que distinga la pieza de otras partes servidas por la baliza
compuesta.

Recomendamos definir las piezas firmadas de forma global siempre que sea posible. Podría
considerar la posibilidad de definir una pieza firmada de forma local si solo tiene intención de
utilizarla en una baliza compuesta. Una parte firmada definida localmente no puede tener el
mismo prefijo o nombre que una parte firmada definida globalmente.

Java

List<SignedPart> signedPartList = new ArrayList<>);
SignedPart signedPartExample = SignedPart.builder()
 .name("signedFieldName")
 .prefix("S-")
 .build();
signedPartList.add(signedPartExample);

C# / .NET

var signedPartsList = new List<SignedPart>
{
 new SignedPart { Name = "signedFieldName1", Prefix = "S-" },
 new SignedPart { Name = "signedFieldName2", Prefix = "SF-" }
};

Configuración de balizas compuestas 163

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Rust

let signed_parts_list = vec![
 SignedPart::builder()
 .name("signed_field_name_1")
 .prefix("S-")
 .build()?,
 SignedPart::builder()
 .name("signed_field_name_2")
 .prefix("SF-")
 .build()?,
];

Lista de constructores

Identifica los constructores que definen las diferentes formas en que la baliza compuesta puede
ensamblar las piezas cifradas y firmadas. Puede hacer referencia a partes locales y globales en
su lista de constructores.

Si crea su baliza compuesta a partir de partes firmadas y cifradas definidas globalmente, debe
proporcionar una lista de constructores.

Si no utiliza ninguna parte cifrada o firmada definida globalmente para construir la baliza
compuesta, la lista de constructores es opcional. Si no especificas una lista de constructores,
el SDK de cifrado AWS de bases de datos ensambla la baliza compuesta con el siguiente
constructor predeterminado.

• Todas las piezas firmadas en el orden en que se agregaron a la lista de piezas firmadas

• Todas las piezas cifradas en el orden en que se agregaron a la lista de piezas cifradas

• Todas las piezas son obligatorias

Constructores

Cada constructor es una lista ordenada de piezas del constructor que define una forma en la
que se puede ensamblar la baliza compuesta. Las piezas del constructor se unen en el orden
en que se agregan a la lista, con cada parte separada por el carácter dividido especificado.

Cada parte del constructor nombra una parte cifrada o una parte firmada y define si esa
parte es obligatoria u opcional en el constructor. Por ejemplo, si desea consultar una baliza
compuesta sobre Field1, Field1.Field2 y Field1.Field2.Field3, marque Field2 y
Field3 como opcional y cree un constructor.

Configuración de balizas compuestas 164

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Cada constructor debe tener como mínimo una pieza requerida. Recomendamos hacer que la
primera parte de cada constructor sea obligatoria para poder usar el operador BEGINS_WITH
en las consultas.

Un constructor tiene éxito si todas las piezas requeridas están presentes en el registro. Al
escribir un registro nuevo, la baliza compuesta utiliza la lista de constructores para determinar
si la baliza se puede ensamblar a partir de los valores proporcionados. Intente ensamblar la
baliza en el orden en que se agregaron los constructores a la lista de constructores y utilice el
primer constructor que lo haga correctamente. Si ningún constructor tiene éxito, la baliza no se
graba en el registro.

Todos los lectores y redactores deben especificar el mismo orden de constructores para
garantizar que los resultados de sus consultas sean correctos.

Utilice los siguientes procedimientos para especificar su propia lista de constructores.

1. Cree una parte constructora para cada pieza cifrada y firmada para definir si esa pieza es
necesaria o no.

El nombre de la pieza constructora debe ser el nombre de la baliza estándar o el campo
firmado que representa.

Java

ConstructorPart field1ConstructorPart = ConstructorPart.builder()
 .name("Field1")
 .required(true)
 .build();

C# / .NET

var field1ConstructorPart = new ConstructorPart { Name = "Field1", Required
 = true };

Rust

let field_1_constructor_part = ConstructorPart::builder()
 .name("field_1")
 .required(true)
 .build()?;

Configuración de balizas compuestas 165

AWS SDK de cifrado de bases de datos Guía para desarrolladores

2. Cree un constructor para cada forma posible de ensamblaje de la baliza compuesta
utilizando las piezas constructoras que creó en el Paso 1.

Por ejemplo, si desea consultar sobre Field1.Field2.Field3 y
Field4.Field2.Field3, debe crear dos constructores. Tanto Field1 como Field4
pueden ser necesarios porque están definidos en dos constructores distintos.

Java

// Create a list for Field1.Field2.Field3 queries
List<ConstructorPart> field123ConstructorPartList = new ArrayList<>();
field123ConstructorPartList.add(field1ConstructorPart);
field123ConstructorPartList.add(field2ConstructorPart);
field123ConstructorPartList.add(field3ConstructorPart);
Constructor field123Constructor = Constructor.builder()
 .parts(field123ConstructorPartList)
 .build();
// Create a list for Field4.Field2.Field1 queries
List<ConstructorPart> field421ConstructorPartList = new ArrayList<>();
field421ConstructorPartList.add(field4ConstructorPart);
field421ConstructorPartList.add(field2ConstructorPart);
field421ConstructorPartList.add(field1ConstructorPart);
Constructor field421Constructor = Constructor.builder()
 .parts(field421ConstructorPartList)
 .build();

C# / .NET

// Create a list for Field1.Field2.Field3 queries
 var field123ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field1ConstructorPart,
 field2ConstructorPart, field3ConstructorPart }
};
// Create a list for Field4.Field2.Field1 queries
var field421ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field4ConstructorPart,
 field2ConstructorPart, field1ConstructorPart }
};

Configuración de balizas compuestas 166

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Rust

// Create a list for field1.field2.field3 queries
let field1_field2_field3_constructor = Constructor::builder()
 .parts(vec![
 field1_constructor_part,
 field2_constroctor_part.clone(),
 field3_constructor_part,
])
 .build()?;

// Create a list for field4.field2.field1 queries
let field4_field2_field1_constructor = Constructor::builder()
 .parts(vec![
 field4_constructor_part,
 field2_constroctor_part.clone(),
 field1_constructor_part,
])
 .build()?;

3. Cree una lista de constructores que incluya todos los constructores que creó en el Paso 2.

Java

List<Constructor> constructorList = new ArrayList<>();
constructorList.add(field123Constructor)
constructorList.add(field421Constructor)

C# / .NET

var constructorList = new List<Constructor>
{
 field123Constructor,
 field421Constructor
};

Rust

let constructor_list = vec![
 field1_field2_field3_constructor,
 field4_field2_field1_constructor,

Configuración de balizas compuestas 167

AWS SDK de cifrado de bases de datos Guía para desarrolladores

];

4. Especifica el constructorList momento de crear la baliza compuesta.

Configuraciones de ejemplo

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

En los ejemplos siguientes, se muestra cómo configurar balizas estándar y compuestas. Las
siguientes configuraciones no proporcionan longitudes de baliza. Para obtener ayuda para
determinar la longitud adecuada de la baliza para su configuración, consulte Elegir longitud de una
baliza.

Para ver ejemplos de código completos que muestran cómo configurar y usar balizas, consulte
los ejemplos de cifrado con capacidad de búsqueda en Java, .NET y Rust en el aws-database-
encryption-sdk repositorio -dynamodb de. GitHub

Temas

• Balizas estándar

• Balizas compuestas

Balizas estándar

Si desea consultar las coincidencias exactas en el campo inspector_id_last4, cree una baliza
estándar con la siguiente configuración.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("inspector_id_last4")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(exampleStandardBeacon);

Configuraciones de ejemplo 168

https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

C# / .NET

var standardBeaconList = new List<StandardBeacon>>);
StandardBeacon exampleStandardBeacon = new StandardBeacon
 {
 Name = "inspector_id_last4",
 Length = 10
 };
standardBeaconList.Add(exampleStandardBeacon);

Rust

let last4_beacon = StandardBeacon::builder()
 .name("inspector_id_last4")
 .length(10)
 .build()?;

let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;

let standard_beacon_list = vec![last4_beacon, unit_beacon];

Balizas compuestas

Si desea consultar la UnitInspection base de datos sobre inspector_id_last4 y
inspector_id_last4.unit, cree una baliza compuesta con la siguiente configuración. Esta
baliza compuesta solo requiere partes cifradas.

Java

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
List<StandardBeacon> standardBeaconList = new ArrayList<>);
StandardBeacon inspectorBeacon = StandardBeacon.builder()
 .name("inspector_id_last4")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(inspectorBeacon);

StandardBeacon unitBeacon = StandardBeacon.builder()
 .name("unit")
 .length(beaconLengthInBits)

Configuraciones de ejemplo 169

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 .build();
standardBeaconList.add(unitBeacon);

// 2. Define the encrypted parts.
List<EncryptedPart> encryptedPartList = new ArrayList<>);

// Each encrypted part needs a name and prefix
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
EncryptedPart encryptedPartInspector = EncryptedPart.builder()
 .name("inspector_id_last4")
 .prefix("I-")
 .build();
encryptedPartList.add(encryptedPartInspector);

EncryptedPart encryptedPartUnit = EncryptedPart.builder()
 .name("unit")
 .prefix("U-")
 .build();
encryptedPartList.add(encryptedPartUnit);

// 3. Create the compound beacon.
// This compound beacon only requires a name, split character,
// and list of encrypted parts
CompoundBeacon inspectorUnitBeacon = CompoundBeacon.builder()
 .name("inspectorUnitBeacon")
 .split(".")
 .sensitive(encryptedPartList)
 .build();

C# / .NET

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
StandardBeacon inspectorBeacon = new StandardBeacon
 {
 Name = "inspector_id_last4",
 Length = 10
 };
standardBeaconList.Add(inspectorBeacon);
StandardBeacon unitBeacon = new StandardBeacon
 {

Configuraciones de ejemplo 170

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 Name = "unit",
 Length = 30
 };
standardBeaconList.Add(unitBeacon);

// 2. Define the encrypted parts.
var last4EncryptedPart = new EncryptedPart

// Each encrypted part needs a name and prefix
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
var last4EncryptedPart = new EncryptedPart
 {
 Name = "inspector_id_last4",
 Prefix = "I-"
 };
encryptedPartList.Add(last4EncryptedPart);

var unitEncryptedPart = new EncryptedPart
 {
 Name = "unit",
 Prefix = "U-"
 };
encryptedPartList.Add(unitEncryptedPart);

// 3. Create the compound beacon.
// This compound beacon only requires a name, split character,
// and list of encrypted parts
var compoundBeaconList = new List<CompoundBeacon>>);
var inspectorCompoundBeacon = new CompoundBeacon
 {
 Name = "inspector_id_last4",
 Split = ".",
 Encrypted = encryptedPartList
 };
compoundBeaconList.Add(inspectorCompoundBeacon);

Rust

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
let last4_beacon = StandardBeacon::builder()

Configuraciones de ejemplo 171

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 .name("inspector_id_last4")
 .length(10)
 .build()?;

let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;

let standard_beacon_list = vec![last4_beacon, unit_beacon];

// 2. Define the encrypted parts.
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
let encrypted_parts_list = vec![
 EncryptedPart::builder()
 .name("inspector_id_last4")
 .prefix("I-")
 .build()?,
 EncryptedPart::builder().name("unit").prefix("U-").build()?,
];

// 3. Create the compound beacon
// This compound beacon only requires a name, split character,
// and list of encrypted parts
let compound_beacon_list = vec![CompoundBeacon::builder()
 .name("last4UnitCompound")
 .split(".")
 .encrypted(encrypted_parts_list)
 .build()?];

Uso de balizas

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Las balizas permiten buscar registros cifrados sin necesidad de descifrar toda la base de datos
consultada. Las balizas están diseñadas para su implementación en bases de datos nuevas y

Uso de balizas 172

AWS SDK de cifrado de bases de datos Guía para desarrolladores

despobladas. Cualquier baliza configurada en una base de datos existente solo mapeará los nuevos
registros escritos en la base de datos. Las balizas se calculan a partir del valor de texto no cifrado
de un campo. Una vez cifrado el campo, la baliza no tiene forma de mapear los datos existentes.
Una vez que haya escrito nuevos registros con una baliza, no puede actualizar la configuración de
la baliza. Sin embargo, puede agregar balizas nuevas para los campos nuevos que agrega a su
registro.

Tras configurar las balizas, debe completar los siguientes pasos antes de empezar a rellenar la base
de datos y a realizar consultas en las balizas.

1. Cree un conjunto de claves jerárquico AWS KMS

Para utilizar el cifrado con capacidad de búsqueda, debe utilizar el conjunto de claves de AWS
KMS jerárquico para generar, cifrar y descifrar las claves de datos que se utilizan para proteger
sus registros.

Después de configurar sus balizas, reúna los requisitos previos del conjunto de claves jerárquico
y cree su conjunto de claves jerárquico.

Para obtener más información sobre por qué se requiere el conjunto de claves jerárquico,
consulte Uso del conjunto de claves jerárquico para el cifrado con capacidad de búsqueda.

2.

Defina la versión de baliza

Especifique una lista de todas las balizas estándar que haya configurado, una lista de todas las
balizas compuestas que haya configurado, una lista de las partes cifradas, una lista de las partes
firmadas y una versión de la baliza. keyStore keySource Debe especificar la versión 1 de la
baliza. Para obtener orientación sobre cómo definir su keySource, consulte Definir la fuente de
claves de baliza.

El siguiente ejemplo de Java define la versión de baliza para una base de datos de un
solo inquilino. Para obtener ayuda para definir la versión de baliza para una base de datos
de multitenencia, consulte Cifrado con capacidad de búsqueda para bases de datos de
multitenencia.

Java

 List<BeaconVersion> beaconVersions = new ArrayList<>();
beaconVersions.add(

Uso de balizas 173

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .encryptedParts(encryptedPartsList)
 .signedParts(signedPartsList)
 .version(1) // MUST be 1
 .keyStore(keyStore)
 .keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branchKeyId)
 .cacheTTL(6000)
 .build())
 .build())
 .build()
);

C# / .NET

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 EncryptedParts = encryptedPartsList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = branchKeyStoreName,
 KeySource = new BeaconKeySource
 {
 Single = new SingleKeyStore
 {
 KeyId = branch-key-id,
 CacheTTL = 6000
 }
 }
 }
};

Rust

let beacon_version = BeaconVersion::builder()
 .standard_beacons(standard_beacon_list)

Uso de balizas 174

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 .compound_beacons(compound_beacon_list)
 .version(1) // MUST be 1
 .key_store(key_store.clone())
 .key_source(BeaconKeySource::Single(
 SingleKeyStore::builder()
 // `keyId` references a beacon key.
 // For every branch key we create in the keystore,
 // we also create a beacon key.
 // This beacon key is not the same as the branch key,
 // but is created with the same ID as the branch key.
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .build()?,
))
 .build()?;
let beacon_versions = vec![beacon_version];

3. Configure los índices secundarios

Después de configurar las balizas, debe configurar un índice secundario que refleje cada
baliza antes de poder buscar en los campos cifrados. Para obtener más información, consulte
Configurar índices secundarios con balizas.

4. Defina sus acciones criptográficas

Todos los campos utilizados para construir una baliza estándar deben estar marcados
ENCRYPT_AND_SIGN. Todos los demás campos utilizados para construir balizas deben estar
marcados con o. SIGN_ONLY SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

5. Configure un cliente SDK AWS de cifrado de bases de datos

Para configurar un cliente SDK AWS de cifrado de bases de datos que proteja los elementos
de la tabla de DynamoDB, consulte la biblioteca de cifrado del lado del cliente de Java para
DynamoDB.

Balizas de consulta

El tipo de baliza que configure determinará el tipo de consultas que podrá realizar. Las balizas
estándar utilizan expresiones de filtro para realizar búsquedas de igualdad. Las balizas compuestas
combinan cadenas literales de texto no cifrado y balizas estándar para realizar consultas complejas.
Al consultar datos cifrados, se busca por el nombre de la baliza.

Balizas de consulta 175

AWS SDK de cifrado de bases de datos Guía para desarrolladores

No se pueden comparar los valores de dos balizas estándar, aunque contengan el mismo texto no
cifrado subyacente. Las dos balizas estándar generarán dos etiquetas HMAC diferentes para los
mismos valores de texto no cifrado. Como resultado, las balizas estándar no pueden realizar las
siguientes consultas.

• beacon1 = beacon2

• beacon1 IN (beacon2)

• value IN (beacon1, beacon2, ...)

• CONTAINS(beacon1, beacon2)

Las balizas compuestas pueden realizar las siguientes consultas.

• BEGINS_WITH(a), dónde a refleja el valor total del campo por el que comienza la baliza
compuesta ensamblada. No puede utilizar el BEGINS_WITH operador para identificar un valor que
comience con una subcadena determinada. Sin embargo, puede usarBEGINS_WITH(S_), donde
S_ refleja el prefijo de una parte por la que comienza la baliza compuesta ensamblada.

• CONTAINS(a), donde a refleja el valor total de un campo que contiene la baliza compuesta
ensamblada. No puede usar el CONTAINS operador para identificar un registro que contenga una
subcadena concreta o un valor dentro de un conjunto.

Por ejemplo, no puede realizar una consulta CONTAINS(path, "a" en la que a se refleje el valor
de un conjunto.

• Puede comparar partes firmadas de balizas compuestas. Al comparar partes firmadas, si lo desea,
puede agregar el prefijo de una parte cifrada a una o más partes firmadas, pero no puede incluir el
valor de un campo cifrado en ninguna consulta.

Por ejemplo, puede comparar las partes firmadas y realizar consultas en signedField1 =
signedField2 o value IN (signedField1, signedField2, ...).

También puede comparar las partes firmadas y el prefijo de una parte cifrada consultando
signedField1.A_ = signedField2.B_.

• field BETWEEN a AND b, donde a y b son partes firmadas. Si lo desea, puede añadir el prefijo
de una parte cifrada a una o más partes firmadas, pero no puede incluir el valor de un campo
cifrado en ninguna consulta.

Balizas de consulta 176

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Debe incluir el prefijo de cada parte que incluya en una consulta en una baliza compuesta.
Por ejemplo, si ha creado una baliza compuesta, compoundBeacon, a partir de dos campos,
encryptedField y signedField, debe incluir los prefijos configurados para esas dos partes
cuando consulte la baliza.

compoundBeacon = E_encryptedFieldValue.S_signedFieldValue

Cifrado con capacidad de búsqueda para bases de datos
multitenencia

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Para implementar un cifrado con capacidad de búsqueda en su base de datos, debe utilizar un
conjunto de claves de AWS KMS jerárquico. El conjunto de claves AWS KMS jerárquico genera, cifra
y descifra las claves de datos utilizadas para proteger sus registros. También crea la clave de baliza
que se utiliza para generar balizas. Cuando se utiliza el conjunto de claves AWS KMS jerárquico
con bases de datos multiusuario, hay una clave de rama y una clave de baliza distintas para cada
inquilino. Para consultar datos cifrados en una base de datos de multitenencia, debe identificar los
materiales clave de baliza utilizados para generar la baliza que está consultando. Para obtener más
información, consulte the section called “Uso del conjunto de claves jerárquico para el cifrado para
búsquedas”.

Al definir la versión de baliza para una base de datos de multitenencia, especifique una lista de
todas las balizas estándar que configuró, una lista de todas las balizas compuestas que configuró,
una versión de baliza y una keySource. Debe definir la fuente de claves de baliza como una
MultiKeyStore, e incluir unakeyFieldName, el tiempo de vida de la caché de claves de baliza
local y el tamaño máximo de la caché de claves de baliza local.

Si configuró alguna baliza firmada, debe incluirla en su compoundBeaconList. Las balizas firmadas
son un tipo de baliza compuesta que indexan y realizan consultas complejas en los campos y
campos. SIGN_ONLY SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Cifrado con capacidad de búsqueda para bases de datos multitenencia 177

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Java

List<BeaconVersion> beaconVersions = new ArrayList<>();
 beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .version(1) // MUST be 1
 .keyStore(branchKeyStoreName)
 .keySource(BeaconKeySource.builder()
 .multi(MultiKeyStore.builder()
 .keyFieldName(keyField)
 .cacheTTL(6000)
 .maxCacheSize(10)
 .build())
 .build())
 .build()
);

C# / .NET

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 EncryptedParts = encryptedPartsList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = branchKeyStoreName,
 KeySource = new BeaconKeySource
 {
 Multi = new MultiKeyStore
 {
 KeyId = branch-key-id,
 CacheTTL = 6000,
 MaxCacheSize = 10
 }
 }
 }
};

Cifrado con capacidad de búsqueda para bases de datos multitenencia 178

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Rust

let beacon_version = BeaconVersion::builder()
 .standard_beacons(standard_beacon_list)
 .compound_beacons(compound_beacon_list)
 .version(1) // MUST be 1
 .key_store(key_store.clone())
 .key_source(BeaconKeySource::Multi(
 MultiKeyStore::builder()
 // `keyId` references a beacon key.
 // For every branch key we create in the keystore,
 // we also create a beacon key.
 // This beacon key is not the same as the branch key,
 // but is created with the same ID as the branch key.
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .max_cache_size(10)
 .build()?,
))
 .build()?;
let beacon_versions = vec![beacon_version];

keyFieldName

El keyFieldName define el nombre del campo que almacena la branch-key-id asociada a la
baliza utilizada para generar las balizas para un inquilino determinado.

Cuando se escriben nuevos registros en la base de datos, en este campo se almacena la
branch-key-id de baliza utilizada para generar las balizas de ese registro.

De forma predeterminada, el keyField es un campo conceptual que no se almacena de forma
explícita en la base de datos. El SDK AWS de cifrado de bases de datos identifica la clave
branch-key-id de los datos cifrados en la descripción del material y almacena el valor en el
concepto keyField para que pueda consultarlo en las balizas compuestas y balizas firmadas.
Como la descripción del material está firmada, lo conceptual keyField se considera una parte
firmada.

También puede incluirlo keyField en sus acciones criptográficas como un
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT campo SIGN_ONLY o para almacenar de
forma explícita el campo en la base de datos. Si lo hace, debe incluir manualmente el branch-
key-id en la keyField cada vez que escriba un registro en la base de datos.

Cifrado con capacidad de búsqueda para bases de datos multitenencia 179

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Consulta de balizas en una base de datos de multitenencia

Para consultar una baliza, debe incluir la keyField en la consulta los materiales clave necesarios
para volver a calcular la baliza. Debe especificar la branch-key-id asociada a la baliza utilizada
para generar las balizas para un registro. No puede especificar el nombre amigable que identifica al
branch-key-id del inquilino en el proveedor de ID de clave de rama. Puede incluir el keyField
en sus consultas de las siguientes maneras.

Balizas compuestas

Ya sea que las almacene de forma explícita keyField en sus registros o no, puede incluir las
keyField directamente en sus balizas compuestas como una parte firmada. La parte keyField
firmada debe ser obligatoria.

Por ejemplo, si desea construir una baliza compuesta, compoundBeacon, a partir de dos
campos, encryptedField y signedField, también debe incluir la baliza keyField como
parte firmada. Esto permite realizar la siguiente consulta en compoundBeacon.

compoundBeacon = E_encryptedFieldValue.S_signedFieldValue.K_branch-key-id

Balizas firmadas

El SDK AWS de cifrado de bases de datos utiliza balizas estándar y compuestas para
proporcionar soluciones de cifrado con capacidad de búsqueda. Estas balizas deben incluir
al menos un campo cifrado. Sin embargo, el SDK AWS de cifrado de bases de datos también
admite balizas firmadas que se pueden configurar completamente a partir de texto sin formato
SIGN_ONLY y campos. SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Las balizas firmadas se pueden construir a partir de una sola pieza. Ya sea que las almacene de
forma explícita keyField en sus registros o no, puede crear una baliza firmada a partir de ella
keyField y utilizarla para crear consultas compuestas que combinen una consulta en la baliza
keyField firmada con una consulta en una de las otras balizas. Por ejemplo, puede realizar la
siguiente consulta.

keyField = K_branch-key-id AND compoundBeacon =
 E_encryptedFieldValue.S_signedFieldValue

Si necesita ayuda para configurar las balizas firmadas, consulte Crear balizas firmadas

Consulta de balizas en una base de datos de multitenencia 180

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Realice consultas directamente en el keyField

Si lo especificó keyField en sus acciones criptográficas y almacenó el campo de forma explícita
en su registro, puede crear una consulta compuesta que combine una consulta de su baliza con
una consulta dekeyField. Puede optar por realizar una consulta directamente en el keyField
si desea consultar una baliza estándar. Por ejemplo, puede realizar la siguiente consulta.

keyField = branch-key-id AND standardBeacon = S_standardBeaconValue

Consulta de balizas en una base de datos de multitenencia 181

AWS SDK de cifrado de bases de datos Guía para desarrolladores

AWS SDK de cifrado de bases de datos para DynamoDB

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de bases de datos. AWS En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

El SDK AWS de cifrado de bases de datos para DynamoDB es una biblioteca de software que
le permite incluir el cifrado del lado del cliente en el diseño de Amazon DynamoDB. El SDK de
cifrado de AWS bases de datos para DynamoDB proporciona cifrado a nivel de atributos y le permite
especificar qué elementos cifrar y qué elementos incluir en las firmas para garantizar la autenticidad
de los datos. El cifrado de sus datos en tránsito y en reposo confidenciales ayuda a garantizar que
los datos de texto no cifrado no estén disponibles para ningún tercero, incluido AWS.

Note

El SDK AWS de cifrado de bases de datos no admite PartiQL.

En DynamoDB una tabla es una colección de elementos. Cada elemento es una colección de
atributos. Cada atributo tiene un nombre y un valor. El SDK AWS de cifrado de bases de datos
para DynamoDB cifra los valores de los atributos. A continuación, calcula una firma sobre los
atributos. Puede especificar qué valores de atributo cifrar y cuáles incluir en la firma en las acciones
criptográficas???.

Los temas de este capítulo proporcionan información general sobre el SDK de cifrado de AWS bases
de datos para DynamoDB, incluidos los campos que se cifran, instrucciones sobre la instalación y
configuración del cliente y ejemplos de Java para ayudarle a empezar.

Temas

• cifrado del cliente o del lado del servidor

• ¿Qué campos se cifran y se firman?

• Cifrado con capacidad de búsqueda en DynamoDB

• Actualización de su modelo de datos

• AWS SDK de cifrado de bases de datos para los lenguajes de programación disponibles en
DynamoDB

182

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.TablesItemsAttributes

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• Cliente de cifrado de DynamoDB antiguo

cifrado del cliente o del lado del servidor

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

El SDK AWS de cifrado de bases de datos para DynamoDB admite el cifrado del lado del cliente, en
el que se cifran los datos de la tabla antes de enviarlos a la base de datos. Sin embargo, admite una
característica de cifrado en reposo que cifra de modo transparente la tabla cuando se almacena en
disco y la descifra cuando accede a la tabla.

Las herramientas que elija dependen de la confidencialidad de sus datos y de los requisitos de
seguridad de su aplicación. Puede usar tanto el SDK de cifrado AWS de bases de datos para
DynamoDB como el cifrado en reposo. Cuando envía elementos cifrados y firmados a , no reconoce
los elementos como protegidos. Detecta elementos de tabla típicos con valores de atributo binario.

Cifrado del lado del servidor en reposo

DynamoDB admite el cifrado en reposo, una característica de cifrado del servidor en la que
DynamoDB cifra de modo transparente las tablas cuando la tabla se almacena en disco y las descifra
cuando se accede a los datos de la tabla.

Cuando utiliza un AWS SDK para interactuar con DynamoDB, de forma predeterminada, los datos
se cifran en tránsito a través de una conexión HTTPS, se descifran en el punto de conexión de
DynamoDB y, a continuación, se vuelven a cifrar antes de almacenarlos en DynamoDB.

• Cifrado de forma predeterminada. DynamoDB cifra y descifra de forma transparente todas las
tablas cuando se escriben. No existe la opción de habilitar o deshabilitar el cifrado en reposo.

• DynamoDB crea y administra las claves criptográficas. La clave única de cada tabla está protegida
por un AWS KMS key que nunca se deja AWS Key Management Service (AWS KMS) sin cifrar. De
forma predeterminada, DynamoDB utiliza una Clave propiedad de AWS en la cuenta de servicio
de DynamoDB, pero puede elegir una Clave administrada de AWS o una clave gestionada por el
cliente en su cuenta para proteger algunas o todas sus tablas.

• Todos los datos de la tabla se cifran en disco. Cuando una tabla cifrada se guarda en disco, cifra
todos los datos de la tabla, incluida la clave principal y los índices secundarios locales y globales.

cifrado del cliente o del lado del servidor 183

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.SecondaryIndexes

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Si la tabla tiene una clave de clasificación, algunas de las claves de ordenación que marcan los
límites del rango se almacenan en texto no cifrado en los metadatos de la tabla.

• Los objetos relacionados con las tablas también están cifrados. El cifrado en reposo protege
los flujos de , las tablas globales y las copias de seguridad cada vez que se escriben en medios
duraderos.

• Sus elementos se descifran cuando accede a ellos. Cuando accede a la tabla, DynamoDB descifra
la parte de la tabla que incluye el elemento de destino y le devuelve el elemento de texto no
cifrado.

AWS SDK de cifrado de bases de datos para DynamoDB

El cifrado del lado del cliente proporciona end-to-end protección para los datos, en tránsito y en
reposo, desde su origen hasta su almacenamiento en DynamoDB. Sus datos de texto sin formato
nunca están expuestos a terceros, ni siquiera a ellos. AWS Puede utilizar el SDK de cifrado de
AWS bases de datos para DynamoDB con las nuevas tablas de DynamoDB o migrar las tablas
existentes de Amazon DynamoDB a la versión más reciente del SDK de cifrado de bases de datos
para DynamoDB. AWS

• Sus datos se protegen en tránsito y en reposo. Nunca está expuesto a ningún tercero, ni siquiera.
AWS

• Puede firmar sus elementos de tabla. Puede dirigir el SDK de cifrado de bases de datos de AWS
para DynamoDB para calcular una firma sobre todo o parte de un elemento de tabla, incluidos
los atributos de clave principal y el nombre de la tabla. Esta firma permite detectar cambios no
autorizados en el elemento en general, incluida la adición o eliminación de atributos o el cambio de
valores de atributo.

• Para determinar cómo se protegen los datos, seleccione un conjunto de claves. Su conjunto de
claves determina las claves de encapsulación que protegen sus claves de datos y, en última
instancia, sus datos. Utilice las claves de encapsulamiento más seguras que resulten prácticas
para su tarea.

• El SDK AWS de cifrado de bases de datos para DynamoDB no cifra toda la tabla. Usted elige
qué atributos se cifrarán en sus elementos. El SDK AWS de cifrado de bases de datos para
DynamoDB no cifra un elemento completo. No cifra nombres de atributo o los nombres o valores
de los atributos de clave principal (clave de partición y clave de clasificación).

AWS Encryption SDK

cifrado del cliente o del lado del servidor 184

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BackupRestore.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Si va a cifrar los datos que almacena en DynamoDB, le recomendamos AWS el SDK de cifrado de
bases de datos para DynamoDB.

La AWS Encryption SDK es una biblioteca de cifrado del cliente que le ayuda a cifrar y descifrar
datos genéricos. Aunque puede proteger cualquier tipo de datos, no se ha diseñado para funcionar
con datos estructurados, como registros de base de datos. A diferencia del SDK AWS de cifrado de
bases de datos para DynamoDB, AWS Encryption SDK no puede proporcionar comprobaciones de
integridad a nivel de elemento y no tiene ninguna lógica para reconocer los atributos o impedir el
cifrado de las claves principales.

Si lo usa AWS Encryption SDK para cifrar algún elemento de la tabla, recuerde que no es compatible
con el SDK de cifrado de AWS bases de datos para DynamoDB. No puede cifrar con una biblioteca y
descifrar con la otra.

¿Qué campos se cifran y se firman?

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

El SDK AWS de cifrado de bases de datos para DynamoDB es una biblioteca de cifrado del lado del
cliente diseñada especialmente para las aplicaciones de Amazon DynamoDB. Amazon DynamoDB
almacena los datos en tablas, que son un conjunto de elementos. Cada elemento es una colección
de atributos. Cada atributo tiene un nombre y un valor. El SDK AWS de cifrado de bases de datos
para DynamoDB cifra los valores de los atributos. A continuación, calcula una firma sobre los
atributos. Puede especificar qué valores de atributo cifrar y cuáles incluir en la firma.

El cifrado protege la confidencialidad del valor de atributo. La firma proporciona integridad de todos
los atributos firmados y de sus relaciones entre sí y proporciona autenticación. Le permite detectar
cambios no autorizados en el elemento en general, incluida la adición o eliminación de atributos o la
sustitución de un valor cifrado por otro.

En un elemento cifrado, algunos datos permanecen en texto no cifrado, incluido el nombre de la
tabla, todos los nombres de atributo, los valores de atributo que no cifra y los nombres y valores
de los atributos de la clave principal (clave de partición y clave de clasificación). No almacene
información confidencial en estos campos.

¿Qué campos se cifran y se firman? 185

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.TablesItemsAttributes

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Para obtener más información sobre el funcionamiento del SDK AWS de cifrado de bases de datos
para DynamoDB, consulte. Cómo funciona el SDK AWS de cifrado de bases de datos

Note

Todas las menciones a las acciones de atributos en los temas del SDK AWS de cifrado de
bases de datos para DynamoDB se refieren a acciones criptográficas.

Temas

• Cifrado de valores de atributos

• Firma del elemento

Cifrado de valores de atributos

El SDK AWS de cifrado de bases de datos para DynamoDB cifra los valores (pero no el nombre o
el tipo de atributo) de los atributos que especifique. Para determinar los valores de atributo que se
cifran, utilice acciones de atributo.

Por ejemplo, este elemento incluye los atributos example y test.

'example': 'data',
'test': 'test-value',
...

Si cifra el atributo example, pero no cifra el atributo test, el resultado tendrá el siguiente aspecto.
El valor de atributo example cifrado son datos binarios, en lugar de una cadena.

'example': Binary(b"'b\x933\x9a+s\xf1\xd6a\xc5\xd5\x1aZ\xed\xd6\xce\xe9X\xf0T\xcb\x9fY
\x9f\xf3\xc9C\x83\r\xbb\\"),
'test': 'test-value'
...

Los atributos de clave principal (clave de partición y clave de clasificación) de cada elemento deben
permanecer en texto no cifrado porque DynamoDB los utiliza para buscar el elemento en la tabla.
Deben estar firmados, pero no cifrados.

Cifrado de valores de atributos 186

AWS SDK de cifrado de bases de datos Guía para desarrolladores

El SDK AWS de cifrado de bases de datos para DynamoDB identifica los atributos clave principales
y garantiza que sus valores estén firmados, pero no cifrados. Y, si identifica la clave principal y, a
continuación, intenta cifrarla, el cliente generará una excepción.

El cliente guarda la descripción del material en un nuevo atributo (aws_dbe_head) que agrega al
elemento. La descripción del material describe cómo se cifró y firmó el elemento. El cliente utiliza
esta información para verificar y descifrar el elemento. El campo que almacena la descripción del
material no está cifrado.

Firma del elemento

Tras cifrar los valores de los atributos especificados, el SDK de cifrado de AWS bases de datos
para DynamoDB calcula los códigos de autenticación de mensajes basados en hash HMACs
() y una firma digital mediante la canonicalización de la descripción del material, el contexto
de cifrado y cada campo ENCRYPT_AND_SIGN marcado o en las acciones de los atributos.
SIGN_ONLYSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Las firmas ECDSA están habilitadas
de forma predeterminada, pero no son obligatorias. El cliente almacena las firmas HMACs y en un
nuevo atributo (aws_dbe_foot) que añade al elemento.

Cifrado con capacidad de búsqueda en DynamoDB
Para configurar las tablas de Amazon DynamoDB para el cifrado con capacidad de búsqueda,
debe utilizar el conjunto de claves de AWS KMS jerárquico para generar, cifrar y descifrar las
claves de datos utilizadas para proteger los elementos. También debe incluir SearchConfigen la
configuración de cifrado de la tabla.

Note

Si utiliza la biblioteca de cifrado del lado del cliente de Java para DynamoDB, debe utilizar el
SDK de cifrado de AWS bases de datos de bajo nivel para la API de DynamoDB para cifrar,
firmar, verificar y descifrar los elementos de la tabla. El cliente mejorado de DynamoDB y
los DynamoDBItemEncryptor niveles inferiores no admiten el cifrado con capacidad de
búsqueda.

Temas

• Configurar índices secundarios con balizas

• Probando las salidas de balizas

Firma del elemento 187

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Configurar índices secundarios con balizas

Después de configurar las balizas, debe configurar un índice secundario que refleje cada baliza
antes de poder buscar en los atributos cifrados.

Al configurar una baliza estándar o compuesta, el SDK de cifrado de AWS bases de datos añade
el aws_dbe_b_ prefijo al nombre de la baliza para que el servidor pueda identificarlas fácilmente.
Por ejemplo, si nombra una baliza compuestacompoundBeacon, el nombre completo de la baliza
es realmente. aws_dbe_b_compoundBeacon Si desea configurar índices secundarios que incluyan
una baliza estándar o compuesta, debe incluir el aws_dbe_b_ prefijo al identificar el nombre de la
baliza.

Claves de partición y claves de clasificación

No puede cifrar los valores de la clave principal. Las claves de partición y clasificación deben
estar firmadas. Sus valores de la clave principal no pueden ser una baliza estándar o compuesta.

Los valores de las claves principales deben serSIGN_ONLY, a menos que especifique algún
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo, los atributos de partición y
ordenación también deben serloSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Sus valores de la clave principal pueden ser balizas firmadas. Si ha configurado balizas firmadas
distintas para cada uno de los valores de la clave principal, debe especificar el nombre del
atributo que identifica el valor de la clave principal como el nombre de la baliza firmada. Sin
embargo, el SDK AWS de cifrado de bases de datos no añade el aws_dbe_b_ prefijo a las
balizas firmadas. Aunque haya configurado balizas firmadas distintas para los valores de la clave
principal, solo tendrá que especificar los nombres de los atributos de los valores de la clave
principal al configurar un índice secundario.

Índices secundarios locales

La clave de clasificación de un índice secundario local puede ser una baliza.

Si especifica una baliza para la clave de clasificación, el tipo debe ser Cadena. Si especifica una
baliza estándar o compuesta para la clave de clasificación, debe incluir el aws_dbe_b_ prefijo al
especificar el nombre de la baliza. Si especifica una baliza firmada, especifique el nombre de la
baliza sin ningún prefijo.

Índices secundarios globales

Tanto la partición como las claves de clasificación de un índice secundario global pueden ser
balizas.

Configurar índices secundarios con balizas 188

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Si especifica un indicador para la partición o la clave de clasificación, el tipo debe ser Cadena. Si
especifica una baliza estándar o compuesta para la clave de clasificación, debe incluir el prefijo
aws_dbe_b_ al especificar el nombre de la baliza. Si especifica una baliza firmada, especifique el
nombre de la baliza sin ningún prefijo.

Proyecciones de atributos

Una proyección es el conjunto de atributos que se copia de una tabla en un índice secundario. La
clave de partición y la clave de clasificación de la tabla siempre se proyectan en el índice; puede
proyectar otros atributos para admitir los requisitos de consulta de la aplicación. DynamoDB
ofrece tres opciones diferentes para las proyecciones de atributosKEYS_ONLY:INCLUDE, y. ALL

Si utiliza la proyección de atributos INCLUDE para buscar en una baliza, debe
especificar los nombres de todos los atributos a partir de los que se construye la baliza
y el nombre de la baliza con el aws_dbe_b_ prefijo. Por ejemplo, si ha configurado
una baliza compuestacompoundBeacon, desde field1field2, yfield3, debe
especificaraws_dbe_b_compoundBeacon, field1field2, y field3 en la proyección.

Un índice secundario global solo puede usar los atributos especificados explícitamente en la
proyección, pero un índice secundario local puede usar cualquier atributo.

Probando las salidas de balizas

Si configuró balizas compuestas o construyó las balizas mediante campos virtuales, le
recomendamos comprobar que estas balizas producen el resultado esperado antes de rellenar la
tabla de DynamoDB.

El SDK de cifrado AWS de bases de datos proporciona el DynamoDbEncryptionTransforms
servicio que le ayuda a solucionar los problemas de las salidas de balizas compuestas y de campo
virtual.

Probando campos virtuales

En el siguiente fragmento se crean elementos de prueba, se define el
DynamoDbEncryptionTransforms servicio con la configuración de cifrado de tablas de
DynamoDB y se muestra cómo utilizarlos ResolveAttributes para comprobar que el campo
virtual produce el resultado esperado.

Java

Consulte el ejemplo de código completo: .java VirtualBeaconSearchableEncryptionExample

Probando las salidas de balizas 189

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html#GSI.Projections
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/VirtualBeaconSearchableEncryptionExample.java

AWS SDK de cifrado de bases de datos Guía para desarrolladores

// Create test items
final PutItemRequest itemWithHasTestResultPutRequest = PutItemRequest.builder()
 .tableName(ddbTableName)
 .item(itemWithHasTestResult)
 .build();

final PutItemResponse itemWithHasTestResultPutResponse =
 ddb.putItem(itemWithHasTestResultPutRequest);

final PutItemRequest itemWithNoHasTestResultPutRequest = PutItemRequest.builder()
 .tableName(ddbTableName)
 .item(itemWithNoHasTestResult)
 .build();

final PutItemResponse itemWithNoHasTestResultPutResponse =
 ddb.putItem(itemWithNoHasTestResultPutRequest);

// Define the DynamoDbEncryptionTransforms service
final DynamoDbEncryptionTransforms trans = DynamoDbEncryptionTransforms.builder()
 .DynamoDbTablesEncryptionConfig(encryptionConfig).build();

// Verify configuration
final ResolveAttributesInput resolveInput = ResolveAttributesInput.builder()
 .TableName(ddbTableName)
 .Item(itemWithHasTestResult)
 .Version(1)
 .build();
final ResolveAttributesOutput resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that VirtualFields has the expected value
Map<String, String> vf = new HashMap<>();
vf.put("stateAndHasTestResult", "CAt");
assert resolveOutput.VirtualFields().equals(vf);

C# / .NET

Consulte el ejemplo de código completo: VirtualBeaconSearchableEncryptionExample.cs.

 // Create item with hasTestResult=true
var itemWithHasTestResult = new Dictionary<String, AttributeValue>
{
 ["customer_id"] = new AttributeValue("ABC-123"),
 ["create_time"] = new AttributeValue { N = "1681495205" },

Probando las salidas de balizas 190

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/VirtualBeaconSearchableEncryptionExample.cs

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 ["state"] = new AttributeValue("CA"),
 ["hasTestResult"] = new AttributeValue { BOOL = true }
};

// Create item with hasTestResult=false
var itemWithNoHasTestResult = new Dictionary<String, AttributeValue>
{
 ["customer_id"] = new AttributeValue("DEF-456"),
 ["create_time"] = new AttributeValue { N = "1681495205" },
 ["state"] = new AttributeValue("CA"),
 ["hasTestResult"] = new AttributeValue { BOOL = false }
};

// Define the DynamoDbEncryptionTransforms service
var trans = new DynamoDbEncryptionTransforms(encryptionConfig);

// Verify configuration
var resolveInput = new ResolveAttributesInput
{
 TableName = ddbTableName,
 Item = itemWithHasTestResult,
 Version = 1
};
var resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that VirtualFields has the expected value
Debug.Assert(resolveOutput.VirtualFields.Count == 1);
Debug.Assert(resolveOutput.VirtualFields["stateAndHasTestResult"] == "CAt");

Rust

Consulte el ejemplo de código completo: virtual_beacon_searchable_encryption.rs.

// Create item with hasTestResult=true
let item_with_has_test_result = HashMap::from([
 (
 "customer_id".to_string(),
 AttributeValue::S("ABC-123".to_string()),
),
 (
 "create_time".to_string(),
 AttributeValue::N("1681495205".to_string()),
),
 ("state".to_string(), AttributeValue::S("CA".to_string())),

Probando las salidas de balizas 191

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/virtual_beacon_searchable_encryption.rs

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 ("hasTestResult".to_string(), AttributeValue::Bool(true)),
]);

// Create item with hasTestResult=false
let item_with_no_has_test_result = HashMap::from([
 (
 "customer_id".to_string(),
 AttributeValue::S("DEF-456".to_string()),
),
 (
 "create_time".to_string(),
 AttributeValue::N("1681495205".to_string()),
),
 ("state".to_string(), AttributeValue::S("CA".to_string())),
 ("hasTestResult".to_string(), AttributeValue::Bool(false)),
]);

// Define the transform service
let trans = transform_client::Client::from_conf(encryption_config.clone())?;

// Verify the configuration
let resolve_output = trans
 .resolve_attributes()
 .table_name(ddb_table_name)
 .item(item_with_has_test_result.clone())
 .version(1)
 .send()
 .await?;

// Verify that VirtualFields has the expected value
let virtual_fields = resolve_output.virtual_fields.unwrap();
assert_eq!(virtual_fields.len(), 1);
assert_eq!(virtual_fields["stateAndHasTestResult"], "CAt");

Probando balizas compuestas

En el siguiente fragmento se crea un elemento de prueba, se define el
DynamoDbEncryptionTransforms servicio con la configuración de cifrado de la tabla de
DynamoDB y se muestra cómo se utiliza ResolveAttributes para comprobar que la baliza
compuesta produce el resultado esperado.

Probando las salidas de balizas 192

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Java

Consulte el ejemplo de código completo: .java CompoundBeaconSearchableEncryptionExample

// Create an item with both attributes used in the compound beacon.
final HashMap<String, AttributeValue> item = new HashMap<>();
item.put("work_id", AttributeValue.builder().s("9ce39272-8068-4efd-a211-
cd162ad65d4c").build());
item.put("inspection_date", AttributeValue.builder().s("2023-06-13").build());
item.put("inspector_id_last4", AttributeValue.builder().s("5678").build());
item.put("unit", AttributeValue.builder().s("011899988199").build());

// Define the DynamoDbEncryptionTransforms service
final DynamoDbEncryptionTransforms trans = DynamoDbEncryptionTransforms.builder()
 .DynamoDbTablesEncryptionConfig(encryptionConfig).build();

// Verify configuration
final ResolveAttributesInput resolveInput = ResolveAttributesInput.builder()
 .TableName(ddbTableName)
 .Item(item)
 .Version(1)
 .build();

final ResolveAttributesOutput resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that CompoundBeacons has the expected value
Map<String, String> cbs = new HashMap<>();
cbs.put("last4UnitCompound", "L-5678.U-011899988199");
assert resolveOutput.CompoundBeacons().equals(cbs);
// Note : the compound beacon actually stored in the table is not
 "L-5678.U-011899988199"
// but rather something like "L-abc.U-123", as both parts are EncryptedParts
// and therefore the text is replaced by the associated beacon

C# / .NET

Consulte el ejemplo de código completo: .cs CompoundBeaconSearchableEncryptionExample

// Create an item with both attributes used in the compound beacon
var item = new Dictionary<String, AttributeValue>
{
 ["work_id"] = new AttributeValue("9ce39272-8068-4efd-a211-cd162ad65d4c"),
 ["inspection_date"] = new AttributeValue("2023-06-13"),

Probando las salidas de balizas 193

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/CompoundBeaconSearchableEncryptionExample.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/CompoundBeaconSearchableEncryptionExample.cs

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 ["inspector_id_last4"] = new AttributeValue("5678"),
 ["unit"] = new AttributeValue("011899988199")
};

// Define the DynamoDbEncryptionTransforms service
var trans = new DynamoDbEncryptionTransforms(encryptionConfig);

// Verify configuration
var resolveInput = new ResolveAttributesInput
{
 TableName = ddbTableName,
 Item = item,
 Version = 1
};
var resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that CompoundBeacons has the expected value
Debug.Assert(resolveOutput.CompoundBeacons.Count == 1);
Debug.Assert(resolveOutput.CompoundBeacons["last4UnitCompound"] ==
 "L-5678.U-011899988199");
// Note : the compound beacon actually stored in the table is not
 "L-5678.U-011899988199"
// but rather something like "L-abc.U-123", as both parts are EncryptedParts
// and therefore the text is replaced by the associated beacon

Rust

Consulte el ejemplo de código completo: compound_beacon_searchable_encryption.rs

// Create an item with both attributes used in the compound beacon
let item = HashMap::from([
 (
 "work_id".to_string(),
 AttributeValue::S("9ce39272-8068-4efd-a211-cd162ad65d4c".to_string()),
),
 (
 "inspection_date".to_string(),
 AttributeValue::S("2023-06-13".to_string()),
),
 (
 "inspector_id_last4".to_string(),
 AttributeValue::S("5678".to_string()),
),

Probando las salidas de balizas 194

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/compound_beacon_searchable_encryption.rs

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 (
 "unit".to_string(),
 AttributeValue::S("011899988199".to_string()),
),
]);

// Define the transforms service
let trans = transform_client::Client::from_conf(encryption_config.clone())?;

// Verify configuration
let resolve_output = trans
 .resolve_attributes()
 .table_name(ddb_table_name)
 .item(item.clone())
 .version(1)
 .send()
 .await?;

// Verify that CompoundBeacons has the expected value
Dlet compound_beacons = resolve_output.compound_beacons.unwrap();
assert_eq!(compound_beacons.len(), 1);
assert_eq!(
 compound_beacons["last4UnitCompound"],
 "L-5678.U-011899988199"
);
// but rather something like "L-abc.U-123", as both parts are EncryptedParts
// and therefore the text is replaced by the associated beacon

Actualización de su modelo de datos

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de bases de datos. AWS En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Al configurar el SDK de cifrado AWS de bases de datos para DynamoDB, proporciona acciones de
atributos. Al cifrar, el SDK de cifrado de AWS bases de datos utiliza las acciones de atributos para
identificar qué atributos cifrar y firmar, qué atributos firmar (pero no cifrar) y cuáles ignorar. También
se definen los atributos no firmados permitidos para indicar explícitamente al cliente qué atributos
están excluidos de las firmas. Al descifrar, el SDK de cifrado AWS de bases de datos utiliza los

Actualización de su modelo de datos 195

AWS SDK de cifrado de bases de datos Guía para desarrolladores

atributos no firmados permitidos que usted definió para identificar qué atributos no están incluidos en
las firmas. Las acciones de los atributos no se guardan en el elemento cifrado y el SDK de cifrado
AWS de bases de datos no actualiza las acciones de los atributos automáticamente.

Elija cuidadosamente sus acciones de atributo. En caso de duda, use Encrypt and sign. Una
vez que haya utilizado el SDK de cifrado de AWS bases de datos para proteger sus elementos,
no podrá cambiar un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo existente
ENCRYPT_AND_SIGN o uno aDO_NOTHING. SIGN_ONLY Puede hacer los siguientes cambios.

• Agregue SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributos nuevos
ENCRYPT_AND_SIGN y SIGN_ONLY

• Elimine los atributos existentes

• Cambie un ENCRYPT_AND_SIGN atributo existente a SIGN_ONLY o
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

• Cambie un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo SIGN_ONLY o existente a
ENCRYPT_AND_SIGN

• Añada un atributo DO_NOTHING nuevo

• Cambio de un atributo SIGN_ONLY existente a SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

• Cambio de un atributo SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT existente a SIGN_ONLY

Consideraciones sobre el cifrado con capacidad de búsqueda

Antes de actualizar el modelo de datos, considere detenidamente cómo podrían afectar las
actualizaciones a las balizas que haya creado a partir de los atributos. Una vez que haya escrito
nuevos registros con una baliza, no puede actualizar la configuración de la baliza. No puede
actualizar las acciones de los atributos asociadas a los atributos que utilizó para construir balizas. Si
elimina un atributo existente y su baliza asociada, no podrá consultar los registros existentes con esa
baliza. Puede crear balizas nuevas para los campos nuevos que añada a su registro, pero no puede
actualizar las balizas existentes para incluir el nuevo campo.

Consideraciones sobre los SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributos

De forma predeterminada, la partición y las claves de clasificación son el único atributo incluido
en el contexto de cifrado. Podría considerar la posibilidad de definir campos adicionales
para SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT que el proveedor del identificador
de clave de rama de su conjunto de claves AWS KMS jerárquicas pueda identificar qué
clave de rama es necesaria para el descifrado a partir del contexto de cifrado. Para obtener

Actualización de su modelo de datos 196

AWS SDK de cifrado de bases de datos Guía para desarrolladores

más información, consulte el proveedor de ID de clave de sucursal. Si especifica algún
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo, los atributos de partición y ordenación
también deben serloSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Note

Para utilizar la acción SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT criptográfica, debe
utilizar la versión 3.3 o posterior del SDK de cifrado de AWS bases de datos. Implemente
la nueva versión en todos los lectores antes de actualizar su modelo de datos para
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT incluirla.

Agregue SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributos
nuevos ENCRYPT_AND_SIGN y SIGN_ONLY

Para añadir un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo o un nuevo
ENCRYPT_AND_SIGN atributo, defina el nuevo atributo en las acciones de sus atributos. SIGN_ONLY

No puede eliminar un DO_NOTHING atributo existente y volver a añadirlo como
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo ENCRYPT_AND_SIGNSIGN_ONLY, o.

Uso de una clase de datos anotada

Si ha definido las acciones de los atributos con unaTableSchema, añada el nuevo atributo
a la clase de datos anotada. Si no especificas una anotación de acción de atributo para el
nuevo atributo, el cliente cifrará y firmará el nuevo atributo de forma predeterminada (a menos
que el atributo forme parte de la clave principal). Si solo quiere firmar el nuevo atributo, debe
añadirlo con la @DynamoDBEncryptionSignAndIncludeInEncryptionContext anotación
@DynamoDBEncryptionSignOnly o.

Uso de un objeto de modelo

Si ha definido manualmente las acciones de los atributos, añada el nuevo atributo a las acciones
de los atributos del modelo de objetos y especifique ENCRYPT_AND_SIGNSIGN_ONLY, o
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT como acción de atributo.

Elimine los atributos existentes

Si decide que ya no necesita un atributo, puede dejar de escribir datos en ese atributo o puede
eliminarlo formalmente de las acciones de sus atributos. Cuando dejas de escribir nuevos datos en

Agregue SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributos nuevos ENCRYPT_AND_SIGN y
SIGN_ONLY

197

AWS SDK de cifrado de bases de datos Guía para desarrolladores

un atributo, el atributo sigue apareciendo en las acciones de tus atributos. Esto puede resultar útil si
necesita volver a utilizar el atributo en el futuro. Si eliminas formalmente el atributo de tus acciones
de atributos, no lo eliminas de tu conjunto de datos. Su conjunto de datos seguirá conteniendo
elementos que incluyan ese atributo.

Para eliminar formalmente un atributo ENCRYPT_AND_SIGNSIGN_ONLY, o un DO_NOTHING atributo
existenteSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, actualice las acciones de sus atributos.

Si elimina un atributo DO_NOTHING, no debe eliminarlo de los atributos no firmados permitidos.
Aunque ya no escriba valores nuevos en ese atributo, el cliente necesitará saber que el atributo no
está firmado para poder leer los elementos existentes que lo contienen.

Uso de una clase de datos anotada

Si ha definido las acciones de los atributos con una TableSchema, elimine el atributo de la clase de
datos anotada.

Uso de un objeto de modelo

Si definió manualmente las acciones de los atributos, elimine el atributo de las acciones de los
atributos del modelo de objetos.

Cambie un ENCRYPT_AND_SIGN atributo existente a SIGN_ONLY o
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Para cambiar un ENCRYPT_AND_SIGN atributo existente a SIGN_ONLY
oSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, debe actualizar las acciones de su atributo.
Tras implementar la actualización, el cliente podrá verificar y descifrar los valores existentes escritos
en el atributo, pero solo firmará los nuevos valores escritos en el atributo.

Note

Tenga en cuenta detenidamente sus requisitos de seguridad antes
de cambiar un ENCRYPT_AND_SIGN atributo existente a SIGN_ONLY
oSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Cualquier atributo que pueda
almacenar datos confidenciales debe estar cifrado.

Uso de una clase de datos anotada

Cambie un ENCRYPT_AND_SIGN atributo existente a SIGN_ONLY o
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

198

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Si ha definido las acciones de los atributos con unaTableSchema, actualice el atributo existente
para incluir la @DynamoDBEncryptionSignAndIncludeInEncryptionContext anotación
@DynamoDBEncryptionSignOnly o en la clase de datos anotada.

Uso de un objeto de modelo

Si ha definido manualmente las acciones de atributo, actualice la acción de
atributo asociada al atributo existente desde ENCRYPT_AND_SIGN SIGN_ONLY o
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT en su modelo de objetos.

Cambie un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo
SIGN_ONLY o existente a ENCRYPT_AND_SIGN

Para cambiar un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo SIGN_ONLY o un
atributo existente aENCRYPT_AND_SIGN, debe actualizar las acciones de sus atributos. Tras
implementar la actualización, el cliente podrá comprobar los valores existentes escritos en el atributo
y cifrará y firmará los nuevos valores escritos en el atributo.

Uso de una clase de datos anotada

Si ha definido las acciones de sus atributos con unaTableSchema, elimine la
@DynamoDBEncryptionSignAndIncludeInEncryptionContext anotación
@DynamoDBEncryptionSignOnly o del atributo existente.

Uso de un objeto de modelo

Si ha definido manualmente las acciones de atributo, actualice la acción de atributo asociada
al atributo desde SIGN_ONLY o SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT hacia
ENCRYPT_AND_SIGN en su modelo de objetos.

Añada un atributo DO_NOTHING nuevo

Para reducir el riesgo de errores al añadir un atributo DO_NOTHING nuevo, le recomendamos que
especifique un prefijo distinto al asignar un nombre a los atributos DO_NOTHING y, a continuación,
utilizar ese prefijo para definir los atributos no firmados permitidos.

No puede eliminar un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo o atributo existente
ENCRYPT_AND_SIGN de la clase de datos anotada ySIGN_ONLY, a continuación, volver a añadir
el atributo como DO_NOTHING atributo. Solo puede agregar atributos DO_NOTHING completamente
nuevos.

Cambie un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo SIGN_ONLY o existente a
ENCRYPT_AND_SIGN

199

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Los pasos que siga para añadir un atributo DO_NOTHING nuevo dependerán de si ha definido los
atributos no firmados permitidos de forma explícita en una lista o con un prefijo.

Utilizar un prefijo de atributos no firmados permitido

Si ha definido las acciones de los atributos con un TableSchema, añada el atributo DO_NOTHING
nuevo a la clase de datos anotada con la anotación @DynamoDBEncryptionDoNothing. Si ha
definido manualmente las acciones de los atributos, actualice las acciones de los atributos para
incluir el nuevo atributo. Asegúrese de configurar explícitamente el nuevo atributo con la acción de
atributo DO_NOTHING. Debe incluir el mismo prefijo distinto en el nombre del nuevo atributo.

Utilizar una lista de atributos no firmados permitidos

1. Añada el atributo DO_NOTHING nuevo a la lista de atributos no firmados permitidos e implemente
la lista actualizada.

2. Implemente el cambio desde el paso 1.

No puede continuar con el paso 3 hasta que el cambio se haya propagado a todos los hosts que
necesiten leer estos datos.

3. Añada el atributo DO_NOTHING nuevo a las acciones de sus atributos.

a. Si ha definido las acciones de los atributos con un TableSchema, añada el
atributo DO_NOTHING nuevo a la clase de datos anotada con la anotación
@DynamoDBEncryptionDoNothing.

b. Si ha definido manualmente las acciones de los atributos, actualice las acciones de los
atributos para incluir el nuevo atributo. Asegúrese de configurar explícitamente el nuevo
atributo con la acción de atributo DO_NOTHING.

4. Implemente el cambio desde el paso 3.

Cambio de un atributo SIGN_ONLY existente a
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Para cambiar un atributo existente SIGN_ONLY a
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, debe actualizar las acciones del atributo. Tras
implementar la actualización, el cliente podrá comprobar los valores existentes escritos en el atributo
y seguirá firmando los nuevos valores escritos en el atributo. Los nuevos valores escritos en el
atributo se incluirán en el contexto de cifrado.

Cambio de un atributo SIGN_ONLY existente a SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 200

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Si especifica algún SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo, los atributos de
partición y ordenación también deben serloSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Uso de una clase de datos anotada

Si ha definido sus acciones de atributo con unaTableSchema, actualice la
acción de atributo asociada al atributo de @DynamoDBEncryptionSignOnly
a@DynamoDBEncryptionSignAndIncludeInEncryptionContext.

Uso de un objeto de modelo

Si ha definido manualmente las acciones de atributo, actualice la acción de atributo asociada al
atributo de SIGN_ONLY a SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT en su modelo de
objetos.

Cambio de un atributo SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
existente a SIGN_ONLY

Para cambiar un atributo existente SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT a
SIGN_ONLY, debe actualizar las acciones del atributo. Tras implementar la actualización, el cliente
podrá comprobar los valores existentes escritos en el atributo y seguirá firmando los nuevos valores
escritos en el atributo. Los nuevos valores escritos en el atributo no se incluirán en el contexto de
cifrado.

Antes de cambiar un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo existente
aSIGN_ONLY, considere detenidamente cómo sus actualizaciones podrían afectar a la funcionalidad
de su proveedor de ID de clave de sucursal.

Uso de una clase de datos anotada

Si ha definido sus acciones de atributo con unaTableSchema, actualice la acción de atributo
asociada al atributo de @DynamoDBEncryptionSignAndIncludeInEncryptionContext
a@DynamoDBEncryptionSignOnly.

Uso de un objeto de modelo

Si ha definido manualmente las acciones de atributo, actualice la acción de atributo asociada al
atributo de SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT a SIGN_ONLY en su modelo de
objetos.

Cambio de un atributo SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT existente a SIGN_ONLY 201

AWS SDK de cifrado de bases de datos Guía para desarrolladores

AWS SDK de cifrado de bases de datos para los lenguajes de
programación disponibles en DynamoDB
El SDK AWS de cifrado de bases de datos para DynamoDB está disponible para los
siguientes lenguajes de programación. Las bibliotecas específicas de lenguaje varían, pero las
implementaciones resultantes son interoperables. Puede cifrar con una implementación de lenguaje
y descifrar con otra. La interoperabilidad puede estar sujeta a restricciones de lenguaje. Si es así,
estas restricciones se describen en el tema que trata de la implementación del lenguaje.

Temas

• Java

• .NET

• Rust

Java

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

En este tema se explica cómo instalar y usar la versión 3.x de la biblioteca de cifrado del cliente
de Java para DynamoDB. Para obtener más información sobre la programación con el SDK AWS
de cifrado de bases de datos para DynamoDB, consulte los ejemplos de Java en el repositorio -
dynamodb en aws-database-encryption-sdk. GitHub

Note

Los siguientes temas se centran en la versión 3.x de la biblioteca de cifrado del cliente de
Java para DynamoDB.
Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. El SDK AWS de cifrado de bases de datos sigue siendo compatible con las
versiones antiguas de DynamoDB Encryption Client.

Temas

Lenguajes de programación 202

https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• Requisitos previos

• Instalación

• Usar la biblioteca de cifrado del cliente de Java para DynamoDB

• Ejemplos de Java

• Configurar una tabla de DynamoDB existente para usar AWS el SDK de cifrado de bases de datos
para DynamoDB

• Migre a la versión 3.x de la biblioteca de cifrado del cliente de Java para DynamoDB

Requisitos previos

Antes de instalar la versión 3.x de la biblioteca de cifrado del cliente de Java para DynamoDB,
asegúrese de cumplir los siguientes requisitos previos.

Un entorno de desarrollo de Java

Necesitará Java 8 o una versión posterior. En el sitio web de Oracle, vaya a la página de
descargas de Java SE y, a continuación, descargue e instale el Java SE Development Kit (JDK).

Si utiliza el JDK de Oracle, también debe descargar e instalar los archivos de políticas de
jurisdicción de seguridad ilimitada de la extensión de criptografía de Java (JCE).

AWS SDK for Java 2.x

El SDK AWS de cifrado de bases de datos para DynamoDB requiere el módulo DynamoDB
Enhanced Client del. AWS SDK for Java 2.x Puede instalar todo el SDK o solo este módulo.

Para obtener información sobre cómo actualizar su versión de AWS SDK para Java, consulte
Migración de la versión 1.x a la 2.x del. AWS SDK para Java

AWS SDK para Java Está disponible a través de Apache Maven. Puede declarar una
dependencia para todo AWS SDK para Java el dynamodb-enhanced módulo o solo para él.

Instálelo AWS SDK para Java con Apache Maven

• Para importar todo AWS SDK para Java como una dependencia declárelo en el archivo
pom.xml.

• Para crear una dependencia solo para el módulo Amazon DynamoDB en el AWS SDK para
Java, siga las instrucciones para especificar módulos concretos. Establece el groupId para y
el para.software.amazon.awssdk artifactID dynamodb-enhanced

Java 203

https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Note

Si usa el anillo de AWS KMS claves o el anillo de claves AWS KMS jerárquico, también
necesita crear una dependencia para el módulo. AWS KMS Establece el groupId en
software.amazon.awssdk y el artifactID en kms.

Instalación

Puede instalar la versión 3.x de la biblioteca de cifrado del cliente de Java para DynamoDB de las
siguientes maneras.

Con Apache Maven

El Cliente de encriptación de Amazon DynamoDB para Java está disponible en Apache Maven
con la siguiente definición de dependencias.

<dependency>
 <groupId>software.amazon.cryptography</groupId>
 <artifactId>aws-database-encryption-sdk-dynamodb</artifactId>
 <version>version-number</version>
</dependency>

Uso de Gradle Kotlin

Puede usar Gradle para declarar una dependencia en el Cliente de encriptación de Amazon
DynamoDB para Java añadiendo lo siguiente a la sección de dependencias de su proyecto de
Gradle.

implementation("software.amazon.cryptography:aws-database-encryption-sdk-
dynamodb:version-number")

Manualmente

Para instalar la biblioteca de cifrado del lado del cliente de Java para DynamoDB, clone o
descargue el repositorio -dynamodb. aws-database-encryption-sdk GitHub

Tras instalar el SDK, comience por consultar el código de ejemplo de esta guía y los ejemplos de
Java del repositorio -dynamodb de. aws-database-encryption-sdk GitHub

Java 204

https://maven.apache.org/
https://gradle.org/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Usar la biblioteca de cifrado del cliente de Java para DynamoDB

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

En este tema se explican algunas de las funciones y clases de ayuda de la versión 3.x de la
biblioteca de cifrado del cliente de Java para DynamoDB.

Para obtener más información sobre la programación con la biblioteca de cifrado del lado del cliente
de Java para DynamoDB, consulte los ejemplos de Java y los ejemplos de Java en el repositorio -
dynamodb de. aws-database-encryption-sdk GitHub

Temas

• Encriptadores de elementos

• Acciones de atributos en el SDK de cifrado AWS de bases de datos para DynamoDB

• Configuración de cifrado en el SDK de cifrado de bases de datos de AWS para DynamoDB

• Actualización de elementos con el SDK de cifrado de bases de datos AWS

• Descifrado de conjuntos firmados

Encriptadores de elementos

En esencia, el SDK de cifrado AWS de bases de datos para DynamoDB es un cifrador de elementos.
Puede utilizar la versión 3.x de la biblioteca de cifrado del cliente de Java para DynamoDB para
cifrar, firmar, verificar y descifrar los elementos de la tabla de DynamoDB de las siguientes maneras.

El cliente mejorado de DynamoDB

Puede configurar el cliente mejorado de DynamoDB con el
DynamoDbEncryptionInterceptor para cifrar y firmar automáticamente los elementos
del lado del cliente con sus solicitudes PutItem de DynamoDB. Con el cliente mejorado de
DynamoDB, puede definir las acciones de sus atributos mediante una clase de datos anotada.
Recomendamos utilizar el cliente mejorado de DynamoDB siempre que sea posible.

El cliente mejorado de DynamoDB no admite el cifrado con capacidad de búsqueda.

Java 205

https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Note

El SDK AWS de cifrado de bases de datos no admite anotaciones en atributos anidados.

API de bajo nivel de DynamoDB

Puede configurar la API de DynamoDB de bajo nivel para cifrar y firmar automáticamente los
elementos DynamoDbEncryptionInterceptor del lado del cliente con sus solicitudes de
DynamoDB. PutItem

Debe usar la API de DynamoDB de bajo nivel para utilizar el cifrado con capacidad de búsqueda.

El nivel inferior DynamoDbItemEncryptor

El nivel inferior cifra y firma o descifra y verifica DynamoDbItemEncryptor directamente
los elementos de la tabla sin llamar a DynamoDB. No realiza DynamoDB ni PutItem
solicitudesGetItem. Por ejemplo, puede usar el nivel inferior DynamoDbItemEncryptor para
descifrar y verificar directamente un elemento de DynamoDB que ya haya recuperado.

El nivel inferior DynamoDbItemEncryptor no admite el cifrado con capacidad de búsqueda.

Acciones de atributos en el SDK de cifrado AWS de bases de datos para DynamoDB

Las acciones de atributos determinan qué valores de atributo están cifrados y firmados, cuáles solo
están firmados, cuáles están firmados e incluidos en el contexto de cifrado y cuáles se ignoran.

Note

Para utilizar la acción SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT criptográfica, debe
utilizar la versión 3.3 o posterior del SDK de cifrado de AWS bases de datos. Implemente
la nueva versión en todos los lectores antes de actualizar su modelo de datos para
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT incluirla.

Si utiliza la API de DynamoDB de bajo nivel o el DynamoDbItemEncryptor nivel inferior, debe
definir manualmente las acciones de los atributos. Si usa el cliente mejorado de DynamoDB, puede
definir manualmente las acciones de sus atributos o puede usar una clase de datos anotada para
generar un. TableSchema Para simplificar el proceso de configuración, se recomienda utilizar una

Java 206

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

clase de datos anotada. Cuando utiliza una clase de datos anotada, solo tiene que modelar el objeto
una vez.

Note

Tras definir las acciones de los atributos, debe definir qué atributos se excluyen de las firmas.
Para facilitar la adición de nuevos atributos sin firmar en el futuro, recomendamos elegir un
prefijo distinto (como “:“) para identificar los atributos sin firmar. Incluya este prefijo en el
nombre del atributo para todos los atributos marcados DO_NOTHING al definir el esquema y
las acciones de atributos de DynamoDB.

Utilice una clase de datos anotada

Utilice una clase de datos anotada para especificar las acciones de sus atributos con el cliente
mejorado de DynamoDB y. DynamoDbEncryptionInterceptor El SDK de cifrado de bases
de datos de AWS para DynamoDB utiliza las anotaciones de atributo estándar de DynamoDB
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/enhanced/dynamodb/mapper/
annotations/package-summary.htmlque definen el tipo de atributo para determinar cómo proteger un
atributo. De forma predeterminada, todos los atributos están cifrados y firmados, excepto las claves
principales, que están firmadas, pero no cifradas.

Note

Para usar la acción SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT criptográfica, debe
usar la versión 3.3 o posterior del SDK de cifrado de AWS bases de datos. Implemente
la nueva versión en todos los lectores antes de actualizar su modelo de datos para
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT incluirla.

Consulte SimpleClass.java en el repositorio aws-database-encryption-sdk -dynamodb GitHub para
obtener más información sobre las anotaciones del cliente mejorado de DynamoDB.

De forma predeterminada, los atributos de la clave principal están firmados pero no cifrados
(SIGN_ONLY) y todos los demás atributos están cifrados y firmados ENCRYPT_AND_SIGN(). Si
define algún atributo comoSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, los atributos de
partición y ordenación también deben serlo. SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
Para especificar las excepciones, utilice las anotaciones de cifrado que se definen en

Java 207

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/enhanced/dynamodb/mapper/annotations/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/enhanced/dynamodb/mapper/annotations/package-summary.html
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java

AWS SDK de cifrado de bases de datos Guía para desarrolladores

la biblioteca de cifrado del cliente de Java para DynamoDB. Por ejemplo, si desea que
un atributo concreto solo esté firmado, utilice la @DynamoDbEncryptionSignOnly
anotación. Si desea que un atributo concreto se firme e incluya en el contexto de cifrado,
utilice el@DynamoDbEncryptionSignAndIncludeInEncryptionContext. Si desea
que un atributo concreto no esté firmado ni cifrado (DO_NOTHING), utilice la anotación
@DynamoDbEncryptionDoNothing.

Note

El SDK AWS de cifrado de bases de datos no admite anotaciones en atributos anidados.

En el siguiente ejemplo, se muestran las anotaciones utilizadas para definir y ENCRYPT_AND_SIGN
SIGN_ONLY DO_NOTHING atribuir acciones. Para ver un ejemplo que muestre las anotaciones
utilizadas para definirSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, consulte SimpleClass
4.java.

@DynamoDbBean
public class SimpleClass {

 private String partitionKey;
 private int sortKey;
 private String attribute1;
 private String attribute2;
 private String attribute3;

 @DynamoDbPartitionKey
 @DynamoDbAttribute(value = "partition_key")
 public String getPartitionKey() {
 return this.partitionKey;
 }

 public void setPartitionKey(String partitionKey) {
 this.partitionKey = partitionKey;
 }

 @DynamoDbSortKey
 @DynamoDbAttribute(value = "sort_key")
 public int getSortKey() {
 return this.sortKey;
 }

Java 208

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 public void setSortKey(int sortKey) {
 this.sortKey = sortKey;
 }

 public String getAttribute1() {
 return this.attribute1;
 }

 public void setAttribute1(String attribute1) {
 this.attribute1 = attribute1;
 }

 @DynamoDbEncryptionSignOnly
 public String getAttribute2() {
 return this.attribute2;
 }

 public void setAttribute2(String attribute2) {
 this.attribute2 = attribute2;
 }

 @DynamoDbEncryptionDoNothing
 public String getAttribute3() {
 return this.attribute3;
 }

 @DynamoDbAttribute(value = ":attribute3")
 public void setAttribute3(String attribute3) {
 this.attribute3 = attribute3;
 }

}

Utilice la clase de datos anotada para crearla tal y TableSchema como se muestra en el siguiente
fragmento.

final TableSchema<SimpleClass> tableSchema = TableSchema.fromBean(SimpleClass.class);

Java 209

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Defina manualmente las acciones de sus atributos

Para especificar las acciones de atributo cuando se utiliza el DynamoDBEncryptor directamente, cree
un objeto Map en el que las parejas de nombre-valor representen nombres de atributo y las acciones
especificadas.

Especifique ENCRYPT_AND_SIGN si desea cifrar y firmar un atributo. Especifique SIGN_ONLY firmar,
pero no cifrar, un atributo. Especifique si SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT desea
firmar un atributo e incluirlo en el contexto de cifrado. No se puede cifrar un atributo sin firmarlo
también. Especifique DO_NOTHING que se omita un atributo.

Los atributos de partición y ordenación deben ser uno de SIGN_ONLY los
dosSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Si define algún atributo
comoSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, los atributos de partición y ordenación
también deben serloSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Note

Para utilizar la acción SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT criptográfica, debe
utilizar la versión 3.3 o posterior del SDK de cifrado de AWS bases de datos. Implemente
la nueva versión en todos los lectores antes de actualizar su modelo de datos para
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT incluirla.

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be signed
attributeActionsOnEncrypt.put("partition_key",
 CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
// The sort attribute must be signed
attributeActionsOnEncrypt.put("sort_key",
 CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
attributeActionsOnEncrypt.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute3",
 CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
attributeActionsOnEncrypt.put(":attribute4", CryptoAction.DO_NOTHING);

Java 210

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Configuración de cifrado en el SDK de cifrado de bases de datos de AWS para DynamoDB

Al utilizar el SDK de cifrado AWS de bases de datos, debe definir explícitamente una configuración
de cifrado para la tabla de DynamoDB. Los valores necesarios en la configuración de cifrado
dependen de si ha definido las acciones de los atributos manualmente o con una clase de datos
anotada.

El siguiente fragmento define una configuración de cifrado de tablas de DynamoDB mediante el
cliente mejorado de DynamoDB y los atributos no firmados permitidos definidos por un prefijo
TableSchemadistinto.

final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .schemaOnEncrypt(tableSchema)
 // Optional: only required if you use beacons
 .search(SearchConfig.builder()
 .writeVersion(1) // MUST be 1
 .versions(beaconVersions)
 .build())
 .build());

Nombre de la tabla lógica

Un nombre de tabla lógico para la tabla de DynamoDB.

El nombre de la tabla lógica está enlazado criptográficamente a todos los datos almacenados
en la tabla para simplificar las operaciones de restauración de DynamoDB. Se recomienda
encarecidamente especificar el nombre de la tabla de DynamoDB como nombre de la tabla
lógica cuando defina por primera vez la configuración de cifrado. Debe especificar siempre el
mismo nombre de tabla lógica. Para que el descifrado se realice correctamente, el nombre de la
tabla lógica debe coincidir con el nombre especificado en el cifrado. En caso de que el nombre
de la tabla de DynamoDB cambie después de restaurar la tabla de DynamoDB a partir de una
copia de seguridad, el nombre de la tabla lógica garantiza que la operación de descifrado siga
reconociendo la tabla.

Java 211

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Atributos no firmados permitidos

Los atributos marcados DO_NOTHING en tus acciones de atributos.

Los atributos no firmados permitidos indican al cliente qué atributos están excluidos de las firmas.
El cliente asume que todos los demás atributos están incluidos en la firma. A continuación, al
descifrar un registro, el cliente determina qué atributos debe verificar y cuáles debe ignorar de los
atributos no firmados permitidos que especificó. No puede eliminar un atributo de los atributos no
firmados permitidos.

Puede definir los atributos no firmados permitidos de forma explícita mediante la creación de una
matriz que enumere todos sus DO_NOTHING atributos. También puedes especificar un prefijo
distinto al asignar un nombre a tus DO_NOTHING atributos y usar el prefijo para indicar al cliente
qué atributos no están firmados. Recomendamos encarecidamente especificar un prefijo distinto
porque simplifica el proceso de añadir un nuevo DO_NOTHING atributo en el futuro. Para obtener
más información, consulte Actualización de su modelo de datos.

Si no especifica un prefijo para todos los DO_NOTHING atributos, puede configurar una
allowedUnsignedAttributes matriz que enumere de forma explícita todos los atributos que
el cliente debería esperar que no estén firmados cuando los encuentre al descifrarlos. Solo debe
definir de forma explícita los atributos no firmados permitidos si es absolutamente necesario.

Configuración de búsqueda (opcional)

SearchConfigDefine la versión de baliza.

SearchConfigDebe especificarse para utilizar balizas firmadas o cifradas con capacidad de
búsqueda.

Conjunto de algoritmos (opcional)

El algorithmSuiteId define qué conjunto de algoritmos utiliza el SDK de cifrado de bases de
datos de AWS .

A menos que especifique explícitamente un conjunto de algoritmos alternativo, el SDK AWS
de cifrado de bases de datos utiliza el conjunto de algoritmos predeterminado. El conjunto
de algoritmos predeterminado utiliza el algoritmo AES-GCM con la derivación de claves, las
firmas digitales y el compromiso de claves. Aunque es probable que el conjunto de algoritmos
predeterminado sea adecuado para la mayoría de las aplicaciones, puede elegir un conjunto de
algoritmos alternativo. Por ejemplo, algunos modelos de confianza quedarían satisfechos con
un conjunto de algoritmos sin firmas digitales. Para obtener información sobre los conjuntos de

Java 212

AWS SDK de cifrado de bases de datos Guía para desarrolladores

algoritmos compatibles con el SDK AWS de cifrado de bases de datos, consulteConjuntos de
algoritmos compatibles en el SDK de cifrado AWS de bases de datos.

Para seleccionar el conjunto de algoritmos AES-GCM sin firmas digitales ECDSA, incluya el
siguiente fragmento en la configuración de cifrado de la tabla.

.algorithmSuiteId(
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384)

Actualización de elementos con el SDK de cifrado de bases de datos AWS

El SDK AWS de cifrado de bases de datos no admite ddb: UpdateItem para elementos cifrados
o firmados. Para actualizar un elemento cifrado o firmado, debe usar ddb:. PutItem Cuando se
especifica la misma clave principal que un elemento existente en la solicitud PutItem, el nuevo
elemento sustituye completamente al existente. También puedes usar CLOBBER para borrar y
reemplazar todos los atributos al guardar después de actualizar tus artículos.

Descifrado de conjuntos firmados

En las versiones 3.0.0 y 3.1.0 del SDK de cifrado de AWS bases de datos, si define un atributo de
tipo de conjunto comoSIGN_ONLY, los valores del conjunto se canonicalizan en el orden en que
se proporcionan. DynamoDB no mantiene el orden de los conjuntos. Como resultado, existe la
posibilidad de que se produzca un error al intentar la firma del elemento que contiene el conjunto. La
validación de firmas falla cuando los valores del conjunto se devuelven en un orden diferente al que
se proporcionaron al SDK de cifrado de AWS bases de datos, incluso si los atributos del conjunto
contienen los mismos valores.

Note

Las versiones 3.1.1 y posteriores del SDK de cifrado de AWS bases de datos canonicalizan
los valores de todos los atributos de tipo establecido, de modo que los valores se leen en el
mismo orden en que se escribieron en DynamoDB.

Si se produce un error durante la validación de la firma, la operación de descifrado también sufre un
error y devuelve el siguiente mensaje de error.

Java 213

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapperConfig.SaveBehavior.html#CLOBBER
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.SetTypes

AWS SDK de cifrado de bases de datos Guía para desarrolladores

software.amazon.cryptography.dbencryptionsdk.structuredencryption.model. StructuredEncrypti
onException: No hay ninguna etiqueta de destinatario coincidente.

Si recibe el mensaje de error anterior y cree que el elemento que está intentando descifrar incluye
un conjunto que se firmó con las versiones 3.0.0 o 3.1.0, consulte el DecryptWithPermutedirectorio
del repositorio aws-database-encryption-sdk -dynamodb-java GitHub para obtener más información
sobre cómo validar correctamente el conjunto.

Ejemplos de Java

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Los siguientes ejemplos muestran cómo utilizar la biblioteca de cifrado del cliente de Java para
DynamoDB para proteger los elementos de tabla en su aplicación. Puedes encontrar más ejemplos
(y añadir los tuyos propios) en los ejemplos de Java del repositorio aws-database-encryption-sdk -
dynamodb de. GitHub

Los siguientes ejemplos muestran cómo configurar la biblioteca de cifrado del cliente de Java para
DynamoDB en una tabla de Amazon DynamoDB nueva y sin rellenar. Si desea configurar las tablas
de Amazon DynamoDB existentes para el cifrado del cliente, consulte. Agregar la versión 3.x a una
tabla existente

Temas

• Uso del cliente mejorado de DynamoDB

• API de bajo nivel de DynamoDB

• Usando el nivel inferior DynamoDbItemEncryptor

Uso del cliente mejorado de DynamoDB

En el siguiente ejemplo, se muestra cómo utilizar el cliente mejorado de DynamoDB y el
DynamoDbEncryptionInterceptor con un conjunto de claves de AWS KMS para cifrar los
elementos de la tabla de DynamoDB como parte de las llamadas a la API de DynamoDB.

Java 214

https://github.com/aws/aws-database-encryption-sdk-dynamodb-java/tree/v3.1.1/DecryptWithPermute
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Puede utilizar cualquier conjunto de claves compatible con el cliente mejorado de DynamoDB, pero le
recomendamos que utilice uno de los anillos de AWS KMS claves siempre que sea posible.

Note

El cliente mejorado de DynamoDB no admite el cifrado con capacidad de búsqueda. Úselo
DynamoDbEncryptionInterceptor con el API de bajo nivel de DynamoDB para usar el
cifrado con capacidad de búsqueda.

Consulte el ejemplo de código completo: .java EnhancedPutGetExample

Paso 1: Crea el llavero AWS KMS

El siguiente ejemplo se utiliza CreateAwsKmsMrkMultiKeyring para crear un
AWS KMS anillo de claves con una clave KMS de cifrado simétrico. El método
CreateAwsKmsMrkMultiKeyring garantiza que el conjunto de claves maneje correctamente
las claves de una sola región y de múltiples regiones.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Paso 2: crear un esquema de tabla a partir de la clase de datos anotados

En el siguiente ejemplo, se utiliza la clase de datos anotada para crear la TableSchema.

En este ejemplo, se supone que las acciones de clase y atributo de datos anotados se definieron
mediante .java. SimpleClass Para obtener más información sobre cómo anotar las acciones de
los atributos, consulte Utilice una clase de datos anotada.

Note

El SDK AWS de cifrado de bases de datos no admite anotaciones en atributos anidados.

Java 215

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/EnhancedPutGetExample.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

Paso 3: defina qué atributos se excluyen de las firmas

En el ejemplo siguiente, se supone que todos los atributos DO_NOTHING comparten el prefijo
distinto ":" y se utiliza el prefijo para definir los atributos no firmados permitidos. El cliente asume
que cualquier nombre de atributo con el prefijo “:” está excluido de las firmas. Para obtener más
información, consulte Allowed unsigned attributes.

final String unsignedAttrPrefix = ":";

Paso 4: crear el contexto de cifrado

En el siguiente ejemplo, se define un mapa tableConfigs que representa la configuración de
cifrado de la tabla de DynamoDB.

En este ejemplo, se especifica el nombre de la tabla de DynamoDB como nombre de la tabla
lógica. Se recomienda encarecidamente especificar el nombre de la tabla de DynamoDB como
nombre de la tabla lógica cuando defina por primera vez la configuración de cifrado. Para obtener
más información, consulte Configuración de cifrado en el SDK de cifrado de bases de datos de
AWS para DynamoDB.

Note

Para utilizar balizas firmadas o cifrado con capacidad de búsqueda, también debe
incluirlos SearchConfigen la configuración de cifrado.

final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .schemaOnEncrypt(tableSchema)
 .build());

Java 216

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Paso 5: Cree la DynamoDbEncryptionInterceptor

En el siguiente ejemplo, se crea un nuevo DynamoDbEncryptionInterceptor con la
tableConfigs del Paso 4.

final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

Paso 6: Crear un nuevo cliente AWS SDK de DynamoDB

En el siguiente ejemplo, se crea un nuevo cliente AWS SDK de DynamoDB mediante
interceptor el paso 5.

final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

Paso 7: Crear el cliente mejorado de DynamoDB y crear una tabla

En el siguiente ejemplo, se crea el cliente mejorado DynamoDB mediante el cliente del SDK
DynamoDB de AWS creado en el Paso 6 y se crea una tabla con la clase de datos anotados.

final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);

Paso 8: Cifrar y guardar un elemento de la tabla

En el siguiente ejemplo, se coloca un elemento en la tabla de DynamoDB mediante el cliente
mejorado de DynamoDB. El elemento se cifra y se firma en el lado del cliente antes de enviarlo a
DynamoDB.

Java 217

AWS SDK de cifrado de bases de datos Guía para desarrolladores

final SimpleClass item = new SimpleClass();
item.setPartitionKey("EnhancedPutGetExample");
item.setSortKey(0);
item.setAttribute1("encrypt and sign me!");
item.setAttribute2("sign me!");
item.setAttribute3("ignore me!");

table.putItem(item);

API de bajo nivel de DynamoDB

En el siguiente ejemplo, se muestra cómo utilizar la API de DynamoDB de bajo nivel con un conjunto
de claves de AWS KMS para cifrar y firmar automáticamente los elementos del lado del cliente con
las solicitudes de DynamoDB de PutItem.

Puede utilizar cualquier llavero compatible, pero le recomendamos que utilice uno de los AWS KMS
llaveros siempre que sea posible.

Consulta el ejemplo de código completo: .java BasicPutGetExample

Paso 1: Crea el llavero AWS KMS

El siguiente ejemplo se utiliza CreateAwsKmsMrkMultiKeyring para crear un
AWS KMS anillo de claves con una clave KMS de cifrado simétrico. El método
CreateAwsKmsMrkMultiKeyring garantiza que el conjunto de claves maneje correctamente
las claves de una sola región y de múltiples regiones.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Paso 2: configurar las acciones de sus atributos

En el siguiente ejemplo, se define un mapa attributeActionsOnEncrypt que representa
ejemplos de acciones de atributos para un elemento de la tabla.

Java 218

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/BasicPutGetExample.java

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Note

En el siguiente ejemplo no se define ningún atributo como.
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Si especifica algún
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo, los atributos de partición y
ordenación también deben serloSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("partition_key", CryptoAction.SIGN_ONLY);
// The sort attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("sort_key", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put(":attribute3", CryptoAction.DO_NOTHING);

Paso 3: defina qué atributos se excluyen de las firmas

En el ejemplo siguiente, se supone que todos los atributos DO_NOTHING comparten el prefijo
distinto ":" y se utiliza el prefijo para definir los atributos no firmados permitidos. El cliente asume
que cualquier nombre de atributo con el prefijo “:” está excluido de las firmas. Para obtener más
información, consulte Allowed unsigned attributes.

final String unsignedAttrPrefix = ":";

Paso 4: definir la configuración de cifrado de la tabla de DynamoDB

El siguiente ejemplo define un mapa tableConfigs que representa la configuración de cifrado
de esta tabla de DynamoDB.

En este ejemplo, se especifica el nombre de la tabla de DynamoDB como nombre de la tabla
lógica. Se recomienda encarecidamente especificar el nombre de la tabla de DynamoDB como
nombre de la tabla lógica cuando defina por primera vez la configuración de cifrado. Para obtener
más información, consulte Configuración de cifrado en el SDK de cifrado de bases de datos de
AWS para DynamoDB.

Java 219

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Note

Para utilizar balizas firmadas o cifrado con capacidad de búsqueda, también debe incluir
SearchConfig en la configuración de cifrado.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .attributeActionsOnEncrypt(attributeActionsOnEncrypt)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .build();
tableConfigs.put(ddbTableName, config);

Paso 5: Crear el DynamoDbEncryptionInterceptor

En el siguiente ejemplo, se crea el DynamoDbEncryptionInterceptor con la tableConfigs
del Paso 4.

DynamoDbEncryptionInterceptor interceptor = DynamoDbEncryptionInterceptor.builder()
 .config(DynamoDbTablesEncryptionConfig.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build())
 .build();

Paso 6: Crear un nuevo cliente AWS SDK de DynamoDB

En el siguiente ejemplo, se crea un nuevo cliente AWS SDK de DynamoDB mediante
interceptor el paso 5.

final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

Java 220

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Paso 7: Cifrar y firmar un elemento de la tabla de DynamoDB

En el siguiente ejemplo, se define un mapa item que representa un elemento de tabla de
ejemplo y se coloca el elemento en la tabla de DynamoDB. El elemento se cifra y se firma en el
lado del cliente antes de enviarlo a DynamoDB.

final HashMap<String, AttributeValue> item = new HashMap<>();
item.put("partition_key", AttributeValue.builder().s("BasicPutGetExample").build());
item.put("sort_key", AttributeValue.builder().n("0").build());
item.put("attribute1", AttributeValue.builder().s("encrypt and sign me!").build());
item.put("attribute2", AttributeValue.builder().s("sign me!").build());
item.put(":attribute3", AttributeValue.builder().s("ignore me!").build());

final PutItemRequest putRequest = PutItemRequest.builder()
 .tableName(ddbTableName)
 .item(item)
 .build();

final PutItemResponse putResponse = ddb.putItem(putRequest);

Usando el nivel inferior DynamoDbItemEncryptor

En el siguiente ejemplo, se muestra cómo utilizar el nivel inferior DynamoDbItemEncryptor con
un conjunto de claves de AWS KMS para cifrar y firmar directamente los elementos de la tabla.
DynamoDbItemEncryptor No coloca el elemento en la tabla de DynamoDB.

Puede utilizar cualquier conjunto de claves compatible con el cliente mejorado de DynamoDB, pero le
recomendamos que utilice uno de los anillos de AWS KMS claves siempre que sea posible.

Note

El nivel inferior DynamoDbItemEncryptor no admite el cifrado con capacidad de búsqueda.
Úselo DynamoDbEncryptionInterceptor con el API de bajo nivel de DynamoDB para
usar el cifrado con capacidad de búsqueda.

Consulte el ejemplo de código completo: .java ItemEncryptDecryptExample

Java 221

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/itemencryptor/ItemEncryptDecryptExample.java

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Paso 1: Crea el llavero AWS KMS

El siguiente ejemplo se utiliza CreateAwsKmsMrkMultiKeyring para crear un
AWS KMS anillo de claves con una clave KMS de cifrado simétrico. El método
CreateAwsKmsMrkMultiKeyring garantiza que el conjunto de claves maneje correctamente
las claves de una sola región y de múltiples regiones.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Paso 2: configurar las acciones de sus atributos

En el siguiente ejemplo, se define un mapa attributeActionsOnEncrypt que representa
ejemplos de acciones de atributos para un elemento de la tabla.

Note

En el siguiente ejemplo no se define ningún atributo como.
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Si especifica algún
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo, los atributos de partición y
ordenación también deben serloSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("partition_key", CryptoAction.SIGN_ONLY);
// The sort attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("sort_key", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put(":attribute3", CryptoAction.DO_NOTHING);

Java 222

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Paso 3: defina qué atributos se excluyen de las firmas

En el ejemplo siguiente, se supone que todos los atributos DO_NOTHING comparten el prefijo
distinto ":" y se utiliza el prefijo para definir los atributos no firmados permitidos. El cliente asume
que cualquier nombre de atributo con el prefijo “:” está excluido de las firmas. Para obtener más
información, consulte Allowed unsigned attributes.

final String unsignedAttrPrefix = ":";

Paso 4: defina la configuración de DynamoDbItemEncryptor

En el siguiente ejemplo, se consulta la configuración de DynamoDbItemEncryptor.

En este ejemplo, se especifica el nombre de la tabla de DynamoDB como nombre de la tabla
lógica. Se recomienda encarecidamente especificar el nombre de la tabla de DynamoDB como
nombre de la tabla lógica cuando defina por primera vez la configuración de cifrado. Para obtener
más información, consulte Configuración de cifrado en el SDK de cifrado de bases de datos de
AWS para DynamoDB.

final DynamoDbItemEncryptorConfig config = DynamoDbItemEncryptorConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .attributeActionsOnEncrypt(attributeActionsOnEncrypt)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .build();

Paso 5: Crear el DynamoDbItemEncryptor

En el siguiente ejemplo, se crea un nuevo DynamoDbItemEncryptor, con la config del Paso
4.

final DynamoDbItemEncryptor itemEncryptor = DynamoDbItemEncryptor.builder()
 .DynamoDbItemEncryptorConfig(config)
 .build();

Java 223

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Paso 6: cifrar y firmar directamente un elemento de la tabla

En el siguiente ejemplo, se cifra y firma directamente un elemento mediante el
DynamoDbItemEncryptor. DynamoDbItemEncryptor no coloca el elemento en la tabla de
DynamoDB.

final Map<String, AttributeValue> originalItem = new HashMap<>();
originalItem.put("partition_key",
 AttributeValue.builder().s("ItemEncryptDecryptExample").build());
originalItem.put("sort_key", AttributeValue.builder().n("0").build());
originalItem.put("attribute1", AttributeValue.builder().s("encrypt and sign
 me!").build());
originalItem.put("attribute2", AttributeValue.builder().s("sign me!").build());
originalItem.put(":attribute3", AttributeValue.builder().s("ignore me!").build());

final Map<String, AttributeValue> encryptedItem = itemEncryptor.EncryptItem(
 EncryptItemInput.builder()
 .plaintextItem(originalItem)
 .build()
).encryptedItem();

Configurar una tabla de DynamoDB existente para usar AWS el SDK de cifrado de
bases de datos para DynamoDB

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de bases de datos. AWS En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Con la versión 3.x de la biblioteca de cifrado del cliente de Java para DynamoDB, puede configurar
las tablas de Amazon DynamoDB existentes para el cifrado del cliente. En este tema se proporcionan
instrucciones sobre los tres pasos que debe seguir para añadir la versión 3.x a una tabla de
DynamoDB existente y rellenada.

Requisitos previos

Versión 3.x de la biblioteca de cifrado del cliente de Java para DynamoDB requiere el cliente
mejorado de DynamoDB incluido en AWS SDK for Java 2.x . Si aún usa Dynamo DBMapper, debe
migrar AWS SDK for Java 2.x para usar DynamoDB Enhanced Client.

Java 224

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Siga las instrucciones para migrar de la versión 1.x a la 2.x de AWS SDK para Java.

A continuación, siga las instrucciones para empezar a utilizar la API de cliente mejorada de
DynamoDB.

Antes de configurar la tabla para que utilice la biblioteca de cifrado del cliente de Java para
DynamoDB, debe generar una TableSchemamediante una clase de datos anotada y crear un cliente
mejorado.

Paso 1: prepararse para leer y escribir elementos cifrados

Complete los siguientes pasos para preparar su cliente del SDK de cifrado AWS de bases de
datos para leer y escribir elementos cifrados. Tras implementar los siguientes cambios, el cliente
seguirá leyendo y escribiendo elementos de texto no cifrado. No cifrará ni firmará ningún elemento
nuevo escrito en la tabla, pero podrá descifrar los elementos cifrados en cuanto aparezcan. Estos
cambios preparan al cliente para empezar a cifrar nuevos elementos. Los siguientes cambios deben
implementarse en cada lector antes de continuar con el siguiente paso.

1. Defina las acciones de sus atributos

Actualice la clase de datos anotada para incluir acciones de atributos que definan qué valores de
atributo se cifrarán y firmarán, cuáles solo se firmarán y cuáles se ignorarán.

Consulte el SimpleClassarchivo.java en el repositorio aws-database-encryption-sdk -dynamodb
GitHub para obtener más información sobre las anotaciones del cliente mejorado de DynamoDB.

De forma predeterminada, los atributos de la clave principal están firmados pero no cifrados
(SIGN_ONLY) y todos los demás atributos están cifrados y firmados ENCRYPT_AND_SIGN(). Para
especificar las excepciones, utiliza las anotaciones de cifrado que se definen en la biblioteca
de cifrado del cliente de Java para DynamoDB. Por ejemplo, si desea que un atributo concreto
sea de solo firmar, utilice únicamente la anotación @DynamoDbEncryptionSignOnly.
Si desea que un atributo concreto se firme e incluya en el contexto de cifrado, utilice la
anotación. @DynamoDbEncryptionSignAndIncludeInEncryptionContext Si desea
que un atributo concreto no esté firmado ni cifrado (DO_NOTHING), utilice la anotación
@DynamoDbEncryptionDoNothing.

Note

Si especifica algún SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
atributo, los atributos de partición y ordenación también deben

Java 225

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java

AWS SDK de cifrado de bases de datos Guía para desarrolladores

serloSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Para
ver un ejemplo que muestre las anotaciones utilizadas para
definirSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, consulte SimpleClass4.java.

Para ver anotaciones de ejemplo, consulte Utilice una clase de datos anotada.

2. Defina qué atributos se excluirán de las firmas

En el ejemplo siguiente, se supone que todos los atributos DO_NOTHING comparten el prefijo
distinto ":" y se utiliza el prefijo para definir los atributos no firmados permitidos. El cliente
asumirá que cualquier nombre de atributo con el prefijo ":" está excluido de las firmas. Para
obtener más información, consulte Allowed unsigned attributes.

final String unsignedAttrPrefix = ":";

3. Cree un conjunto de claves

El siguiente ejemplo crea un conjunto de claves de AWS KMS. El AWS KMS anillo de claves
utiliza un cifrado simétrico o un RSA asimétrico AWS KMS keys para generar, cifrar y descifrar las
claves de datos.

En este ejemplo, se utiliza CreateMrkMultiKeyring para crear un conjunto de claves de AWS
KMS con una clave de KMS de cifrado simétrico. El método CreateAwsKmsMrkMultiKeyring
garantiza que el conjunto de claves maneje correctamente las claves de una sola región y de
múltiples regiones.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

4. Definir la configuración de cifrado de la tabla de DynamoDB

El siguiente ejemplo define un mapa tableConfigs que representa la configuración de cifrado
de esta tabla de DynamoDB.

Java 226

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS SDK de cifrado de bases de datos Guía para desarrolladores

En este ejemplo, se especifica el nombre de la tabla de DynamoDB como nombre de la tabla
lógica. Se recomienda encarecidamente especificar el nombre de la tabla de DynamoDB como
nombre de la tabla lógica cuando defina por primera vez la configuración de cifrado. Para obtener
más información, consulte Configuración de cifrado en el SDK de cifrado de bases de datos de
AWS para DynamoDB.

Debe especificarlo FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT como modificación
de texto no cifrado. Esta política sigue leyendo y escribiendo elementos de texto no cifrado, lee
los elementos cifrados y prepara al cliente para escribir elementos cifrados.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .schemaOnEncrypt(tableSchema)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)

 .plaintextOverride(PlaintextOverride.FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT)
 .build();
tableConfigs.put(ddbTableName, config);

5. Crear el DynamoDbEncryptionInterceptor

En el siguiente ejemplo, se crea el DynamoDbEncryptionInterceptor con la misma
tableConfigs del Paso 3.

DynamoDbEncryptionInterceptor interceptor = DynamoDbEncryptionInterceptor.builder()
 .config(DynamoDbTablesEncryptionConfig.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build())
 .build();

Paso 2: escribir elementos cifrados y firmados

Actualice la política de texto no cifrado de su DynamoDbEncryptionInterceptor configuración
para permitir que el cliente escriba elementos cifrados y firmados. Tras implementar el siguiente
cambio, el cliente cifrará y firmará los nuevos elementos en función de las acciones de atributos

Java 227

AWS SDK de cifrado de bases de datos Guía para desarrolladores

que configuró en el paso 1. El cliente podrá leer los elementos en texto no cifrado y los elementos
cifrados y firmados.

Antes de continuar con el Paso 3, debe cifrar y firmar todos los elementos de texto no cifrado
existentes en la tabla. No existe una métrica o consulta única que pueda ejecutar para cifrar
rápidamente los elementos de texto no cifrado existentes. Utilice el proceso que mejor se adapte
a su sistema. Por ejemplo, puede utilizar un proceso asíncrono que escanee lentamente la tabla y
reescriba los elementos mediante las acciones de los atributos y la configuración de cifrado que haya
definido. Para identificar los elementos de texto sin formato de la tabla, se recomienda buscar todos
los elementos que no contengan los aws_dbe_foot atributos que el SDK de cifrado de AWS bases
de datos agrega a los elementos cuando están cifrados aws_dbe_head y firmados.

En el siguiente ejemplo, se actualiza la configuración de cifrado de la tabla
desde el paso 1. Debe actualizar la anulación de texto no cifrado con
FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT. Esta política sigue leyendo los
elementos de texto no cifrado, pero también lee y escribe los elementos cifrados. Cree una nueva
DynamoDbEncryptionInterceptor con la actualizacióntableConfigs.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .schemaOnEncrypt(tableSchema)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)

 .plaintextOverride(PlaintextOverride.FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT)
 .build();
tableConfigs.put(ddbTableName, config);

Paso 3: Lee solo los elementos cifrados y firmados

Una vez cifrados y firmados todos los elementos, actualice la modificación del texto no cifrado de la
DynamoDbEncryptionInterceptor configuración para que el cliente solo pueda leer y escribir
los elementos cifrados y firmados. Tras implementar el siguiente cambio, el cliente cifrará y firmará
los nuevos elementos en función de las acciones de atributos que configuró en el paso 1. El cliente
solo podrá leer los elementos cifrados y firmados.

Java 228

AWS SDK de cifrado de bases de datos Guía para desarrolladores

El siguiente ejemplo actualiza la configuración de cifrado de la tabla
desde el paso 2. Puede actualizar la anulación de texto no cifrado con
FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT o eliminar la política de texto
no cifrado de su configuración. De forma predeterminada, el cliente solo lee y escribe los
elementos cifrados y firmados. Cree una nueva DynamoDbEncryptionInterceptor con la
actualizacióntableConfigs.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .schemaOnEncrypt(tableSchema)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 // Optional: you can also remove the plaintext policy from your configuration

 .plaintextOverride(PlaintextOverride.FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT)
 .build();
tableConfigs.put(ddbTableName, config);

Migre a la versión 3.x de la biblioteca de cifrado del cliente de Java para DynamoDB

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

Versión 3.x de la biblioteca de cifrado del cliente de Java para DynamoDB es una importante
reescritura de la base de código 2.x. Incluye numerosas actualizaciones, como un nuevo formato de
datos estructurados, una compatibilidad mejorada de multitenencia, cambios de esquema fluidos y
compatibilidad con el cifrado para búsquedas. En este tema se proporciona orientación sobre cómo
migrar el código a la versión 3.x.

Migración de la versión 1.x a la versión 2.x

Migre a la versión 2.x antes de migrar a la versión 3.x. Versión 2. x cambió el símbolo del
proveedor más reciente de MostRecentProvider aCachingMostRecentProvider. Si
actualmente usa la versión 1. x de la biblioteca de cifrado del cliente de Java para DynamoDB

Java 229

AWS SDK de cifrado de bases de datos Guía para desarrolladores

con el MostRecentProvider símbolo, debe actualizar el nombre del símbolo en el código a.
CachingMostRecentProvider Para obtener más información, consulte Actualizaciones del
proveedor más reciente.

Migración de la versión 2.x a la versión 3.x

En los siguientes procedimientos se describe cómo migrar el código desde la versión 2.x a la versión
3.x de la biblioteca de cifrado del cliente de Java para DynamoDB.

Paso 1. Prepárese para leer los elementos en el nuevo formato

Complete los siguientes pasos para preparar su cliente del SDK AWS de cifrado de bases de
datos para leer los elementos en el nuevo formato. Tras implementar los siguientes cambios, el
cliente seguirá comportándose del mismo modo que en la versión 2. x. Su cliente seguirá leyendo y
escribiendo los elementos de la versión 2. formato x, pero estos cambios preparan al cliente para leer
los elementos en el nuevo formato.

Actualice su versión AWS SDK para Java a la 2.x

Versión 3.x de la biblioteca de cifrado del cliente de Java para DynamoDB requiere el cliente
mejorado de DynamoDB. El cliente mejorado de DynamoDB reemplaza al DBMapper Dynamo
utilizado en versiones anteriores. Para usar el cliente mejorado, debe usar el. AWS SDK for Java
2.x

Siga las instrucciones para migrar de la versión 1.x a la 2.x de AWS SDK para Java.

Para obtener más información sobre los AWS SDK for Java 2.x módulos necesarios, consulte.
Requisitos previos

Configure su cliente para que lea los elementos cifrados por las versiones antiguas

Los siguientes procedimientos proporcionan una descripción general de los pasos que se
muestran en el siguiente ejemplo de código.

1. Cree un conjunto de claves.

Los administradores de conjunto de claves y materiales criptográficos sustituyen a los
proveedores de materiales criptográficos utilizados en las versiones anteriores de la
biblioteca de cifrado del cliente de Java para DynamoDB.

Java 230

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Important

Las claves de encapsulación que especifique al crear un conjunto de claves deben
ser las mismas claves de encapsulación que utilizó con su proveedor de materiales
criptográficos en la versión 2. x.

2. Crea un esquema de tabla sobre tu clase anotada.

En este paso se definen las acciones de atributos que se utilizarán cuando comience a
escribir elementos en el nuevo formato.

Para obtener instrucciones sobre el uso del nuevo cliente mejorado de DynamoDB, consulte
Generar un TableSchema en la Guía para desarrolladores de AWS SDK para Java .

En el siguiente ejemplo, se supone que actualizó la clase anotada a partir de la versión 2.x
utilizando las nuevas anotaciones de acciones de atributos. Para obtener más información
sobre cómo anotar las acciones de los atributos, consulte Utilice una clase de datos anotada.

Note

Si especifica algún SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
atributo, los atributos de partición y ordenación también deben
serloSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Para
ver un ejemplo que muestre las anotaciones utilizadas para
definirSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, consulte
SimpleClass4.java.

3. Defina qué atributos se excluyen de la firma.

4. Configure un mapa explícito de las acciones de los atributos configuradas en su clase
modelada de la versión 2.x.

En este paso, se definen las acciones de atributo utilizadas para escribir los elementos en el
formato anterior.

5. Configure el DynamoDBEncryptor que utilizó en la versión 2. x de la biblioteca de cifrado
del cliente de Java para DynamoDB.

6. Configure el comportamiento heredado.

7. Crear una DynamoDbEncryptionInterceptor.

Java 231

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS SDK de cifrado de bases de datos Guía para desarrolladores

8. Cree un nuevo cliente AWS SDK de DynamoDB.

9. Cree el DynamoDBEnhancedClient y cree una tabla con su clase modelada.

Para obtener más información sobre el cliente mejorado de DynamoDB, consulte crear un
cliente mejorado.

public class MigrationExampleStep1 {

 public static void MigrationStep1(String kmsKeyId, String ddbTableName, int
 sortReadValue) {
 // 1. Create a Keyring.
 // This example creates an AWS KMS Keyring that specifies the
 // same kmsKeyId previously used in the version 2.x configuration.
 // It uses the 'CreateMrkMultiKeyring' method to create the
 // keyring, so that the keyring can correctly handle both single
 // region and Multi-Region KMS Keys.
 // Note that this example uses the AWS SDK for Java v2 KMS client.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
 final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

 // 2. Create a Table Schema over your annotated class.
 // For guidance on using the new attribute actions
 // annotations, see SimpleClass.java in the
 // aws-database-encryption-sdk-dynamodb GitHub repository.
 // All primary key attributes must be signed but not encrypted
 // and by default all non-primary key attributes
 // are encrypted and signed (ENCRYPT_AND_SIGN).
 // If you want a particular non-primary key attribute to be signed but
 // not encrypted, use the 'DynamoDbEncryptionSignOnly' annotation.
 // If you want a particular attribute to be neither signed nor encrypted
 // (DO_NOTHING), use the 'DynamoDbEncryptionDoNothing' annotation.
 final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

 // 3. Define which attributes the client should expect to be excluded
 // from the signature when reading items.

Java 232

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 // This value represents all unsigned attributes across the entire
 // dataset.
 final List<String> allowedUnsignedAttributes = Arrays.asList("attribute3");

 // 4. Configure an explicit map of the attribute actions configured
 // in your version 2.x modeled class.
 final Map<String, CryptoAction> legacyActions = new HashMap<>();
 legacyActions.put("partition_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("sort_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
 legacyActions.put("attribute2", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute3", CryptoAction.DO_NOTHING);

 // 5. Configure the DynamoDBEncryptor that you used in version 2.x.
 final AWSKMS kmsClient = AWSKMSClientBuilder.defaultClient();
 final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kmsClient,
 kmsKeyId);
 final DynamoDBEncryptor oldEncryptor = DynamoDBEncryptor.getInstance(cmp);

 // 6. Configure the legacy behavior.
 // Input the DynamoDBEncryptor and attribute actions created in
 // the previous steps. For Legacy Policy, use
 // 'FORCE_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT'. This policy continues to
 read
 // and write items using the old format, but will be able to read
 // items written in the new format as soon as they appear.
 final LegacyOverride legacyOverride = LegacyOverride
 .builder()
 .encryptor(oldEncryptor)
 .policy(LegacyPolicy.FORCE_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT)
 .attributeActionsOnEncrypt(legacyActions)
 .build();

 // 7. Create a DynamoDbEncryptionInterceptor with the above configuration.
 final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
 tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributes(allowedUnsignedAttributes)
 .schemaOnEncrypt(tableSchema)
 .legacyOverride(legacyOverride)
 .build());

Java 233

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

 // 8. Create a new AWS SDK DynamoDb client using the
 // interceptor from Step 7.
 final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

 // 9. Create the DynamoDbEnhancedClient using the AWS SDK DynamoDb client
 // created in Step 8, and create a table with your modeled class.
 final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
 final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);
 }
}

Paso 2. Escriba los elementos en el nuevo formato

Una vez implementados los cambios del paso 1 en todos los lectores, complete los siguientes pasos
para configurar su cliente del SDK de cifrado de AWS bases de datos para escribir elementos en el
nuevo formato. Tras implementar los siguientes cambios, el cliente seguirá leyendo los elementos en
el formato anterior y empezará a escribir y leer los elementos en el nuevo formato.

Los siguientes procedimientos proporcionan una descripción general de los pasos que se muestran
en el siguiente ejemplo de código.

1. Siga configurando el conjunto de claves, el esquema de la tabla, las acciones de los atributos
heredados, allowedUnsignedAttributes y DynamoDBEncryptor tal y como hizo en el
Paso 1.

2. Actualice su comportamiento anterior para escribir solo elementos nuevos con el nuevo formato.

3. Crear una DynamoDbEncryptionInterceptor

Java 234

AWS SDK de cifrado de bases de datos Guía para desarrolladores

4. Cree un nuevo cliente AWS SDK de DynamoDB.

5. Cree el DynamoDBEnhancedClient y cree una tabla con su clase modelada.

Para obtener más información sobre el cliente mejorado de DynamoDB, consulte Create an
enhanced client.

public class MigrationExampleStep2 {

 public static void MigrationStep2(String kmsKeyId, String ddbTableName, int
 sortReadValue) {
 // 1. Continue to configure your keyring, table schema, legacy
 // attribute actions, allowedUnsignedAttributes, and
 // DynamoDBEncryptor as you did in Step 1.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
 final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

 final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

 final List<String> allowedUnsignedAttributes = Arrays.asList("attribute3");

 final Map<String, CryptoAction> legacyActions = new HashMap<>();
 legacyActions.put("partition_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("sort_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
 legacyActions.put("attribute2", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute3", CryptoAction.DO_NOTHING);

 final AWSKMS kmsClient = AWSKMSClientBuilder.defaultClient();
 final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kmsClient,
 kmsKeyId);
 final DynamoDBEncryptor oldEncryptor = DynamoDBEncryptor.getInstance(cmp);

 // 2. Update your legacy behavior to only write new items using the new
 // format.

Java 235

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 // For Legacy Policy, use 'FORBID_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT'. This
 policy
 // continues to read items in both formats, but will only write items
 // using the new format.
 final LegacyOverride legacyOverride = LegacyOverride
 .builder()
 .encryptor(oldEncryptor)
 .policy(LegacyPolicy.FORBID_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT)
 .attributeActionsOnEncrypt(legacyActions)
 .build();

 // 3. Create a DynamoDbEncryptionInterceptor with the above configuration.
 final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
 tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributes(allowedUnsignedAttributes)
 .schemaOnEncrypt(tableSchema)
 .legacyOverride(legacyOverride)
 .build());
 final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

 // 4. Create a new AWS SDK DynamoDb client using the
 // interceptor from Step 3.
 final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

 // 5. Create the DynamoDbEnhancedClient using the AWS SDK DynamoDb Client
 created
 // in Step 4, and create a table with your modeled class.
 final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();

Java 236

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);
 }
}

Tras implementar los cambios del paso 2, debe volver a cifrar todos los elementos antiguos de la
tabla con el nuevo formato para poder continuar con el Paso 3. No hay una única métrica o consulta
que puedas ejecutar para cifrar rápidamente los elementos existentes. Utilice el proceso que mejor
se adapte a su sistema. Por ejemplo, podría utilizar un proceso asíncrono que escanee lentamente la
tabla y reescriba los elementos utilizando las nuevas acciones de atributo y la nueva configuración de
cifrado que haya definido.

Paso 3. Lea y escriba únicamente los elementos en el nuevo formato

Tras volver a cifrar todos los elementos de la tabla con el nuevo formato, puede eliminar el
comportamiento anterior de la configuración. Siga los pasos que se indican a continuación para
configurar el cliente para que solo lea y escriba los elementos en el nuevo formato.

Los siguientes procedimientos proporcionan una descripción general de los pasos que se muestran
en el siguiente ejemplo de código.

1. Continúe configurando el conjunto de claves, el esquema de la tabla y
allowedUnsignedAttributes tal como lo hizo en el Paso 1. Elimine las acciones y acciones
de los atributos heredados DynamoDBEncryptor de su configuración.

2. Creación de una DynamoDbEncryptionInterceptor.

3. Cree un nuevo cliente AWS SDK de DynamoDB.

4. Cree el DynamoDBEnhancedClient y cree una tabla con su clase modelada.

Para obtener más información sobre el cliente mejorado de DynamoDB, consulte Create an
enhanced client.

public class MigrationExampleStep3 {

 public static void MigrationStep3(String kmsKeyId, String ddbTableName, int
 sortReadValue) {
 // 1. Continue to configure your keyring, table schema,
 // and allowedUnsignedAttributes as you did in Step 1.
 // Do not include the configurations for the DynamoDBEncryptor or
 // the legacy attribute actions.

Java 237

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
 final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

 final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

 final List<String> allowedUnsignedAttributes = Arrays.asList("attribute3");

 // 3. Create a DynamoDbEncryptionInterceptor with the above configuration.
 // Do not configure any legacy behavior.
 final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
 tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributes(allowedUnsignedAttributes)
 .schemaOnEncrypt(tableSchema)
 .build());
 final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

 // 4. Create a new AWS SDK DynamoDb client using the
 // interceptor from Step 3.
 final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

 // 5. Create the DynamoDbEnhancedClient using the AWS SDK Client
 // created in Step 4, and create a table with your modeled class.

Java 238

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
 final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);
 }
}

.NET

En este tema se explica cómo instalar y usar la versión 3. x de la biblioteca de cifrado del lado del
cliente.NET para DynamoDB. Para obtener más información sobre la programación con el SDK AWS
de cifrado de bases de datos para DynamoDB, consulte los ejemplos de.NET en el repositorio -
dynamodb en aws-database-encryption-sdk. GitHub

La biblioteca de cifrado del lado del cliente.NET para DynamoDB es para desarrolladores que
escriben aplicaciones en C# y otros lenguajes de programación.NET. Es compatible con Windows,
macOS y Linux.

Todas las implementaciones de lenguajes de programación del SDK de cifrado de AWS bases de
datos para DynamoDB son interoperables. Sin embargo, no SDK para .NET admite valores vacíos
para los tipos de datos de listas o mapas. Esto significa que si utiliza la biblioteca de cifrado del lado
del cliente de Java para DynamoDB para escribir un elemento que contenga valores vacíos para
un tipo de datos de lista o mapa, no podrá descifrar ni leer ese elemento mediante la biblioteca de
cifrado del lado del cliente .NET para DynamoDB.

Temas

• Instalación de la biblioteca de cifrado del lado del cliente.NET para DynamoDB

• Depuración con .NET

• Uso de la biblioteca de cifrado del lado del cliente.NET para DynamoDB

• Ejemplos de.NET

• Configurar una tabla de DynamoDB existente para usar el SDK de cifrado de bases de datos de
AWS para DynamoDB

Instalación de la biblioteca de cifrado del lado del cliente.NET para DynamoDB

La biblioteca de cifrado del lado del cliente .NET para DynamoDB está disponible como
AWS.Cryptography. DbEncryptionSDK. DynamoDbpaquete en NuGet. Para obtener más información

.NET 239

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/
https://www.nuget.org/packages/AWS.Cryptography.DbEncryptionSDK.DynamoDb/
https://www.nuget.org/packages/AWS.Cryptography.DbEncryptionSDK.DynamoDb/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

sobre la instalación y creación de la biblioteca, consulte el archivo.NET README.md en el aws-
database-encryption-sdk repositorio -dynamodb. La biblioteca de cifrado del lado del cliente.NET
para DynamoDB requiere las claves « SDK para .NET incluso si no se utilizan» (). AWS Key
Management Service AWS KMS SDK para .NET Se instala con el paquete. NuGet

Versión 3. x de la biblioteca de cifrado del lado del cliente .NET para DynamoDB es compatible
con .NET 6.0 y .NET Framework net48 y versiones posteriores.

Depuración con .NET

La biblioteca de cifrado del lado del cliente.NET para DynamoDB no genera ningún registro. Las
excepciones de la biblioteca de cifrado del lado del cliente de.NET para DynamoDB generan un
mensaje de excepción, pero no se rastrean las pilas.

Para ayudarle a depurar, asegúrese de activar el inicio de sesión en la SDK para .NET. Los registros
y los mensajes de error de SDK para .NET pueden ayudarle a distinguir los errores que se producen
en la biblioteca SDK para .NET de cifrado del lado del cliente de.NET para DynamoDB. Para obtener
ayuda con el SDK para .NET registro, consulte la Guía para desarrolladores AWSLogging.AWS
SDK para .NET (Para ver el tema, amplíe la sección Abrir para ver la sección de contenido de .NET
Framework).

Uso de la biblioteca de cifrado del lado del cliente.NET para DynamoDB

En este tema se explican algunas de las funciones y clases auxiliares de la versión 3. x de la
biblioteca de cifrado del lado del cliente.NET para DynamoDB.

Para obtener más información sobre la programación con la biblioteca de cifrado del lado del
cliente .NET para DynamoDB, consulte los ejemplos de.NET en el repositorio -dynamodb de. aws-
database-encryption-sdk GitHub

Temas

• Encriptadores de elementos

• Acciones de atributos en el SDK de cifrado de bases de datos de AWS para DynamoDB

• Configuración de cifrado en el SDK de cifrado de bases de datos de AWS para DynamoDB

• Actualización de elementos con el SDK de cifrado de bases de datos AWS

.NET 240

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/DynamoDbEncryption/runtimes/net/README.md
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-config-other.html#config-setting-awslogging
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Encriptadores de elementos

En esencia, el SDK de cifrado AWS de bases de datos para DynamoDB es un cifrador de elementos.
Puede utilizar la versión 3. x de la biblioteca de cifrado del lado del cliente .NET para que DynamoDB
cifre, firme, verifique y descifre los elementos de la tabla de DynamoDB de las siguientes maneras.

El SDK de cifrado de AWS bases de datos de bajo nivel para la API de DynamoDB

Puede usar la configuración de cifrado de tablas para crear un cliente de DynamoDB que cifre
y firme automáticamente los elementos del lado del cliente con sus solicitudes de DynamoDB.
PutItem Puede usar este cliente directamente o puede crear un modelo de documento o un
modelo de persistencia de objetos.

Debe usar el SDK de cifrado de AWS bases de datos de bajo nivel para la API de DynamoDB
para utilizar el cifrado con capacidad de búsqueda.

El nivel inferior DynamoDbItemEncryptor

El nivel inferior cifra y firma o descifra y verifica DynamoDbItemEncryptor directamente
los elementos de la tabla sin llamar a DynamoDB. No realiza DynamoDB ni PutItem
solicitudesGetItem. Por ejemplo, puede usar el nivel inferior DynamoDbItemEncryptor
para descifrar y verificar directamente un elemento de DynamoDB que ya haya recuperado.
Si utiliza el nivel inferiorDynamoDbItemEncryptor, le recomendamos que utilice el modelo
de programación de bajo nivel que SDK para .NET proporciona para la comunicación con
DynamoDB.

El nivel inferior DynamoDbItemEncryptor no admite el cifrado con capacidad de búsqueda.

Acciones de atributos en el SDK de cifrado de bases de datos de AWS para DynamoDB

Las acciones de atributos determinan qué valores de atributo están cifrados y firmados, cuáles solo
están firmados, cuáles están firmados e incluidos en el contexto de cifrado y cuáles se ignoran.

Para especificar las acciones de los atributos con el cliente .NET, defina manualmente las acciones
de los atributos mediante un modelo de objetos. Especifique las acciones de los atributos creando un
Dictionary objeto en el que los pares nombre-valor representen los nombres de los atributos y las
acciones especificadas.

Especifique ENCRYPT_AND_SIGN si desea cifrar y firmar un atributo. Especifique SIGN_ONLY firmar,
pero no cifrar, un atributo. Especifique si SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT desea

.NET 241

https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-object-persistence
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-document
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-object-persistence
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-document
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-low-level
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-low-level

AWS SDK de cifrado de bases de datos Guía para desarrolladores

firmar un atributo e incluirlo en el contexto de cifrado. No se puede cifrar un atributo sin firmarlo
también. Especifique DO_NOTHING que se omita un atributo.

Los atributos de partición y ordenación deben ser uno de SIGN_ONLY los
dosSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Si define algún atributo
comoSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, los atributos de partición y ordenación
también deben serloSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Note

Tras definir las acciones de los atributos, debe definir qué atributos se excluyen de las firmas.
Para facilitar la adición de nuevos atributos sin firmar en el futuro, recomendamos elegir un
prefijo distinto (como “:“) para identificar los atributos sin firmar. Incluya este prefijo en el
nombre del atributo para todos los atributos marcados DO_NOTHING al definir el esquema y
las acciones de atributos de DynamoDB.

El siguiente modelo de objetos muestra cómo especificar ENCRYPT_AND_SIGN
SIGN_ONLYSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, y DO_NOTHING atribuir acciones con
el cliente.NET. En este ejemplo se utiliza el prefijo : "» para identificar DO_NOTHING los atributos.

Note

Para utilizar la acción SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT criptográfica, debe
utilizar la versión 3.3 o posterior del SDK de cifrado de AWS bases de datos. Implemente
la nueva versión en todos los lectores antes de actualizar su modelo de datos para
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT incluirla.

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, // The
 partition attribute must be signed
 ["sort_key"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, // The sort
 attribute must be signed
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 ["attribute3"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT,
 [":attribute4"] = CryptoAction.DO_NOTHING

.NET 242

AWS SDK de cifrado de bases de datos Guía para desarrolladores

};

Configuración de cifrado en el SDK de cifrado de bases de datos de AWS para DynamoDB

Al utilizar el SDK de cifrado AWS de bases de datos, debe definir explícitamente una configuración
de cifrado para la tabla de DynamoDB. Los valores necesarios en la configuración de cifrado
dependen de si ha definido las acciones de los atributos manualmente o con una clase de datos
anotada.

El siguiente fragmento define una configuración de cifrado de tablas de DynamoDB mediante el
SDK de cifrado de AWS bases de datos de bajo nivel para la API de DynamoDB y los atributos no
firmados permitidos definidos por un prefijo distinto.

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 // Optional: SearchConfig only required if you use beacons
 Search = new SearchConfig
 {
 WriteVersion = 1, // MUST be 1
 Versions = beaconVersions
 }
};
tableConfigs.Add(ddbTableName, config);

Nombre de la tabla lógica

Un nombre de tabla lógico para la tabla de DynamoDB.

El nombre de la tabla lógica está enlazado criptográficamente a todos los datos almacenados
en la tabla para simplificar las operaciones de restauración de DynamoDB. Se recomienda
encarecidamente especificar el nombre de la tabla de DynamoDB como nombre de la tabla
lógica cuando defina por primera vez la configuración de cifrado. Debe especificar siempre el
mismo nombre de tabla lógica. Para que el descifrado se realice correctamente, el nombre de la

.NET 243

AWS SDK de cifrado de bases de datos Guía para desarrolladores

tabla lógica debe coincidir con el nombre especificado en el cifrado. En caso de que el nombre
de la tabla de DynamoDB cambie después de restaurar la tabla de DynamoDB a partir de una
copia de seguridad, el nombre de la tabla lógica garantiza que la operación de descifrado siga
reconociendo la tabla.

Atributos no firmados permitidos

Los atributos marcados DO_NOTHING en tus acciones de atributos.

Los atributos no firmados permitidos indican al cliente qué atributos están excluidos de las firmas.
El cliente asume que todos los demás atributos están incluidos en la firma. A continuación, al
descifrar un registro, el cliente determina qué atributos debe verificar y cuáles debe ignorar de los
atributos no firmados permitidos que especificó. No puede eliminar un atributo de los atributos no
firmados permitidos.

Puede definir los atributos no firmados permitidos de forma explícita mediante la creación de una
matriz que enumere todos sus DO_NOTHING atributos. También puedes especificar un prefijo
distinto al asignar un nombre a tus DO_NOTHING atributos y usar el prefijo para indicar al cliente
qué atributos no están firmados. Recomendamos encarecidamente especificar un prefijo distinto
porque simplifica el proceso de añadir un nuevo DO_NOTHING atributo en el futuro. Para obtener
más información, consulte Actualización de su modelo de datos.

Si no especifica un prefijo para todos los DO_NOTHING atributos, puede configurar una
allowedUnsignedAttributes matriz que enumere de forma explícita todos los atributos que
el cliente debería esperar que no estén firmados cuando los encuentre al descifrarlos. Solo debe
definir de forma explícita los atributos no firmados permitidos si es absolutamente necesario.

Configuración de búsqueda (opcional)

SearchConfigDefine la versión de baliza.

SearchConfigDebe especificarse para utilizar balizas firmadas o cifradas con capacidad de
búsqueda.

Conjunto de algoritmos (opcional)

El algorithmSuiteId define qué conjunto de algoritmos utiliza el SDK de cifrado de bases de
datos de AWS .

A menos que especifique explícitamente un conjunto de algoritmos alternativo, el SDK AWS
de cifrado de bases de datos utiliza el conjunto de algoritmos predeterminado. El conjunto

.NET 244

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

de algoritmos predeterminado utiliza el algoritmo AES-GCM con la derivación de claves, las
firmas digitales y el compromiso de claves. Aunque es probable que el conjunto de algoritmos
predeterminado sea adecuado para la mayoría de las aplicaciones, puede elegir un conjunto de
algoritmos alternativo. Por ejemplo, algunos modelos de confianza quedarían satisfechos con
un conjunto de algoritmos sin firmas digitales. Para obtener información sobre los conjuntos de
algoritmos compatibles con el SDK AWS de cifrado de bases de datos, consulteConjuntos de
algoritmos compatibles en el SDK de cifrado AWS de bases de datos.

Para seleccionar el conjunto de algoritmos AES-GCM sin firmas digitales ECDSA, incluya el
siguiente fragmento en la configuración de cifrado de la tabla.

AlgorithmSuiteId =
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384

Actualización de elementos con el SDK de cifrado de bases de datos AWS

El SDK AWS de cifrado de bases de datos no admite ddb: UpdateItem para elementos que incluyen
atributos cifrados o firmados. Para actualizar un atributo cifrado o firmado, debe usar ddb:. PutItem
Cuando se especifica la misma clave principal que un elemento existente en la solicitud PutItem, el
nuevo elemento sustituye completamente al existente. También puedes usar CLOBBER para borrar
y reemplazar todos los atributos al guardar después de actualizar tus artículos.

Ejemplos de.NET

En los ejemplos siguientes se muestra cómo utilizar la biblioteca de cifrado del lado del cliente
de.NET para DynamoDB a fin de proteger los elementos de la tabla de la aplicación. Para encontrar
más ejemplos (y aportar los suyos propios), consulte los ejemplos de.NET en el repositorio -
dynamodb en. aws-database-encryption-sdk GitHub

Los siguientes ejemplos muestran cómo configurar la biblioteca de cifrado del lado del cliente.NET
para DynamoDB en una tabla de Amazon DynamoDB nueva y sin rellenar. Si desea configurar las
tablas de Amazon DynamoDB existentes para el cifrado del cliente, consulte. Agregar la versión 3.x a
una tabla existente

Temas

• Uso del SDK de cifrado de AWS bases de datos de bajo nivel para la API de DynamoDB

• Uso del nivel inferior DynamoDbItemEncryptor

.NET 245

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapperConfig.SaveBehavior.html#CLOBBER
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/net/src
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/net/src

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Uso del SDK de cifrado de AWS bases de datos de bajo nivel para la API de DynamoDB

El siguiente ejemplo muestra cómo utilizar el SDK de cifrado de AWS bases de datos de bajo nivel
para la API de DynamoDB con AWS KMS un anillo de claves para cifrar y firmar automáticamente los
elementos del lado del cliente con las solicitudes de DynamoDB. PutItem

Puede utilizar cualquier conjunto de claves compatible, pero le recomendamos que utilice uno de
ellos siempre que sea posible. AWS KMS

Consulta el ejemplo de código completo: .cs BasicPutGetExample

Paso 1: Crea el llavero AWS KMS

El siguiente ejemplo se utiliza CreateAwsKmsMrkMultiKeyring para crear un
AWS KMS anillo de claves con una clave KMS de cifrado simétrico. El método
CreateAwsKmsMrkMultiKeyring garantiza que el conjunto de claves maneje correctamente
las claves de una sola región y de múltiples regiones.

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Paso 2: configurar las acciones de sus atributos

En el siguiente ejemplo, se define un attributeActionsOnEncrypt diccionario que
representa ejemplos de acciones de atributo para un elemento de la tabla.

Note

El siguiente ejemplo no define ningún atributo
comoSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Si especifica algún
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo, los atributos de partición y
ordenación también deben serloSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
 SIGN_ONLY
 ["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY

.NET 246

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/BasicPutGetExample.cs

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 [":attribute3"] = CryptoAction.DO_NOTHING
};

Paso 3: defina qué atributos se excluyen de las firmas

En el ejemplo siguiente, se supone que todos los atributos DO_NOTHING comparten el prefijo
distinto ":" y se utiliza el prefijo para definir los atributos no firmados permitidos. El cliente asume
que cualquier nombre de atributo con el prefijo “:” está excluido de las firmas. Para obtener más
información, consulte Allowed unsigned attributes.

const String unsignAttrPrefix = ":";

Paso 4: definir la configuración de cifrado de la tabla de DynamoDB

El siguiente ejemplo define un mapa tableConfigs que representa la configuración de cifrado
de esta tabla de DynamoDB.

En este ejemplo, se especifica el nombre de la tabla de DynamoDB como nombre de la tabla
lógica. Se recomienda encarecidamente especificar el nombre de la tabla de DynamoDB como
nombre de la tabla lógica cuando defina por primera vez la configuración de cifrado. Para obtener
más información, consulte Configuración de cifrado en el SDK de cifrado de bases de datos de
AWS para DynamoDB.

Note

Para utilizar balizas firmadas o cifrado con capacidad de búsqueda, también debe incluir
SearchConfig en la configuración de cifrado.

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,

.NET 247

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 AllowedUnsignedAttributePrefix = unsignAttrPrefix
};
tableConfigs.Add(ddbTableName, config);

Paso 5: Crear un nuevo cliente AWS SDK de DynamoDB

En el siguiente ejemplo, se crea un nuevo cliente AWS SDK de DynamoDB mediante
TableEncryptionConfigs el paso 4.

var ddb = new Client.DynamoDbClient(
 new DynamoDbTablesEncryptionConfig { TableEncryptionConfigs = tableConfigs });

Paso 6: Cifrar y firmar un elemento de la tabla de DynamoDB

En el siguiente ejemplo, se define un item diccionario que representa un elemento de tabla de
ejemplo y se coloca el elemento en la tabla de DynamoDB. El elemento se cifra y se firma en el
lado del cliente antes de enviarlo a DynamoDB.

var item = new Dictionary<String, AttributeValue>
{
 ["partition_key"] = new AttributeValue("BasicPutGetExample"),
 ["sort_key"] = new AttributeValue { N = "0" },
 ["attribute1"] = new AttributeValue("encrypt and sign me!"),
 ["attribute2"] = new AttributeValue("sign me!"),
 [":attribute3"] = new AttributeValue("ignore me!")
};

PutItemRequest putRequest = new PutItemRequest
{
 TableName = ddbTableName,
 Item = item
};

PutItemResponse putResponse = await ddb.PutItemAsync(putRequest);

Uso del nivel inferior DynamoDbItemEncryptor

En el siguiente ejemplo, se muestra cómo utilizar el nivel inferior DynamoDbItemEncryptor con
un conjunto de claves de AWS KMS para cifrar y firmar directamente los elementos de la tabla.
DynamoDbItemEncryptor No coloca el elemento en la tabla de DynamoDB.

.NET 248

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Puede utilizar cualquier conjunto de claves compatible con el cliente mejorado de DynamoDB, pero le
recomendamos que utilice uno de los anillos de AWS KMS claves siempre que sea posible.

Note

El nivel inferior DynamoDbItemEncryptor no admite el cifrado con capacidad de búsqueda.
Utilice el SDK de cifrado de AWS bases de datos de bajo nivel para la API de DynamoDB
para utilizar el cifrado con capacidad de búsqueda.

Consulte el ejemplo de código completo: .cs ItemEncryptDecryptExample

Paso 1: Crea el llavero AWS KMS

El siguiente ejemplo se utiliza CreateAwsKmsMrkMultiKeyring para crear un
AWS KMS anillo de claves con una clave KMS de cifrado simétrico. El método
CreateAwsKmsMrkMultiKeyring garantiza que el conjunto de claves maneje correctamente
las claves de una sola región y de múltiples regiones.

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Paso 2: configurar las acciones de sus atributos

En el siguiente ejemplo, se define un attributeActionsOnEncrypt diccionario que
representa ejemplos de acciones de atributo para un elemento de la tabla.

Note

El siguiente ejemplo no define ningún atributo
comoSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Si especifica algún
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo, los atributos de partición y
ordenación también deben serloSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<String, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
 SIGN_ONLY

.NET 249

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/itemencryptor/ItemEncryptDecryptExample.cs

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 ["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 [":attribute3"] = CryptoAction.DO_NOTHING
};

Paso 3: defina qué atributos se excluyen de las firmas

En el ejemplo siguiente, se supone que todos los atributos DO_NOTHING comparten el prefijo
distinto ":" y se utiliza el prefijo para definir los atributos no firmados permitidos. El cliente asume
que cualquier nombre de atributo con el prefijo “:” está excluido de las firmas. Para obtener más
información, consulte Allowed unsigned attributes.

String unsignAttrPrefix = ":";

Paso 4: defina la configuración de DynamoDbItemEncryptor

En el siguiente ejemplo, se consulta la configuración de DynamoDbItemEncryptor.

En este ejemplo, se especifica el nombre de la tabla de DynamoDB como nombre de la tabla
lógica. Se recomienda encarecidamente especificar el nombre de la tabla de DynamoDB como
nombre de la tabla lógica cuando defina por primera vez la configuración de cifrado. Para obtener
más información, consulte Configuración de cifrado en el SDK de cifrado de bases de datos de
AWS para DynamoDB.

var config = new DynamoDbItemEncryptorConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix
};

Paso 5: Crear el DynamoDbItemEncryptor

En el siguiente ejemplo, se crea un nuevo DynamoDbItemEncryptor, con la config del Paso
4.

var itemEncryptor = new DynamoDbItemEncryptor(config);

.NET 250

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Paso 6: cifrar y firmar directamente un elemento de la tabla

En el siguiente ejemplo, se cifra y firma directamente un elemento mediante el
DynamoDbItemEncryptor. DynamoDbItemEncryptor no coloca el elemento en la tabla de
DynamoDB.

var originalItem = new Dictionary<String, AttributeValue>
{
 ["partition_key"] = new AttributeValue("ItemEncryptDecryptExample"),
 ["sort_key"] = new AttributeValue { N = "0" },
 ["attribute1"] = new AttributeValue("encrypt and sign me!"),
 ["attribute2"] = new AttributeValue("sign me!"),
 [":attribute3"] = new AttributeValue("ignore me!")
};

var encryptedItem = itemEncryptor.EncryptItem(
 new EncryptItemInput { PlaintextItem = originalItem }
).EncryptedItem;

Configurar una tabla de DynamoDB existente para usar el SDK de cifrado de bases de
datos de AWS para DynamoDB

Con la versión 3. x de la biblioteca de cifrado del lado del cliente .NET para DynamoDB, puede
configurar las tablas de Amazon DynamoDB existentes para el cifrado del lado del cliente. En este
tema se proporcionan instrucciones sobre los tres pasos que debe seguir para añadir la versión 3.x a
una tabla de DynamoDB existente y rellenada.

Paso 1: prepararse para leer y escribir elementos cifrados

Complete los siguientes pasos para preparar su cliente del SDK de cifrado de AWS bases de
datos para leer y escribir elementos cifrados. Tras implementar los siguientes cambios, el cliente
seguirá leyendo y escribiendo elementos de texto no cifrado. No cifrará ni firmará ningún elemento
nuevo escrito en la tabla, pero podrá descifrar los elementos cifrados en cuanto aparezcan. Estos
cambios preparan al cliente para empezar a cifrar nuevos elementos. Los siguientes cambios deben
implementarse en cada lector antes de continuar con el siguiente paso.

1. Defina las acciones de sus atributos

Cree un modelo de objetos para definir qué valores de atributo se cifrarán y firmarán, cuáles solo
se firmarán y cuáles se ignorarán.

.NET 251

AWS SDK de cifrado de bases de datos Guía para desarrolladores

De forma predeterminada, los atributos de la clave principal están firmados pero no cifrados
(SIGN_ONLY) y todos los demás atributos están cifrados y firmados ENCRYPT_AND_SIGN().

Especifique ENCRYPT_AND_SIGN si desea cifrar y firmar un atributo. Especifique SIGN_ONLY
firmar, pero no cifrar, un atributo. Especifique SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
el signo y el atributo e inclúyalos en el contexto de cifrado. No se puede cifrar un atributo
sin firmarlo también. Especifique DO_NOTHING que se omita un atributo. Para obtener más
información, consulte Acciones de atributos en el SDK de cifrado de bases de datos de AWS para
DynamoDB.

Note

Si especifica algún SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
atributo, los atributos de partición y ordenación también deben
serloSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
 SIGN_ONLY
 ["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 [":attribute3"] = CryptoAction.DO_NOTHING
};

2. Defina qué atributos se excluirán de las firmas

En el ejemplo siguiente, se supone que todos los atributos DO_NOTHING comparten el prefijo
distinto ":" y se utiliza el prefijo para definir los atributos no firmados permitidos. El cliente
asumirá que cualquier nombre de atributo con el prefijo ":" está excluido de las firmas. Para
obtener más información, consulte Allowed unsigned attributes.

const String unsignAttrPrefix = ":";

.NET 252

AWS SDK de cifrado de bases de datos Guía para desarrolladores

3. Cree un conjunto de claves

El siguiente ejemplo crea un conjunto de claves de AWS KMS. El AWS KMS anillo de claves
utiliza un cifrado simétrico o un RSA asimétrico AWS KMS keys para generar, cifrar y descifrar las
claves de datos.

En este ejemplo, se utiliza CreateMrkMultiKeyring para crear un conjunto de claves de AWS
KMS con una clave de KMS de cifrado simétrico. El método CreateAwsKmsMrkMultiKeyring
garantiza que el conjunto de claves maneje correctamente las claves de una sola región y de
múltiples regiones.

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

4. Definir la configuración de cifrado de la tabla de DynamoDB

El siguiente ejemplo define un mapa tableConfigs que representa la configuración de cifrado
de esta tabla de DynamoDB.

En este ejemplo, se especifica el nombre de la tabla de DynamoDB como nombre de la tabla
lógica. Se recomienda encarecidamente especificar el nombre de la tabla de DynamoDB como
nombre de la tabla lógica cuando defina por primera vez la configuración de cifrado.

Debe especificarlo FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT como modificación
de texto no cifrado. Esta política sigue leyendo y escribiendo elementos de texto no cifrado, lee
los elementos cifrados y prepara al cliente para escribir elementos cifrados.

Para obtener más información sobre los valores incluidos en la tabla de configuración de
cifrado, consulte. Configuración de cifrado en el SDK de cifrado de bases de datos de AWS para
DynamoDB

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,

.NET 253

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 PlaintextOverride = FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT
};
tableConfigs.Add(ddbTableName, config);

5. Crear un nuevo cliente AWS SDK de DynamoDB

En el siguiente ejemplo, se crea un nuevo cliente AWS SDK de DynamoDB mediante
TableEncryptionConfigs el paso 4.

var ddb = new Client.DynamoDbClient(
 new DynamoDbTablesEncryptionConfig { TableEncryptionConfigs = tableConfigs });

Paso 2: escribir elementos cifrados y firmados

Actualice la política de texto sin formato en la configuración de cifrado de la tabla para permitir que el
cliente escriba elementos cifrados y firmados. Tras implementar el siguiente cambio, el cliente cifrará
y firmará los nuevos elementos en función de las acciones de atributos que configuró en el paso 1. El
cliente podrá leer los elementos en texto no cifrado y los elementos cifrados y firmados.

Antes de continuar con el Paso 3, debe cifrar y firmar todos los elementos de texto no cifrado
existentes en la tabla. No existe una métrica o consulta única que pueda ejecutar para cifrar
rápidamente los elementos de texto no cifrado existentes. Utilice el proceso que mejor se adapte
a su sistema. Por ejemplo, puede utilizar un proceso asíncrono que escanee lentamente la tabla
y reescriba los elementos mediante las acciones de los atributos y la configuración de cifrado que
haya definido. Para identificar los elementos de texto sin formato de la tabla, se recomienda buscar
todos los elementos que no contengan los aws_dbe_foot atributos que el aws_dbe_head SDK de
cifrado de AWS bases de datos añade a los elementos cuando están cifrados y firmados.

En el siguiente ejemplo, se actualiza la configuración de cifrado de la tabla
desde el paso 1. Debe actualizar la anulación de texto no cifrado con
FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT. Esta política sigue leyendo los elementos
de texto no cifrado, pero también lee y escribe los elementos cifrados. Cree un nuevo cliente AWS
SDK de DynamoDB con la actualización. TableEncryptionConfigs

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig

.NET 254

AWS SDK de cifrado de bases de datos Guía para desarrolladores

{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 PlaintextOverride = FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT
};
tableConfigs.Add(ddbTableName, config);

Paso 3: Lee solo los elementos cifrados y firmados

Una vez cifrados y firmados todos los elementos, actualice la modificación del texto sin formato en
la configuración de cifrado de la tabla para que el cliente solo pueda leer y escribir los elementos
cifrados y firmados. Tras implementar el siguiente cambio, el cliente cifrará y firmará los nuevos
elementos en función de las acciones de atributos que configuró en el paso 1. El cliente solo podrá
leer los elementos cifrados y firmados.

En el siguiente ejemplo, se actualiza la configuración de cifrado de la tabla
desde el paso 2. Puede actualizar la anulación de texto no cifrado con
FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT o eliminar la política de texto no
cifrado de su configuración. De forma predeterminada, el cliente solo lee y escribe los elementos
cifrados y firmados. Cree un nuevo cliente AWS SDK de DynamoDB con la actualización.
TableEncryptionConfigs

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 // Optional: you can also remove the plaintext policy from your configuration
 PlaintextOverride = FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT
};
tableConfigs.Add(ddbTableName, config);

.NET 255

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Rust

En este tema se explica cómo instalar y usar la versión 1. x de la biblioteca de cifrado del lado del
cliente de Rust para DynamoDB. Para obtener más información sobre la programación con el SDK
AWS de cifrado de bases de datos para DynamoDB, consulte los ejemplos de Rust en el repositorio -
dynamodb en aws-database-encryption-sdk. GitHub

Todas las implementaciones de lenguajes de programación del SDK de cifrado de AWS bases de
datos para DynamoDB son interoperables.

Temas

• Requisitos previos

• Instalación

• Uso de la biblioteca de cifrado del lado del cliente de Rust para DynamoDB

Requisitos previos

Antes de instalar la biblioteca de cifrado del lado del cliente de Rust para DynamoDB, asegúrese de
cumplir los siguientes requisitos previos.

Instale Rust y Cargo

Instala la versión estable actual de Rust usando rustup.

Para obtener más información sobre la descarga e instalación de rustup, consulta los
procedimientos de instalación en The Cargo Book.

Instalación

La biblioteca de cifrado del lado del cliente de Rust para DynamoDB está disponible en forma de
caja en Crates.io. aws-db-esdk Para obtener más información sobre la instalación y creación de la
biblioteca, consulte el archivo README.md en el repositorio -dynamodb. aws-database-encryption-
sdk GitHub

Manualmente

Para instalar la biblioteca de cifrado del lado del cliente de Rust para DynamoDB, clone o
descargue el repositorio -dynamodb. aws-database-encryption-sdk GitHub

Rust 256

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/
https://www.rust-lang.org/
https://rustup.rs/
https://doc.rust-lang.org/cargo/getting-started/installation.html
https://crates.io/crates/aws-db-esdk
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Para instalar la versión más reciente

Ejecute el siguiente comando Cargo en el directorio de su proyecto:

cargo add aws-db-esdk

O añade la siguiente línea a tu Cargo.toml:

aws-db-esdk = "<version>"

Uso de la biblioteca de cifrado del lado del cliente de Rust para DynamoDB

En este tema se explican algunas de las funciones y clases auxiliares de la versión 1. x de la
biblioteca de cifrado del lado del cliente de Rust para DynamoDB.

Para obtener más información sobre la programación con la biblioteca de cifrado del lado del cliente
de Rust para DynamoDB, consulte los ejemplos de Rust en el repositorio -dynamodb de. aws-
database-encryption-sdk GitHub

Temas

• Encriptadores de elementos

• Acciones de atributos en el SDK de cifrado de bases de datos de AWS para DynamoDB

• Configuración de cifrado en el SDK de cifrado de bases de datos de AWS para DynamoDB

• Actualización de elementos con el SDK de cifrado de bases de datos AWS

Encriptadores de elementos

En esencia, el SDK de cifrado AWS de bases de datos para DynamoDB es un cifrador de elementos.
Puede utilizar la versión 1. x de la biblioteca de cifrado del lado del cliente de Rust para DynamoDB
para cifrar, firmar, verificar y descifrar los elementos de la tabla de DynamoDB de las siguientes
maneras.

El SDK de cifrado de AWS bases de datos de bajo nivel para la API de DynamoDB

Puede usar la configuración de cifrado de tablas para crear un cliente de DynamoDB que cifre
y firme automáticamente los elementos del lado del cliente con sus solicitudes de DynamoDB.
PutItem

Rust 257

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Debe usar el SDK de cifrado de AWS bases de datos de bajo nivel para la API de DynamoDB
para utilizar el cifrado con capacidad de búsqueda.

Para ver un ejemplo que muestre cómo utilizar el SDK de cifrado de AWS bases de datos de bajo
nivel para la API de DynamoDB, consulte basic_get_put_example.rs en el repositorio -dynamodb
en. aws-database-encryption-sdk GitHub

El nivel inferior DynamoDbItemEncryptor

El nivel inferior cifra y firma o descifra y verifica DynamoDbItemEncryptor directamente
los elementos de la tabla sin llamar a DynamoDB. No realiza DynamoDB ni PutItem
solicitudesGetItem. Por ejemplo, puede usar el nivel inferior DynamoDbItemEncryptor para
descifrar y verificar directamente un elemento de DynamoDB que ya haya recuperado.

El nivel inferior DynamoDbItemEncryptor no admite el cifrado con capacidad de búsqueda.

Para ver un ejemplo que muestre cómo utilizar el nivel inferior, consulte item_encrypt_decrypt.rs
en el repositorio -dynamodb de. DynamoDbItemEncryptor aws-database-encryption-sdk
GitHub

Acciones de atributos en el SDK de cifrado de bases de datos de AWS para DynamoDB

Las acciones de atributo determinan qué valores de atributo están cifrados y firmados, cuáles solo
están firmados, cuáles están firmados e incluidos en el contexto de cifrado y cuáles se ignoran.

Para especificar las acciones de los atributos con el cliente Rust, defina manualmente las acciones
de los atributos mediante un modelo de objetos. Especifique las acciones de sus atributos creando
un HashMap objeto en el que los pares nombre-valor representen los nombres de los atributos y las
acciones especificadas.

Especifique ENCRYPT_AND_SIGN si desea cifrar y firmar un atributo. Especifique SIGN_ONLY firmar,
pero no cifrar, un atributo. Especifique si SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT desea
firmar un atributo e incluirlo en el contexto de cifrado. No se puede cifrar un atributo sin firmarlo
también. Especifique DO_NOTHING que se omita un atributo.

Los atributos de partición y ordenación deben ser uno de SIGN_ONLY los
dosSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Si define algún atributo
comoSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, los atributos de partición y ordenación
también deben serloSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Rust 258

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/basic_get_put_example.rs
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/itemencryptor/item_encrypt_decrypt.rs
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/itemencryptor/item_encrypt_decrypt.rs

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Note

Tras definir las acciones de los atributos, debe definir qué atributos se excluyen de las firmas.
Para facilitar la adición de nuevos atributos sin firmar en el futuro, recomendamos elegir un
prefijo distinto (como “:“) para identificar los atributos sin firmar. Incluya este prefijo en el
nombre del atributo para todos los atributos marcados DO_NOTHING al definir el esquema y
las acciones de atributos de DynamoDB.

El siguiente modelo de objetos muestra cómo especificar ENCRYPT_AND_SIGN
SIGN_ONLYSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, y DO_NOTHING atribuir acciones con
el cliente Rust. En este ejemplo se usa el prefijo : "» para identificar DO_NOTHING los atributos.

let attribute_actions_on_encrypt = HashMap::from([
 ("partition_key".to_string(), CryptoAction::SignOnly),
 ("sort_key".to_string(), CryptoAction::SignOnly),
 ("attribute1".to_string(), CryptoAction::EncryptAndSign),
 ("attribute2".to_string(), CryptoAction::SignOnly),
 (":attribute3".to_string(), CryptoAction::DoNothing),
]);

Configuración de cifrado en el SDK de cifrado de bases de datos de AWS para DynamoDB

Al utilizar el SDK de cifrado AWS de bases de datos, debe definir explícitamente una configuración
de cifrado para la tabla de DynamoDB. Los valores necesarios en la configuración de cifrado
dependen de si ha definido las acciones de los atributos manualmente o con una clase de datos
anotada.

El siguiente fragmento define una configuración de cifrado de tablas de DynamoDB mediante el
SDK de cifrado de AWS bases de datos de bajo nivel para la API de DynamoDB y los atributos no
firmados permitidos definidos por un prefijo distinto.

let table_config = DynamoDbTableEncryptionConfig::builder()
 .logical_table_name(ddb_table_name)
 .partition_key_name("partition_key")
 .sort_key_name("sort_key")
 .attribute_actions_on_encrypt(attribute_actions_on_encrypt)
 .keyring(kms_keyring)
 .allowed_unsigned_attribute_prefix(UNSIGNED_ATTR_PREFIX)
 // Specifying an algorithm suite is optional

Rust 259

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 .algorithm_suite_id(
 DbeAlgorithmSuiteId::AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)
 .build()?;

let table_configs = DynamoDbTablesEncryptionConfig::builder()
 .table_encryption_configs(HashMap::from([(ddb_table_name.to_string(),
 table_config)]))
 .build()?;

Nombre de la tabla lógica

Un nombre de tabla lógico para la tabla de DynamoDB.

El nombre de la tabla lógica está enlazado criptográficamente a todos los datos almacenados
en la tabla para simplificar las operaciones de restauración de DynamoDB. Se recomienda
encarecidamente especificar el nombre de la tabla de DynamoDB como nombre de la tabla
lógica cuando defina por primera vez la configuración de cifrado. Debe especificar siempre el
mismo nombre de tabla lógica. Para que el descifrado se realice correctamente, el nombre de la
tabla lógica debe coincidir con el nombre especificado en el cifrado. En caso de que el nombre
de la tabla de DynamoDB cambie después de restaurar la tabla de DynamoDB a partir de una
copia de seguridad, el nombre de la tabla lógica garantiza que la operación de descifrado siga
reconociendo la tabla.

Atributos no firmados permitidos

Los atributos marcados DO_NOTHING en tus acciones de atributos.

Los atributos no firmados permitidos indican al cliente qué atributos están excluidos de las firmas.
El cliente asume que todos los demás atributos están incluidos en la firma. A continuación, al
descifrar un registro, el cliente determina qué atributos debe verificar y cuáles debe ignorar de los
atributos no firmados permitidos que especificó. No puede eliminar un atributo de los atributos no
firmados permitidos.

Puede definir los atributos no firmados permitidos de forma explícita mediante la creación de una
matriz que enumere todos sus DO_NOTHING atributos. También puedes especificar un prefijo
distinto al asignar un nombre a tus DO_NOTHING atributos y usar el prefijo para indicar al cliente
qué atributos no están firmados. Recomendamos encarecidamente especificar un prefijo distinto
porque simplifica el proceso de añadir un nuevo DO_NOTHING atributo en el futuro. Para obtener
más información, consulte Actualización de su modelo de datos.

Rust 260

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Si no especifica un prefijo para todos los DO_NOTHING atributos, puede configurar una
allowedUnsignedAttributes matriz que enumere de forma explícita todos los atributos que
el cliente debería esperar que no estén firmados cuando los encuentre al descifrarlos. Solo debe
definir de forma explícita los atributos no firmados permitidos si es absolutamente necesario.

Configuración de búsqueda (opcional)

SearchConfigDefine la versión de baliza.

SearchConfigDebe especificarse para utilizar balizas firmadas o cifradas con capacidad de
búsqueda.

Conjunto de algoritmos (opcional)

El algorithmSuiteId define qué conjunto de algoritmos utiliza el SDK de cifrado de bases de
datos de AWS .

A menos que especifique explícitamente un conjunto de algoritmos alternativo, el SDK AWS
de cifrado de bases de datos utiliza el conjunto de algoritmos predeterminado. El conjunto
de algoritmos predeterminado utiliza el algoritmo AES-GCM con la derivación de claves, las
firmas digitales y el compromiso de claves. Aunque es probable que el conjunto de algoritmos
predeterminado sea adecuado para la mayoría de las aplicaciones, puede elegir un conjunto de
algoritmos alternativo. Por ejemplo, algunos modelos de confianza quedarían satisfechos con
un conjunto de algoritmos sin firmas digitales. Para obtener información sobre los conjuntos de
algoritmos compatibles con el SDK AWS de cifrado de bases de datos, consulteConjuntos de
algoritmos compatibles en el SDK de cifrado AWS de bases de datos.

Para seleccionar el conjunto de algoritmos AES-GCM sin firmas digitales ECDSA, incluya el
siguiente fragmento en la configuración de cifrado de la tabla.

.algorithm_suite_id(
 DbeAlgorithmSuiteId::AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)

Actualización de elementos con el SDK de cifrado de bases de datos AWS

El SDK AWS de cifrado de bases de datos no admite ddb: UpdateItem para elementos que incluyen
atributos cifrados o firmados. Para actualizar un atributo cifrado o firmado, debe usar ddb:. PutItem
Cuando se especifica la misma clave principal que un elemento existente en la solicitud PutItem, el
nuevo elemento sustituye completamente al existente.

Rust 261

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Cliente de cifrado de DynamoDB antiguo

El 9 de junio de 2023, nuestra biblioteca de cifrado del lado del cliente pasó a AWS llamarse
Database Encryption SDK. El SDK AWS de cifrado de bases de datos sigue siendo compatible
con las versiones antiguas de DynamoDB Encryption Client. Para obtener más información sobre
las distintas partes de la biblioteca de cifrado del cliente que cambiaron con el cambio de nombre,
consulte Cambio de nombre del Cliente de encriptación de Amazon DynamoDB.

Para migrar a la versión más reciente de la biblioteca de cifrado del cliente de Java para DynamoDB,
consulte Migrar a la versión 3.x.

Temas

• AWS Compatibilidad con la versión SDK de cifrado de bases de datos para DynamoDB

• Cómo funciona el cliente de cifrado de DynamoDB

• Conceptos del Cliente de encriptación de Amazon DynamoDB

• Proveedor de materiales criptográficos

• Lenguajes de programación disponibles para el Cliente de encriptación de Amazon DynamoDB

• Cambiar el modelo de datos

• Solución de problemas en la aplicación DynamoDB Encryption Client

AWS Compatibilidad con la versión SDK de cifrado de bases de datos para
DynamoDB

En los temas del capítulo Legacy, se proporciona información sobre las versiones 1. x —2. x
del cliente de cifrado de DynamoDB para Java y versiones 1. x —3. x del cliente de cifrado de
DynamoDB para Python.

En la siguiente tabla se enumeran los idiomas y las versiones que admiten el cifrado del cliente en
Amazon DynamoDB.

Lenguaje de programación Versión Fase del ciclo de vida de la
versión principal del SDK

Java Versiones 1. x End-of-Support fase, efectiva
en julio de 2022

Legacy 262

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Lenguaje de programación Versión Fase del ciclo de vida de la
versión principal del SDK

Java Versiones 2. x Disponibilidad general (GA)

Java Versión 3.x Disponibilidad general (GA)

Python Versiones 1.x End-of-Support fase, efectiva
en julio de 2022

Python Versiones 2.x End-of-Support fase, efectiva
en julio de 2022

Python Versiones 3. x Disponibilidad general (GA)

Cómo funciona el cliente de cifrado de DynamoDB

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de
DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

El cliente de cifrado de DynamoDB está diseñado específicamente para proteger los datos que
almacena en DynamoDB. Las bibliotecas incluyen implementaciones seguras que puede ampliar o
utilizar sin hacer ningún cambio. La mayoría de los elementos se representan mediante elementos
abstractos para que pueda crear y utilizar componentes personalizados compatibles.

Cifrado y firma de elementos de tabla

La esencia del cliente de cifrado de DynamoDB es un encriptador de elementos que cifra, firma,
verifica y descifra los elementos de la tabla. Recibe información acerca de los elementos de tabla e
instrucciones acerca de qué elementos hay que cifrar y firmar. Obtiene los materiales de cifrado, y
las instrucciones sobre su uso, de un proveedor de materiales criptográficos que usted selecciona y
configura.

Funcionamiento 263

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS SDK de cifrado de bases de datos Guía para desarrolladores

En el siguiente diagrama, se muestra una vista general de este proceso.

Para cifrar y firmar un elemento de la tabla, el cliente de cifrado de DynamoDB necesita:

• Información acerca de la tabla. Obtiene información acerca de la tabla de un contexto de cifrado
de DynamoDB que usted suministra. Algunos elementos auxiliares obtienen la información
necesaria de DynamoDB y crean automáticamente el contexto de cifrado de DynamoDB para
usted.

Note

El contexto de cifrado de DynamoDB en el cliente de cifrado de DynamoDB no está
relacionado con el contexto de cifrado de () y el. AWS Key Management Service AWS
KMS AWS Encryption SDK

• Los atributos que hay que cifrar y firmar. Obtiene esta información de las acciones de atributo que
usted suministra.

• Materiales de cifrado, incluidas las claves de cifrado y firma. Los obtiene de un proveedor de
materiales criptográficos (CMP) que usted selecciona y configura.

Funcionamiento 264

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• Instrucciones para cifrar y firmar el elemento. El CMP añade instrucciones de uso de los materiales
de cifrado, incluidos los algoritmos de cifrado y firma, a la descripción de material real.

El encriptador de elementos utiliza todos estos elementos para cifrar y firmar el elemento. El
encriptador de elementos también añade dos atributos al elemento: un atributo de descripción
de material que contiene las instrucciones de cifrado y firma (la descripción de material real) y un
atributo que contiene la firma. Puede interactuar directamente con el encriptador de elementos,
o puede utilizar características auxiliares que interactúan con el encriptador de elementos para
implementar un comportamiento predeterminado seguro.

El resultado es un elemento de DynamoDB que contiene datos cifrados y firmados.

Verificación y descifrado de elementos de tabla

Estos componentes también funcionan juntos para verificar y descifrar el elemento, como se muestra
en el siguiente diagrama.

Funcionamiento 265

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Para verificar y descifrar un elemento, el cliente de cifrado de DynamoDB necesita los mismos
componentes, componentes con la misma configuración o componentes diseñados especialmente
para descifrar los elementos, de la siguiente manera:

• Información acerca de la tabla del contexto de cifrado de DynamoDB.

• Qué atributos verificar y descifrar. Los obtiene de las acciones de atributo.

• Materiales de descifrado, incluidas las claves de verificación y descifrado, del proveedor de
materiales criptográficos (CMP) que usted selecciona y configura.

El elemento cifrado no incluye ningún registro del CMP que se utilizó para cifrarlo. Debe
proporcionar el mismo CMP, un CMP con la misma configuración o un CMP que esté diseñado
para descifrar elementos.

• Información acerca de cómo el elemento se cifró y firmó, incluidos los algoritmos de cifrado y firma.
El cliente los obtiene del atributo de descripción de material del elemento.

El encriptador de elementos utiliza todos estos elementos para verificar y descifrar el elemento.
También elimina los atributos de descripción de material y firma. El resultado es un elemento de
DynamoDB como texto no cifrado.

Conceptos del Cliente de encriptación de Amazon DynamoDB

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de
DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

En este tema se explican la terminología y los conceptos empleados en el Cliente de encriptación de
Amazon DynamoDB.

Para obtener información acerca de cómo interactúan los componentes del cliente de cifrado de
DynamoDB, consulte Cómo funciona el cliente de cifrado de DynamoDB.

Temas

Conceptos 266

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• Proveedor de materiales criptográficos (CMP)

• Encriptadores de elementos

• Acciones de atributo

• Descripción de material

• Contexto de cifrado de DynamoDB

• Almacén de proveedores

Proveedor de materiales criptográficos (CMP)

Al implementar el cliente de cifrado de DynamoDB, una de sus primeras tareas consiste en
seleccionar un proveedor de materiales criptográficos (CMP) (también conocido como proveedor de
materiales de cifrado). Esta elección determina gran parte del resto de la implementación.

Un proveedor de materiales criptográficos (CMP) recopila, reúne y devuelve los materiales
criptográficos que el encriptador de elementos utiliza para cifrar y firmar los elementos de tabla. El
CMP determina los algoritmos de cifrado que se utilizarán y cómo generar y proteger las claves de
cifrado y firma.

El CMP interactúa con el encriptador de elementos. El encriptador de elementos solicita materiales
de cifrado o descifrado al CMP, y el CMP los devuelve al encriptador de elementos. A continuación,
el encriptador de elementos utiliza los materiales criptográficos para cifrar y firmar, o para verificar y
descifrar, el elemento.

Debe especificar el CMP al configurar el cliente. Puede crear un CMP personalizado compatible o
utilizar uno de los muchos de CMPs la biblioteca. La mayoría CMPs están disponibles para varios
lenguajes de programación.

Encriptadores de elementos

El encriptador de elementos es un componente de nivel inferior que realiza operaciones
criptográficas para el cliente de cifrado de DynamoDB. Solicita materiales criptográficos a un
proveedor de materiales criptográficos (CMP) y después utiliza los materiales que el CMP devuelve
para cifrar y firmar, o para verificar y descifrar, el elemento de tabla.

Puede interactuar directamente con el encriptador de elementos o puede utilizar los elementos
auxiliares proporcionados en la biblioteca. Por ejemplo, el cliente de cifrado de DynamoDB para
Java incluye una clase auxiliar AttributeEncryptorDynamoDBMapper que puede utilizar con ,
en lugar de interactuar directamente con el encriptador de elementos DynamoDBEncryptor.

Conceptos 267

AWS SDK de cifrado de bases de datos Guía para desarrolladores

La biblioteca Python incluye las clases auxiliares EncryptedTable, EncryptedClient y
EncryptedResource que interactúan con el encriptador de elementos por usted.

Acciones de atributo

Las acciones de atributo indican al encriptador de elementos qué acciones hay que realizar en cada
atributo del elemento.

Los valores de las acciones de atributo pueden ser uno de los siguientes:

• Encrypt and sign: cifra el valor del atributo. Incluir el atributo (nombre y valor) en la firma del
elemento.

• Sign only: incluye el atributo en la firma del artículo.

• Do nothing: no cifre ni firme el atributo.

Para cualquier atributo que pueda almacenar datos confidenciales, use Encrypt and sign. Para los
atributos de clave principal (clave de partición y clave de clasificación), utilice Sign only. El atributo
de descripción de material y el atributo de firma no se firman ni se cifran. No es necesario especificar
acciones para estos atributos.

Elija cuidadosamente sus acciones de atributo. En caso de duda, use Encrypt and sign. Una vez que
haya utilizado la para proteger los elementos de la tabla, no puede cambiar la acción de un atributo
sin arriesgarse a que se produzca un error de validación de firma. Para obtener más información,
consulte Cambiar el modelo de datos.

Warning

No cifre los atributos de clave principal. Deben permanecer en texto no cifrado para que
DynamoDB pueda encontrar el elemento sin realizar un examen completo de la tabla.

Si el contexto de cifrado de DynamoDB identifica sus atributos de clave principal, el cliente generará
un error si intenta cifrarlos.

La técnica empleada para especificar las acciones de atributo es diferente para cada lenguaje de
programación. También puede ser específica de las clases auxiliares que utilice.

Para obtener más información, consulte la documentación de su lenguaje de programación.

• Python

Conceptos 268

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• Java

Descripción de material

La descripción de material de un elemento de tabla cifrado consta de información, como los
algoritmos de cifrado, acerca del cifrado y la firma del elemento de tabla. El proveedor de materiales
criptográficos (CMP) registra la descripción de material mientras reúne los materiales criptográficos
para el cifrado y la firma. Posteriormente, cuando necesita reunir los materiales criptográficos para
verificar y descifrar el elemento, utiliza la descripción de material como guía.

En el DynamoDB Encryption Client, la descripción de material se refiere a tres elementos
relacionados:

Descripción de material solicitado

Algunos proveedores de materiales criptográficos (CMPs) permiten especificar opciones
avanzadas, como un algoritmo de cifrado. Para indicar sus opciones, añada pares de nombre
y valor a la propiedad de descripción de material del contexto de cifrado de DynamoDB en la
solicitud para cifrar un elemento de tabla. Este elemento se conoce como la descripción de
material solicitado. Los valores válidos de la descripción de material solicitado los define el CMP
elegido.

Note

Puesto que la descripción de material puede anular valores predeterminados seguros, le
recomendamos que omita la descripción de material solicitado a menos que tenga una
razón de peso para utilizarla.

Descripción de material real

La descripción del material que devuelven los proveedores de materiales criptográficos (CMPs)
se conoce como descripción del material real. Describe los valores reales que el CMP utilizó
cuando reunió los materiales criptográficos. Por lo general, consiste en la descripción de material
solicitado, si se utiliza, con algunos cambios y adiciones.

Atributo de descripción de material

El cliente guarda la descripción de material real en el atributo de descripción de material del
elemento cifrado. El nombre del atributo de descripción de material es amzn-ddb-map-desc y

Conceptos 269

AWS SDK de cifrado de bases de datos Guía para desarrolladores

su valor es la descripción de material real. El cliente utiliza los valores del atributo de descripción
de material para verificar y descifrar el elemento.

Contexto de cifrado de DynamoDB

El contexto de cifrado de DynamoDB proporciona información acerca de la tabla y el elemento al
proveedor de materiales criptográficos (CMP). En las implementaciones avanzadas, el contexto de
cifrado de DynamoDB puede incluir una descripción del material solicitado.

Al cifrar elementos de tabla, el contexto de cifrado de DynamoDB está enlazado criptográficamente
a los valores de atributo cifrados. Al descifrar, si el contexto de cifrado de no es una coincidencia
exacta que distingue mayúsculas de minúsculas para el contexto de cifrado de DynamoDB utilizado
para cifrar, se produce un error en la operación de descifrado. Si interactúa directamente con el
cifrado de elementos debe proporcionar un contexto de cifrado de DynamoDB cuando llame a un
método de cifrado o descifrado. La mayoría de los elementos auxiliares crean automáticamente el
contexto de cifrado de DynamoDB.

Note

El contexto de cifrado de DynamoDB en el cliente de cifrado de DynamoDB no está
relacionado con el contexto de cifrado de () y el. AWS Key Management Service AWS KMS
AWS Encryption SDK

El contexto de cifrado de DynamoDB puede incluir los siguientes campos. Todos los campos y
valores son opcionales.

• Nombre de la tabla

• Nombre de la clave de partición

• Nombre de la clave de clasificación

• Pares de nombre y valor de los atributos

• Descripción de material solicitado

Almacén de proveedores

Un almacén de proveedores es un componente que devuelve los proveedores de materiales
criptográficos (). CMPs El almacén del proveedor puede crearlos CMPs u obtenerlos de otra fuente,

Conceptos 270

AWS SDK de cifrado de bases de datos Guía para desarrolladores

como otro almacén del proveedor. El almacén del proveedor guarda las versiones CMPs que crea en
un almacenamiento persistente en el que cada CMP almacenado se identifica mediante el nombre
del material del solicitante y el número de versión.

El proveedor más reciente del cliente de cifrado de DynamoDB lo obtiene CMPs de un almacén de
proveedores, pero puede utilizarlo para CMPs suministrar a cualquier componente. Cada proveedor
más reciente está asociado a un almacén de proveedores, pero un almacén de proveedores puede
abastecer CMPs a muchos solicitantes en varios hosts.

La tienda del proveedor crea nuevas versiones de CMPs On Demand y devuelve las versiones
nuevas y las existentes. También devuelve el número de versión más reciente de un nombre de
material determinado. De esta forma, el solicitante puede saber cuándo el almacén de proveedores
tiene una nueva versión de su CMP que puede solicitar.

El cliente de cifrado de DynamoDB incluye MetaStoreun, que es un almacén de proveedores que
crea CMPs Wrapped con claves que se almacenan en DynamoDB y se cifran mediante un cliente de
cifrado de DynamoDB interno.

Más información:

• Almacén de proveedores: Java, Python

• MetaStore: Java, Python

Proveedor de materiales criptográficos

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de
DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

Una de las decisiones más importantes que debe tomar al utilizar el cliente de cifrado de DynamoDB
es seleccionar un proveedor de materiales criptográficos (CMP). El CMP combina y devuelve
materiales criptográficos al encriptador de elementos. También determina cómo se generan las

Proveedor de materiales criptográficos 271

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/store/ProviderStore.html
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/src/dynamodb_encryption_sdk/material_providers/store/__init__.py
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/store/MetaStore.html
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/materials_providers/metastore.html#module-dynamodb_encryption_sdk.material_providers.store.meta

AWS SDK de cifrado de bases de datos Guía para desarrolladores

claves de cifrado y de firma, si se generan nuevos materiales de clave para cada elemento o si se
reutilizan, así como los algoritmos de cifrado y de firma que se utilizan.

Puede elegir un CMP para las implementaciones proporcionadas en las bibliotecas del cliente de
cifrado de DynamoDB o crear un CMP personalizado compatible. Su opción de CMP también podría
depender del lenguaje de programación que utilice.

En este tema se describen las más comunes CMPs y se ofrecen algunos consejos para ayudarle a
elegir la mejor opción para su aplicación.

Proveedor de materiales de KMS directo

El proveedor de materiales de KMS directo protege los elementos de la tabla con un AWS KMS
keyque nunca se dejaAWS Key Management Service (AWS KMS) sin cifrar. Su aplicación no
tiene que generar ni gestionar ningún material criptográfico. Como las utiliza AWS KMS key para
generar claves de cifrado y firma únicas para cada elemento, este proveedor llama AWS KMS
cada vez que cifra o descifra un elemento.

Si para su aplicación le resulta práctico utilizar AWS KMS una AWS KMS llamada por
transacción, este proveedor es una buena opción.

Para obtener más información, consulte Proveedor de materiales de KMS directo.

Proveedor de materiales encapsulado (CMP encapsulado)

El proveedor de materiales encapsulado (CMP encapsulado) permite generar y administrar las
claves de encapsulación y de firma desde fuera del cliente de cifrado de DynamoDB.

El CMP encapsulado genera una clave de cifrado única para cada elemento. A continuación
utiliza las claves de encapsulación (o desencapsulación) y de firma que suministre. Por tanto,
determina cómo se generan las claves de firma y encapsulación y si son únicas para cada
elemento o si se reutilizan. El Wrapped CMP es una alternativa segura al proveedor de Direct
KMS para aplicaciones que no utilizan materiales criptográficos AWS KMS y pueden gestionarlos
de forma segura.

Para obtener más información, consulte Proveedor de materiales encapsulado.

Proveedor más reciente

El proveedor más reciente es un proveedor de materiales criptográficos (CMP) que está diseñado
para funcionar con un almacén de proveedores. Lo obtiene CMPs de la tienda del proveedor
y obtiene los materiales criptográficos que devuelve del. CMPs El proveedor más reciente

Proveedor de materiales criptográficos 272

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

normalmente utiliza cada CMP para satisfacer varias solicitudes para materiales criptográficos,
pero puede usar las características del almacén de proveedores para controlar hasta qué punto
se reutilizan los materiales, determinar la frecuencia con la que se rota su CMP e incluso cambiar
el tipo de CMP que se utiliza sin cambiar el proveedor más reciente.

Puede usar el proveedor más reciente con cualquier almacén de proveedores compatible. El
cliente de cifrado de DynamoDB incluye MetaStore una, que es una tienda de proveedores que
devuelve Wrapped. CMPs

El proveedor más reciente es una buena opción para aplicaciones que necesitan minimizar las
llamadas a su origen criptográfico y para aplicaciones que pueden reutilizar algunos materiales
criptográficos sin infringir sus requisitos de seguridad. Por ejemplo, le permite proteger sus
materiales criptográficos con un AWS KMS keyin AWS Key Management Service(AWS KMS) sin
tener que llamar AWS KMS cada vez que cifra o descifra un elemento.

Para obtener más información, consulte Proveedor más reciente.

Proveedor de materiales estático

El proveedor de materiales estáticos está diseñado para realizar pruebas, proof-of-concept
demostraciones y ofrecer compatibilidad con versiones anteriores. No genera materiales
criptográficos únicos para cada elemento. Devuelve las mismas claves de cifrado y firma que
suministra y dichas claves se utilizan directamente para cifrar, descifrar y firmar los elementos de
tabla.

Note

El Proveedor estático asimétrico de la biblioteca de Java no es un proveedor estático.
Solo suministra constructores alternativos para el CMP encapsulado. Es seguro para uso
de producción, pero se debe utilizar directamente el CMP encapsulado siempre que sea
posible.

Temas

• Proveedor de materiales de KMS directo

• Proveedor de materiales encapsulado

• Proveedor más reciente

• Proveedor de materiales estático

Proveedor de materiales criptográficos 273

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/AsymmetricStaticProvider.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Proveedor de materiales de KMS directo

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de
DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

El proveedor de materiales de Direct KMS (proveedor de Direct KMS) protege los elementos de la
tabla con un AWS KMS keyque nunca deja AWS Key Management Service (AWS KMS) sin cifrar.
Este proveedor de materiales criptográficos devuelve una clave de cifrado y una clave de firma
únicas para cada elemento de la tabla. Para ello, llama AWS KMS cada vez que se cifra o descifra
un elemento.

Si procesa elementos de DynamoDB con una frecuencia alta y a gran escala, es posible que
supere los límites y provoque demoras en AWS KMS requests-per-secondel procesamiento. Si
necesita superar estos límites, cree un caso en el AWS Support Centro. También podría considerar
la posibilidad de utilizar un proveedor de materiales criptográficos con una reutilización de claves
limitada, como el proveedor más reciente.

Para utilizar el proveedor de KMS directo, la persona que llama debe tener, al menos Cuenta de
AWS, uno AWS KMS key, y permiso para llamar a las operaciones de descifrado GenerateDataKeyy
desencriptar del. AWS KMS key La AWS KMS key debe ser una clave de cifrado simétrica; el cliente
de cifrado de DynamoDB no admite el cifrado asimétrico. Si utiliza una tabla global de DynamoDB,
posiblemente desee especificar una AWS KMS clave de múltiples regiones. Para obtener más
información, consulte Modo de uso.

Note

Al utilizar el proveedor de KMS directo, los nombres y valores de los atributos de la clave
principal aparecen en texto plano en el contexto de AWS KMS cifrado y en los AWS
CloudTrail registros de las operaciones relacionadas. AWS KMS Sin embargo, el cliente de
cifrado de DynamoDB nunca expone el texto no cifrado de ningún valor de atributo cifrado.

Proveedor de materiales criptográficos 274

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context

AWS SDK de cifrado de bases de datos Guía para desarrolladores

El proveedor de Direct KMS es uno de los varios proveedores de materiales criptográficos (CMPs)
compatibles con el cliente de cifrado de DynamoDB. Para obtener información sobre el otro CMPs,
consulte. Proveedor de materiales criptográficos

Para ver código de ejemplo, consulte:

• Java: AwsKmsEncryptedItem

• Python: aws-kms-encrypted-table, aws-kms-encrypted-item

Temas

• Modo de uso

• Cómo funciona

Modo de uso

Para crear un proveedor de KMS directo, utilice el parámetro de ID de clave para especificar una
clave KMS de cifrado simétrico en su cuenta. El valor del parámetro ID de clave puede ser el ID
de clave, el ARN de clave, el nombre de alias o el ARN de alias de AWS KMS key. Para obtener
más información sobre los identificadores clave en la Guía para desarrolladores de AWS Key
Management Service .

El proveedor de KMS directo necesita una clave KMS de cifrado simétrica. No puede utilizar una
clave KMS asimétrica. Sin embargo, puede utilizar una clave KMS de múltiples regiones, una clave
KMS con material de claves importado o una clave KMS en un almacén de claves personalizado.
Debe tener los permisos kms: GenerateDataKey y kms:Decrypt en la clave KMS. Por lo tanto, debe
usar una clave administrada por el cliente, no una clave de KMS AWS administrada o AWS propia.

El cliente de cifrado de DynamoDB para Python determina la región a la que se debe AWS KMS
llamar desde la región en el valor del parámetro de ID de clave, si incluye alguna. De lo contrario,
utiliza la región del AWS KMS cliente, si se especifica una, o la región que se configura en el. AWS
SDK para Python (Boto3) Para obtener información sobre la selección de regiones en Python,
consulta Configuración en la referencia de la API del AWS SDK for Python (Boto3).

El cliente de cifrado de DynamoDB para Java determina la región a la que se debe AWS KMS
llamar desde la región del cliente, si AWS KMS el cliente que especifique incluye una región. De lo
contrario, utiliza la región que usted configure en la AWS SDK para Java. Para obtener información
sobre la selección de regiones en AWS SDK para Java, consulte la Región de AWS selección en la
Guía AWS SDK para Java para desarrolladores.

Proveedor de materiales criptográficos 275

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_table.py
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_item.py
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Java

// Replace the example key ARN and Region with valid values for your application
final String keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
final String region = 'us-west-2'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Python

En el siguiente ejemplo, se utiliza la clave ARN para especificar el AWS KMS key. Si su
identificador de clave no incluye una Región de AWS, el cliente de cifrado de DynamoDB obtiene
la región de la sesión de Botocore configurada, si la hay, o de los valores predeterminados de
Boto.

Replace the example key ID with a valid value
kms_key = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key)

Si utiliza tablas globales de Amazon DynamoDB, le recomendamos que cifre los datos con una clave
multirregional. AWS KMS Las claves multirregionales son AWS KMS keys diferentes Regiones de
AWS y se pueden usar indistintamente porque tienen el mismo identificador de clave y el mismo
material de clave. Para obtener más detalles, consulte Uso de claves de múltiples regiones en la
Guía para desarrolladores de AWS Key Management Service .

Note

Si utiliza las tablas globales de la versión 2017.11.29, debe configurar las acciones de los
atributos para que los campos de replicación reservados no estén cifrados ni firmados.
Para obtener más información, consulte Problemas con las tablas globales de versiones
anteriores.

Para usar una clave de múltiples regiones con el cliente de cifrado de DynamoDB, cree una clave de
múltiples regiones y replíquela en las regiones en las que se ejecuta la aplicación. A continuación,

Proveedor de materiales criptográficos 276

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V1.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

configure el proveedor de KMS directo para que utilice la clave de múltiples regiones en la región a la
que llama el cliente de cifrado de DynamoDB AWS KMS.

En el siguiente ejemplo, se configura el cliente de cifrado de DynamoDB para que cifre datos en la
región Este de EE. UU. (Norte de Virginia) (us-east-1) y los descifra en la región Oeste de EE. UU.
(Oregón) (us-west-2) mediante una clave de múltiples regiones.

Java

En este ejemplo, el cliente de cifrado de DynamoDB obtiene la región para realizar AWS KMS
llamadas desde la región del cliente. AWS KMS El valor keyArn identifica una clave de múltiples
regiones en la misma región.

// Encrypt in us-east-1

// Replace the example key ARN and Region with valid values for your application
final String usEastKey = 'arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
final String region = 'us-east-1'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, usEastKey);

// Decrypt in us-west-2

// Replace the example key ARN and Region with valid values for your application
final String usWestKey = 'arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
final String region = 'us-west-2'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, usWestKey);

Python

En este ejemplo, el cliente de cifrado de DynamoDB obtiene la región para realizar AWS KMS
llamadas desde la región en la clave ARN.

Encrypt in us-east-1

Replace the example key ID with a valid value

Proveedor de materiales criptográficos 277

AWS SDK de cifrado de bases de datos Guía para desarrolladores

us_east_key = 'arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=us_east_key)

Decrypt in us-west-2

Replace the example key ID with a valid value
us_west_key = 'arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=us_west_key)

Cómo funciona

El proveedor de KMS directo devuelve las claves de cifrado y firma protegidas por una AWS KMS
key que especifique, tal como se muestra en el diagrama siguiente.

• Para generar materiales de cifrado, el proveedor de Direct KMS solicita AWS KMS generar
una clave de datos única para cada elemento utilizando una clave AWS KMS key que usted
especifique. Deriva las claves de cifrado y de firma para el elemento desde la copia de texto no
cifrado de la clave de datos y, a continuación, devuelve las claves de cifrado y de firma, junto

Proveedor de materiales criptográficos 278

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys

AWS SDK de cifrado de bases de datos Guía para desarrolladores

con la clave de datos cifrada, que está almacenada en el atributo de descripción de material del
elemento.

El encriptador de elementos utiliza las claves de cifrado y de firma y las elimina de la memoria lo
antes posible. En el sistema cifrado solo se guarda la copia cifrada de la clave de datos desde la
que se derivaron.

• Para generar materiales de descifrado, el proveedor de Direct KMS solicita descifrar AWS KMS la
clave de datos cifrada. A continuación, deriva las claves de verificación y firma desde la clave de
datos de texto no cifrado y los devuelve al encriptador de elementos.

El encriptador de elementos verifica el elemento y, si la verificación se realiza correctamente,
descifra los valores cifrados. A continuación, elimina las claves de la memoria lo antes posible.

Obtener los materiales de cifrado

En esta sección se describen en detalle las entradas, las salidas y el procesamiento del proveedor
de KMS directo cuando recibe una solicitud para materiales de cifrado desde el encriptador de
elementos.

Entrada (desde la aplicación)

• El ID de clave de un. AWS KMS key

Entrada (desde el encriptador de elementos)

• Contexto de cifrado de DynamoDB

Salida (al encriptador de elementos)

• Clave de cifrado (texto no cifrado)

• Clave de firma

• En la descripción de material real: estos valores se guardan en el atributo de descripción de
material que el cliente agrega al elemento.

• amzn-ddb-env-key: clave de datos codificada en Base64 cifrada por AWS KMS key

• amzn-ddb-env-alg: Algoritmo de cifrado, por defecto AES/256

• amzn-ddb-sig-alg: algoritmo de firma, por defecto, Hmac /256 SHA256

• amzn-ddb-wrap-alg: kms

Proveedor de materiales criptográficos 279

https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://en.wikipedia.org/wiki/HMAC

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Procesando

1. El proveedor de KMS directo envía AWS KMS una solicitud para utilizar lo especificado AWS KMS
key a fin de generar una clave de datos única para el elemento. La operación devuelve una clave
de texto no cifrado y una copia que está cifrada con la AWS KMS key. Esto se conoce como el
material de claves inicial.

La solicitud incluye los siguientes valores en texto no cifrado en contexto de cifrado de AWS KMS.
Estos valores no secretos están vinculados criptográficamente al objeto cifrado, de modo que se
requiere el mismo contexto de cifrado para el descifrado. Puede usar estos valores para identificar
la llamada AWS KMS en los AWS CloudTrail registros.

• amzn-ddb-env-alg — Algoritmo de cifrado, por defecto AES/256

• amzn-ddb-sig-alg — Algoritmo de firma, por defecto Hmac /256 SHA256

• (Opcional) — aws-kms-table table name

• (Opcional) partition key name — partition key value (los valores binarios están
codificados en Base64)

• (Opcional) sort key name — sort key value (los valores binarios están codificados en
Base64)

El proveedor de Direct KMS obtiene los valores del contexto de AWS KMS cifrado del contexto de
cifrado de DynamoDB del elemento. Si el contexto de cifrado de DynamoDB no incluye un valor,
como el nombre de la tabla, ese par nombre-valor se omite del contexto de cifrado. AWS KMS

2. El proveedor de KMS directo deriva una clave de cifrado simétrica y una clave de firma de la clave
de datos. De forma predeterminada, utiliza el algoritmo hash seguro (SHA) 256 y la función de
derivación de claves RFC5869 basada en HMAC para obtener una clave de cifrado simétrica AES
de 256 bits y una clave de firma HMAC-SHA-256 de 256 bits.

3. El proveedor de KMS directo devuelve la salida al encriptador de elementos.

4. El encriptador de elementos utiliza la clave de cifrado para cifrar los atributos especificados y la
clave de firma para firmarlos, utilizando los algoritmos especificados en la descripción de material
real. Elimina las claves de texto no cifrado de la memoria lo antes posible.

Obtener los materiales de descifrado

En esta sección se describen en detalle las entradas, las salidas y el procesamiento del proveedor
de KMS directo cuando recibe una solicitud para materiales de descifrado desde el encriptador de
elementos.

Proveedor de materiales criptográficos 280

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/kms/latest/developerguide/monitoring-overview.html
https://en.wikipedia.org/wiki/SHA-2
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Entrada (desde la aplicación)

• AWS KMS key El ID de clave de un.

El valor del ID de clave puede ser el ID de clave, el ARN de clave, el nombre de alias o el ARN
de alias del AWS KMS key. Los valores que no se especifiquen en el ID de clave, como la región,
deben estar disponibles en el perfil nombrado AWS. El ARN de clave proporciona todos los valores
que necesita AWS KMS .

Entrada (desde el encriptador de elementos)

• Una copia del contexto de cifrado de DynamoDB que contiene el contenido del atributo de
descripción de material.

Salida (al encriptador de elementos)

• Clave de cifrado (texto no cifrado)

• Clave de firma

Procesando

1. El proveedor de KMS directo obtiene la clave de datos cifrados desde el atributo de descripción
del material en el elemento cifrado.

2. Solicita AWS KMS utilizar la especificada AWS KMS key para descifrar la clave de datos cifrados.
La operación devuelve una clave de texto no cifrado.

Esta solicitud debe usar el mismo contexto de cifrado de AWS KMS que se utilizó para generar y
cifrar la clave de datos.

• aws-kms-table – table name

• partition key name— partition key value (los valores binarios están codificados en
Base64)

• (Opcional) sort key name — sort key value (los valores binarios están codificados en
Base64)

• amzn-ddb-env-alg — Algoritmo de cifrado, por defecto AES/256

• amzn-ddb-sig-alg — Algoritmo de firma, por defecto Hmac /256 SHA256

Proveedor de materiales criptográficos 281

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context

AWS SDK de cifrado de bases de datos Guía para desarrolladores

3. El proveedor de Direct KMS utiliza el algoritmo de hash seguro (SHA) 256 y la función de
derivación de claves RFC5869 basada en el HMAC para obtener una clave de cifrado simétrica
AES de 256 bits y una clave de firma HMAC-SHA-256 de 256 bits a partir de la clave de datos.

4. El proveedor de KMS directo devuelve la salida al encriptador de elementos.

5. El encriptador de elementos utiliza la clave de firma para verificar el elemento. Si se realiza
correctamente, utiliza la clave de cifrado simétrica para descifrar los valores de atributo cifrados.
Estas operaciones utilizan los algoritmos de cifrado y firma especificados en la descripción de
material real. El encriptador de elementos elimina las claves de texto no cifrado de la memoria lo
antes posible.

Proveedor de materiales encapsulado

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de
DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

El proveedor de materiales encapsulado (CMP encapsulado) le permite utilizar las claves de
encapsulación y de firma desde cualquier fuente con el cliente de cifrado de DynamoDB. El Wrapped
CMP no depende de ningún AWS servicio. Sin embargo, debe generar y administrar las claves de
encapsulación y de firma fuera del cliente, incluida la entrega de las claves correctas para verificar y
descifrar el elemento.

El CMP encapsulado genera una clave de cifrado de elemento única para cada elemento. Encapsula
la clave de cifrado del elemento con la clave de encapsulación que proporcione y guarda la clave de
cifrado de elemento encapsulado en el atributo de descripción de materiales del elemento. Dado que
suministra las claves de encapsulación y de firma, determina cómo se generan las claves de firma y
encapsulación y si son únicas para cada elemento o si se reutilizan.

El CMP encapsulado es una implementación segura y supone una buena opción para aplicaciones
que puedan administrar materiales criptográficos.

Proveedor de materiales criptográficos 282

https://en.wikipedia.org/wiki/SHA-2
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Wrapped CMP es uno de los varios proveedores de materiales criptográficos (CMPs) compatibles
con el cliente de cifrado de DynamoDB. Para obtener información sobre el otro, consulte. CMPs
Proveedor de materiales criptográficos

Para ver código de ejemplo, consulte:

• Java: AsymmetricEncryptedItem

• Python: wrapped-rsa-encrypted-table, wrapped-symmetric-encrypted-table

Temas

• Modo de uso

• Funcionamiento

Modo de uso

Para crear un CMP encapsulado, especifique una clave de encapsulación (requerida durante el
cifrado), una clave de desencapsulación (requerida durante el descifrado) y una clave de firma. Debe
proporcionar las claves al cifrar y descifrar elementos.

Las claves de encapsulación, desencapsulación y firma pueden ser claves simétricas o pares de
claves asimétricas.

Java

// This example uses asymmetric wrapping and signing key pairs
final KeyPair wrappingKeys = ...
final KeyPair signingKeys = ...

final WrappedMaterialsProvider cmp =
 new WrappedMaterialsProvider(wrappingKeys.getPublic(),
 wrappingKeys.getPrivate(),
 signingKeys);

Python

This example uses symmetric wrapping and signing keys
wrapping_key = ...
signing_key = ...

wrapped_cmp = WrappedCryptographicMaterialsProvider(

Proveedor de materiales criptográficos 283

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AsymmetricEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/wrapped_rsa_encrypted_table.py
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/wrapped_symmetric_encrypted_table.py

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 wrapping_key=wrapping_key,
 unwrapping_key=wrapping_key,
 signing_key=signing_key
)

Funcionamiento

El CMP encapsulado genera una clave de cifrado de elemento nueva para cada elemento. Utiliza
las claves de encapsulación, desencapsulación y firma que proporcione, tal y como se muestra en el
siguiente diagrama.

Obtener los materiales de cifrado

En esta sección se describen en detalle las entradas, las salidas y el procesamiento del proveedor de
materiales encapsulado (CMP encapsulado) cuando recibe una solicitud para materiales de cifrado.

Entrada (desde la aplicación)

• Clave de encapsulación: una clave simétrica Advanced Encryption Standard (AES) o una clave
pública RSA. Obligatorio si los valores de atributos están cifrados. De lo contrario, es opcional y se
pasa por alto.

• Clave de desencapsulación: opcional y se pasa por alto.

• Clave de firma

Entrada (desde el encriptador de elementos)

• Contexto de cifrado de DynamoDB

Proveedor de materiales criptográficos 284

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Salida (al encriptador de elementos):

• Clave de cifrado de elemento de texto no cifrado

• Clave de firma (sin cambios)

• Descripción de material real: estos valores se guardan en el atributo de descripción de material
que el cliente añade al elemento.

• amzn-ddb-env-key: clave de cifrado de elemento encapsulado cifrado en Base64

• amzn-ddb-env-alg: algoritmo de cifrado utilizado para cifrar el elemento. El valor
predeterminado es AES-256-CBC.

• amzn-ddb-wrap-alg: el algoritmo de encapsulación que utilizó el CMP encapsulado para
encapsular la clave de cifrado del elemento. Si la clave de encapsulación es una clave AES, la
clave se encapsula utilizando AES-Keywrap no rellenado, tal como se define en RFC 3394. Si
la clave de empaquetado es una clave RSA, la clave se cifra mediante RSA OAEP con relleno.
MGF1

Procesando

Cuando se cifra un elemento, transfiere una clave de encapsulación y una clave de firma. Una clave
de desencapsulación es opcional y se pasa por alto.

1. El CMP encapsulado genera una clave de cifrado de elemento simétrica única para el elemento de
tabla.

2. Utiliza la clave de cifrado que especifica para encapsular la clave de cifrado del elemento. A
continuación, lo elimina de la memoria lo antes posible.

3. Devuelve la clave de cifrado del elemento con texto no cifrado, la clave de firma que suministró y
una descripción de material real que incluye la clave de cifrado del elemento encapsulado y los
algoritmos de cifrado y encapsulación.

4. El encriptador de elementos utiliza la clave de cifrado de texto no cifrado para cifrar el elemento.
Utiliza la clave de firma que suministró para firmar el elemento. A continuación, elimina las claves
de texto no cifrado de la memoria lo antes posible. Copia los campos en la descripción de material
real, incluida la clave de cifrado encapsulada (amzn-ddb-env-key), en el atributo de descripción
de material del elemento.

Proveedor de materiales criptográficos 285

https://tools.ietf.org/html/rfc3394.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Obtener los materiales de descifrado

En esta sección se describen en detalle las entradas, las salidas y el procesamiento del proveedor
de materiales encapsulado (CMP encapsulado) cuando recibe una solicitud para materiales de
descifrado.

Entrada (desde la aplicación)

• Clave de encapsulación: opcional y se pasa por alto.

• Clave de encapsulación: la misma clave simétrica Advanced Encryption Standard (AES) o clave
privada RSA que corresponde a la clave pública RSA utilizada para cifrar. Obligatorio si los valores
de atributos están cifrados. De lo contrario, es opcional y se pasa por alto.

• Clave de firma

Entrada (desde el encriptador de elementos)

• Una copia del contexto de cifrado de DynamoDB que contiene el contenido del atributo de
descripción de material.

Salida (al encriptador de elementos)

• Clave de cifrado de elemento de texto no cifrado

• Clave de firma (sin cambios)

Procesando

Cuando se descifra un elemento, transfiere una clave de desencapsulación y una clave de firma. Una
clave de encapsulación es opcional y se pasa por alto.

1. El CMP encapsulado obtiene la clave de cifrado del elemento encapsulado desde el atributo de
descripción de material del elemento.

2. Utiliza la clave de desencapsulación y el algoritmo para desencapsular la clave de cifrado del
elemento.

3. Devuelve la clave de cifrado del elemento con texto no cifrado, la clave de firma y los algoritmos
de cifrado y de firma al encriptador de elementos.

Proveedor de materiales criptográficos 286

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

AWS SDK de cifrado de bases de datos Guía para desarrolladores

4. El encriptador de elementos utiliza la clave de firma para verificar el elemento. Si se realiza
correctamente, utiliza la clave de cifrado de elementos para descifrar el elemento. A continuación,
elimina las claves de texto no cifrado de la memoria lo antes posible.

Proveedor más reciente

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de
DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

El proveedor más reciente es un proveedor de materiales criptográficos (CMP) que está diseñado
para funcionar con un almacén de proveedores. Lo obtiene CMPs de la tienda del proveedor y
obtiene los materiales criptográficos que devuelve de CMPs. Normalmente utiliza cada CMP para
satisfacer varias solicitudes para materiales criptográficos. Pero puede utilizar las características de
su almacén de proveedores para controlar hasta qué punto se reutilizan los materiales, determinar
la frecuencia con la que se rota su CMP e, incluso, cambiar el tipo de CMP que utiliza sin cambiar el
proveedor más reciente.

Note

El código asociado al símbolo MostRecentProvider del proveedor más reciente puede
almacenar materiales criptográficos en la memoria durante todo el proceso. Podría permitir a
la persona que llama usar claves que ya no está autorizada a usar.
El símbolo MostRecentProvider está obsoleto en las versiones anteriores compatibles del
cliente de cifrado de DynamoDB y se eliminó de la versión 2.0.0. Se sustituye por el símbolo
CachingMostRecentProvider. Para obtener más información, consulte Actualizaciones
del proveedor más reciente.

El proveedor más reciente es una buena opción para aplicaciones que necesitan minimizar las
llamadas al almacén de proveedores y su origen criptográfico y para aplicaciones que pueden
reutilizar algunos materiales criptográficos sin infringir sus requisitos de seguridad. Por ejemplo, le

Proveedor de materiales criptográficos 287

AWS SDK de cifrado de bases de datos Guía para desarrolladores

permite proteger sus materiales criptográficos con un signo AWS KMS keyin AWS Key Management
Service(AWS KMS) sin tener que llamar AWS KMS cada vez que cifra o descifra un elemento.

El almacén de proveedores que elija determinará el tipo CMPs que utilizará el proveedor más
reciente y la frecuencia con la que recibirá un nuevo CMP. Puede utilizar cualquier almacén de
proveedores compatible con el proveedor más reciente, incluidos los almacenes de proveedor
personalizados que diseñe.

El cliente de cifrado de DynamoDB incluye MetaStoreun que crea y devuelve proveedores de
materiales empaquetados (Wrapped). CMPs MetaStore Guarda varias versiones del Wrapped CMPs
que genera en una tabla interna de DynamoDB y las protege con un cifrado del lado del cliente
mediante una instancia interna del DynamoDB Encryption Client.

Puede configurarlo MetaStore para que utilice cualquier tipo de CMP interno para proteger los
materiales de la tabla, incluido un proveedor de KMS directo que genere materiales criptográficos
protegidos por usted AWS KMS key, un CMP empaquetado que utilice las claves de empaquetado y
firma que usted suministre o un CMP personalizado compatible que diseñe.

Para ver código de ejemplo, consulte:

• Java: MostRecentEncryptedItem

• Python: most_recent_provider_encrypted_table

Temas

• Modo de uso

• Funcionamiento

• Actualizaciones del proveedor más reciente

Modo de uso

Para crear un proveedor más reciente, tiene que crear y configurar un almacén de proveedores y, a
continuación, crear un proveedor más reciente que utiliza el almacén de proveedores.

Los siguientes ejemplos muestran cómo crear un proveedor más reciente que utilice MetaStore y
proteja las versiones de su tabla interna de DynamoDB con materiales criptográficos de un proveedor
de Direct KMS. Estos ejemplos utilizan el símbolo CachingMostRecentProvider.

Cada proveedor más reciente tiene un nombre que lo identifica CMPs en la MetaStore tabla, un
ajuste time-to-live(TTL) y un ajuste de tamaño de caché que determina el número de entradas que

Proveedor de materiales criptográficos 288

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/MostRecentEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/most_recent_provider_encrypted_table.py

AWS SDK de cifrado de bases de datos Guía para desarrolladores

puede contener la caché. En estos ejemplos, se establece el tamaño de la caché en 1000 entradas y
un TTL de 60 segundos.

Java

// Set the name for MetaStore's internal table
final String keyTableName = 'metaStoreTable'

// Set the Region and AWS KMS key
final String region = 'us-west-2'
final String keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

// Set the TTL and cache size
final long ttlInMillis = 60000;
final long cacheSize = 1000;

// Name that identifies the MetaStore's CMPs in the provider store
final String materialName = 'testMRP'

// Create an internal DynamoDB client for the MetaStore
final AmazonDynamoDB ddb =
 AmazonDynamoDBClientBuilder.standard().withRegion(region).build();

// Create an internal Direct KMS Provider for the MetaStore
final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider kmsProv = new DirectKmsMaterialProvider(kms,
 keyArn);

// Create an item encryptor for the MetaStore,
// including the Direct KMS Provider
final DynamoDBEncryptor keyEncryptor = DynamoDBEncryptor.getInstance(kmsProv);

// Create the MetaStore
final MetaStore metaStore = new MetaStore(ddb, keyTableName, keyEncryptor);

//Create the Most Recent Provider
final CachingMostRecentProvider cmp = new CachingMostRecentProvider(metaStore,
 materialName, ttlInMillis, cacheSize);

Python

Designate an AWS KMS key

Proveedor de materiales criptográficos 289

AWS SDK de cifrado de bases de datos Guía para desarrolladores

kms_key_id = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

Set the name for MetaStore's internal table
meta_table_name = 'metaStoreTable'

Name that identifies the MetaStore's CMPs in the provider store
material_name = 'testMRP'

Create an internal DynamoDB table resource for the MetaStore
meta_table = boto3.resource('dynamodb').Table(meta_table_name)

Create an internal Direct KMS Provider for the MetaStore
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

Create the MetaStore with the Direct KMS Provider
meta_store = MetaStore(
 table=meta_table,
 materials_provider=kms_cmp
)

Create a Most Recent Provider using the MetaStore
Sets the TTL (in seconds) and cache size (# entries)
most_recent_cmp = MostRecentProvider(
 provider_store=meta_store,
 material_name=material_name,
 version_ttl=60.0,
 cache_size=1000
)

Funcionamiento

El proveedor más reciente se obtiene CMPs de una tienda de proveedores. A continuación, utiliza el
CMP para generar los materiales criptográficos que devuelve al encriptador de elementos.

Acerca del proveedor más reciente

El proveedor más reciente obtiene un proveedor de materiales criptográficos (CMP) desde un
almacén de proveedores. A continuación, utiliza el CMP para generar los materiales criptográficos
que devuelve. Cada proveedor más reciente está asociado a una tienda de proveedores, pero una
tienda de proveedores puede suministrar CMPs a varios proveedores en varios hosts.

Proveedor de materiales criptográficos 290

AWS SDK de cifrado de bases de datos Guía para desarrolladores

El proveedor más reciente puede funcionar con cualquier CMP compatible desde cualquier almacén
de proveedores. El encriptador de elementos solicita materiales de cifrado o descifrado al CMP y los
devuelve al encriptador de elementos. No realiza ninguna operación criptográfica.

Para solicitar un CMP desde su almacén de proveedores, el proveedor más reciente proporciona
su nombre de material y la versión de un CMP existente que desea utilizar. Para los materiales de
cifrado, el proveedor más reciente solicita siempre la versión máxima ("más reciente"). Para los
materiales de descifrado, solicita la versión del CMP que se utilizó para crear los materiales de
cifrado, tal como se muestra en el diagrama siguiente.

El proveedor más reciente guarda las versiones de las CMPs que devuelve la tienda del proveedor
en una caché local de uso menos reciente (LRU) en la memoria. La memoria caché permite al
proveedor más reciente obtener lo que necesita sin tener CMPs que llamar a la tienda del proveedor
para comprar cada artículo. Puede borrar la caché bajo demanda.

El proveedor más reciente utiliza un time-to-livevalor configurable que se puede ajustar en función de
las características de la aplicación.

Acerca del MetaStore

Puede utilizar un proveedor más reciente con cualquier almacén de proveedores, incluido un
almacén de proveedores personalizado compatible. El cliente de cifrado de DynamoDB incluye
MetaStore una implementación segura que se puede configurar y personalizar.

Proveedor de materiales criptográficos 291

AWS SDK de cifrado de bases de datos Guía para desarrolladores

A MetaStorees un almacén proveedor que crea y devuelve Wrapped, CMPs que se configura con
la clave de empaquetado, la clave de desempaquetado y la clave de firma que Wrapped requiere.
CMPs A MetaStore es una opción segura para los proveedores más recientes, ya que Wrapped
CMPs siempre genera claves de cifrado únicas para cada artículo. Solo se reutilizan la clave de
encapsulación que protege la clave de cifrado del elemento y las claves de firma.

El siguiente diagrama muestra los componentes del proveedor más reciente MetaStore y cómo
interactúa con él.

MetaStore Genera el Wrapped y CMPs, a continuación, lo almacena (en forma cifrada) en una tabla
interna de DynamoDB. La clave de partición es el nombre del material del proveedor más reciente; la
clave de clasificación es el número de versión. Los materiales de la tabla están protegidos mediante
un cliente de cifrado interno de DynamoDB, incluido un encriptador de elementos y un proveedor de
materiales criptográficos (CMP) interno.

Puede utilizar cualquier tipo de CMP interno MetaStore, incluido un proveedor de KMS directo, un
CMP empaquetado con materiales criptográficos que usted proporcione o un CMP personalizado
compatible. Si el CMP interno de su empresa MetaStore es un proveedor de Direct KMS, sus claves
reutilizables de empaquetado y firma están protegidas con un símbolo in (). AWS KMS keyAWS Key
Management ServiceAWS KMS Las MetaStore llamadas AWS KMS cada vez que agrega una nueva
versión de CMP a su tabla interna o obtiene una versión de CMP de su tabla interna.

Proveedor de materiales criptográficos 292

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Establecer un valor time-to-live

Puede establecer un valor time-to-live (TTL) para cada proveedor más reciente que cree. En general,
utilice el valor TTL más bajo que resulte práctico para su aplicación.

El uso del valor de TTL se cambia en el símbolo CachingMostRecentProvider del proveedor
más reciente.

Note

El MostRecentProvider símbolo del proveedor más reciente quedó obsoleto en
las versiones anteriores compatibles del cliente de cifrado de DynamoDB y se eliminó
de la versión 2.0.0. Se sustituye por el símbolo CachingMostRecentProvider. Se
recomienda que actualice el código lo antes posible. Para obtener más información, consulte
Actualizaciones del proveedor más reciente.

CachingMostRecentProvider

El CachingMostRecentProvider utiliza el valor de TTL de dos maneras diferentes.

• El TTL determina la frecuencia con la que el proveedor más reciente busca en la tienda del
proveedor una nueva versión del CMP. Si hay una nueva versión disponible, el proveedor más
reciente reemplaza su CMP y actualiza sus materiales criptográficos. De lo contrario, seguirá
utilizando su CMP y sus materiales criptográficos actuales.

• El TTL determina cuánto tiempo se puede usar CMPs en la memoria caché. Antes de utilizar
un CMP almacenado en caché para el cifrado, el proveedor más reciente evalúa el tiempo que
permanece en la memoria caché. Si el tiempo de caché de un CMP supera el TTL, el CMP se
expulsa de la memoria caché y el proveedor más reciente obtiene una nueva versión del CMP
de la última versión de la tienda de su proveedor.

MostRecentProvider

En el MostRecentProvider, el TTL determina la frecuencia con la que el proveedor más
reciente busca en la tienda del proveedor una nueva versión del CMP. Si hay una nueva
versión disponible, el proveedor más reciente reemplaza su CMP y actualiza sus materiales
criptográficos. De lo contrario, seguirá utilizando su CMP y sus materiales criptográficos actuales.

El TTL no determina la frecuencia con la que se crea una nueva versión del CMP. Las nuevas
versiones de CMP se crean rotando los materiales criptográficos.

Proveedor de materiales criptográficos 293

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Un valor de TTL ideal varía según la aplicación y sus objetivos de latencia y disponibilidad. Un
TTL menor mejora el perfil de seguridad al reducir el tiempo que los materiales criptográficos
se almacenan en la memoria. Además, un TTL menor actualiza la información crítica con más
frecuencia. Por ejemplo, si su CMP interno es un proveedor de KMS directo, verificará con más
frecuencia que la persona que llama siga estando autorizada a utilizar un AWS KMS key.

Sin embargo, si el TTL es demasiado breve, las llamadas frecuentes a la tienda del proveedor
pueden aumentar los costos y hacer que la tienda del proveedor limite las solicitudes de su
aplicación y de otras aplicaciones que comparten su cuenta de servicio. También podría resultarle útil
coordinar el TTL con la velocidad de rotación de los materiales criptográficos.

Durante las pruebas, varíe el TTL y el tamaño de la caché según las distintas cargas de trabajo hasta
que encuentre una configuración que se adapte a su aplicación y a sus estándares de seguridad y
rendimiento.

Rotación de materiales criptográficos

Cuando un proveedor más reciente necesita materiales de cifrado, siempre utiliza la versión más
reciente que conozca de su CMP. La frecuencia con la que comprueba si hay una versión más
reciente viene determinada por el valor time-to-live(TTL) que se establece al configurar el proveedor
más reciente.

Cuando el TTL caduca, el proveedor más reciente busca en la tienda del proveedor una versión más
reciente del CMP. Si hay alguna disponible, el proveedor más reciente la obtiene y reemplaza el
CMP en su caché. Utiliza este CMP y sus materiales criptográficos hasta que descubre que la tienda
del proveedor tiene una versión más reciente.

Para indicarle al almacén de proveedores que cree una nueva versión de un CMP para un proveedor
más reciente, llame a la operación Crear nuevo proveedor del almacén de proveedores con el
nombre del material del proveedor más reciente. El almacén de proveedores crea un nuevo CMP
y guarda una copia cifrada en su almacén interno con un número de versión mayor. (También
devuelve un CMP, pero puede descartarlo). Como resultado, la próxima vez que el proveedor más
reciente consulte el número máximo de versión de su almacén de proveedores CMPs, obtendrá
el nuevo número de versión superior y lo utilizará en las siguientes solicitudes al almacén para
comprobar si se ha creado una nueva versión del CMP.

Puede programar sus llamadas a Crear nuevo proveedor en función de la hora, del número de
elementos o de los atributos procesados o de cualquier otra métrica que tenga sentido para su
aplicación.

Proveedor de materiales criptográficos 294

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Obtener los materiales de cifrado

El proveedor más reciente utiliza el siguiente proceso, mostrado en este diagrama, para obtener
los materiales de cifrado que devuelve al encriptador de elementos. La salida depende del tipo de
CMP que el almacén de proveedores devuelve. El proveedor más reciente puede usar cualquier
almacén de proveedores compatible, incluido el MetaStore que se incluye en el cliente de cifrado de
DynamoDB.

Al crear un proveedor más reciente con el CachingMostRecentProvidersímbolo, se especifica
un almacén de proveedores, un nombre para el proveedor más reciente y un valor time-to-live(TTL).
Si lo desea, también puede especificar un tamaño de caché, que determina la cantidad máxima de
materiales criptográficos que pueden existir en la caché.

Cuando el encriptador de elementos solicita al proveedor más reciente materiales de cifrado, el
proveedor más reciente empieza buscando en su caché la versión más reciente de su CMP.

Proveedor de materiales criptográficos 295

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• Si encuentra el CMP con la versión más reciente en su caché y el CMP no ha excedido el valor de
TTL, el proveedor más reciente utiliza el CMP para generar materiales de cifrado. A continuación,
devuelve los materiales de cifrado al encriptador de elementos. Esta operación no requiere una
llamada al almacén de proveedores.

• Si la última versión del CMP no está en su caché, o si está en la caché, pero excedió su valor de
TTL, el proveedor más reciente solicita un CMP desde su almacén de proveedores. La solicitud
incluye el nombre del material del proveedor más reciente y el número de versión máximo que
conoce.

1. El almacén de proveedores devuelve un CMP desde su almacenamiento persistente. Si el
almacén del proveedor es un MetaStore, obtiene un CMP empaquetado cifrado de su tabla
interna de DynamoDB utilizando el nombre del material del proveedor más reciente como clave
de partición y el número de versión como clave de clasificación. MetaStore Utiliza su cifrador
de elementos interno y su CMP interno para descifrar el CMP empaquetado. A continuación,
devuelve el CMP de texto no cifrado al proveedor más reciente. Si el CMP interno es un
proveedor de KMS directo, este paso incluye una llamada al AWS Key Management Service
(AWS KMS).

2. El CMP agrega el campo amzn-ddb-meta-id a la descripción de material real. Su valor es el
nombre de material y la versión del CMP en su tabla interna. El almacén del proveedor devuelve
el CMP al proveedor más reciente.

3. El proveedor más reciente almacena en la memoria caché el CMP.

4. El proveedor más reciente utiliza el CMP para generar materiales de cifrado. A continuación,
devuelve los materiales de cifrado al encriptador de elementos.

Obtener los materiales de descifrado

Cuando el encriptador de elementos solicita al proveedor más reciente los materiales de descifrado,
el proveedor más reciente utiliza el proceso siguiente para obtenerlos y devolverlos.

1. El proveedor más reciente solicita al almacén de proveedores el número de la versión de los
materiales criptográficos que se utilizaron para cifrar el elemento. Transfiere la descripción de
material real desde el atributo de descripción de material del elemento.

2. El almacén de proveedores obtiene el número de versión de CMP de cifrado desde el campo
amzn-ddb-meta-id en la descripción de material real y lo devuelve al proveedor más reciente.

3. El proveedor más reciente busca en la caché la versión del CMP que se utilizó para cifrar y firmar
el elemento.

Proveedor de materiales criptográficos 296

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• Si encuentra que la versión coincidente del CMP está en su caché y que el CMP no ha superado
el valor time-to-live (TTL), el proveedor más reciente utiliza el CMP para generar materiales de
descifrado. A continuación, devuelve los materiales de descifrado al encriptador de elementos.
Esta operación no requiere una llamada al almacén de proveedores o cualquier otro CMP.

• Si la versión coincidente del CMP no está en su caché, o si la caché AWS KMS key excedió su
valor de TTL, el proveedor más reciente solicita un CMP desde su almacén de proveedores. Envía
el nombre del material y el número de versión de CMP de cifrado en la solicitud.

1. El almacén de proveedores busca su almacenamiento persistente para el CMP utilizando el
nombre del proveedor más reciente como clave de partición y el número de la versión como la
clave de clasificación.

• Si el nombre y el número de versión no están en su almacenamiento persistente, el almacén
de proveedores genera una excepción. Si el almacén de proveedores se utilizó para generar
el CMP, el CMP se debería almacenar en su almacenamiento persistente, a menos que se
haya eliminado de forma intencionada.

• Si el CMP con el nombre y número de versión coincidentes están en el almacenamiento
persistente del almacén de proveedores, este devuelve el CMP especificado al proveedor
más reciente.

Si el almacén del proveedor es un MetaStore, obtiene el CMP cifrado de su tabla de
DynamoDB. A continuación, utiliza materiales criptográficos desde su CMP interno para
descifrar el CMP cifrado antes de devolver el CMP al proveedor más reciente. Si el CMP
interno es un proveedor de KMS directo, este paso incluye una llamada al AWS Key
Management Service (AWS KMS).

2. El proveedor más reciente almacena en la memoria caché el CMP.

3. El proveedor más reciente utiliza el CMP para generar materiales de descifrado. A continuación,
devuelve los materiales de descifrado al encriptador de elementos.

Actualizaciones del proveedor más reciente

El símbolo del proveedor más reciente cambia de MostRecentProvider a
CachingMostRecentProvider.

Note

El símbolo MostRecentProvider, que representa al proveedor más reciente, está obsoleto
en la versión 1.15 del cliente de cifrado de DynamoDB para Java y en la versión 1.3 del

Proveedor de materiales criptográficos 297

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

cliente de cifrado de DynamoDB para Python, y se eliminó de las versiones 2.0.0 del cliente
de cifrado de DynamoDB en las implementaciones de ambos lenguajes. En su lugar, utilice el
CachingMostRecentProvider.

El CachingMostRecentProvider implementa los siguientes cambios:

• Elimina CachingMostRecentProvider periódicamente los materiales criptográficos de la
memoria cuando su tiempo en la memoria supera el valor configurado time-to-live (TTL).

Es posible que MostRecentProvider almacene materiales criptográficos en la memoria durante
el tiempo de vida del proceso. Como resultado, es posible que el proveedor más reciente no esté
al tanto de los cambios de autorización. Es posible que utilice claves de cifrado una vez revocados
los permisos de uso de la persona que llama.

Si no puede actualizar a esta nueva versión, puede obtener un efecto similar si llama
periódicamente al clear() método de la memoria caché. Este método vacía manualmente el
contenido de la caché y requiere que el proveedor más reciente solicite un nuevo CMP y nuevos
materiales criptográficos.

• El CachingMostRecentProvider también incluye una configuración de tamaño de la caché que
le da más control sobre la caché.

Para actualizar el CachingMostRecentProvider, debe cambiar el nombre del símbolo en el
código. En todos los demás aspectos, el CachingMostRecentProvider es totalmente compatible
con versiones anteriores del MostRecentProvider. No es necesario volver a cifrar ningún
elemento de la mesa.

Sin embargo, el CachingMostRecentProvider genera más llamadas a la infraestructura clave
subyacente. Llama a la tienda del proveedor al menos una vez en cada intervalo time-to-live
(TTL). Las aplicaciones con numerosas flotas activas CMPs (debido a la rotación frecuente) o las
aplicaciones con grandes flotas son las más propensas a ser sensibles a este cambio.

Antes de publicar el código actualizado, pruébelo minuciosamente para asegurarse de que las
llamadas más frecuentes no perjudiquen a la aplicación ni provoquen una limitación por parte de los
servicios de los que depende su proveedor, como AWS Key Management Service (AWS KMS) o
Amazon DynamoDB. Para mitigar cualquier problema de rendimiento, ajuste el tamaño de la caché
y el tamaño time-to-live de la memoria caché en CachingMostRecentProvider función de las

Proveedor de materiales criptográficos 298

AWS SDK de cifrado de bases de datos Guía para desarrolladores

características de rendimiento que observe. Para obtener instrucciones, consulte Establecer un valor
time-to-live.

Proveedor de materiales estático

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de
DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

El proveedor de materiales estáticos (Static CMP) es un proveedor de materiales criptográficos
(CMP) muy simple que está diseñado para pruebas, proof-of-concept demostraciones y
compatibilidad con sistemas anteriores.

Para utilizar el CMP estático para cifrar un elemento de tabla, proporcione una clave de cifrado
simétrica con Advanced Encryption Standard (AES) y una clave o un par de claves de firma. Debe
proporcionar las mismas claves para descifrar el elemento cifrado. El CMP estático no realiza
ninguna operación criptográfica. En lugar de ello, transfiere las claves de cifrado que suministra al
encriptador de elementos sin cambios. El encriptador de elementos cifra los elementos directamente
bajo la clave de cifrado. A continuación, utiliza la clave de cifrado directamente para firmarlos.

Dado que el CMP estático no genera ningún material criptográfico único, todos los elementos de
tabla que procesa están cifrados con la misma clave de cifrado y están firmados por la misma clave
de firma. Cuando se utiliza la misma clave para cifrar los valores de atributos en muchos elementos
o se utiliza la misma clave o par de claves para firmar todos los elementos, se arriesga a exceder los
límites criptográficos de las claves.

Note

El Proveedor estático asimétrico de la biblioteca de Java no es un proveedor estático. Solo
suministra constructores alternativos para el CMP encapsulado. Es seguro para uso de
producción, pero se debe utilizar directamente el CMP encapsulado siempre que sea posible.

Proveedor de materiales criptográficos 299

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/AsymmetricStaticProvider.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

El CMP estático es uno de los varios proveedores de materiales criptográficos (CMPs) compatibles
con el cliente de cifrado de DynamoDB. Para obtener información sobre el otro, consulte. CMPs
Proveedor de materiales criptográficos

Para ver código de ejemplo, consulte:

• Java: SymmetricEncryptedItem

Temas

• Modo de uso

• Funcionamiento

Modo de uso

Para crear un proveedor estático, suministre una clave un par de claves de cifrado o y una clave o
par de claves de firma. Tiene que proporcionar material de claves para cifrar y descifrar elementos de
tabla.

Java

// To encrypt
SecretKey cek = ...; // Encryption key
SecretKey macKey = ...; // Signing key
EncryptionMaterialsProvider provider = new SymmetricStaticProvider(cek, macKey);

// To decrypt
SecretKey cek = ...; // Encryption key
SecretKey macKey = ...; // Verification key
EncryptionMaterialsProvider provider = new SymmetricStaticProvider(cek, macKey);

Python

You can provide encryption materials, decryption materials, or both
encrypt_keys = EncryptionMaterials(
 encryption_key = ...,
 signing_key = ...
)

decrypt_keys = DecryptionMaterials(
 decryption_key = ...,

Proveedor de materiales criptográficos 300

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/SymmetricEncryptedItem.java

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 verification_key = ...
)

static_cmp = StaticCryptographicMaterialsProvider(
 encryption_materials=encrypt_keys
 decryption_materials=decrypt_keys
)

Funcionamiento

El proveedor estático transfiere las claves de cifrado y de firma que suministre al encriptador de
elementos, donde se utilizan directamente para cifrar y firmar los elementos de tabla. A menos que
suministre distintas claves para cada elemento, se utilizan las mismas claves para todos ellos.

Obtener los materiales de cifrado

En esta sección se describen en detalle las entradas, las salidas y el procesamiento del proveedor de
materiales estático (CMP estático) cuando recibe una solicitud para materiales de cifrado.

Entrada (desde la aplicación)

• Una clave de cifrado: esta debe ser una clave simétrica, como una clave del estándar de cifrado
avanzado (AES).

• Una clave de firma: esta puede ser una clave simétrica o un par de claves asimétricas.

Entrada (desde el encriptador de elementos)

• Contexto de cifrado de DynamoDB

Salida (al encriptador de elementos)

Proveedor de materiales criptográficos 301

https://tools.ietf.org/html/rfc3394.html
https://tools.ietf.org/html/rfc3394.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• La clave de cifrado transferida como entrada.

• La clave de firma transferida como entrada.

• Descripción de material real: la descripción de material solicitada, si la hay, sin cambios.

Obtener los materiales de descifrado

En esta sección se describen en detalle las entradas, las salidas y el procesamiento del proveedor de
materiales estático (CMP estático) cuando recibe una solicitud para materiales de descifrado.

Aunque incluye métodos independientes para obtener materiales de cifrado y obtener materiales de
descifrado, el comportamiento es el mismo.

Entrada (desde la aplicación)

• Una clave de cifrado: esta debe ser una clave simétrica, como una clave del estándar de cifrado
avanzado (AES).

• Una clave de firma: esta puede ser una clave simétrica o un par de claves asimétricas.

Entrada (desde el encriptador de elementos)

• Contexto de cifrado de DynamoDB (no utilizado)

Salida (al encriptador de elementos)

• La clave de cifrado transferida como entrada.

• La clave de firma transferida como entrada.

Lenguajes de programación disponibles para el Cliente de encriptación de
Amazon DynamoDB

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de

Lenguajes de programación 302

https://tools.ietf.org/html/rfc3394.html
https://tools.ietf.org/html/rfc3394.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

El Cliente de encriptación de Amazon DynamoDB está disponible para los siguientes lenguajes de
programación. Las bibliotecas específicas de lenguaje varían, pero las implementaciones resultantes
son interoperables. Por ejemplo, puede cifrar (y firmar) un elemento con el cliente Java y descifrar el
elemento con el cliente Python.

Para obtener más información, consulte el tema correspondiente.

Temas

• Cliente de encriptación de Amazon DynamoDB para Java

• Cliente de cifrado de DynamoDB para Python

Cliente de encriptación de Amazon DynamoDB para Java

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de
DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

En este tema, se explica cómo instalar y utilizar el Cliente de encriptación de Amazon DynamoDB
para Java. Para obtener más información sobre la programación con el cliente de cifrado de
DynamoDB, consulte los ejemplos de Java, los ejemplos del repositorio GitHub y aws-dynamodb-
encryption-java el Javadoc del cliente de cifrado de DynamoDB.

Note

Versiones 1. x. x del cliente de cifrado de DynamoDB para Java entrarán end-of-support
en fase a partir de julio de 2022. Actualice a una versión más reciente tan pronto como sea
posible.

Lenguajes de programación 303

https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Temas

• Requisitos previos

• Instalación

• Uso del cliente de cifrado de DynamoDB para Java

• Ejemplo de código para el cliente de cifrado de DynamoDB para Java

Requisitos previos

Antes de instalar el Cliente de encriptación de Amazon DynamoDB para Java, asegúrese de que
cumple los siguientes requisitos previos.

Un entorno de desarrollo de Java

Necesitará Java 8 o una versión posterior. En el sitio web de Oracle, vaya a la página de
descargas de Java SE y, a continuación, descargue e instale el Java SE Development Kit (JDK).

Si utiliza el JDK de Oracle, también debe descargar e instalar los archivos de políticas de
jurisdicción de seguridad ilimitada de la extensión de criptografía de Java (JCE).

AWS SDK para Java

El cliente de cifrado de DynamoDB requiere el módulo DynamoDB incluso si la aplicación no
interactúa con DynamoDB. AWS SDK para Java Puede instalar todo el SDK o solo este módulo.
Si utiliza Maven, añada aws-java-sdk-dynamodb al archivo pom.xml.

Para obtener más información sobre la instalación y configuración del, consulte. AWS SDK para
JavaAWS SDK para Java

Instalación

Puede instalar el Cliente de encriptación de Amazon DynamoDB para Java de las siguientes
maneras.

Manualmente

Para instalar el cliente de cifrado Amazon DynamoDB para Java, clone o descargue el repositorio.
aws-dynamodb-encryption-java GitHub

Lenguajes de programación 304

https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/getting-started.html
https://github.com/aws/aws-dynamodb-encryption-java/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Con Apache Maven

El Cliente de encriptación de Amazon DynamoDB para Java está disponible en Apache Maven
con la siguiente definición de dependencias.

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-dynamodb-encryption-java</artifactId>
 <version>version-number</version>
</dependency>

Tras instalar el SDK, comience consultando el código de ejemplo de esta guía y el Javadoc del
cliente de cifrado de DynamoDB. GitHub

Uso del cliente de cifrado de DynamoDB para Java

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de
DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

En este tema, se explican algunas de las características del cliente de cifrado de DynamoDB en Java
que podrían no encontrarse en otras implementaciones de lenguaje de programación.

Para obtener más información sobre la programación con el cliente de cifrado de DynamoDB,
consulte los ejemplos de Java, los ejemplos de GitHub on y el Javadoc aws-dynamodb-
encryption-java repository del cliente de cifrado de DynamoDB.

Temas

• Encriptadores de elementos: y Dynamo AttributeEncryptor DBEncryptor

• Configuración del comportamiento de almacenamiento

• Acciones de atributo en Java

• Reemplazar nombres de tabla

Lenguajes de programación 305

https://maven.apache.org/
https://aws.github.io/aws-dynamodb-encryption-java/
https://aws.github.io/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/
https://aws.github.io/aws-dynamodb-encryption-java/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Encriptadores de elementos: y Dynamo AttributeEncryptor DBEncryptor

El cliente de cifrado de DynamoDB en Java tiene dos cifradores de elementos: el Dynamo de nivel
inferior y el. DBEncryptor AttributeEncryptor

AttributeEncryptorEs una clase auxiliar que le ayuda a usar Dynamo AWS SDK para Java
con DBMapper el cliente de cifrado DynamoDB Encryptor de DynamoDB. Cuando utiliza el
AttributeEncryptor con el DynamoDBMapper, cifra y firma de forma transparente los elementos
cuando los guarda. También verifica y descifra de forma transparente los elementos al cargarlos.

Configuración del comportamiento de almacenamiento

Puede usar el AttributeEncryptor y DynamoDBMapper para agregar o editar elementos de
la tabla con atributos que solo están firmados o que están cifrados y firmados. Para estas tareas,
recomendamos que lo configure para que use el comportamiento de guardado PUT, tal como se
muestra en el siguiente ejemplo. De lo contrario, es posible que no pueda descifrar los datos.

DynamoDBMapperConfig mapperConfig =
 DynamoDBMapperConfig.builder().withSaveBehavior(SaveBehavior.PUT).build();
DynamoDBMapper mapper = new DynamoDBMapper(ddb, mapperConfig, new
 AttributeEncryptor(encryptor));

Si utiliza el comportamiento de almacenamiento predeterminado, que actualiza los atributos en el
elemento de la tabla, solo se incluyen en la firma atributos que se hayan cambiado. Como resultado,
en las lecturas posteriores de todos los atributos, la firma no se validará, porque no incluye los
atributos no modelados.

También puede utilizar el comportamiento de guardado CLOBBER. Este comportamiento es idéntico
al comportamiento de guardado PUT, pero deshabilita el bloqueo positivo y sobrescribe el elemento
en la tabla.

Para evitar errores de firma, el cliente de cifrado de DynamoDB lanza una excepción de tiempo de
ejecución si se utiliza un AttributeEncryptor con un DynamoDBMapper que no está configurado
con un comportamiento seguro de CLOBBER o PUT.

Para ver este código utilizado en un ejemplo, consulte Uso del Dynamo DBMapper y el ejemplo de
AwsKmsEncryptedObject.java en el repositorio de. aws-dynamodb-encryption-java GitHub

Lenguajes de programación 306

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedObject.java

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Acciones de atributo en Java

Las acciones de atributo determinan qué valores de atributo se cifran y se firman, cuáles solo
se firman y cuáles se omiten. El método que utilice para especificar las acciones de los atributos
depende de si utiliza el Dynamo de nivel inferior o el DynamoDBMapper Dynamo de nivel inferior.
AttributeEncryptor DBEncryptor

Important

Después de utilizar las acciones de atributo para cifrar los elementos de la tabla, agregar o
quitar atributos del modelo de datos puede provocar un error de validación de firma que le
impide descifrar los datos. Para ver una explicación detallada, consulte Cambiar el modelo de
datos.

Acciones de atributos para el Dynamo DBMapper

Cuando utilice DynamoDBMapper y AttributeEncryptor, utilice anotaciones para especificar las
acciones de atributos. El cliente de cifrado de DynamoDB utiliza las anotaciones de atributo estándar
que definen el tipo de atributo para determinar cómo proteger un atributo. De forma predeterminada,
todos los atributos están cifrados y firmados, excepto las claves principales, que están firmadas, pero
no cifradas.

Note

No cifre el valor de los atributos con la anotación @Dynamo DBVersion Attribute, aunque
puede (y debe) firmarlos. De lo contrario, las condiciones que utilizan su valor tendrán
efectos no previstos.

// Attributes are encrypted and signed
@DynamoDBAttribute(attributeName="Description")

// Partition keys are signed but not encrypted
@DynamoDBHashKey(attributeName="Title")

// Sort keys are signed but not encrypted
@DynamoDBRangeKey(attributeName="Author")

Lenguajes de programación 307

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Annotations.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.OptimisticLocking.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Para especificar las excepciones, utilice las anotaciones de cifrado que se definen en el cliente de
cifrado de DynamoDB para Java. Si las especifica en el nivel de clase, se convierten en el valor
predeterminado para la clase.

// Sign only
@DoNotEncrypt

// Do nothing; not encrypted or signed
@DoNotTouch

Por ejemplo, estas anotaciones firman pero no cifran el atributo PublicationYear y no cifran o
firman el valor del atributo ISBN.

// Sign only (override the default)
@DoNotEncrypt
@DynamoDBAttribute(attributeName="PublicationYear")

// Do nothing (override the default)
@DoNotTouch
@DynamoDBAttribute(attributeName="ISBN")

Acciones de atributos para el Dynamo DBEncryptor

Para especificar las acciones de los atributos cuando utilice la Dinamo DBEncryptor directamente,
cree un HashMap objeto en el que los pares nombre-valor representen los nombres de los atributos y
las acciones especificadas.

Los valores válidos para las acciones de atributo que se definen en el tipo enumerado
EncryptionFlags. Puede utilizar ENCRYPT y SIGN juntos, usar SIGN solo u omitir ambos. Sin
embargo, si usa ENCRYPT solo, el cliente de cifrado de DynamoDB generará un error. No puede
cifrar un atributo que no firme.

ENCRYPT
SIGN

Warning

No cifre los atributos de clave principal. Deben permanecer en texto no cifrado para que
DynamoDB pueda encontrar el elemento sin realizar un examen completo de la tabla.

Lenguajes de programación 308

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Si especifica una clave principal en el contexto de cifrado y, a continuación, especifica ENCRYPT
en la acción de atributo para alguno de los atributos de clave principal, el cliente de cifrado de
DynamoDB genera una excepción.

Por ejemplo, el siguiente código Java crea un código actions HashMap que cifra y firma todos los
atributos del elemento. record Las excepciones son la clave de partición y los atributos de clave de
clasificación, que se firman pero no se cifran, y el atributo test, que ni se signa ni se cifra.

final EnumSet<EncryptionFlags> signOnly = EnumSet.of(EncryptionFlags.SIGN);
final EnumSet<EncryptionFlags> encryptAndSign = EnumSet.of(EncryptionFlags.ENCRYPT,
 EncryptionFlags.SIGN);
final Map<String, Set<EncryptionFlags>> actions = new HashMap<>();

for (final String attributeName : record.keySet()) {
 switch (attributeName) {
 case partitionKeyName: // no break; falls through to next case
 case sortKeyName:
 // Partition and sort keys must not be encrypted, but should be signed
 actions.put(attributeName, signOnly);
 break;
 case "test":
 // Don't encrypt or sign
 break;
 default:
 // Encrypt and sign everything else
 actions.put(attributeName, encryptAndSign);
 break;
 }
}

A continuación, cuando llama al método encryptRecord del DynamoDBEncryptor, especifique el
mapa como el valor del parámetro attributeFlags. Por ejemplo, esta llamada a encryptRecord
utiliza el mapa actions.

// Encrypt the plaintext record
final Map<String, AttributeValue> encrypted_record = encryptor.encryptRecord(record,
 actions, encryptionContext);

Reemplazar nombres de tabla

En el cliente de cifrado de DynamoDB, el nombre de la tabla de DynamoDB es un elemento del
contexto de cifrado de DynamoDB que se pasa a los métodos de cifrado y descifrado. Al cifrar o

Lenguajes de programación 309

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html#encryptRecord-java.util.Map-java.util.Map-com.amazonaws.services.dynamodbv2.datamodeling.encryption.EncryptionContext-

AWS SDK de cifrado de bases de datos Guía para desarrolladores

firmar elementos de la tabla, el contexto de cifrado de DynamoDB, incluido el nombre de la tabla,
está enlazado criptográficamente al texto cifrado. Si el contexto de cifrado de DynamoDB que se
pasa al método de descifrado no coincide con el contexto de cifrado de DynamoDB que se pasó al
método de cifrado, se produce un error en la operación de descifrado.

En ocasiones, el nombre de una tabla cambia, por ejemplo, cuando se hace una copia de seguridad
de una tabla o se realiza una point-in-time recuperación. Al descifrar o verificar la firma de estos
elementos, debe pasar el mismo contexto de cifrado de DynamoDB que se utilizó para cifrar y firmar
los elementos, incluido el nombre de la tabla original. El nombre de la tabla actual no es necesario.

Cuando se utiliza DynamoDBEncryptor, se ensambla el contexto de cifrado de DynamoDB
manualmente. Sin embargo, si está utilizando DynamoDBMapper, el AttributeEncryptor crea
el contexto de cifrado de DynamoDB para usted, incluido el nombre de la tabla actual. Para indicar a
AttributeEncryptor que cree un contexto de cifrado con un nombre de tabla diferente, utilice el
EncryptionContextOverrideOperator.

Por ejemplo, el código siguiente crea instancias del proveedor de materiales criptográficos (CMP) y
el DynamoDBEncryptor. Luego llama al método setEncryptionContextOverrideOperator
de DynamoDBEncryptor. Utiliza el operador overrideEncryptionContextTableName, que
anula un nombre de tabla. Cuando se configura de esta manera, el AttributeEncryptor crea un
contexto de cifrado de DynamoDB que incluye newTableName en lugar de oldTableName. Para
ver un ejemplo completo, consulte EncryptionContextOverridesWithDynamoDBMapper.java.

final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);
final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp);

encryptor.setEncryptionContextOverrideOperator(EncryptionContextOperators.overrideEncryptionContextTableName(
 oldTableName, newTableName));

Cuando se llama al método de carga de DynamoDBMapper, que descifra y verifica el elemento, se
especifica el nombre de la tabla original.

mapper.load(itemClass, DynamoDBMapperConfig.builder()

 .withTableNameOverride(DynamoDBMapperConfig.TableNameOverride.withTableNameReplacement(oldTableName))
 .build());

También puede utilizar el operador overrideEncryptionContextTableNameUsingMap, que
anula varios nombres de tabla.

Lenguajes de programación 310

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/PointInTimeRecovery.html
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/EncryptionContextOverridesWithDynamoDBMapper.java

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Normalmente los operadores de reemplazo de nombres de tabla se utilizan al descifrar datos y
verificar firmas. Sin embargo, puede usarlos para establecer el nombre de la tabla en el contexto de
cifrado de DynamoDB en un valor diferente al cifrar y firmar.

No utilice los operadores de anulación de nombre de tabla si está utilizando DynamoDBEncryptor.
En su lugar, cree un contexto de cifrado con el nombre de la tabla original y envíelo al método de
descifrado.

Ejemplo de código para el cliente de cifrado de DynamoDB para Java

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de
DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

Los siguientes ejemplos muestran cómo utilizar el cliente de cifrado de DynamoDB para Java para
proteger los elementos de tabla de DynamoDB en su aplicación. Puedes encontrar más ejemplos
(y aportar los tuyos) en el directorio de ejemplos del aws-dynamodb-encryption-javarepositorio en
GitHub.

Temas

• ¿Usando el Dynamo DBEncryptor

• Uso del Dynamo DBMapper

¿Usando el Dynamo DBEncryptor

En este ejemplo, se muestra cómo utilizar el Dynamo de nivel inferior DBEncryptor con el proveedor
de Direct KMS. El proveedor de KMS directo genera y protege sus materiales criptográficos con un
AWS KMS keyin AWS Key Management Service (AWS KMS) que usted especifique.

Puede usar cualquier proveedor de materiales criptográficos (CMP) compatible
conDynamoDBEncryptor, y puede usar el proveedor de Direct KMS con y. DynamoDBMapper
AttributeEncryptor

Consulte el ejemplo de código completo: .java AwsKmsEncryptedItem

Lenguajes de programación 311

https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://github.com/aws/aws-dynamodb-encryption-java/
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedItem.java

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Paso 1: crear el proveedor de KMS directo

Cree una instancia del AWS KMS cliente con la región especificada. A continuación, utilice la
instancia de cliente para crear una instancia del proveedor de KMS directo con su AWS KMS key
preferido.

En este ejemplo, se utiliza el nombre de recurso de Amazon (ARN) para identificar el AWS KMS
key, pero se puede utilizar cualquier identificador clave válido.

final String keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
final String region = "us-west-2";

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Paso 2: crear un elemento

En este ejemplo se define un elemento record HashMap que representa un ejemplo de una
tabla.

final String partitionKeyName = "partition_attribute";
final String sortKeyName = "sort_attribute";

final Map<String, AttributeValue> record = new HashMap<>();
record.put(partitionKeyName, new AttributeValue().withS("value1"));
record.put(sortKeyName, new AttributeValue().withN("55"));
record.put("example", new AttributeValue().withS("data"));
record.put("numbers", new AttributeValue().withN("99"));
record.put("binary", new AttributeValue().withB(ByteBuffer.wrap(new byte[]{0x00,
 0x01, 0x02})));
record.put("test", new AttributeValue().withS("test-value"));

Paso 3: Crear una dinamo DBEncryptor

Cree una instancia del DynamoDBEncryptor con el proveedor de KMS directo.

final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp);

Lenguajes de programación 312

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Paso 4: crear un contexto de cifrado de DynamoDB

El contexto de cifrado de DynamoDB contiene información acerca de la estructura de la tabla
y cómo se cifra y se firma. Si utiliza el DynamoDBMapper, el AttributeEncryptor crea el
contexto de cifrado automáticamente.

final String tableName = "testTable";

final EncryptionContext encryptionContext = new EncryptionContext.Builder()
 .withTableName(tableName)
 .withHashKeyName(partitionKeyName)
 .withRangeKeyName(sortKeyName)
 .build();

Paso 5: crear el objeto de acciones de atributo

Las acciones de atributo determinan qué atributos del elemento se cifran y se firman, cuáles solo
se firman y cuáles no se cifran o firman.

En Java, para especificar las acciones de los atributos, se crea un par HashMap de pares de
nombre y EncryptionFlags valor del atributo.

Por ejemplo, el siguiente código de Java crea un código actions HashMap que cifra y firma
todos los atributos record del elemento, excepto los atributos de la clave de partición y la clave
de clasificación, que están firmados, pero no cifrados, y el test atributo, que no está firmado ni
cifrado.

final EnumSet<EncryptionFlags> signOnly = EnumSet.of(EncryptionFlags.SIGN);
final EnumSet<EncryptionFlags> encryptAndSign = EnumSet.of(EncryptionFlags.ENCRYPT,
 EncryptionFlags.SIGN);
final Map<String, Set<EncryptionFlags>> actions = new HashMap<>();

for (final String attributeName : record.keySet()) {
 switch (attributeName) {
 case partitionKeyName: // fall through to the next case
 case sortKeyName:
 // Partition and sort keys must not be encrypted, but should be signed
 actions.put(attributeName, signOnly);
 break;
 case "test":
 // Neither encrypted nor signed
 break;

Lenguajes de programación 313

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 default:
 // Encrypt and sign all other attributes
 actions.put(attributeName, encryptAndSign);
 break;
 }
}

Paso 6: cifrar y firmar el elemento

Para cifrar y firmar el elemento de tabla, llame al método encryptRecord en la instancia del
DynamoDBEncryptor. Especifique el elemento de tabla (record), las acciones de atributo
(actions) y el contexto de cifrado (encryptionContext).

final Map<String, AttributeValue> encrypted_record = encryptor.encryptRecord(record,
 actions, encryptionContext);

Paso 7: colocar el elemento en la tabla de DynamoDB

Finalmente, coloque el elemento cifrado y firmado en la tabla de DynamoDB.

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();
ddb.putItem(tableName, encrypted_record);

Uso del Dynamo DBMapper

El ejemplo siguiente le muestra cómo utilizar la clase auxiliar del DynamoDB Mapper con el
Proveedor de KMS directo. El proveedor de KMS directo genera y protege sus materiales
criptográficos con un AWS KMS key en AWS Key Management Service (AWS KMS) que usted
especifique.

Puede utilizar cualquier proveedor de materiales criptográficos (CMP) compatible con el
DynamoDBMapper y puede utilizar el proveedor de KMS directo con el DynamoDBEncryptor de
nivel inferior.

Consulte el ejemplo de código completo: .java AwsKmsEncryptedObject

Paso 1: crear el proveedor de KMS directo

Cree una instancia del AWS KMS cliente con la región especificada. A continuación, utilice la
instancia de cliente para crear una instancia del proveedor de KMS directo con su AWS KMS key
preferido.

Lenguajes de programación 314

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedObject.java

AWS SDK de cifrado de bases de datos Guía para desarrolladores

En este ejemplo, se utiliza el nombre de recurso de Amazon (ARN) para identificar el AWS KMS
key, pero se puede utilizar cualquier identificador clave válido.

final String keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
final String region = "us-west-2";

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Paso 2: Crear DynamoDB Encryptor y Dynamo DBMapper

Utilice el Proveedor de KMS directo que creó en el paso anterior para crear una instancia del
Encriptador de DynamoDB. Debe crear instancias en el Encriptador de DynamoDB de nivel
inferior para utilizar DynamoDB Mapper.

A continuación, cree una instancia de base de datos de DynamoDB y una configuración de
mapeador, y úselas para crear una instancia de DynamoDB Mapper.

Important

Al utilizar el DynamoDBMapper para añadir o editar elementos firmados (o cifrados y
firmados), configúrelo para usar un comportamiento de almacenamiento, como PUT, que
incluye todos los atributos, como se muestra en el ejemplo siguiente. De lo contrario, es
posible que no pueda descifrar los datos.

final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp)
final AmazonDynamoDB ddb =
 AmazonDynamoDBClientBuilder.standard().withRegion(region).build();

DynamoDBMapperConfig mapperConfig =
 DynamoDBMapperConfig.builder().withSaveBehavior(SaveBehavior.PUT).build();
DynamoDBMapper mapper = new DynamoDBMapper(ddb, mapperConfig, new
 AttributeEncryptor(encryptor));

Paso 3: Definir la tabla de DynamoDB

A continuación, defina la tabla de DynamoDB. Utilice anotaciones para especificar las acciones
del atributo. En este ejemplo, se crea una tabla de DynamoDB, ExampleTable, y una clase
DataPoJo que representa elementos de la tabla.

Lenguajes de programación 315

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS SDK de cifrado de bases de datos Guía para desarrolladores

En este ejemplo de tabla, los atributos de clave principal se firmarán, pero no se cifrarán. Esto
se aplica al partition_attribute, que se ha anotado con @DynamoDBHashKey, y el
sort_attribute, que se ha anotado con @DynamoDBRangeKey.

Los atributos que son anotados con @DynamoDBAttribute, como some numbers, se cifrarán y
firmarán. Las excepciones son atributos que utilizan las anotaciones de cifrado @DoNotEncrypt
(solo firmar) o @DoNotTouch (no cifrar ni firmar) definidas por el cliente de cifrado de DynamoDB.
Por ejemplo, ya que el atributo leave me tiene una anotación @DoNotTouch, no se cifrará ni se
firmará.

@DynamoDBTable(tableName = "ExampleTable")
public static final class DataPoJo {
 private String partitionAttribute;
 private int sortAttribute;
 private String example;
 private long someNumbers;
 private byte[] someBinary;
 private String leaveMe;

 @DynamoDBHashKey(attributeName = "partition_attribute")
 public String getPartitionAttribute() {
 return partitionAttribute;
 }

 public void setPartitionAttribute(String partitionAttribute) {
 this.partitionAttribute = partitionAttribute;
 }

 @DynamoDBRangeKey(attributeName = "sort_attribute")
 public int getSortAttribute() {
 return sortAttribute;
 }

 public void setSortAttribute(int sortAttribute) {
 this.sortAttribute = sortAttribute;
 }

 @DynamoDBAttribute(attributeName = "example")
 public String getExample() {
 return example;
 }

Lenguajes de programación 316

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 public void setExample(String example) {
 this.example = example;
 }

 @DynamoDBAttribute(attributeName = "some numbers")
 public long getSomeNumbers() {
 return someNumbers;
 }

 public void setSomeNumbers(long someNumbers) {
 this.someNumbers = someNumbers;
 }

 @DynamoDBAttribute(attributeName = "and some binary")
 public byte[] getSomeBinary() {
 return someBinary;
 }

 public void setSomeBinary(byte[] someBinary) {
 this.someBinary = someBinary;
 }

 @DynamoDBAttribute(attributeName = "leave me")
 @DoNotTouch
 public String getLeaveMe() {
 return leaveMe;
 }

 public void setLeaveMe(String leaveMe) {
 this.leaveMe = leaveMe;
 }

 @Override
 public String toString() {
 return "DataPoJo [partitionAttribute=" + partitionAttribute + ", sortAttribute="
 + sortAttribute + ", example=" + example + ", someNumbers=" + someNumbers
 + ", someBinary=" + Arrays.toString(someBinary) + ", leaveMe=" + leaveMe +
 "]";
 }
}

Lenguajes de programación 317

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Paso 4: Cifrar y guardar un elemento de la tabla

Ahora, al crear un elemento de tabla y utilizar DynamoDB Mapper para guardarlo, el elemento se
cifra automáticamente y firma antes de que se agregue a la tabla.

Este ejemplo define un elemento de tabla llamado record. Antes de que se guarde en la tabla,
sus atributos se cifran y firman en función de las anotaciones de la clase DataPoJo. En este
caso, todos los atributos salvo PartitionAttribute, SortAttribute y LeaveMe se cifran y
se firman. PartitionAttribute y SortAttributes solo se firman. El atributo LeaveMe no
está cifrado o firmado.

Para cifrar y firmar el elemento recordy, a continuación, añadirlo a ExampleTable, llame al
método save de la clase DynamoDBMapper. Dado que el DynamoDB mapper está configurado
para utilizar el PUT comportamiento de almacenamiento, el elemento sustituye a cualquier
elemento con las mismas claves principales, en lugar de actualizarla. De este modo, se garantiza
que las firmas coincidan y puede descifrar el elemento cuando se obtiene de la tabla.

DataPoJo record = new DataPoJo();
record.setPartitionAttribute("is this");
record.setSortAttribute(55);
record.setExample("data");
record.setSomeNumbers(99);
record.setSomeBinary(new byte[]{0x00, 0x01, 0x02});
record.setLeaveMe("alone");

mapper.save(record);

Cliente de cifrado de DynamoDB para Python

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de
DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

Lenguajes de programación 318

AWS SDK de cifrado de bases de datos Guía para desarrolladores

En este tema, se explica cómo instalar y utilizar el cliente de cifrado de DynamoDB para en Python.
Puede encontrar el código en el aws-dynamodb-encryption-pythonrepositorio de GitHub, incluido un
código de muestra completo y probado que le ayudará a empezar.

Note

Versiones 1. x. x y 2. x. x del cliente de cifrado de DynamoDB para Python entrarán en vigor
end-of-support en julio de 2022. Actualice a una versión más reciente tan pronto como sea
posible.

Temas

• Requisitos previos

• Instalación

• Uso del cliente de cifrado de DynamoDB para Python

• Código de ejemplo para el cliente de cifrado de DynamoDB para Python

Requisitos previos

Antes de instalar el Cliente de encriptación de Amazon DynamoDB para Python, asegúrese de que
cumple los siguientes requisitos previos.

Una versión compatible de Python

El cliente de cifrado de Amazon DynamoDB para las versiones 3.3.0 y posteriores de Python
requiere Python 3.8 o posterior. Para descargar Python, visite el sitio de descargas de Python.

Las versiones anteriores del Cliente de encriptación de Amazon DynamoDB para Python admiten
Python 2.7 y Python 3.4 y versiones posteriores, pero le recomendamos que utilice la versión más
reciente del cliente de cifrado de DynamoDB.

La herramienta de instalación pip para Python

Python 3.6 y versiones posteriores incluyen pip, aunque es posible que desee actualizarlo. Para
obtener más información acerca de la actualización o la instalación de pip, consulte la sección
sobre la instalación en la documentación de pip.

Lenguajes de programación 319

https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples
https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installation/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Instalación

Utilice pip para instalar el Cliente de encriptación de Amazon DynamoDB para Python, como se
muestra en los siguientes ejemplos.

Para instalar la versión más reciente

pip install dynamodb-encryption-sdk

Para obtener más información acerca de cómo utilizar pip para instalar y actualizar paquetes,
consulte la página sobre la instalación de paquetes.

El cliente de cifrado de DynamoDB requiere la biblioteca de criptografía en todas las plataformas.
Todas las versiones de pip instalan y compilan la biblioteca cryptography en Windows. pip 8.1 y
las versiones posteriores instalan y compilan la biblioteca cryptography en Linux. Si utiliza una
versión anterior de pip y su entorno Linux no dispone de las herramientas necesarias para compilar
la biblioteca cryptography, tiene que instalarlas. Para obtener más información, consulte Building
cryptography on Linux.

Puede obtener la última versión de desarrollo del cliente de cifrado de DynamoDB desde aws-
dynamodb-encryption-pythonel repositorio en adelante. GitHub

Después de instalar el cliente de cifrado de DynamoDB, comience examinando el código de Python
de ejemplo de esta guía.

Uso del cliente de cifrado de DynamoDB para Python

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de
DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

En este tema, se explican algunas de las características del cliente de cifrado de DynamoDB para
Python que podrían no encontrarse en otras implementaciones de lenguaje de programación. Estas

Lenguajes de programación 320

https://packaging.python.org/tutorials/installing-packages/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/installation/#building-cryptography-on-linux
https://cryptography.io/en/latest/installation/#building-cryptography-on-linux
https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

características se han diseñado para facilitar el uso del cliente de cifrado de DynamoDB de la forma
más segura. A menos que tenga un caso de uso inusual, le recomendamos que las utilice.

Para obtener más información sobre la programación con el cliente de cifrado de DynamoDB,
consulte los ejemplos de Python de esta guía, los ejemplos del repositorio GitHub y aws-dynamodb-
encryption-python la documentación de Python del cliente de cifrado de DynamoDB.

Temas

• Clases auxiliares de cliente

• TableInfo clase

• Acciones de atributo en Python

Clases auxiliares de cliente

El cliente de cifrado de DynamoDB para Python incluye varias clases auxiliares de cliente, que
interactúan con las clases de Boto 3 para DynamoDB. Estas clases auxiliares se han diseñado para
facilitar agregar cifrado y firma a su aplicación de DynamoDB existente y evitar los problemas más
habituales del siguiente modo:

• Evite cifrar la clave principal del elemento, ya sea añadiendo una acción de anulación de la clave
principal del objeto o lanzando una excepción si el AttributeActionsobjeto indica explícitamente al
cliente que cifre la clave principal. AttributeActions Si la acción predeterminada en su objeto
AttributeActions es DO_NOTHING, las clases auxiliares de cliente utilizan dicha acción para la
clave principal. De lo contrario, utilizan SIGN_ONLY.

• Cree un TableInfo objeto y complete el contexto de cifrado de DynamoDB en función de una
llamada a DynamoDB. Esto ayuda a garantizar que el contexto de cifrado de DynamoDB sea
exacto y el cliente pueda identificar la clave principal.

• Admite métodos, tales como put_item y get_item, que cifran y descifran de modo transparente
los elementos de tabla al escribir o leer desde una tabla de DynamoDB. Solo el método
update_item no se admite.

Puede utilizar las clases auxiliares de cliente en lugar de interactuar directamente con el encriptador
de elementos de nivel inferior. Utilice estas clases a menos que tenga que establecer opciones
avanzadas en el encriptador de elementos.

Las clases auxiliares de cliente incluyen:

Lenguajes de programación 321

https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• EncryptedTablepara las aplicaciones que utilizan el recurso Tabla de DynamoDB para procesar
una tabla a la vez.

• EncryptedResourcepara aplicaciones que utilizan la clase Service Resource de DynamoDB para el
procesamiento por lotes.

• EncryptedClientpara aplicaciones que utilizan el cliente de nivel inferior de DynamoDB.

Para usar las clases auxiliares del cliente, la persona que llama debe tener permiso para llamar a la
operación de DynamoDB en la tabla de destino DescribeTable.

TableInfo clase

La TableInfoclase es una clase auxiliar que representa una tabla de DynamoDB, completa con
campos para su clave principal e índices secundarios. Le ayuda a obtener información precisa y en
tiempo real sobre la tabla.

Si utiliza una clase auxiliar de cliente, crea y utiliza un objeto TableInfo automáticamente. De lo
contrario, puede crear una explícitamente. Para ver un ejemplo, consulta Utilice el encriptador de
elementos.

Cuando se llama al refresh_indexed_attributes método en un TableInfo objeto, se
rellenan los valores de las propiedades del objeto mediante una llamada a la operación DynamoDB
DescribeTable. Consultar la tabla ofrece mucha más confianza que codificar de forma rígida los
nombres de índice. La clase TableInfo incluye además una encryption_context_values
propiedad que proporciona los valores requeridos para el contexto de cifrado de DynamoDB.

Para usar el refresh_indexed_attributes método, la persona que llama debe tener permiso
para llamar a la operación de DescribeTableDynamoDB en la tabla de destino.

Acciones de atributo en Python

Las acciones de atributo indican al encriptador de elementos qué acciones hay que realizar
en cada atributo del elemento. Para especificar acciones de atributo en Python, cree un objeto
AttributeActions con una acción predeterminada y cualquier excepción para atributos
particulares. Los valores válidos se definen en el tipo enumerado CryptoAction.

Important

Después de utilizar las acciones de atributo para cifrar los elementos de la tabla, agregar o
quitar atributos del modelo de datos puede provocar un error de validación de firma que le

Lenguajes de programación 322

https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/table.html#module-dynamodb_encryption_sdk.encrypted.table
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#table
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/resource.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#service-resource
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/client.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#client
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/tools/structures.html#dynamodb_encryption_sdk.structures.TableInfo
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

impide descifrar los datos. Para ver una explicación detallada, consulte Cambiar el modelo de
datos.

DO_NOTHING = 0
SIGN_ONLY = 1
ENCRYPT_AND_SIGN = 2

Por ejemplo, este objeto AttributeActions establece ENCRYPT_AND_SIGN como
predeterminado para todos los atributos y especifica excepciones para los atributos ISBN y
PublicationYear.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={
 'ISBN': CryptoAction.DO_NOTHING,
 'PublicationYear': CryptoAction.SIGN_ONLY
 }
)

Si utiliza una clase auxiliar de cliente, no tiene que especificar una acción de atributo para los
atributos de clave principal. Las clases auxiliares de cliente impiden que cifre su clave principal.

Si no utiliza una clase auxiliar de cliente y la acción predeterminada es ENCRYPT_AND_SIGN, debe
especificar una acción para la clave principal. La acción recomendada para las claves principales
es SIGN_ONLY. Para facilitarlo, utilice el método set_index_keys, que utiliza SIGN_ONLY para
claves principales o DO_NOTHING, cuando esa es la acción predeterminada.

Warning

No cifre los atributos de clave principal. Deben permanecer en texto no cifrado para que
DynamoDB pueda encontrar el elemento sin realizar un examen completo de la tabla.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
)
actions.set_index_keys(*table_info.protected_index_keys())

Lenguajes de programación 323

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Código de ejemplo para el cliente de cifrado de DynamoDB para Python

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de
DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

En los siguientes ejemplos, se muestra cómo utilizar el cliente de cifrado de DynamoDB para Python
para proteger los datos de DynamoDB en su aplicación. Puede encontrar más ejemplos (y aportar
los suyos propios) en el directorio de ejemplos del aws-dynamodb-encryption-pythonrepositorio de.
GitHub

Temas

• Usa la clase de ayuda al EncryptedTable cliente

• Utilice el encriptador de elementos

Usa la clase de ayuda al EncryptedTable cliente

El ejemplo siguiente le muestra cómo utilizar el proveedor de KMS directo con la EncryptedTable
clase auxiliar cliente. Este ejemplo utiliza el mismo proveedor de materiales criptográficos
que el ejemplo Utilice el encriptador de elementos siguiente. Sin embargo, utiliza la clase
EncryptedTable en lugar de interactuar directamente con el encriptador de elementos de nivel
inferior.

Comparando estos ejemplos, puede ver el trabajo que realiza la clase auxiliar cliente
automáticamente. Esto incluye la creación del contexto de cifrado de DynamoDB y asegurarse
de que los atributos de clave principal estén siempre firmados, pero nunca cifrados. Para crear
el contexto de cifrado y descubrir la clave principal, las clases auxiliares del cliente llaman a la
operación DynamoDB DescribeTable. Para ejecutar este código, debe tener permiso para llamar a
esta operación.

Vea la muestra de código completa: aws_kms_encrypted_table.py

Lenguajes de programación 324

https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples
https://github.com/aws/aws-dynamodb-encryption-python/
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_table.py

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Paso 1: crear la tabla

Empiece creando una instancia de una tabla de DynamoDB estándar con el nombre de la tabla.

table_name='test-table'
table = boto3.resource('dynamodb').Table(table_name)

Paso 2: crear un proveedor de materiales criptográficos

Cree una instancia del proveedor de materiales criptográficos (CMP) que ha seleccionado.

Este ejemplo utiliza el proveedor de KMS directo, pero puede utilizar cualquier CMP compatible.
Para crear un proveedor de KMS directo, especifique un AWS KMS key. En este ejemplo
se utiliza el nombre de recurso de Amazon (ARN) del AWS KMS key, pero se puede utilizar
cualquier identificador clave válido.

kms_key_id='arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

Paso 3: crear el objeto de acciones de atributo

Las acciones de atributo indican al encriptador de elementos qué acciones hay que realizar en
cada atributo del elemento. El objeto AttributeActions de este ejemplo cifra y firma todos los
elementos, excepto el atributo test, que se pasa por alto.

No especifique acciones de atributo para los atributos de clave principal cuando utilice una clase
auxiliar cliente. La clase EncryptedTable firma, pero no cifra nunca, los atributos de clave
principal.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={'test': CryptoAction.DO_NOTHING}
)

Paso 4: crear la tabla cifrada

Cree la tabla cifrada utilizando la tabla estándar, el proveedor de KMS directo y las acciones de
atributo. Este paso completa la configuración.

encrypted_table = EncryptedTable(

Lenguajes de programación 325

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 table=table,
 materials_provider=kms_cmp,
 attribute_actions=actions
)

Paso 5: colocar el elemento de texto no cifrado en la tabla

Cuando se llama al método put_item en la encrypted_table, los elementos de la tabla se
cifran de modo transparente, se firman y se agrega a su tabla de DynamoDB.

Primero, defina el elemento de tabla.

plaintext_item = {
 'partition_attribute': 'value1',
 'sort_attribute': 55
 'example': 'data',
 'numbers': 99,
 'binary': Binary(b'\x00\x01\x02'),
 'test': 'test-value'
}

A continuación, colóquelo en la tabla.

encrypted_table.put_item(Item=plaintext_item)

Para obtener el elemento desde la tabla de DynamoDB en su forma cifrada, llame al método
get_item en el objeto table. Para obtener el objeto descifrado, llame al método get_item en el
objeto encrypted_table.

Utilice el encriptador de elementos

En este ejemplo, se muestra cómo interactuar directamente con el encriptador de elementos en la al
cifrar elementos de tabla, en lugar de utilizar las clases auxiliares de cliente que interactúan con el
encriptador de elementos.

Cuando se utiliza esta técnica, crea el contexto de cifrado de DynamoDB y el objeto de configuración
(CryptoConfig) manualmente. Además, cifra los elementos en una llamada y los coloca en su
tabla de DynamoDB en una llamada independiente. Esto le permite personalizar sus put_item
llamadas y utilizar el cliente de cifrado de DynamoDB para cifrar y firmar datos estructurados que
nunca se envían a DynamoDB.

Lenguajes de programación 326

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Este ejemplo utiliza el proveedor de KMS directo, pero puede utilizar cualquier CMP compatible.

Vea la muestra de código completa: aws_kms_encrypted_item.py

Paso 1: crear la tabla

Empiece creando una instancia de un recurso de tabla de DynamoDB estándar con el nombre de
la tabla.

table_name='test-table'
table = boto3.resource('dynamodb').Table(table_name)

Paso 2: crear un proveedor de materiales criptográficos

Cree una instancia del proveedor de materiales criptográficos (CMP) que ha seleccionado.

Este ejemplo utiliza el proveedor de KMS directo, pero puede utilizar cualquier CMP compatible.
Para crear un proveedor de KMS directo, especifique un AWS KMS key. En este ejemplo
se utiliza el nombre de recurso de Amazon (ARN) del AWS KMS key, pero se puede utilizar
cualquier identificador clave válido.

kms_key_id='arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

Paso 3: Usa la clase TableInfo auxiliar

Para obtener información sobre la tabla de DynamoDB, cree una instancia de TableInfola
clase auxiliar. Cuando trabaja directamente con el encriptador de elementos, tiene que crear
una instancia TableInfo y llamar a sus métodos. Las clases auxiliares de cliente lo hacen
automáticamente.

El refresh_indexed_attributes método TableInfo utiliza la operación
DescribeTableDynamoDB para obtener información precisa y en tiempo real sobre la tabla.
Incluye su clave principal y sus índices secundarios locales y globales. El intermediario tiene que
tener permiso para llamar a DescribeTable.

table_info = TableInfo(name=table_name)
table_info.refresh_indexed_attributes(table.meta.client)

Lenguajes de programación 327

https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_item.py
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Paso 4: crear el contexto de cifrado de DynamoDB

El contexto de cifrado de DynamoDB contiene información acerca de la estructura de la tabla
y cómo se cifra y se firma. En este ejemplo, se crea un contexto de cifrado de DynamoDB
explícitamente, porque interactúa con el encriptador de elementos. Las clases auxiliares de
cliente crean el contexto de cifrado de DynamoDB para usted.

Para obtener la clave de partición y la clave de clasificación, puede usar las propiedades de la
clase TableInfoauxiliar.

index_key = {
 'partition_attribute': 'value1',
 'sort_attribute': 55
}

encryption_context = EncryptionContext(
 table_name=table_name,
 partition_key_name=table_info.primary_index.partition,
 sort_key_name=table_info.primary_index.sort,
 attributes=dict_to_ddb(index_key)
)

Paso 5: crear el objeto de acciones de atributo

Las acciones de atributo indican al encriptador de elementos qué acciones hay que realizar en
cada atributo del elemento. El objeto AttributeActions en este ejemplo cifra y firma todos los
elementos, excepto los atributos de clave principal, que se firman, pero no se cifran y el atributo
test, que se pasa por alto.

Cuando se interactúa directamente con el encriptador de elementos y la acción predeterminada
es ENCRYPT_AND_SIGN, debe especificar una acción alternativa para la clave principal. Puede
utilizar el método set_index_keys, que usa SIGN_ONLY para la clave principal o utiliza
DO_NOTHING si es la acción predeterminada.

Para especificar la clave principal, en este ejemplo se utilizan las claves de índice del
TableInfoobjeto, que se rellenan con una llamada a DynamoDB. Esta técnica es más segura que
los nombres de clave principal de codificación rígida.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,

Lenguajes de programación 328

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 attribute_actions={'test': CryptoAction.DO_NOTHING}
)
actions.set_index_keys(*table_info.protected_index_keys())

Paso 6: crear la configuración para el elemento

Para configurar el cliente de cifrado de DynamoDB, utilice los objetos que acaba de crear en
CryptoConfiguna configuración para el elemento de la tabla. Las clases auxiliares del cliente las
crean por usted. CryptoConfig

crypto_config = CryptoConfig(
 materials_provider=kms_cmp,
 encryption_context=encryption_context,
 attribute_actions=actions
)

Paso 7: cifrar el elemento

En este paso, se cifra y firma el elemento, pero no lo coloca en la tabla de DynamoDB.

Cuando utiliza una clase auxiliar de cliente, sus elementos se cifran y se firman de modo
transparente y, a continuación, se agregan a su tabla de DynamoDB cuando llama al put_item
método de la clase auxiliar. Cuando utiliza el encriptador de elementos directamente, las acciones
de cifrado y colocación son independientes.

En primer lugar, cree un elemento de texto no cifrado.

plaintext_item = {
 'partition_attribute': 'value1',
 'sort_key': 55,
 'example': 'data',
 'numbers': 99,
 'binary': Binary(b'\x00\x01\x02'),
 'test': 'test-value'
}

A continuación, cífrelo y fírmelo. El método encrypt_python_item requiere el objeto de
configuración CryptoConfig.

encrypted_item = encrypt_python_item(plaintext_item, crypto_config)

Lenguajes de programación 329

https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/config.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Paso 8: colocar el elemento en la tabla

En este paso, se coloca el elemento cifrado y firmado en la tabla de DynamoDB.

table.put_item(Item=encrypted_item)

Para ver el elemento cifrado, llame al método get_item en el objeto table original, en lugar del
objeto encrypted_table. Obtiene el elemento de la tabla DynamoDB sin verificarlo y descifrarlo.

encrypted_item = table.get_item(Key=partition_key)['Item']

En la imagen siguiente se muestra una parte de un elemento de tabla cifrado y firmado de ejemplo.

Los valores de atributo cifrados son datos binarios. Los nombres y los valores de los atributos de
clave principal (partition_attribute y sort_attribute) y el atributo test permanecen en
texto no cifrado. La salida muestra además el atributo que contiene la firma (*amzn-ddb-map-
sig*) y el atributo de descripción de materiales (*amzn-ddb-map-desc*).

Cambiar el modelo de datos

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de

Cambiar el modelo de datos 330

AWS SDK de cifrado de bases de datos Guía para desarrolladores

DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

Cada vez que cifra o descifra un elemento, tiene que proporcionar acciones de atributo ??? que
indiquen al DynamoDB qué atributos cifrar y firmar, qué atributos firmar (pero no cifrar) y cuáles
omitir. Las acciones de atributo no se guardan en el elemento cifrado y no actualiza automáticamente
las acciones de atributo.

Important

El cliente de cifrado de DynamoDB no admite el cifrado de datos de tablas de DynamoDB
existentes y no cifrados.

Cada vez que cambie el modelo de datos, es decir, cuando agregue o quite atributos de los
elementos de la tabla, corre el riesgo de que se produzca un error. Si las acciones de atributo que
especifique no cuentan para todos los atributos del elemento, el elemento podría no cifrarse y
firmarse del modo previsto. Lo que es más importante, si las acciones de atributo que proporciona
al descifrar un elemento difieren de las acciones de atributo que proporcione al cifrar el elemento, la
verificación de la firma podría fallar.

Por ejemplo, si las acciones de atributo utilizadas para cifrar el elemento indican que se firme el
atributo test, la firma en el elemento incluirá el atributo test. Pero, si las acciones de atributo
utilizadas para descifrar el elemento no se tienen en cuenta para el atributo test, la verificación
devolverá un error, ya que el cliente intentará verificar una firma que no incluye el atributo test.

Este es un problema particular cuando varias aplicaciones leen y escriben los mismos elementos
de porque debe calcular la misma firma para los elementos en todas las aplicaciones. También es
un problema para cualquier aplicación distribuida porque los cambios en las acciones de atributos
deben propagarse a todos los hosts. Incluso si un host accede a sus tablas de en un proceso,
establecer un proceso de prácticas recomendadas ayudará a evitar errores si el proyecto se vuelve
más complejo.

Para evitar errores de validación de firmas que le impidan leer los elementos de la tabla, siga las
instrucciones siguientes.

• Añadir un atributo: si el nuevo atributo cambia sus acciones de atributo, implemente
completamente el cambio de acción de atributo antes de incluir el nuevo atributo en un elemento.

Cambiar el modelo de datos 331

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• Eliminar un atributo: si dejas de usar un atributo en tus artículos, no cambies las acciones de los
atributos.

• Cambiar la acción: después de haber utilizado una configuración de acciones de atributos para
cifrar los elementos de la tabla, no podrá cambiar de forma segura la acción predeterminada o la
acción de un atributo existente sin volver a cifrar todos los elementos de la tabla.

Los errores de validación de firmas pueden ser extremadamente difíciles de resolver, por lo que el
mejor enfoque es prevenirlos.

Temas

• Adición de un atributo

• Eliminación de un atributo

Adición de un atributo

Al agregar un nuevo atributo a los elementos de tabla, es posible que tenga que cambiar las
acciones de atributo. Para evitar errores de validación de firmas, se recomienda implementar
este cambio en un proceso de dos etapas. Verifique que la primera etapa esté completa antes de
comenzar la segunda etapa.

1. Cambie las acciones de atributo en todas las aplicaciones que leen o escriben en la tabla.
Implemente estos cambios y confirme que la actualización se ha propagado a todos los hosts de
destino.

2. Escriba valores en el nuevo atributo de los elementos de la tabla.

Este enfoque de dos etapas garantiza que todas las aplicaciones y hosts tengan las mismas
acciones de atributo y calculará la misma firma antes de que cualquier otro encuentre el nuevo
atributo. Esto es importante incluso cuando la acción del atributo es Do nothing (no cifrar ni firmar),
porque el valor predeterminado de algunos encriptadores es cifrar y firmar.

Los siguientes ejemplos muestran el código de la primera etapa de este proceso. Agregan un
nuevo atributo de elemento, link, que almacena un vínculo a otro elemento de tabla. Dado que
este vínculo debe permanecer como texto sin formato, el ejemplo le asigna la acción de solo firma.
Después de implementar completamente este cambio y comprobar que todas las aplicaciones
y hosts tienen las nuevas acciones de atributo, puede comenzar a usar el atributo link en los
elementos de tabla.

Cambiar el modelo de datos 332

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Java DynamoDB Mapper

Cuando usa DynamoDB Mapper y AttributeEncryptor, todos los atributos están cifrados y
firmados por defecto, excepto las claves principales, que están firmadas pero no cifradas. Para
especificar una acción de solo firma, utilice la anotación @DoNotEncrypt.

En este ejemplo se utiliza la anotación @DoNotEncrypt para el nuevo atributo link.

@DynamoDBTable(tableName = "ExampleTable")
public static final class DataPoJo {
 private String partitionAttribute;
 private int sortAttribute;
 private String link;

 @DynamoDBHashKey(attributeName = "partition_attribute")
 public String getPartitionAttribute() {
 return partitionAttribute;
 }

 public void setPartitionAttribute(String partitionAttribute) {
 this.partitionAttribute = partitionAttribute;
 }

 @DynamoDBRangeKey(attributeName = "sort_attribute")
 public int getSortAttribute() {
 return sortAttribute;
 }

 public void setSortAttribute(int sortAttribute) {
 this.sortAttribute = sortAttribute;
 }

 @DynamoDBAttribute(attributeName = "link")
 @DoNotEncrypt
 public String getLink() {
 return link;
 }

 public void setLink(String link) {
 this.link = link;
 }

 @Override

Cambiar el modelo de datos 333

AWS SDK de cifrado de bases de datos Guía para desarrolladores

 public String toString() {
 return "DataPoJo [partitionAttribute=" + partitionAttribute + ",
 sortAttribute=" + sortAttribute + ",
 link=" + link + "]";
 }
}

Java DynamoDB encryptor

En el encriptador de nivel inferior, debe establecer acciones para cada atributo. En este ejemplo
se utiliza una instrucción switch donde el valor predeterminado es encryptAndSign y se
especifican excepciones para la clave de partición, la clave de clasificación y el nuevo atributo
link. En este ejemplo, si el código de atributo de vínculo no se implementó completamente
antes de utilizarlo, algunas aplicaciones cifrarían y firmarían el atributo de vínculo, pero solo lo
firmarían otras.

for (final String attributeName : record.keySet()) {
 switch (attributeName) {
 case partitionKeyName:
 // fall through to the next case
 case sortKeyName:
 // partition and sort keys must be signed, but not encrypted
 actions.put(attributeName, signOnly);
 break;
 case "link":
 // only signed
 actions.put(attributeName, signOnly);
 break;
 default:
 // Encrypt and sign all other attributes
 actions.put(attributeName, encryptAndSign);
 break;
 }
}

Python

En DynamoDB para Python, puede especificar una acción predeterminada para todos los
atributos y, a continuación, especificar excepciones.

Si utiliza una clase auxiliar de cliente de Python, no tiene que especificar una acción de atributo
para los atributos de clave principal. Las clases auxiliares de cliente impiden que cifre su clave

Cambiar el modelo de datos 334

AWS SDK de cifrado de bases de datos Guía para desarrolladores

principal. Sin embargo, si no está utilizando una clase auxiliar de cliente, debe establecer la
acción SIGN_ONLY en la clave de partición y la clave de clasificación. Si accidentalmente cifra la
partición o la clave de clasificación, no podrá recuperar los datos sin un análisis completo de la
tabla.

En este ejemplo se especifica una excepción para el nuevo atributo link, que obtiene la acción
SIGN_ONLY.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={
 'example': CryptoAction.DO_NOTHING,
 'link': CryptoAction.SIGN_ONLY
 }
)

Eliminación de un atributo

Si ya no necesita un atributo en los elementos que se han cifrado con , puede dejar de usar el
atributo. Sin embargo, no elimine ni cambie la acción de ese atributo. Si lo hace y, a continuación,
encuentra un elemento con ese atributo, la firma calculada para el artículo no coincidirá con la firma
original y la validación de la firma fallará.

Aunque podría tener la tentación de eliminar todos los rastros del atributo del código, agregue un
comentario de que el elemento ya no se usa en lugar de eliminarlo. Incluso si realiza un análisis de
tabla completo para eliminar todas las instancias del atributo, un elemento cifrado con ese atributo
podría almacenarse en caché o estar en proceso en algún lugar de la configuración.

Solución de problemas en la aplicación DynamoDB Encryption Client

Note

Nuestra biblioteca de cifrado del cliente pasó a llamarse SDK de cifrado de bases de datos
de AWS. En el siguiente tema, se presenta información sobre las versiones 1.x—2.x del
cliente de cifrado de DynamoDB para Java y versiones 1.x—3.x del cliente de cifrado de
DynamoDB para Python. Para obtener más información, consulte el SDK de cifrado de bases
de datos de AWS para la compatibilidad de la versión de DynamoDB.

Solución de problemas 335

AWS SDK de cifrado de bases de datos Guía para desarrolladores

En esta sección se describen los problemas que podría encontrar al utilizar el y se ofrecen
sugerencias para resolverlos.

Para enviar comentarios sobre el cliente de cifrado de DynamoDB, registre un problema en aws-
dynamodb-encryption-javael repositorio o. aws-dynamodb-encryption-python GitHub

Para enviar comentarios sobre esta documentación, utilice el enlace de comentarios de cualquier
página.

Temas

• Acceso denegado

• Errores de verificación de firma

• Problemas con las tablas globales de versiones anteriores

• Rendimiento deficiente del proveedor más reciente

Acceso denegado

Problema: su aplicación ha denegado el acceso a un recurso que la necesita.

Sugerencia: obtenga información acerca de los permisos requeridos y agréguelos al contexto de
seguridad en el que se ejecuta su aplicación.

Detalles

Para ejecutar una aplicación que usa una biblioteca de , el intermediario debe tener permiso para
utilizar sus componentes. De lo contrario, se les denegará el acceso a los elementos requeridos.

• El cliente de cifrado de DynamoDB no requiere una cuenta de Amazon Web Services (AWS)
ni depende de ningún servicio. AWS Sin embargo, si su aplicación lo usa AWS, necesitará una
cuenta Cuenta de AWS y usuarios que tengan permiso para usar la cuenta.

• El cliente de cifrado de DynamoDB no requiere Amazon DynamoDB. Sin embargo, si la aplicación
que utiliza el cliente crea tablas de DynamoDB, coloca elementos en una tabla u obtiene
elementos de una tabla, el intermediario debe tener permiso para utilizar las operaciones de
DynamoDB requeridas en su Cuenta de AWS. Para obtener más información, consulte los temas
de control de acceso en la Guía para desarrolladores de Amazon DynamoDB.

• Si la aplicación utiliza una clase auxiliar de cliente en el cliente de cifrado de DynamoDB para
Python, la persona que llama debe tener permiso para llamar a la operación de DynamoDB.
DescribeTable

Solución de problemas 336

https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-python/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/access-control-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/access-control-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

• El cliente de cifrado de DynamoDB no AWS Key Management Service requiere ().AWS KMSSin
embargo, si la aplicación utiliza un proveedor de materiales de Direct KMS o utiliza un proveedor
más reciente con un almacén de proveedores que lo utilice AWS KMS, la persona que llama debe
tener permiso para utilizar las operaciones AWS KMSGenerateDataKeyy descifrar.

Errores de verificación de firma

Problema: un elemento no se puede descifrar porque la verificación de firma devuelve un error. El
elemento podría no estar cifrado y firmado del modo previsto.

Sugerencia: asegúrese de que las acciones de atributos que proporcione cuenten para todos los
atributos del elemento. Al descifrar un elemento, asegúrese de proporcionar acciones de atributo que
coincidan con las acciones utilizadas para cifrar el elemento.

Detalles

Las acciones de atributo que proporciona indican qué atributos cifrar y firmar, qué atributos firmar
(pero no cifrar) y cuáles ignorar.

Si las acciones de atributo que especifique no cuentan para todos los atributos del elemento, el
elemento podría no cifrarse y firmarse del modo previsto. Si las acciones de atributo que proporciona
al descifrar un elemento difieren de las acciones de atributo que proporcione al cifrar el elemento, la
verificación de la firma podría fallar. Se trata de un problema particular para aplicaciones distribuidas
en las que las nuevas acciones de atributos podrían no haberse propagado a todos los hosts.

Los errores de validación de firmas son difíciles de resolver. Para ayudar a prevenirlos, tome
precauciones adicionales al cambiar el modelo de datos. Para obtener más información, consulte
Cambiar el modelo de datos.

Problemas con las tablas globales de versiones anteriores

Problema: los elementos de una tabla global de Amazon DynamoDB de una versión anterior no se
pueden descifrar porque no se puede comprobar la firma.

Sugerencia: defina las acciones de los atributos de forma que los campos de replicación reservados
no estén cifrados ni firmados.

Detalles

Solución de problemas 337

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Puede utilizar el cliente de cifrado de DynamoDB con las tablas globales de DynamoDB. Se
recomienda utilizar tablas globales con una clave KMS multirregional y replicar la clave KMS en
todos los Regiones de AWS lugares donde esté replicada la tabla global.

A partir de la versión 2019.11.21 de tablas globales, puede utilizarlas con el cliente de cifrado de
DynamoDB sin ninguna configuración especial. Sin embargo, si utiliza tablas globales de la versión
2017.11.29, debe asegurarse de que los campos de replicación reservados no estén cifrados ni
firmados.

Si utiliza las tablas globales de la versión 2017.11.29, debe configurar las acciones de atributo para
los siguientes atributos DO_NOTHING en @DoNotTouchJava o Python.

• aws:rep:deleting

• aws:rep:updatetime

• aws:rep:updateregion

Si utiliza cualquier otra versión de las tablas globales, no es necesario realizar ninguna acción.

Rendimiento deficiente del proveedor más reciente

Problema: la aplicación responde menos, especialmente después de actualizarse a una versión más
reciente del cliente de cifrado de DynamoDB.

Sugerencia: ajuste el time-to-live valor y el tamaño de la memoria caché.

Detalles

El proveedor más reciente está diseñado para mejorar el rendimiento de las aplicaciones que utilizan
el cliente de cifrado de DynamoDB al permitir una reutilización limitada del material criptográfico. Al
configurar el proveedor más reciente para su aplicación, debe equilibrar la mejora del rendimiento
con los problemas de seguridad que se derivan del almacenamiento en caché y la reutilización.

En las versiones más recientes del cliente de cifrado de DynamoDB, time-to-live el valor (TTL)
determina durante cuánto tiempo se pueden utilizar los proveedores de material criptográfico en
caché (). CMPs El TTL también determina la frecuencia con la que el proveedor más reciente
comprueba si hay una nueva versión del CMP.

Si su TTL es demasiado largo, su aplicación podría infringir sus normas empresariales o normas de
seguridad. Si tu TTL es demasiado breve, las llamadas frecuentes a la tienda del proveedor pueden

Solución de problemas 338

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V2.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V1.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V1.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

provocar que la tienda del proveedor limite las solicitudes de tu aplicación y de otras aplicaciones que
comparten tu cuenta de servicio. Para resolver este problema, ajusta el TTL y el tamaño de la caché
a un valor que cumpla tus objetivos de latencia y disponibilidad y que se ajuste a tus estándares de
seguridad. Para obtener más información, consulte Establecer un valor time-to-live.

Solución de problemas 339

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Cambio de nombre del Cliente de encriptación de Amazon
DynamoDB

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

El 9 de junio de 2023, nuestra biblioteca de cifrado del lado del cliente pasó a AWS llamarse
Database Encryption SDK. El SDK AWS de cifrado de bases de datos es compatible con Amazon
DynamoDB. Puede descifrar y leer elementos cifrados por el cliente de cifrado de DynamoDB
heredado. Para obtener más información sobre las versiones heredadas de DynamoDB Encryption
Client, consulte AWS Compatibilidad con la versión SDK de cifrado de bases de datos para
DynamoDB.

El SDK AWS de cifrado de bases de datos incluye la versión 3. x de la biblioteca de cifrado del
lado del cliente de Java para DynamoDB, que es una importante reescritura del cliente de cifrado
de DynamoDB para Java. Incluye numerosas actualizaciones, como un nuevo formato de datos
estructurados, una compatibilidad mejorada de multitenencia, cambios de esquema fluidos y
compatibilidad con el cifrado para búsquedas.

Para obtener más información sobre las nuevas funciones incorporadas con el SDK de cifrado de
AWS bases de datos, consulte los siguientes temas.

Cifrado para búsquedas

Puede diseñar bases de datos que puedan buscar registros cifrados sin tener que descifrar toda
la base de datos. Según el modelo de amenazas y los requisitos de consulta, puede utilizar el
cifrado para búsquedas para realizar búsquedas de coincidencias exactas o consultas complejas
más personalizadas en sus registros cifrados.

Conjuntos de claves

El SDK AWS de cifrado de bases de datos utiliza anillos de claves para realizar el cifrado de
sobres. Los conjuntos de claves generan, cifran y descifran las claves de datos que protegen
sus registros. El SDK de cifrado de AWS bases de datos admite AWS KMS conjuntos de claves
que utilizan cifrado simétrico o RSA asimétrico AWS KMS keyspara proteger las claves de datos,

340

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS SDK de cifrado de bases de datos Guía para desarrolladores

y conjuntos de claves AWS KMS jerárquicos que permiten proteger el material criptográfico
mediante una clave KMS de cifrado simétrico sin tener que llamar AWS KMS cada vez que
se cifra o descifra un registro. También puede especificar su propio material de claves con los
conjuntos de claves Raw AES y Raw RSA.

Cambios de esquema sin complicaciones

Al configurar el SDK de cifrado de AWS bases de datos, proporciona acciones criptográficas
que indican al cliente qué campos debe cifrar y firmar, qué campos debe firmar (pero no cifrar)
y cuáles debe ignorar. Una vez que haya utilizado el SDK AWS de cifrado de bases de datos
para proteger sus registros, podrá seguir realizando cambios en el modelo de datos. Puede
actualizar sus acciones criptográficas, como agregar o eliminar campos cifrados, en una sola
implementación.

Configurar las tablas de DynamoDB existentes para el cifrado del cliente

Las versiones heredadas del cliente de cifrado de DynamoDB se diseñaron para implementarse
en tablas nuevas y despobladas. Con el SDK AWS de cifrado de bases de datos para
DynamoDB, puede migrar las tablas de Amazon DynamoDB existentes a la versión 3. x de la
biblioteca de cifrado del lado del cliente de Java para DynamoDB.

341

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Referencia

Se cambió el nombre de nuestra biblioteca de cifrado del lado del cliente por el de SDK de cifrado
de AWS bases de datos. En esta guía para desarrolladores, se sigue proporcionando información
sobre el cliente de cifrado de DynamoDB.

En los temas siguientes se proporcionan detalles técnicos del SDK de cifrado de AWS bases de
datos.

Formato de descripción del material

La descripción del material sirve como encabezado de un registro cifrado. Al cifrar y firmar campos
con el SDK de cifrado de AWS bases de datos, el cifrador registra la descripción del material
a medida que reúne los materiales criptográficos y almacena la descripción del material en un
nuevo campo (aws_dbe_head) que el cifrador añade al registro. La descripción del material es
una estructura de datos con formato portátil que contiene la clave de datos cifrados e información
sobre cómo se cifró y firmó el registro. En la siguiente tabla, se describen los valores que forman la
descripción del material. Los bytes se anexan en el orden mostrado

Valor Longitud en bytes

Version 1

Signatures Enabled 1

Record ID 32

Encrypt Legend Variable

Encryption Context Length 2

??? Variable

Encrypted Data Key Count 1

Encrypted Data Keys Variable

Formato de descripción del material 342

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Valor Longitud en bytes

Record Commitment 1

Versión

La versión de este aws_dbe_head formato de campo.

Firmas habilitadas

Codifica si las firmas digitales ECDSA están habilitadas para este registro.

Valor del byte Significado

0x01 Firmas digitales ECDSA habilitadas (predeter
minado)

0x00 Firmas digitales ECDSA deshabilitadas

ID de registro

Valor de 256-bits generado de manera aleatoria que identifica el registro. El ID del registro:

• Identifica de forma única el registro cifrado.

• Vincula la descripción del material al registro cifrado.

Cifrar leyenda

Una descripción serializada de los campos autenticados que se cifraron. La leyenda de cifrado se
utiliza para determinar qué campos debe intentar descifrar el método de descifrado.

Valor del byte Significado

0x65 ENCRYPT_AND_SIGN

0x73 SIGN_ONLY

La leyenda de cifrado se serializa de la siguiente manera:

Formato de descripción del material 343

AWS SDK de cifrado de bases de datos Guía para desarrolladores

1. Lexicográficamente mediante la secuencia de bytes que representa su ruta canónica.

2. Para cada campo, en orden, agregue uno de los valores de bytes especificados anteriormente
para indicar si ese campo debe cifrarse.

Longitud del contexto de cifrado

La longitud del contenido cifrado. Se trata de un valor de 2 bytes interpretado como un entero sin
signo de 16 bits. La longitud máxima es de 65.535 bytes.

Contexto de cifrado

Un conjunto de pares de nombre-valor que contienen datos autenticados adicionales no secretos
y arbitrarios.

Cuando las firmas digitales ECDSA están habilitadas, el contexto de cifrado contiene el par clave-
valor. {"aws-crypto-footer-ecdsa-key": Qtxt} Qtxtrepresenta el punto de la curva
elíptica Q comprimido según la versión 2.0 de la SEC 1 y, a continuación, codificado en base64.

Recuento de claves de datos cifrados

El número de claves de datos cifradas. Se trata de un valor de 1-byte interpretado como un entero
sin signo de 8-bits que especifica el número de claves de datos cifradas. El número máximo de
claves de datos cifrados en cada registro es 255.

Claves de datos cifradas

Una secuencia de claves de datos cifradas. La longitud de la secuencia se determina según el
número de claves de datos cifradas y la longitud de cada una de ellas. La secuencia contiene al
menos una clave de datos cifrada.

En la siguiente tabla se describen los campos que componen cada clave de datos cifrada. Los
bytes se anexan en el orden mostrado

Encrypted Data Key Structure

Campo Longitud en bytes

Key Provider ID Length 2

Key Provider ID Variable. Equivalente al valor especificado en
los últimos 2 bytes (Key Provider ID Length).

Key Provider Information Length 2

Formato de descripción del material 344

https://www.secg.org/sec1-v2.pdf

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Campo Longitud en bytes

Key Provider Information Variable. Equivalente al valor especificado en
los últimos 2 bytes (Key Provider Information
Length).

Encrypted Data Key Length 2

Encrypted Data Key Variable. Equivalente al valor especificado
en los últimos 2 bytes (Encrypted Data Key
Length).

Longitud del ID del proveedor de claves

La longitud del identificador del proveedor de claves. Se trata de un valor de 2 bytes
interpretado como un entero sin signo de 16 bits que especifica el número de bytes que
contienen el ID del proveedor de claves.

ID de proveedor clave

El identificador del proveedor de claves. Se utiliza para indicar el proveedor de la clave de
datos cifrada y está previsto que sea extensible.

Longitud de la información clave del proveedor

La longitud de la información del proveedor de claves. Se trata de un valor de 2 bytes
interpretado como un entero sin signo de 16 bits que especifica el número de bytes que
contienen la información del proveedor de claves.

Información clave del proveedor

La información del proveedor de claves. Viene determinada por el proveedor de claves.

Si utiliza un conjunto de AWS KMS claves, este valor contiene el nombre de recurso de
Amazon (ARN) del. AWS KMS key

Longitud de la clave de datos cifrados

La longitud de la clave de datos cifrada. Se trata de un valor de 2 bytes interpretado como un
entero sin signo de 16 bits que especifica el número de bytes que contienen la clave de datos
cifrada.

Formato de descripción del material 345

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Clave de datos cifrados

La clave de datos cifrada. Se trata de la clave de datos cifrada por el proveedor de claves.

Compromiso récord

Un hash distinto del código de autenticación de mensajes (HMAC) basado en hash de 256 bits
que se calcula sobre todos los bytes de descripción del material anteriores mediante la clave de
confirmación.

AWS KMS Detalles técnicos del llavero jerárquico

El conjunto de claves jerárquico AWS KMS utiliza una clave de datos única para cifrar cada campo
y cifra cada clave de datos con una clave de encapsulamiento única derivada de una clave de rama
activa. Utiliza una derivación de claves en modo contador con una función pseudoaleatoria con el
HMAC SHA-256 para obtener la clave de encapsulamiento de 32 bytes con las siguientes entradas.

• Una sal de asignación al azar de 16 bytes

• La clave de rama activa

• El valor codificado en UTF-8 para el identificador del proveedor de claves "» aws-kms-hierarchy

El conjunto de claves jerárquico utiliza la clave de encapsulamiento derivada para cifrar una copia de
la clave de datos de texto no cifrado mediante el AES-GCM-256 con una etiqueta de autenticación de
16 bytes y las siguientes entradas.

• La clave de encapsulamiento derivada se utiliza como clave de cifrado AES-GCM

• La clave de datos se utiliza como mensaje AES-GCM

• Se utiliza un vector de inicialización aleatoria (IV) de 12 bytes como AES-GCM IV

• Datos autenticados adicionales (AAD) que contienen los siguientes valores serializados.

Valor Longitud en bytes Interpretado como

"aws-kms-hierarchy" 17 Codificado con UTF-8

El identificador de la clave de
la rama

Variable Codificado con UTF-8

AWS KMS Detalles técnicos del llavero jerárquico 346

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
https://en.wikipedia.org/wiki/UTF-8

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Valor Longitud en bytes Interpretado como

La versión de clave de la
rama

16 Codificado con UTF-8

Contexto de cifrado Variable Pares de valores de clave
con codificación UTF-8

AWS KMS Detalles técnicos del llavero jerárquico 347

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Historial de documentos de la Guía para desarrolladores del
SDK de cifrado de AWS bases de datos
En la siguiente tabla se describen cambios significativos de esta documentación. Además de estos
cambios importantes, también actualizamos la documentación con frecuencia para mejorar las
descripciones y los ejemplos y para dar cuenta de los comentarios que nos envía. Para recibir
notificaciones sobre cambios significativos, suscríbase al canal RSS.

Cambio Descripción Fecha

Nueva característica Se agregó documentación
para el anillo de claves AWS
KMS ECDH y el anillo de
claves ECDH sin procesar.

17 de junio de 2024

Versión de disponibilidad
general (GA)

Presentamos la compatibilidad
con la biblioteca de cifrado
del lado del cliente.NET para
DynamoDB.

17 de enero de 2024

Versión de disponibilidad
general (GA)

Documentación actualiza
da para la versión GA de la
versión 3.x de la biblioteca
de cifrado del cliente de Java
para DynamoDB.

Warning

Las claves de rama
creadas durante la
versión preliminar para
desarrolladores ya no
son compatibles.

24 de julio de 2023

Cambio de marca del cliente
de cifrado de DynamoDB

El nombre de la biblioteca de
cifrado del lado del cliente

9 de junio de 2023

348

https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-net.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-net.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-java.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-java.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

pasa a llamarse Database
Encryption SDK. AWS

Versión de prueba Se agregó y actualizó la
documentación para la versión
3.x de la biblioteca de cifrado
del cliente de Java para
DynamoDB, que incluye
un nuevo formato de datos
estructurados, compatibilidad
mejorada de multitenencia,
cambios de esquema sin
problemas y compatibilidad
con cifrado para búsquedas.

9 de junio de 2023

Cambio de documentación Sustituya el AWS Key
Management Service término
clave maestra del cliente
(CMK) por clave KMS AWS
KMS key.

30 de agosto de 2021

Nueva característica Se agregó compatibilidad con
claves AWS Key Managemen
t Service (AWS KMS) multirreg
ionales. Las claves multirreg
ionales son AWS KMS clave
s diferentes Regiones de
AWS que se pueden usar
indistintamente porque tienen
el mismo identificador de clave
y material clave.

8 de junio de 2021

Nuevo ejemplo Se agregó un ejemplo del uso
del DBMapper Dynamo en
Java.

6 de septiembre de 2018

Soporte de Python Se ha agregado soporte para
Python, además de Java.

2 de mayo de 2018

349

https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/direct-kms-provider.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/direct-kms-provider.html#provider-kms-how-to-use
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/java-examples.html#java-example-dynamodb-mapper
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/python.html

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Versión inicial Versión inicial de esta
documentación.

2 de mayo de 2018

350

https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/

AWS SDK de cifrado de bases de datos Guía para desarrolladores

Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la
traducción y la version original de inglés, prevalecerá la version en inglés.

cccli

	AWS SDK de cifrado de bases de datos
	Table of Contents
	¿Qué es el SDK AWS de cifrado de bases de datos?
	Desarrollado en repositorios de código abierto
	Compatibilidad y mantenimiento
	Envío de comentarios
	AWS Conceptos del SDK de encriptación de bases
	Cifrado de sobre
	Clave de datos
	Clave de encapsulación
	Conjuntos de claves
	Funciones criptográficas
	Descripción de material
	Contexto de cifrado
	Administrador de materiales criptográficos
	Cifrado simétrico y asimétrico
	Compromiso clave
	Firmas digitales

	Cómo funciona el SDK AWS de cifrado de bases de datos
	Cifra y firma
	Descifrado y verificación

	Conjuntos de algoritmos compatibles en el SDK de cifrado AWS de bases de datos
	Conjunto de algoritmos predeterminado
	AES-GCM sin firmas digitales ECDSA

	Uso del SDK AWS de cifrado de bases de datos con AWS KMS
	Configuración del SDK de cifrado AWS de bases de datos
	Selección de un lenguaje de programación
	Seleccionar las claves de encapsulamiento
	Crear un filtro de detección
	Trabajar con bases de datos de varios inquilinos
	Crear balizas firmadas

	Almacenes de claves en el SDK de cifrado AWS de bases de datos
	La terminología y los conceptos del almacén de claves
	Implementación de permisos de privilegio mínimo
	Crear un almacén de claves
	Configurar las acciones del almacén de claves
	Configure las acciones de su almacén de claves
	Configuración estática
	Configuración de descubrimiento

	Creación de una clave de rama activa
	Rote la clave de rama activa

	Conjuntos de claves
	Cómo funcionan los conjuntos de claves
	AWS KMS llaveros
	Permisos necesarios para los conjuntos de claves de AWS KMS
	Identificarse AWS KMS keys en un AWS KMS llavero
	Crear un anillo de claves AWS KMS
	Uso de varias regiones AWS KMS keys
	Uso de un anillo de claves de detección AWS KMS
	Uso de un anillo de claves de detección AWS KMS regional

	AWS KMS Llaveros jerárquicos
	Funcionamiento
	Requisitos previos
	Permisos necesarios
	Elige una memoria caché
	Caché predeterminada
	MultiThreaded caché
	StormTracking caché
	Caché compartida

	Crear un conjunto de claves jerárquico
	Cree un conjunto de claves jerárquico con un ID de clave de rama estático
	Cree un conjunto de claves jerárquico con un proveedor de ID de clave de sucursal

	Uso del conjunto de claves jerárquico para el cifrado para búsquedas
	Definir la fuente de claves de baliza

	AWS KMS Llaveros ECDH
	AWS KMS Permisos necesarios para los llaveros ECDH
	Crear un conjunto de claves ECDH AWS KMS
	Creación de un conjunto de claves AWS KMS de detección del ECDH

	Conjunto de claves de AES sin formato
	Conjunto de claves de RSA sin formato
	Llaveros ECDH sin procesar
	Creación de un conjunto de claves ECDH sin procesar
	RawPrivateKeyToStaticPublicKey
	EphemeralPrivateKeyToStaticPublicKey
	PublicKeyDiscovery

	Conjuntos de claves múltiples

	Cifrado para búsquedas
	¿Las balizas son adecuadas para mi conjunto de datos?
	Situación de cifrado para búsquedas
	Balizas
	Balizas estándar
	Balizas compuestas

	Planificación de balizas
	Consideraciones para bases de datos de multitenencia
	Elección de un tipo de baliza
	Balizas estándar
	Consulte un único campo cifrado
	Ejemplos

	Consulte un campo virtual
	Ejemplos

	Balizas compuestas
	Consulte una combinación de campos cifrados en un único índice
	Ejemplos

	Consulte una combinación de campos cifrados y de texto no cifrado en un único índice
	Ejemplos

	Elegir la longitud de una baliza
	Calcular la longitud de la baliza
	Ejemplo

	Elección de un nombre de baliza

	Configuración de las balizas
	Configuración de balizas estándar
	Ejemplo de sintaxis de configuración
	Creación de un campo virtual
	Aspectos de seguridad para campos virtuales

	Definir estilos de balizas

	Configuración de balizas compuestas
	Ejemplo de sintaxis de configuración

	Configuraciones de ejemplo
	Balizas estándar
	Balizas compuestas

	Uso de balizas
	Balizas de consulta

	Cifrado con capacidad de búsqueda para bases de datos multitenencia
	Consulta de balizas en una base de datos de multitenencia

	AWS SDK de cifrado de bases de datos para DynamoDB
	cifrado del cliente o del lado del servidor
	¿Qué campos se cifran y se firman?
	Cifrado de valores de atributos
	Firma del elemento

	Cifrado con capacidad de búsqueda en DynamoDB
	Configurar índices secundarios con balizas
	Probando las salidas de balizas
	Probando campos virtuales
	Probando balizas compuestas

	Actualización de su modelo de datos
	Agregue SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributos nuevos ENCRYPT_AND_SIGN y SIGN_ONLY
	Elimine los atributos existentes
	Cambie un ENCRYPT_AND_SIGN atributo existente a SIGN_ONLY o SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
	Cambie un SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT atributo SIGN_ONLY o existente a ENCRYPT_AND_SIGN
	Añada un atributo DO_NOTHING nuevo
	Cambio de un atributo SIGN_ONLY existente a SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
	Cambio de un atributo SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT existente a SIGN_ONLY

	AWS SDK de cifrado de bases de datos para los lenguajes de programación disponibles en DynamoDB
	Java
	Requisitos previos
	Instalación
	Usar la biblioteca de cifrado del cliente de Java para DynamoDB
	Encriptadores de elementos
	Acciones de atributos en el SDK de cifrado AWS de bases de datos para DynamoDB
	Utilice una clase de datos anotada
	Defina manualmente las acciones de sus atributos

	Configuración de cifrado en el SDK de cifrado de bases de datos de AWS para DynamoDB
	Actualización de elementos con el SDK de cifrado de bases de datos AWS
	Descifrado de conjuntos firmados

	Ejemplos de Java
	Uso del cliente mejorado de DynamoDB
	API de bajo nivel de DynamoDB
	Usando el nivel inferior DynamoDbItemEncryptor

	Configurar una tabla de DynamoDB existente para usar AWS el SDK de cifrado de bases de datos para DynamoDB
	Paso 1: prepararse para leer y escribir elementos cifrados
	Paso 2: escribir elementos cifrados y firmados
	Paso 3: Lee solo los elementos cifrados y firmados

	Migre a la versión 3.x de la biblioteca de cifrado del cliente de Java para DynamoDB
	Migración de la versión 1.x a la versión 2.x
	Migración de la versión 2.x a la versión 3.x
	Paso 1. Prepárese para leer los elementos en el nuevo formato
	Paso 2. Escriba los elementos en el nuevo formato
	Paso 3. Lea y escriba únicamente los elementos en el nuevo formato

	.NET
	Instalación de la biblioteca de cifrado del lado del cliente.NET para DynamoDB
	Depuración con .NET
	Uso de la biblioteca de cifrado del lado del cliente.NET para DynamoDB
	Encriptadores de elementos
	Acciones de atributos en el SDK de cifrado de bases de datos de AWS para DynamoDB
	Configuración de cifrado en el SDK de cifrado de bases de datos de AWS para DynamoDB
	Actualización de elementos con el SDK de cifrado de bases de datos AWS

	Ejemplos de.NET
	Uso del SDK de cifrado de AWS bases de datos de bajo nivel para la API de DynamoDB
	Uso del nivel inferior DynamoDbItemEncryptor

	Configurar una tabla de DynamoDB existente para usar el SDK de cifrado de bases de datos de AWS para DynamoDB
	Paso 1: prepararse para leer y escribir elementos cifrados
	Paso 2: escribir elementos cifrados y firmados
	Paso 3: Lee solo los elementos cifrados y firmados

	Rust
	Requisitos previos
	Instalación
	Uso de la biblioteca de cifrado del lado del cliente de Rust para DynamoDB
	Encriptadores de elementos
	Acciones de atributos en el SDK de cifrado de bases de datos de AWS para DynamoDB
	Configuración de cifrado en el SDK de cifrado de bases de datos de AWS para DynamoDB
	Actualización de elementos con el SDK de cifrado de bases de datos AWS

	Cliente de cifrado de DynamoDB antiguo
	AWS Compatibilidad con la versión SDK de cifrado de bases de datos para DynamoDB
	Cómo funciona el cliente de cifrado de DynamoDB
	Conceptos del Cliente de encriptación de Amazon DynamoDB
	Proveedor de materiales criptográficos (CMP)
	Encriptadores de elementos
	Acciones de atributo
	Descripción de material
	Contexto de cifrado de DynamoDB
	Almacén de proveedores

	Proveedor de materiales criptográficos
	Proveedor de materiales de KMS directo
	Modo de uso
	Cómo funciona
	Obtener los materiales de cifrado
	Obtener los materiales de descifrado

	Proveedor de materiales encapsulado
	Modo de uso
	Funcionamiento
	Obtener los materiales de cifrado
	Obtener los materiales de descifrado

	Proveedor más reciente
	Modo de uso
	Funcionamiento
	Acerca del proveedor más reciente
	Acerca del MetaStore
	Establecer un valor time-to-live
	Rotación de materiales criptográficos
	Obtener los materiales de cifrado
	Obtener los materiales de descifrado

	Actualizaciones del proveedor más reciente

	Proveedor de materiales estático
	Modo de uso
	Funcionamiento
	Obtener los materiales de cifrado
	Obtener los materiales de descifrado

	Lenguajes de programación disponibles para el Cliente de encriptación de Amazon DynamoDB
	Cliente de encriptación de Amazon DynamoDB para Java
	Requisitos previos
	Instalación
	Uso del cliente de cifrado de DynamoDB para Java
	Encriptadores de elementos: y Dynamo AttributeEncryptor DBEncryptor
	Configuración del comportamiento de almacenamiento
	Acciones de atributo en Java
	Acciones de atributos para el Dynamo DBMapper
	Acciones de atributos para el Dynamo DBEncryptor

	Reemplazar nombres de tabla

	Ejemplo de código para el cliente de cifrado de DynamoDB para Java
	¿Usando el Dynamo DBEncryptor
	Uso del Dynamo DBMapper

	Cliente de cifrado de DynamoDB para Python
	Requisitos previos
	Instalación
	Uso del cliente de cifrado de DynamoDB para Python
	Clases auxiliares de cliente
	TableInfo clase
	Acciones de atributo en Python

	Código de ejemplo para el cliente de cifrado de DynamoDB para Python
	Usa la clase de ayuda al EncryptedTable cliente
	Utilice el encriptador de elementos

	Cambiar el modelo de datos
	Adición de un atributo
	Eliminación de un atributo

	Solución de problemas en la aplicación DynamoDB Encryption Client
	Acceso denegado
	Errores de verificación de firma
	Problemas con las tablas globales de versiones anteriores
	Rendimiento deficiente del proveedor más reciente

	Cambio de nombre del Cliente de encriptación de Amazon DynamoDB
	Referencia
	Formato de descripción del material
	AWS KMS Detalles técnicos del llavero jerárquico

	Historial de documentos de la Guía para desarrolladores del SDK de cifrado de AWS bases de datos
	

