adws

Referencia de SQL

AWS Clean Rooms

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Clean Rooms Referencia de SQL

AWS Clean Rooms: Referencia de SQL

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Las marcas comerciales y la imagen comercial de Amazon no se pueden utilizar en relacion con
ningun producto o servicio que no sea de Amazon, de ninguna manera que pueda causar confusion
entre los clientes y que menosprecie o desacredite a Amazon. Todas las demas marcas registradas
que no son propiedad de Amazon son propiedad de sus respectivos propietarios, que pueden o no
estar afiliados, conectados o patrocinados por Amazon.

AWS Clean Rooms Referencia de SQL

Table of Contents

DeSCripCiON GENETAl Tooiieiiieeeee ettt e e e e e e e e e e e e e aaeeaaeeeeeeeeeaaanaraaaa_ 1
(@70 017 o o3[1 SRR 1
Reglas de NOMENCIAtUIAoii it e e e e e e et e e e e e e eeeraaeeeaeennes 2

Columnas y nombres de asociacion de tablas configuradascccoooiiiiiiiiccccccccceeee e, 2
Palabras rESEIVAUASot e e e e e e e e e e e e e e e et e et e et e e e as 4
Soporte de tipos de datos mediante el motor SQL ... 6
Tipos de datOS NUMETICOSooviiiiiiiiiccce et e e e e e e e e e e e e e e aaeeeeeeeeeeeesnannees 6
Tipos de datos DOOIEANOScoeuuiiii e e e e e e e e e e e e e e 9
Tipos de datos de feCha y NOra ... 9
Tipos de datos de CAraCLEIESccoiiiiiiiii e e e e e e 10
Tipos de datos eStrUCIUIrAdOScoooiiiiiiii e e e e aaaas 12
AWS Clean ROOMS SPark SQILooeiiiiiieiiiiiiiiiie ettt e e et e e e e e e e e e e e e e e e e nnnnneeeeeeeees 15
I (=T = [PP URRPPPTRR 15
+ Operador (CONCAtENACION)cccoiiiiiii et eea s aas 16
LI o JoE T L= £= 1 (o TR 17
Caracteres MUILIDYLEcooooii ettt e e e e e e e e e e aaaaaaaees 19
TIPOS NUIMETICOS ...ttt e et e e oot e ettt e e e e e e e e e e e e e eeaeeeeeeeeeeeessasssssannna s 20
TIPOS A& CArACIEIEScoeeiiii ittt e et e e e e e e e e e e e e e e eaa e e e e e eeaananas 28
Tip0S d€ fECA Y NOTA ..o e e e e e e e e e 30
I o Lo T Yo Yo 1 [T o o 47
I o Lo T 1 = 1 [T 51
I o Lo = 01 T = To [T 51
Conversion y compatibilidad de tipOScccoooiiiiiiiii e 53
(@] 4 F= T 0o [1SI0SR 58
TABLA DE CACHE ...ttt e et et eaene e 59
S T0 o =T (=Yg Lo = ORI 61
STt I SRR 69
FUNCIONES SQIL ... ettt e et e e e e e e e e e e e e e bbb e e e e e eeaaaaeeeeeeeaaaannnnnnennes 117
FUNCIONES d€ aQregacCiONcooiiiiiieeeee ettt e e e e e e e e e e e e aaaeaaes 118
FUNCIONES d€ MALNIZ ... e e e e e e e e e e e eeees 142
EXxpresiones CONAICIONAIESooiiiiiiiiiie e e e e e e e e e e e e ennaaas 152
FUNCIONES del CONSITUCTON ... e e e e e e e e e e e e e eeeeennnees 165
Funciones de formato de tipo de datOscceeiiiiiiiiiiii e 168
Funciones de feCha ¥y hOraooooeemiiie e 197

AWS Clean Rooms Referencia de SQL

Funciones de cifrado y desCifradoooooeiiiiiiiiiiceeee e 227
[Tl Te] U= TS o F= T o PP 231
Funciones de hiperloglogoouueiiiiiiiie e e e e e e e e e e earar e e e e eeanes 235
FUNCIONES JSON ...ttt ettt e e e e e e e e e e e e aaaeaaeeeeeeeeeesnsssannnns 243
FUNCIONES MAatEMALICASccoiiiii it 247
FUNCIONES ©SCAIAIES ...t e e e e e e e e et e e e e e e e enan s 279

[aTelTe] =T o (SR o= To [o = S 280
Funciones relacionadas con la privacidad ... 327
FUNCIONES A€ VENTANAceeiiiieeeee e e e e e et e e e e e e e e e e e 333
CoNICIONES SQIL ...uiiiiii it e et e e e e e e e e e e e e e e ——————————————————————————aaaaaaans 366
Operadores de COMPATACIONccooiiiiiiiieeeeeee a e e e e e eeeeas 367

(070] aTo [Tei o] g [=T 0 (oo [(o= 1= TS PPRPPRP 373
Condiciones de coincidencia de patroONEscccccoiiiiiiiiii i 377
Condicion de rango BETWEEN ...t 382
CoNdICION NUIA ...ttt s eeeeeaaannaaa 384
CondiCiON EXISTS ...t e ettt a e e e e e e e e e aaaaaaaaaeaeaaees 385
(@] aTe [To o] o I | 1N OSSPSR 386
Consultar datos anidAdOSuuuuuuiiiiiiiii e e e e e e e e e e ————— 389
NAVEGACION ...ttt e e e et e e e e e e e e e e e e e e e et eeeeeeeaeaa e s eeeeeeeaaaaaaaeeeeeeeserassssnnnrnnnas 389

D TSTT= T o F= T oteT g 1ST U1 | = T SR 390
SEMANTICA [AXA ..eeiiiiiiiee et e e et ——————————————————————— 392
TIPOS € INTFOSPECCION ...ttt e e e e e e e e e e e e e e e e e eeeeeeeeeeeessssnaaannas 393
HISTOrIAl A€ TEVISION ...ttt ettt e e e e e e e e e e aeaaaeeaeeeeeeeaesnnnnes 395
... ccexceviii

AWS Clean Rooms Referencia de SQL

Descripcion general de SQL en AWS Clean Rooms

Le damos la bienvenida a Referencia de SQL en AWS Clean Rooms.

AWS Clean Roomsse basa en el lenguaje de consulta estructurado (SQL) estandar del sector, un
lenguaje de consulta que consta de comandos y funciones que se utilizan para trabajar con bases
de datos y objetos de bases de datos. SQL también aplica reglas relativas al uso de tipos de datos,
expresiones y literales.

En los temas siguientes se proporciona informacion general sobre las convenciones y las reglas de
nomenclatura utilizadas en esta referencia de SQL.

Temas

« Convenciones de referencia a SQL

* Reglas de nomenclatura de SQL

» Soporte de tipos de datos mediante el motor SQL

En las siguientes secciones se proporciona informacion sobre los literales, los tipos de datos, los
comandos SQL, los tipos de funciones SQL y las condiciones SQL en AWS Clean Rooms las que
puede utilizar.

« AWS Clean Rooms Spark SQL

Para obtener mas informacionAWS Clean Rooms, consulte la Guia del AWS Clean Rooms usuario y
la Referencia de la AWS Clean Rooms API.

Convenciones de referencia a SQL

En esta seccidn se explican las convenciones que se utilizan para escribir la sintaxis de las
expresiones, los comandos y las funciones SQL.

Caracter Descripcién
CAPS Las palabras en mayuscula son palabras clave.
[] Los corchetes denotan argumentos opcionales.

Varios argumentos entre corchetes indican que

Convenciones 1

https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/apireference/Welcome.html

AWS Clean Rooms Referencia de SQL

Caracter Descripcién

puede seleccionar cualquier cantidad de argumento
s. Ademas, los argumentos entre corchetes en lineas
separadas indican que el analizador de espera que
los argumentos estén en el orden que aparecen en la
sintaxis.

{} Las llaves indican que debe seleccionar uno de los
argumentos contenidos en las llaves.

Las barras verticales indican que puede seleccionar
entre los argumentos.

cursiva Las palabras en cursiva indican marcadores de
posicion. Debe insertar el valor adecuado en lugar de
la palabra en cursiva.

Los puntos suspensivos indican que puede repetir el
elemento anterior.

' Las palabras entre comillas simples indican que debe
escribir las comillas.

Reglas de nomenclatura de SQL

En las siguientes secciones se explican las reglas de nomenclatura de SQL de AWS Clean Rooms.

Temas

« Columnas y nombres de asociacion de tablas configuradas

» Palabras reservadas

Columnas y nombres de asociacion de tablas configuradas

Los miembros que pueden realizar consultas usan nombres de asociacion de tablas configuradas
como nombres de tabla en las consultas. Los nombres de asociacion de tablas configuradas y las
columnas de tablas configuradas pueden designarse por un alias en las consultas.

Reglas de nomenclatura 2

AWS Clean Rooms Referencia de SQL

Las siguientes reglas de nomenclatura se aplican a los nombres de asociacion de tablas
configuradas, a los nombres de columnas de tablas configuradas y a los alias:

» Deben utilizar unicamente caracteres alfanuméricos, de subrayado (_) o de guién (-), pero no
pueden empezar ni terminar con un guion.

* (Solo para reglas de andlisis personalizadas) Pueden usar el signo de délar ($), pero no pueden
usar un patron que siga una constante de cadena cotizada en ddlares.

Una constante de cadena citada entre dolares consta de:

 un simbolo de dodlar ($)

» una "etiqueta" opcional de cero o mas caracteres

 otro simbolo de dolar

» secuencia arbitraria de caracteres que componen el contenido de la cadena
* un simbolo de délar ($)

 la misma etiqueta con la que comenz6 la citacion entre dolares

e un simbolo de délar

Por ejemplo: $$invalid$$.
* No pueden contener guiones (-) consecutivos.

* No pueden empezar con ninguno de los siguientes prefijos:

padb_, pg_, stcs_,stl_,stll_, stv_,svcs_,svl_, svv_, sys_, systable_

* No pueden contener caracteres de barra invertida (\), comillas (') ni espacios que no estén entre
comillas dobles.

+ Si comienzan con un caracter no alfabético, deben estar entre comillas dobles (" ").
» Si contienen un caracter de guion (-), deben estar entre comillas dobles (" ").
» Deben tener una longitud de entre 1 y 127 caracteres.

» Las palabras reservadas deben estar entre comillas dobles (" ").

* Los siguientes nombres de columna estan reservados y no se pueden usar AWS Clean Rooms (ni
siquiera entre comillas):

e oid

tableoid

e Xmin

* Ccmin

Columnas y nombres de asociacion de tablas configuradas 3

AWS Clean Rooms

Referencia de SQL

¢ Xmax
¢ Ccmax

» ctid

Palabras reservadas

La siguiente es una lista de palabras reservadas en AWS Clean Rooms.

AES128

AES256ALL

ALLOWOVER
WRITEANALYSE

ANALYZE

AND

ANY

ARRAY

AS

ASC

AUTHORIZATION

AZ64

BACKUPBETWEEN

BINARY

BLANKSASN
ULLBOTH

DELTA32KDESC

DISTINCT

DO

DISABLE

ELSE

EMPTYASNU
LLENABLE

ENCODE

ENCRYPT

ENCRYPTIONEND

EXCEPT

EXPLICITFALSE

FOR

FOREIGN

FREEZE

LEADING

LEFTLIKE

LIMIT

LOCALTIME

LOCALTIMESTAMP

LUN

LUNS

LZO

LZOP

MINUS

MOSTLY16

MOSTLY32

MOSTLY8SNATURAL

NEW

PRIMARY

RAW

READRATIO

RECOVERRE
FERENCES

REJECTLOG

RESORT

RESPECT

RESTORE

RIGHTSELECT

SESSION_USER

SIMILAR

SNAPSHOT

SOME

SYSDATESYSTEM

Palabras reservadas

AWS Clean Rooms

Referencia de SQL

BYTEDICT
BZIP2CASE
CAST

CHECK

COLLATE
COLUMN
CONSTRAINT
CREATE

CREDENTIA
LSCROSS

CURRENT_DATE

CURRENT_TIME

CURRENT_T
IMESTAMP

CURRENT_USER

CURRENT_U
SER_IDDEFAULT

DEFERRABLE

DEFLATE
DEFRAG

DELTA

FROM

FULL

GLOBALDICT256

GLOBALDIC
T64KGRANT

GROUP

GZIPHAVING

IDENTITY

IGNOREILIKE

IN

INITIALLY

INNER

INTERSECT

INTERVAL

INTO

ISNULL

JOIN

LANGUAGE

NOT

NOTNULL

NULL

NULLSOFF

OFFLINEOFFSET

OID

OLD

ON

ONLY

OPEN

OR

ORDER

OUTER

OVERLAPS

PARALLELP
ARTITION

PERCENT

PERMISSIONS

PIVOTPLACING

TABLE

TAG

TDES

TEXT255

TEXT32KTHEN

TIMESTAMP

TO

TOPTRAILING

TRUE

TRUNCATEC
OLUMNSUNION

UNIQUE

UNNEST

USING

VERBOSE

WALLETWHEN

WHERE

WITH

WITHOUT

Palabras reservadas

AWS Clean Rooms Referencia de SQL

Soporte de tipos de datos mediante el motor SQL

AWS Clean Rooms admite varios motores y dialectos de SQL. Comprender los sistemas de tipos de
datos en estas implementaciones es crucial para el éxito de la colaboracion y el analisis de los datos.
En las siguientes tablas se muestran los tipos de datos equivalentes en AWS Clean Rooms SQL,
Snowflake SQL y Spark SQL.

Tipos de datos numéricos

Los tipos numéricos representan varios tipos de numeros, desde numeros enteros precisos hasta
valores aproximados de punto flotante. La eleccion del tipo numérico afecta tanto a los requisitos de
almacenamiento como a la precision computacional. Los tipos de enteros varian segun el tamarno del
byte, mientras que los tipos decimales y de punto flotante ofrecen diferentes opciones de precision y
escala.

Tipo de datos: AWS Clean Rooms SQL Spark SQL Description
SQL Snowflake (Descripcion)
Entero de 8 bytes BIGINT No compatible BIGINT, Enteros
LARGO firmados

comprendidos
entre -9.223.37
2.036.854
.775.808 y
9.223.372
.036.854.
775.807.

Entero de 4 bytes INT No compatible INT, INTEGER Enteros con
signo de
-2.147.483.648
a2.147.483
.647

Entero de 2 bytes SMALLINT No compatible = SMALLINT, Numeros
CORTO enteros
firmados de

Soporte de tipos de datos mediante el motor SQL 6

AWS Clean Rooms

Referencia de SQL

Tipo de datos:

Entero de 1 byte

Flotador de doble

precision

Flotador de
precision unica

AWS Clean Rooms
SQL

No admitido

DOBLE, DOBLE
PRECISION

REAL, FLOTANTE

SQL Spark SQL
Snowflake

No admitido TINYINT,

BYTE

FLOTANTE
FLOAT4
FLOATS,
DOBLE,
DOBLE
PRECISION,
REAL

DOBLE

No compatible FLOAT

Description
(Descripcion)

-32.768 a
32.767

Enteros con
signo del -128
al 127

Numeros de
coma flotante
de doble
precision de 8
bytes

numeros de
coma flotante
de precisiéon
unica de 4
bytes

Tipos de datos numéricos

AWS Clean Rooms

Referencia de SQL

Tipo de datos:

Decimal (precision
fija)

Decimal (con
precision)

Decimal (con
escala)

AWS Clean Rooms
SQL

DECIMAL

DECIMAL (p)

DECIMAL(p,s)

SQL
Snowflake

DECIMAL,
NUMERICO,
NUMERO

(® Note

Snowflake
asigna
automatic
amente

el alias
NUMBER
alos

tipos
numericos
exactos
de

menor
ancho
(INT,
BIGINT,

SMALLINT,

etc.).

DECIMAL (p),
NUMERO (p)

DECIMAL (p,
s), NUMERO

(P, s)

Spark SQL

DECIMAL,
NUMERICO,

DECIMAL (p)

DECIMAL(p,s)

Description
(Descripcion)

Numeros
decimales
con signo
de precision
arbitraria

Numeros
decimales de
precision fija

Numeros
decimales de
precision fija
con escala

Tipos de datos numéricos

AWS Clean Rooms Referencia de SQL

Tipos de datos booleanos

Los tipos booleanos representan valores logicos simples. true/false Estos tipos son consistentes en
todos los motores de SQL y se utilizan habitualmente para indicadores, condiciones y operaciones
l6gicas.

Tipo de datos: AWS Clean Rooms SQL Spark SQL Description
SQL Snowflake (Descripcion)
Booleano BOOLEAN BOOLEAN BOOLEAN Representa
valores true/
false

Tipos de datos de fecha y hora

Los tipos de fecha y hora gestionan datos temporales, con distintos niveles de precision y
reconocimiento de la zona horaria. Estos tipos admiten diferentes formatos para almacenar fechas,
horas y marcas horarias, con opciones para incluir o excluir informacién sobre la zona horaria.

Tipo de datos: AWS Clean Rooms SQL Spark SQL Description
SQL Snowflake (Descripcion)

Fecha DATE DATE DATE Valores de

fecha (ano,

mes, dia) sin
zona horaria

Tiempo TIME No admitido No admitido Hora del dia en
UTC, sin zona
horaria

Hora con TZ TIMETZ No admitido No admitido Hora del dia en

UTC, con zona
horaria

Tipos de datos booleanos 9

AWS Clean Rooms

Referencia de SQL

Tipo de datos:

Timestamp

Marca de tiempo
con TZ

AWS Clean Rooms
SQL

TIMESTAMP

TIMESTAMPTZ

Tipos de datos de caracteres

SQL
Snowflake

TIMESTAMP
, TIMESTAMP
_NTZ

TIMESTAMP
_LTZ

Spark SQL

TIMESTAMP

_NTZ

TIMESTAMP
, TIMESTAMP
_LTZ

Description
(Descripcion)

TIMESTAMP
sin zona
horaria

® Note

NTZ
indica
«Sin
zona
horaria»

Marca de
tiempo con
zona horaria
local

® Note

LTZ
indica
«zona
horaria
local»

Los tipos de caracteres almacenan datos textuales y ofrecen opciones de longitud fija y longitud
variable. Estos tipos manejan cadenas de texto y datos binarios, con especificaciones de longitud
opcionales para controlar la asignacion del almacenamiento.

Tipos de datos de caracteres

AWS Clean Rooms

Referencia de SQL

Tipo de datos:

Caracter de
longitud fija

Caracter de
longitud fija con
longitud

Caracter de
longitud variable

Caracter de
longitud variable
con longitud

Binario

Binario con
longitud

AWS Clean Rooms

SQL

CHAR

CHAR(n)

VARCHAR

VARCHAR(n)

VARBYTE

VARBYTE(n)

SQL
Snowflake

CHAR,
CHARACTER

CHAR(n),
CHARACTER

(n)

VARCHAR,
CADENA,
TEXTO

VARCHAR (n),
STRING (n),
TEXT (n)

BINARY,
VARBINARY

No admitido

Spark SQL

CHAR,
CHARACTER

CHAR(n),
CHARACTER

(n)

VARCHAR,
CADENA

VARCHAR(N)

BINARIO

No admitido

Description
(Descripcion)

Cadena de
caracteres de
longitud fija

Cadena de
caracteres
de longitud
fija con una
longitud
especificada

Cadena de
caracteres
de longitud
variable

Cadena de
caracteres
de longitud
variable con
limite de
longitud

Secuencia de
bytes binarios

Secuencia
binaria de
bytes con
limite de
longitud

Tipos de datos de caracteres

AWS Clean Rooms Referencia de SQL

Tipos de datos estructurados

Los tipos estructurados permiten una organizacion de datos compleja al combinar varios valores en
campos unicos. Estos incluyen matrices para colecciones ordenadas, mapas para pares clave-valor y
estructuras para crear estructuras de datos personalizadas con campos con nombres.

Tipo de datos: AWS Clean Rooms SQL Spark SQL Description
SQL Snowflake (Descripcion)

Matriz MATRIZ <type> ARRAY (tipo) MATRIZ Secuencia
<type> ordenada de
elementos del
mismo tipo

(® Note

Los

tipos

de

matriz
deben
contener
elementos
del

mismo
tipo

Asignacion MAPA<key, value> MAP (clave, MAPA<key, Coleccion de
valor) value> pares clave-val
or

(® Note

Los
tipos
de
mapas

Tipos de datos estructurados 12

AWS Clean Rooms

Referencia de SQL

Tipo de datos: AWS Clean Rooms
SQL

Struct ESTRUCTURA<
field1: type1, field2:
type2>

SQL
Snowflake

OBJETO
(campo1 tipo1,
campo2 tipo2)

Spark SQL

ESTRUCTUR
A< field1:
type1, field2:
type2 >

Description
(Descripcion)

deben
contener
elementos
del

mismo
tipo

Estructura con
campos con
nombre de
tipos especific
0s

@ Note

La
sintaxis
de los
tipos
estructur
ados
puede
variar
ligeramen
te

entre

las
implement
aciones

Tipos de datos estructurados

AWS Clean Rooms

Referencia de SQL

Tipo de datos:

super

AWS Clean Rooms
SQL

SUPER

SQL
Snowflake

No admitido

Spark SQL

No admitido

Description
(Descripcion)

Tipo flexible
que admite
todos los tipos
de datos,
incluidos

los tipos
complejos

Tipos de datos estructurados

AWS Clean Rooms Referencia de SQL

AWS Clean Rooms Spark SQL

AWS Clean Rooms Spark SQL aplica las reglas relativas al uso de tipos de datos, expresiones y
literales.

Para obtener mas informacion sobre AWS Clean Rooms Spark SQL, consulta la Guia del AWS
Clean Rooms usuario y la Referencia de la AWS Clean Rooms API.

Los siguientes temas proporcionan informacion sobre los literales, los tipos de datos, los comandos,
las funciones y las condiciones compatibles con AWS Clean Rooms Spark SQL.

Temas

« Literales

* Tipos de datos

« AWS Clean Rooms Comandos SQL de Spark
» AWS Clean Rooms Funciones de Spark SQL
 AWS Clean Rooms Condiciones de Spark SQL

Literales

Un literal o una constante es un valor de dato fijo que esta compuesto por una secuencia de
caracteres o una constante numérica.

AWS Clean Rooms Spark SQL admite varios tipos de literales, entre ellos:

+ Literales numéricos para enteros, decimales y numeros en coma flotante.

* Los literales de caracteres, también denominados cadenas, cadenas de caracteres o constantes
de caracteres, se utilizan para especificar el valor de una cadena de caracteres.

« Literales de fecha, hora y marca temporal, utilizados como tipos datos de fecha y hora. Para
obtener mas informacion, consulte Literales de fecha, hora y marca temporal.

» Literales de intervalo. Para obtener mas informacién, consulte Literales de intervalo.

 Literales booleanos. Para obtener mas informacion, consulte Literales booleanos.

* Literales nulos que se utilizan para especificar un valor nulo.

« Solo TAB, CARRIAGE RETURN (CR), y LINE FEED (LF) Se admiten los caracteres de control
Unicode de la categoria general de Unicode (Cc).

Literales 15

https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/apireference/Welcome.html

AWS Clean Rooms Referencia de SQL

AWS Clean Rooms Spark SQL no admite referencias directas a cadenas literales en la clausula
SELECT, pero se pueden usar en funciones como CAST.

+ Operador (concatenacion)

Concatena literales numéricos, literales de cadena y/o literales de fecha y hora e intervalo. Estan a
ambos lados del simbolo + y devuelven diferentes tipos en funcién de las entradas a cada lado del
simbolo +.

Sintaxis

numeric + string
date + time

date + timetz

El orden de los argumentos se puede invertir.
Argumentos
numeric literals

Los literales o las constantes que representan numeros pueden ser enteros 0 numeros en coma
flotante.

string literals

Cadenas, cadenas de caracteres o constantes de caracteres

date

A DATE columna o expresion que se convierte implicitamente en DATE.

time

A TIME columna o expresion que se convierte implicitamente en TIME.

timetz

A TIMETZ columna o expresidon que se convierte implicitamente en TIMETZ.

+ Operador (concatenacion) 16

AWS Clean Rooms

Referencia de SQL

Ejemplo

La siguiente tabla de ejemplo TIME_TEST tiene una columna TIME_VAL (tipo TIME) con tres valores

insertados.

select date '2000-01-02' + time_val as ts from time_test;

Tipos de datos

Cada valor que AWS Clean Rooms Spark SQL almacena o recupera tiene un tipo de datos con un
conjunto fijo de propiedades asociadas. Los tipos de datos se declaran cuando se crean las tablas.
Un tipo de datos limita el conjunto de valores que una columna o un argumento puede contener.

La siguiente tabla muestra los tipos de datos que puedes usar en AWS Clean Rooms Spark SQL.

Nombre del tipo de

datos

ARRAY

BIGINT

BINARIO

BOOLEANO

BYTE

CHAR

Tipo de datos:

the section called

“Tipo anidado”

the section called

“Tipos numéricos”

the section called
“Tipo binario”

the section called

“Tipo booleano”

the section called

“Tipos numéricos”

the section called

“Tipos de caracteres”

Alias

No aplicable

No aplicable

No aplicable

BOOL

No aplicable

CHARACTER

Description (Descripc
ién)
Tipo de datos

anidados de matriz

Entero firmado de
ocho bytes

Valores de secuencia
de bytes

Booleano logico (true/
false)

Numeros enteros con
signo de 1 byte, de
-128 a 127

Cadena de caracteres
de longitud fija

Tipos de datos

AWS Clean Rooms

Referencia de SQL

Nombre del tipo de
datos

DATE

DECIMAL

FLOAT

INTEGER

INTERVAL

LONG

MAP

REAL

SHORT

SMALLINT

Tipo de datos:

the section called
“Tipos de fecha y
hora”

the section called

“Tipos numéricos”

the section called

“Tipos numéricos”

the section called

“Tipos numéricos”

the section called

“Tipos de fecha y

hora”

the section called

“Tipos numéricos”

the section called

“Tipo anidado”

the section called

“Tipos numéricos”

the section called

“Tipos numéricos”

the section called
“Tipos numeéricos”

Alias

No aplicable

NUMERIC

FLOATS, DOBLE
PRECISION

INT

No aplicable

No aplicable

No aplicable

FLOAT4

No aplicable

No aplicable

Description (Descripc
ion)

Fecha de calendario
(afo, mes, dia)

Numérico exacto de
precision seleccion
able

Numero en coma
flotante de precision
doble

Entero firmado de
cuatro bytes

Duracién del tiempo
en orden de dia a dia
o de ano a mes

Numeros enteros con
signo de 8 bytes

Tipo de datos
anidados de mapa

Numero en coma
flotante de precision
Unica

Numeros enteros con
signo de 2 bytes.

Entero firmado de dos
bytes

Tipos de datos

AWS Clean Rooms

Referencia de SQL

Nombre del tipo de
datos

STRUCT

TIMESTAMP_LTZ

TIMESTAMP_NTZ

TINYINT

VARCHAR

(® Note

Tipo de datos:

the section called
“Tipo anidado”

the section called

“Tipos de fecha y

hora”

the section called

“Tipos de fecha y

hora”

the section called

“Tipos numéricos”

the section called

“Tipos de caracteres”

Alias

No aplicable

No aplicable

No aplicable

No aplicable

CHARACTER
VARYING

Description (Descripc
ion)

Tipo de datos
anidados de estructur
a

Hora del dia con zona
horaria local

Hora del dia sin zona
horaria

Numeros enteros con
signo de 1 byte, de
-128 a 127

Cadena de caractere
s de longitud variable
con un limite definido
por el usuario

Los tipos de datos anidados ARRAY, STRUCT y MAP actualmente solo estan habilitados
para la regla de analisis personalizada. Para obtener mas informacion, consulte Tipo

anidado.

Caracteres multibyte

El tipo de datos VARCHAR es compatible con caracteres multibyte UTF-8 de hasta un maximo de
cuatro bytes. Los caracteres de cinco bytes 0 mas no son compatibles. Para calcular el tamaino de

una columna VARCHAR que contiene caracteres multibyte, multiplique el numero de caracteres por

Caracteres multibyte

AWS Clean Rooms Referencia de SQL

el numero de bytes por caracter. Por ejemplo, si una cadena tiene cuatro caracteres chinos y cada
caracter tiene tres bytes, necesitara una columna VARCHAR(12) para almacenar la cadena.

El tipo de datos VARCHAR no es compatible con los siguientes valores de punto UTF-8 no validos:

OxD80@ - OxDFFF (Secuencias de bytes: ED A@ 80 a ED BF BF)

El tipo de datos CHAR no es compatible con los caracteres multibyte.

Tipos numéricos

Los tipos de datos numéricos incluyen enteros, decimales y numeros en coma flotante.

Temas
» Tipos de enteros

+ Tipo DECIMAL o NUMERIC

» Tipos de numeros en coma flotante

» Computos con valores numericos

Tipos de enteros

Usa los siguientes tipos de datos para almacenar numeros enteros de varios rangos. No puede
almacenar valores fuera del rango permitido para cada tipo.

Name Almacenamiento Range
SMALLINT 2 bytes De -32768 a +32767
SHORT 2 bytes De -32768 a +32767
INTEGER o INT 4 bytes De -2147483648 a
2147483647
BIGINT 8 bytes De -92233720
36854775808
a 922337203
6854775807

Tipos numéricos

20

AWS Clean Rooms Referencia de SQL

Name Almacenamiento Range

LONG 8 bytes De -92233720
36854775808
a 922337203
6854775807

Tipo DECIMAL o NUMERIC

Use el tipo de datos DECIMAL o NUMERIC para almacenar valores con una precision definida por el
usuario. Las palabras clave DECIMAL y NUMERIC son intercambiables. En este documento, decimal
es el término preferido para este tipo de datos. El término numérico se utiliza genéricamente para
referirse a tipos de datos enteros, decimales y con coma flotante.

Almacenamiento Range

Variable, hasta 128 bits para tipos DECIMAL Los enteros firmados de 128 bits con hasta
sin comprimir. 38 digitos de precision.

Defina una columna DECIMAL en una tabla especificando un precision yscale:
decimal(precision, scale)

precision

El numero total de digitos significativos en todo el valor: la cantidad de digitos de ambos lados del
punto decimal. Por ejemplo, el numero 48.2891 tiene una precision de 6 y una escala de 4. La
precision predeterminada es 18, si no se especifica. La precisibn maxima es 38.

Si el numero de digitos a la izquierda del punto decimal en un valor de entrada supera la precision
de la columna menos su escala, no se puede copiar (ni insertar ni actualizar) el valor en la
columna. Esta regla se aplica a cualquier valor que caiga fuera del rango de la definicion de la
columna. Por ejemplo, el rango permitido de valores para una columna numeric(5,2) es de
-999.99 a2 999.99.

Tipos numéricos 21

AWS Clean Rooms Referencia de SQL

scale

El numero de digitos decimales en la parte fraccional del valor, a la derecha del punto decimal.
Los enteros tienen una escala de cero. En la especificacion de una columna, el valor de la
escala debe ser inferior que o igual al valor de precisidon. La escala predeterminada es 0, si no se
especifica. La escala maxima es 37.

Si la escala de un valor de entrada que se carga en una tabla es mayor que la escala de la
columna, el valor se redondea a la escala especificada. Por ejemplo, la columna PRICEPAID
de la tabla SALES es una columna DECIMAL(8,2). Si se inserta un valor DECIMAL(8,4) en la
columna PRICEPAID, el valor se redondea a una escala de 2.

insert into sales
values (0, 8, 1, 1, 2000, 14, 5, 4323.8951, 11.00, null);

select pricepaid, salesid from sales where salesid=0;

pricepaid | salesid
___________ Fmm e e

4323.90 | 0
(1 row)

Sin embargo, no se redondean los resultados de formas explicitas de los valores seleccionados
de tablas.

(® Note

El valor positivo maximo que puede insertar en una columna DECIMAL(19,0) es
9223372036854775807 (263 -1). El valor negativo maximo es -9223372036854775807.
Por ejemplo, un intento de insertar el valor 9999999999999999999 (19 nueves) provocara
un error de desbordamiento. Independientemente de la ubicacién del punto decimal, la
cadena de mayor tamano que AWS Clean Rooms puede representar como un numero
DECIMAL es 9223372036854775807. Por ejemplo, el valor mas grande que puede cargar
en una columna DECIMAL(19,18) es 9.223372036854775807.

Estas reglas se deben a los motivos siguientes:

* Los valores DECIMAL con 19 digitos de precision significativos o menos se almacenan
internamente como enteros de 8 bytes.

Tipos numéricos 22

AWS Clean Rooms Referencia de SQL

» Los valores DECIMAL con entre 20 y 38 digitos de precision significativos se almacenan
como enteros de 16 bytes.

Notas acerca del uso de las columnas DECIMAL o NUMERIC de 128 bits

No asigne arbitrariamente la precision maxima de las columnas DECIMAL a menos que esté seguro
de que la aplicacion requiere esa precision. Los valores de 128 bits utilizan el doble de espacio en
el disco en comparacién de los valores de 64 bits y pueden alargar el tiempo de ejecucion de la
consulta.

Tipos de numeros en coma flotante

Use el tipo de datos REAL o DOUBLE PRECISION para almacenar valores numéricos con precision
variable. Estos tipos son inexactos, lo que significa que algunos valores se almacenan como
aproximaciones, por lo que puede haber pequenas discrepancias al almacenar y devolver un valor
especifico. Si requiere almacenamiento y calculos exactos (como para importes monetarios), use el
tipo de datos DECIMAL.

REAL representa el formato de coma flotante de precision simple, segun la norma IEEE 754 de
aritmética de coma flotante. Tiene una precision de unos 6 digitos y un intervalo de 1E-37 a 1E+37
aproximadamente. También puede especificar este tipo de datos como. FLOAT4

DOUBLE PRECISION representa el formato de coma flotante de doble precision, segun la norma
IEEE 754 para la aritmética binaria de coma flotante. Tiene una precisién de unos 15 digitos y un
intervalo de 1E-307 a 1E+308 aproximadamente. También puede especificar este tipo de datos como
FLOAT o FLOATS.

Computos con valores numéricos

EnAWS Clean Rooms, la computacion se refiere a las operaciones matematicas binarias: suma,
resta, multiplicacién y division. En esta seccion se describen los tipos devueltos previstos para estas
operaciones, asi como la férmula especifica que se aplica para determinar la precision y la escala
cuando hay tipos de datos DECIMAL involucrados.

Cuando se computan los valores numéricos durante el procesamiento de consultas, puede encontrar
casos donde el computo no es posible y la consulta devuelve un error de desbordamiento numérico.
También puede encontrar casos donde una escala de valores computados varia o es inesperada.

Tipos numéricos 23

AWS Clean Rooms

Referencia de SQL

Para algunas operaciones, puede usar formas explicitas (tipo de promocion) o parametros de
configuracion de AWS Clean Rooms para solucionar estos problemas.

Para obtener mas informacion acerca de los resultados de calculo similares con funciones SQL,
consulte AWS Clean Rooms Funciones de Spark SQL.

Tipos devueltos para computos

Dado el conjunto de tipos de datos numéricos admitidosAWS Clean Rooms, la siguiente tabla
muestra los tipos de rendimiento esperados para las operaciones de suma, resta, multiplicacion y

division. La primera columna del lado izquierdo de la tabla representa el primer operando del calculo,
y la fila superior representa el segundo operando.

Operando 1

SMALLINT o SHORT

SMALLINT o SHORT

SMALLINT o SHORT

SMALLINT o SHORT

SMALLINT o SHORT

SMALLINT o SHORT

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

BIGINT o LONG

BIGINT o LONG

BIGINT o LONG

Operando 2

SMALLINT o SHORT

INTEGER

BIGINT

DECIMAL

FLOAT4

FLOATS

INTEGER

GRANDE o LARGO

DECIMAL

FLOAT4

FLOATS

BIGINT o LONG

DECIMAL

FLOAT4

Tipo de devolucion

SMALLINT o SHORT

INTEGER

BIGINT

DECIMAL

FLOATS

FLOATS

INTEGER

BIGINT o LONG

DECIMAL

FLOATS

FLOATS

BIGINT o LONG

DECIMAL

FLOATS8

Tipos numéricos

24

AWS Clean Rooms

Referencia de SQL

Operando 1
BIGINT o LONG
DECIMAL
DECIMAL
DECIMAL
FLOAT4

FLOATS8

Operando 2
FLOATS8
DECIMAL
FLOAT4
FLOATS
FLOATS

FLOATS8

Precision y escala de resultados DECIMAL computados

Tipo de devolucion
FLOATS8
DECIMAL
FLOATS

FLOATS

FLOATS

FLOATS8

En la siguiente tabla se resumen las reglas para computar la precision y la escala resultantes cuando
las operaciones matematicas devuelven resultados DECIMAL. En esta tabla, p1 s1 represente la
precision y la escala del primer operando de un calculo. p2y s2 representan la precision y la escala
del segundo operando. (Independientemente de estos calculos, la precision de resultados maxima es
38 y la escala de resultados maxima es 38).

Operacion

+ 0 bien -

Precision y escala del resultado

Escalado =max(sl,s2)

Precision = max(pl-sl,p2-s2)+1+scale
Escalado = s1+s2

Precision = p1l+p2+1

Escalado = max(4,sl+p2-s2+1)

Precision = pl-sl+ s2+scale

Por ejemplo, las columnas PRICEPAID y COMMISSION de la tabla SALES son columnas
DECIMAL(8,2). Si divide PRICEPAID por COMMISSION (o viceversa), la formula se aplica de la

siguiente manera:

Tipos numéricos

25

AWS Clean Rooms Referencia de SQL

Precision = 8-2 + 2 + max(4,2+8-2+1)
=6+ 2+ 9 =17

Scale = max(4,2+8-2+1) = 9

Result = DECIMAL(17,9)

El siguiente calculo es la regla general para computar la precision y la escala resultantes para
operaciones realizadas en valores DECIMAL con operadores como UNION, INTERSECT o EXCEPT,
o funciones como COALESCE y DECODE:

Scale = max(sl,s2)
Precision = min(max(pl-sl,p2-s2)+scale,19)

Por ejemplo, una DEC1 tabla con una columna DECIMAL (7,2) se une a una DEC2 tabla con una
columna DECIMAL (15,3) para crear una tabla. DEC3 El esquema de DEC3 muestra que la columna
se convierte en una columna NUMERICA (15,3).

select * from decl union select * from dec2;

En el ejemplo anterior, la férmula se aplica de la siguiente manera:

Precision = min(max(7-2,15-3) + max(2,3), 19)
=12 + 3 = 15

Scale = max(2,3) = 3

Result = DECIMAL(15,3)

Notas sobre las operaciones de division
En las operaciones de division, divide-by-zero las condiciones devuelven errores.

El limite de escala de 100 se aplica después de que se calculan la precision y la escala. Si la escala
resultante calculada es superior a 100, los resultados de la divisidn estan escalados de la siguiente
manera:

* Precision = precision - (scale - max_scale)

Tipos numéricos 26

AWS Clean Rooms Referencia de SQL

» Escalado = max_scale

Si la precision calculada es superior a la precision maxima (38), la precision se reduce a 38 y la
escala se convierte en el resultado de: max(38 + scale - precision), min(4, 100))

Condiciones de desbordamiento

Se revisa el desbordamiento para todos los computos numéricos. Los datos DECIMAL con una
precision de 19 o menos se almacenan como enteros de 64 bits. Los datos DECIMAL con una
precision superior a 19 se almacenan como enteros de 128 bits. La precision maxima para todos los
valores DECIMAL es 38 y la escala maxima es 37. Los errores de desbordamiento ocurren cuando
un valor supera estos limites, que se aplican en los conjuntos de resultados intermedios y finales:

» La conversion explicita provoca errores de desbordamiento del tiempo de ejecucion cuando
valores de datos especificos no se ajustan a la precision o escala solicitadas especificadas
por la funcion de conversion. Por ejemplo, no se puede transformar todos los valores de la
columna PRICEPAID de la tabla SALES (una columna DECIMAL(8,2)) y devolver un resultado
DECIMAL(7,3):

select pricepaid::decimal(7,3) from sales;
ERROR: Numeric data overflow (result precision)

Este error se produce porque algunos de los valores mas grandes de la columna PRICEPAID no
se pueden transformar.

» Las operaciones de multiplicaciéon producen resultados en los que la escala de resultados es la
suma de la escala de cada operando. Si ambos operandos tienen una escala de 4, por ejemplo,
la escala resultante es 8, dejando solo 10 digitos para el lado izquierdo del punto decimal. Por lo
tanto, es relativamente facil encontrarse con condiciones de desbordamiento cuando multiplica dos
numeros grandes que tienen escalas significativas.

Calculos numéricos con tipos INTEGER y DECIMAL

Cuando uno de los operandos de un calculo tiene un tipo de datos INTEGER vy el otro operando es
DECIMAL, el operando INTEGER se forma implicitamente como DECIMAL.

* SMALLINT o SHORT se convierten en DECIMAL (5,0)
* INTEGER se forma como DECIMAL(10,0)

Tipos numéricos 27

AWS Clean Rooms Referencia de SQL

* BIGINT o LONG se convierte en DECIMAL (19,0)

Por ejemplo, si multiplica SALES.COMMISSION, una columna DECIMAL(8,2), y SALES.QTYSOLD,
una columna SMALLINT, este calculo se forma de la siguiente manera:

DECIMAL(8,2) * DECIMAL(5,0)

Tipos de caracteres

Los tipos de datos de caracteres incluyen CHAR (caracter) y VARCHAR (caracter variable).

Temas
+ CHAR o0 CHARACTER
« VARCHAR o CHARACTER VARYING

« Importancia de los espacios en blancos anteriores y posteriores

CHAR o CHARACTER

Utilice una columna CHAR o CHARACTER para almacenar cadenas de longitud fija. Estas cadenas
esta rellenadas con espacios en blanco, por lo que una columna CHAR(10) siempre ocupa 10 bytes
de almacenamiento.

char(10)

Una columna CHAR sin una especificacion de longitud resulta en una columna CHAR(1).

Los tipos de datos CHAR y VARCHAR se definen en términos de bytes, no de caracteres. Una
columna CHAR solo puede contener caracteres de un byte, por lo que una columna CHAR(10)
puede contener una cadena con una longitud maxima de 10 bytes.

Name Almacenamiento = Rango (ancho de columna)
CHAR o CHARACTER Longitud de 4 096 bytes

la cadena,

incluidos

espacios en

Tipos de caracteres 28

AWS Clean Rooms Referencia de SQL

Name Almacenamiento Rango (ancho de columna)

blanco anteriores
o posteriores (si
corresponde)

VARCHAR o CHARACTER VARYING

Utilice una columna VARCHAR o VARYING CHARACTER para almacenar cadenas de longitud
variable con un limite fijo. Estas cadenas no se rellenan con espacios en blancos, por lo que una
columna VARCHAR(120) consta de un maximo de 120 caracteres de un byte, 60 caracteres de dos
bytes, 40 caracteres de tres bytes 0 30 caracteres de cuatro bytes.

varchar(120)

Los tipos de datos de VARCHAR se definen en términos de bytes, no de caracteres. Un VARCHAR
puede contener caracteres multibyte de hasta un maximo de cuatro bytes por caracter. Por ejemplo,
una columna VARCHAR(12) puede contener 12 caracteres de un byte, 6 caracteres de dos bytes,
4 caracteres de tres bytes o 3 caracteres de cuatro bytes.

Name Almacenamiento Rango (ancho de columna)
VARCHAR o CHARACTER 4 bytes + bytes 65 535 bytes (64K -1)
VARYING totales por

caracteres,

donde cada

caracter puede
tenerentre 1y
4 bytes.

Importancia de los espacios en blancos anteriores y posteriores

Los tipos de datos CHAR y VARCHAR almacenan cadenas de hasta n bytes de longitud. Si se
intenta almacenar una cadena mas larga en una columna de estos tipos, se obtiene un error. Sin
embargo, si los caracteres adicionales son todos espacios (en blanco), la cadena se trunca hasta
alcanzar la longitud maxima. Si la cadena es mas corta que la longitud maxima, los valores CHAR se

Tipos de caracteres 29

AWS Clean Rooms Referencia de SQL

rellenan con espacios en blanco, pero los valores VARCHAR almacenan la cadena sin espacios en
blanco.

Los espacios en blanco anteriores o posteriores en valores CHAR no tienen importancia semantica.
Se omiten cuando compara dos valores CHAR, no se incluyen en célculos LENGTH y se eliminan
cuando convierte un valor CHAR a otro tipo de cadena.

Los espacios anteriores o posteriores en los valores VARCHAR y CHAR no tienen importancia
semantica cuando se comparan valores.

Los calculos de longitud devuelven la longitud de cadenas de caracteres VARCHAR con espacios
anteriores o posteriores incluidos en la longitud. Los espacios anteriores o posteriores no cuentan en
la longitud para cadenas de caracteres de longitud fija.

Tipos de fecha y hora

Los tipos de datos de fecha y hora incluyen DATE, TIME, TIMESTAMP_LTZ y TIMESTAMP_NTZ.

Temas

+ DATE

« TIMESTAMP_LTZ
« TIMESTAMP_NTZ

» Ejemplos con tipos de fecha y hora

 Literales de fecha, hora y marca temporal

» Literales de intervalo

 Literales y tipos de datos de intervalo

DATE

Utilice el tipo de datos DATE para almacenar fechas de calendario simples sin marcas temporales.

Name Almacenam Range Resolucion
iento
DATE 4 bytes De 4713 a.C. a 294276 d.C. 1 dia

Tipos de fecha y hora 30

AWS Clean Rooms Referencia de SQL

TIMESTAMP_LTZ

Usa el tipo de datos TIMESTAMP_LTZ para almacenar valores de marca de tiempo completos que
incluyan la fecha, la hora del dia y la zona horaria local.

TIMESTAMP representa valores compuestos por los valores de los camposyear,,, y month
dayhour, minute con la zona horaria local de la sesién. second El timestamp valor representa un
punto absoluto en el tiempo.

TIMESTAMP en Spark es un alias especificado por el usuario asociado a una de las variantes
TIMESTAMP_LTZ y TIMESTAMP_NTZ. Puedes establecer el tipo de marca de tiempo
predeterminado como TIMESTAMP_LTZ (valor predeterminado) o TIMESTAMP_NTZ a través de la
configuracion. spark.sql.timestampType

TIMESTAMP_NTZ

Utilice el tipo de datos TIMESTAMP_NTZ para almacenar valores de marca de tiempo completos que
incluyan la fecha y la hora del dia, sin incluir la zona horaria local.

TIMESTAMP representa valores compuestos por los valores de los campos,,, y. year month day
hour minute second Todas las operaciones se realizan sin tener en cuenta ninguna zona horaria.

TIMESTAMP en Spark es un alias especificado por el usuario asociado a una de las variantes
TIMESTAMP_LTZ y TIMESTAMP_NTZ. Puedes establecer el tipo de marca de tiempo
predeterminado como TIMESTAMP_LTZ (valor predeterminado) o TIMESTAMP_NTZ a través de la
configuracion. spark.sql.timestampType

Ejemplos con tipos de fecha y hora

En los siguientes ejemplos se muestra como usar los tipos de fecha y hora que se admiten en AWS
Clean Rooms.

Ejemplos de fecha

Los siguientes ejemplos insertan fechas que tienen diferentes formatos y muestran la salida.

select * from datetable order by 1;

start_date | end_date

2008-06-01 | 2008-12-31
2008-06-01 | 2008-12-31

Tipos de fecha y hora 31

AWS Clean Rooms Referencia de SQL

Siinserta un valor de marca temporal en una columna DATE, se ignora la parte de la hora y solo se
carga la fecha.

Ejemplos de tiempo

Los siguientes ejemplos insertan los valores TIME y TIMETZ que tienen diferentes formatos y
muestran la salida.

select * from timetable order by 1;
start_time | end_time

19:11:19 | 20:41:19+00
19:11:19 | 20:41:19+00

Literales de fecha, hora y marca temporal

Las siguientes son las reglas para trabajar con literales de fecha, hora y marca horaria compatibles
con Spark SQL. AWS Clean Rooms

Fechas

La siguiente tabla muestra las fechas de entrada que son ejemplos validos de valores de fecha
literales que puedes cargar en tablas. AWS Clean Rooms Se supone que el modo predeterminado
MDY DateStyle esta en vigor. Este modo significa que el valor del mes precede al valor del dia en
las cadenas, como 1999-01-08 'y 01/02/00.

(® Note
Un literal de marca temporal o fecha debe encerrarse entre comillas cuando lo carga a la
tabla.

Fecha de entrada Fecha completa

8 de enero de 1999 8 de enero de 1999

1999-01-08 8 de enero de 1999

1/8/1999 8 de enero de 1999

Tipos de fecha y hora 32

AWS Clean Rooms

Referencia de SQL

Fecha de entrada

01/02/00

2000-Ene-31

Ene-31-2000

31-Ene-2000

20080215

080215

2008.366

Times

Fecha completa

2 de enero de 2000
31 de enero de 2000
31 de enero de 2000
31 de enero de 2000
15 de febrero de 2008
15 de febrero de 2008

31 de diciembre de 2008 (la parte de
tres digitos de la fecha debe tener un valor del
rango 001-366).

En la siguiente tabla se muestran las horas de entrada que son ejemplos validos de valores de hora
literales que se pueden cargar en AWS Clean Rooms las tablas.

Horas de entrada
04:05:06789
04:05:06

04:05

04-0506

04:05 a. m.

04:05. p. m.

16:05

Descripcién (de la parte de la hora)

4:05 a. m. y 6789 segundos

4:05 a. m. y 6 segundos

4:05 a. m. exactamente

4:05 a. m. y 6 segundos

4:05 a. m. exactamente; a. m. es opcional

4:05 p. m. exactamente; el valor de la hora
debe ser menor que 12

4:05 p. m. exactamente

Tipos de fecha y hora

33

AWS Clean Rooms

Referencia de SQL

Valores de fecha y hora especiales

La siguiente tabla muestra valores especiales que se pueden usar como literales de fecha y hora 'y
como argumentos para funciones de fecha. Requieren comillas simples y se convierten en valores de
marca temporal regulares durante el procesamiento de consultas.

Valor especial

now

today

tomorrow

yesterday

Description (Descripcion)

Evalua la hora de inicio de la transaccion actual
y devuelve una marca temporal con precision
de microsegundo.

Toma el valor de la fecha adecuada y devuelve
una marca temporal con ceros en las partes de
la hora.

Toma el valor de la fecha adecuada y devuelve
una marca temporal con ceros en las partes de
la hora.

Toma el valor de la fecha adecuada y devuelve
una marca temporal con ceros en las partes de
la hora.

Los siguientes ejemplos muestran como today funciona now la funciéon DATE_ADD.

select date_add('today', 1);

date_add

2009-11-17 00:00:00
(1 row)

select date_add('now', 1);

2009-11-17 10:45:32.021394
(1 row)

Tipos de fecha y hora

34

AWS Clean Rooms Referencia de SQL

Literales de intervalo

A continuacion, se muestran las reglas para trabajar con literales de intervalo compatibles con AWS
Clean Rooms Spark SQL.

Use un literal de intervalo para identificar periodos especificos de tiempo, como 12 hours o 6
weeks. Puede usar estos literales de intervalo en condiciones y calculos que involucran expresiones
de fecha y hora.

(® Note

No puedes usar el tipo de datos INTERVAL para las columnas de las AWS Clean Rooms
tablas.

Un intervalo se expresa como una combinacion de la palabra clave INTERVAL con una cantidad
numérica y una parte de fecha compatible, por ejemplo, INTERVAL '7 days' o INTERVAL '59
minutes'. Puede conectar varias cantidades y unidades para formar un intervalo mas preciso, por
ejemplo: INTERVAL '7 days, 3 hours, 59 minutes'. También se admiten abreviaturas y
plurales de cada unidad; por ejemplo: 5 s,5 secondy 5 seconds son intervalos equivalentes.

Si no especifica una parte de fecha, el valor de intervalo representa segundos. Puede especificar el
valor de cantidad como una fraccion (por ejemplo: @.5 days).

Ejemplos
En los siguientes ejemplos se muestra una serie de calculos con diferentes valores de intervalo.

En el siguiente ejemplo se agrega 1 segundo a la fecha especificada.

select caldate + interval 'l second' as dateplus from date
where caldate='12-31-2008"';
dateplus

2008-12-31 00:00:01
(1 row)

En el siguiente ejemplo se agrega 1 minuto a la fecha especificada.

select caldate + interval 'l minute' as dateplus from date

Tipos de fecha y hora 35

AWS Clean Rooms Referencia de SQL

where caldate='12-31-2008";
dateplus

2008-12-31 00:01:00
(1 row)

En el siguiente ejemplo se agregan 3 horas y 35 minutos a la fecha especificada.

select caldate + interval '3 hours, 35 minutes' as dateplus from date
where caldate='12-31-2008";
dateplus

2008-12-31 ©03:35:00
(1 row)

En el siguiente ejemplo se agregan 52 semanas a la fecha especificada.

select caldate + interval '52 weeks' as dateplus from date
where caldate='12-31-2008"';

dateplus

2009-12-30 00:00:00

(1 row)

En el siguiente ejemplo se agrega 1 semana, 1 hora, 1 minuto y 1 segundo a la fecha especificada.

select caldate + interval 'lw, 1lh, 1m, 1ls' as dateplus from date
where caldate='12-31-2008";
dateplus

2009-01-07 01:01:01
(1 row)

En el siguiente ejemplo se agregan 12 horas (medio dia) a la fecha especificada.

select caldate + interval '0.5 days' as dateplus from date
where caldate='12-31-2008";

dateplus

2008-12-31 12:00:00

(1 row)

Tipos de fecha y hora 36

AWS Clean Rooms Referencia de SQL

En el siguiente ejemplo se restan 4 meses desde el 31 de marzo de 2023 y el resultado es el 30 de
noviembre de 2022. El calculo tiene en cuenta el numero de dias de un mes.

select date '2023-03-31' - interval '4 months';
?column?

2022-11-30 00:00:00

Literales y tipos de datos de intervalo

Puede usar un tipo de datos de intervalo para almacenar duraciones de tiempo en unidades como
seconds, minutes, hours, days, months y years. Los literales y los tipos de datos de intervalo
se pueden usar en los calculos de fecha y hora, por ejemplo, agregar intervalos a fechas y marcas
temporales, sumar intervalos y restar un intervalo de una fecha o marca temporal. Los literales de
intervalo se pueden usar como valores de entrada para las columnas de tipos de datos de intervalos
de una tabla.

Sintaxis del tipo de datos de intervalo

Para especificar un tipo de datos de intervalo para almacenar una duracién de tiempo en afnos y
meses:

INTERVAL year_ to_month_qualifier

Para especificar un tipo de datos de intervalo para almacenar una duracién en dias, horas, minutos y
segundos:

INTERVAL day_to_second_qualifier [(fractional_precision)]

Sintaxis de literal de intervalo

Para especificar un literal de intervalo para definir una duracion de tiempo en afios y meses:
INTERVAL quoted-string year_to_month_qualifier
Para especificar un literal de intervalo para definir una duracién en dias, horas, minutos y segundos:

INTERVAL quoted-string day_to_second_qualifier [(fractional_precision)]

Tipos de fecha y hora 37

AWS Clean Rooms Referencia de SQL

Argumentos
quoted-string

Especifica un valor numérico positivo o negativo especificando una cantidad y la unidad

de fecha y hora como cadena de entrada. Si la cadena entre comillas contiene solo un

numero, AWS Clean Rooms determina las unidades del calificador year_to_month_qualifier o
day_to_second_qualifier. Por ejemplo, '23"' MONTH representa 1 year 11 months, '-2' DAY
representa -2 days @ hours @ minutes 0.0 seconds, '1-2' MONTHrepresental year
2 monthsy '13 day 1 hour 1 minute 1.123 seconds' SECOND representa 13 days

1 hour 1 minute 1.123 seconds. Para obtener mas informacion acerca de los formatos de
salida de un intervalo, consulte Estilos de intervalo.

year_to_month_qualifier

Especifica el rango del intervalo. Si usa un calificador y crea un intervalo con unidades de tiempo
mas pequenas que el calificador, trunca y descarta las partes mas pequefas del intervalo. AWS
Clean Rooms Los valores validos para year_to_month_qualifier son:

* YEAR
* MONTH
* YEAR TO MONTH

day_to_second_qualifier

Especifica el rango del intervalo. Si usa un calificador y crea un intervalo con unidades de tiempo
mas pequenas que el calificador, AWS Clean Rooms trunca y descarta las partes mas pequefas
del intervalo. Los valores validos para day_to_second_qualifier son:

* DAY

* HOUR

 MINUTE

« SECOND

« DAY TO HOUR

DAY TO MINUTE
DAY TO SECOND

« HOUR TO MINUTE

« HOUR TO SECOND

« MINUTE TO SECOND

Tipos de fecha y hora 38

AWS Clean Rooms Referencia de SQL

El resultado del literal INTERVAL se trunca al componente INTERVAL mas pequeio
especificado. Por ejemplo, al utilizar un calificador MINUTE, AWS Clean Rooms descarta las
unidades de tiempo inferiores a MINUTE.

select INTERVAL 'l day 1 hour 1 minute 1.123 seconds' MINUTE

El valor resultante se truncaen '1 day 01:01:00".

fractional_precision

Parametro opcional que especifica el numero de digitos fraccionales permitidos en el intervalo.
El argumento fractional_precision solo se debe especificar si el intervalo contiene SECOND.
Por ejemplo, SECOND(3) crea un intervalo que permite solo tres digitos fraccionales, como
1234 segundos. El numero maximo de digitos fraccionales es seis.

La configuracién de la sesién interval_forbid_composite_literals determina si se devuelve
un error cuando se especifica un intervalo con las partes YEAR TO MONTH y DAY TO SECOND.

Aritmética de intervalos

Puede utilizar valores de intervalo con otros valores de fecha y hora para realizar operaciones
aritméticas. En las siguientes tablas se describen las operaciones disponibles y los resultados de tipo
de datos de cada operacion.

(® Note

Las operaciones que pueden producir resultados date y timestamp lo hacen en funcién de
la unidad de tiempo mas pequena implicada en la ecuacién. Por ejemplo, cuando se agrega
un interval auna date el resultado es una date si es un intervalo YEAR TO MONTH y
una marca temporal si es un intervalo DAY TO SECOND.

Las operaciones en las que el primer operando es un interval producen los siguientes resultados
para el segundo operando dado:

Operador Date Timestamp Interval Numeérico

- N/A N/A Interval N/A

Tipos de fecha y hora 39

AWS Clean Rooms Referencia de SQL

Operador Date Timestamp Interval Numeérico
+ Date Date/Timestamp Interval N/A

* N/A N/A N/A Interval

/ N/A N/A N/A Interval

Las operaciones en las que el primer operando es una date producen los siguientes resultados para

el segundo operando dado:

Operador Date Timestamp Interval Numeérico
- Numeérico Interval Date/Timestamp Date
+ N/A N/A N/A N/A

Las operaciones en las que el primer operando es una timestamp producen los siguientes
resultados para el segundo operando dado:

Operador Date Timestamp Interval Numeérico
- Numeérico Interval Timestamp Timestamp
+ N/A N/A N/A N/A

Estilos de intervalo

* postgres: sigue el estilo de PostgreSQL. Es el valor predeterminado.
* postgres_verbose: sigue el estilo detallado de PostgreSQL.

* sql_standard: sigue el estilo de literales de intervalo estandar de SQL.

El siguiente comando establece el estilo de intervalo en sql_standard.

SET IntervalStyle to 'sql_standard';

Tipos de fecha y hora

40

AWS Clean Rooms Referencia de SQL

Formato de salida postgres

A continuacion, se muestra el formato de salida del estilo de intervalo postgres. Cada valor
numérico puede ser negativo.

'<numeric> <unit> [, <numeric> <unit> ...]'

select INTERVAL '1-2' YEAR TO MONTH: :text
varchar

1 year 2 mons

select INTERVAL 'l 2:3:4.5678' DAY TO SECOND::text

varchar

1 day 02:03:04.5678

Formato de salida postgres_verbose

La sintaxis de postgres_verbose es similar a la de postgres, pero las salidas de postgres_verbose
también contienen la unidad de tiempo.

'[@] <numeric> <unit> [, <numeric> <unit> ...] [direction]'

select INTERVAL '1-2' YEAR TO MONTH: :text
varchar

@ 1 year 2 mons

select INTERVAL '1 2:3:4.5678' DAY TO SECOND::text

varchar

@ 1 day 2 hours 3 mins 4.56 secs

Formato de salida sql_standard

Tipos de fecha y hora 41

AWS Clean Rooms Referencia de SQL

Los valores del intervalo de afio a mes tienen el siguiente formato. Si se especifica un signo negativo
antes del intervalo, eso indica que el intervalo es un valor negativo y se aplica a todo el intervalo.

1 [_]yy_mml
Los valores del intervalo de dia a segundo tienen el siguiente formato.

'[-1dd hh:mm:ss. FFFFff

SELECT INTERVAL '1-2' YEAR TO MONTH::text

varchar

select INTERVAL '1 2:3:4.5678' DAY TO SECOND::text

varchar

1 2:03:04.5678

Ejemplos de tipo de datos de intervalo

En los siguientes ejemplos, se muestra como usar tipos de datos INTERVAL con tablas.

create table sample_intervals (y2m interval month, h2m interval hour to minute);

insert into sample_intervals values (interval '20' month, intexrval '2 days
1:1:1.123456' day to second);

select y2m::text, h2m::text from sample_intervals;

1 year 8 mons | 2 days 01:01:00

update sample_intervals set y2m = interval '2' year where y2m = interval '1-8' year to
month;
select * from sample_intervals;

Tipos de fecha y hora 42

AWS Clean Rooms Referencia de SQL

2 years | 2 days 01:01:00

delete from sample_intervals where h2m = interval '2 1:1:0' day to second;
select * from sample_intervals;

Ejemplos de literales de intervalo
Los siguientes ejemplos se ejecutan con el estilo de intervalo establecido en postgres.

En el siguiente ejemplo, se muestra cdmo crear un literal INTERVAL de 1 afo.

select INTERVAL '1' YEAR

intervaly2m

1 years @ mons

Si especifica una quoted-string que supere el calificador, las unidades de tiempo restantes se truncan
con respecto al intervalo. En el ejemplo siguiente, un intervalo de 13 meses se convierte en 1 ano y 1
mes, pero el mes restante se omite debido al calificador YEAR.

select INTERVAL '13 months' YEAR
intervaly2m

1 years @ mons

Si utiliza un calificador inferior a la cadena de intervalos, se incluyen las unidades sobrantes.

select INTERVAL '13 months' MONTH

intervaly2m

1 years 1 mons

Tipos de fecha y hora 43

AWS Clean Rooms Referencia de SQL

Al especificar una precision en el intervalo, se trunca el numero de digitos fraccionarios hasta
alcanzar la precision especificada.

select INTERVAL '1.234567' SECOND (3)
intervald2s

@ days @ hours @ mins 1.235 secs

Si no especifica una precision, AWS Clean Rooms utiliza la precision maxima de 6.

select INTERVAL '1.23456789' SECOND

intervald2s

@ days @ hours @ mins 1.234567 secs

En el siguiente ejemplo, se muestra como crear un intervalo con rangos.

select INTERVAL '2:2' MINUTE TO SECOND

intervald2s

@ days @ hours 2 mins 2.0 secs

Los calificadores dictan las unidades que se especifican. Por ejemplo, aunque en el ejemplo
siguiente se utiliza la misma cadena entrecomillada de «2:2» que en el ejemplo anterior, se AWS
Clean Rooms reconoce que se utilizan unidades de tiempo diferentes debido al calificador.

select INTERVAL '2:2' HOUR TO MINUTE

intervald2s

@ days 2 hours 2 mins 0.0 secs

También se admiten las abreviaturas y los plurales de cada unidad. Por ejemplo, 5s, 5 secondy
5 seconds son intervalos equivalentes. Las unidades admitidas son afios, meses, horas, minutos y
segundos.

select INTERVAL '5s' SECOND

Tipos de fecha y hora 44

AWS Clean Rooms Referencia de SQL

intervald2s

@ days @ hours @ mins 5.0 secs

select INTERVAL '5 HOURS' HOUR

intervald2s

@ days 5 hours @ mins 0.0 secs

select INTERVAL '5 h' HOUR

intervald2s

@ days 5 hours @ mins 0.0 secs

Ejemplos de literales de intervalo sin sintaxis de calificador

(® Note

En los siguientes ejemplos se muestra el uso de un literal de intervalo sin un calificador YEAR
TO MONTH o DAY TO SECOND. Para obtener informacion sobre el uso del literal de intervalo
recomendado con un calificador, consulte Literales y tipos de datos de intervalo.

Use un literal de intervalo para identificar periodos especificos de tiempo, como 12 hours o
6 months. Puede usar estos literales de intervalo en condiciones y calculos que involucran
expresiones de fecha y hora.

Un literal de intervalo se expresa como una combinacién de la palabra clave INTERVAL con

una cantidad numérica y una parte de fecha compatible, por ejemplo, INTERVAL '7 days' o
INTERVAL '59 minutes'. Puede conectar varias cantidades y unidades para formar un intervalo
mas preciso, por ejemplo: INTERVAL '7 days, 3 hours, 59 minutes'. También se admiten
abreviaturas y plurales de cada unidad; por ejemplo: 5 s,5 secondy5 seconds son intervalos
equivalentes.

Si no especifica una parte de fecha, el valor de intervalo representa segundos. Puede especificar el
valor de cantidad como una fraccién (por ejemplo: @.5 days).

Tipos de fecha y hora 45

AWS Clean Rooms Referencia de SQL

En los siguientes ejemplos se muestra una serie de calculos con diferentes valores de intervalo.

A continuacion, se agrega 1 segundo a la fecha especificada.

select caldate + interval 'l second' as dateplus from date
where caldate='12-31-2008";
dateplus

2008-12-31 00:00:01
(1 row)

A continuacion, se agrega 1 minuto a la fecha especificada.

select caldate + interval 'l minute' as dateplus from date
where caldate='12-31-2008"';
dateplus

2008-12-31 00:01:00
(1 row)

A continuacion, se agregan 3 horas y 35 minutos a la fecha especificada.

select caldate + interval '3 hours, 35 minutes' as dateplus from date
where caldate='12-31-2008";
dateplus

2008-12-31 ©03:35:00
(1 row)

A continuacion, se agregan 52 semanas a la fecha especificada.

select caldate + interval '52 weeks' as dateplus from date
where caldate='12-31-2008";
dateplus

2009-12-30 00:00:00
(1 row)

A continuacion, se agregan 1 semana, 1 hora, 1 minuto y 1 segundo a la fecha especificada.

select caldate + interval 'lw, 1h, 1m, 1ls' as dateplus from date

Tipos de fecha y hora 46

AWS Clean Rooms Referencia de SQL

where caldate='12-31-2008";
dateplus

2009-01-07 01:01:01
(1 row)

A continuacion, se agregan 12 horas (medio dia) a la fecha especificada.

select caldate + interval '0.5 days' as dateplus from date
where caldate='12-31-2008";
dateplus

2008-12-31 12:00:00
(1 row)

Lo siguiente resta 4 meses al 15 de febrero de 2023 y el resultado es 15 de octubre de 2022.

select date '2023-02-15' - interval '4 months';

?column?

2022-10-15 00:00:00

Lo siguiente resta 4 meses al 31 de marzo de 2023 y el resultado es 30 de noviembre de 2022. El
calculo tiene en cuenta el numero de dias de un mes.

select date '2023-03-31' - interval '4 months';

?column?

2022-11-30 00:00:00

Tipo booleano

Use el tipo de dato BOOLEAN para almacenar valores verdaderos y falsos en una columna de un
byte. En la siguiente tabla se describen los tres estados posibles para un valor booleano y los valores
literales que generan ese estado. Independientemente de la cadena de entrada, una columna
booleana almacena y produce "t" para verdadero y "f" para falso.

Tipo booleano 47

AWS Clean Rooms Referencia de SQL

Estado Valores literales Almacenamiento
validos

True TRUE 't 1 byte

"true' 'y
lyesl lll

False FALSE 'f' 1 byte
'false' 'n'
lnol l@l

Unknown NULL 1 byte

Puede usar una comparacion IS para comprobar un valor booleano solo como un predicado en la
clausula WHERE. No puede usar la comparacioén IS con un valor booleano en la lista SELECT.

Ejemplos

Puede usar una columna BOOLEAN para almacenar un estado "Activo/Inactivo" para cada cliente de
una tabla CUSTOMER.

select * from customer;
custid | active_flag

En este ejemplo, la siguiente consulta selecciona usuarios de la tabla USERS a los que les gustan
los deportes, pero no el teatro:

select firstname, lastname, likesports, liketheatre
from users

where likesports is true and liketheatre is false
order by userid limit 10;

firstname | 1lastname | likesports | liketheatre
—————————— R e ettt ittt
Alejandro | Rosalez | t | f
Akua | Mansa | t | f
Arnav | Desai | t | £
Carlos | Salazar | t | f

Tipo booleano 48

AWS Clean Rooms Referencia de SQL

Diego | Ramirez | t | f
Efua | Owusu | t |
John | Stiles | t | f
Jorge | Souza | t |
Kwaku | Mensah | t | f
Kwesi | Manu | t | £
(10 rows)

El siguiente ejemplo selecciona usuarios de la tabla USERS para los que se desconoce si les gusta
el rock.

select firstname, lastname, likerock
from users

where likerock is unknown

order by userid limit 10;

firstname | lastname | likerock
__________ S
Alejandro | Rosalez |

Carlos | Salazar |

Diego | Ramirez |

John | Stiles |

Kwaku | Mensah |

Martha | Rivera |

Mateo | Jackson |

Paulo | Santos |

Richard | Roe |

Saanvi | Sarkar |

(10 rows)

El siguiente ejemplo devuelve un error porque usa una comparacion IS en la lista SELECT.

select firstname, lastname, likerock is true as '"check"
from users
order by userid limit 10;

[Amazon](500310) Invalid operation: Not implemented

El siguiente ejemplo es correcto porque usa una comparacion igual (=) en la lista SELECT en lugar
de la comparacion IS.

select firstname, lastname, likerock = true as "check"

Tipo booleano 49

AWS Clean Rooms

Referencia de SQL

from users

order by userid limit 10;

firstname | lastname
__________ oo
Alejandro | Rosalez
Carlos | Salazar
Diego | Ramirez
John | Stiles
Kwaku | Mensah
Martha | Rivera
Mateo | Jackson
Paulo | Santos
Richard | Roe
Saanvi | Sarkar

Literales booleanos

true

true
true

false

Las siguientes reglas sirven para trabajar con literales booleanos compatibles con Spark SQL. AWS

Clean Rooms

Usa un literal booleano para especificar un valor booleano, como o. TRUE FALSE

Sintaxis

TRUE | FALSE

Ejemplo

El siguiente ejemplo muestra una columna con un valor especificado de. TRUE

SELECT TRUE AS col;

F--e=-+

| col]

F--e=-+

| true]
Fe——t

Tipo booleano

50

AWS Clean Rooms Referencia de SQL

Tipo binario

Usa el tipo de datos BINARIO para almacenar y administrar datos binarios de longitud fija y sin
interpretar, lo que proporciona capacidades eficientes de almacenamiento y comparacion para casos
de uso especificos.

El tipo de datos BINARIO almacena un numero fijo de bytes, independientemente de la longitud real
de los datos que se almacenan. La longitud maxima suele ser de 255 bytes.

BINARY se utiliza para almacenar datos binarios sin procesar y sin interpretar, como imagenes,
documentos u otros tipos de archivos. Los datos se almacenan exactamente como se proporcionan,
sin codificacion ni interpretacidn de caracteres. Los datos binarios almacenados en las columnas
BINARIAS se comparan y ordenan byte-by-byte en funcién de los valores binarios reales y no de
ninguna regla de codificacidén o cotejo de caracteres.

En la siguiente consulta de ejemplo, se muestra la representacion binaria de la cadena"abc". Cada
caracter de la cadena se representa mediante su cédigo ASCII en formato hexadecimal: «a» es
0x61, «b» es 0x62 y «c» es 0x63. Cuando se combinan, estos valores hexadecimales forman la
representacion binaria. "'616263"

SELECT 'abc'::binary;
binary

616263

Tipo anidado

AWS Clean Roomsadmite consultas que incluyan datos con tipos de datos anidados,
especificamente los tipos de columnas AWS Glue STRUCT, ARRAY y MAP. Solo la regla de analisis
personalizada admite tipos de datos anidados.

En particular, los tipos de datos anidados no se ajustan a la estructura tabular estricta del modelo de
datos relacionales de las bases de datos SQL.

Los tipos de datos anidados contienen etiquetas que hacen referencia a entidades diferenciadas
dentro de los datos. Pueden contener valores complejos, como matrices, estructuras anidadas y
otras estructuras complejas, que estan asociadas a formatos de serializacion, como JSON. Los tipos
de datos anidados admiten hasta 1 MB de datos anidados por campo u objeto con tipo de datos
anidados.

Tipo binario 51

AWS Clean Rooms Referencia de SQL

Temas

» Tipo de matriz

» Tipo de mapa

» Tipo de estructura

* Ejemplos de tipos de datos anidados

Tipo de matriz

Usa el tipo ARRAY para representar valores compuestos por una secuencia de elementos con el tipo
deelementType.

array(elementType, containsNull)

Se utiliza containsNull para indicar si los elementos de un tipo ARRAY pueden tener null
valores.

Tipo de mapa
Usa el tipo MAP para representar valores que comprenden un conjunto de pares clave-valor.

map(keyType, valueType, valueContainsNull)

keyType: el tipo de datos de las claves
valueType: el tipo de datos de los valores

No se permite que las claves tengan null valores. Se utiliza valueContainsNull para indicar si
los valores de un valor de tipo MAP pueden tener null valores.

Tipo de estructura

Usa el tipo STRUCT para representar valores con la estructura descrita por una secuencia de
StructFields (campos).

struct(name, dataType, nullable)

StructField(nombre, tipo de datos, anulable): representa un campo en un. StructType

Tipo anidado 52

AWS Clean Rooms Referencia de SQL

dataType: el tipo de datos: un campo
name: el nombre de un campo

Se utiliza nullable para indicar si los valores de estos campos pueden tener null valores.
Ejemplos de tipos de datos anidados

Para el tipo struct<given:varchar, family:varchar>, existen dos nombres de atributo:
giveny family, cada uno de los cuales corresponde a un valor varchar.

Para el tipo array<varchar>, la matriz se especifica como una lista de varchar.

El tipo array<struct<shipdate:timestamp, price:double>> hace referencia a una lista de
elementos con el tipo struct<shipdate:timestamp, price:double>.

El tipo de datos map se comporta como una array de structs, donde el nombre del atributo de
cada elemento de la matriz se indica con key y se asigna a un value.

Example

Por ejemplo, el tipo map<varchar(20), varchar(20)> se trata
comoarray<struct<key:varchar(20), value:varchar(20)>>, donde key y value hacen
referencia a los atributos del mapa en los datos subyacentes.

Para obtener informacion sobre como se AWS Clean Rooms habilita la navegacion en matrices y
estructuras, consulte. Navegacion

Para obtener informacién sobre como se AWS Clean Rooms habilita la iteracién sobre matrices
navegando por la matriz mediante la clausula FROM de una consulta, consulte. Desanidar consultas

Conversion y compatibilidad de tipos

En los siguientes temas se describe como funcionan las reglas de conversion de tipos y la
compatibilidad de tipos de datos en AWS Clean Rooms Spark SQL.

Temas
» Compatibilidad

» Reglas generales de conversidon y compatibilidad

» Tipos de conversiones implicitas

Conversion y compatibilidad de tipos 53

AWS Clean Rooms Referencia de SQL

Compatibilidad

La vinculacién de tipos de datos y la vinculacién de valores literales y constantes con tipos de datos
ocurren durante varias operaciones de la base de datos, incluidas las siguientes:

» Operaciones de Data Manipulation Language (DML, Lenguaje de manipulacion de datos) en tablas
» Consultas UNION, INTERSECT y EXCEPT

» Expresiones CASE

« Evaluacion de predicados, como LIKE e IN

 La evaluacién de funciones SQL que realizan comparaciones o extracciones de datos.

» Comparaciones con operadores matematicos

Los resultados de estas operaciones dependen de las reglas de conversién de tipos y la
compatibilidad de tipos de datos. La compatibilidad implica que no siempre es necesaria la one-
to-one coincidencia de un valor determinado con un tipo de datos determinado. Dado que algunos
tipos de datos son compatible, es posible una conversién implicita o coercion. Para obtener

mas informacion, consulte Tipos de conversiones implicitas. Cuando los tipos de datos no son
compatibles, a menudo puede convertir un valor de un tipo de datos a otro al utilizar la funcion de
conversion explicita.

Reglas generales de conversion y compatibilidad

Tenga en cuenta las siguientes reglas de conversion y compatibilidad:

» En general, los tipos de datos que caen en la misma categoria (como diferentes tipos de datos
numeéricos) son compatibles y se pueden convertir implicitamente.

Por ejemplo, con la conversién implicita puede insertar un valor decimal en una columna de
enteros. El decimal se redondea para producir un numero entero. O bien, puede extraer un valor
numerico, como 2008, de una fecha e insertar ese valor en una columna de enteros.

» Los tipos de datos numéricos imponen condiciones de desbordamiento que se producen cuando
se intenta insertar out-of-range valores. Por ejemplo, un valor decimal con una precision de 5
no encaja en una columna decimal que se definié con una precisién de 4. Un entero o toda la
parte de un decimal nunca se truncan. Sin embargo, la parte fraccionaria de un decimal se puede
redondear hacia arriba o hacia abajo, segun corresponda. Sin embargo, no se redondean los
resultados de formas explicitas de los valores seleccionados de tablas.

Conversion y compatibilidad de tipos 54

AWS Clean Rooms Referencia de SQL

» Los distintos tipos de cadenas de caracteres son compatibles. Las cadenas de la columna
VARCHAR que contienen datos de un byte y las cadenas de la columna CHAR se pueden
comparar y son convertibles de manera implicita. No se pueden comparar las cadenas VARCHAR
que contienen datos multibyte. También puede convertir una cadena de caracteres a una fecha,
una hora, una marca temporal o un valor numérico si la cadena es un valor literal adecuado. Se
omiten los espacios anteriores o posteriores. En cambio, puede convertir una fecha, una hora, una
marca temporal o un valor numérico a una cadena de caracteres de longitud fija o variable.

® Note

Una cadena de caracteres que desea transformar a un tipo numérico debe contener una
representacion de caracter de un numero. Por ejemplo, puede transformar las cadenas
'1.0' 0 '5.9"' avalores decimales, pero no puede transformar la cadena 'ABC' a
ningun tipo numérico.

» Si compara valores DECIMALES con cadenas de caracteres, AWS Clean Rooms intenta convertir
la cadena de caracteres en un valor DECIMAL. Al comparar todos los demas valores numéricos
con cadenas de caracteres, los valores numéricos se convierten en cadenas de caracteres. Para
aplicar la conversion opuesta (por ejemplo, convertir cadenas de caracteres en numeros enteros o
convertir valores de tipo DECIMAL en cadenas de caracteres), utilice una funcién explicita, como
Funcion CAST.

 Para convertir valores DECIMAL o NUMERIC de 64 bits a una precision mas grande, debe usar
una funcion de conversion explicita, como las funciones CAST o CONVERT.

Tipos de conversiones implicitas

Existen dos tipos de conversiones implicitas:

» Conversiones implicitas en asignaciones, como establecer valores en comandos INSERT o
UPDATE

» Conversiones implicitas en expresiones, como realizar comparaciones en la clausula WHERE

En la siguiente tabla se enumeran los tipos de datos que pueden convertirse implicitamente en
asignaciones o expresiones. También puede usar una funcion de conversion explicita para realizar
estas conversiones.

Conversion y compatibilidad de tipos 55

AWS Clean Rooms

Referencia de SQL

Del tipo

BIGINT

CHAR

DATE

DECIMAL (NUMERIC)

Al tipo

BOOLEANO

CHAR

DECIMAL (NUMERIC)
PRECISION DOBLE (FLOATS)
INTEGER

REAL (FLOAT4)

SMALLINT o SHORT
VARCHAR

VARCHAR

CHAR

VARCHAR

TIMESTAMP

TIMESTAMPTZ

GRANDE o LARGO

CHAR

DOBLE PRECISION () FLOATS8
INTEGER (INT)

REAL (FLOAT4)

SMALLINT o SHORT

VARCHAR

Conversién y compatibilidad de tipos

56

AWS Clean Rooms

Referencia de SQL

Del tipo

DOBLE PRECISION () FLOATS

INTEGER (INT)

REAL () FLOAT4

Al tipo

BIGINT o LONG
CHAR

DECIMAL (NUMERIC)
INTEGER (INT)

REAL () FLOAT4
SMALLINT o SHORT
VARCHAR

GRANDE o LARGO
BOOLEANO

CHAR

DECIMAL (NUMERIC)
DOBLE PRECISION () FLOAT8
REAL (FLOAT4)
SMALLINT o SHORT
VARCHAR

BIGINT o LONG
CHAR

DECIMAL (NUMERIC)
INTEGER (INT)

MINUSCULA o CORTA

Conversién y compatibilidad de tipos

57

AWS Clean Rooms Referencia de SQL

Del tipo Al tipo
VARCHAR
SMALLINT GRANDE o LARGO
BOOLEANO
CHAR

DECIMAL (NUMERIC)
DOBLE PRECISION () FLOATS
INTEGER (INT)
REAL (FLOAT4)
VARCHAR
TIME VARCHAR

TIMETZ

® Note

Las conversiones implicitas entre DATE, TIME, TIMESTAMP_LTZ, TIMESTAMP_NTZ o
cadenas de caracteres utilizan la zona horaria de la sesion actual.

El tipo de datos VARBYTE no se puede convertir de forma implicita en otros tipos de datos.
Para obtener mas informacién, consulte Funcion CAST.

AWS Clean Rooms Comandos SQL de Spark

Los siguientes comandos SQL son compatibles con AWS Clean Rooms Spark SQL:

Temas
« TABLA DE CACHE

 Sugerencias

Comandos SQL 58

AWS Clean Rooms Referencia de SQL

« SELECT

TABLA DE CACHE

El comando CACHE TABLE almacena en caché los datos de una tabla existente o crea y almacena
en caché una nueva tabla que contiene los resultados de la consulta.

® Note

Los datos en caché se conservan durante toda la consulta.

La sintaxis, los argumentos y algunos ejemplos provienen de la referencia SQL de Apache Spark.

Sintaxis
El comando CACHE TABLE admite tres patrones de sintaxis:

Con AS (sin paréntesis): crea y almacena en caché una nueva tabla en funcién de los resultados de
la consulta.

CACHE TABLE cache_table_identifier AS query;

Con AS y paréntesis: funciona de forma similar a la primera sintaxis, pero utiliza paréntesis para
agrupar la consulta de forma explicita.

CACHE TABLE cache_table_identifier AS (query);

Sin AS: almacena en caché una tabla existente mediante la instruccion SELECT para filtrar las filas
gue se van a almacenar en caché.

CACHE TABLE cache_table_identifier query;

Donde:

» Todas las sentencias deben terminar con punto y coma (;)

* querysuele ser una sentencia SELECT

TABLA DE CACHE 59

https://spark.apache.org/docs/latest/api/sql/

AWS Clean Rooms Referencia de SQL

» Los paréntesis alrededor de la consulta son opcionales con AS

» La palabra clave AS es opcional

Parametros

cache_table_identifier

El nombre de la tabla en caché. Puede incluir un calificador de nombre de base de datos
opcional.

AS

Palabra clave que se utiliza al crear y almacenar en caché una tabla nueva a partir de los
resultados de una consulta.

consulta

Una instruccion SELECT u otra consulta que defina los datos que se van a almacenar en caché.

Ejemplos

En los ejemplos siguientes, la tabla en caché se conserva durante toda la consulta. Tras el
almacenamiento en caché, las consultas posteriores a las que cache_table_identifier se
haga referencia se leeran desde la version en caché en lugar de volver a calcularse o leer desde
ella. sourceTable Esto puede mejorar el rendimiento de las consultas para los datos a los que se
accede con frecuencia.

Cree y almacene en caché una tabla filtrada a partir de los resultados de la consulta

El primer ejemplo muestra cdmo crear y almacenar en caché una tabla nueva a partir de los
resultados de una consulta. Este comando usa la AS palabra clave sin paréntesis alrededor

de la SELECT sentencia. Crea una nueva tabla llamada 'cache_table_identifier' que

contiene solo las filas de 'sourceTable' donde el estado es '. active' Ejecuta la consulta,
almacena los resultados en la nueva tabla y guarda en caché el contenido de la nueva tabla. El
'sourceTable' original permanece sin cambios y las consultas posteriores deben hacer referencia a
'cache_table_identifiexr' para usar los datos en caché.

CACHE TABLE cache_table_identifier AS
SELECT * FROM sourceTable
WHERE status = 'active';

TABLA DE CACHE 60

AWS Clean Rooms Referencia de SQL

Almacene en caché los resultados de las consultas con sentencias SELECT entre paréntesis

El segundo ejemplo muestra como almacenar en caché los resultados de una consulta

como una tabla nueva con un nombre especifico (cache_table_identifier), utilizando
paréntesis alrededor de la sentencia. SELECT Este comando crea una nueva tabla llamada
'cache_table_identifier' que contiene solo las filas de 'sourceTable' donde el estado
es'. active' Ejecuta la consulta, almacena los resultados en la nueva tabla y guarda en caché
el contenido de la nueva tabla. El 'sourceTable' original permanece inalterado. Las consultas
posteriores deben hacer referencia a cache_table_identifier «» para utilizar los datos en
caché.

CACHE TABLE cache_table_identifier AS (
SELECT * FROM sourceTable
WHERE status = 'active'

5

Almacene en caché una tabla existente con las condiciones del filtro

El tercer ejemplo muestra como almacenar en caché una tabla existente con una sintaxis diferente.
Esta sintaxis, que omite la palabra clave AS 'y los paréntesis, normalmente almacena en caché las
filas especificadas de una tabla existente denominada' cache_table_identifier 'en lugar de
crear una tabla nueva. La SELECT sentencia actua como un filtro para determinar qué filas se van a
almacenar en caché.

(® Note

El comportamiento exacto de esta sintaxis varia segun los sistemas de bases de datos.
Compruebe siempre la sintaxis correcta para su AWS servicio especifico.

CACHE TABLE cache_table_identifier
SELECT * FROM sourceTable
WHERE status = 'active';

Sugerencias

Las sugerencias para los analisis de SQL proporcionan directrices de optimizacion que guian las
estrategias de ejecucidon de consultas AWS Clean Rooms, lo que te permite mejorar el rendimiento

Sugerencias 61

AWS Clean Rooms Referencia de SQL

de las consultas y reducir los costes de procesamiento. Las sugerencias sugieren como el motor de
analisis de Spark debe generar su plan de ejecucion.

Sintaxis

SELECT /*+ hint_name(parameters), hint_name(parameters) */ column_list
FROM table_name;

Las sugerencias se incluyen en las consultas SQL mediante una sintaxis similar a la de un
comentario y deben colocarse directamente después de la palabra clave SELECT.

Tipos de sugerencias compatibles

AWS Clean Rooms admite dos categorias de sugerencias: sugerencias de unidn y sugerencias de
particion.

Temas

« Unase a las sugerencias

» Sugerencias de particionamiento

Unase a las sugerencias

Los consejos de union sugieren estrategias de union para la ejecucion de consultas. La sintaxis, los
argumentos y algunos ejemplos provienen de la referencia SQL de Apache Spark para obtener mas
informacion

EMISION

Sugiere AWS Clean Rooms utilizar broadcast join. La parte de union con la sugerencia se
emitira independientemente del autoBroadcastJoin umbral. Si ambos lados de la unién tienen las
sugerencias emitidas, se emitira la que tenga el tamafno mas pequeio (segun las estadisticas).

Alias: BROADCASTJOIN, MAPJOIN
Parametros: identificadores de tabla (opcionales)

Ejemplos:

-- Broadcast a specific table

Sugerencias 62

https://spark.apache.org/docs/latest/sql-ref-syntax-qry-select-hints.html#join-hints

AWS Clean Rooms Referencia de SQL

SELECT /*+ BROADCAST(students) */ e.name, s.course
FROM employees e JOIN students s ON e.id = s.id;

-- Broadcast multiple tables

SELECT /*+ BROADCASTJOIN(s, d) */ *
FROM employees e

JOIN students s ON e.id = s.id

JOIN departments d ON e.dept_id = d.id;

MERGE

Sugiere que se AWS Clean Rooms utilice la combinacion, la ordenacién, la combinacién y la
combinacion.

Alias: SHUFFLE_MERGE, MERGEJOIN
Parametros: identificadores de tabla (opcionales)

Ejemplos:

-- Use merge join for a specific table
SELECT /*+ MERGE(employees) */ *
FROM employees e JOIN students s ON e.id = s.id;

-- Use merge join for multiple tables
SELECT /*+ MERGEJOIN(e, s, d) */ *

FROM employees e

JOIN students s ON e.id = s.id

JOIN departments d ON e.dept_id = d.id;

SHUFFLE_HASH

Sugiere AWS Clean Rooms usar shuffle hash join. Si ambos lados tienen las sugerencias de mezcla
aleatoria, el optimizador de consultas elige el lado mas pequefio (segun las estadisticas) como el
lado de construccion.

Parametros: identificadores de tabla (opcionales)

Ejemplos:

-- Use shuffle hash join
SELECT /*+ SHUFFLE_HASH(students) */ *

Sugerencias 63

AWS Clean Rooms Referencia de SQL

FROM employees e JOIN students s ON e.id = s.id;

SHUFFLE_REPLICATE_NL
Sugiere utilizar una union de bucles anidada. AWS Clean Rooms shuffle-and-replicate
Parametros: identificadores de tabla (opcionales)

Ejemplos:

-- Use shuffle-replicate nested loop join
SELECT /*+ SHUFFLE_REPLICATE_NL(students) */ *
FROM employees e JOIN students s ON e.id = s.id;

Consejos para la solucién de problemas en Spark SQL

La siguiente tabla muestra situaciones comunes en las que no se aplican sugerencias en SparkSQL.
Para obtener informacion adicional, consulta the section called “Consideraciones y limitaciones”.

Caso de uso Consulta de ejemplo

No se encontro la referencia SELECT /*+ BROADCAST(fake_table) */ *

de la tabla FROM employees e
INNER JOIN students s ON e.eid = s.sid;

La tabla no participa en la SELECT /*+ BROADCAST(s) */ *

operacion de union FROM students s
WHERE s.age > 25;

Referencia de tabla en una SELECT /*+ BROADCAST(s) */ *

FROM employees e

INNER JOIN (SELECT * FROM students s WHERE s.age > 20)
sub

ON e.eid = sub.sid;

subconsulta anidada

Nombre de columna en lugar SELECT /*+ BROADCAST(e.eid) */ *
de referencia de tabla FROM employees e

INNER JOIN students s ON e.eid = s.sid;

Sugerencias 64

AWS Clean Rooms Referencia de SQL

Caso de uso Consulta de ejemplo

Sugerencia sin los parametros SELECT /*+ BROADCAST */ *

necesarios FROM employees e
INNER JOIN students s ON e.eid = s.sid;

MBS ©0 & E8E o5 & SELECT /*+ BROADCAST(employees) */ *

lugar del alias de la tabla FROM employees e
INNER JOIN students s ON e.eid = s.sid;

Sugerencias de particionamiento

Las sugerencias de particionamiento controlan la distribucion de datos entre los nodos ejecutores.
Cuando se especifican varias sugerencias de particion, se insertan varios nodos en el plan légico,
pero el optimizador selecciona la sugerencia situada mas a la izquierda.

COALESCE
Reduce el numero de particiones al numero de particiones especificado.

Parametros: valor numérico (obligatorio): debe ser un numero entero positivo comprendido entre 1y
2147483647

Ejemplos:

-- Reduce to 5 partitions
SELECT /*+ COALESCE(5) */ employee_id, salary
FROM employees;

REPARTICION

Redivide los datos en el numero especificado de particiones mediante las expresiones de particion
especificadas. Utiliza una distribucion por turnos.

Parametros:

+ Valor numérico (opcional): numero de particiones; debe ser un entero positivo entre 1y
2147483647

Sugerencias 65

AWS Clean Rooms Referencia de SQL

« Identificadores de columna (opcionales): columnas por las que realizar la particion; estas columnas
deben existir en el esquema de entrada.

» Si se especifican ambos, el valor numérico debe ser lo primero

Ejemplos:

-- Repartition to 10 partitions
SELECT /*+ REPARTITION(1Q) */ *
FROM employees;

-- Repartition by column
SELECT /*+ REPARTITION(department) */ *
FROM employees;

-- Repartition to 8 partitions by department
SELECT /*+ REPARTITION(8, department) */ *
FROM employees;

-- Repartition by multiple columns
SELECT /*+ REPARTITION(8, department, location) */ *
FROM employees;

REPARTICION_POR_RANGO

Redivide los datos en el niumero especificado de particiones mediante la particion por rangos en las
columnas especificadas.

Parametros:

 Valor numérico (opcional): numero de particiones; debe ser un entero positivo entre 1y
2147483647

+ Identificadores de columna (opcionales): columnas por las que realizar la particién; estas columnas
deben existir en el esquema de entrada.

+ Si se especifican ambos, el valor numérico debe ser lo primero

Ejemplos:

SELECT /*+ REPARTITION_BY_RANGE(1@) */ *
FROM employees;

Sugerencias 66

AWS Clean Rooms Referencia de SQL

-- Repartition by range on age column
SELECT /*+ REPARTITION_BY_RANGE(age) */ *
FROM employees;

-- Repartition to 5 partitions by range on age
SELECT /*+ REPARTITION_BY_RANGE(5, age) */ *
FROM employees;

-- Repartition by range on multiple columns

SELECT /*+ REPARTITION_BY_RANGE(5, age, salary) */ *
FROM employees;

REEQUILIBRAR

Reequilibra las particiones de salida de los resultados de la consulta para que cada particion tenga

un tamafo razonable (ni demasiado pequefia ni demasiado grande). Se trata de una operacion
que se realiza con el maximo esfuerzo: si hay sesgos, AWS Clean Rooms dividira las particiones
asimétricas para que no sean demasiado grandes. Esta sugerencia resulta util cuando se necesita
escribir el resultado de una consulta en una tabla para evitar archivos demasiado pequefnos o
demasiado grandes.

Parametros:

 Valor numérico (opcional): numero de particiones; debe ser un entero positivo entre 1y
2147483647

+ Identificadores de columna (opcionales): las columnas deben aparecer en la lista de resultados
SELECT

» Si se especifican ambos, el valor numérico debe figurar primero

Ejemplos:

-- Rebalance to 10 partitions
SELECT /*+ REBALANCE(1Q) */ employee_id, name
FROM employees;

-- Rebalance by specific columns in output
SELECT /*+ REBALANCE(employee_id, name) */ employee_id, name
FROM employees;

Sugerencias

67

AWS Clean Rooms Referencia de SQL

-- Rebalance to 8 partitions by specific columns
SELECT /*+ REBALANCE(8, employee_id, name) */ employee_id, name, department
FROM employees;

Combinar varias sugerencias

Puede especificar varias sugerencias en una sola consulta separandolas con comas:

-- Combine join and partitioning hints
SELECT /*+ BROADCAST(d), REPARTITION(8) */ e.name, d.dept_name
FROM employees e JOIN departments d ON e.dept_id = d.id;

-- Multiple join hints

SELECT /*+ BROADCAST(s), MERGE(d) */ *
FROM employees e

JOIN students s ON e.id = s.id

JOIN departments d ON e.dept_id = d.id;

-- Hints within separate hint blocks within the same query
SELECT /*+ REPARTITION(10@) */ /*+ COALESCE(500) */ /*+ REPARTITION_BY_RANGE(3, c) */ *
FROM t;

Consideraciones y limitaciones

» Las sugerencias son sugerencias de optimizacion, no comandos. El optimizador de consultas
puede ignorar las sugerencias en funcion de las restricciones de recursos o las condiciones de
ejecucion.

» Las sugerencias se incrustan directamente en las cadenas de consulta SQL para
CreateAnalysisTemplate y StartProtectedQuery APls.

» Las sugerencias deben colocarse directamente después de la palabra clave SELECT.

» Los parametros con nombre no se admiten con sugerencias y generaran una excepcion.

» Los nombres de las columnas de las sugerencias REPARTITION y REPARTITION_BY_RANGE
deben existir en el esquema de entrada.

* Los nombres de las columnas de las sugerencias de REBALANCE deben aparecer en la lista de
resultados SELECT.

» Los parametros numéricos deben ser enteros positivos entre 1y 2147483647. No se admiten
anotaciones cientificas como 1e1

» Las sugerencias no se admiten en las consultas SQL de privacidad diferencial.

Sugerencias 68

AWS Clean Rooms Referencia de SQL

* Los PySpark trabajos no admiten sugerencias para consultas SQL. Para proporcionar directrices
para los planes de ejecucion de un PySpark trabajo, utilice la APl de marco de datos. Consulte los
documentos de la DataFrame AP| de Apache Spark para obtener mas informacion.

SELECT

El comando SELECT devuelve filas de tablas y funciones definidas por el usuario.

AWS Clean RoomsSpark SQL admite los siguientes comandos, clausulas y operadores de conjuntos
SELECT SQL:

Temas

» SELECT list

+ Clausula WITH

+ Clausula FROM

» Clausula JOIN

+ Clausula WHERE

» clausula VALUES

» Clausula GROUP BY
» Clausula HAVING

» Operadores de establecimiento
* Clausula ORDER BY

* Ejemplos de subconsultas

* Subconsultas correlacionadas

La sintaxis, los argumentos y algunos ejemplos provienen de la Referencia SQL de Apache Spark.

SELECT list

La SELECT list designa las columnas, funciones y expresiones que se desea que devuelva la
consulta. La lista representa el resultado de la consulta.

Sintaxis

SELECT
[DISTINCT] | expression [AS column_alias] [, ...]

SELECT 69

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.hint.html
https://spark.apache.org/docs/latest/api/sql/

AWS Clean Rooms Referencia de SQL

Parameters
DISTINCT

Opcidén que elimina las filas duplicadas del conjunto de resultados basandose en los valores
coincidentes de una o mas columnas.

expression

Una expresion formada a partir de una o mas columnas que existen en las tablas a las que hace
referencia la consulta. Una expresion puede contener funciones SQL. Por ejemplo:

coalesce(dimension, 'stringifnull') AS column_alias

AS column_alias

Un nombre temporal para la columna que se utiliza en el conjunto de resultados finales. La palabra
clave AS es opcional. Por ejemplo:

coalesce(dimension, 'stringifnull') AS dimensioncomplete

Si no se especifica un alias para una expresion que no sea un hombre de columna simple, el
conjunto de resultados aplica un nombre predeterminado a esa columna.

® Note

El alias se reconoce justo después de definirlo en la lista de destino. No puedes usar un alias
en otras expresiones definidas después de este en la misma lista de objetivos.

Clausula WITH

Una clausula WITH es una clausula opcional que precede a la lista SELECT en una consulta. La
clausula WITH define una o mas common_table_expressions. Cada expresion comun de tabla
(CTE) define una tabla temporal, que es similar a la definicidon de una vista. Puede referenciar estas
tablas temporales en la clausula FROM. Solo se utilizan mientras se ejecuta la consulta a la que
pertenecen. Cada CTE de la clausula WITH especifica un nombre de tabla, una lista opcional de
nombres de columnas y una expresion de consulta que toma el valor de una tabla (una instruccién
SELECT).

SELECT 70

AWS Clean Rooms Referencia de SQL

Las subconsultas de la clausula WITH son una manera eficiente de definir tablas que puede utilizarse
al ejecutar una unica consulta. En todos los casos, se pueden obtener los mismos resultados al
utilizar subconsultas en el cuerpo principal de la instrucciéon SELECT, pero las subconsultas de la
clausula WITH pueden resultar mas sencillas de escribir y leer. Cuando es posible, las subconsultas
de la clausula WITH a las que se hace referencia varias veces se optimizan como subexpresiones
comunes; es decir, puede ser posible evaluar una subconsulta WITH una vez y reutilizar sus
resultados (tenga en cuenta que las subexpresiones comunes no se limitan a aquellas definidas en la
clausula WITH).

Sintaxis

[WITH common_table_expression [, common_table_expression , ...]]

donde common_table_expression puede ser no recursiva. A continuacion se presenta la forma no
recursiva:

CTE_table_name AS (query)

Parameters

common_table_expression

Define una tabla temporal a la que se puede referenciar en Clausula FROM y se utiliza solo
durante la ejecucion de la consulta a la que pertenece.

CTE_table_name

Un nombre unico para una tabla temporal que define los resultados de una subconsulta de la
clausula WITH. No se pueden usar nombres duplicados dentro de una clausula WITH. Cada

subconsulta debe tener un nombre de tabla al que se pueda hacer referencia en la Clausula

FROM.

consulta

Cualquier consulta SELECT que AWS Clean Rooms admita. Consulte SELECT.

Notas de uso

Puede usar una clausula WITH en las siguientes instrucciones SQL.:

SELECT 71

AWS Clean Rooms Referencia de SQL

« SELECCIONE, CON, UNION, UNION ALL, INTERSECT, INTERSECT ALL, EXCEPTO O
EXCEPTO ALL

Si la clausula FROM de una consulta que contiene una clausula WITH no referencia ninguna de
las tablas definidas por la clausula WITH, se ignora la clausula WITH y la consulta se ejecuta como
siempre.

Se puede hacer referencia a una tabla definida por una subconsulta de la clausula WITH solo en el
alcance de la consulta SELECT que inicia la clausula WITH. Por ejemplo, se puede hacer referencia
a dicha tabla en la clausula FROM de una subconsulta en la lista SELECT, la clausula WHERE o

la clausula HAVING. No se puede usar una clausula WITH en una subconsulta y hacer referencia

a su tabla en la clausula FROM de una consulta principal o de otra subconsulta. Este patron de
consulta provoca un mensaje de error relation table_name doesn't exist paralatabla de
la clausula WITH.

No se puede especificar otra clausula WITH dentro de una subconsulta de la clausula WITH.

No se pueden realizar referencias futuras a tablas definidas por las subconsultas de la clausula
WITH. Por ejemplo, la siguiente consulta devuelve un error debido a la referencia futura a la tabla W2
en la definicidon de la tabla W1:

with wl as (select * from w2), w2 as (select * from wl)
select * from sales;
ERROR: relation "w2" does not exist

Ejemplos

En el siguiente ejemplo, se muestra el caso posible mas simple de una consulta que contiene

una clausula WITH. La consulta WITH denominada VENUECOPY selecciona todas las filas de la
tabla VENUE. La consulta principal, a su vez, selecciona todas las filas de VENUECOPY. La tabla
VENUECOPY existe solo durante esta consulta.

with venuecopy as (select * from venue)
select * from venuecopy order by 1 limit 10;

venueid | venuename | venuecity | venuestate | venueseats
————————— L ittt ekttt ettt ettt
1 | Toyota Park | Bridgeview | IL |]
2 | Columbus Crew Stadium | Columbus | OH | 0

SELECT 72

AWS Clean Rooms Referencia de SQL

3 | RFK Stadium | Washington | DC | 0

4 | CommunityAmerica Ballpark | Kansas City | KS | 0

5 | Gillette Stadium | Foxborough | MA | 68756

6 | New York Giants Stadium | East Rutherford | NJ | 80242

7 | BMO Field | Toronto | ON | 0

8 | The Home Depot Center | Carson | CA | 0

9 | Dick's Sporting Goods Park | Commerce City | CO | 0

v 10 | Pizza Hut Park | Frisco | TX | 0
(10 rows)

En el siguiente ejemplo, se muestra una clausula WITH que produce dos tablas, denominadas
VENUE_SALES y TOP_VENUES. La segunda tabla de la consulta WITH selecciona desde la
primera. A su vez, la clausula WHERE del bloque de la consulta principal contiene una subconsulta
que limita la tabla TOP_VENUES.

with venue_sales as

(select venuename, venuecity, sum(pricepaid) as venuename_sales
from sales, venue, event

where venue.venueid=event.venueid and event.eventid=sales.eventid
group by venuename, venuecity),

top_venues as

(select venuename

from venue_sales

where venuename_sales > 800000)

select venuename, venuecity, venuestate,

sum(qtysold) as venue_qty,

sum(pricepaid) as venue_sales

from sales, venue, event

where venue.venueid=event.venueid and event.eventid=sales.eventid
and venuename in(select venuename from top_venues)

group by venuename, venuecity, venuestate

order by venuename;

venuename | venuecity | venuestate | venue_qty | venue_sales
———————————————————————— R e s s
August Wilson Theatre | New York City | NY | 3187 | 1032156.00
Biltmore Theatre | New York City | NY | 2629 | 828981.00
Charles Playhouse | Boston | MA | 2502 | 857031.00
Ethel Barrymore Theatre | New York City | NY | 2828 | 891172.00
Eugene 0'Neill Theatre | New York City | NY | 2488 | 828950.00

SELECT 73

AWS Clean Rooms Referencia de SQL

Greek Theatre | Los Angeles | CA | 2445 | 838918.00
Helen Hayes Theatre | New York City | NY | 2948 | 978765.00
Hilton Theatre | New York City | NY | 2999 | 885686.00
Imperial Theatre | New York City | NY | 2702 | 877993.00
Lunt-Fontanne Theatre | New York City | NY | 3326 | 1115182.00
Majestic Theatre | New York City | NY | 2549 | 894275.00
Nederlander Theatre | New York City | NY | 2934 | 936312.00
Pasadena Playhouse | Pasadena | CA | 2739 | 820435.00
Winter Garden Theatre | New York City | NY | 2838 | 939257.00

(14 rows)

En los siguientes dos ejemplos se muestran las reglas para el alcance de las referencias de la tabla
en funcion de las subconsultas de la clausula WITH. La primera consulta se ejecuta, pero en la
segunda se produce un error inesperado. La primera consulta tiene una subconsulta de la clausula
WITH dentro de la lista SELECT de la consulta principal. Se hace referencia a la tabla definida por la
clausula WITH (HOLIDAYS) en la clausula FROM de la subconsulta de la lista SELECT:

select caldate, sum(pricepaid) as daysales,

(with holidays as (select * from date where holiday ='t')
select sum(pricepaid)

from sales join holidays on sales.dateid=holidays.dateid
where caldate='2008-12-25') as dec25sales

from sales join date on sales.dateid=date.dateid

where caldate in('2008-12-25','2008-12-31")

group by caldate

order by caldate;

caldate | daysales | dec25sales
___________ S
2008-12-25 | 70402.00 | 70402 .00
2008-12-31 | 12678.00 | 70402.00
(2 rows)

La segunda consulta falla porque intenta hacer referencia a la tabla HOLIDAYS en la consulta
principal, asi como en la subconsulta de la lista SELECT. Las referencias de la consulta principal
estan fuera de alcance.

select caldate, sum(pricepaid) as daysales,

(with holidays as (select * from date where holiday ='t')
select sum(pricepaid)

from sales join holidays on sales.dateid=holidays.dateid
where caldate='2008-12-25') as dec25sales

SELECT 74

AWS Clean Rooms Referencia de SQL

from sales join holidays on sales.dateid=holidays.dateid
where caldate in('2008-12-25','2008-12-31")

group by caldate

order by caldate;

ERROR: relation "holidays" does not exist

Clausula FROM

La clausula FROM en una consulta enumera las referencias de la tabla (tablas, vistas y
subconsultas) desde las que se seleccionan los datos. Si se enumeran varias referencias de tabla,
se deben combinar las tablas a través de la sintaxis adecuada en la clausula FROM o en la clausula
WHERE. Si no se especifican criterios de combinacion, el sistema procesa la consulta como una
combinacion cruzada (producto cartesiano).

Temas
» Sintaxis
» Parameters

* Notas de uso

Sintaxis

FROM table_reference [, ...]

donde table_reference es uno de los siguientes:

with_subquery_table_name | table_name | (subquery) [[AS] alias]
table_reference [NATURAL] join_type table_reference [USING (join_column [, ...])]
table_reference [INNER] join_type table_reference ON expr

Parameters
with_subquery_table_name

Una tabla definida por una subconsulta en la Clausula WITH.

table_name

Nombre de una tabla o vista.

SELECT 75

AWS Clean Rooms Referencia de SQL

alias

Nombre alternativo temporal para una tabla o vista. Se debe proporcionar un alias para una tabla
obtenida de una subconsulta. En otras referencias de tabla, los alias son opcionales La palabra
clave AS es siempre opcional. Los alias de la tabla brindan un acceso directo para identificar
tablas en otras partes de una consulta, como la clausula WHERE.

Por ejemplo:

select * from sales s, listing 1
where s.listid=1.listid

Si hay un alias de tabla definido, se debe usar el alias para hacer referencia a esa tabla en la
consulta.

Por ejemplo, si la consulta es SELECT "tbl"."col" FROM "tbl" AS "t", la consulta dara
error porque en este caso el nombre de la tabla basicamente se anula. Una consulta valida en
este caso seria SELECT "t"."col" FROM "tbl" AS "t".

column_alias

Nombre alternativo temporal para una columna en una tabla o vista.

subquery

Una expresion de consulta que toma el valor de una tabla. La tabla solo existe mientras dura la
consulta y, por lo general, se le asigna un nombre o un alias. No obstante, no es obligatorio tener
un alias. También puede definir nombres de columnas para tablas que derivan de subconsultas.
Designar un nombre a los alias de las columnas es importante cuando desea combinar los
resultados de las subconsultas con otras tablas y cuando desea seleccionar o limitar esas
columnas en otros sitios de la consulta.

Una subconsulta puede contener una clausula ORDER BY, pero es posible que esta clausula no
tenga ningun efecto si no se especifica también una clausula OFFSET o LIMIT.

NATURAL

Define una combinacién que utiliza automaticamente todos los pares de columnas con hombres
idénticos en las dos tablas como las columnas de combinacién. No se requiere una condicidon
de combinacion explicita. Por ejemplo, si las tablas CATEGORY y EVENT tienen columnas
denominadas CATID, una combinacion natural de estas tablas es una combinacion de las
columnas CATID.

SELECT 76

AWS Clean Rooms Referencia de SQL

® Note

Si se especifica una combinacion NATURAL, pero no existen pares de columnas con
nombres idénticos en las tablas que deben combinarse, la consulta se establece en una
combinacion cruzada.

join_type

Especifique uno de los siguientes tipos de combinacion:
- [INNER] JOIN

LEFT [OUTER] JOIN

RIGHT [OUTER] JOIN

FULL [OUTER] JOIN

CROSS JOIN

Las combinaciones cruzadas son combinaciones no calificadas; devuelven el producto cartesiano
de dos tablas.

Las combinaciones internas y externas son combinaciones calificadas. Estan calificadas
implicitamente (en combinaciones naturales), con la sintaxis ON o USING en la clausula FROM, o
con una condicion WHERE.

Una combinacion interna devuelve filas coincidentes unicamente en funcién a la condicion de
combinacion o a la lista de columnas de combinacién. Una combinacion externa devuelve todas
las filas que la combinacion interna equivalente devolveria, ademas de filas no coincidentes de

la tabla "izquierda", tabla "derecha" o ambas tablas. La tabla izquierda es la primera tabla de la
lista, y la tabla derecha es la segunda tabla de la lista. Las filas no coincidentes contienen valores
NULL para llenar el vacio de las columnas de salida.

ON join_condition

Especificacion del tipo de combinacion donde las columnas de combinacion se establecen como
una condicion que sigue la palabra clave ON. Por ejemplo:

sales join listing
on sales.listid=listing.listid and sales.eventid=listing.eventid

SELECT 77

AWS Clean Rooms Referencia de SQL

USING (join_column |, ...])

Especificacion del tipo de combinacion donde las columnas de combinacion aparecen
enumeradas entre paréntesis. Si se especifican varias columnas de combinacion, se delimitan por
comas. La palabra clave USING debe preceder a la lista. Por ejemplo:

sales join listing
using (listid,eventid)

Notas de uso
Las columnas de combinacion deben tener tipos de datos comparables.

Una combinacion NATURAL o USING retiene solo uno de cada par de columnas de combinacion en
el conjunto de resultados intermedios.

Una combinacion con la sintaxis ON retiene ambas columnas de combinacion en su conjunto de
resultados intermedios.

Véase también Clausula WITH.

Clausula JOIN

Se utiliza una clausula JOIN de SQL para combinar los datos de dos o mas tablas en funcion de

los campos comunes. Es posible que los resultados cambien o no cambien segun el método de
combinacion especificado. Las combinaciones externas izquierdas y derechas conservan valores de
una de las tablas combinadas cuando no se encuentra una coincidencia en la otra tabla.

La combinacion del tipo JOIN y la condicion de union determina qué filas se incluyen en el conjunto
de resultados final. A continuacion, las clausulas SELECT y WHERE controlan qué columnas se
devuelven y como se filtran las filas. Comprender los diferentes tipos de JOIN y como utilizarlos de
forma eficaz es una habilidad crucial en SQL, ya que permite combinar datos de varias tablas de
forma flexible y eficaz.

Sintaxis

SELECT columnl, column2, ..., columnn
FROM tablel

join_type table2

ON tablel.column = table2.column;

SELECT 78

AWS Clean Rooms Referencia de SQL

Parameters

SELECCIONE la columna 1, la columna 2,..., la columna N

Las columnas que desea incluir en el conjunto de resultados. Puede seleccionar columnas de una
o de las dos tablas incluidas en la COMBINACION.

DE LA TABLA 1

La primera tabla (izquierda) de la operacion JOIN.

[UNION | UNION INTERIOR | UNION IZQUIERDA [EXTERIOR] | UNION DERECHA [EXTERIOR]
UNION | UNION COMPLETA [EXTERIOR]] Tabla 2:

El tipo de UNION que se va a realizar. JOIN o INNER JOIN devuelven solo las filas con valores
coincidentes en ambas tablas.

LEFT [OUTER] JOIN devuelve todas las filas de la tabla de la izquierda, con las filas coincidentes
de la tabla de la derecha.

RIGHT [OUTER] JOIN devuelve todas las filas de la tabla de la derecha, con las filas coincidentes
de la tabla de la izquierda.

FULL [OUTER] JOIN devuelve todas las filas de ambas tablas, independientemente de si
coinciden o no.

CROSS JOIN crea un producto cartesiano de las filas de las dos tablas.

EN la tabla1.columna = tabla2.columna

La condicidon de unién, que especifica como se hacen coincidir las filas de las dos tablas. La
condicién de unidn se puede basar en una o0 mas columnas.

Condicion WHERE:

Clausula opcional que se puede utilizar para filtrar aun mas el conjunto de resultados en funcion
de una condicién especifica.

Ejemplo

El ejemplo siguiente es una combinacion entre dos tablas con la clausula USING. En este caso, las
columnas listid y eventid se utilizan como columnas de combinacién. Los resultados tienen un limite
de cinco filas.

select listid, listing.sellerid, eventid, listing.dateid, numtickets

SELECT 79

AWS Clean Rooms Referencia de SQL

from listing join sales
using (listid, eventid)

order by 1

limit 5;

listid | sellerid | eventid | dateid | numtickets
——————— L et ittt ettt ettt
1 | 36861 | 7872 | 1850 | 10

4 | 8117 | 4337 | 1970 | 8

5 | 1616 | 8647 | 1963 | 4

5 | 1616 | 8647 | 1963 | 4

6 | 47402 | 8240 | 2053 | 18

Tipos de combinacion
INNER

Este es el tipo de unidon predeterminado. Devuelve las filas que tienen valores coincidentes en ambas
referencias de tabla.

La combinacion interna es el tipo de combinacidon mas comun que se utiliza en SQL. Es una forma
eficaz de combinar datos de varias tablas en funcion de una columna o conjunto de columnas
comun.

Sintaxis:

SELECT columnl, column2, ..., columnn
FROM tablel

INNER JOIN table2

ON tablel.column = table2.column;

La siguiente consulta devolvera todas las filas en las que haya un valor de custome_id coincidente
entre las tablas de clientes y pedidos. El conjunto de resultados contendra las columnas customer_id,
name, order_id y order_date.

SELECT customers.customer_id, customers.name, orders.order_id, orders.order_date
FROM customers

INNER JOIN orders

ON customers.customer_id = orders.customer_id;

La siguiente consulta es una combinacion interna (sin la palabra clave JOIN) entre la tabla LISTING
y la tabla SALES, donde LISTID de la tabla LISTING esta entre 1 y 5. Esta consulta relaciona los

SELECT 80

AWS Clean Rooms Referencia de SQL

valores de la columna LISTID en la tabla LISTING (la tabla izquierda) y la tabla SALES (la tabla
derecha). Los resultados muestran que LISTID 1, 4 y 5 coinciden con los criterios.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing, sales

where listing.listid = sales.listid

and listing.listid between 1 and 5

group by 1

order by 1;

listid | price | comm

_______ I
1| 728.00 | 109.20
4| 76.00 | 11.40
5] 525.00 | 78.75

El siguiente ejemplo es una combinacion interna con la clausula ON. En este caso, las filas NULL no

se devuelven.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from sales join listing
on sales.listid=listing.listid and sales.eventid=listing.eventid

where listing.listid between 1 and 5

group by 1

order by 1;

listid | price | comm

_______ S E
1| 728.00 | 109.20
4| 76.00 | 11.40
5 | 525.00 | 78.75

La siguiente consulta es una combinacion interna de dos subconsultas en la clausula FROM. La
consulta busca la cantidad de tickets vendidos y sin vender para diferentes categorias de eventos
(conciertos y espectaculos). Estas subconsultas de la clausula FROM son subconsultas de tabla;
pueden devolver varias columnas vy filas.

select catgroupl, sold, unsold

from

(select catgroup, sum(qtysold) as sold

from category c, event e, sales s

where c.catid = e.catid and e.eventid = s.eventid

SELECT 81

AWS Clean Rooms Referencia de SQL

group by catgroup) as a(catgroupl, sold)

join

(select catgroup, sum(numtickets)-sum(qtysold) as unsold
from category c, event e, sales s, listing 1

where c.catid = e.catid and e.eventid = s.eventid

and s.listid = 1.1listid

group by catgroup) as b(catgroup2, unsold)

on a.catgroupl = b.catgroup2

order by 1;

catgroupl | sold | unsold
__________ o
Concerts | 195444 |1067199
Shows | 149905 | 817736

IZQUIERDA [EXTERIOR]

Devuelve todos los valores de la referencia de la tabla izquierda y los valores coincidentes de la
referencia de la tabla derecha, o afiade NULL si no hay ninguna coincidencia. También se conoce
como union exterior izquierda.

Devuelve todas las filas de la tabla izquierda (primera) y las filas coincidentes de la tabla derecha
(segunda). Si no hay ninguna coincidencia en la tabla de la derecha, el conjunto de resultados
contendra valores NULOS para las columnas de la tabla de la derecha. La palabra clave OUTER
se puede omitir y la union se puede escribir simplemente como LEFT JOIN. Lo opuesto a una
unidén exterior izquierda es una unién exterior derecha, que devuelve todas las filas de la tabla de la
derecha y las filas coincidentes de la tabla de la izquierda.

Sintaxis:

SELECT columnl, column2, ..., columnn
FROM tablel

LEFT [OUTER] JOIN table2

ON tablel.column = table2.column;

La siguiente consulta devolvera todas las filas de la tabla de clientes, junto con las filas coincidentes
de la tabla de pedidos. Si un cliente no tiene ningun pedido, el conjunto de resultados seguira
incluyendo la informacion del cliente, con valores NULOS para las columnas order_id y order_date.

SELECT customers.customer_id, customers.name, orders.order_id, orders.order_date

SELECT 82

AWS Clean Rooms Referencia de SQL

FROM customers
LEFT OUTER JOIN orders
ON customers.customer_id = orders.customer_id;

La siguiente consulta es una combinacion externa izquierda. Las combinaciones externas izquierdas
y derechas conservan valores de una de las tablas combinadas cuando no se encuentra una
coincidencia en la otra tabla. Las tablas izquierda y derecha son la primera tabla y la segunda tabla
que aparecen en la sintaxis. Los valores NULL se utilizan para rellenar los "espacios" en el conjunto
de resultados. Esta consulta relaciona los valores de la columna LISTID en la tabla LISTING (la
tabla izquierda) y la tabla SALES (la tabla derecha). Los resultados muestran que LISTIDs 2y 3 no
generaron ninguna venta.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing left outer join sales on sales.listid = listing.listid
where listing.listid between 1 and 5

group by 1

order by 1;

listid | price | comm

_______ e I
1| 728.00 | 109.20
2 | NULL | NULL
3 | NULL | NULL
4| 76.00 | 11.40
5] 525.00 | 78.75

DERECHA [EXTERIOR]

Devuelve todos los valores de la referencia de la tabla derecha y los valores coincidentes de la
referencia de la tabla izquierda, o afiade NULL si no hay ninguna coincidencia. También se conoce
como unidén exterior derecha.

Devuelve todas las filas de la tabla derecha (segunda) y las filas coincidentes de la tabla izquierda
(primera). Si no hay ninguna coincidencia en la tabla de la izquierda, el conjunto de resultados
contendra valores NULOS para las columnas de la tabla de la izquierda. La palabra clave OUTER se
puede omitir y la unién se puede escribir simplemente como RIGHT JOIN. Lo opuesto a una unién
exterior derecha es una union exterior izquierda, que devuelve todas las filas de la tabla izquierda y
las filas coincidentes de la tabla derecha.

Sintaxis:

SELECT 83

AWS Clean Rooms Referencia de SQL

SELECT columnl, column2, ..., columnn
FROM tablel

RIGHT [OUTER] JOIN table2

ON tablel.column = table2.column;

La siguiente consulta devolvera todas las filas de la tabla de clientes, junto con las filas coincidentes
de la tabla de pedidos. Si un cliente no tiene ningun pedido, el conjunto de resultados seguira
incluyendo la informacion del cliente, con valores NULOS para las columnas order_id y order_date.

SELECT orders.order_id, orders.order_date, customers.customer_id, customers.name
FROM orders

RIGHT OUTER JOIN customers

ON orders.customer_id = customers.customer_id;

La siguiente consulta es una combinacién externa derecha. Esta consulta relaciona los valores de
la columna LISTID en la tabla LISTING (la tabla izquierda) y la tabla SALES (la tabla derecha). Los
resultados muestran que LISTIDs 1, 4 y 5 coinciden con los criterios.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing right outer join sales on sales.listid = listing.listid
where listing.listid between 1 and 5

group by 1

order by 1;

listid | price | comm

_______ I
1| 728.00 | 109.20
4| 76.00 | 11.40
5] 525.00 | 78.75

COMPLETO [EXTERIOR]

Devuelve todos los valores de ambas relaciones, afadiendo valores NULL en el lado que no
coincida. También se conoce como union externa completa.

Devuelve todas las filas de las tablas izquierda y derecha, independientemente de si coinciden o
no. Si no hay ninguna coincidencia, el conjunto de resultados contendra valores NULOS para las
columnas de la tabla que no tengan ninguna fila coincidente. La palabra clave OUTER se puede
omitir y la unién se puede escribir simplemente como FULL JOIN. La combinacion externa completa
se usa con menos frecuencia que la union externa izquierda o la unién externa derecha, pero puede

SELECT Y

AWS Clean Rooms Referencia de SQL

resultar util en algunos escenarios en los que es necesario ver todos los datos de ambas tablas,
incluso si no hay coincidencias.

Sintaxis:

SELECT columnl, column2, ..., columnn
FROM tablel

FULL [OUTER] JOIN table2

ON tablel.column = table2.column;

La siguiente consulta devolvera todas las filas de las tablas de clientes y de pedidos. Si un cliente
no tiene ningun pedido, el conjunto de resultados seguira incluyendo la informacion del cliente,
con valores NULOS para las columnas order_id y order_date. Si un pedido no tiene ningun cliente
asociado, el conjunto de resultados incluira ese pedido, con valores NULOS para las columnas
customer_id y name.

SELECT customers.customer_id, customers.name, orders.order_id, orders.order_date
FROM customers

FULL OUTER JOIN orders

ON customers.customer_id = orders.customer_id;

La siguiente consulta es una combinacion completa. Las combinaciones completas retienen valores
de las tablas combinadas cuando no se encuentra una coincidencia en la otra tabla. Las tablas
izquierda y derecha son la primera tabla y la segunda tabla que aparecen en la sintaxis. Los valores
NULL se utilizan para rellenar los "espacios" en el conjunto de resultados. Esta consulta relaciona
los valores de la columna LISTID en la tabla LISTING (la tabla izquierda) y la tabla SALES (la tabla
derecha). Los resultados muestran que LISTIDs 2 y 3 no generaron ninguna venta.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing full join sales on sales.listid = listing.listid
where listing.listid between 1 and 5

group by 1

order by 1;

listid | price | comm

_______ o
1| 728.00 | 109.20
2 | NULL | NULL
3 | NULL | NULL
4| 76.00 | 11.40

SELECT 85

AWS Clean Rooms Referencia de SQL

5 | 525.00 | 78.75

La siguiente consulta es una combinacién completa. Esta consulta relaciona los valores de la
columna LISTID en la tabla LISTING (la tabla izquierda) y la tabla SALES (la tabla derecha). En los
resultados solo aparecen las filas que no generan ventas (LISTIDs 2 y 3).

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing full join sales on sales.listid = listing.listid

where listing.listid between 1 and 5

and (listing.listid IS NULL or sales.listid IS NULL)

group by 1
order by 1;
listid | price | comm
_______ e
2 | NULL | NULL
3 | NULL | NULL

[[ZQUIERDA] SEMIRREMOLQUE

Devuelve los valores del lado izquierdo de la referencia de la tabla que coinciden con los de la
derecha. También se conoce como semiunion izquierda.

Solo devuelve las filas de la tabla izquierda (primera) que tienen una fila coincidente en la tabla
derecha (segunda). No devuelve ninguna columna de la tabla de la derecha, solo las columnas de la
tabla de la izquierda. El comando LEFT SEMI JOIN es util cuando se quieren buscar las filas de una
tabla que coinciden con las de otra tabla, sin necesidad de devolver ningun dato de la segunda tabla.
LEFT SEMI JOIN es una alternativa mas eficaz que utilizar una subconsulta con una clausula IN o
EXISTS.

Sintaxis:

SELECT columnl, column2, ..., columnn
FROM tablel

LEFT SEMI JOIN table2

ON tablel.column = table2.column;

La siguiente consulta devolvera solo las columnas customer_id y name de la tabla de clientes, para
los clientes que tengan al menos un pedido en la tabla de pedidos. El conjunto de resultados no
incluira ninguna columna de la tabla de pedidos.

SELECT 86

AWS Clean Rooms Referencia de SQL

SELECT customers.customer_id, customers.name
FROM customers

LEFT SEMI JOIN orders

ON customers.customer_id = orders.customer_id;

CROSS JOIN

Devuelve el producto cartesiano de dos relaciones. Esto significa que el conjunto de resultados
contendra todas las combinaciones posibles de filas de las dos tablas, sin aplicar ninguna condicién
ni filtro.

El método CROSS JOIN resulta util cuando se necesitan generar todas las combinaciones posibles
de datos a partir de dos tablas, como en el caso de crear un informe que muestre todas las
combinaciones posibles de informacion sobre clientes y productos. La COMBINACION CRUZADA
es diferente de otros tipos de combinacién (COMBINACION INTERIOR, UNION IZQUIERDA, etc.)
porque no tiene una condicion de unién en la clausula ON. La condicion de union no es obligatoria
para una COMBINACION CRUZADA.

Sintaxis:

SELECT columnl, column2, ..., columnn
FROM tablel
CROSS JOIN table2;

La siguiente consulta devolvera un conjunto de resultados que contiene todas las combinaciones
posibles de customer_id, customer_name, product_id y product_name de las tablas de clientes y
productos. Si la tabla de clientes tiene 10 filas y la tabla de productos tiene 20 filas, el conjunto de
resultados del CROSS JOIN contendra 10 x 20 = 200 filas.

SELECT customers.customer_id, customers.name, products.product_id,
products.product_name

FROM customers

CROSS JOIN products;

La siguiente consulta es una combinacién cruzada o cartesiana de la tabla LISTING y la tabla SALES
con un predicado para limitar los resultados. Esta consulta hace coincidir los valores de las columnas
LISTID de la tabla VENTAS y los valores LISTIDs 1, 2, 3, 4 y 5 de la tabla LISTING de ambas tablas.
Los resultados muestran que 20 filas coinciden con los criterios.

select sales.listid as sales_listid, listing.listid as listing_listid

SELECT 87

AWS Clean Rooms Referencia de SQL

from sales cross join listing

where sales.listid between 1 and 5
and listing.listid between 1 and 5
order by 1,2;
sales_listid | listing_listid

I

+
1 | 1
1 | 2
1 | 3
1 | 4
1 | 5
4 | 1
4 | 2
4 | 3
4 | &
4 | 5
5 | 1
5 | 1
5 | 2
5 | 2
5 | 3
5 | 3
5 | 4
5 | 4
5 | 5
5 | 5
ANTIUNION

Devuelve los valores de la referencia de la tabla izquierda que no coinciden con la referencia de la
tabla derecha. También se conoce como antiunién izquierda.

La funcion ANTI JOIN es una operacion util cuando se quieren encontrar las filas de una tabla que no
coinciden con las de otra.

Sintaxis:

SELECT columnl, column2, ..., columnn
FROM tablel

LEFT ANTI JOIN table2

ON tablel.column = table2.column;

SELECT 88

AWS Clean Rooms Referencia de SQL

La siguiente consulta mostrara todos los clientes que no han realizado ningun pedido.

SELECT customers.customer_id, customers.name
FROM customers

LEFT ANTI JOIN orders

ON customers.customer_id = orders.customer_id
WHERE orders.order_id IS NULL;

NATURAL

Especifica que las filas de las dos relaciones coincidiran implicitamente en igualdad de condiciones
en todas las columnas con nombres coincidentes.

Hace coincidir automaticamente las columnas con el mismo nombre y tipo de datos entre las dos
tablas. No requiere que especifique explicitamente la condicién de unién en la clausula ON. Combina
todas las columnas coincidentes de las dos tablas en el conjunto de resultados.

La combinacion NATURAL es una forma abreviada practica cuando las tablas que se van a

unir tienen columnas con los mismos nombres y tipos de datos. Sin embargo, generalmente se
recomienda usar la combinacion interna mas explicita... La sintaxis ON permite que las condiciones
de unién sean mas explicitas y faciles de entender.

Sintaxis:

SELECT columnl, column2, ..., columnn
FROM tablel
NATURAL JOIN table2;

El siguiente ejemplo es una union natural entre dos tablas employees ydepartments, con las
siguientes columnas:

* employeestabla:employee_id,first_name,last_name, department_id

* departmentsmesa:department_id, department_name

La siguiente consulta devolvera un conjunto de resultados que incluye el nombre, los apellidos
y el nombre del departamento de todas las filas coincidentes entre las dos tablas, segun la
department_id columna.

SELECT e.first_name, e.last_name, d.department_name
FROM employees e

SELECT 89

AWS Clean Rooms Referencia de SQL

NATURAL JOIN departments d;

El ejemplo siguiente es una combinacion natural entre dos tablas. En este caso, las columnas listid,
sellerid, eventid y dateid tienen nombres y tipos de datos idénticos en ambas tablas y, por lo tanto, se
utilizan como columnas de combinacidn. Los resultados tienen un limite de cinco filas.

select listid, sellerid, eventid, dateid, numtickets
from listing natural join sales

order by 1

limit 5;

listid | sellerid | eventid | dateid | numtickets

------- R et i et et

113 | 29704 | 4699 | 2075 | 22

115 | 39115 | 3513 | 2062 | 14

116 | 43314 | 8675 | 1910 | 28

118 | 6079 | 1611 | 1862 | 9

163 | 24880 | 8253 | 1888 | 14
Clausula WHERE

La clausula WHERE contiene condiciones que combinan tablas o que aplican predicados a columnas
de las tablas. Las tablas pueden combinarse de manera interna a través de la sintaxis adecuada

en la clausula WHERE o en la clausula FROM. Los criterios de combinacion externa deben
especificarse en la clausula FROM.

Sintaxis

[WHERE condition]

condition

Cualquier condicién de busqueda con un resultado booleano, como una condicion de combinaciéon o
un predicado en una columna de la tabla. Los siguientes ejemplos son condiciones de combinacion
validas:

sales.listid=1isting.listid
sales.listid<>listing.listid

Los siguientes ejemplos son condiciones validas de columnas en tablas:

SELECT 90

AWS Clean Rooms Referencia de SQL

catgroup like 'S%'

venueseats between 20000 and 50000
eventname in('Jersey Boys', 'Spamalot')
year=2008

length(catdesc)>25

date_part(month, caldate)=6

Las condiciones pueden ser simples o complejas. Para las condiciones complejas, puede utilizar
paréntesis para aislar las unidades logicas. En el siguiente ejemplo, la condiciéon de combinacion esta
entre paréntesis.

where (category.catid=event.catid) and category.catid in(6,7,8)

Notas de uso
Puede usar alias en la clausula WHERE para hacer referencia a expresiones de listas de seleccion.

No puede limitar los resultados de las funciones de agregacion en la clausula WHERE; utilice la
clausula HAVING con este fin.

Las columnas que estan limitadas en la clausula WHERE deben derivar de referencias de tabla en la
clausula FROM.

Ejemplo

La siguiente consulta utiliza una combinacion de diferentes restricciones de la clausula WHERE,
incluida una condicion de combinacién para las tablas SALES y EVENT, un predicado en la columna
EVENTNAME vy dos predicados en la columna STARTTIME.

select eventname, starttime, pricepaid/qtysold as costperticket, qtysold
from sales, event

where sales.eventid = event.eventid

and eventname='Hannah Montana'

and date_part(quarter, starttime) in(1,2)

and date_part(year, starttime) = 2008

order by 3 desc, 4, 2, 1 limit 10;

eventname | starttime | costperticket | gtysold
———————————————— R e e e e s i
Hannah Montana | 2008-06-07 14:00:00 | 1706.00000000 | 2
Hannah Montana | 2008-05-01 19:00:00 | 1658.00000000 | 2
Hannah Montana | 2008-06-07 14:00:00 | 1479.00000000 | 1

SELECT o1

AWS Clean Rooms Referencia de SQL

Hannah Montana | 2008-06-07 14:00:00 | 1479.00000000 | 3
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 | 1
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 | 2
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 | 4
Hannah Montana | 2008-05-01 19:00:00 | 497 .00000000 | 1
Hannah Montana | 2008-05-01 19:00:00 | 497.00000000 | 2
Hannah Montana | 2008-05-01 19:00:00 | 497.00000000 | 4
(10 rows)
clausula VALUES

La clausula VALUES se usa para proporcionar un conjunto de valores de fila directamente en la
consulta, sin necesidad de hacer referencia a una tabla.

La clausula VALUES se puede utilizar en los siguientes escenarios:

» Puede usar la clausula VALUES en una instruccién INSERT INTO para especificar los valores de
las nuevas filas que se insertan en una tabla.

» Puede utilizar la clausula VALUES por si sola para crear un conjunto de resultados temporal, o una
tabla en linea, sin necesidad de hacer referencia a una tabla.

* Puede combinar la clausula VALUES con otras clausulas SQL, como WHERE, ORDER BY o
LIMIT, para filtrar, ordenar o limitar las filas del conjunto de resultados.

Esta clausula resulta especialmente util cuando se necesita insertar, consultar o manipular

un conjunto pequeno de datos directamente en la sentencia SQL, sin necesidad de crear o

hacer referencia a una tabla permanente. Le permite definir los nombres de las columnas y los
valores correspondientes para cada fila, lo que le brinda la flexibilidad de crear conjuntos de
resultados temporales o insertar datos sobre la marcha, sin la sobrecarga de administrar una tabla
independiente.

Sintaxis

VALUES (expression [, ...]) [table_alias]

Parameters

expression

Expresion que especifica una combinacion de uno o mas valores, operadores y funciones SQL
que da como resultado un valor.

SELECT 92

AWS Clean Rooms Referencia de SQL

table_alias

Un alias que especifica un nombre temporal con una lista de nombres de columnas opcional.

Ejemplo

El siguiente ejemplo crea una tabla en linea, un conjunto de resultados similar a una tabla temporal
con dos columnas, y. coll col2 La unica fila del conjunto de resultados contiene los valores "one"
y1, respectivamente. La SELECT * FROM parte de la consulta simplemente recupera todas las
columnas y filas de este conjunto de resultados temporal. El sistema de base de datos genera
automaticamente los nombres de las columnas (collycol?), ya que la clausula VALUES no
especifica explicitamente los nombres de las columnas.

SELECT * FROM VALUES ("one", 1);

et -+
[coll|col2|
et -+
| one] 1]
et -+

Si desea definir nombres de columnas personalizados, puede hacerlo utilizando una clausula AS
después de la clausula VALUES, de la siguiente manera:

SELECT * FROM (VALUES ("one", 1)) AS my_table (name, id);

F-———— +--==-+
| name | id |
F-———— +--==-+
| one | 1 |
F-———— +--==-+

Esto crearia un conjunto de resultados temporal con los nombres de las columnas name yid, en
lugar del predeterminado coll ycol2.

Clausula GROUP BY

La clausula GROUP BY identifica las columnas de agrupacion para la consulta. Las columnas de
agrupacion deben declararse cuando la consulta computa las agregaciones con funciones estandar
como SUM, AVG y COUNT. Si hay una funcion de agregado en la expresion SELECT, cualquier

columna de la expresion SELECT que no esté en una funcion de agregado debe estar en la clausula
GROUP BY.

SELECT 93

AWS Clean Rooms Referencia de SQL

Para obtener mas informacién, consulte AWS Clean Rooms Funciones de Spark SQL.

Sintaxis

GROUP BY group_by_clause [, ...]

group_by_clause := {
expr |
ROLLUP (expr [, ...1) |
}

Parametros
expr

La lista de columnas o expresiones debe coincidir con la lista de expresiones no agregadas en la
lista de seleccion de la consulta. Por ejemplo, considere la siguiente consulta simple.

select listid, eventid, sum(pricepaid) as revenue,
count(qtysold) as numtix

from sales

group by listid, eventid

order by 3, 4, 2, 1

limit 5;

listid | eventid | revenue | numtix
——————— R s e et
89397 | 47 | 20.00 | 1
106590 | 76 | 20.00 | 1
124683 | 393 | 20.00 | 1
103037 | 403 | 20.00 | 1
147685 | 429 | 20.00 | 1
(5 rows)

En esta consulta, la lista de seleccidn consta de dos expresiones agregadas. La primera usa
la funcién SUM y la segunda usa la funcion COUNT. Las dos columnas restantes, LISTID y
EVENTID, deben declararse como columnas de agrupacion.

Las expresiones de la clausula GROUP BY también pueden hacer referencia a la lista de
seleccion a través de numeros ordinales. Por ejemplo, el caso anterior podria abreviarse de la
siguiente manera.

SELECT Y

AWS Clean Rooms Referencia de SQL

select listid, eventid, sum(pricepaid) as revenue,
count(qtysold) as numtix

from sales

group by 1,2

order by 3, 4, 2, 1

limit 5;

listid | eventid

I I

+ +
89397 | 47 | 20.00 | 1
106590 | 76 | 20.00 | 1
124683 | 393 | 20.00 | 1
103037 | 403 | 20.00 | 1
147685 | 429 | 20.00 | 1
(5 rows)

ROLLUP

Puede utilizar la extension de agregacion ROLLUP para realizar el trabajo de varias operaciones
GROUP BY en una sola instruccion. Para obtener mas informacion sobre las extensiones de
agregacion y las funciones relacionadas, consulte Extensiones de agregacion.

Extensiones de agregacion

AWS Clean Roomsadmite extensiones de agregacion para realizar el trabajo de varias operaciones
GROUP BY en una sola sentencia.

GROUPING SETS

Calcula uno o mas conjuntos de agrupacion en una sola instruccién. Un conjunto de agrupacion es
el conjunto de una sola clausula GROUP BY, un conjunto de 0 o mas columnas mediante el que se
puede agrupar el conjunto de resultados de una consulta. GROUP BY GROUPING SETS equivale a
ejecutar una consulta UNION ALL en un conjunto de resultados agrupado por columnas diferentes.
Por ejemplo, GROUP BY GROUPING SETS((a), (b)) equivale a GROUP BY a UNION ALL GROUP
BY b.

En el siguiente ejemplo se devuelve el costo de los productos de la tabla de pedidos agrupados en
funcién tanto de las categorias de los productos como del tipo de productos vendidos.

SELECT 95

AWS Clean Rooms Referencia de SQL

SELECT category, product, sum(cost) as total
FROM orders
GROUP BY GROUPING SETS(category, product);

category | product | total
______________________ S SO
computers | | 2100
cellphones | | 1610
| laptop | 2050
| smartphone | 1610
| mouse | 50

(5 rows)

ROLLUP

Se supone una jerarquia en la que las columnas anteriores se consideran las principales de las
columnas posteriores. ROLLUP agrupa los datos por las columnas proporcionadas y devuelve
filas de subtotales adicionales que representan los totales de todos los niveles de agrupacion de
columnas, ademas de las filas agrupadas. Por ejemplo, puede usar GROUP BY ROLLUP ((a), (b))
para devolver un conjunto de resultados agrupado primero por a y luego por b, suponiendo que b
es una subseccion de a. ROLLUP también devuelve una fila con todo el conjunto de resultados sin
agrupar columnas.

GROUP BY ROLLUP((a), (b)) equivale a GROUP BY GROUPING SETS((a,b), (a), ()).

En el siguiente ejemplo se devuelve el costo de los productos de la tabla de pedidos agrupados
primero por categoria y, a continuacion, por producto, con el producto como una subdivision de la
categoria.

SELECT category, product, sum(cost) as total
FROM orders
GROUP BY ROLLUP(category, product) ORDER BY 1,2;

category | product | total
______________________ o
cellphones | smartphone | 1610
cellphones | | 1610
computers | laptop | 2050
computers | mouse | 50
computers | | 2100
| | 3710

SELECT 96

AWS Clean Rooms Referencia de SQL

(6 rows)

CUBE

Agrupa los datos por las columnas proporcionadas y devuelve filas de subtotales adicionales

que representan los totales de todos los niveles de agrupacidon de columnas, ademas de las filas
agrupadas. CUBE devuelve las mismas filas que ROLLUP, a la vez que agrega filas de subtotales
adicionales por cada combinacion de columnas de agrupacion no incluidas en ROLLUP. Por
ejemplo, puede usar GROUP BY CUBE ((a), (b)) para devolver un conjunto de resultados agrupado
primero por a y luego por b, suponiendo que b es una subseccion de a. CUBE también devuelve una
fila con todo el conjunto de resultados sin agrupar columnas.

GROUP BY CUBE((a), (b)) equivale a GROUP BY GROUPING SETS((a, b), (a), (b), ().

En el siguiente ejemplo se devuelve el costo de los productos de la tabla de pedidos agrupados
primero por categoria y, a continuacion, por producto, con el producto como una subdivisiéon de la
categoria. A diferencia del ejemplo anterior de ROLLUP, la instrucciéon devuelve resultados para cada
combinacion de columnas de agrupacion.

SELECT category, product, sum(cost) as total
FROM orders
GROUP BY CUBE(category, product) ORDER BY 1,2;

category | product | total
______________________ S S
cellphones | smartphone | 1610
cellphones | | 1610
computers | laptop | 2050
computers | mouse | 50
computers | | 2100
| laptop | 2050
| mouse | 50
| smartphone | 1610
| | 3710

(9 rows)

Clausula HAVING

La clausula HAVING aplica una condicion al conjunto de resultados agrupado intermedio que una
consulta devuelve.

SELECT 97

AWS Clean Rooms Referencia de SQL

Sintaxis

[HAVING condition]

Por ejemplo, puede limitar los resultados de una funcion SUM:

having sum(pricepaid) >10000

La condicion HAVING se aplica después de que se aplican todas las condiciones de la clausula
WHERE y se completan todas las operaciones de GROUP BY.

La condicion toma la misma forma que cualquier condicion de la clausula WHERE.
Notas de uso

» Cualquier columna a la que se haga referencia en una condicion de la clausula HAVING debe
ser una columna de agrupacion o una columna que haga referencia al resultado de una funcién
agregada.

* En una clausula HAVING, no se puede especificar:

« Un numero ordinal que hace referencia a un elemento de la lista de seleccion. Solo las clausulas
GROUP BY y ORDER BY aceptan numeros ordinales.

Ejemplos

La siguiente consulta calcula las ventas de tickets totales para todos los eventos por nombre vy,
luego, elimina eventos donde las ventas totales sean inferiores a $800 000. La condicién HAVING se
aplica a los resultados de la funcion agregada en la lista de seleccion: sum(pricepaid).

select eventname, sum(pricepaid)

from sales join event on sales.eventid = event.eventid
group by 1

having sum(pricepaid) > 800000

order by 2 desc, 1;

eventname | sum

__________________ oo
Mamma Mia! | 1135454.00
Spring Awakening | 972855.00
The Country Girl | 910563.00
Macbeth | 862580.00

SELECT 98

AWS Clean Rooms Referencia de SQL

Jersey Boys | 811877.00
Legally Blonde | 804583.00
(6 rows)

La siguiente consulta calcula un conjunto de resultados similar. No obstante, en este caso, la
condicion HAVING se aplica a una agregacion que no se especifica en la lista de seleccion:
sum(qgtysold). Los eventos que no vendieron mas de 2 000 tickets se eliminan del resultado final.

select eventname, sum(pricepaid)

from sales join event on sales.eventid = event.eventid
group by 1

having sum(qtysold) >2000

order by 2 desc, 1;

eventname | sum
__________________ e e — -
Mamma Mia! | 1135454.00
Spring Awakening | 972855.00
The Country Girl | 910563.00
Macbeth | 862580.00
Jersey Boys | 811877.00
Legally Blonde | 804583.00
Chicago | 790993.00
Spamalot | 714307.00
(8 rows)

Operadores de establecimiento

Los operadores de conjunto se utilizan para comparar y combinar los resultados de dos expresiones
de consulta distintas.

AWS Clean RoomsSpark SQL admite los siguientes operadores de conjunto que se muestran en la
siguiente tabla.

Operador de conjunto

INTERSECT

INTERSECAR TODOS

EXCEPT

SELECT 99

AWS Clean Rooms Referencia de SQL

Operador de conjunto
EXCEPTO TODOS
UNION

UNION ALL

Por ejemplo, si desea saber qué usuarios de un sitio web son compradores y vendedores pero

los nombres de usuario estan almacenados en diferentes columnas o tablas, puede buscar la
interseccion de estos dos tipos de usuarios. Si desea saber qué usuarios de un sitio web son
compradores pero no vendedores, puede usar el operador EXCEPT para buscar la diferencia entre
las dos listas de usuarios. Si desea crear una lista de todos los usuarios, independientemente de la
funcion, puede usar el operador UNION.

® Note

Las clausulas ORDER BY, LIMIT, SELECT TOP y OFFSET no se pueden utilizar en las
expresiones de consulta combinadas por los operadores de conjunto UNION, UNION ALL,
INTERSECT y EXCEPT.

Temas

» Sintaxis

» Parameters

» Orden de evaluacion para los operadores de conjunto

* Notas de uso

» Ejemplo de consultas UNION

» Ejemplo de consultas UNION ALL
» Ejemplo de consultas INTERSECT
» Ejemplo de consulta EXCEPT

Sintaxis

subqueryl

SELECT 100

AWS Clean Rooms Referencia de SQL

{ { UNION [ALL | DISTINCT 7 |
INTERSECT [ALL | DISTINCT] |
EXCEPT [ALL | DISTINCT] } subquery2 } [...] }

Parameters
subconsultal, subconsulta2

Expresion de consulta que corresponde, en forma de lista de seleccion, a una segunda expresion
de consulta que sigue al operador UNION, UNION ALL, INTERSECT, INTERSECT ALL, EXCEPT
o EXCEPT ALL. Las dos expresiones deben contener la misma cantidad de columnas de salida
con tipos de datos compatibles; de lo contrario, no se podran comparar ni fusionar los dos
conjuntos de resultados. Las operaciones de conjunto no permiten la conversién implicita entre
diferentes categorias de tipos de datos. Para obtener mas informacion, consulte Conversion y
compatibilidad de tipos.

Puede crear consultas que contengan una cantidad ilimitada de expresiones de consulta y
vincularlas con operadores UNION, INTERSECT y EXCEPT en cualquier combinacion. Por
ejemplo, la siguiente estructura de consulta es valida, suponiendo que las tablas T1, T2y T3
contienen conjuntos de columnas compatibles:

select * from tl
union
select * from t2
except
select * from t3

UNION [TODOS | DISTINTOS]

Operacion de conjunto que devuelve filas de dos expresiones de consulta, independientemente
de si las filas provienen de una o ambas expresiones.

INTERSECAR [TODOS | DISTINTOS]

Operacion de conjunto que devuelve filas que provienen de dos expresiones de consulta. Las
filas que no se devuelven en las dos expresiones se descartan.

EXCEPTO [TODOS | DISTINTOS]

Operacion de conjunto que devuelve filas que provienen de una de las dos expresiones de
consulta. Para calificar para el resultado, las filas deben existir en la primera tabla de resultados,
pero no en la segunda.

SELECT 101

AWS Clean Rooms Referencia de SQL

EXCEPT ALL no elimina los duplicados de las filas de resultados.

MINUS y EXCEPT son sinénimos exactos.

Orden de evaluacién para los operadores de conjunto

Los operadores de conjunto UNION y EXCEPT se asocian por la izquierda. Si no se especifican
paréntesis para establecer el orden de prioridad, los operadores se evaluan de izquierda a derecha.
Por ejemplo, en la siguiente consulta, UNION de T1y T2 se evalua primero, luego se realiza la
operacion EXCEPT en el resultado de UNION:

select * from tl
union
select * from t2
except
select * from t3

El operador INTERSECT prevalece sobre los operadores UNION y EXCEPT cuando se utiliza una
combinacion de operadores en la misma consulta. Por ejemplo, la siguiente consulta evalua la
interseccion de T2 y T3, y luego unira el resultado con T1:

select * from t1
union

select * from t2
intersect

select * from t3

Al agregar paréntesis, puede aplicar un orden diferente de evaluacién. En el siguiente caso, el
resultado de la union de T1y T2 esta intersectado con T3, y la consulta probablemente produzca un
resultado diferente.

(select * from t1
union

select * from t2)
intersect

(select * from t3)

SELECT 102

AWS Clean Rooms Referencia de SQL

Notas de uso

* Los nombres de la columnas que se devuelven en el resultado de una consulta de operacion
de conjunto son los nombres (o alias) de la columnas de las tablas de la primera expresion de
consulta. Debido a que estos nombres de columnas pueden ser confusos, porque los valores
de la columna provienen de tablas de cualquier lado del operador de conjunto, se recomienda
proporcionar alias significativos para el conjunto de resultados.

« Cuando las consultas del operador de conjunto devuelven resultados decimales, las columnas de
resultado correspondientes se promueven a devolver la misma precision y escala. Por ejemplo, en
la siguiente consulta, donde T1.REVENUE es una columna DECIMAL(10,2) y T2.REVENUE es
una columna DECIMAL(8,4), el resultado decimal se promueve a DECIMAL(12,4):

select tl.revenue union select t2.revenue;

La escala es 4 ya que es la escala maxima de las dos columnas. La precision es 12 ya que
T1.REVENUE requiere 8 digitos a la izquierda del punto decimal (12 - 4 = 8). Este tipo de
promocién garantiza que todos los valores de ambos lados de UNION encajen en el resultado.
Para valores de 64 bits, la precision de resultados maxima es 19 y la escala de resultados maxima
es 18. Para valores de 128 bits, la precision de resultados maxima es 38 y la escala de resultados
maxima es 37.

Si el tipo de datos resultante supera los limites de AWS Clean Rooms precision y escala, la
consulta devuelve un error.

* En el caso de las operaciones de conjunto, las dos filas se tratan como idénticas si, para cada
par de columnas correspondiente, los dos valores de datos son iguales o NULL. Por ejemplo,
si las tablas T1y T2 contienen una columna y una fila, y esa fila es NULL en ambas tablas, una
operacion INTERSECT sobre esas tablas devuelve esa fila.

Ejemplo de consultas UNION

En la siguiente consulta UNION, las filas de la tabla SALES se fusionan con las filas de la tabla
LISTING. Se seleccionan tres columnas compatibles de cada tabla. En este caso, las columnas
correspondientes tienen los mismos nombres y tipos de datos.

select listid, sellerid, eventid from listing
union select listid, sellerid, eventid from sales

SELECT 103

AWS Clean Rooms Referencia de SQL

listid | sellerid | eventid

________ B E
1| 36861 | 7872
2 | 16002 | 4806
3 | 21461 | 4256
4 | 8117 | 4337
5 | 1616 | 8647

En el siguiente ejemplo, se muestra como puede agregar un valor literal para el resultado de una
consulta UNION para ver cual expresion de consulta produjo cada fila en el conjunto de resultados.
La consulta identifica filas de la primera expresién de consulta como "B" (por compradores, "buyers"
en inglés) y filas de la segunda expresion de consulta como "S" (por vendedores, "sellers" en inglés).

La consulta identifica compradores y vendedores para transacciones de ticket que cuestan $10 000
o0 mas. La unica diferencia entre las dos expresiones de consulta de cualquier lado del operador
UNION es la columna de combinacién para la tabla SALES.

select listid, lastname, firstname, username,
pricepaid as price, 'S' as buyorsell

from sales, users

where sales.sellerid=users.userid

and pricepaid >=10000

union

select listid, lastname, firstname, username, pricepaid,
'B' as buyorsell

from sales, users

where sales.buyerid=users.userid

and pricepaid >=10000

listid | lastname | firstname | username | price | buyorsell
-------- I S et o e s R
209658 | Lamb | Colette | VOR15LYI | 10000.00 | B

209658 | West | Kato | ELUS1XAA | 10000.00 | S

212395 | Greer | Harlan | GXO71KOC | 12624.00 | S

212395 | Perry | Cora | YWR73YNZ | 12624.00 | B

215156 | Banks | Patrick | ZNQ69CLT | 10000.00 | S

215156 | Hayden | Malachi | BBG56AKU | 10000.00 | B

En el siguiente ejemplo, se utiliza un operador UNION ALL porque las filas duplicadas, si se
encuentran, deben conservarse en el resultado. Para una serie de eventos especifica IDs, la consulta
devuelve 0 o mas filas por cada venta asociada a cada evento y 0 o 1 fila por cada anuncio de ese

SELECT 104

AWS Clean Rooms Referencia de SQL

evento. IDs Los eventos son unicos para cada fila de las tablas LISTING y EVENT, pero es posible
que haya varias ventas para la misma combinacion de evento y anuncio IDs en la tabla VENTAS.

La tercera columna en el conjunto de resultados identifica la fuente de la fila. Si viene de la tabla
SALES, se marca "Si" en la columna SALESROW. (SALESROW es un alias para SALES.LISTID). Si
la fila proviene de la tabla LISTING, se marca "No" en la columna SALESROW.

En este caso, el conjunto de resultados consta de tres filas de ventas para la lista 500, evento 7787.
En otras palabras, se llevaron a cabo tres transacciones diferentes para esta combinacién de lista

y evento. Los otros dos anuncios, 501 y 502, no generaron ventas, por lo que la unica fila que la
consulta genera para estas listas IDs proviene de la tabla de anuncios (SALESROW = «Now).

select eventid, listid, 'Yes' as salesrow
from sales

where listid in(500,501,502)

union all

select eventid, listid, 'No'

from listing

where listid in(500,501,502)

eventid | listid | salesrow

_________ e
7787 | 500 | No
7787 | 500 | Yes
7787 | 500 | Yes
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Si ejecuta la misma consulta sin la palabra clave ALL, el resultado conserva solo una de las
transacciones de ventas.

select eventid, listid, 'Yes' as salesrow
from sales

where listid in(500,501,502)

union

select eventid, listid, 'No'

from listing

where listid in(500,501,502)

eventid | listid | salesrow
_________ o

SELECT 105

AWS Clean Rooms Referencia de SQL

7787 | 500 | No
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Ejemplo de consultas UNION ALL

En el siguiente ejemplo, se utiliza un operador UNION ALL porque las filas duplicadas, si se
encuentran, deben conservarse en el resultado. Para una serie de eventos especifica IDs, la consulta
devuelve 0 o mas filas por cada venta asociada a cada evento y 0 o 1 fila por cada anuncio de ese
evento. IDs Los eventos son unicos para cada fila de las tablas LISTING y EVENT, pero es posible
que haya varias ventas para la misma combinacion de evento y anuncio IDs en la tabla VENTAS.

La tercera columna en el conjunto de resultados identifica la fuente de la fila. Si viene de la tabla
SALES, se marca "Si" en la columna SALESROW. (SALESROW es un alias para SALES.LISTID). Si
la fila proviene de la tabla LISTING, se marca "No" en la columna SALESROW.

En este caso, el conjunto de resultados consta de tres filas de ventas para la lista 500, evento 7787.
En otras palabras, se llevaron a cabo tres transacciones diferentes para esta combinacion de lista

y evento. Los otros dos anuncios, 501 y 502, no generaron ventas, por lo que la unica fila que la
consulta genera para estas listas IDs proviene de la tabla de anuncios (SALESROW = «Now).

select eventid, listid, 'Yes' as salesrow
from sales

where listid in(500,501,502)

union all

select eventid, listid, 'No'

from listing

where listid in(500,501,502)

eventid | listid | salesrow

_________ B
7787 | 500 | No
7787 | 500 | Yes
7787 | 500 | Yes
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Si ejecuta la misma consulta sin la palabra clave ALL, el resultado conserva solo una de las
transacciones de ventas.

SELECT 106

AWS Clean Rooms Referencia de SQL

select eventid, listid, 'Yes' as salesrow
from sales

where listid in(500,501,502)

union

select eventid, listid, 'No'

from listing

where listid in(500,501,502)

eventid | listid | salesrow

_________ s
7787 | 500 | No
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Ejemplo de consultas INTERSECT

Compare el siguiente ejemplo con el primer ejemplo de UNION. La unica diferencia entre los dos
ejemplos es el operador de conjunto que se utiliza, pero los resultados son muy diferentes. Solo una
de las filas es igual:

235494 | 23875 | 8771

Esta es la unica fila en el resultado limitado de 5 filas que se encontré en ambas tablas.

select listid, sellerid, eventid from listing
intersect
select listid, sellerid, eventid from sales

listid | sellerid | eventid

________ s E
235494 | 23875 | 8771
235482 | 1067 | 2667
235479 | 1589 | 7303
235476 | 15550 | 793
235475 | 22306 | 7848

La siguiente consulta busca eventos (para los que se vendieron tickets) que ocurrieron en lugares
en la Ciudad de Nueva York y Los Angeles en marzo. La diferencia entre las dos expresiones de
consulta es la restriccion en la columna VENUECITY.

select distinct eventname from event, sales, venue

SELECT 107

AWS Clean Rooms Referencia de SQL

where event.eventid=sales.eventid and event.venueid=venue.venueid
and date_part(month,starttime)=3 and venuecity='Los Angeles'
intersect

select distinct eventname from event, sales, venue

where event.eventid=sales.eventid and event.venueid=venue.venueid
and date_part(month,starttime)=3 and venuecity='New York City';

eventname

A Streetcar Named Desire
Dirty Dancing

Electra

Running with Annalise
Hairspray

Mary Poppins

November

Oliver!

Return To Forever
Rhinoceros

South Pacific

The 39 Steps

The Bacchae

The Caucasian Chalk Circle
The Country Girl

Wicked

Woyzeck

Ejemplo de consulta EXCEPT

La tabla CATEGORY de la base de datos contiene las siguientes 11 filas:

catid | catgroup | catname | catdesc
——————— e e e, R e e e e
1 | Sports | MLB | Major League Baseball
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association
5 | Sports | MLS | Major League Soccer
6 | Shows | Musicals | Musical theatre
7 | Shows | Plays | A1l non-musical theatre
8 | Shows | Opera | All opera and light opera
9 | Concerts | Pop | All rock and pop music concerts
10 | Concerts | Jazz | All jazz singers and bands
11 | Concerts | Classical | All symphony, concerto, and choir concerts

SELECT 108

AWS Clean Rooms Referencia de SQL

(11 rows)

Supongamos que una tabla CATEGORY_STAGE (una tabla provisional) contiene una fila adicional:

catid | catgroup | catname | catdesc
——————— et e e
1 | Sports | MLB | Major League Baseball
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association
5 | Sports | MLS | Major League Soccer
6 | Shows | Musicals | Musical theatre
7 | Shows | Plays | A1l non-musical theatre
8 | Shows | Opera | All opera and light opera
9 | Concerts | Pop | All rock and pop music concerts
10 | Concerts | Jazz | A1l jazz singers and bands
11 | Concerts | Classical | All symphony, concerto, and choir concerts
12 | Concerts | Comedy | A1l stand up comedy performances
(12 rows)

Devuelve la diferencia entre las dos tablas. En otras palabras, devuelve filas que estan en la tabla
CATEGORY_STAGE pero no en la tabla CATEGORY:

select * from category_stage
except
select * from category;

catid | catgroup | catname | catdesc

——————— L it i el
12 | Concerts | Comedy | All stand up comedy performances

(1 row)

La siguiente consulta equivalente usa el sinonimo MINUS.

select * from category_stage
minus
select * from category;

catid | catgroup | catname | catdesc
——————— L e e e e S

12 | Concerts | Comedy | All stand up comedy performances

SELECT 109

AWS Clean Rooms Referencia de SQL

(1 row)

Si revierte el orden de las expresiones SELECT, la consulta no devuelve filas.
Clausula ORDER BY

La clausula ORDER BY ordena el conjunto de resultados de una consulta.

@ Note

La expresion ORDER BY mas externa solo debe tener columnas que estén en la lista de
seleccion.

Temas
 Sintaxis

» Parameters
* Notas de uso

» Ejemplos con ORDER BY

Sintaxis

[ORDER BY expression [ASC | DESC]]
[NULLS FIRST | NULLS LAST]

[LIMIT { count | ALL }]

[OFFSET start]

Parameters

expression

Un marco que especifica el orden de clasificacion de los resultados de las consultas. Consta
de una o0 mas columnas en la lista de seleccidn. Los resultados se devuelven en funcién de la
ordenacion UTF-8 binaria. También puede especificar lo siguiente:

* Numeros ordinales que representan la posicion de las entradas de la lista de seleccion (o la
posicion de columnas en la tabla si no existe una lista de seleccién)

 Alias que definen las entradas de la lista de seleccion

SELECT 110

AWS Clean Rooms Referencia de SQL

Cuando la clausula ORDER BY contiene varias expresiones, el conjunto de resultados se ordena
segun la primera expresion, luego se aplica la segunda expresion a las filas que tienen valores
coincidentes de la primera expresion, etc.

ASC | DESC

Opcidén que define el orden de ordenacion para la expresion, de la siguiente manera:

» ASC: ascendente (por ejemplo, de menor a mayor para valores numéricos y de la A ala Z para
cadenas con caracteres). Si no se especifica ninguna opcion, los datos se ordenan, de manera
predeterminada, en orden ascendente.

» DESC: descendente (de mayor a menor para valores numéricos y de la Z a la A para cadenas).

NULLS FIRST | NULLS LAST

Opcidén que especifica si los valores NULL se deben ordenar en primer lugar, antes de los valores
no nulos, o al final, después de los valores no nulos. De manera predeterminada, los valores
NULL se ordenan y clasificacion al final en orden ASC, y se ordenan y se clasifican primero en
orden DESC.

LIMIT number (numero) | ALL

Opcidén que controla la cantidad de filas ordenadas que una consulta devuelve. El numero LIMIT
deber ser un entero positivo; el valor maximo es 2147483647.

LIMIT 0 no devuelve filas. Puede usar la sintaxis para realizar pruebas: para verificar que una
consulta se ejecuta (sin mostrar filas) o para devolver una lista de columnas de una tabla.
Una clausula ORDER BY es redundante si esta utilizando LIMIT O para devolver una lista de
columnas. El predeterminado es LIMIT ALL.

OFFSET start (inicio)

Opcidén que especifica que se omita el numero de filas que hay delante de start (inicio) antes

de comenzar a devolver filas. El numero OFFSET deber ser un entero positivo; el valor maximo
es 2147483647. Cuando se utiliza con la opcion LIMIT, las filas OFFSET se omiten antes de
comenzar a contar las filas LIMIT que se devuelven. Si no se utiliza la opcion LIMIT, la cantidad
de filas del conjunto de resultados se reduce por la cantidad de filas que se omiten. Las filas
omitidas por una clausula OFFSET aun deben analizarse, por lo que puede ser ineficiente utilizar
un valor OFFSET grande.

SELECT 111

AWS Clean Rooms Referencia de SQL

Notas de uso
Tenga en cuenta el siguiente comportamiento esperado con las clausulas ORDER BY:

» Los valores NULL son considerados "superiores" a todos los otros valores. Con el orden
ascendente predeterminado, los valores NULL se ordenan al final. Para cambiar este
comportamiento, utilice la opcién NULLS FIRST.

« Cuando una consulta no contiene una clausula ORDER BY, el sistema devuelve conjuntos de
resultados sin un orden predecible de las filas. Si se ejecuta la misma consulta dos veces, puede
devolver el conjunto de resultados en un orden diferente.

» Las opciones LIMIT y OFFSET pueden utilizarse sin una clausula ORDER BY; no obstante, para
devolver un conjunto consistente de filas, use estas opciones junto con ORDER BY.

» En cualquier sistema paraleloAWS Clean Rooms, por ejemplo, cuando ORDER BY no produce un
orden unico, el orden de las filas no es determinista. Es decir, si la expresion ORDER BY produce
valores duplicados, el orden de retorno de esas filas puede variar de un sistema a otro o de una
serie AWS Clean Rooms a otra.

« AWS Clean Roomsno admite cadenas literales en las clausulas ORDER BY.

Ejemplos con ORDER BY

Devuelva todas las 11 filas de la tabla CATEGORY, ordenadas por la segunda columna,
CATGROUP. Para los resultados que tienen el mismo valor CATGROUP, ordene los valores de la
columna CATDESC por la longitud de la cadena de caracteres. Ordene, a continuacion, por columna
CATID y CATNAME.

select * from category order by 2, 1, 3;

catid | catgroup | catname | catdesc

——————— R et ittt kit
10 | Concerts | Jazz | All jazz singers and bands

9 | Concerts | Pop | All rock and pop music concerts

11 | Concerts | Classical | All symphony, concerto, and choir conce

Shows Musicals Musical theatre
Shows Plays All non-musical theatre
Shows Opera All opera and light opera

N N P U100 N O

I I I
I I I
I I I
| Sports | MLS | Major League Soccer
I I I
I I I
I I I

Sports MLB Major League Baseball
Sports NHL National Hockey League
Sports NFL National Football League

SELECT 112

AWS Clean Rooms Referencia de SQL

4 | Sports | NBA | National Basketball Association
(11 rows)

Devuelva las columnas seleccionadas de la tabla SALES, ordenadas por los valores QTYSOLD mas
altos. Limite el resultado a las primeras 10 filas:

select salesid, qtysold, pricepaid, commission, saletime from sales
order by qtysold, pricepaid, commission, salesid, saletime desc

salesid | qtysold | pricepaid | commission | saletime
————————— e e i e e
15401 | 8 | 272.00 | 40.80 | 2008-03-18 06:54:56
61683 | 8 | 296.00 | 44.40 | 2008-11-26 04:00:23
90528 | 8 | 328.00 | 49.20 | 2008-06-11 02:38:09
74549 | 8 | 336.00 | 50.40 | 2008-01-19 12:01:21
130232 | 8 | 352.00 | 52.80 | 2008-05-02 05:52:31
55243 | 8 | 384.00 | 57.60 | 2008-07-12 02:19:53
16004 | 8 | 440.00 | 66.00 | 2008-11-04 07:22:31
489 | 8 | 496.00 | 74.40 | 2008-08-03 05:48:55
4197 | 8 | 512.00 | 76.80 | 2008-03-23 11:35:33
16929 | 8 | 568.00 | 85.20 | 2008-12-19 02:59:33

Devuelve una lista de columnas y ninguna fila a través de la sintaxis LIMIT O:

select * from venue limit 0;
venueid | venuename | venuecity | venuestate | venueseats
————————— B e e e s R T

(@ rows)

Ejemplos de subconsultas

En los siguientes ejemplos se muestran diferentes maneras en que las subconsultas encajan en las
consultas SELECT. Para ver otro ejemplo del uso de las subconsultas, consulte Ejemplo.

Subconsulta de la lista SELECT

En el siguiente ejemplo, se observa una subconsulta en la lista SELECT. Esta subconsulta es
escalar: devuelve solamente una columna y un valor, que se repite en el resultado de cada fila que
se devuelve desde la consulta externa. La consulta compara el valor Q1SALES que la subconsulta
computa con valores de venta de otros dos trimestres (2 y 3) en 2008, como la consulta externa lo
define.

SELECT 113

AWS Clean Rooms Referencia de SQL

select qtr, sum(pricepaid) as qtrsales,

(select sum(pricepaid)

from sales join date on sales.dateid=date.dateid
where gqtr='1"' and year=2008) as glsales

from sales join date on sales.dateid=date.dateid
where gtr in('2','3"') and year=2008

group by qtr

order by qtr;

gtr | gtrsales | glsales
_______ S E S
2 | 30560050.00 | 24742065.00

3 | 31170237.00 | 24742065.00
(2 rows)

Subconsulta de la clausula WHERE

En el siguiente ejemplo, se observa una subconsulta de tabla en la cldusula WHERE. Esta
subconsulta produce varias filas. En este caso, las filas contienen solo una columna, pero las
subconsultas de la tabla pueden contener varias columnas y filas, como cualquier otra tabla.

La consulta busca los principales 10 vendedores en términos de cantidad maxima de tickets
vendidos. La lista de los 10 principales esta limitada por la subconsulta, que elimina usuarios

que viven en ciudades donde hay lugares de venta de tickets. Esta consulta puede escribirse en
diferentes maneras; por ejemplo, se puede volver a escribir la subconsulta como una combinacién
dentro de la consulta principal.

select firstname, lastname, city, max(qtysold) as maxsold
from users join sales on users.userid=sales.sellerid
where users.city not in(select venuecity from venue)
group by firstname, lastname, city

order by maxsold desc, city desc

limit 10;

firstname | lastname | city | maxsold
——————————— R et ettt ettt
Noah | Guerrero | Worcester | 8
Isadora | Moss | Winooski | 8
Kieran | Harrison | Westminster | 8
Heidi | Davis | Warwick | 8
Sara | Anthony | Waco | 8
Bree | Buck | Valdez | 8

SELECT 114

AWS Clean Rooms Referencia de SQL

Evangeline | Sampson | Trenton | 8
Kendall | Keith | Stillwater | 8
Bertha | Bishop | Stevens Point | 8
Patricia | Anderson | South Portland | 8
(10 rows)

Subconsultas de la clausula WITH

Consulte Clausula WITH.

Subconsultas correlacionadas

En el siguiente ejemplo, se observa una subconsulta correlacionada en la clausula WHERE; este tipo
de subconsulta contiene una o varias correlaciones entre sus columnas y las columnas producidas
por la consulta externa. En este caso, la correlacion es where s.listid=1.listid. Para cada
fila que la consulta externa produce, se ejecuta la subconsulta para calificar o descalificar la fila.

select salesid, listid, sum(pricepaid) from sales s
where gtysold=

(select max(numtickets) from listing 1

where s.listid=1.1listid)

group by 1,2

order by 1,2

limit 5;

salesid | listid | sum
________ S
27 | 28 | 111.00
81 | 103 | 181.00
142 | 149 | 240.00
146 | 152 | 231.00
194 | 210 | 144.00
(5 rows)

Patrones de subconsultas correlacionadas que no se admiten

El planificador de consultas usa un método de reescritura de consulta denominado descorrelacion
de subconsulta para optimizar varios patrones de subconsultas correlacionadas para la ejecucion en
un entorno MPP. Algunos tipos de subconsultas correlacionadas siguen patrones que no AWS Clean
Rooms pueden decorrelacionarse ni son compatibles. Las consultas que contienen las siguientes
referencias de correlacion devuelven errores:

SELECT 115

AWS Clean Rooms Referencia de SQL

» Referencias de correlacion que omiten un bloque de consulta, también conocidas como
"referencias de correlacion con nivel omitido". Por ejemplo, en la siguiente consulta, el bloque que
contiene la referencia de correlacion y el bloque omitido estan conectados por un predicado NOT

EXISTS:

select event.eventname from event

where not exists

(select * from listing

where not exists

(select * from sales where event.eventid=sales.eventid));

En este caso, el bloque omitido es la subconsulta que se ejecuta contra la tabla LISTING. La
referencia de correlacion correlaciona las tablas EVENT y SALES.

» Referencias de correlacion de una subconsulta que es parte de una clausula ON en una consulta
externa:

select * from category

left join event

on category.catid=event.catid and eventid =

(select max(eventid) from sales where sales.eventid=event.eventid);

La clausula ON contiene una referencia de correlacién de SALES en la subconsulta a EVENT en la

consulta externa.

» Referencias de correlacion sensibles a valores nulos a una tabla del sistema. AWS Clean Rooms
Por ejemplo:

select attrelid

from my_locks sl, my_attribute

where sl.table_id=my_attribute.attrelid and 1 not in
(select 1 from my_opclass where sl.lock_owner = opcowner);

» Referencias de correlacion de una subconsulta que contiene una funcién de ventana.

select listid, qtysold

from sales s

where gtysold not in

(select sum(numtickets) over() from listing 1 where s.listid=1.listid);

SELECT 116

AWS Clean Rooms

Referencia de SQL

+ Referencias en una columna GROUP BY a los resultados de una subconsulta correlacionada. Por

ejemplo:

select listing.listid,

(select count (sales.listid) from sales where sales.listid=listing.listid) as list

from listing
group by list, listing.listid;

» Referencias de correlacion de una subconsulta con una funcion agregada y una clausula GROUP

AWS Clean Rooms Funciones de Spark SQL

AWS Clean Rooms Spark SQL admite las siguientes funciones de SQL.:

BY, conectadas a la consulta externa por un predicado IN. (Esta restriccion no se aplica a las

funciones agregadas MIN y MAX). Por ejemplo:

select * from listing where listid in

(select sum(qtysold)
from sales

where numtickets>4
group by salesid);

Temas

Funciones de agregacion

Funciones de matriz

Expresiones condicionales

Funciones del constructor

Funciones de formato de tipo de datos

Funciones de fecha y hora

Funciones de cifrado y descifrado

Funciones hash

Funciones de hiperloglog

Funciones JSON

Funciones matematicas

Funciones escalares

Funciones SQL

117

AWS Clean Rooms

Referencia de SQL

Funciones de cadena

Funciones relacionadas con la privacidad

Funciones de ventana

Funciones de agregacioén

Las funciones agregadas de AWS Clean Rooms Spark SQL se utilizan para realizar calculos u
operaciones en un grupo de filas y devolver un unico valor. Son esenciales para las tareas de

analisis y resumen de datos.

AWS Clean Rooms Spark SQL admite las siguientes funciones de agregacion:

Temas

Funcion ANY_VALUE

Funcion APPROX COUNT_DISTINCT

Funcion APROX. PERCENTIL

Funciéon de AVG

Funcion BOOL_AND

Funcion BOOL_OR

Funcion CARDINALIDAD

Funcion COLLECT_LIST

Funcion COLLECT _SET

Funciones COUNT y COUNT DISTINCT

Funcion COUNT

Funcion MAX

Funcion MEDIAN

Funcion MIN

Funcion PERCENTIL

Funcion de ASIMETRIA

Funciones STDDEV_SAMP y STDDEV_POP

Funciones SUM y SUM DISTINCT

Funciones VAR_SAMP y VAR_POP

Funciones de agregacién

118

AWS Clean Rooms Referencia de SQL

Funcion ANY_VALUE

La funcidon ANY_VALUE devuelve cualquier valor de los valores de expresion de entrada de una
manera que no sea determinista. Esta funcion puede devolver un valor NULL si el resultado de la
expresion de entrada no implica que se devuelva ninguna fila.

Sintaxis

ANY_VALUE (expression[, isIgnoreNull])

Argumentos
expression

La columna o la expresion de destino en la que opera la funcidn. La expresion corresponde a uno
de los siguientes tipos de datos:

islgnoreNull

Un booleano que determina si la funcion debe devolver unicamente valores no nulos.

Devuelve
Devuelve el mismo tipo de datos que expresion.
Notas de uso

Si una instruccion que especifica la funcidon ANY_VALUE para una columna también incluye una
segunda referencia de columna, la segunda columna debe aparecer en una clausula GROUP BY o
debe incluirse en una funcién de agrupacion.

Ejemplos

El siguiente ejemplo devuelve una instancia de cualquier dateid donde eventname es Eagles.

select any_value(dateid) as dateid, eventname from event where eventname ='Eagles'
group by eventname;

A continuacion, se muestran los resultados.

dateid | eventname
_______ S

Funciones de agregacién 119

AWS Clean Rooms Referencia de SQL

1878 | Eagles

El siguiente ejemplo devuelve una instancia de cualquier dateid donde eventname es Eagles o
Cold War Kids.

select any_value(dateid) as dateid, eventname from event where eventname in('Eagles',
'Cold War Kids') group by eventname;

A continuacion, se muestran los resultados.

dateid | eventname
_______ N,
1922 | Cold War Kids
1878 | Eagles

Funcion APPROX COUNT_DISTINCT

APPROX COUNT_DISTINCT proporciona una forma eficaz de estimar el numero de valores unicos
en una columna o conjunto de datos.

Sintaxis

approx_count_distinct(expr[, relativeSD])

Argumentos
expr
La expresion o columna para la que desea estimar el numero de valores unicos.

Puede ser una sola columna, una expresion compleja o una combinacién de columnas.

Relativo D.
Parametro opcional que especifica la desviacion estandar relativa deseada de la estimacion.

Es un valor entre 0 y 1, que representa el error relativo maximo aceptable de la estimacion. Un
valor de RelativeSD mas pequefo dara como resultado una estimacién mas precisa pero mas
lenta.

Si no se proporciona este parametro, se utiliza un valor predeterminado (normalmente alrededor
del 0,05 o el 5%).

Funciones de agregacién 120

AWS Clean Rooms Referencia de SQL

Devuelve

Devuelve la cardinalidad estimada en HyperLoglLog ++. RelativeSD define la desviacion estandar
relativa maxima permitida.

Ejemplo

La siguiente consulta estima el numero de valores unicos de la coll columna, con una desviacion
estandar relativa del 1% (0,01).

SELECT approx_count_distinct(coll, 0.01)

La siguiente consulta estima que hay 3 valores unicos en la coll columna (los valores 1, 2y 3).

SELECT approx_count_distinct(coll) FROM VALUES (1), (1), (2), (2), (3) tab(coll)

Funcion APROX. PERCENTIL

El PERCENTIL APROXIMADO se usa para estimar el valor percentil de una expresién o columna
determinada sin tener que ordenar todo el conjunto de datos. Esta funcion resulta util en situaciones
en las que es necesario comprender rapidamente la distribucién de un conjunto de datos grande o
realizar un seguimiento de las métricas basadas en percentiles, sin la sobrecarga computacional que
supone realizar un calculo de percentil exacto. Sin embargo, es importante entender las ventajas y
desventajas entre velocidad y precision, y elegir la tolerancia de errores adecuada en funcion de los
requisitos especificos de cada caso de uso.

Sintaxis

APPROX_PERCENTILE(expr, percentile [, accuracy])

Argumentos
expr
La expresion o columna para la que desea estimar el valor del percentil.

Puede ser una sola columna, una expresion compleja o una combinacién de columnas.

percentil

El valor percentil que desea estimar, expresado como un valor entre O y 1.

Funciones de agregacién 121

AWS Clean Rooms Referencia de SQL

Por ejemplo, 0,5 corresponderia al percentil 50 (mediana).
precision

Parametro opcional que especifica la precision deseada de la estimacion del percentil. Es

un valor entre 0 y 1, que representa el error relativo maximo aceptable de la estimacidon. Un
accuracy valor menor dara como resultado una estimacion mas precisa pero mas lenta. Si no se
proporciona este parametro, se utiliza un valor predeterminado (normalmente alrededor del 0,05 o
el 5%).

Devuelve

Devuelve el percentil aproximado de la columna de intervalo numérico o ANSI col, que es el valor
mas pequeno de los valores de columna ordenados (ordenados de menor a mayor), de modo que no
mas del porcentaje de valores de col sea inferior o igual a ese valor.

El valor del porcentaje debe estar comprendido entre 0,0 y 1,0. El parametro de precision
(predeterminado: 10000) es un literal numérico positivo que controla la precisién de la aproximacion
a costa de la memoria.

Un valor de precisiéon mas alto produce una mejor precision, 1.0/accuracy es el error relativo de la
aproximacion.

Cuando el porcentaje es una matriz, cada valor de la matriz porcentual debe estar entre 0.0 y
1.0. En este caso, devuelve la matriz de percentiles aproximada de la columna col en la matriz de
porcentajes dada.

Ejemplos

La siguiente consulta estima el percentil 95 de la response_time columna, con un error relativo
maximo del 1% (0,01).

SELECT APPROX_PERCENTILE(response_time, ©0.95, 0.01) AS p95_response_time
FROM my_table;

La siguiente consulta estima los valores de los percentiles 50, 40 y 10 de la columna de la tabla. col
tab

SELECT approx_percentile(col, array(@0.5, 0.4, ©0.1), 100) FROM VALUES (@), (1), (2),
(10) AS tab(col)

Funciones de agregacién 122

AWS Clean Rooms Referencia de SQL

La siguiente consulta estima el percentil 50 (mediana) de los valores de la columna col.

SELECT approx_percentile(col, 0.5, 100) FROM VALUES (@), (6), (7), (9), (10) AS
tab(col)

Funcion de AVG

La funcion AVG devuelve el promedio (media aritmética) de los valores de la expresion de entrada.
La funcion AVG funciona con valores numéricos e ignora los valores NULL.

Sintaxis

AVG (column)

Argumentos
column

La columna de destino sobre la que opera la funcion. La columna corresponde a uno de los
siguientes tipos de datos:

* SMALLINT
+ INTEGER
+ BIGINT

+ DECIMAL
+ DOUBLE
« FLOAT

Tipos de datos

Los tipos de argumentos que admite la funcién AVG son SMALLINT INTEGERBIGINT,DECIMAL,
yDOUBLE.

Los tipos de retorno que admite la funcién AVG son los siguientes:

» BIGINT para cualquier argumento de tipo entero
* DOUBLE para un argumento de punto flotante

* Devuelve el mismo tipo de datos como expresion para cualquier otro tipo de argumento

Funciones de agregacién 123

AWS Clean Rooms Referencia de SQL

La precision predeterminada para un resultado de la funcién AVG con un argumento DECIMAL de
es 38. La escala del resultado es la misma que la escala del argumento. Por ejemplo, una AVG de
una columna DEC(5,2) devuelve un tipo de datos DEC(38,2).

Ejemplo

Encontrar la cantidad promedio vendida por transaccion en la tabla SALES:

select avg(gtysold) from sales;

Funcion BOOL_AND

La funcién BOOL_AND funciona en una sola columna o expresidon con valores booleanos o enteros.
Esta funcidn aplica una logica similar a las funciones BIT_AND y BIT_OR. Para esta funcidn, el tipo
de retorno es un valor booleano (true o false).

Si todos los valores de un conjunto son verdaderos, la funcion BOOL_AND devuelve true (t). Si
todo valor es falso, la funcion devuelve false (f).

Sintaxis

BOOL_AND ([DISTINCT | ALL] expression)

Argumentos

expression

La columna o expresion de destino sobre la que opera la funcion. Esta expresion debe tener un
tipo de datos booleano o entero. El tipo de retorno de la funcién es booleano.

DISTINCT | ALL

Con el argumento DISTINCT, la funcién elimina todos los valores duplicados para la expresion
especificada antes de calcular el resultado. Con el argumento ALL, la funcién retiene todos los
valores duplicados. El valor predeterminado es ALL.

Ejemplos
Puede utilizar funciones booleanas con expresiones booleanas o expresiones enteras.

Por ejemplo, la siguiente consulta devuelve resultados de la tabla estandar USERS en la base de
datos TICKIT, que tiene varias columnas con valores booleanos.

Funciones de agregacién 124

AWS Clean Rooms Referencia de SQL

La funcion BOOL_AND devuelve false para las cinco filas. A no todos los usuarios en cada uno de
esos estados les gusta deportes.

select state, bool_and(likesports) from users
group by state order by state limit 5;

state | bool_and

Funcion BOOL_OR

La funcién BOOL_OR funciona en una unica columna o expresion booleana o entera. Esta funcion
aplica una logica similar a las funciones BIT_AND y BIT_OR. Para esta funcion, el tipo de retorno es
un valor booleano (true, false o NULL).

Si un valor en un conjunto es true, la funcion BOOL_OR devuelve true (t). Si un valor en un
conjunto es false, la funcién devuelve false (f). Se puede devolver NULL si se desconoce el
valor.

Sintaxis

BOOL_OR ([DISTINCT | ALL] expression)

Argumentos
expression

La columna o expresion de destino sobre la que opera la funcion. Esta expresion debe tener un
tipo de datos booleano o entero. El tipo de retorno de la funcién es booleano.

DISTINCT | ALL

Con el argumento DISTINCT, la funcién elimina todos los valores duplicados para la expresion
especificada antes de calcular el resultado. Con el argumento ALL, la funcion retiene todos los
valores duplicados. El valor predeterminado es ALL.

Funciones de agregacién 125

AWS Clean Rooms Referencia de SQL

Ejemplos

Puede utilizar las funciones booleanas con expresiones booleanas o expresiones enteras. Por
ejemplo, la siguiente consulta devuelve resultados de la tabla estandar USERS en la base de datos
TICKIT, que tiene varias columnas con valores booleanos.

La funcién BOOL_OR devuelve true para las cinco filas. A al menos un usuario en cada uno de
esos estados les gusta deportes.

select state, bool_or(likesports) from users
group by state order by state limit 5;

El ejemplo siguiente devuelve NULL.

SELECT BOOL_OR(NULL = '123')
bool_or

Funcién CARDINALIDAD
La funcion CARDINALIDAD devuelve el tamafo de una expresion ARRAY o MAP (expr).
Esta funcién es util para encontrar el tamano o la longitud de una matriz.

Sintaxis

cardinality(expr)

Funciones de agregacién 126

AWS Clean Rooms Referencia de SQL

Argumentos
expr

Expresion matricial o MAP.

Devuelve
Devuelve el tamaio de una matriz o un mapa (INTEGER).

La funcion devuelve NULL una entrada nula si sizeOfNull se establece en false o enabled se
establece entrue.

De lo contrario, la funcion devuelve -1 una entrada nula. Con la configuracion predeterminada, la
funcién vuelve -1 para una entrada nula.

Ejemplo

La siguiente consulta calcula la cardinalidad, o el nUmero de elementos, de la matriz dada. La matriz
(‘b', 'd', 'c', 'a'")tiene 4 elementos, por lo que el resultado de esta consulta serias4.

SELECT cardinality(array('b', 'd', 'c', 'a'));
4

Funcion COLLECT_LIST

La funcion COLLECT_LIST recopila y devuelve una lista de elementos no unicos.

Este tipo de funcion resulta util cuando se desean recopilar varios valores de un conjunto de filas en
una unica estructura de datos de matriz o lista.

(® Note

La funcidn no es determinista porque el orden de los resultados recopilados depende del
orden de las filas, que puede no ser determinista tras realizar una operacion de barajado.

Sintaxis

collect_list(expr)

Funciones de agregacién 127

AWS Clean Rooms Referencia de SQL

Argumentos
expr

Expresion de cualquier tipo.

Devuelve
Devuelve un ARRAY del tipo argumento. El orden de los elementos de la matriz no es determinista.
Se excluyen los valores NULL.

Si se especifica DISTINCT, la funcién recopila solo valores unicos y es sindbnimo de funcion
collect_set agregada.

Ejemplo

La siguiente consulta recopila todos los valores de la columna col en una lista. La VALUES clausula
se utiliza para crear una tabla en linea con tres filas, donde cada fila tiene una columna uUnica con
los valores 1, 2 y 1, respectivamente. Luego, la collect_list() funcién se usa para agregar
todos los valores de la columna col en una sola matriz. El resultado de esta sentencia SQL seria la
matriz[1, 2, 1], que contiene todos los valores de la columna col en el orden en que aparecen en
los datos de entrada.

SELECT collect_list(col) FROM VALUES (1), (2), (1) AS tab(col);
[1,2,1]

Funcion COLLECT_SET

La funcion COLLECT_SET recopila y devuelve un conjunto de elementos unicos.

Esta funcidn resulta util cuando se desean recopilar todos los valores distintos de un conjunto de filas
en una sola estructura de datos, sin incluir ningun duplicado.

(® Note

La funcidén no es determinista porque el orden de los resultados recopilados depende del
orden de las filas, que puede no ser determinista tras realizar una operacion de barajado.

Funciones de agregacién 128

AWS Clean Rooms Referencia de SQL

Sintaxis

collect_set(expr)

Argumentos
expr

Expresion de cualquier tipo excepto MAP.

Devuelve

Devuelve un ARRAY del tipo argumento. El orden de los elementos de la matriz no es determinista.
Se excluyen los valores NULL.

Ejemplo

La siguiente consulta recopila todos los valores unicos de la columna col en un conjunto. La VALUES
clausula se utiliza para crear una tabla en linea con tres filas, donde cada fila tiene una columna
Unica con los valores 1, 2 y 1, respectivamente. Luego, la collect_set () funcion se usa para
agregar todos los valores unicos de la columna col en un solo conjunto. El resultado de esta
sentencia SQL seria el conjunto[1, 2], que contiene los valores unicos de la columna col. El valor
duplicado de 1 solo se incluye una vez en el resultado.

SELECT collect_set(col) FROM VALUES (1), (2), (1) AS tab(col);
[1,2]

Funciones COUNT y COUNT DISTINCT

La funcion COUNT cuenta las filas definidas por la expresion. La funcion COUNT DISTINCT calcula
el numero de valores que no son NULL diferentes en una columna o expresién. Elimina todos los
valores duplicados de la expresion especificada antes de realizar el recuento.

Sintaxis

COUNT (DISTINCT column)

Funciones de agregacién 129

AWS Clean Rooms Referencia de SQL

Argumentos
column

La columna de destino sobre la que opera la funcion.

Tipos de datos

La funcion COUNT y la funcion COUNT DISTINCT admite todos los tipos de datos de argumentos.
La funcion COUNT DISTINCT devuelve BIGINT.

Ejemplos

Cuente todos los usuarios del estado de Florida.

select count (identifier) from users where state='FL';

Cuenta todos los espacios unicos IDs desde la EVENT mesa.

select count (distinct venueid) as venues from event;

Funcion COUNT
La funcion COUNT cuenta las filas definidas por la expresion.
La funcion COUNT tiene las siguientes variaciones.

« COUNT (*) cuenta todas las filas en la tabla destino, incluya o no valores nulos.

« COUNT (expresion) calcula el numero de filas con valores no NULL de una determinada columna
0 expresion.

« COUNT (DISTINCT expresion) calcula el numero de valores no NULL diferentes de una columna
0 expresion.

Sintaxis

COUNT(* | expression)

COUNT ([DISTINCT | ALL] expression)

Funciones de agregacién 130

AWS Clean Rooms Referencia de SQL

Argumentos
expression

La columna o expresion de destino sobre la que opera la funcion. La funcion COUNT admite
todos los tipos de datos de argumentos.

DISTINCT | ALL

Con el argumento DISTINCT, la funcién elimina todos los valores duplicados de la expresion
especificada antes de hacer el conteo. Con el argumento ALL, la funcion retiene todos los valores
duplicados de la expresion para el conteo. El valor predeterminado es ALL.

Tipo de devolucion
La funcion COUNT devuelve BIGINT.
Ejemplos

Cuente todos los usuarios del estado de Florida:

select count(*) from users where state='FL';

Cuenta todos los nombres de evento de la tabla EVENT:

select count(eventname) from event;

Cuenta todos los nombres de evento de la tabla EVENT:

select count(all eventname) from event;

Funciones de agregacién 131

AWS Clean Rooms Referencia de SQL

Cuenta todos los lugares unicos IDs de la tabla de EVENTOS:

select count(distinct venueid) as venues from event;

venues

Contar la cantidad de veces que cada vendedor indico lotes de mas de cuatro tickets para venta.
Agrupar los resultados segun ID de vendedor:

select count(*), sellerid from listing
where numtickets > 4

group by sellerid

oxder by 1 desc, 2;

sellerid

I
+
12 | 6386
I
I
I

11 17304
11 20123
11 25428

Funcion MAX

La funcion MAX devuelve el valor maximo en un conjunto de filas. Es posible utilizar DISTINCT o ALL
pero no influye en el resultado.

Sintaxis

MAX ([DISTINCT | ALL] expression)

Argumentos

expression

La columna o expresion de destino sobre la que opera la funcion. La expresion es cualquier tipo
de dato numérico.

Funciones de agregacién 132

AWS Clean Rooms Referencia de SQL

DISTINCT | ALL

Con el argumento DISTINCT, la funcién elimina todos los valores duplicados de la expresion
especificada antes de calcular el maximo. Con el argumento ALL, la funcién retiene todos los
valores duplicados de la expresidn especificada para calcular el maximo. El valor predeterminado
es ALL.

Tipos de datos
Devuelve el mismo tipo de datos que expresion.
Ejemplos

Encontrar el precio mas alto pagado de todas las ventas:

select max(pricepaid) from sales;

12624.00
(1 row)

Encontrar el precio mas alto pagado por ticket de todas las ventas:

select max(pricepaid/qtysold) as max_ticket_price
from sales;

max_ticket_price

2500.00000000
(1 row)

Funcion MEDIAN

Sintaxis

MEDIAN (median_expression)

Funciones de agregacién 133

AWS Clean Rooms Referencia de SQL

Argumentos
expresion_de_mediana

La columna o expresion de destino sobre la que opera la funcion.

Funcion MIN

La funcion MIN devuelve el valor minimo en un conjunto de filas. Es posible utilizar DISTINCT o ALL
pero no influye en el resultado.

Sintaxis

MIN ([DISTINCT | ALL] expression)

Argumentos
expression

La columna o expresion de destino sobre la que opera la funcion. La expresidn es cualquier tipo
de datos numéricos.

DISTINCT | ALL

Con el argumento DISTINCT, la funcién elimina todos los valores duplicados de la expresion
especificada antes de calcular el minimo. Con el argumento ALL, la funcion retiene todos los
valores duplicados de la expresidon especificada para calcular el minimo. El valor predeterminado
es ALL.

Tipos de datos

Devuelve el mismo tipo de datos que expresion.

Ejemplos

Encontrar el precio mas bajo pagado de todas las ventas:

select min(pricepaid) from sales;

Funciones de agregacién 134

AWS Clean Rooms Referencia de SQL

20.00
(1 row)

Encontrar el precio mas bajo pagado por ticket de todas las ventas:

select min(pricepaid/qtysold)as min_ticket_price
from sales;

min_ticket_price

20.00000000
(1 row)

Funcion PERCENTIL

La funcion PERCENTIL se utiliza para calcular el valor percentil exacto ordenando primero
los valores de la col columna y, a continuacion, buscando el valor en el valor especificado.
percentage

La funcion PERCENTIL es util cuando necesita calcular el valor percentil exacto y el coste
computacional es aceptable para su caso de uso. Proporciona resultados mas precisos que la
funcion APPROX_PERCENTILE, pero puede ser mas lenta, especialmente para conjuntos de datos
grandes.

Por el contrario, la funcion APPROX_PERCENTILE es una alternativa mas eficiente que puede
proporcionar una estimacion del valor del percentil con una tolerancia de error especifica, lo que la
hace mas adecuada para escenarios en los que la velocidad es una prioridad mayor que la precisidon
absoluta.

Sintaxis

percentile(col, percentage [, frequency])

Argumentos
col

La expresion o columna para la que desea calcular el valor del percentil.

porcentaje

El valor percentil que desea calcular, expresado como un valor entre Oy 1.

Funciones de agregacién 135

AWS Clean Rooms Referencia de SQL

Por ejemplo, 0,5 corresponderia al percentil 50 (mediana).

frecuencia

Parametro opcional que especifica la frecuencia o el peso de cada valor de la col columna. Si se
proporciona, la funcion calculara el percentil en funcién de la frecuencia de cada valor.

Devuelve

Devuelve el valor percentil exacto de la columna de intervalo numérico o ANSI col en el porcentaje
indicado.

El valor del porcentaje debe estar comprendido entre 0,0 y 1,0.
El valor de la frecuencia debe ser una integral positiva
Ejemplo

La siguiente consulta busca un valor mayor o igual al 30% de los valores de la col columna. Como
los valores son 0 y 10, el percentil 30 es 3,0, porque es el valor que es mayor o igual al 30% de los
datos.

SELECT percentile(col, ©.3) FROM VALUES (@), (1@) AS tab(col);
3.0

Funcion de ASIMETRIA

La funcion ASIMETRIA devuelve el valor de asimetria calculado a partir de los valores de un grupo.

La asimetria es una medida estadistica que describe la asimetria o la falta de simetria en un conjunto
de datos. Proporciona informacion sobre la forma de la distribucién de los datos.

Esta funcidn puede resultar util para comprender las propiedades estadisticas de un conjunto de
datos y servir de base para futuros analisis o para la toma de decisiones.

Sintaxis

skewness(expr)

Funciones de agregacién 136

AWS Clean Rooms Referencia de SQL

Argumentos
expr

Expresion que se evalua como un valor numeérico.

Devuelve

Devuelve DOUBLE.

Si se especifica DISTINCT, la funcién solo funciona con un conjunto unico de valores de expr.
Ejemplos

La siguiente consulta calcula la asimetria de los valores de la columna. col En este ejemplo, la
VALUES clausula se usa para crear una tabla en linea con cuatro filas, donde cada fila tiene una sola
columna col con los valores -10, -20, 100 y 1000. A continuacion, la skewness () funcién se utiliza
para calcular la asimetria de los valores de la columna. col El resultado, 1,1135657469022011,
representa el grado y la direccion de la asimetria de los datos. Un valor de asimetria positivo indica
que los datos estan sesgados hacia la derecha y que la mayoria de los valores se concentran en el
lado izquierdo de la distribucidn. Un valor de asimetria negativo indica que los datos estan sesgados
hacia la izquierda y que la mayoria de los valores se concentran en el lado derecho de la distribucion.

SELECT skewness(col) FROM VALUES (-10), (-20), (100), (1000) AS tab(col);
1.1135657469022011

La siguiente consulta calcula la asimetria de los valores de la columna col. Al igual que en el
ejemplo anterior, la VALUES clausula se usa para crear una tabla en linea con cuatro filas, donde
cada fila tiene una sola columna col con los valores -1000, -100, 10 y 20. A continuacién, la
skewness () funcién se utiliza para calcular la asimetria de los valores de la columna. col El
resultado, -1.1135657469022011, representa el grado y la direccion de la asimetria en los datos. En
este caso, el valor de asimetria negativo indica que los datos estan sesgados hacia la izquierda y
que la mayoria de los valores se concentran en el lado derecho de la distribucion.

SELECT skewness(col) FROM VALUES (-1000), (-100), (10), (20) AS tab(col);
-1.1135657469022011

Funciones de agregacién 137

AWS Clean Rooms Referencia de SQL

Funciones STDDEV_SAMP y STDDEV_POP

Las funciones STDDEV_SAMP y STDDEV_POP devuelven la muestra y la desviacion estandar de
poblacién de un conjunto de valores numéricos (entero, decimal o de punto flotante). El resultado de
la funcion STDDEV_SAMP es equivalente a la raiz cuadrada de la varianza de muestra del mismo
conjunto de valores.

STDDEV_SAMP y STDDEV son sinbnimos para la misma funcién.

Sintaxis

STDDEV_SAMP | STDDEV ([DISTINCT | ALL] expression) STDDEV_POP ([DISTINCT |
ALL] expression)

La expresion debe tener un tipo de datos numérico. Independientemente del tipo de datos de la
expresion, el tipo de retorno de esta funcion es un numero de doble precision.

(@ Note

La desviacion estandar se calcula utilizando aritmética de punto flotante, que puede dar
como resultado una leve imprecision.

Notas de uso

Cuando la desviacion estandar de la muestra (STDDEV o STDDEV_SAMP) se calcula para una
expresion que consta de un valor unico, el resultado de la funcion es NULL no 0.

Ejemplos

La siguiente consulta devuelve el promedio de valores en la columna VENUESEATS de la tabla
VENUE, seguido de la desviacidn estandar de la muestra y la desviacidon estandar de la poblacién
del mismo conjunto de valores. VENUESEATS es una columna INTEGER. La escala del resultado se
reduce a 2 digitos.

select avg(venueseats),

cast(stddev_samp(venueseats) as dec(14,2)) stddevsamp,
cast(stddev_pop(venueseats) as dec(14,2)) stddevpop
from venue;

Funciones de agregacién 138

AWS Clean Rooms Referencia de SQL

avg | stddevsamp | stddevpop
_______ B

17503 | 27847 .76 | 27773.20
(1 row)

La siguiente consulta devuelve la desviacion estandar de muestra para la columna COMMISSION
en la tabla SALES. COMMISSION es una columna DECIMAL. La escala del resultado se reduce a
10 digitos.

select cast(stddev(commission) as dec(18,10))
from sales;

stddev

130.3912659086
(1 row)

La siguiente consulta convierte la desviacion estandar de muestra para la columna COMMISSION en
un numero entero.

select cast(stddev(commission) as integer)
from sales;

stddev

La siguiente consulta devuelve tanto la desviacion estandar de muestra y la raiz cuadrada de
la varianza de muestra para la columna COMMISSION. Los resultados de estos calculos son
semejantes.

select

cast(stddev_samp(commission) as dec(18,10)) stddevsamp,
cast(sqrt(var_samp(commission)) as dec(18,10)) sqrtvarsamp
from sales;

stddevsamp | sqgrtvarsamp
________________ N
130.3912659086 | 130.3912659086
(1 row)

Funciones de agregacién 139

AWS Clean Rooms Referencia de SQL

Funciones SUM y SUM DISTINCT

La funcion SUM devuelve la suma de la columna de entrada o valores de la expresion. La funcién
SUM funciona con valores numéricos e ignora los valores NULL.

La funcion SUM DISTINCT elimina todos los valores duplicados de la expresion especificada antes
de calcular la suma.

Sintaxis

SUM (DISTINCT column)

Argumentos

column

La columna de destino sobre la que opera la funcion. La columna es cualquier tipo de datos
NUMEricos.
Ejemplos

Encontrar la suma de todas las comisiones pagadas de la tabla SALES:

select sum(commission) from sales

Encontrar la suma de todas las comisiones diferenciadas pagadas de la tabla SALES:

select sum (distinct (commission)) from sales

Funciones VAR_SAMP y VAR_POP

Las funciones VAR_SAMP y VAR_POP devuelven la muestra y la varianza de poblacién de un
conjunto de valores numéricos (entero, decimal o de punto flotante). El resultado de la funcién
VAR_SAMP es equivalente a la desviacion cuadrada estandar de la muestra del mismo conjunto de
valores.

VAR_SAMP y VARIANCE son sinénimos para la misma funcion.

Sintaxis

VAR_SAMP | VARIANCE ([DISTINCT | ALL] expression)

Funciones de agregacién 140

AWS Clean Rooms Referencia de SQL

VAR_POP ([DISTINCT | ALL] expression)

La expresion debe ser un tipo de datos entero, decimal o de punto flotante. Independientemente del
tipo de datos de la expresion, el tipo de retorno de esta funcién es un numero de doble precision.

@ Note

Los resultados de estas funciones pueden variar entre clusteres de data warehouse, segun la
configuracion del cluster en cada caso.

Notas de uso

Cuando la varianza de la muestra (VARIANCE o VAR_SAMP) se calcula para una expresion que
consta de un valor unico, el resultado de la funcién es NULL no 0.

Ejemplos

La siguiente consulta devuelve la varianza redondeada de muestra y poblacién de la columna
NUMTICKETS en la tabla LISTING.

select avg(numtickets),
round(var_samp(numtickets)) varsamp,
round(var_pop(numtickets)) varpop
from listing;

avg | varsamp | varpop
_____ o

10 | 54 | 54

La siguiente consulta ejecuta los mismos calculos pero convierte los resultados a valores decimales.

select avg(numtickets),
cast(var_samp(numtickets) as dec(10,4)) varsamp,
cast(var_pop(numtickets) as dec(1@,4)) varpop
from listing;

avg | varsamp | varpop
_____ e E

10 | 53.6291 | 53.6288

Funciones de agregacion 141

AWS Clean Rooms Referencia de SQL

(1 row)

Funciones de matriz

En esta seccion se describen las funciones de matriz de SQL admitidas en AWS Clean Rooms.

Temas

* Funcion ARRAY

* Funcion ARRAY_CONTAINS
» Funcién ARRAY_DISTINCT
» Funcién ARRAY_EXCEPT

* Funcion ARRAY_INTERSECT
* Funcion ARRAY_JOIN

* Funcion ARRAY_REMOVE

* Funcion ARRAY_UNION

* Funcion EXPLODE

* Funcién FLATTEN

Funcion ARRAY

Crea una matriz con los elementos dados.

Sintaxis

ARRAY([exprl 1 [, expr2 [, ... 1 1)

Argumento

expr1, expr2
Expresiones de cualquier tipo de datos, excepto los tipos de datos de fecha y hora. Los
argumentos no tienen que ser del mismo tipo de datos.

Tipo de retorno

La funcion de matriz devuelve una MATRIZ con los elementos de la expresion.

Funciones de matriz 142

AWS Clean Rooms Referencia de SQL

Ejemplo

El siguiente ejemplos muestra una matriz de valores numéricos y una matriz de diferentes tipos de
datos.

--an array of numeric values
select array(1l,50,null,100);
array

[1,50,null,100]
(1 row)

--an array of different data types

select array(1l, 'abc',true,3.14);
array

[1,"abc",true,3.14]
(1 row)

Funcion ARRAY_CONTAINS

La funcion ARRAY_CONTAINS se puede utilizar para realizar comprobaciones basicas de
pertenencia en estructuras de datos de matrices. La funcion ARRAY_CONTAINS es util cuando se
necesita comprobar si un valor especifico esta presente en una matriz.

Sintaxis

array_contains(array, value)

Argumentos
array

Un ARRAY que se va a buscar.

value

Una expresion con un tipo que comparte un tipo menos comun con los elementos de la matriz.

Tipo de retorno

La funcion ARRAY_CONTAINS devuelve un BOOLEANO.

Funciones de matriz 143

AWS Clean Rooms Referencia de SQL

Si el valor es NULL, el resultado es NULL.

Si algun elemento de la matriz es NULL, el resultado es NULL si el valor no coincide con ningun otro
elemento.

Ejemplos

El siguiente ejemplo comprueba si la matriz [1, 2, 3] contiene el valor4. Como la matriz[1, 2,
3] no contiene el valor4, devuelve la funcién array_contains. false

SELECT array_contains(array(l, 2, 3), 4)
false

En el siguiente ejemplo, se comprueba sila matriz [1, 2, 3] contiene el valor. 2 Como la matriz
[1, 2, 3] contiene el valor2, la funcién array_contains devuelve el valor. true

SELECT array_contains(array(l, 2, 3), 2);
true

Funcion ARRAY_DISTINCT

La funcion ARRAY_DISTINCT se puede usar para eliminar valores duplicados de una matriz. La
funcidén ARRAY_DISTINCT es util cuando necesita eliminar los duplicados de una matriz y trabajar
solo con los elementos unicos. Esto puede resultar util en situaciones en las que desee realizar
operaciones o analisis en un conjunto de datos sin la interferencia de valores repetidos.

Sintaxis

array_distinct(array)

Argumentos
array

Una expresion matricial.

Tipo de retorno

La funcion ARRAY_DISTINCT devuelve una MATRIZ que contiene solo los elementos unicos de la
matriz de entrada.

Funciones de matriz 144

AWS Clean Rooms Referencia de SQL

Ejemplos

En este ejemplo, la matriz de entrada [1, 2, 3, null, 3] contiene un valor duplicado de. 3
La array_distinct funcion elimina este valor duplicado 3 y devuelve una nueva matriz con los
elementos Unicos:[1, 2, 3, null].

SELECT array_distinct(array(1l, 2, 3, null, 3));
[1,2,3,null]

En este ejemplo, la matriz de entrada [1, 2, 2, 3, 3, 3] contiene valores duplicados de 2
y3. La array_distinct funcion elimina estos duplicados y devuelve una nueva matriz con los
elementos Unicos:[1, 2, 3].

SELECT array_distinct(array(1l, 2, 2, 3, 3, 3))
[1,2,3]

Funcion ARRAY_EXCEPT

La funcion ARRAY_EXCEPT toma dos matrices como argumentos y devuelve una nueva matriz que
contiene solo los elementos que estan presentes en la primera matriz, pero no en la segunda.

La ARRAY_EXCEPT es util cuando se necesitan encontrar los elementos que son exclusivos de
una matriz en comparacion con otra. Esto puede resultar util en situaciones en las que es necesario
realizar operaciones similares a las de un conjunto en matrices, como encontrar la diferencia entre
dos conjuntos de datos.

Sintaxis

array_except(arrayl, array2?)

Argumentos

matriz1

Un ARRAY de cualquier tipo con elementos comparables.

matriz (2)

Un ARRAY de elementos que comparten un tipo menos comun con los elementos de array1.

Funciones de matriz 145

AWS Clean Rooms Referencia de SQL

Tipo de retorno

La funcion ARRAY_EXCEPT devuelve una MATRIZ del tipo coincidente con la matriz 1 sin
duplicados.

Ejemplos

En este ejemplo, la primera matriz [1, 2, 3] contiene los elementos 1, 2 y 3. La segunda matriz
[2, 3, 4] contiene los elementos 2, 3y 4. La array_except funcidon elimina los elementos 2 y 3
de la primera matriz, ya que también estan presentes en la segunda matriz. La salida resultante es la
matriz[1].

SELECT array_except(array(l, 2, 3), array(2, 3, 4))
[1]

En este ejemplo, la primera matriz [1, 2, 3] contiene los elementos 1, 2 y 3. La segunda matriz
[1, 3, 5] contiene los elementos 1,3y 5. La array_except funcién elimina los elementos 1y 3
de la primera matriz, ya que también estan presentes en la segunda matriz. La salida resultante es la
matriz[2].

SELECT array_except(array(l, 2, 3), array(l, 3, 5));
[2]

Funcion ARRAY_INTERSECT

La funcion ARRAY_INTERSECT toma dos matrices como argumentos y devuelve una nueva matriz
qgue contiene los elementos que estan presentes en ambas matrices de entrada. Esta funcion resulta
util cuando se necesitan encontrar los elementos comunes entre dos matrices. Esto puede resultar
util en situaciones en las que es necesario realizar operaciones similares a las de un conjunto en
matrices, como encontrar la intersecciéon entre dos conjuntos de datos.

Sintaxis
array_intersect(arrayl, array2)
Argumentos

matriz1

Un ARRAY de cualquier tipo con elementos comparables.

Funciones de matriz 146

AWS Clean Rooms Referencia de SQL

matriz (2)

Un ARRAY de elementos que comparten un tipo menos comun con los elementos de array1.

Tipo de retorno

La funcion ARRAY_INTERSECT devuelve un ARRAY del tipo coincidente con el de matriz1, sin
duplicados y con elementos contenidos tanto en matriz1 como en matriz2.

Ejemplos

En este ejemplo, la primera matriz contiene los elementos 1,2y 3. [1, 2, 3] Lasegunda
matriz [1, 3, 5] contiene los elementos 1, 3 y 5. La funcion ARRAY_INTERSECT identifica los
elementos comunes entre las dos matrices, que son 1y 3. La matriz de salida resultante es. [1, 3]

SELECT array_intersect(array(l, 2, 3), array(l, 3, 5));
[1,3]

Funcion ARRAY_JOIN

La funcion ARRAY_JOIN utiliza dos argumentos: el primer argumento es la matriz de entrada

que se unira. El segundo argumento es la cadena separadora que se utilizara para concatenar

los elementos de la matriz. Esta funcidn resulta util cuando se necesita convertir una matriz de
cadenas (o cualquier otro tipo de datos) en una sola cadena concatenada. Esto puede resultar util
en situaciones en las que desee presentar una matriz de valores como una sola cadena con formato,
por ejemplo, con fines de visualizacidn o para su uso en un procesamiento posterior.

Sintaxis

array_join(array, delimiter[, nullReplacement])

Argumentos
array

Cualquier tipo de matriz, pero sus elementos se interpretan como cadenas.

delimiter

Una CADENA que se utiliza para separar los elementos de la matriz concatenados.

Funciones de matriz 147

AWS Clean Rooms Referencia de SQL

Reemplazo nulo

Cadena que se utiliza para expresar un valor NULO en el resultado.

Tipo de retorno

La funcion ARRAY_JOIN devuelve una cadena en la que los elementos de la matriz se
separan mediante un delimitador y se sustituyen por elementos nulos. nullReplacement Si
nullReplacement se omite, null los elementos se filtran. Si hay algun argumentoNULL, el
resultado esNULL.

Ejemplos

En este ejemplo, la funcion ARRAY_JOIN toma la matriz ['hello', 'world']y unelos

elementos mediante el separador ' ' (un caracter de espacio). El resultado es la cadena. 'hello
world'
SELECT array_join(array('hello', 'world'), ' ');

hello world

En este ejemplo, la funcion ARRAY_JOIN toma la matriz ['hello', null, 'world']y unelos
elementos mediante el separador ' ' (un caracter de espacio). El null valor se sustituye por la
cadena de sustitucion proporcionada ', ' (una coma). El resultado es la cadena'hello , world'.

SELECT array_join(array('hello', null ,‘'world'), ' ', ',');
hello , world

Funcion ARRAY_REMOVE

La funcion ARRAY_REMOVE utiliza dos argumentos: el primer argumento es la matriz de entrada
de la que se eliminaran los elementos. El segundo argumento es el valor que se eliminara de la
matriz. Esta funcidn es util cuando se necesitan eliminar elementos especificos de una matriz.
Esto puede resultar util en situaciones en las que es necesario realizar una limpieza de datos o un
preprocesamiento de una matriz de valores.

Sintaxis

array_remove(array, element)

Funciones de matriz 148

AWS Clean Rooms Referencia de SQL

Argumentos
array

Un ARRAY.

element

Una expresion de un tipo que comparte un tipo menos comun con los elementos de una matriz.

Tipo de retorno

La funcion ARRAY_REMOVE devuelve el tipo de resultado que coincide con el tipo de matriz. Si el
elemento que se va a eliminar esNULL, el resultado es. NULL

Ejemplos

En este ejemplo, la funcion ARRAY_REMOVE toma la matriz [1, 2, 3, null, 3] yelimina
todas las apariciones del valor 3. La salida resultante es la matriz. [1, 2, null]

SELECT array_remove(array(1l, 2, 3, null, 3), 3);
[1,2,null]

Funcion ARRAY_UNION

La funcion ARRAY_UNION toma dos matrices como argumentos y devuelve una nueva matriz que
contiene los elementos unicos de ambas matrices de entrada. Esta funcion resulta util cuando se
necesitan combinar dos matrices y eliminar cualquier elemento duplicado. Esto puede resultar util en
situaciones en las que es necesario realizar operaciones similares a las de un conjunto en matrices,
como encontrar la union entre dos conjuntos de datos.

Sintaxis

array_union(arrayl, array2)

Argumentos

matriz1

Un ARRAY.

Funciones de matriz 149

AWS Clean Rooms Referencia de SQL

Matriz 2

Un ARRAY del mismo tipo que array1.

Tipo de retorno
La funcion ARRAY_UNION devuelve una MATRIZ del mismo tipo que una matriz.
Ejemplo

En este ejemplo, la primera matriz [1, 2, 3] contiene los elementos 1, 2 y 3. La segunda matriz
[1, 3, 5] contiene los elementos 1, 3y 5. La funcién ARRAY_UNION combina los elementos
Unicos de ambas matrices, lo que da como resultado la matriz de salida. [1, 2, 3, 5] T

SELECT array_union(array(l, 2, 3), array(l, 3, 5));
[1,2,3,5]

Funcion EXPLODE

La funcion EXPLODE se utiliza para transformar una sola fila con una matriz o columna de mapa en
varias filas, donde cada fila corresponde a un unico elemento de la matriz o el mapa.

Sintaxis

explode(expr)

Argumentos
expr

Una expresion matricial o una expresion de mapa.

Tipo de retorno

La funcion EXPLODE devuelve un conjunto de filas, donde cada fila representa un unico elemento de
la matriz o mapa de entrada.

El tipo de datos de las filas de salida depende del tipo de datos de los elementos de la matriz o el
mapa de entrada.

Funciones de matriz 150

AWS Clean Rooms Referencia de SQL

Ejemplos

El siguiente ejemplo toma la matriz de una sola fila [10, 20] y la transforma en dos filas
independientes, cada una de las cuales contiene uno de los elementos de la matriz (10 y 20).

SELECT explode(array(10, 20));

En el primer ejemplo, la matriz de entrada se pasé directamente como argumento aexplode().
En este ejemplo, la matriz de entrada se especifica mediante la => sintaxis, donde el nombre de la
columna (collection) se proporciona de forma explicita.

SELECT explode(array(10, 20));

Ambos enfoques son validos y permiten obtener el mismo resultado, pero la segunda sintaxis puede
resultar mas util cuando se necesita desglosar una columna de un conjunto de datos mas grande, en
lugar de limitarse a un simple literal de matriz.

Funcion FLATTEN

La funciéon FLATTEN se utiliza para «aplanar» una estructura de matriz anidada en una sola matriz
plana.

Sintaxis

flatten(arrayOfArrays)

Argumentos
arrayOfArrays

Matriz de matrices.

Tipo de retorno
La funcion FLATTEN devuelve una matriz.
Ejemplo

En este ejemplo, la entrada es una matriz anidada con dos matrices internas y la salida es una matriz
plana unica que contiene todos los elementos de las matrices internas. La funcion FLATTEN toma la

Funciones de matriz 151

AWS Clean Rooms Referencia de SQL

matriz anidada [[1, 2], [3, 4]]ycombinatodos los elementos en una sola matriz. [1, 2, 3,
4]

SELECT flatten(array(array(l, 2), array(3, 4)));
[1,2,3,4]

Expresiones condicionales

En SQL, las expresiones condicionales se utilizan para tomar decisiones en funcion de determinadas
condiciones. Permiten controlar el flujo de las sentencias SQL y devolver valores diferentes o realizar
diferentes acciones en funcién de la evaluacion de una o mas condiciones.

AWS Clean Rooms admite las siguientes expresiones condicionales:

Temas
» Expresion condicional CASE

» expresion COALESCE

« Expresion maxima y minima

+ Expresion IF

» Expresion IS_NULL

» Expresion IS_NOT_NULL

* Funciones NVL y COALESCE
* NVL2 funcion

« Funcién NULLIF

Expresion condicional CASE

La expresion CASE es una expresion condicional, similar a if/then/else las sentencias que se
encuentran en otros lenguajes. CASE se utiliza para especificar un resultado cuando hay condiciones
multiples. Utilice CASE cuando una expresion SQL sea valida, como en un comando SELECT.

Existen dos tipos de expresiones CASE: simple y buscada.

* En expresiones CASE simples, una expresion se compara con un valor. Cuando hay una
coincidencia, se aplica la accion especificada en la clausula THEN. Si no se encuentra
coincidencia, se aplica la accion en la clausula ELSE.

Expresiones condicionales 152

AWS Clean Rooms Referencia de SQL

» En las expresiones CASE buscadas, cada CASE se evalua segun una expresion booleana, y la
instruccion CASE devuelve el primer CASE que coincida. Si no hay ninguna coincidencia entre las
clausulas WHEN, se devuelve la accién en la clausula ELSE.

Sintaxis

Instruccion CASE simple utilizada para hacer coincidir condiciones:

CASE expression
WHEN value THEN result

[WHEN...]
[ELSE result]
END

Instruccion CASE buscada utilizada para evaluar cada condicion:

CASE
WHEN condition THEN result
[WHEN ...]
[ELSE result]

END

Argumentos
expresion

Un nombre de columna o cualquier expresién valida.

value

Valor con el que se compara la expresiéon, como una constante numérica o una cadena de
caracteres.

result

El valor destino o la expresidon que se devuelve cuando se evalua una expresion o una condicidn
booleana. Los tipos de datos de todas las expresiones de resultado deben poder convertirse a un
unico tipo de salida.

condition

Expresion booleana que se evalua como true o false. Si el argumento condition es verdadero,
el valor de la expresion CASE es el resultado que sigue a la condicidon y el resto de la expresion

Expresiones condicionales 153

AWS Clean Rooms Referencia de SQL

CASE no se procesa. Si el argumento condition es falso, se evaluan las clausulas WHEN
subsiguientes. Si ningun resultado de la condicion WHEN es verdadero, el valor de la expresion
CASE sera el resultado de la clausula ELSE. Si se omite la clausula ELSE y ninguna condicién es
verdadera, el resultado sera nulo.

Ejemplos

Use una expresion CASE simple para reemplazar New York City porBig Apple en una consulta
de la tabla VENUE. Reemplace todos los demas nombres de ciudad por other.

select venuecity,
case venuecity
when 'New York City'
then 'Big Apple' else 'other'
end
from venue
order by venueid desc;

venuecity | case
_________________ B
Los Angeles | other

New York City | Big Apple
San Francisco | other
Baltimore | other

Utilice una expresion CASE buscada para asignar numeros de grupo segun el valor PRICEPAID para
ventas de tickets individuales:

select pricepaid,
case when pricepaid <10000 then 'group 1'
when pricepaid >10000 then 'group 2'
else 'group 3'
end
from sales
oxder by 1 desc;

pricepaid | case

__________ T
12624 | group 2
10000 | group 3

Expresiones condicionales 154

AWS Clean Rooms Referencia de SQL

10000 | group 3
9996 | group 1
9988 | group 1

expresion COALESCE

Una expresion COALESCE devuelve el valor de la primera expresion en la lista que no sea nulo.
Si todas las expresiones son nulas, el resultado es nulo. Cuando se encuentra un valor no nulo, las
expresiones restantes de la lista no se evaluan.

Este tipo de expresion es util cuando desea devolver un valor de backup para algo cuando no hay
un valor preferido o si este es nulo. Por ejemplo, una consulta puede devolver uno de tres numeros
telefonicos (celular, hogar o trabajo, en ese orden), sea cual sea que encuentre primero en la tabla
(no nulo).

Sintaxis

COALESCE (expression, expression, ...)
Ejemplos
Aplica la expresion COALESCE a dos columnas.

select coalesce(start_date, end_date)
from datetable
order by 1;

El nombre de columna predeterminado de una expresion NVL es COALESCE. La siguiente consulta
devuelve los mismos resultados.

select coalesce(start_date, end_date) from datetable order by 1;
Expresion maxima y minima

Devuelve el valor mas grande o el mas pequefo de una lista de cualquier cantidad de expresiones.

Sintaxis

GREATEST (value [, ...])
LEAST (value [, ...1)

Expresiones condicionales 155

AWS Clean Rooms Referencia de SQL

Parametros
expression_list

Una lista de expresiones separada por comas, como la columna nombres. Las expresiones
deben ser todas convertibles a un tipo comun de datos. Se ignoran los valores NULL en la lista. Si
todas las expresiones toman el valor NULL, el resultado es NULL.

Devuelve

Devuelve el valor maximo (para GREATEST) o el minimo (para LEAST) de la lista de expresiones
proporcionada.

Ejemplo

El siguiente ejemplo devuelve el valor mas alto alfabéticamente para firstname o lastname.

select firstname, lastname, greatest(firstname,lastname) from users
where userid < 10

order by 3;

firstname | lastname | greatest
___________ Y E
Alejandro | Rosalez | Ratliff
Carlos | Salazar | Carlos
Jane | Doe | Doe

John | Doe | Doe

John | Stiles | John
Shirley | Rodriguez | Rodriguez
Terry | Whitlock | Terry
Richard | Roe | Richazrd
Xiulan | Wang | Wang

(9 rows)

Expresion IF
La funcion condicional IF devuelve uno de los dos valores en funcién de una condicion.

Esta funcidn es una sentencia de flujo de control comun que se utiliza en SQL para tomar decisiones
y devolver diferentes valores en funcion de la evaluacion de una condicion. Resulta util para
implementar una légica simple de tipo if-else en una consulta.

Expresiones condicionales 156

AWS Clean Rooms Referencia de SQL

Sintaxis
if(exprl, expr2, expr3)

Argumentos
expr1

La condicion o expresion que se evalua. Si es asitrue, la funcion devolvera el valor de expr2. Si
expr1 esfalse, la funcion devolvera el valor de expr3.

expr2

La expresion que se evalua y devuelve si expr1 es. true

expr3

La expresion que se evalua y devuelve si expr1 es. false

Devuelve
Si se exprl evalua como, devuelveexpr2; de true lo contrario, devuelve. expr3
Ejemplo

En el siguiente ejemplo, se utiliza la if () funcién para devolver uno de los dos valores en funcion
de una condicién. La condicion que se esta 1 < 2 evaluando estrue, es decir, 'a' se devuelve el
primer valor.

SELECT if(1 < 2, 'a', 'b');
aj

Expresion IS_NULL

La expresion IS_NULL condicional se usa para comprobar si un valor es nulo.
Esta expresion es sinénimo delS NULL.

Sintaxis

is_null(expr)

Expresiones condicionales 157

AWS Clean Rooms Referencia de SQL

Argumentos
expr

Una expresion de cualquier tipo.

Devuelve

La expresion IS_NULL condicional devuelve un booleano. Si exprl es NULL, devuelve; de lo
contrariotrue, devuelve. false

Ejemplos

El siguiente ejemplo comprueba si el valor 1 es nulo y devuelve el resultado booleano true porque 1
es un valor valido y no nulo.

SELECT is not null(1l);
true

En el siguiente ejemplo, se selecciona la id columna de la squirrels tabla, pero solo para las filas
en las que se encuentra la columna de edad. null

SELECT id FROM squirrels WHERE is_null(age)

Expresion IS_NOT_NULL
La expresion IS_NOT_NULL condicional se usa para comprobar si un valor no es nulo.
Esta expresion es sinénimo delS NOT NULL.

Sintaxis
is_not_null(expr)

Argumentos

expr

Una expresion de cualquier tipo.

Expresiones condicionales 158

AWS Clean Rooms Referencia de SQL

Devuelve

La expresion IS_NOT_NULL condicional devuelve un booleano. Si no exprl es NULL, devuelve; de
lo contrariotrue, devuelve. false

Ejemplos

El siguiente ejemplo comprueba si el valor no 1 es nulo y devuelve el resultado booleano true
porque 1 es un valor valido y no nulo.

SELECT is not null(1l);
true

En el siguiente ejemplo, se selecciona la id columna de la squirrels tabla, pero solo para las filas
en las que no aparece la columna de edad. null

SELECT id FROM squirrels WHERE is_not_null(age)

Funciones NVL y COALESCE

Devuelve el valor de la primera expresion que no es nula en una serie de expresiones. Cuando se
encuentra un valor que no es nulo, las expresiones restantes de la lista no se evaluan.

NVL es idéntica a COALESCE. Son sinbnimos. En este tema se explica la sintaxis y se incluyen
ejemplos de ambas funciones.

Sintaxis

NVL(expression, expression, ...)

La sintaxis de COALESCE es la misma:

COALESCE(expression, expression, ...)

Si todas las expresiones son nulas, el resultado es nulo.

Estas funciones son utiles cuando se desea devolver un valor secundario si falta un valor primario
o es nulo. Por ejemplo, una consulta puede devolver el primero de los tres numeros de teléfono
disponibles: mdévil, fijo o trabajo. El orden de las expresiones de la funcién determina el orden de
evaluacion.

Expresiones condicionales 159

AWS Clean Rooms Referencia de SQL

Argumentos
expresion

Una expresion, como un nombre de columna, que evalua estados nulos.

Tipo de devolucion

AWS Clean Rooms determina el tipo de datos del valor devuelto en funcidén de las expresiones de
entrada. Si los tipos de datos de las expresiones de entrada no tienen un tipo comun, se devuelve un
error.

Ejemplos
Si la lista contiene expresiones de enteros, la funcion devuelve un entero.

SELECT COALESCE(NULL, 12, NULL);

coalesce

Este ejemplo, que es igual al anterior, excepto que usa NVL, devuelve el mismo resultado.

SELECT NVL(NULL, 12, NULL);

coalesce

En el siguiente ejemplo, se devuelve un tipo de cadena.

SELECT COALESCE(NULL, 'AWS Clean Rooms', NULL);

coalesce

AWS Clean Rooms

En el siguiente ejemplo, se produce un error porque los tipos de datos varian en la lista de
expresiones. En este caso, hay un tipo de cadena y un tipo de numero en la lista.

Expresiones condicionales 160

AWS Clean Rooms Referencia de SQL

SELECT COALESCE(NULL, 'AWS Clean Rooms', 12);
ERROR: invalid input syntax for integer: "AWS Clean Rooms"

NVL2 funcion

Devuelve uno de los dos valores, en funcidn de si una expresion especificada toma un valor NULL o
NOT NULL.

Sintaxis

NVL2 (expression, not_null_return_value, null_return_value)

Argumentos
expresion

Una expresion, como un nombre de columna, que evalua estados nulos.

not_null_return_value

El valor devuelto si la expression (expresion) toma un valor NOT NULL. El valor
not_null_return_value debe tener los mismos tipos de datos que expression (expresion) o ser
convertible implicitamente a ese tipo de datos.

null_return_value
El valor de retorno si expression (expresion) toma un valor NULL. El valor null_return_value debe
tener los mismos tipos de datos que expression (expresion) o ser convertible implicitamente a ese
tipo de datos.

Tipo de devolucién

El tipo de NVL2 devolucién se determina de la siguiente manera:

+ Si alguno de los valores not_null_return_value o null_return_value es nulo, se devuelve el tipo de

datos de la expresion no nula.

Si ninguno de los valores not_null_return_value y null_return_value es nulo:

 Silos valores not_null_return_value y null_return_value tienen el mismo tipo de datos, se devuelve
ese tipo de datos.

Expresiones condicionales 161

AWS Clean Rooms Referencia de SQL

 Silos valores not_null_return_value y null_return_value tienen tipos de datos numéricos diferentes,
se devuelve el tipo de dato numérico compatible que sea menor.

 Silos valores not_null_return_value y null_return_value tienen tipos de datos de fecha y hora
diferentes, se devuelve un tipo de dato de marca temporal.

* Silos valores not_null_return_value y null_return_value tienen tipos de datos de caracteres
diferentes, se devuelve el tipo de dato de not_null_return_value.

+ Silos valores not_null_return_value y null_return_value tienen tipos de datos numéricos y no
numéricos mezclados, se devuelve el tipo de dato de not_null_return_value.

/A Important

En los ultimos dos casos en los que se devuelve el tipo de dato not_null_return_value,
null_return_value esta vinculado implicitamente a ese tipo de dato. Si los tipos de datos son
incompatibles, la funcion falla.

Notas de uso

En efecto NVL2, la devolucion tendra el valor del parametro not_null_return_value
o null_return_value, segun lo que seleccione la funcion, pero tendra el tipo de datos
not_null_return_value.

Por ejemplo, si se asume que column1 es NULL, las siguientes consultas devolveran el mismo valor.
Sin embargo, el tipo de datos del valor devuelto por NVL2 DECODE sera INTEGER vy el tipo de datos
del valor devuelto sera VARCHAR.

select decode(columnl, null, 1234, '2345');
select nvl2(columnl, '2345', 1234);

Ejemplo

En el siguiente ejemplo, se modifican algunos datos de muestra y, luego, se evaluan dos campos
para proporcionar la informacién de contacto adecuada para los usuarios:

update users set email = null where firstname = 'Aphrodite' and lastname = 'Acevedo';

select (firstname + ' ' + lastname) as name,
nvl2(email, email, phone) AS contact_info

Expresiones condicionales 162

AWS Clean Rooms Referencia de SQL

from users

where state = 'WA'

and lastname 1like 'A%’

order by lastname, firstname;

name contact_info

____________________ e e e e e e e e e —— e —— e ————————
Aphrodite Acevedo (555) 555-0100

Caldwell Acevedo Nunc.sollicitudineexample.ca

Quinn Adams vel@example.com

Kamal Aguilar quis@example.com

Samson Alexander hendrerit.neque@example.com

Hall Alford ac.mattiseexample.com

Lane Allen et.netus@eexample.com

Xander Allison ac.facilisis.facilisiseexample.com
Amaya Alvarado dui.nec.tempus@example.com

Vera Alvarez at.arcu.Vestibulum@example.com

Yetta Anthony enim.siteexample.com

Violet Arnold ad.litoraeexample.comm

August Ashley consectetuer.euismod@example.com
Karyn Austin ipsum.primis.in@example.com
Lucas Ayers at@example.com

Funcion NULLIF

Compara dos argumentos y devuelve un valor nulo si los argumentos son iguales. Si no son iguales,
se devuelve el primer argumento.

Sintaxis

La expresion NULLIF compara dos argumentos y devuelve un valor nulo si los argumentos son
iguales. Si no son iguales, se devuelve el primer argumento. Esta expresion realiza lo contrario a lo
que realiza la expresion NVL o COALESCE.

NULLIF (expressionl, expression2)

Argumentos
expresion1, expresion2

Las columnas o expresiones de destino que se comparan. El tipo de retorno es el mismo que el
tipo de la primera expresion.

Expresiones condicionales 163

AWS Clean Rooms Referencia de SQL

Ejemplos

En el ejemplo siguiente, la consulta devuelve la cadena first porque los argumentos no son
iguales.

SELECT NULLIF('first', 'second');

En el ejemplo siguiente, la consulta devuelve NULL porque los argumentos literales de la cadena son
iguales.

SELECT NULLIF('first', 'first');

En el ejemplo siguiente, la consulta devuelve 1 porque los argumentos de enteros no son iguales.

SELECT NULLIF(1, 2);

En el ejemplo siguiente, la consulta devuelve NULL porque los argumentos de enteros son iguales.

SELECT NULLIF(1, 1);

En el siguiente ejemplo, la consulta devuelve valores nulos cuando los valores LISTID y SALESID
coinciden:

select nullif(listid,salesid), salesid

Expresiones condicionales 164

AWS Clean Rooms Referencia de SQL

from sales where salesid<1@ order by 1, 2 desc;

R OO N 00O OV U W B~DN

(9 rows)

Funciones del constructor

Una funcién constructora de SQL es una funcién que se utiliza para crear nuevas estructuras de
datos, como matrices o mapas.

Toman algunos valores de entrada y devuelven un nuevo objeto de estructura de datos. Las
funciones constructoras suelen tener el nombre del tipo de datos que crean, como ARRAY o MAP.

Las funciones constructoras son diferentes de las funciones escalares o agregadas, que funcionan
con los datos existentes y devuelven un unico valor. Las funciones constructoras se utilizan para
crear nuevas estructuras de datos que luego se pueden utilizar en el procesamiento o analisis
posterior de los datos.

AWS Clean Rooms admite las siguientes funciones constructoras:

Temas

» funcién constructora MAP

* Funcidén constructora NAMED STRUCT

* Funcidén constructora STRUCT

funcion constructora MAP

La funcion constructora MAP crea un mapa con los pares clave/valor dados.

Funciones del constructor 165

AWS Clean Rooms Referencia de SQL

Las funciones constructoras como MAP son utiles cuando necesita crear nuevas estructuras de
datos mediante programacion dentro de sus consultas SQL. Permiten crear estructuras de datos
complejas que se pueden utilizar en posteriores procesamientos o analisis de datos.

Sintaxis

map(key@, value@, keyl, valuel, ...)

Argumentos

clave0

Una expresion de cualquier tipo comparable. Todas las keyO deben compartir un tipo minimo
comun.

valorQ

Una expresion de cualquier tipo. Todos los valores EN deben compartir un tipo minimo comun.

Devuelve

La funcion MAP devuelve un MAPA con las claves escritas como el tipo menos comun de claveO y
los valores escritos como el tipo menos comun de valorQ.

Ejemplos

El siguiente ejemplo crea un mapa nuevo con dos pares clave-valor: la clave esta asociada al valor.
1.0 '2' Laclave 3.0 esta asociada al valor. '4"' A continuacion, el mapa resultante se devuelve
como salida de la sentencia SQL.

SELECT map(1.0, '2', 3.0, '4');
{1.0:"2",3.0:"4"}

Funcion constructora NAMED_STRUCT

La funcion constructora NAMED_STRUCT crea una estructura con los nombres y valores de campo
dados.

Las funciones constructoras como NAMED_STRUCT son utiles cuando se necesita crear nuevas
estructuras de datos mediante programacion en las consultas SQL. Permiten crear estructuras de

Funciones del constructor 166

AWS Clean Rooms Referencia de SQL

datos complejas, como estructuras o registros, que se pueden utilizar en el procesamiento o analisis
posterior de los datos.

Sintaxis

named_struct(namel, vall, name2, val2, ...)

Argumentos

nombre1

Un campo de nomenclatura literal STRING 1.

val1

Expresion de cualquier tipo que especifique el valor del campo 1.

Devuelve
La funcion NAMED_STRUCT devuelve una estructura cuyo campo 1 coincide con el tipo de val1.
Ejemplos

En el siguiente ejemplo, se crea una nueva estructura con tres campos con nombre: Se asigna el
valor al campo. "a" 1 "b"Se asigna el valor al campo. "c" Se le asigna 2. el valor 3 al campo. A
continuacion, la estructura resultante se devuelve como salida de la sentencia SQL.

SELECT named_struct("a", 1, "b", 2, "c", 3);
{Ilall:l’ ||b||:2’ ||C||:3}
Funcion constructora STRUCT
La funcion constructora STRUCT crea una estructura con los valores de campo dados.

Las funciones constructoras como STRUCT son utiles cuando se necesita crear nuevas estructuras
de datos mediante programacién dentro de las consultas SQL. Permiten crear estructuras de datos
complejas, como estructuras o registros, que se pueden utilizar en el procesamiento o analisis
posterior de los datos.

Sintaxis

struct(coll, col2, col3, ...)

Funciones del constructor 167

AWS Clean Rooms Referencia de SQL

Argumentos
col. 1

Un nombre de columna o cualquier expresion valida.

Devuelve
La funcion STRUCT devuelve una estructura cuyo campo1 coincide con el tipo de expr1.

Si los argumentos son referencias denominadas, los nombres se utilizan para nombrar el campo. De
lo contrario, los campos se denominan COLnN, donde N es la posicion del campo en la estructura.

Ejemplos

El siguiente ejemplo crea una nueva estructura con tres campos: al primer campo se le asigna el
valor 1. Al segundo campo se le asigna el valor 2. Al tercer campo se le asigna el valor 3. De forma
predeterminada, los campos de la estructura resultante se denominancoll, y col2col3, en funcion
de su posicidn en la lista de argumentos. A continuacion, la estructura resultante se devuelve como
salida de la sentencia SQL.

SELECT struct(l, 2, 3);
{"coll":1,"col2":2,"col3":3}

Funciones de formato de tipo de datos

El uso de una funcion de formato de tipos de datos le permite convertir valores de un tipo de datos
a otro. En cada una de estas funciones, el primer argumento siempre es el valor al que se va a dar
formato, mientras que el segundo argumento contiene la plantilla del formato nuevo.

AWS Clean Rooms Spark SQL admite varias funciones de formato de tipos de datos.

Temas

« BASEG4 funcion
* Funcion CAST

* Funcion DECODE
» Funcibn ENCODE
* Funcién HEX

Funciones de formato de tipo de datos 168

AWS Clean Rooms Referencia de SQL

* Funcién STR_TO_MAP
« TO_CHAR

* Funcion TO_DATE

+ TO_NUMBER

* UNBASE®64 funcion

* Funcion UNHEX

» Cadenas de formatos de fecha y hora

* Cadenas de formatos numéricos

BASEG4 funcion

La BASE64 funcion convierte una expresion en una cadena de base 64 mediante la codificacion de
transferencia RFC2 045 en Base64 para MIME.

Sintaxis

base64(expr)

Argumentos
expr

Una expresion BINARIA o una CADENA que la funcion interpretara como BINARIA.

Tipo de devolucion
STRING
Ejemplo

Para convertir la entrada de cadena dada en su representacién codificada en Base64, utilice el
siguiente ejemplo. El resultado es la representacion codificada en Base64 de la cadena de entrada
«Spark SQL», que es «U3bhcMsgU1fm».

SELECT base64('Spark SQL');
U3BhcmsgU1FM

Funciones de formato de tipo de datos 169

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2045

AWS Clean Rooms Referencia de SQL

Funcion CAST

La funcion CAST convierte un tipo de datos en otro tipo compatible. Por ejemplo, puede convertir una
cadena en una fecha o un tipo numérico en una cadena. CAST realiza una conversion en tiempo de
ejecucion, lo que significa que la conversidn no cambia el tipo de datos de un valor en una tabla de
origen. Solo cambia en el contexto de la consulta.

Algunos tipos de datos requieren una conversion explicita a otros tipos de datos mediante la funcion
CAST. Otros tipos de datos se pueden convertir implicitamente, como parte de otro comando, sin
usar CAST. Consulte Conversion y compatibilidad de tipos.

Sintaxis

Utilice cualquiera de estas dos formas sintacticas equivalentes para convertir expresiones de un tipo
de datos a otro.

CAST (expression AS type)

Argumentos
expresion

Una expresion que toma el valor de uno o mas valores, como un nombre de columna o un literal.
La conversidn de valores nulos devuelve valores nulos. La expresion no puede tener cadenas en
blanco ni vacias.

type

Uno de los compatiblesTipos de datos, excepto los tipos de datos BINARY y BINARY VARIANT.

Tipo de devolucion

CAST devuelve el tipo de datos especificado por el argumento type.

(® Note

AWS Clean Rooms devuelve un error si intenta realizar una conversion problematica, como
una conversion DECIMAL que pierde precision, como la siguiente:

select 123.456::decimal(2,1);

Funciones de formato de tipo de datos 170

AWS Clean Rooms Referencia de SQL

0 una conversion a un valor de INTEGER que genera un desbordamiento:

select 12345678::smallint;

Ejemplos
Las siguientes dos consultas son equivalentes. Ambas convierten un valor decimal en uno entero:

select cast(pricepaid as integer)
from sales where salesid=100;

pricepaid

select pricepaid::integer
from sales where salesid=100;

pricepaid

Lo siguiente produce un resultado similar. No requiere datos de muestra para ejecutarse:

select cast(162.00 as integer) as pricepaid;

pricepaid

En este ejemplo, los valores de una columna de marca temporal se convierten en fechas, lo que
elimina la hora de cada resultado:

select cast(saletime as date), salesid
from sales order by salesid limit 10;

Funciones de formato de tipo de datos 171

AWS Clean Rooms Referencia de SQL

saletime |
___________ T
2008-02-18 |
2008-06-06 |
2008-06-06 |
2008-06-09 |
2008-08-31 |
2008-07-16 |
2008-06-26 |
2008-07-10 |
2008-07-22 |
2008-08-06 |

O 0o NO UL A NN P

10

(10 rows)

Si no utilizara CAST como se ilustra en el ejemplo anterior, los resultados incluirian la hora:
2008-02-18 02:36:48.

La siguiente consulta convierte los datos de caracteres variables en una fecha. No requiere datos de
muestra para ejecutarse.

select cast('2008-02-18 02:36:48' as date) as mysaletime;

mysaletime

2008-02-18
(1 row)

En este ejemplo, los valores en una columna de fecha se convierten en marcas temporales:

select cast(caldate as timestamp), dateid
from date ordexr by dateid limit 10;

caldate | dateid
____________________ Fmm e e
2008-01-01 00:00:00 | 1827
2008-01-02 00:00:00 | 1828
2008-01-03 00:00:00 | 1829
2008-01-04 00:00:00 | 1830
2008-01-05 00:00:00 | 1831
2008-01-06 00:00:00 | 1832

Funciones de formato de tipo de datos 172

AWS Clean Rooms Referencia de SQL

2008-01-07 00:00:00 | 1833
2008-01-08 00:00:00 | 1834
2008-01-09 00:00:00 | 1835
2008-01-10 00:00:00 | 1836

(10 rows)

En un caso como el del ejemplo anterior, puede obtener control adicional sobre el formato de salida
mediante el uso de TO_CHAR.

En este ejemplo, un valor entero se convierte en una cadena de caracteres:

select cast(2008 as char(4));

En este ejemplo, un valor DECIMAL (6,3) se convierte en un valor DECIMAL (4,1):

select cast(109.652 as decimal(4,1));

numeric

Este ejemplo muestra una expresién mas compleja. La columna PRICEPAID (una columna
DECIMAL(8,2)) de la tabla SALES se convierte en una columna DECIMAL(38,2) y los valores se
multiplican por 100000000000000000000:

select salesid, pricepaid::decimal(38,2)*100000000000000000000
as value from sales where salesid<1@ oxrder by salesid;

salesid

I

+

| 72800000000000000000000 .00
| 7600000000000000000000 .00
| 35000000000000000000000 .00
| 17500000000000000000000 .00
| 15400000000000000000000 .00
| 39400000000000000000000 .00

Funciones de formato de tipo de datos 173

AWS Clean Rooms Referencia de SQL

7 | 78800000000000000000000 .00
8 | 19700000000000000000000 .00
9 | 59100000000000000000000 .00

(9 rows)

Funcion DECODE

La funcion DECODE es la contraparte de la funcion ENCODE, que se utiliza para convertir una
cadena a un formato binario mediante una codificacion de caracteres especifica. La funcién
DECODE toma los datos binarios y los vuelve a convertir a un formato de cadena legible mediante la
codificacion de caracteres especificada.

Esta funcidn resulta util cuando necesita trabajar con datos binarios almacenados en una base de
datos y debe presentarlos en un formato legible para las personas, o cuando necesita convertir datos
entre diferentes codificaciones de caracteres.

Sintaxis

decode(expr, charset)

Argumentos
expr

Expresion binaria codificada en charset.

juego de caracteres
Una expresion de cadena.
Codificaciones de juegos de caracteres compatibles (no distinguen entre mayusculas y
minusculas):'US-ASCII','IS0-8859-1"', 'UTF-8"' 'UTF-16BE', 'UTF-16LE"' y. 'UTF-16"
Tipo de devolucion
La funcion DECODE devuelve una CADENA.
Ejemplo

El siguiente ejemplo tiene una tabla llamada messages con una columna denominada
message_text que almacena los datos de los mensajes en formato binario mediante la codificacion

Funciones de formato de tipo de datos 174

AWS Clean Rooms Referencia de SQL

de caracteres UTF-8. La funcion DECODE vuelve a convertir los datos binarios a un formato de
cadena legible. El resultado de esta consulta es el texto legible del mensaje almacenado en la tabla
de mensajes, con el ID123, convertido del formato binario a una cadena mediante la 'utf-8'
codificacion.

SELECT decode(message_text, 'utf-8') AS message
FROM messages
WHERE message_id = 123;

Funcion ENCODE

La funcion ENCODE se utiliza para convertir una cadena en su representacion binaria mediante una
codificacion de caracteres especifica.

Esta funcién resulta util cuando se necesita trabajar con datos binarios o cuando se necesita
convertir entre diferentes codificaciones de caracteres. Por ejemplo, puede utilizar la funcion
ENCODE cuando almacene datos en una base de datos que requiera almacenamiento binario o
cuando necesite transferir datos entre sistemas que utilizan codificaciones de caracteres diferentes.

Sintaxis

encode(str, charset)

Argumentos

str

Una expresion STRING que se va a codificar.

juego de caracteres
Una expresion STRING que especifica la codificacion.

Codificaciones de juegos de caracteres compatibles (no distinguen mayusculas de
minusculas):'US-ASCII','IS0-8859-1", 'UTF-8''UTF-16BE", 'UTF-16LE"' y. 'UTF-16"

Tipo de devolucion

La funcion ENCODE devuelve un binario.

Funciones de formato de tipo de datos 175

AWS Clean Rooms Referencia de SQL

Ejemplo

El siguiente ejemplo convierte la cadena 'abc' en su representacion binaria mediante la 'utf-8'
codificacion, lo que en este caso hace que se devuelva la cadena original. Esto se debe a que la
'utf-8"' codificacion es una codificacion de caracteres de ancho variable que puede representar
todo el conjunto de caracteres ASCII (que incluye las letras 'a' y'c') utilizando un solo byte por
caracter. 'b"' Por lo tanto, la representacion binaria del 'abc' uso 'utf-8' es la misma que la de
la cadena original.

SELECT encode('abc', 'utf-8');
abc

Funcion HEX

La funcion HEX convierte un valor numérico (ya sea un numero entero o un numero de punto
flotante) en su correspondiente representacion de cadena hexadecimal.

El hexadecimal es un sistema numérico que utiliza 16 simbolos distintos (0-9 y A-F) para representar
valores numéricos. Se utiliza habitualmente en informatica y programacion para representar datos
binarios en un formato mas compacto y legible para las personas.

Sintaxis
hex(expr)

Argumentos
expr

Expresion BIGINT, BINARIA o STRING.

Tipo de devolucion
HEX devuelve una cadena. La funcion devuelve la representacién hexadecimal del argumento.
Ejemplo

El siguiente ejemplo toma el valor entero 17 como entrada y le aplica la funcién HEX (). La salida
esll, que es la representacion hexadecimal del valor de entradal?.

SELECT hex(17);

Funciones de formato de tipo de datos 176

AWS Clean Rooms Referencia de SQL

11

El siguiente ejemplo convierte la cadena 'Spark_SQL' en su representacion hexadecimal. El
resultado es537061726B2053514C, que es la representacion hexadecimal de la cadena de
entrada'Spark_SQL"'.

SELECT hex('Spark_SQL");
537061726B2053514C

En este ejemplo, la cadena 'Spark_SQL' se convierte de la siguiente manera:

« 'S'->53
 'p'->70
+ 'a'-> 61
e r->72"
+ k'->6B
e ''>20
+ 'S'->53
« 'Q' ->51
« 'L'->4C

La concatenacion de estos valores hexadecimales da como resultado el resultado final».
537061726B2@53514C"

Funcion STR_TO_MAP

La funcion STR_TO_MAP es una funcion de conversion. string-to-map Convierte una representacion
en cadena de un mapa (o diccionario) en una estructura de datos cartografica real.

Esta funcidn resulta util cuando necesita trabajar con estructuras de datos de mapas en SQL, pero
los datos se almacenan inicialmente como una cadena. Al convertir la representacion de cadena en
un mapa real, puede realizar operaciones y manipulaciones en los datos del mapa.

Sintaxis

str_to_map(text[, pairDelim[, keyValueDelim]])

Funciones de formato de tipo de datos 177

AWS Clean Rooms Referencia de SQL

Argumentos
texto

Una expresion STRING que representa el mapa.

PairDelim

Un literal STRING opcional que especifica como separar las entradas. El valor predeterminado es
unacoma()',"'.

keyValueDelim

Un literal STRING opcional que especifica como separar cada par clave-valor. El valor
predeterminado es dos puntos (). ':"

Tipo de devolucién

La funcién STR_TO_MAP devuelve un MAPA de CADENAS tanto para las claves como para los
valores. Tanto PairDelim como yo se tratan como expresiones regulares keyValueDelim.

Ejemplo

El siguiente ejemplo toma la cadena de entrada y los dos argumentos delimitadores y convierte la
representacion de la cadena en una estructura de datos de mapa real. En este ejemplo especifico,
la cadena de entrada 'a:1,b:2,c:3"' representa un mapa con los siguientes pares clave-

valor: 'a' eslaclavey '1' eselvalor. 'b'eslaclavey '2"' eselvalor. 'c'eslaclavey '3’

es el valor. El ', ' delimitador se usa para separar los pares clave-valory el ' : ' delimitador

se usa para separar la clave y el valor dentro de cada par. El resultado de esta consulta es:.
{"a":"1","b":"2","c":"3"} Esta es la estructura de datos del mapa resultante, donde las
clavesestan 'a' 'b''c', vy, y los valores correspondientes son '1''2',y'3".

SELECT str_to_map('a:1,b:2,c:3', ',', ':');
{Ilall:lllll’ Ilbll:llzll’ IICII:I|3II}

El siguiente ejemplo demuestra que la funcion STR_TO_MAP espera que la cadena de entrada
esté en un formato especifico, con los pares clave-valor delimitados correctamente. Si la cadena de
entrada no coincide con el formato esperado, la funcién seguira intentando crear un mapa, pero es
posible que los valores resultantes no sean los esperados.

SELECT str_to_map('a');

Funciones de formato de tipo de datos 178

AWS Clean Rooms Referencia de SQL

{"a":null}

TO_CHAR

TO_CHAR convierte una marca temporal o una expresion numérica a un formato de datos de cadena
de caracteres.

Sintaxis

TO_CHAR (timestamp_expression numeric_expression , 'format')

Argumentos

timestamp_expression

Una expresion que da lugar a un valor de tipo TIMESTAMP o TIMESTAMPTZ, o bien, un valor
que se pueda convertir de forma implicita en una marca temporal.

numeric_expression

Una expresion que de como resultado un valor de tipo de datos numérico o un valor que se
pueda convertir implicitamente en un tipo numérico. Para obtener mas informacion, consulte
Tipos numéricos. TO_CHAR inserta un espacio a la izquierda de la cadena numérica.

(® Note
TO CHAR no admite valores DECIMAL de 128 bits.

format

El formato para el valor nuevo. Para conocer los formatos validos, consulte Cadenas de formatos
de fecha y horay Cadenas de formatos numéricos.

Tipo de devolucién

VARCHAR

Funciones de formato de tipo de datos 179

AWS Clean Rooms Referencia de SQL

Ejemplos

En el ejemplo siguiente, se convierte una marca temporal en un valor con la fecha y la hora en un

formato con el nombre del mes relleno con nueve caracteres, el nombre del dia de la semanay el
numero de dia del mes.

select to_char(timestamp '2009-12-31 23:15:59', 'MONTH-DY-DD-YYYY HH12:MIPM');
to_char

DECEMBER -THU-31-2009 11:15PM

En el siguiente ejemplo, se convierte una marca temporal en un valor con el numero de dia del aio.

select to_char(timestamp '2009-12-31 23:15:59', 'DDD');

to_char

En el siguiente ejemplo, se convierte una marca temporal en un numero de dia de ISO de la semana.

select to_char(timestamp '2022-05-16 23:15:59', 'ID');

to_char

El siguiente ejemplo extrae el nombre del mes de una fecha.

select to_char(date '2009-12-31', 'MONTH');

to_char

DECEMBER

En el siguiente ejemplo, se convierte cada valor STARTTIME en la tabla EVENT a una cadena que
consta de horas, minutos y segundos.

select to_char(starttime, 'HH12:MI:SS')
from event where eventid between 1 and 5
order by eventid;

Funciones de formato de tipo de datos 180

AWS Clean Rooms Referencia de SQL

to_char

(5 rows)

En el siguiente ejemplo, se convierte un valor completo de marca temporal a un formato diferente.

select starttime, to_char(starttime, 'MON-DD-YYYY HH12:MIPM')
from event where eventid=1;

starttime | to_char
_____________________ e e e e ——

2008-01-25 14:30:00 | JAN-25-2008 02:30PM
(1 row)

En el siguiente ejemplo, se convierte un literal de marca temporal a una cadena de caracteres.

select to_char(timestamp '2009-12-31 23:15:59', 'HH24:MI:SS');
to_char

23:15:59
(1 row)

En el siguiente ejemplo se convierte un numero a una cadena de caracteres con el signo negativo al
final.

select to_char(-125.8, '999D99S');
to_char

En el siguiente ejemplo se convierte un numero a una cadena de caracteres con el simbolo de
moneda.

select to_char(-125.88, '$S999D99');

Funciones de formato de tipo de datos 181

AWS Clean Rooms Referencia de SQL

to_char

En el siguiente ejemplo, se convierte un numero a una cadena de caracteres con corchetes
angulares para numeros negativos.

select to_char(-125.88, '$999D99PR');
to_char

$<125.88>
(1 row)

En el siguiente ejemplo se convierte un numero a una cadena de numeros romanos.

select to_char(125, 'RN');
to_char

En el ejemplo siguiente se muestra el dia de la semana.

SELECT to_char(current_timestamp, 'FMDay, FMDD HH12:MI:SS');
to_char

Wednesday, 31 09:34:26
En el ejemplo siguiente se muestra el sufijo de numero ordinal de un numero.

SELECT to_char(482, '999th');
to_char

En el siguiente ejemplo, se resta la comisidén del precio pagado en la tabla de ventas. La diferencia,
luego, se redondea hacia arriba y se convierte en un numero romano, que se muestra en la columna

to_char:

Funciones de formato de tipo de datos 182

AWS Clean Rooms

Referencia de SQL

select salesid, pricepaid, commission, (pricepaid - commission)
as difference, to_char(pricepaid - commission, 'rn') from sales

group by
order by

salesid

O 00 N O Ul A WN P

10
(10 rows

)

sales.pricepaid, sales.commission, salesid

salesid limit 10;

| pricepaid | commission | difference | to_char

R R R e
| 728.00 | 109.20 | 618.80 | dcxix
| 76.00 | 11.40 | 64.60 | Ixv
| 350.00 | 52.50 | 297.50 | ccxcviii
| 175.00 | 26.25 | 148.75 | cxlix
| 154.00 | 23.10 | 130.90 | cxxxi
| 394.00 | 59.10 | 334.90 | CCCXXXV
| 788.00 | 118.20 | 669.80 | dclxx
| 197.00 | 29.55 | 167.45 | clxvii
| 591.00 | 88.65 | 502.35 | dii
| 65.00 | 9.75 | 55.25 | lv

En el siguiente ejemplo, se agrega el simbolo de la moneda a los valores de diferencia que se

muestran en la columna to_char:

select salesid, pricepaid, commission, (pricepaid - commission)

as difference, to_char(pricepaid - commission,

group by sales.pricepaid, sales.commission, salesid
order by salesid limit 10;

pricepaid | commission | difference | to_char
----------- R it ettt ekt
728.00 | 109.20 | 618.80 | $ 618.80
76.00 | 11.40 | 64.60 | $ 64.60
350.00 | 52.50 | 297.50 | $ 297.50
175.00 | 26.25 | 148.75 | $ 148.75
154.00 | 23.10 | 130.90 | $ 130.90
394.00 | 59.10 | 334.90 | $ 334.90
788.00 | 118.20 | 669.80 | $§ 669.80
197.00 | 29.55 | 167.45 | $ 167.45
591.00 | 88.65 | 502.35 | $ 502.35
65.00 | 9.75 | 55.25 | $ 55.25

En el siguiente ejemplo, se indica el siglo en el que se realiz6 la venta.

'199999D99') from sales

Funciones de formato de tipo de datos

183

AWS Clean Rooms Referencia de SQL

select salesid, saletime, to_char(saletime, 'cc') from sales
order by salesid limit 10;

salesid | saletime | to_char
_________ S S
1 | 2008-02-18 02:36:48 | 21
2 | 2008-06-06 05:00:16 | 21
3 | 2008-06-06 08:26:17 | 21
4 | 2008-06-09 08:38:52 | 21
5 | 2008-08-31 09:17:02 | 21
6 | 2008-07-16 11:59:24 | 21
7 | 2008-06-26 12:56:06 | 21
8 | 2008-07-10 02:12:36 | 21
9 | 2008-07-22 02:23:17 | 21
10 | 2008-08-06 02:51:55 | 21
(10 rows)

En el siguiente ejemplo, se convierte cada valor STARTTIME en la tabla EVENT en una cadena que
consta de horas, minutos, segundos y zona horaria.

select to_char(starttime, 'HH12:MI:SS TZ')
from event where eventid between 1 and 5
order by eventid;

07:00:00 UTC
(5 rows)

(10 rows)

En el siguiente ejemplo, se muestra el formato para segundos, milisegundos y microsegundos.

select sysdate,

to_char(sysdate, 'HH24:MI:SS') as seconds,
to_char(sysdate, 'HH24:MI:SS.MS') as milliseconds,
to_char(sysdate, 'HH24:MI:SS:US') as microseconds;

Funciones de formato de tipo de datos 184

AWS Clean Rooms Referencia de SQL

timestamp seconds | milliseconds | microseconds

2015-04-10 18:45:09 18:45:09 | 18:45:09.325 | 18:45:09:325143

Funcion TO_DATE

TO_DATE convierte una fecha que se representa con una cadena de caracteres en un tipo de datos
DATE.

Sintaxis

TO_DATE (date_str)

TO_DATE (date_str, format)

Argumentos

date_str

Una cadena de fecha o un tipo de datos que se puede convertir en una cadena de fecha.

format

Una cadena literal que coincide con los patrones de fecha y hora de Spark. Para ver patrones de
fecha y hora validos, consulta Patrones de fecha y hora para formatear y analizar.

Tipo de devolucion

TO_DATE devuelve un valor DATE, en funcion del valor de format.

Si la conversion a formato produce un error, se devuelve un error.

Ejemplos

La siguiente instruccién SQL convierte la fecha @2 Oct 2001 a un tipo de datos de fecha.

select to_date('02 Oct 2001', 'dd MMM yyyy');

to_date

Funciones de formato de tipo de datos 185

https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html

AWS Clean Rooms

Referencia de SQL

2001-10-02
(1 row)

La siguiente instruccién SQL convierte la cadena 20010631 en una fecha.

select to_date('20010631', 'yyyyMMdd');

La siguiente instruccion SQL convierte la cadena 20010631 en una fecha:

to_date('20010631', 'YYYYMMDD', TRUE);

El resultado es un valor nulo porque solo hay 30 dias en junio.

to_date

TO_NUMBER

TO_NUMBER convierte una cadena en un valor numérico (decimal).

Sintaxis

to_number(string, format)

Argumentos
string

Cadena que se convertira. El formato debe ser un valor literal.

format

El segundo argumento es una cadena de formato que indica como se debe analizar la cadena
original para crear el valor numérico. Por ejemplo, el formato '99D999"' especifica que la cadena
qgue se convertira consta de cinco digitos con el punto decimal en la tercera posicion. Por ejemplo,
to_number('12.345"', '99D999"') devuelve 12.345 como un valor numérico. Para obtener

una lista de formatos validos, consulte Cadenas de formatos numéricos.

Funciones de formato de tipo de datos

186

AWS Clean Rooms Referencia de SQL

Tipo de devolucion

TO_NUMBER devuelve un numero DECIMAL.

Si la conversion a formato produce un error, se devuelve un error.
Ejemplos

En el siguiente ejemplo, se convierte la cadena 12, 454 .8- a un numero:

select to_number('12,454.8-"', '99G999D9S');
to_number

-12454.8

En el siguiente ejemplo, se convierte la cadena $ 12,454 .88 a un nimero:

select to_number('$ 12,454.88', 'L 99G999D99');
to_number

12454 .88

En el siguiente ejemplo, se convierte la cadena $ 2,012, 454.88 a un nimero:

select to_number('$ 2,012,454.88', 'L 9,999,999.99');

to_number

2012454 .88

UNBASEG64 funcidn
La UNBASEG64 funcion convierte un argumento de una cadena de base 64 a una cadena binaria.

La codificaciéon Base64 se suele utilizar para representar datos binarios (como imagenes, archivos
o informacidn cifrada) en un formato textual que sea seguro para su transmision a través de varios
canales de comunicacion (como el correo electronico, los parametros de URL o el almacenamiento
de bases de datos).

Funciones de formato de tipo de datos 187

AWS Clean Rooms Referencia de SQL

La UNBASEG64 funcion le permite invertir este proceso y recuperar los datos binarios originales.
Este tipo de funcionalidad puede resultar util en situaciones en las que necesite trabajar con datos
codificados en formato Base64, como cuando se integran con sistemas externos o APIs cuando se
utiliza Base64 como mecanismo de transferencia de datos.

Sintaxis

unbase64(expr)

Argumentos
expr

Expresion STRING en formato base64.

Tipo de devolucion
BINARY
Ejemplo

En el ejemplo siguiente, la cadena codificada en base64 'U3BhcmsgU1FM' se convierte de nuevo
en la cadena original. 'Spark SQL'

SELECT unbase64('U3BhcmsgU1FM');
Spark SQL

Funcion UNHEX

La funcion UNHEX convierte una cadena hexadecimal a su representacion de cadena original.

Esta funcidn puede resultar util en situaciones en las que necesite trabajar con datos que se hayan
almacenado o transmitido en formato hexadecimal y necesite restaurar la representacién de cadena
original para su posterior procesamiento o visualizacién.

La funcidon UNHEX es la contraparte de la funcion HEX.

Sintaxis

unhex(expr)

Funciones de formato de tipo de datos 188

AWS Clean Rooms Referencia de SQL

Argumentos
expr

Expresion de cadena de caracteres hexadecimales.

Tipo de devolucion
UNHEX devuelve un binario.

Si la longitud de expr es impar, el primer caracter se descarta y el resultado se rellena con un byte
nulo. Si expr contiene caracteres que no son hexadecimales, el resultado es nulo.

Ejemplo

El siguiente ejemplo convierte una cadena hexadecimal a su representacion de cadena original
mediante las funciones UNHEX () y DECODE () juntas. En la primera parte de la consulta, se

utiliza la funcion UNHEX () para convertir la cadena hexadecimal '5637061726B2053514C' en su
representacion binaria. En la segunda parte de la consulta, se utiliza la funcion DECODE () para
volver a convertir los datos binarios obtenidos de la funcion UNHEX () en una cadena, mediante la
codificacion de caracteres «UTF-8». El resultado de la consulta es la cadena original, «Spark_SQL»,
que se convirtié a hexadecimal y, después, se volvio a convertir en cadena.

SELECT decode(unhex('537061726B2053514C'), 'UTF-8');
Spark SQL

Cadenas de formatos de fecha y hora

Puede utilizar patrones de fecha y hora en los siguientes escenarios comunes:

« Al trabajar con fuentes de datos CSV y JSON para analizar y formatear contenido de fecha y hora
Al convertir entre tipos de cadenas y tipos de fecha o marca horaria mediante funciones como:

* unix_timestamp

+ date_format

* a _unix_timestamp

+ from_unixtime

* to_date

Funciones de formato de tipo de datos 189

AWS Clean Rooms

Referencia de SQL

+ to_timestamp
» from_utc_timestamp

* a _utc_timestamp

Utilice las letras del patron de la siguiente tabla para analizar y formatear la fecha y la marca de

tiempo.

Partes de fecha o de hora

Significado

A la manana o a la tarde del
dia, presentadas como a.m. o
p.m.

Dia del afio, presentado como
un numero de 3 digitos

Dia del mes, presentado como
un numero de 2 digitos

Dia de la semana, presentado
como texto

Dia de la semana del mes
alineado, presentado como un
numero de 1 digito

Indicador de era, presentado
como texto

La hora del reloj de la mafana
o la tarde, presentada como
un numero de 2 digitos

Hora del dia, presentada
como un numero de 2 digitos
del 0 al 23

Ejemplos

p. m.

189

¢ Verdad
Martes

3

CE
Anno Domini

12

Funciones de formato de tipo de datos

190

AWS Clean Rooms

Referencia de SQL

Partes de fecha o de hora

M/L

Q/q

Significado

Hora del reloj del dia,
presentada como un numero
de 2 digitos del 1 al 24

Hora de la manana o de la
tarde, presentada como un
numero de 2 digitos del 0 al
11

Minuto de la hora, presentado
como un numero de 2 digitos

Mes del ano, presentado
como mes

Desfase de zona localizada
con respecto a UTC

Trimestre del ano, presentad
o como numero (del 1 al 4) o
texto

Segundo del minuto,
presentado como un numero
de 2 digitos

Ejemplos

1

30

7

07

Julio

julio
GMT+8
GMT+ 8:00
UTC- 08:00
3

03

Q3

3er trimestre

55

Funciones de formato de tipo de datos

191

AWS Clean Rooms Referencia de SQL

Partes de fecha o de hora Significado Ejemplos

S Fracciéon de segundo, 978
presentada como fraccion

\% Identificador de zona horaria, America/Los_Angeles
presentado como identificador
de zona Za
08:30
X Desplazamiento de zona con +0000
respecto a UTC (offset-X)
-08
-0830
- 08:30
-083015
- 08:30:15
X Desfase de zona con respecto Z
a UTC; donde Z es igual a
cero -08
-0830
- 08:30
-083015
- 08:30:15
y Ano, presentado como afo 2020
20
z Nombre de la zona horaria, Hora estandar del Pacifico
presentado como texto
PASADO

Funciones de formato de tipo de datos 192

AWS Clean Rooms Referencia de SQL

Partes de fecha o de hora Significado Ejemplos
Z Desplazamiento de zona con +0000
respecto a UTC (offset-Z)
-08:00
- 08:00

' Escape para texto, presentado N/A
como delimitador

" Comilla simple, presentada en

forma literal
[Inicio de seccion opcional N/A
] Final de seccion opcional N/A

El numero de letras del patron determina el tipo de formato:

Formato de texto

* Use de 1 a 3 letras para la forma abreviada (por ejemplo, «Mon» para lunes)
+ Use exactamente 4 letras para el formulario completo (por ejemplo, «lunes»)

* No utilices 5 0 mas letras, ya que se producira un error

Formato numérico (n)

 El valor n representa el numero maximo de letras permitido
» Para patrones de una sola letra:
+ La salida utiliza un minimo de digitos sin relleno
» Para patrones de letras multiples:
» La salida se rellena con ceros para que coincida con el ancho del recuento de letras

« Al analizar, la entrada debe contener el numero exacto de digitos

Formato de ndmero/texto

Funciones de formato de tipo de datos 193

AWS Clean Rooms Referencia de SQL

» Para 3 o mas letras, siga las reglas de formato de texto

« Para menos letras, sigue las reglas de formato numérico

Formato de fraccion

Utilice de 1 a 9 caracteres en forma de «S» (por ejemplo, SSSSSS)
+ Para analizar:

» Acepte fracciones entre 1 y el numero de caracteres S
+ Para formatear:

* Rellene con ceros para que coincidan con el numero de caracteres S

Admite hasta 6 digitos para una precision de microsegundos

» Puede analizar nanosegundos pero trunca los digitos adicionales

Formato de ano

El recuento de letras establece el ancho de campo minimo para el relleno

Para dos letras:

* Imprime los dos ultimos digitos

* Analiza los anos entre 2000 y 2099

« Para menos de cuatro letras (excepto dos):

* Muestra el signo solo para los anos negativos

No utilices 7 o mas letras, ya que se producira un error

Formato de mes

* Use «M» para el formulario estandar o «L» para el formulario independiente
* «M» o «L» simples:

* Muestra los numeros de los meses del 1 al 12 sin relleno

« 'MM' o0 'LL"
* Muestra los numeros de mes del 1 al 12 con relleno
e 'MMM'":

* Muestra el nombre abreviado del mes en formato estandar

Funciones de formato de tipo de datos 194

AWS Clean Rooms

Referencia de SQL

» Debe formar parte de un patrén de fechas completo
« 'LLL"
* Muestra el nombre abreviado del mes en forma independiente
« Uselo solo para formatear por meses
« 'MMMM":
» Muestra el nombre completo del mes en formato estandar
« Uselo para fechas y marcas de tiempo
* «JAJAJA»:
* Muestra el nombre completo del mes en formato independiente

« Uselo para formatear solo por meses

Formatos de zonas horarias

« am-pm: Usa solo una letra

 ID de zona (V): utilice solo 2 letras

* Nombres de zona (z):
* De 1 a 3 letras: muestra el nombre corto
* 4 letras: muestra el nombre completo

* No utilices 5 o0 mas letras

Formatos offset

e XyX:
* 1 letra: Muestra la hora (+01) o la hora-minuto (+0130)
+ 2 letras: muestra la hora y el minuto sin dos puntos (+0130)
3 letras: muestra la hora y el minuto con dos puntos (+ 01:30)
* 4 |etras: se muestra hour-minute-second sin dos puntos (+013015)
+ 5 letras: se muestra hour-minute-second con dos puntos (+ 01:30:15)
» Xusa 'Z' para el desplazamiento a cero
* x usa '+00', '+0000' o '+ 00:00 'para el desplazamiento a cero
+ O:

* 1 letra: muestra la forma abreviada (GMT+8)

Funciones de formato de tipo de datos

195

AWS Clean Rooms Referencia de SQL

* 4 |etras: muestra la forma completa (GMT+ 08:00)

. Z
* De 1 a 3 letras: muestra la hora y el minuto sin dos puntos (+0130)
* 4 |etras: muestra el formulario localizado completo

» 5 letras: se muestra hour-minute-second con dos puntos

Secciones opcionales

Utilice corchetes [] para marcar el contenido opcional

* Puede anidar secciones opcionales

Todos los datos validos aparecen en la salida

» La entrada puede omitir secciones opcionales enteras

® Note

Los simbolos «E», «F», «g» y «Q» solo funcionan para formatear fecha y hora (como
date_format). No los utilices para analizar fechas y horas (como to_timestamp).

Cadenas de formatos numeéricos

Las siguientes cadenas de formato numérico se aplican a funciones como TO_NUMBER y
TO_CHAR.

» Para ver ejemplos de como formatear cadenas como numeros, consulte TO_NUMBER.

» Para ver ejemplos de como formatear numeros como cadenas, consulte TO_CHAR.

Formato Description (Descripcion)

9 Valor numérico con la cantidad especificada de
digitos.

0 Valor numérico con ceros a la izquierda.

. (period), D Punto decimal.

Funciones de formato de tipo de datos 196

AWS Clean Rooms

Referencia de SQL

Formato Description (Descripcion)

, (coma) Separador de miles.

CC Cadigo de siglo. Por ejemplo, el siglo XXI
comenzo el 01/01/2001 (compatible solo con
TO_CHAR).

FM Modo de relleno. Suprime espacios de relleno y
ceros.

PR Valor negativo entre paréntesis.

S Signo anclado a un numero.

L El simbolo de la moneda en la posicidon
especificada.

G Separador de grupo.

MI Signo menos en la posicion especificada para
numeros menores que 0.

PL Signo mas en la posicion especificada para
numeros mayores que 0.

SG Signo mas o0 menos en la posicion especific
ada.

RN Numero romano entre 1y 3999 (compatible
solo con TO_CHAR).

TH o th Sufijo de numero ordinal. No convierte

fracciones ni valores menores que cero.

Funciones de fecha y hora

Las funciones de fecha y hora le permiten realizar una amplia gama de operaciones con datos de
fecha y hora, como extraer partes de una fecha, realizar calculos de fecha, formatear fechas y horas

Funciones de fecha y hora 197

AWS Clean Rooms Referencia de SQL

y trabajar con la fecha y hora actuales. Estas funciones son esenciales para tareas como el analisis
de datos, la elaboracion de informes y la manipulacion de datos que implican datos temporales.

AWS Clean Rooms admite las siguientes funciones de fecha y hora:

Temas

* Funcion ADD_MONTHS

» Funcion CONVERT_TIMEZONE
* Funcion CURRENT_DATE

* Funcién CURRENT_TIMESTAMP
* Funcion DATE_ADD

» Funcién DATE_DIFF

» Funcién DATE_PART

» Funcién DATE_TRUNC

* Funcion DAY

* Funcion DAYOFMONTH

» Funcion DAYOFWEEK

* Funcién DAYOFYEAR

* Funcién EXTRACT

* Funciéon FROM_UTC_TIMESTAMP
* Funcion HOUR

* Funcion MINUTE

* Funcion MONTH

+ SEGUNDA funcién

* Funcién TIMESTAMP

* Funcion TO_TIMESTAMP

* Funcion YEAR

» Partes de fecha para funciones de fecha o marca temporal

Funcion ADD_MONTHS

ADD_MONTHS agrega la cantidad de meses especificada a una expresion o un valor de fecha o
marca temporal. La funcion DATE_ADD ofrece una funcionalidad similar.

Funciones de fecha y hora 198

AWS Clean Rooms Referencia de SQL

Sintaxis

ADD_MONTHS({date | timestamp}, integer)

Argumentos
date | timestamp

Una columna de marca temporal o fecha o una expresion que, implicitamente, se convierte en
una marca temporal o fecha. Si la fecha es el ultimo dia del mes, o si el mes resultante es mas
corto, la funcion devuelve el ultimo dia del mes en el resultado. Para otras fechas, el resultado
tiene el mismo numero de dia que la expresion de fecha.

integer

Un numero entero positivo 0 negativo. Use un numero negativo para restar meses de las fechas.

Tipo de devolucién
TIMESTAMP
Ejemplo

La siguiente consulta utiliza la funcion ADD_MONTHS dentro de una funcion TRUNC. La funcién
TRUNC quita la hora del dia del resultado de ADD_MONTHS. La funcion ADD_MONTHS agrega
12 meses a cada valor de la columna CALDATE.

select distinct trunc(add_months(caldate, 12)) as calplusl2,
trunc(caldate) as cal

from date

order by 1 asc;

calplusl2
2009-01-01 | 2008-01-01
2009-01-02 | 2008-01-02
2009-01-03 | 2008-01-03
(365 rows)
En los ejemplos a continuacion, se demuestra el comportamiento resultante cuando la funcion
ADD_MONTHS opera sobre fechas con meses que tienen diferente cantidad de dias.

Funciones de fecha y hora 199

AWS Clean Rooms Referencia de SQL

select add_months('2008-03-31',1);
add_months

2008-04-30 00:00:00
(1 row)

select add_months('2008-04-30',1);
add_months

2008-05-31 00:00:00
(1 row)

Funcion CONVERT_TIMEZONE

CONVERT_TIMEZONE convierte una marca temporal de una zona horaria a otra. La funcién se
ajusta automaticamente al horario de verano.

Sintaxis

CONVERT_TIMEZONE (['source_timezone',] 'target_timezone', 'timestamp')

Argumentos
source_timezone

(Opcional) La zona horaria de la marca temporal actual. El valor predeterminado es UTC.

target_timezone

La zona horaria para la marca temporal nueva.

timestamp

Una columna de marca temporal o una expresion que, implicitamente, se convierte en una marca
temporal.

Tipo de devolucién

TIMESTAMP

Funciones de fecha y hora 200

AWS Clean Rooms Referencia de SQL

Ejemplos

En el siguiente ejemplo, se convierte el valor de la marca temporal de la zona horaria UTC
predeterminada a la zona horaria PST.

select convert_timezone('PST', '2008-08-21 07:23:54');

convert_timezone

2008-08-20 23:23:54

En el siguiente ejemplo, el valor de la marca temporal que aparece en la columna LISTTIME se
convierte de la zona horaria UTC predeterminada a la zona horaria PST. Aunque la marca temporal
se encuentra dentro del periodo de horario de verano, se convierte a horario estandar porque la zona
horaria objetivo se especifica como una abreviatura (PST).

select listtime, convert_timezone('PST', listtime) from listing
where listid = 16;

listtime | convert_timezone
____________________ e — -

2008-08-24 09:36:12 2008-08-24 01:36:12

El siguiente ejemplo convierte una columna LISTTIME con una marca de tiempo de la zona horaria
UTC predeterminada a una zona horaria. US/Pacific La zona horaria objetivo usa un nombre de
zona horaria y la marca temporal se encuentra dentro del periodo de horario de verano, por lo que la
funcion devuelve el horario de verano.

select listtime, convert_timezone('US/Pacific', listtime) from listing
where listid = 16;

listtime | convert_timezone
____________________ L

2008-08-24 09:36:12 | 2008-08-24 02:36:12

En el siguiente ejemplo, se convierte una cadena de marca temporal de EST a PST:

select convert_timezone('EST', 'PST', '20080305 12:25:29');

convert_timezone

Funciones de fecha y hora 201

AWS Clean Rooms Referencia de SQL

2008-03-05 09:25:29

En el siguiente ejemplo, se convierte una marca temporal al horario del este de Estados Unidos
estandar porque la zona horaria objetivo usa un nombre de zona horaria (America/New_York) y la
marca temporal se encuentra dentro del periodo estandar.

select convert_timezone('America/New_York', '2013-02-01 08:00:00');

convert_timezone

2013-02-01 03:00:00
(1 row)

En el siguiente ejemplo, se convierte la marca temporal al horario de verano del este de
Estados Unidos porque la zona horaria objetivo usa un nombre de zona horaria (America/New_York)
y la marca temporal se encuentra dentro del periodo de horario de verano.

select convert_timezone('America/New_York', '2013-06-01 08:00:00');

convert_timezone

2013-06-01 04:00:00
(1 row)

En el siguiente ejemplo, se demuestra el uso de desplazamientos.

SELECT CONVERT_TIMEZONE('GMT', 'NEWZONE +2','2014-05-17 12:00:00') as newzone_plus_2,
CONVERT_TIMEZONE('GMT', "NEWZONE-2:15'", '2014-05-17 12:00:00') as newzone_minus_2_15,
CONVERT_TIMEZONE('GMT', 'America/Los_Angeles+2',6 '2014-05-17 12:00:00') as la_plus_2,
CONVERT_TIMEZONE('GMT', 'GMT+2"', '2014-05-17 12:00:00') as gmt_plus_2;

newzone_plus_2 | newzone_minus_2_15 | la_plus_2 | gmt_plus_2
————————————————————— e T T T T T T T I L T T

2014-05-17 10:00:00 | 2014-05-17 14:15:00 | 2014-05-17 10:00:00 | 2014-05-17 10:00:00
(1 row)

Funcion CURRENT_DATE

CURRENT_DATE devuelve una fecha en la zona horaria de la sesién actual (UTC de forma
predeterminada) en el formato predeterminado:. YYYY-MM-DD

Funciones de fecha y hora 202

AWS Clean Rooms Referencia de SQL

® Note

CURRENT_DATE devuelve la fecha de comienzo de la transaccion actual, no de la
instruccion actual. Pensemos en el escenario en el que se inicia una transaccién con varias
instrucciones el 10/01/08 a las 23:59 y la instruccidon que contiene CURRENT_DATE se
ejecuta el 10/02/08 a las 00:00. CURRENT_DATE devuelve 10/01/08, no 10/02/08.

Sintaxis

CURRENT_DATE

Tipo de devolucion
DATE
Ejemplo

El siguiente ejemplo devuelve la fecha actual (en la que Region de AWS se ejecuta la funcién).

select current_date;

2008-10-01

Funcion CURRENT_TIMESTAMP

CURRENT_TIMESTAMP devuelve la fecha y la hora actuales, incluidas la fecha, la hora y
(opcionalmente) los milisegundos o microsegundos.

Esta funcioén resulta util cuando se necesita obtener la fecha y la hora actuales, por ejemplo,
para registrar la marca de tiempo de un evento, realizar calculos basados en el tiempo o rellenar
columnas. date/time

Sintaxis

current_timestamp()

Funciones de fecha y hora

203

AWS Clean Rooms Referencia de SQL

Tipo de devolucion
La funcion CURRENT_TIMESTAMP devuelve una FECHA.
Ejemplo

El siguiente ejemplo devuelve la fecha y hora actuales en el momento en que se ejecuta la consulta,
es decir, el 25 de abril de 2020 a las 15:49:11 914 (15:49:11 914 p.m.).

SELECT current_timestamp();
2020-04-25 15:49:11.914

El siguiente ejemplo recupera la fecha y hora actuales de cada fila de la tabla. squirrels

SELECT current_timestamp() FROM squirrels

Funcion DATE_ADD

Devuelve la fecha que es num_days después de la fecha de inicio.

Sintaxis

date_add(start_date, num_days)

Argumentos
fecha_inicio

El valor de la fecha de inicio.

num_days
El numero de dias que se va a anadir (entero). Un numero positivo suma dias y un numero
negativo resta dias.

Tipo de devolucién

DATE

Ejemplos

En el siguiente ejemplo se suma un dia a una fecha:

Funciones de fecha y hora 204

AWS Clean Rooms Referencia de SQL

SELECT date_add('2016-07-30"', 1);

Result:
2016-07-31

El siguiente ejemplo agrega varios dias.

SELECT date_add('2016-07-30', 5);

Result:
2016-08-04

Notas de uso

Esta documentacion es para la funciéon DATE_ADD de Spark SQL, que proporciona una interfaz mas
sencilla para afadir dias a las fechas en comparacion con otras variantes de SQL. Para afadir otros
intervalos, como meses 0 anos, es posible que se necesiten diferentes funciones.

Funcién DATE_DIFF
DATE_DIFF devuelve la diferencia entre las partes de fecha de dos expresiones de fecha u hora.

Sintaxis

date_diff(endDate, startDate)

Argumentos

endDate

Una expresion de fecha.

startDate

Una expresion de fecha.

Tipo de devolucion

BIGINT

Funciones de fecha y hora 205

AWS Clean Rooms Referencia de SQL

Ejemplos con una columna DATE

En el siguiente ejemplo, se encuentra la diferencia, en cantidad de semanas, entre dos valores de
fecha literales.

select date_diff(week, '2009-01-01', '2009-12-31"') as numweeks;

numweeks

En el siguiente ejemplo, se encuentra la diferencia, en horas, entre dos valores de fecha literales.
Cuando no se proporciona el valor de la hora para una fecha, de forma predeterminada es 00:00:00.

select date_diff(hour, '2023-01-01', '2023-01-03 05:04:03');

date_diff

En el siguiente ejemplo se encuentra la diferencia, en dias, entre dos valores TIMESTAMETZ
literales.

Select date_diff(days, 'Jun 1,2008 ©9:59:59 EST', 'Jul 4,2008 ©9:59:59 EST')

date_diff

En el siguiente ejemplo, se encuentra la diferencia, en dias, entre dos fechas de la misma fila de una
tabla.

select * from date_table;

start_date | end_date
___________ e m e — -
2009-01-01 | 2009-03-23
2023-01-04 | 2024-05-04
(2 rows)

Funciones de fecha y hora 206

AWS Clean Rooms Referencia de SQL

select date_diff(day, start_date, end_date) as duration from date_table;

duration

81
486
(2 rows)

En el siguiente ejemplo, se encuentra la diferencia, en cantidad de trimestres, entre un valor literal
del pasado y la fecha de hoy. En este ejemplo, se asume que la fecha actual es 5 de junio del 2008.
Puede nombrar las partes de la fecha de manera completa o abreviada. El nombre de columna
predeterminado de la funcion DATE_DIFF es DATE_DIFF.

select date_diff(qtr, '1998-07-01', current_date);

date_diff

En este ejemplo, se unen las tablas SALES y LISTING para calcular cuantos dias después de
indicarse se vendieron los tickets de los listados 1000 a 1005. La espera mas prolongada para la
venta de estos listados fue de 15 dias, y la mas corta, de menos de 1 dia (0 dias).

select priceperticket,

date_diff(day, listtime, saletime) as wait

from sales, listing where sales.listid = listing.listid
and sales.listid between 1000 and 1005

order by wait desc, priceperticket desc;

96.00
(7 rows)

Funciones de fecha y hora 207

AWS Clean Rooms Referencia de SQL

En este ejemplo, se calculan las horas promedio esperadas por los vendedores para todas las
ventas de tickets.

select avg(date_diff(hours, listtime, saletime)) as avgwait
from sales, listing
where sales.listid = listing.listid;

avgwait

Ejemplos con una columna TIME

La siguiente tabla de ejemplo, TIME_TEST, tiene una columna TIME_VAL (tipo TIME) con tres
valores insertados.

select time_val from time_test;
time_val

20:00:00
00:00:00.5550
00:58:00

En el siguiente ejemplo, se encuentra la diferencia en cantidad de horas entre la columna TIME_VAL
y un literal de tiempo.

select date_diff(hour, time_val, time '15:24:45') from time_test;

date_diff

En el siguiente ejemplo, se encuentra la diferencia en cantidad de minutos entre dos valores de
tiempo literales.

select date_diff(minute, time '20:00:00', time '21:00:00') as nummins;

nummins

Funciones de fecha y hora 208

AWS Clean Rooms Referencia de SQL

Ejemplos con una columna TIMETZ

La siguiente tabla de ejemplo, TIMETZ_TEST, tiene una columna TIMETZ_VAL (tipo TIMETZ) con
tres valores insertados.

select timetz_val from timetz_test;

timetz_val

04:00:00+00
00:00:00.5550+00
05:58:00+00

En el siguiente ejemplo, se encuentran las diferencias en la cantidad de horas, entre un literal
TIMETZ y timetz_val.

select date_diff(hours, timetz '20:00:00 PST', timetz_val) as numhours from
timetz_test;

numhours

En el siguiente ejemplo, se encuentra la diferencia en cantidad de horas entre dos valores TIMETZ
literales.

select date_diff(hours, timetz '20:00:00 PST', timetz '©0:58:00 EST') as numhours;

numhours

Funcion DATE_PART

DATE_PART extrae los valores de parte de fecha a partir de una expresiéon. DATE_PART es
sinénimo de la funcion PGDATE_PART.

Funciones de fecha y hora 209

AWS Clean Rooms Referencia de SQL

Sintaxis

datepart(field, source)

Argumentos

campo

Qué parte de la fuente debe extraerse y los valores de cadena admitidos son los mismos que los
campos de la funcion equivalente EXTRACT.

origen

Una columna de fecha o intervalo de la que se debe extraer el campo.

Tipo de devolucion
Si el campo es «<SEGUNDO», un DECIMAL (8, 6). En todos los demas casos, un entero.
Ejemplo

El siguiente ejemplo extrae el dia del afio (DOY) de un valor de fecha. El resultado muestra que el
dia del ano para la fecha «2019-08-12» es. 224 Esto significa que el 12 de agosto de 2019 es el dia
224 del afio 2019.

SELECT datepart('doy', DATE'2019-08-12');
224

Funcion DATE_TRUNC

La funcion DATE_TRUNC trunca todo literal o expresién de marca temporal basado en la parte de
fecha especificada, como la hora, la semana o el mes.

Sintaxis

date_trunc(format, datetime)

Funciones de fecha y hora 210

AWS Clean Rooms Referencia de SQL

Argumentos

format

El formato que representa la unidad a la que se va a truncar. Los formatos validos son los
siguientes:

* «YEAR», «YYYY», «YY»: si se trunca hasta la primera fecha del afio en que cae la ts, la parte
temporal sera igual a cero

+ «TRIMESTREDW: trunca hasta la primera fecha del trimestre en el que cae la ts, la parte horaria
sera cero

+ «MONTH», «MM», «MON»: si se trunca hasta la primera fecha del mes en que cae la ts, la
parte horaria sera cero

+ «SEMANAV: si se trunca hasta el lunes de la semana en que cae la ts, la parte horaria sera
cero

« «DIiA», «<DD»: pone a cero la parte horaria
+ «HORA»: pone a cero el minuto y el segundo con la parte fraccionada
* «MINUTO»: pone a cero el segundo con la parte fraccionada
+ «SEGUNDOV»: pone a cero la segunda parte de la fraccion
* «MILISEGUNDONY: reduce a cero los microsegundos
+ «MICROSEGUNDOM»: todo permanece
- Es

Un valor de fecha y hora

Tipo de devolucién
Devuelve la marca de tiempo ts truncada a la unidad especificada por el modelo de formato
Ejemplos

En el siguiente ejemplo, se trunca el valor de una fecha hasta el principio del afio. El resultado
muestra que la fecha «2015-03-05" se ha truncado a «2015-01-01», que es el comienzo del afio
2015.

SELECT date_trunc('YEAR', '2015-03-05');

Funciones de fecha y hora 211

AWS Clean Rooms Referencia de SQL

date_trunc

2015-01-01

Funcion DAY

La funcion DAY devuelve el dia del mes de la fecha/marca horaria.

Las funciones de extraccion de fecha son utiles cuando se necesita trabajar con componentes
especificos de una fecha o marca de tiempo, como cuando se realizan calculos basados en fechas,
se filtran datos o se formatea valores de fecha.

Sintaxis

day(date)

Argumentos
date

Una expresion de fecha o marca de hora.

Devuelve
La funcion DAY devuelve un ENTERO.
Ejemplos

El siguiente ejemplo extrae el dia del mes (30) de la fecha de entrada'2009-07-30".

SELECT day('2009-07-30');
30

El siguiente ejemplo extrae el dia del mes de la birthday columna de la squirrels tablay
devuelve los resultados como salida de la instruccion SELECT. El resultado de esta consulta sera
una lista de valores de dia, uno para cada fila de la squirrels tabla, que representa el dia del mes
del cumpleanos de cada ardilla.

SELECT day(birthday) FROM squirrels

Funciones de fecha y hora 212

AWS Clean Rooms Referencia de SQL

Funcion DAYOFMONTH

La funcion DAYOFMONTH devuelve el dia del mes del date/timestamp (un valor entre 1y 31, segun
el mes y el afo).

La funcion DAYOFMONTH es similar a la funcion DAY, pero tienen nombres y comportamientos
ligeramente diferentes. La funcion DAY es la mas utilizada, pero la funcion DAYOFMONTH se puede
utilizar como alternativa. Este tipo de consulta puede resultar util cuando se necesita realizar un
analisis basado en fechas o filtrar una tabla que contiene datos de fecha o marca horaria, como
extraer componentes especificos de una fecha para su posterior procesamiento o elaboracion de
informes.

Sintaxis

dayofmonth(date)

Argumentos

date

Una expresion de fecha o marca de hora.

Devuelve
La funcion DAYOFMONTH devuelve un ENTERO.
Ejemplo

El siguiente ejemplo extrae el dia del mes (30) de la fecha de entrada. '2009-07-30"

SELECT dayofmonth('2009-07-30"');
30

En el siguiente ejemplo, se aplica la funcion DAYOFMONTH a la birthday columna de la
squirrels tabla. Para cada fila de la squirrels tabla, se extraera el dia del mes de la birthday
columna y se devolvera como resultado de la instruccion SELECT. El resultado de esta consulta sera
una lista de valores de dias, uno para cada fila de la squirrels tabla, que representa el dia del
mes del cumpleanos de cada ardilla.

SELECT dayofmonth(birthday) FROM squirrels

Funciones de fecha y hora 213

AWS Clean Rooms Referencia de SQL

Funcion DAYOFWEEK

La funcion DAYOFWEEK toma una fecha o marca horaria como entrada y devuelve el dia de la
semana en forma de numero (1 para el domingo, 2 para el lunes,..., 7 para el sabado).

Esta funcidn de extraccion de fechas resulta util cuando se necesita trabajar con componentes
especificos de una fecha o marca de tiempo, como cuando se realizan calculos basados en fechas,
se filtran datos o se formatea valores de fecha.

Sintaxis
dayofweek(date)

Argumentos

date

Una expresion de fecha o marca de hora.

Devuelve

La funcion DAYOFWEEK devuelve un ENTERO donde

1 = domingo
2 = lunes
3 = martes

4 = miércoles

5 = jueves

6 = viernes
7 = sabado
Ejemplos

El siguiente ejemplo extrae el dia de la semana de esta fecha, que es 5 (Que representa el jueves).

SELECT dayofweek('2009-07-30');
5

Funciones de fecha y hora 214

AWS Clean Rooms Referencia de SQL

El siguiente ejemplo extrae el dia de la semana de la birthday columna de la squirrels tabla
y devuelve los resultados como salida de la instruccién SELECT. El resultado de esta consulta
sera una lista de los valores del dia de la semana, uno para cada fila de la squirrels tabla, que
representa el dia de la semana del cumpleanos de cada ardilla.

SELECT dayofweek(birthday) FROM squirrels

Funcion DAYOFYEAR

La funcion DAYOFYEAR es una funcién de extraccion de fechas que toma una fecha o marca de
tiempo como entrada y devuelve el dia del afio (un valor entre 1 y 366, dependiendo del afio y de si
se trata de un ano bisiesto).

Esta funcidn resulta util cuando se necesita trabajar con componentes especificos de una fecha
o marca de tiempo, como cuando se realizan calculos basados en fechas, se filtran datos o se da
formato a valores de fecha.

Sintaxis

dayofyear(date)

Argumentos

date

Una expresion de fecha o marca de hora.

Devuelve

La funcion DAYOFYEAR devuelve un entero (entre 1y 366, segun el afio y si se trata de un afo
bisiesto).

Ejemplos

El siguiente ejemplo extrae el dia del aio (100) de la fecha de entrada. '2016-04-09'

SELECT dayofyear('2016-04-09');
100

El siguiente ejemplo extrae el dia del afo de la birthday columna de la squirrels tablay
devuelve los resultados como salida de la instruccion SELECT.

Funciones de fecha y hora 215

AWS Clean Rooms Referencia de SQL

SELECT dayofyear(birthday) FROM squirrels

Funcion EXTRACT

La funcion EXTRACT devuelve una parte de fecha u hora a partir de un valor TIMESTAMP,
TIMESTAMPTZ, TIME o TIMETZ. Algunos ejemplos son dia, mes, afio, hora, minuto, segundo,
milisegundo o microsegundo de una marca de tiempo.

Sintaxis

EXTRACT (datepart FROM source)

Argumentos
datepart

El subcampo de una fecha u hora que se va a extraer, como dia, mes, afno, hora, minuto,
segundo, milisegundo o microsegundo. Para obtener los valores posibles, consulte Partes de
fecha para funciones de fecha o marca temporal.

origen
Una columna o una expresion que se evalua como un tipo de datos TIMESTAMP,
TIMESTAMPTZ, TIME o TIMETZ.
Tipo de devolucion
INTEGER si el valor de origen se evalua como tipo de datos TIMESTAMP, TIME o TIMETZ.
DOUBLE PRECISION si el valor de origen se evalua como el tipo de datos TIMESTAMPTZ.
Ejemplos con TIME

La siguiente tabla de ejemplo, TIME_TEST, tiene una columna TIME_VAL (tipo TIME) con tres
valores insertados.

select time_val from time_test;

time_val

20:00:00

Funciones de fecha y hora 216

AWS Clean Rooms Referencia de SQL

00:00:00.5550
00:58:00

En el siguiente ejemplo, se extraen los minutos de cada time_val.

select extract(minute from time_val) as minutes from time_test;

minutes

En el siguiente ejemplo, se extraen las horas de cada time_val.

select extract(hour from time_val) as hours from time_test;

Funcion FROM_UTC_TIMESTAMP

La funcion FROM_UTC_TIMESTAMP convierte la fecha de entrada de UTC (hora universal
coordinada) a la zona horaria especificada.

Esta funcidén resulta util cuando necesitas convertir valores de fecha y hora de UTC a una zona
horaria especifica. Esto puede ser importante cuando se trabaja con datos que se originan en
diferentes partes del mundo y deben presentarse en la hora local adecuada.

Sintaxis
from_utc_timestamp(timestamp, timezone
Argumentos

timestamp

Una expresion de marca de tiempo con una marca de tiempo UTC.

Funciones de fecha y hora 217

AWS Clean Rooms Referencia de SQL

timezone
Una expresion STRING que es una zona horaria valida a la que se debe convertir la fecha o la
marca de tiempo de entrada.

Devuelve

La funcion FROM_UTC_TIMESTAMP devuelve una MARCA DE TIEMPO.

Ejemplo

En el siguiente ejemplo, se convierte la fecha de entrada de UTC a la zona horaria especificada
('Asia/Seoul'), que en este caso esta 9 horas por delante de la UTC. El resultado es la fecha y la
hora de la zona horaria de Seul, que es2016-08-31 09:00:00.

SELECT from_utc_timestamp('2016-08-31', 'Asia/Seoul');
2016-08-31 09:00:00

Funcion HOUR

La funcion HOUR es una funcion de extraccion de tiempo que toma una hora o una marca de tiempo
como entrada y devuelve el componente horario (un valor entre 0 y 23).

Esta funcién de extraccion de tiempo resulta util cuando se necesita trabajar con componentes
especificos de una hora o una marca de tiempo, como cuando se realizan calculos basados en el
tiempo, se filtran datos o se formatea valores de hora.

Sintaxis
hour(timestamp)
Argumentos

timestamp

UNA EXPRESION DE MARCA DE TIEMPO.

Devuelve

La funcion HORA devuelve un ENTERO.

Funciones de fecha y hora 218

AWS Clean Rooms Referencia de SQL

Ejemplo

El siguiente ejemplo extrae el componente hour (12) de la marca de tiempo '2009-07-30
12:58:59' de entrada.

SELECT hour('2009-07-30 12:58:59');
12

Funcion MINUTE

La funciéon MINUTE es una funcién de extraccion de tiempo que toma una hora o una marca de
tiempo como entrada y devuelve el componente de minutos (un valor entre 0 y 60).

Sintaxis

minute(timestamp)

Argumentos
timestamp

Una expresion de marca de tiempo o una CADENA con un formato de marca de tiempo valido.

Devuelve
La funcion MINUTE devuelve un entero.
Ejemplo

El siguiente ejemplo extrae el componente minuto (58) de la marca de tiempo '2009-07-30
12:58:59' de entrada.

SELECT minute('2009-07-30 12:58:59');
58

Funcion MONTH

La funcidn MONTH es una funcién de extraccion de tiempo que toma una hora o una marca de
tiempo como entrada y devuelve el componente del mes (un valor entre 0 y 12).

Funciones de fecha y hora 219

AWS Clean Rooms Referencia de SQL

Sintaxis

month(date)

Argumentos
date

Una expresion de marca de tiempo o una CADENA con un formato de marca de tiempo valido.

Devuelve
La funcion MONTH devuelve un entero.
Ejemplo

El siguiente ejemplo extrae el componente month (7) de la marca de tiempo '2016-07-30"' de
entrada.

SELECT month('2016-07-30");
7

SEGUNDA funcioén

La funcién SECOND es una funcién de extraccién de tiempo que toma una hora o una marca de
tiempo como entrada y devuelve el segundo componente (un valor entre 0 y 60).

Sintaxis

second(timestamp)
Argumentos

timestamp

Una expresion de marca de tiempo.

Devuelve

La funcion SECOND devuelve un ENTERO.

Funciones de fecha y hora 220

AWS Clean Rooms Referencia de SQL

Ejemplo

El siguiente ejemplo extrae el segundo componente (59) de la marca de tiempo '2009-07-30
12:58:59' de entrada.

SELECT second('2009-07-30 12:58:59');
59

Funcion TIMESTAMP

La funcion TIMESTAMP toma un valor (normalmente un niumero) y lo convierte en un tipo de datos
de marca de tiempo.

Esta funcidn resulta util cuando se necesita convertir un valor numérico que representa una hora o
una fecha en un tipo de datos de marca de tiempo. Esto puede resultar util cuando se trabaja con
datos almacenados en un formato numérico, como las marcas de tiempo de Unix o la hora de época.

Sintaxis

timestamp(expr)

Argumentos
expr

Cualquier expresion que se pueda convertir en TIMESTAMP.

Devuelve
La funcion TIMESTAMP devuelve una MARCA DE TIEMPO.
Ejemplo

El siguiente ejemplo convierte una marca de tiempo numeérica de Unix (1632416400) en su tipo de
datos de marca de tiempo correspondiente: 22 de septiembre de 2021 a las 12:00:00 p.m. UTC.

SELECT timestamp(1632416400);
2021-09-22 12:00:00 UTC

Funciones de fecha y hora 221

AWS Clean Rooms Referencia de SQL

Funcion TO_TIMESTAMP

TO _TIMESTAMP convierte una cadena TIMESTAMP en TIMESTAMPTZ.

Sintaxis

to_timestamp (timestamp)

to_timestamp (timestamp, format)

Argumentos
timestamp

Una cadena de marca de tiempo o un tipo de datos que se puede convertir en una cadena de
marca de tiempo.

format

Un literal de cadena que coincide con los patrones de fecha y hora de Spark. Para ver patrones
de fecha y hora validos, consulta Patrones de fecha y hora para formatear y analizar.

Tipo de devolucion
TIMESTAMP
Ejemplos

En el siguiente ejemplo, se muestra el uso de la funcién TO_TIMESTAMP para convertir una cadena
TIMESTAMP en TIMESTAMP.

select current_timestamp() as timestamp, to_timestamp(current_timestamp(), 'YYYY-MM-DD
HH24:MI:SS') as second;

timestamp | second

2021-04-05 19:27:53.281812 | 2021-04-05 19:27:53+00

Es posible pasar a TO_TIMESTAMP parte de una fecha. Las partes de fecha restantes se establecen
a los valores predeterminados. La hora se incluye en el resultado:

SELECT TO_TIMESTAMP('2017','YYYY');

Funciones de fecha y hora 222

https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html

AWS Clean Rooms Referencia de SQL

to_timestamp

2017-01-01 00:00:00+00

La siguiente instruccién SQL convierte la cadena '2011-12-18 24:38:15 'en una marca de tiempo. El
resultado es una marca de tiempo que cae al dia siguiente porque el numero de horas es superior a
24 horas:

select to_timestamp('2011-12-18 24:38:15', 'YYYY-MM-DD HH24:MI:SS');
to_timestamp

2011-12-19 00:38:15+00

Funcion YEAR

La funcién YEAR es una funcion de extraccion de fechas que toma una fecha o marca de tiempo
como entrada y devuelve el componente del afio (un numero de cuatro digitos).

Sintaxis

year(date)

Argumentos
date

Una expresion de fecha o marca de hora.

Devuelve
La funcion ANO devuelve un ENTERO.
Ejemplo

El siguiente ejemplo extrae el componente del ano (2016) de la fecha de entrada'2016-07-30".

SELECT year('2016-07-30');
2016

Funciones de fecha y hora 223

AWS Clean Rooms

Referencia de SQL

El siguiente ejemplo extrae el componente de afo de la birthday columna de la squirrels tabla
y devuelve los resultados como salida de la instruccién SELECT. El resultado de esta consulta sera
una lista de valores anuales, uno para cada fila de la squirrels tabla, que representa el afo del

cumpleanos de cada ardilla.

SELECT year(birthday) FROM squirrels

Partes de fecha para funciones de fecha o marca temporal

En la siguiente tabla, se identifican los nombres y las abreviaturas de partes de fecha y de hora que
se aceptan como argumentos para las siguientes funciones:

DATE_ADD
DATE_DIFF
DATE_PART
EXTRACT

Parte de la fecha o parte de
la hora

milenio, milenios
siglo, siglos
década, décadas
tiempo Unix

afno, anos
trimestre, trimestres
mes, meses
semana, semanas

dia de la semana

Abreviaturas

mil, mils

c, cent, cents

dec, decs

fecha de inicio (compatible con EXTRACT)
Y, yr, yrs

qtr, qtrs

mon, mons

w

dayofweek, dow, dw, weekday (compatibles con DATE_PART y
Funcion EXTRACT)

Funciones de fecha y hora

224

AWS Clean Rooms Referencia de SQL

Parte de la fecha o parte de Abreviaturas

la hora
Devuelve un numero entero de 0 a 6, comenzando por domingo.
® Note
La parte de la fecha DOW se comporta de manera
diferente a la parte de fecha (D) que se usa para las
cadenas de formato de fecha y hora. D se basa en los
numeros enteros de 1 a 7, donde domingo es 1. Para
obtener mas informacidén, consulte Cadenas de formatos
de fecha y hora.
dia del afno dayofyear, doy, dy, yearday (compatibles con EXTRACT)
dia, dias d
hora, horas h, hr, hrs
minuto, minutos m, min, mins
segundo, segundos S, Sec, secs
milisegundo, milisegundos ms, msec, msecs, msecond, mseconds, millisec, millisecs,
millisecon
microsegundo, microsegu microsec, microsecs, microsecond, usecond, useconds, us, usec,
ndos usecs

zona horaria, timezone_hour, Compatible solo con EXTRACT para marca temporal con zona
timezone_minute horaria (TIMESTAMPTZ).
Variaciones en resultados con segundos, milisegundos y microsegundos

Cuando diferentes funciones de fechas especifican segundos, milisegundos o microsegundos como
partes de fecha, se generan diferencias minimas en los resultados de las consultas:

Funciones de fecha y hora 225

AWS Clean Rooms Referencia de SQL

La funcion EXTRACT devuelve numeros enteros solo para la parte de fecha especificada e
ignora partes de fecha de niveles mayores y menores. Si la parte de fecha especificada es
segundos, los milisegundos y los microsegundos no se incluyen en el resultado. Si la parte de
fecha especificada es milisegundos, los segundos y los microsegundos no se incluyen. Si la parte
de fecha especificada es microsegundos, los segundos y los milisegundos no se incluyen.

La funcion DATE_PART devuelve la parte de segundos de la marca temporal completa, sin
importar la parte de fecha especificada, por lo que devuelve un valor decimal 0 un numero entero
segun se requiera.

Notas acerca de CENTURY, EPOCH, DECADE y MIL

CENTURY o CENTURIES

AWS Clean Rooms interpreta que un SIGLO comienza con el afio ## #1 y termina con el aio:
H##0O

select extract (century from timestamp '2000-12-16 12:21:13');
date_part

20
(1 row)

select extract (century from timestamp '2001-12-16 12:21:13');
date_part

EPOCH

La AWS Clean Rooms implementacion de EPOCH es relativa a 1970-01-01 00:00:00.000 000,
independientemente de la zona horaria en la que resida el cluster. Podria ser necesario desplazar
los resultados de la diferencia en horas segun la zona horaria donde se encuentre el cluster.

DECADE o DECADES

AWS Clean Rooms interpreta DECADE o DECADES DATEPART basandose en el calendario
comun. Por ejemplo, debido a que el calendario comun comienza a partir del afio 1, la primera
década (década 1) es de 0001-01-01 a 0009-12-31 y la segunda década (década 2) es de
0010-01-01 a 0019-12-31. Por ejemplo, la década 201 se extiende de 01/01/2001 a 31/12/2009:

Funciones de fecha y hora 226

AWS Clean Rooms Referencia de SQL

select extract(decade from timestamp '1999-02-16 20:38:40');
date_part

select extract(decade from timestamp '2000-02-16 20:38:40');
date_part

select extract(decade from timestamp '2010-02-16 20:38:40');
date_part

MIL o MILS

AWS Clean Rooms interpreta que una MIL comienza con el primer dia del afio #001 y termina
con el ultimo dia del afo: #000

select extract (mil from timestamp '2000-12-16 12:21:13');
date_part

select extract (mil from timestamp '2001-12-16 12:21:13');
date_part

Funciones de cifrado y descifrado

Las funciones de cifrado y descifrado ayudan a los desarrolladores de SQL a proteger los datos
confidenciales contra el acceso no autorizado o el uso indebido al convertirlos de un formato legible
de texto plano a uno de texto cifrado ilegible.

Funciones de cifrado y descifrado 227

AWS Clean Rooms Referencia de SQL

AWS Clean Rooms Spark SQL admite las siguientes funciones de cifrado y descifrado:

Temas
e Funcion AES_ENCRYPT
* Funciéon AES DECRYPT

Funcion AES_ENCRYPT

La funcion AES_ENCRYPT se utiliza para cifrar datos mediante el algoritmo AES (Advanced
Encryption Standard).

Sintaxis

aes_encrypt(expr, key[, mode[, padding[, iv[, aad]lll)

Argumentos
expr

El valor binario que se va a cifrar.

clave
La contrasefa que se utilizara para cifrar los datos.

Se admiten longitudes de clave de 16, 24 y 32 bits.

mode
Especifica qué modo de cifrado por bloques se debe utilizar para cifrar los mensajes.

Modos validos: ECB (electronico CodeBook), GCM (modo Galois/Counter) y CBC
(encadenamiento de bloques cifrados).

acolchado
Especifica como rellenar los mensajes cuya longitud no sea un multiplo del tamano del bloque.
Valores validos: PKCS, NONE, DEFAULT.

El relleno PREDETERMINADO significa PKCS (estandares de criptografia de clave publica) para
ECB, NONE para GCM y PKCS para CBC.

Funciones de cifrado y descifrado 228

AWS Clean Rooms Referencia de SQL

Las combinaciones admitidas de (modo, relleno) son («ECB», «PKCS»), («GCM», «NONE») y
(«CBC», «PKCS»).

Vector de inicializacion opcional (IV). Solo se admite en los modos CBC y GCM.

Valores validos: 12 bytes de longitud para GCM y 16 bytes para CBC.

aad

Datos autenticados adicionales (AAD) opcionales. Solo se admite en el modo GCM. Puede ser
cualquier entrada de formato libre y debe proporcionarse tanto para el cifrado como para el
descifrado.

Tipo de retorno

La funcion AES_ENCRYPT devuelve un valor cifrado de expr mediante AES en un modo
determinado con el relleno especificado.

Ejemplos

El siguiente ejemplo muestra como utilizar la funcion AES_ENCRYPT de Spark SQL para cifrar

de forma segura una cadena de datos (en este caso, la palabra «Spark») mediante una clave de
cifrado especifica. A continuacion, el texto cifrado resultante se codifica en Base64 para facilitar su
almacenamiento o transmision.

SELECT baseb4(aes_encrypt('Spark', 'abcdefghijklmnop'));
4A570Ah9FNGwoMeuJukfllrLdHEZXxA2DyuSQAWz77dfn

El siguiente ejemplo muestra como utilizar la funcion AES_ENCRYPT de Spark SQL para cifrar de
forma segura una cadena de datos (en este caso, la palabra «Spark») mediante una clave de cifrado
especifica. A continuacion, el texto cifrado resultante se representa en formato hexadecimal, lo que
puede resultar util para tareas como el almacenamiento, la transmision o la depuracion de datos.

SELECT hex(aes_encrypt('Spark', '0000111122223333'));
83F16B2AA704794132802D248E6BFD4E380078182D1544813898ACO7E709B28A9%4

El siguiente ejemplo muestra como utilizar la funcion AES_ENCRYPT de Spark SQL para cifrar de
forma segura una cadena de datos (en este caso, «Spark SQL») mediante una clave de cifrado,

Funciones de cifrado y descifrado 229

AWS Clean Rooms Referencia de SQL

un modo de cifrado y un modo de relleno especificos. A continuacion, el texto cifrado resultante se
codifica en Base64 para facilitar su almacenamiento o transmision.

SELECT base64(aes_encrypt('Spark SQL', '1234567890@abcdef', 'ECB', 'PKCS'));
31mwu+Mw@H3fi5NDvcu9lg==

Funcion AES_DECRYPT

La funcion AES_DECRYPT se utiliza para descifrar datos mediante el algoritmo AES (Advanced
Encryption Standard).

Sintaxis

aes_decrypt(expr, key[, mode[, padding[, aad]]l]l)

Argumentos
expr

El valor binario que se va a descifrar.

clave
La contrasena que se utilizara para descifrar los datos.

La contrasefa debe coincidir con la clave utilizada originalmente para generar el valor cifrado y
tener una longitud de 16, 24 o 32 bytes.

mode
Especifica qué modo de cifrado por bloques se debe utilizar para descifrar los mensajes.

Modos validos: ECB, GCM, CBC.

acolchado
Especifica como rellenar los mensajes cuya longitud no sea un multiplo del tamano del bloque.
Valores validos: PKCS, NONE, DEFAULT.

El relleno PREDETERMINADO significa PKCS para ECB, NONE para GCM y PKCS para CBC.

Funciones de cifrado y descifrado 230

AWS Clean Rooms Referencia de SQL

triste

Datos autenticados adicionales (AAD) opcionales. Solo se admite en el modo GCM. Puede ser
cualquier entrada de formato libre y debe proporcionarse tanto para el cifrado como para el
descifrado.

Tipo de retorno
Devuelve un valor descifrado de expr utilizando AES en modo con relleno.
Ejemplos

El siguiente ejemplo muestra como utilizar la funcion AES_ENCRYPT de Spark SQL para cifrar

de forma segura una cadena de datos (en este caso, la palabra «Spark») mediante una clave de
cifrado especifica. A continuacion, el texto cifrado resultante se codifica en Base64 para facilitar su
almacenamiento o transmision.

SELECT base64(aes_encrypt('Spark', 'abcdefghijklmnop'));
4A570Ah9FNGwoMeuJukfllrLdHEZXxA2DyuSQAWz77dfn

En el siguiente ejemplo, se muestra como utilizar la funcion AES_DECRYPT de Spark SQL para
descifrar datos previamente cifrados y codificados en Base64. El proceso de descifrado requiere
la clave y los parametros de cifrado correctos (modo de cifrado y modo de relleno) para recuperar
correctamente los datos originales en texto plano.

SELECT aes_decrypt(unbase64('31mwu+Mw@H3fi5NDvcu9lg=="), '1234567890@abcdef', 'ECB',
'PKCS');
Spark SQL

Funciones hash

Una funciéon hash es una funcién matematica que convierte un valor de entrada numérico en otro
valor.

AWS Clean Rooms Spark SQL admite las siguientes funciones hash:

Temas
* MDS5 funcion
* Funcién SHA

Funciones hash 231

AWS Clean Rooms Referencia de SQL

+ SHA1 funciéon
 SHAZ2 funcién
» funcion xx HASH64

MD5 funcion

Utiliza la funcion hash MD5 criptografica para convertir una cadena de longitud variable en una
cadena de 32 caracteres que es una representacion textual del valor hexadecimal de una suma de
control de 128 bits.

Sintaxis

MD5(string)

Argumentos
string

Una cadena de longitud variable.

Tipo de retorno

La MD5 funcion devuelve una cadena de 32 caracteres que es una representacion textual del valor
hexadecimal de una suma de comprobacién de 128 bits.

Ejemplos

En el siguiente ejemplo, se muestra el valor de 128 bits para la cadena 'AWS Clean Rooms":

select md5('AWS Clean Rooms');
md5

f7415e33f972c@3abd4f3fed36748f7a
(1 row)

Funcion SHA

Sinénimo de funcion. SHA1

Funciones hash 232

AWS Clean Rooms Referencia de SQL

Consulte SHA1 funcion.

SHA1 funcion

La SHA1 funcidn utiliza la funcion hash SHA1 criptografica para convertir una cadena de longitud
variable en una cadena de 40 caracteres que es una representacion textual del valor hexadecimal de
una suma de verificacion de 160 bits.

Sintaxis

SHA1 es sinénimo de. Funcion SHA

SHAl(string)

Argumentos
string

Una cadena de longitud variable.

Tipo de retorno

La SHA1 funcién devuelve una cadena de 40 caracteres que es una representacion textual del valor
hexadecimal de una suma de verificacion de 160 bits.

Ejemplo

En el siguiente ejemplo, se devuelve el valor de 160 bits para la palabra 'AWS Clean Rooms":

select shal('AWS Clean Rooms');

SHAZ2 funcidén

La SHAZ2 funciodn utiliza la funcion hash SHAZ2 criptografica para convertir una cadena de longitud
variable en una cadena de caracteres. La cadena de caracteres es una representacion de texto del
valor hexadecimal de la suma de comprobacion con el numero especificado de bits.

Sintaxis

SHA2(string, bits)

Funciones hash 233

AWS Clean Rooms Referencia de SQL

Argumentos
string

Una cadena de longitud variable.

integer
El numero de bits en las funciones hash. Los valores validos son 0 (igual que 256), 224, 256, 384
y 512.

Tipo de retorno

La SHA2 funcidon devuelve una cadena de caracteres que es una representacion textual del valor
hexadecimal de la suma de comprobacién o una cadena vacia si el numero de bits no es valido.

Ejemplo

En el siguiente ejemplo, se devuelve el valor de 256 bits para la palabra 'AWS Clean Rooms":

select sha2('AWS Clean Rooms', 256);

funcion xx HASH64

La funcion xxhash64 devuelve un valor hash de 64 bits de los argumentos.

La funcion xxhash64 () es una funcién hash no criptografica disefiada para ser rapida y eficiente.
Suele utilizarse en aplicaciones de procesamiento y almacenamiento de datos, en las que se
necesita un identificador unico para un dato, pero no es necesario mantener en secreto el contenido
exacto de los datos.

En el contexto de una consulta SQL, la funcion xxhash64 () podria usarse para varios propositos,
como:

» Generar un identificador unico para una fila de una tabla
 Particionar los datos en funcién de un valor hash

» Implementacién de estrategias personalizadas de indexacion o distribucion de datos

El caso de uso especifico dependera de los requisitos de la aplicacion y de los datos que se
procesen.

Funciones hash 234

AWS Clean Rooms Referencia de SQL

Sintaxis

xxhash64(exprl, expr2, ...)

Argumentos
expr1

Una expresion de cualquier tipo.

expr2

Una expresion de cualquier tipo.

Devuelve
Devuelve un valor hash de 64 bits de los argumentos (BIGINT). La velocidad del hash es 42.
Ejemplo

El siguiente ejemplo genera un valor hash de 64 bits (56602566077635097486) en funcidon de

la entrada proporcionada. El primer argumento es un valor de cadena, en este caso, la palabra
«Spark». El segundo argumento es una matriz que contiene el valor entero unico 123. El tercer
argumento es un valor entero que representa la semilla de la funcién hash.

SELECT xxhash64('Spark', array(123), 2);
5602566077635097486

Funciones de hiperloglog

Las funciones HyperLoglLog (HLL) de SQL proporcionan una forma de estimar de manera eficiente
el numero de elementos unicos (cardinalidad) en un conjunto de datos grande, incluso cuando el
conjunto real de elementos unicos no esta almacenado.

Las principales ventajas de utilizar las funciones HLL son:

+ Eficiencia de la memoria: los bocetos HLL requieren mucha menos memoria que almacenar el
conjunto completo de elementos unicos, lo que los hace adecuados para conjuntos de datos de
gran tamafno.

» Computacion distribuida: los bocetos HLL se pueden combinar en multiples fuentes de datos o
nodos de procesamiento, lo que permite una estimacién eficiente y distribuida del recuento unico.

Funciones de hiperloglog 235

AWS Clean Rooms Referencia de SQL

» Resultados aproximados: el HLL proporciona una estimacion aproximada del recuento unico, con
una compensacion ajustable entre la precision y el uso de memoria (mediante el parametro de
precision).

Estas funciones son especialmente utiles en situaciones en las que es necesario estimar el numero
de elementos unicos, como en aplicaciones de analisis, almacenamiento de datos y procesamiento
de transmisiones en tiempo real.

AWS Clean Rooms admite las siguientes funciones HLL.

Temas

« funcion HLL_SKETCH_AGG

« Funcién HLL_SKETCH_ESTIMATE
» Funcién HLL_UNION

« Funcion HLL_UNION_AGG

funcion HLL_SKETCH_AGG

La funcion de agregado HLL_SKETCH_AGG crea un boceto HLL a partir de los valores de la
columna especificada. Devuelve un tipo de datos HLLSKETCH que encapsula los valores de la
expresion de entrada.

La funcion de agregado HLL_SKETCH_AGG funciona con cualquier tipo de datos e ignora los
valores NULL.

Cuando no hay filas en una tabla o todas las filas son NULL, el boceto resultante no tiene pares
indice-valor como {"version":1,"logm":15, "sparse":{"indices":[], "values":[]1}}.

Sintaxis

HLL_SKETCH_AGG (aggregate_expression[, lgConfigK])

Argumento
expresion_de_agregacion

Cualquier expresion de tipo INT, BIGINT, STRING o BINARY con la que se realizara un recuento
unico. Se ignoran todos NULL los valores.

Funciones de hiperloglog 236

AWS Clean Rooms Referencia de SQL

IgConfigk

Una constante INT opcional entre 4 y 21, ambos incluidos, con el valor predeterminado 12. El log-
base-2 de K, donde K es el numero de cubos o ranuras del boceto.

Tipo de retorno

La funcion HLL_SKETCH_AGG devuelve un bufer BINARIO no nulo que contiene el HyperLoglLog
boceto calculado debido a que consume y agrega todos los valores de entrada del grupo de
agregacion.

Ejemplos

En los ejemplos siguientes se utiliza el algoritmo HyperLogLog (HLL) para estimar el recuento
distinto de valores de la columna. col La hll_sketch_agg(col, 12) funcidén agrega los valores
de la columna de columnas y crea un boceto HLL con una precision de 12. A continuacion, la
hll_sketch_estimate() funcion se utiliza para estimar el recuento distinto de valores en funcion
del boceto HLL generado. El resultado final de la consulta es 3, que representa el recuento distinto
estimado de valores de la col columna. En este caso, los valores distintos son 1, 2y 3.

SELECT hll_sketch_estimate(hll_sketch_agg(col, 12))
FROM VALUES (1), (1), (2), (2), (3) tab(col);
3

El siguiente ejemplo también utiliza el algoritmo HLL para estimar el recuento distinto de

valores de la col columna, pero no especifica un valor de precision para el boceto HLL. En

este caso, utiliza la precision por defecto de 14. La hl1l_sketch_agg(col) funcién toma

los valores de la col columnay crea un boceto HyperLoglLog (HLL), que es una estructura

de datos compacta que se puede utilizar para estimar el recuento distinto de elementos. La
hll_sketch_estimate(hll_sketch_agg(col)) funcién toma el boceto HLL creado en el paso
anterior y calcula una estimacion del recuento distinto de valores de la col columna. El resultado
final de la consulta es 3, que representa el recuento distinto estimado de valores de la col columna.
En este caso, los valores distintos son 1, 2y 3.

SELECT hll_sketch_estimate(hll_sketch_agg(col))
FROM VALUES (1), (1), (2), (2), (3) tab(col);
3

Funciones de hiperloglog 237

AWS Clean Rooms Referencia de SQL

Funcion HLL_SKETCH_ESTIMATE

La funcion HLL_SKETCH_ESTIMATE toma un boceto HLL y estima el numero de elementos unicos
representados por el boceto. Utiliza el algoritmo HyperLoglLog (HLL) para contar una aproximacion
probabilistica del numero de valores unicos de una columna determinada, consumiendo una
representacion binaria conocida como bufer de croquis generada previamente por la funcion
HLL_SKETCH_AGG y devolviendo el resultado como un entero grande.

El algoritmo de boceto HLL proporciona una forma eficaz de estimar el numero de elementos unicos,
incluso en el caso de conjuntos de datos grandes, sin tener que almacenar todo el conjunto de
valores unicos.

h1ll_union_agglas funciones hl1l_union y también pueden combinar bocetos consumiendo y
fusionando estos buferes como entradas.

Sintaxis

HLL_SKETCH_ESTIMATE (hllsketch_expression)

Argumento
hllsketch_expression

BINARYEXxpresion que contiene un boceto generado por HLL_SKETCH_AGG

Tipo de retorno

La funcion HLL_SKETCH_ESTIMATE devuelve un valor de BIGINT que es el recuento distinto
aproximado representado por el boceto de entrada.

Ejemplos

Los ejemplos siguientes utilizan el algoritmo de boceto HyperLoglLog (HLL) para estimar la
cardinalidad (recuento Unico) de los valores de la columna. col La hll_sketch_agg(col, 12)
funcién toma la col columna y crea un boceto HLL con una precision de 12 bits. El boceto HLL es
una estructura de datos aproximada que puede estimar de manera eficiente el niumero de elementos
Unicos de un conjunto. La hll_sketch_estimate() funcién toma el boceto HLL creado por el
boceto hll_sketch_agg y estima la cardinalidad (recuento unico) de los valores representados por
el boceto. FROM VALUES (1), (1), (2), (2), (3) tab(col);Genera un conjunto de datos

Funciones de hiperloglog 238

AWS Clean Rooms Referencia de SQL

de prueba con 5 filas, donde la col columna contiene los valores 1, 1, 2, 2 y 3. El resultado de esta
consulta es el recuento unico estimado de los valores de la col columna, que es 3.

SELECT hll_sketch_estimate(hll_sketch_agg(col, 12))
FROM VALUES (1), (1), (2), (2), (3) tab(col);

La diferencia entre el ejemplo siguiente y el anterior es que el parametro de precision (12 bits) no

se especifica en la llamada a la hll_sketch_agg funcién. En este caso, se utiliza la precision
predeterminada de 14 bits, lo que puede proporcionar una estimacion mas precisa del recuento unico
en comparacion con el ejemplo anterior, que utilizaba 12 bits de precision.

SELECT hll_sketch_estimate(hll_sketch_agg(col))
FROM VALUES (1), (1), (2), (2), (3) tab(col);
3

Funcion HLL_UNION

La funcion HLL_UNION combina dos bocetos HLL en un boceto unico y unificado. Utiliza el algoritmo
HyperLogLog (HLL) para combinar dos bocetos en un solo boceto. Las consultas pueden usar los
buferes resultantes para calcular recuentos unicos aproximados como enteros largos con la funcion.
hll_sketch_estimate

Sintaxis

HLL_UNION ((exprl, expr2 [, allowDifferentLgConfigK]))

Argumento

eXPRN

BINARYEXxpresion que contiene un boceto generado por HLL_SKETCH_AGG.

allowDifferentLgConfiguracion

Una expresion BOOLEANA opcional que controla si se permite la fusion de dos bocetos con
valores de IgConfigK diferentes. El valor predeterminado es false.

Funciones de hiperloglog 239

AWS Clean Rooms Referencia de SQL

Tipo de retorno

La funcion HLL_UNION devuelve un bufer BINARIO que contiene el HyperLoglLog boceto
calculado como resultado de la combinacion de las expresiones de entrada. Cuando el
allowDifferentLgConfigK parametro estrue, el boceto resultante utiliza el menor de los dos
valores proporcionados. 1gConfigK

Ejemplos

Los siguientes ejemplos utilizan el algoritmo de boceto HyperLoglLog (HLL) para estimar el recuento
unico de valores en dos columnas coll y col2 en un conjunto de datos.

La hll_sketch_agg(coll) funcién crea un boceto HLL para los valores unicos de la columna.
coll

La hll_sketch_agg(col2) funcion crea un boceto HLL para los valores unicos de la columna
col2.

Lahll_union(...) funcién combina los dos bocetos HLL creados en los pasos 1y 2 en un solo
boceto HLL unificado.

Lahll_sketch_estimate(...) funcién toma el boceto HLL combinado y estima el recuento
unico de valores entre ambas y. coll col2

La FROM VALUES clausula genera un conjunto de datos de prueba con 5 filas, donde coll contiene
los valores 1,1, 2,2y 3,y col2 contiene los valores 4,4, 5,5y 6.

El resultado de esta consulta es el recuento unico estimado de valores entre ambos coll ycol2,
que es 6. El algoritmo de boceto HLL proporciona una forma eficaz de estimar el numero de
elementos unicos, incluso en el caso de conjuntos de datos grandes, sin tener que almacenar todo
el conjunto de valores unicos. En este ejemplo, la h11l_union funcién se utiliza para combinar los
bocetos HLL de las dos columnas, lo que permite estimar el recuento unico en todo el conjunto de
datos, en lugar de hacerlo solo para cada columna individualmente.

SELECT hll_sketch_estimate(
hll_union(
hll_sketch_agg(coll),
hll_sketch_agg(col2)))
FROM VALUES
(1, 4),
(1, 4),

Funciones de hiperloglog 240

AWS Clean Rooms Referencia de SQL

(2, 5),
(2, 5),
(3, 6) AS tab(coll, col2);

La diferencia entre el ejemplo siguiente y el anterior es que el parametro de precision (12 bits) no

se especifica en la llamada a la hll_sketch_agg funcién. En este caso, se utiliza la precision
predeterminada de 14 bits, lo que puede proporcionar una estimacion mas precisa del recuento unico
en comparacion con el ejemplo anterior, que utilizaba 12 bits de precision.

SELECT hll_sketch_estimate(
hll_union(
hll_sketch_agg(coll, 14),
hll_sketch_agg(col2, 14)))
FROM VALUES
(1, 4),
(1, 4),
(2, 5),
(2, 5),
(3, 6) AS tab(coll, col2);

Funcion HLL_UNION_AGG

La funcion HLL_UNION_AGG combina varios bocetos HLL en un solo boceto unificado.

Utiliza el algoritmo HyperLoglLog (HLL) para combinar un grupo de bocetos en uno solo. Las
consultas pueden usar los buferes resultantes para calcular recuentos Unicos aproximados con la
hll_sketch_estimate funcion.

Sintaxis

HLL_UNION_AGG (expr [, allowDifferentLgConfigK])

Argumento
expr

BINARYEXxpresion que contiene un boceto generado por HLL_SKETCH_AGG.

allowDifferentLgConfiguracion

Una expresion BOOLEANA opcional que controla si se permite la fusion de dos bocetos con
valores de IgConfigK diferentes. El valor predeterminado es false.

Funciones de hiperloglog 241

AWS Clean Rooms Referencia de SQL

Tipo de retorno

La funcion HLL_UNION_AGG devuelve un bufer BINARIO que contiene el HyperLogLog boceto
calculado como resultado de la combinacion de las expresiones de entrada del mismo grupo.
Cuando el allowDifferentLgConfigK parametro estrue, el boceto resultante utiliza el menor de
los dos valores proporcionados. 1gConfigK

Ejemplos

Los siguientes ejemplos utilizan el algoritmo de boceto HyperLoglLog (HLL) para estimar el recuento
unico de valores en varios bocetos HLL.

El primer ejemplo estima el recuento unico de valores de un conjunto de datos.

SELECT hll_sketch_estimate(hll_union_agg(sketch, true))
FROM (SELECT hll_sketch_agg(col) as sketch
FROM VALUES (1) AS tab(col)
UNION ALL
SELECT hll_sketch_agg(col, 20) as sketch
FROM VALUES (1) AS tab(col));

La consulta interna crea dos bocetos HLL:

» La primera instruccion SELECT crea un boceto a partir de un unico valor de 1.

» La segunda instruccion SELECT crea un boceto a partir de otro valor unico de 1, pero con una
precision de 20.

La consulta externa utiliza la funciéon HLL_UNION_AGG para combinar los dos bocetos en un solo
boceto. A continuacion, aplica la funcion HLL_SKETCH_ESTIMATE a este boceto combinado para
estimar el recuento unico de valores.

El resultado de esta consulta es el recuento unico estimado de los valores de la columna, que es.
col 1 Esto significa que los dos valores de entrada de 1 se consideran unicos, aunque tengan el
mismo valor.

El segundo ejemplo incluye un parametro de precision diferente para la funcion HLL_UNION_AGG.
En este caso, ambos bocetos HLL se crean con una precision de 14 bits, lo que permite combinarlos
correctamente con el parametro. h11_union_agg true

Funciones de hiperloglog 242

AWS Clean Rooms Referencia de SQL

SELECT hll_sketch_estimate(hll_union_agg(sketch, true))
FROM (SELECT hll_sketch_agg(col, 14) as sketch
FROM VALUES (1) AS tab(col)
UNION ALL
SELECT hll_sketch_agg(col, 14) as sketch
FROM VALUES (1) AS tab(col));

El resultado final de la consulta es el recuento unico estimado, que en este caso también 1 lo es.
Esto significa que los dos valores de entrada de 1 se consideran unicos, aunque tengan el mismo
valor.

Funciones JSON

Cuando necesita almacenar un conjunto relativamente pequeino de pares clave-valor, puede ahorrar
espacio al almacenar los datos en formato JSON. Debido a que las cadenas JSON se pueden
almacenar en una unica columna, utilizar JSON puede ser mas eficiente que almacenar los datos en
formato de tabla.

Example

Por ejemplo, piense en una tabla dispersa en la que necesita tener un gran numero de columnas
para representar completamente todos los atributos posibles. Sin embargo, la mayoria de los valores
de las columnas son NULL para cualquier fila 0 columna determinada. Al usar JSON con fines de
almacenamiento, puede almacenar los datos para una fila en pares de clave-valor en una unica
cadena JSON y eliminar las columnas de tabla pobladas de forma dispersa.

Ademas, puede modificar facilmente las cadenas JSON para almacenar pares clave-valor
adicionales sin necesidad de agregar columnas a una tabla.

Recomendamos utilizar JSON con moderacion. JSON no es una buena alternativa para almacenar
grandes conjuntos de datos porque, al almacenar datos dispersos en una unica columna, JSON no
utiliza la arquitectura de almacén de columnas de AWS Clean Rooms .

JSON utiliza cadenas de texto con cifrado UTF-8, por lo que las cadenas JSON se pueden
almacenar como tipos de datos CHAR o VARCHAR. Utilice VARCHAR si las cadenas incluyen
caracteres multibytes.

Las cadenas JSON deben tener el formato JSON adecuado, conforme a las siguientes reglas:

Funciones JSON 243

AWS Clean Rooms Referencia de SQL

» EI JSON a nivel raiz puede ser un objeto JSON o una matriz JSON. Un objeto JSON es un
conjunto no ordenado de pares clave-valor separados por comas y delimitado con llaves.

Por ejemplo, {"one":1, "two":2}

* Una matriz JSON es un conjunto ordenado de valores separados por comas delimitado entre
corchetes.

A continuacion se muestra un ejemplo: ["first", {"one":1}, "second", 3, null]

» Las matrices JSON utilizan un indice basado en cero; el primer elemento en una matriz esta en la
posicion 0. En un par clave:valor de JSON, la clave es una cadena con comillas dobles.

» El valor JSON puede ser cualquiera de los siguientes valores:
* Objeto JSON
* matriz JSON
« Cadena entre comillas dobles
« Numero (entero y flotante)
+ Booleano
* Nulo
» Los objetos y las matrices vacios son valores JSON validos.
* Los campos JSON distinguen entre mayusculas y minusculas.

« Se ignoran los espacios en blanco entre los elementos estructurales de JSON (como { }, [1).

Temas

* Funcion GET_JSON_OBJECT

* Funcion TO_JSON

Funcion GET_JSON_OBJECT
La funcion GET_JSON_OBJECT extrae un objeto json de. path

Sintaxis

get_json_object(json_txt, path)

Funciones JSON 244

AWS Clean Rooms Referencia de SQL

Argumentos
json_txt

Una expresion STRING que contiene un JSON bien formado.

path

Un literal STRING con una expresion de ruta JSON bien formada.

Devuelve

Devuelve una cadena.

Si no se encuentra el objeto, se devuelve un valor NULL.
Ejemplo

El siguiente ejemplo extrae un valor de un objeto JSON. El primer argumento es una cadena

JSON que representa un objeto simple con un unico par clave-valor. El segundo argumento es una
expresion de ruta JSON. El $ simbolo representa la raiz del objeto JSON y la . a parte especifica que
queremos extraer el valor asociado a la clave a «». El resultado de la funcion es 'b', que es el valor
asociado a la tecla «a» en el objeto JSON de entrada.

SELECT get_json_object('{"a":"b"}', '$.a');
b

Funcion TO_JSON

La funcién TO_JSON convierte una expresion de entrada en una representacion de cadena JSON.
La funcion gestiona la conversion de diferentes tipos de datos (como numeros, cadenas y valores
booleanos) en sus correspondientes representaciones JSON.

La funcion TO_JSON resulta util cuando se necesitan convertir datos estructurados (como filas
de bases de datos u objetos JSON) a un formato mas portatil y autodescriptivo, como JSON. Esto
puede resultar especialmente util cuando necesitas interactuar con otros sistemas o servicios que
esperan datos con formato JSON.

Sintaxis

to_json(expr[, options])

Funciones JSON 245

AWS Clean Rooms Referencia de SQL

Argumentos
expr

La expresion de entrada que desea convertir en una cadena JSON. Puede ser un valor, una
columna o cualquier otra expresion SQL valida.

options

Un conjunto opcional de opciones de configuracion que se puede utilizar para personalizar
el proceso de conversion a JSON. Estas opciones pueden incluir aspectos como el manejo
de valores nulos, la representacion de valores numéricos y el tratamiento de los caracteres
especiales.

Devuelve
Devuelve una cadena JSON con un valor de estructura determinado
Ejemplos

El siguiente ejemplo convierte una estructura con nombre (un tipo de datos estructurados) en una
cadena JSON. El primer argumento (named_struct('a', 1, 'b', 2) () eslaexpresion de
entrada que se pasa a la to_json() funcion. Crea una estructura con nombre con dos campos: «a»
con un valor de 1y «b» con un valor de 2. La funcién to_json () toma la estructura nombrada como
argumento y la convierte en una representacion de cadena JSON. El resultadoes {"a":1,"b":2}
una cadena JSON valida que representa la estructura nombrada.

SELECT to_json(named_struct('a', 1, 'b', 2));
{Ilall:l’ Ilbll:z}

El siguiente ejemplo convierte una estructura con nombre que contiene un valor de marca de tiempo
en una cadena JSON, con un formato de marca de tiempo personalizado. El primer argumento
(named_struct('time', to_timestamp('2015-08-26', 'yyyy-MM-dd'))) creauna
estructura con nombre con un unico campo «time» que contiene el valor de la marca de tiempo. El
segundo argumento (map('timestampFormat', 'dd/MM/yyyy')) crea un mapa (diccionario
clave-valor) con un unico par clave-valor, donde la clave es 'TimestampFormat' y el valor es ". dd/
MM/yyyy'. This map is used to specify the desired format for the timestamp value when converting

it to JSON. The to_json() function converts the named struct into a JSON string. The second
argument, the map, is used to customize the timestamp format to 'dd/MM/yyyy El resultado es

Funciones JSON 246

AWS Clean Rooms Referencia de SQL

{"time":"26/08/2015"} una cadena JSON con un solo campo «time» que contiene el valor de la
marca de tiempo en el formato «» deseado. dd/MM/yyyy

SELECT to_json(named_struct('time', to_timestamp('2015-08-26', 'yyyy-MM-dd')),
map('timestampFormat', 'dd/MM/yyyy'));
{"time":"26/08/2015"}

Funciones matematicas

En esta seccidn se describen las funciones y los operadores matematicos compatibles con AWS
Clean Rooms Spark SQL.

Temas

» Simbolos de operadores matematicos
* Funcion ABS

* Funcion ACOS

* Funcion ASIN

* Funcion ATAN

» ATAN2 funcion

* Funcion CBRT

* Funcion CEILING (o CEIL)
* Funcion COS

* Funcion COT

* Funciéon DEGREES

» Funcion DIV

* Funcion EXP

* Funcion FLOOR

* Funcion LN
* Funcion LOG
¢ Funcion MOD

* Funcion Pl
* Funcion POWER
* Funcion RADIANS

Funciones matematicas 247

AWS Clean Rooms Referencia de SQL

* Funcion RAND

* Funcion RANDOM
* Funcion ROUND
* Funcion SIGN

* Funcion SIN

« Funcion SQRT

* Funcion TRUNC

Simbolos de operadores matematicos
En la tabla siguiente, se muestran los operadores matematicos admitidos.

Operadores admitidos

Operador Descripcion Ejemplo Resultado
+ suma 2+3 5
- resta 2-3 -1
* multiplic 2*3 6
acion
/ division 4/2 2
% modulo 5%4 1
A potencia 2,073,0 8
Ejemplos

Se calcula la comisién pagada mas una tarifa de manipulacién de 2,00 $ para una determinada
transaccion:

select commission, (commission + 2.00) as comm
from sales where salesid=10000;

commission | comm

Funciones matematicas 248

AWS Clean Rooms

Referencia de SQL

___________ e o
28.05 | 30.05

Calcule el 20% del precio de venta para una transaccion dada:

select pricepaid, (pricepaid * .20) as twentypct
from sales where salesid=10000;

pricepaid | twentypct
__________ R
187.00 | 37.400
(1 row)

Prevea la venta de tickets segun un patron de crecimiento continuo. En este ejemplo, la subconsulta

devuelve la cantidad de tickets vendidos en 2008. El resultado se multiplica exponencialmente por un

indice de crecimiento continuo del 5 % a 10 anos.

select (select sum(qgtysold) from sales, date
where sales.dateid=date.dateid and year=2008)
A ((5::float/100)*10) as qtyl@years;

gqtylOyears
587.664019657491
(1 row)

Se encuentra el precio total pagado y la comision por ventas con un ID de fecha que sea mayor que

o igual a 2000. Luego, se resta la comision total del precio total pagado.

select sum (pricepaid) as sum_price, dateid,

sum (commission) as sum_comm, (sum (pricepaid) - sum (commission)) as value

from sales where dateid >= 2000
group by dateid order by dateid limit 10;

sum_price

I I
+ +
364445.00 | 2044 | 54666.75 | 309778.25
I I
I I
I I

349344.00 2112 | 52401.60 | 296942.40
343756.00 2124 | 51563.40 | 292192.60
378595.00 2116 | 56789.25 321805.75

Funciones matematicas

249

AWS Clean Rooms

Referencia de SQL

328725.00 | 2080 | 49308.75
349554.00 | 2028 | 52433.10
249207.00 | 2164 | 37381.05
285202.00 | 2064 | 42780.30
320945.00 | 2012 | 48141.75
321096.00 | 2016 | 48164.40
(10 rows)
Funciéon ABS

279416.
297120.
211825.
242421,
272803.
272931.

25
90
95
70
25
60

ABS calcula el valor absoluto de un numero, donde ese numero puede ser un valor literal o una

expresion que tome el valor de un numero.

Sintaxis

ABS (number)

Argumentos

numero

Numero o expresion que toma el valor de un numero. Puede ser SMALLINT, INTEGER, BIGINT
FLOAT4, DECIMAL o type. FLOATS8

Tipo de devolucién

ABS devuelve el mismo tipo de datos como su argumento.

Ejemplos

Calcular el valor absoluto de -38:

select abs (-38);
abs

Calcular el valor absoluto de (14-76):

select abs (14-76);

Funciones matematicas

250

AWS Clean Rooms Referencia de SQL

Funcion ACOS

ACOS es una funcion trigonométrica que devuelve el arcocoseno de un numero. El valor de retorno
esta en radianes y se encuentra entre @ y PI.

Sintaxis

ACOS (humber)

Argumentos

numero

El parametro de entrada es un numero de DOUBLE PRECISION.

Tipo de devolucién
DOUBLE PRECISION
Ejemplos

Para devolver el arcoseno de -1, use el siguiente ejemplo.

SELECT ACOS(-1);

B e e T +
| acos |
B e e T +
| 3.141592653589793 |
B e e T +
Funcién ASIN

ASIN es una funcién trigonométrica que devuelve el arcoseno de un numero. El valor de retorno esta
en radianes y se encuentra entre PI/2y -PI/2.

Funciones matematicas 251

AWS Clean Rooms Referencia de SQL

Sintaxis

ASIN(humber)

Argumentos

numero

El parametro de entrada es un numero de DOUBLE PRECISION.

Tipo de devolucion

DOUBLE PRECISION

Ejemplos

Para devolver el arcoseno de 1, use el siguiente ejemplo.

SELECT ASIN(1) AS halfpi;

B T T +
| halfpi |
B T T +
| 1.5707963267948966 |
B T T +
Funcion ATAN

ATAN es una funcién trigonométrica que devuelve la arcotangente de un numero. El valor de retorno
esta en radianes y se encuentra entre -PI y PI.

Sintaxis

ATAN(number)

Argumentos

ndmero

El parametro de entrada es un numero de DOUBLE PRECISION.

Funciones matematicas 252

AWS Clean Rooms Referencia de SQL

Tipo de devolucion
DOUBLE PRECISION
Ejemplos

Para devolver la arcotangente de 1 y multiplicarla por 4, use el siguiente ejemplo.

SELECT ATAN(1) * 4 AS pi;

Ly +
I pi I
Ly +
| 3.141592653589793 |
Ly +
ATAN2 funcion

ATANZ2 es una funcién trigonométrica que devuelve el arco tangente de un numero dividido por otro
namero. El valor de retorno esta en radianes y se encuentra entre PI/2y -PI/2.

Sintaxis

ATAN2(numberl, number2)

Argumentos

number1

Un ndmero de DOUBLE PRECISION.

number2

Un ndmero de DOUBLE PRECISION.

Tipo de devolucion

DOUBLE PRECISION

Ejemplos

Para devolver la arcotangente de 2/2 y multiplicarla por 4, use el siguiente ejemplo.

SELECT ATAN2(2,2) * 4 AS PI;

Funciones matematicas 253

AWS Clean Rooms Referencia de SQL

L e +
I pi I
L e +
| 3.141592653589793 |
L e +

Funcion CBRT
La funcién CBRT es una funcion matematica que calcula la raiz cubica de un numero.

Sintaxis

CBRT (nhumber)

Argumento

CBRT toma un numero con un valor de DOUBLE PRECISION como argumento.
Tipo de devolucion

CBRT devuelve un numero con un valor de DOUBLE PRECISION.

Ejemplos

Calcular la raiz cubica de la comisién pagada para una transaccion dada:

select cbrt(commission) from sales where salesid=10000;

3.03839539048843
(1 row)

Funcién CEILING (o CEIL)

La funcion CEILING o CEIL se usa para redondear un numero hacia arriba hasta el préximo numero
entero. (La Funcion FLOOR redondea un numero hacia abajo hasta el proximo numero entero).

Sintaxis

CEIL | CEILING(number)

Funciones matematicas 254

AWS Clean Rooms Referencia de SQL

Argumentos

nuamero
El numero o la expresion que toma el valor de un numero. Puede ser SMALLINT, INTEGER,
BIGINT FLOAT4, DECIMAL o type. FLOAT8

Tipo de devolucion

CEILING y CEIL devuelven el mismo tipo de datos como su argumento.

Ejemplo

Calcular el limite maximo de la comision pagada para una transaccién dada de ventas:

select ceiling(commission) from sales
where salesid=10000;

ceiling

Funcion COS

COS es una funcién trigopnométrica que devuelve el coseno de un numero. El valor de retorno esta
en radianes y se encuentra entre -1y 1, inclusive.

Sintaxis
COS(double_precision)
Argumento

ndmero

El parametro de entrada es un numero de doble precision.

Tipo de devolucion

La funcion COS devuelve un numero de doble precision.

Funciones matematicas 255

AWS Clean Rooms Referencia de SQL

Ejemplos

El siguiente ejemplo devuelve el coseno de 0:

select cos(0);
cos

El siguiente ejemplo devuelve el coseno de Pi:

select cos(pi());
cos

Funcion COT

COT es una funcién trigonométrica que devuelve la cotangente de un numero. El parametro de
entrada debe ser distinto de cero.

Sintaxis

COT(number)

Argumento
numero

El parametro de entrada es un numero de DOUBLE PRECISION.

Tipo de devolucion
DOUBLE PRECISION
Ejemplos

Para devolver la cotangente de 1, use el siguiente ejemplo.

Funciones matematicas 256

AWS Clean Rooms Referencia de SQL

SELECT COT(1);

R +
| cot |
R +
| ©.6420926159343306 |
R +

Funcion DEGREES
Convierte un angulo en radianes a su equivalente en grados.

Sintaxis

DEGREES (nhumber)

Argumento
numero

El parametro de entrada es un numero de DOUBLE PRECISION.

Tipo de devolucion

DOUBLE PRECISION

Ejemplo

Para devolver el equivalente en grados de .5 radianes, use el siguiente ejemplo.

SELECT DEGREES(.5);

B e +
| degrees |
B e +
| 28.64788975654116 |
B e +

Para convertir radianes de Pi a grados, use el siguiente ejemplo.

SELECT DEGREES(pi());

Funciones matematicas 257

AWS Clean Rooms Referencia de SQL

Funcion DIV

El operador DIV devuelve la parte integral de la division del dividendo por el divisor.

Sintaxis

dividend div divisor

Argumentos

dividendo

Expresion que se evalua como un valor numérico o un intervalo.

divisor

Un tipo de intervalo coincidente si dividend es un intervalo, numérico en caso contrario.

Tipo de devolucion
BIGINT
Ejemplos

En el siguiente ejemplo, se seleccionan dos columnas de la tabla de ardillas: la id columna, que
contiene el identificador Unico de cada ardilla, y una calculated columnaage div 2, que
representa la division de enteros de la columna de edad entre 2. El age div 2 calculo divide los
enteros de la age columna, redondeando asi la edad al entero par mas proximo. Por ejemplo, si la
age columna contiene valores como 3, 5, 7 y 10, contendra los valores 1, 2, 3y 5, respectivamente.
age div 2

SELECT id, age div 2 FROM squirrels

Funciones matematicas 258

AWS Clean Rooms Referencia de SQL

Esta consulta puede resultar util en situaciones en las que necesite agrupar o analizar datos en
funcién de los rangos de edad y desee simplificar los valores de edad redondeandolos al numero
entero par mas cercano. El resultado resultante proporcionaria la edad id y la edad divididas por 2
para cada ardilla de la squirrels tabla.

Funcion EXP

La funcion EXP implementa la funcién exponencial para una expresion numérica, o la base del
logaritmo natural, e, elevada a potencia de expresidn. La funcion EXP es la operacién inversa de
Funcion LN.

Sintaxis

EXP (expression)

Argumento
expresion

La expresion debe ser un tipo de datos INTEGER, DECIMAL o DOUBLE PRECISION.

Tipo de devolucion
EXP devuelve un nimero con un valor de DOUBLE PRECISION.
Ejemplo

Se utiliza la funcion EXP para prever las ventas de tickets segun un patrén de crecimiento continuo.
En este ejemplo, la subconsulta devuelve la cantidad de tickets vendidos en 2008. El resultado se
multiplica por el resultado de la funcion EXP, que especifica un indice de crecimiento continuo del 7%
durante 10 afos.

select (select sum(qgtysold) from sales, date
where sales.dateid=date.dateid
and year=2008) * exp((7::float/100)*10) qty2018;

qty2018

695447 .483772222
(1 row)

Funciones matematicas 259

AWS Clean Rooms Referencia de SQL

Funcion FLOOR

La funcion FLOOR redondea un numero hacia abajo hasta el préximo numero entero.

Sintaxis

FLOOR (number)

Argumento

ndmero

El numero o la expresion que toma el valor de un numero. Puede ser SMALLINT, INTEGER,
BIGINT, FLOAT4 DECIMAL o type. FLOATS

Tipo de devolucion
FLOOR devuelve el mismo tipo de datos como su argumento.
Ejemplo

En el ejemplo se muestra el valor de la comisidén pagada por una transaccién de ventas determinada
antes y después de usar la funcién FLOOR.

select commission from sales
where salesid=10000;

select floor(commission) from sales
where salesid=10000;

Funciones matematicas 260

AWS Clean Rooms

Referencia de SQL

Funcion LN

La funcion LN devuelve el logaritmo natural del parametro de entrada.

Sintaxis

LN(expression)

Argumento

expresion

La columna o expresion de destino sobre la que opera la funcion.

(® Note

Esta funcidn devuelve un error para algunos tipos de datos si la expresion hace referencia
a una tabla AWS Clean Rooms creada por el usuario o a una tabla del sistema AWS
Clean Rooms STL o STV.

Las expresiones con los siguientes tipos de datos producen un error si usa como referencia una

tabla de sistema o creada por usuarios.

BOOLEAN

CHAR

DATE

DECIMAL o NUMERIC
TIMESTAMP
VARCHAR

Las expresiones con los siguientes tipos de datos se ejecutan con éxito en tablas creadas por

usuarios y tablas de sistema STL o STV:

BIGINT

DOUBLE PRECISION
INTEGER

REAL

SMALLINT

Funciones matematicas

261

AWS Clean Rooms

Referencia de SQL

Tipo de devolucion

La funcién LN devuelve el mismo tipo que la expresion.

Ejemplo

El siguiente ejemplo devuelve el logaritmo natural, o la base de logaritmo, del numero 2,718281828:

select 1n(2.7
1n
©.99999999983
(1 row)

Tenga en cuenta que la respuesta es casi igual a 1.

18281828);

11267

En este ejemplo, se devuelve el logaritmo natural de los valores en la columna USERID en la tabla

USERS:

select username, ln(userid) from users order by userid limit 10;

username
JSG99FHE
PGLOSLII
IFT66TXU
XDZ38RDD
AEB55QTM
NDQ15VBM
OwY35QYB
AZG78YIP
MSD36KVR
WKW41AIW
(10 rows)

—_— e — M — — 4 =

Funcion LOG

Devuelve el logaritmo de expr conbase.

Sintaxis

0.693147180559945

1.09861228866811
1.38629436111989

1.6094379124341
1.79175946922805
1.94591014905531
2.07944154167984
2.19722457733622
2.30258509299405

LOG(base, expr)

Funciones matematicas

262

AWS Clean Rooms Referencia de SQL

Argumento
expr

La expresion debe ser un tipo de datos entero, decimal o de punto flotante.

base

La base para el calculo del logaritmo. Debe ser un numero positivo (distinto de 1) del tipo de
datos de doble precision.

Tipo de devolucion
La funcién LOG devuelve un numero de doble precision.
Ejemplo

El siguiente ejemplo devuelve el logaritmo de base 10 del numero 100:

select log(10, 100);

Funcion MOD

Devuelve el resto de dos numeros, también denominada operacién de mdédulo. Para calcular el
resultado, el primer parametro se divide entre el segundo.

Sintaxis

MOD(nhumberl, number2)

Argumentos
number1

El primer parametro de entrada es un numero con un valor de tipo INTEGER, SMALLINT, BIGINT
o DECIMAL. Si cada parametro es de tipo DECIMAL, el otro parametro debe ser también un tipo
DECIMAL. Si cada parametro es un valor INTEGER, el otro parametro puede ser INTEGER,
SMALLINT o BIGINT. Ambos parametros pueden ser SMALLINT o BIGINT, pero un parametro no
puede ser SMALLINT si el otro es BIGINT.

Funciones matematicas 263

AWS Clean Rooms Referencia de SQL

number2

El segundo parametro de entrada es un numero con un valor de tipo INTEGER, SMALLINT,
BIGINT o DECIMAL. Se aplican las mismas reglas de tipo de datos en number2 y en number1.

Tipo de devolucién

Los tipos de retorno validos son DECIMAL, INT, SMALLINT y BIGINT. El tipo de retorno de la funcion
MOD es el mismo tipo numérico que los parametros de entrada, si ambos parametros de entrada son
del mismo tipo. No obstante, si algun parametro de entrada es un valor INTEGER, el tipo de retorno
también sera INTEGER.

Notas de uso
Puede utilizar % como operador de médulo.
Ejemplos

En el siguiente ejemplo, se devuelve el resto cuando se divide un numero entre otro:

SELECT MOD(10, 4);

En el siguiente ejemplo, se devuelve un resultado decimal:

SELECT MOD(10.5, 4);

Puede convertir valores de parametro:

SELECT MOD(CAST(16.4 as integer), 5);

Funciones matematicas 264

AWS Clean Rooms Referencia de SQL

Compruebe si el primer parametro es par dividiéndolo entre 2:

SELECT mod(5,2) = @ as is_even;

is_even

Puede utilizar % como operador de modulo:

SELECT 11 % 4 as remainder;

remainder

El siguiente ejemplo devuelve la informacidn para categorias con numeros impares en la tabla
CATEGORY:

select catid, catname
from category
where mod(catid,2)=1
oxder by 1,2;

catid | catname
_______ B
1 | MLB
3 | NFL
5 | MLS
7 | Plays
9 | Pop
11 | Classical
(6 rows)
Funcion Pl

La funcion Pl devuelve el valor de Pi a 14 lugares decimales.

Sintaxis

PI()

Funciones matematicas 265

AWS Clean Rooms Referencia de SQL

Tipo de devolucion

DOUBLE PRECISION

Ejemplos

Para devolver el valor de pi, utilice el ejemplo siguiente.

SELECT PI();

e +
I pi I
e +
| 3.141592653589793 |
e +

Funcion POWER

La funcion POWER es una funcion exponencial que eleva una expresion numérica a la potencia
de una segunda expresién numérica. Por ejemplo, 2 a la tercera potencia se calcula como
POWER(2, 3), con un resultado de 8.

Sintaxis

{POWER(expressionl, expression2)

Argumentos

expression1

Expresion numérica que se elevara. Debe ser un tipo de datos INTEGER, DECIMAL o FLOAT.

expression2

Potencia a la que se va a elevar expression1. Debe ser un tipo de datos INTEGER, DECIMAL o
FLOAT.

Tipo de devolucion

DOUBLE PRECISION

Funciones matematicas 266

AWS Clean Rooms

Referencia de SQL

Ejemplo

SELECT (SELECT SUM(qtysold) FROM sales, date
WHERE sales.dateid=date.dateid
AND year=2008) * POW((1+7::FLOAT/100),10) qty2010;

B e +
| qty2010 |
B e +
| 679353.7540885945 |
B e +

Funcion RADIANS

La funcion RADIANS convierte un angulo en grados a su equivalente en radianes.

Sintaxis

RADIANS (number)

Argumento
numero

El parametro de entrada es un numero de DOUBLE PRECISION.

Tipo de devolucién
DOUBLE PRECISION

Ejemplo

Para devolver el equivalente en radianes de 180 grados, use el siguiente ejemplo.

SELECT RADIANS(180);

B e e +
| radians |
B e e +
| 3.141592653589793 |
B e e +

Funciones matematicas

267

AWS Clean Rooms Referencia de SQL

Funcion RAND

La funcion RAND genera un numero aleatorio de punto flotante entre 0 y 1. La funcion RAND genera
un nuevo numero aleatorio cada vez que se llama.

Sintaxis

RAND()

Tipo de devolucion
RANDOM devuelve un DOUBLE.
Ejemplo

El siguiente ejemplo genera una columna de numeros aleatorios de punto flotante entre 0 y 1 para
cada fila de la tabla. squirrels El resultado seria una sola columna con una lista de valores
decimales aleatorios, con un valor para cada fila de la tabla Squirrels.

SELECT rand() FROM squirrels

Este tipo de consulta resulta util cuando se necesitan generar numeros aleatorios, por ejemplo, para
simular eventos aleatorios o para introducir la aleatoriedad en el analisis de datos. En el contexto de
la squirrels tabla, podria usarse para asignar valores aleatorios a cada ardilla, que luego podrian
usarse para su posterior procesamiento o analisis.

Funcion RANDOM
La funcion RANDOM genera un valor aleatorio entre 0,0 (inclusive) y 1,0 (exclusive).

Sintaxis

RANDOM()

Tipo de devolucion
RANDOM devuelve un numero con un valor de DOUBLE PRECISION.
Ejemplos

1. Se computa un valor aleatorio entre 0 y 99. Si el numero aleatorio esta comprendido entre O y 1,
esta consulta produce un numero aleatorio comprendido entre 0 y 100:

Funciones matematicas 268

AWS Clean Rooms Referencia de SQL

select cast (random() * 100 as int);

INTEGER

24
(1 row)

2. Recupera una muestra aleatoria uniforme de 10 objetos:

select *

from sales

order by random()
limit 10;

Ahora recupera una muestra aleatoria de 10 objetos, pero elige los objetos en proporcion a
sus precios. Por ejemplo, un objeto que cuesta el doble del precio de otro tendria el doble de
posibilidades de aparecer en los resultados de la busqueda:

select *

from sales

order by log(l - random()) / pricepaid
limit 10;

3. En este ejemplo se usa el comando SET para establecer un valor SEED de modo que RANDOM
genere una secuencia predecible de numeros.

Primero, se devuelven tres valores enteros RANDOM sin establecer antes el valor SEED:

select cast (random() * 100 as int);
INTEGER

select cast (random() * 100 as int);
INTEGER

68
(1 row)

select cast (random() * 100 as int);

Funciones matematicas 269

AWS Clean Rooms Referencia de SQL

INTEGER

Ahora, establezca el valor SEED en .25 y devuelva tres numeros RANDOM mas:

set seed to .25;
select cast (random() * 100 as int);
INTEGER

21
(1 row)

select cast (random() * 100 as int);
INTEGER

79

(1 row)

select cast (random() * 100 as int);
INTEGER

Finalmente, restablezca el valor SEED a . 25 y verifique que RANDOM devuelva los mismos
resultados que en las tres ejecuciones anteriores:

set seed to .25;

select cast (random() * 100 as int);
INTEGER

21

(1 row)

select cast (random() * 100 as int);
INTEGER

Funciones matematicas 270

AWS Clean Rooms Referencia de SQL

select cast (random() * 100 as int);
INTEGER

Funcion ROUND

La funcion ROUND redondea los numeros hasta el valor entero o decimal mas cercano.

La funcion ROUND puede incluir, de forma opcional, un segundo argumento como un valor entero
que indique la cantidad de lugares decimales para el redondeo, sea cual sea la direccion. Cuando
no se proporciona el segundo argumento, la funcién redondea al numero entero mas cercano.
Cuando se especifica el segundo argumento >n, la funcién redondea al nUmero mas cercano con
una precision de hasta n decimales.

Sintaxis

ROUND (number [, integer])

Argumento
numero

Un numero o una expresion que toma el valor de un numero. Puede ser el DECIMAL o el
FLOATS tipo. AWS Clean Rooms puede convertir otros tipos de datos segun las reglas de
conversion implicitas.

integer (opcional)
Un numero entero que indica la cantidad de lugares decimales para el redondeo, sea cual sea la
direccién.

Tipo de devolucién

ROUND devuelve el mismo tipo de datos numérico como el argumento de entrada.

Ejemplos

Se redondea la comision pagada para una transaccion dada hasta el numero entero mas cercano.

Funciones matematicas 271

AWS Clean Rooms Referencia de SQL

select commission, round(commission)
from sales where salesid=10000;

commission | round
___________ e

Se redondea la comision pagada para una transaccion dada hasta el primer lugar decimal.

select commission, round(commission, 1)
from sales where salesid=10000;

commission | round

Para la misma consulta, se extiende la precision en la direccion opuesta.

select commission, round(commission, -1)
from sales where salesid=10000;

commission | round
___________ B

Funcion SIGN

La funcion SIGN devuelve el signo (positivo o negativo) de un numero. El resultado de la funcion
SIGN es 1, -1 0 0, lo que indica el signo del argumento.

Sintaxis

SIGN (number)

Funciones matematicas 272

AWS Clean Rooms Referencia de SQL

Argumento

ndmero

Numero o expresion que toma el valor de un numero. Puede ser del DECIMALor FLOATS
tipo. AWS Clean Rooms puede convertir otros tipos de datos segun las reglas de conversién

implicitas.
Tipo de devolucion

SIGN devuelve el mismo tipo de datos numérico como el argumento de entrada. Si la entrada es
DECIMAL, la salida es DECIMAL(1,0).

Ejemplos

Para determinar el signo de la comision pagada por una transaccion determinada a partir de la tabla
SALES, utilice el siguiente ejemplo.

SELECT commission, SIGN(commission)
FROM sales WHERE salesid=10000;

Foe——_———————— R +

| commission | sign |

F e - [R +
| 28.05 | 1 |
F e - [R +
Funcion SIN

SIN es una funcién trigonométrica que devuelve el seno de un numero. El valor devuelto esta
comprendido entre -1y 1.

Sintaxis
SIN(number)
Argumento

ndumero

Un numero de DOUBLE PRECISION en radianes.

Funciones matematicas 273

AWS Clean Rooms Referencia de SQL

Tipo de devolucion
DOUBLE PRECISION
Ejemplo

Para devolver el seno de -PI, use el siguiente ejemplo.

SELECT SIN(-PI());

L P +
| sin |
L P +
| -0.00000000000000012246 |
L P +

Funcion SQRT

La funcion SQRT devuelve la raiz cuadrada de un valor numérico. La raiz cuadrada es un nidmero
multiplicado por si mismo para obtener el valor dado.

Sintaxis
SQRT (expression)

Argumento
expresion
La expresion debe ser un tipo de datos entero, decimal o de punto flotante. La expresion puede

incluir funciones. Es posible que el sistema realice conversiones de tipos implicitos.

Tipo de devolucion

SQRT devuelve un numero con valor de DOUBLE PRECISION.

Ejemplos

El siguiente ejemplo devuelve la raiz cuadrada de un numero.
select sqrt(16);

sqrt

Funciones matematicas 274

AWS Clean Rooms Referencia de SQL

El siguiente ejemplo realiza una conversion de tipo implicita.

select sqrt('16');

En el ejemplo siguiente se anidan las funciones para realizar una tarea mas compleja.

select sqrt(round(16.4));

El siguiente ejemplo da como resultado la longitud del radio si se da el area de un circulo. Calcula el
radio en pulgadas, por ejemplo, cuando se le da el area en pulgadas cuadradas. El area del ejemplo
es 20.

select sqrt(20/pi());

Esto devuelve el valor 5,046265044040321.

El siguiente ejemplo devuelve la raiz cuadrada para valores COMMISSION de la tabla SALES. La
columna COMMISSION es una columna DECIMAL. En este ejemplo se muestra como se puede
utilizar la funcion en una consulta con una légica condicional mas compleja.

select sqrt(commission)
from sales where salesid < 10 order by salesid;

10.4498803820905
3.37638860322683
7.24568837309472
5.1234753829798

Funciones matematicas 275

AWS Clean Rooms Referencia de SQL

La siguiente consulta devuelve la raiz cuadrada redondeada para el mismo conjunto de valores
COMMISSION.

select salesid, commission, round(sqrt(commission))
from sales where salesid < 10 order by salesid;

salesid | commission | round
________ S S
1 109.20 | 10
2 | 11.40 | 3
3 52.50 | 7
4| 26.25 | 5

Para obtener mas informacién sobre los datos de muestra AWS Clean Rooms, consulte Base de
datos de muestra.

Funcion TRUNC
La funcion TRUNC trunca los numeros hasta el valor entero o decimal anterior.

La funcion TRUNC puede incluir, de forma opcional, un segundo argumento como un valor entero
que indique la cantidad de lugares decimales para el redondeo, sea cual sea la direccion. Cuando
no se proporciona el segundo argumento, la funciéon redondea al numero entero mas cercano.
Cuando se especifica el segundo argumento >n, la funcién redondea al numero mas cercano con
una precisién de hasta >n decimales. Esta funcion también trunca una marca temporal y devuelve
una fecha.

Sintaxis

TRUNC (number [, integer] |
timestamp)

Argumentos
numero

Un numero o una expresion que toma el valor de un numero. Puede ser el tipo DECIMAL o
el FLOATS tipo. AWS Clean Rooms puede convertir otros tipos de datos segun las reglas de
conversion implicitas.

Funciones matematicas 276

https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html
https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html

AWS Clean Rooms Referencia de SQL

integer (opcional)

Un numero entero que indica la cantidad de lugares decimales de precision, sea cual sea la
direccién. Si no se proporciona un valor entero, el numero se trunca como un numero entero; si
se especifica un numero entero, el numero se trunca hasta el lugar decimal especificado.

timestamp

La funcion también devuelve la fecha de una marca temporal. (Para devolver un valor de
marca temporal con 00:00:00 como la hora, convierta el resultado de la funcidon en una marca
temporal).

Tipo de devoluciéon

TRUNC devuelve el mismo tipo de datos como el primer argumento de entrada. Para las marcas
temporales, TRUNC devuelve una fecha.

Ejemplos
Se trunca la comision pagada para una transaccion dada de ventas.

select commission, trunc(commission)
from sales where salesid=784;

commission | trunc

Se trunca el mismo valor de comision hasta el primer lugar decimal.

select commission, trunc(commission,l)
from sales where salesid=784;

commission | trunc
111.15 | 111.1

(1 row)

Funciones matematicas 277

AWS Clean Rooms Referencia de SQL

Se trunca la comision con un valor negativo para el segundo argumento; 111.15 se redondea hacia
abajo hasta 110.

select commission, trunc(commission,-1)
from sales where salesid=784;

commission | trunc
___________ e

Se devuelve la parte de fecha desde el resultado de la funcion SYSDATE (que devuelve una marca
temporal):

select sysdate;

timestamp

2011-07-21 10:32:38.248109
(1 row)

select trunc(sysdate);

2011-07-21
(1 row)

Se aplica la funcién TRUNC a una columna TIMESTAMP. El tipo de retorno es una fecha.

select trunc(starttime) from event
order by eventid limit 1;

2008-01-25
(1 row)

Funciones matematicas 278

AWS Clean Rooms Referencia de SQL

Funciones escalares

En esta seccidn, se describen las funciones escalares compatibles con Spark SQL. AWS Clean
Rooms Una funcién escalar es una funcidén que toma uno o mas valores como entrada y devuelve
un unico valor como salida. Las funciones escalares funcionan en filas o elementos individuales y
producen un unico resultado para cada entrada.

Las funciones escalares, como SIZE, son diferentes de otros tipos de funciones SQL, como las
funciones de agregado (count, sum, avg) y las funciones generadoras de tablas (explode, flatten).
Estos otros tipos de funciones funcionan en varias filas o generan varias filas, mientras que las
funciones escalares funcionan en filas o elementos individuales.

Temas
* Funcién SIZE

Funcion SIZE

La funcion SIZE toma una matriz, un mapa o una cadena existente como argumento y devuelve un
unico valor que representa el tamano o la longitud de esa estructura de datos. No crea una nueva
estructura de datos. Se utiliza para consultar y analizar las propiedades de las estructuras de datos
existentes, mas que para crear estructuras nuevas.

Esta funcién es util para determinar el numero de elementos de una matriz o la longitud de una
cadena. Puede resultar especialmente util cuando se trabaja con matrices y otras estructuras de
datos en SQL, ya que permite obtener informacion sobre el tamaio o la cardinalidad de los datos.

Sintaxis
size(expr)
Argumentos

expr

Una expresion ARRAY, MAP o STRING.

Tipo de retorno

La funcion SIZE devuelve un entero.

Funciones escalares

279

AWS Clean Rooms Referencia de SQL

Ejemplo

En este ejemplo, la funcién SIZE se aplicaalamatriz['b', 'd', 'c', 'a'l]ydevuelve el

valor4, que es el numero de elementos de la matriz.

SELECT size(array('b', 'd', 'c', 'a'));
4

En este ejemplo, la funcién SIZE se aplicaalmapa {'a': 1, 'b': 2} ydevuelve el valor2, que
es el numero de pares clave-valor del mapa.

SELECT size(map('a', 1, 'b', 2));
2

En este ejemplo, la funcion TAMANO se aplica a la cadena 'hello world' y devuelve el valorll,
que es el numero de caracteres de la cadena.

SELECT size('hello world');
11

Funciones de cadena

Las funciones de cadena procesan y administran cadenas de caracteres o expresiones que tomen
el valor de cadenas de caracteres. Cuando el argumento string de estas funciones es un valor literal,
debe incluirse entre comillas simples. Entre los tipos de datos compatibles, se incluyen CHAR y
VARCHAR.

En la seccidn siguiente, se proporcionan los nombres de funcion, la sintaxis y las descripciones para
las funciones compatibles. Todos los desplazamientos en cadenas se basan en uno.

Temas

* || Operador (concatenacion)
* Funcion BTRIM

* Funcion CONCAT

« Funcion FORMAT_STRING
* Funciones LEFT y RIGHT

* Funcion LENGTH

* Funcion LOWER

Funciones de cadena 280

AWS Clean Rooms Referencia de SQL

* Funciones LPAD y RPAD

* Funcion LTRIM

* Funcion POSITION

» Funcion REGEXP_COUNT
* Funciéon REGEXP_INSTR

» Funcion REGEXP_REPLACE
» Funcion REGEXP_SUBSTR
* Funcion REPEAT

» Funcién REPLACE

* Funcion REVERSE

* Funcion RTRIM

* Funcion SPLIT

* Funcion SPLIT_PART

* Funcion SUBSTRING

* Funcion TRANSLATE

* Funcion TRIM

* Funcion UPPER

* Funcion UUID

|| Operador (concatenacion)
Concatena dos expresiones a ambos extremos del simbolo || y devuelve una expresion concatenada.

El operador de concatenacion es similar a Funcion CONCAT.

(® Note

Para la funcion CONCAT vy el operador de concatenacion, si una o ambas expresiones son
nulas, el resultado de la concatenacion también lo sera.

Sintaxis

expressionl || expression2

Funciones de cadena 281

AWS Clean Rooms Referencia de SQL

Argumentos
expression1, expression2

Ambos argumentos pueden ser cadenas de caracteres o expresiones de longitud fija o variable.

Tipo de devolucion
El operador || devuelve una cadena. El tipo de cadena es el mismo que los argumentos de entrada.
Ejemplo

En el siguiente ejemplo, se concatenan los campos FIRSTNAME y LASTNAME de la tabla USERS:

select firstname || || lastname
from users
order by 1

limit 10;

concat

Aaron Banks
Aaron Booth
Aaron Browning
Aaron Burnett
Aaron Casey
Aaron Cash
Aaron Castro
Aaron Dickerson
Aaron Dixon
Aaron Dotson
(10 rows)

Para concatenar columnas que puedan llegar a tener valores nulos, use la expresion Funciones NVL
y COALESCE. En el siguiente ejemplo, se usa NVL para devolver un 0 siempre que se encuentre un
NULL.

select venuename || ' seats ' || nvl(venueseats, 0)
from venue where venuestate = 'NV' or venuestate = 'NC'

Funciones de cadena 282

AWS Clean Rooms Referencia de SQL

order by 1
limit 10;

seating

Ballys Hotel seats 0

Bank of America Stadium seats 73298
Bellagio Hotel seats 0

Caesars Palace seats 0

Harrahs Hotel seats 0

Hilton Hotel seats 0

Luxor Hotel seats 0

Mandalay Bay Hotel seats 0

Mirage Hotel seats 0

New York New York seats 0

Funcion BTRIM

La funcion BTRIM recorta una cadena al eliminar espacios o caracteres a la izquierda y a la derecha
qgue coincidan con una cadena especifica opcional.

Sintaxis

BTRIM(string [, trim_chars])

Argumentos
string

Es la cadena VARCHAR de entrada que se va a recortar.

trim_chars

Es la cadena VARCHAR que contiene los caracteres que deben coincidir.

Tipo de devolucion
La funcion BTRIM devuelve una cadena VARCHAR.
Ejemplos

En el siguiente ejemplo, se recortan espacios a la izquierda y a la derecha de la cadena ' abc ':

Funciones de cadena 283

AWS Clean Rooms Referencia de SQL

select ' abc ' as untrim, btrim(' abc ') as trim;
untrim | trim
__________ O

abc | abc

En el siguiente ejemplo, se eliminan las cadenas 'xyz' alaizquierda y a la derecha de la cadena
'xyzaxyzbxyzcxyz'. Las coincidencias a la izquierda y a la derecha de 'xyz' se eliminan, pero
las coincidencias internas dentro de la cadena no se eliminan.

select 'xyzaxyzbxyzcxyz' as untrim,
btrim('xyzaxyzbxyzcxyz', 'xyz') as trim;

untrim | trim
_________________ e e e

xyzaxyzbxyzcxyz | axyzbxyzc

En el siguiente ejemplo, se eliminan las partes a la izquierda y a la derecha de la cadena
'setuphistorycassettes' que coinciden con cualquiera de los caracteres de la lista trim_chars
'tes'. Cualquier t, e 0 s que aparcezca antes de cualquier caracter que no esté en la lista
trim_chars a la izquierda o a la derecha de la cadena de entrada se eliminara.

SELECT btrim('setuphistorycassettes', 'tes');

uphistoryca

Funcion CONCAT

La funcion CONCAT concatena dos expresiones y devuelve la expresién resultante. Para concatenar
mas de dos expresiones, utilice las funciones CONCAT anidadas. El operador de concatenacion (| |)
entre dos expresiones produce los mismos resultados que la funcion CONCAT.

(® Note

Para la funcion CONCAT vy el operador de concatenacion, si una o ambas expresiones son
nulas, el resultado de la concatenacion también lo sera.

Funciones de cadena 284

AWS Clean Rooms Referencia de SQL

Sintaxis

CONCAT (expressionl, expression2)

Argumentos
expression1, expression2

Ambos argumentos pueden consistir en una cadena de caracteres de longitud fija, una cadena de
caracteres de longitud variable, una expresion binaria o una expresion que tiene como valor una
de estas entradas de datos.

Tipo de devolucion

CONCAT devuelve una expresion. El tipo de datos de la expresion es igual al de los argumentos de
entrada.

Si las expresiones de entrada son de tipos diferentes, AWS Clean Rooms intenta escribir
implicitamente convierte una de las expresiones. Si no se pueden convertir los valores, se devuelve
un error.

Ejemplos

En el siguiente ejemplo, se concatenan dos literales de caracteres:

select concat('December 25, ', '2008');

concat

December 25, 2008
(1 row)

La siguiente consulta, utilizando el operador | | en lugar de CONCAT, produce el mismo resultado:

select 'December 25, '||'2008';

December 25, 2008
(1 row)

Funciones de cadena 285

AWS Clean Rooms Referencia de SQL

En el siguiente ejemplo, se usan dos funciones CONCAT para concatenar tres cadenas de
caracteres:

select concat('Thursday, ', concat('December 25, ', '2008'));

concat

Thursday, December 25, 2008
(1 row)

Para concatenar columnas que puedan llegar a tener valores nulos, use Funciones NVL y
COALESCE. En el siguiente ejemplo, se usa NVL para devolver un 0 siempre que se encuentre un
NULL.

select concat(venuename, concat(' seats ', nvl(venueseats, @))) as seating
from venue where venuestate = 'NV' or venuestate = 'NC'

order by 1

limit 5;

seating

Ballys Hotel seats 0

Bank of America Stadium seats 73298
Bellagio Hotel seats 0

Caesars Palace seats 0

Harrahs Hotel seats 0

(5 rows)

En la siguiente consulta, se concatenan valores CITY y STATE de la tabla VENUE:

select concat(venuecity, venuestate)
from venue

where venueseats > 75000

order by venueseats;

DenverCO

Kansas CityMO
East RutherfordNJ
LandoverMD

Funciones de cadena 286

AWS Clean Rooms Referencia de SQL

(4 rows)

La siguiente consulta utiliza funciones CONCAT anidadas. La consulta concatena los valores CITY y
STATE de la tabla VENUE pero delimita la cadena resultado con una coma y un espacio:

select concat(concat(venuecity,', '),venuestate)
from venue

where venueseats > 75000

order by venueseats;

Denver, CO

Kansas City, MO
East Rutherford, NJ]
Landover, MD

(4 rows)

Funcion FORMAT_STRING

La funcion FORMAT_STRING crea una cadena formateada sustituyendo los marcadores de posicion
de una cadena de plantilla por los argumentos proporcionados. Devuelve una cadena formateada a
partir de cadenas de formato de estilo printf.

La funcion FORMAT_STRING funciona sustituyendo los marcadores de posicion de la cadena de

la plantilla por los valores correspondientes pasados como argumentos. Este tipo de formato de
cadena puede resultar util cuando se necesitan construir cadenas de forma dinamica que incluyan
una combinacion de texto estatico y datos dinamicos, como cuando se generan mensajes de salida,
informes u otros tipos de texto informativo. La funcion FORMAT_STRING proporciona una forma
concisa y legible de crear estos tipos de cadenas formateadas, lo que facilita el mantenimiento y la
actualizacion del codigo que genera la salida.

Sintaxis

format_string(strfmt, obj, ...)

Argumentos

strfmt

Una expresion de cadena.

Funciones de cadena 287

AWS Clean Rooms Referencia de SQL

obj

Una cadena o expresion numérica.

Tipo de devolucion
FORMAT_STRING devuelve una cadena.
Ejemplo

El siguiente ejemplo contiene una cadena de plantilla que contiene dos marcadores de posicion:

%d para un valor decimal (entero) y %s para un valor de cadena. El %d marcador de posicion se
reemplaza por el valor decimal (entero) (100) y el marcador de posicidn %s se reemplaza por el valor
de cadena (). "days" El resultado es una cadena de plantilla en la que los marcadores de posicion
se sustituyen por los argumentos proporcionados:. "Hello World 100 days"

SELECT format_string("Hello World %d %s", 100, "days");
Hello World 100 days

Funciones LEFT y RIGHT

Estas funciones devuelven la cantidad especificada de caracteres mas a la izquierda o mas a la
derecha de una cadena de caracteres.

La cantidad se basa en la cantidad de caracteres, no bytes, por lo que los caracteres multibyte se
cuentan como caracteres simples.

Sintaxis

LEFT (string, integer)

RIGHT (string, integer)

Argumentos
string

Cualquier cadena de caracteres o cualquier expresion que tome como valor una cadena de
caracteres.

Funciones de cadena 288

AWS Clean Rooms Referencia de SQL

integer

Un numero entero.

Tipo de devolucién
LEFT y RIGHT devuelven una cadena VARCHAR.
Ejemplo

El siguiente ejemplo devuelve los 5 caracteres situados mas a la izquierda y los 5 mas a la derecha
de los nombres de eventos que tengan IDs entre 1000 y 1005:

select eventid, eventname,
left(eventname,5) as left_5,
right(eventname,5) as right_5

from event

where eventid between 1000 and 1005

order by 1;

eventid | eventname | left_5 | right_5

———————— R e el et
1000 | Gypsy | Gypsy | Gypsy
1001 | Chicago | Chica | icago
1002 | The King and I | The K | and I
1003 | Pal Joey | Pal J | Joey
1004 | Grease | Greas | rease
1005 | Chicago | Chica | icago

(6 rows)

Funcion LENGTH

Funcion LOWER

Convierte una cadena de caracteres a minusculas. LOWER admite caracteres multibyte UTF-8 de
hasta un maximo de cuatro bytes por caracter.

Sintaxis

LOWER(string)

Funciones de cadena 289

AWS Clean Rooms Referencia de SQL

Argumento
string

El parametro de entrada es una cadena VARCHAR (o cualquier otro tipo de datos, como CHAR,
qgue se pueda convertir de forma implicita a VARCHAR).

Tipo de devolucion

La funcion LOWER devuelve una cadena de caracteres que presenta el mismo tipo de datos que la
cadena de entrada.

Ejemplos

En el siguiente ejemplo, se convierte el campo CATNAME a minusculas:

select catname, lower(catname) from category order by 1,2;

catname | lower
__________ I
Classical | classical
Jazz | jazz
MLB | mlb
MLS | mls
Musicals | musicals
NBA | nba
NFL | nfl
NHL | nhl
Opera | opera
Plays | plays
Pop | pop

(11 rows)

Funciones LPAD y RPAD

Estas funciones anteponen o anexan caracteres a una cadena, segun una longitud especificada.

Sintaxis

LPAD (stringl, length, [string2 1])

Funciones de cadena 290

AWS Clean Rooms Referencia de SQL

RPAD (stringl, length, [string2 1)

Argumentos
string1

Una cadena de caracteres o una expresion toma el valor de una cadena de caracteres, como el
nombre de una columna de caracteres.

longitud

Un valor entero que define la longitud del resultado de la funcién. La longitud de una cadena se
basa en la cantidad de caracteres, no bytes, por lo que los caracteres multibyte se cuentan como
caracteres simples. Si string1 (cadena1) tiene una longitud mayor que la especificada, se trunca
(a la derecha). Si el valor de length (longitud) es un numero negativo, el resultado de la funcién es
una cadena vacia.

string2 (cadena?2)

Uno o varios caracteres que se anteponen o anexan a string1 (cadena1). Este argumento es
opcional; si no se especifica, se utilizan espacios.

Tipo de devolucién
Estas funciones devuelven un tipo de datos VARCHAR.
Ejemplos

Truncar un conjunto especificado de nombres de eventos a 20 caracteres y anteponga espacios a
los nombres mas cortos:

select lpad(eventname,20) from event
where eventid between 1 and 5 order by 1;

Salome

I1 Trovatore

Boris Godunov

Gotterdammerung

La Cenerentola (Cind
(5 rows)

Funciones de cadena 291

AWS Clean Rooms Referencia de SQL

Truncar el mismo conjunto de nombres de eventos a 20 caracteres, pero anexar 0123456789 a los
nombres mas cortos.

select rpad(eventname, 20, '0123456789') from event
where eventid between 1 and 5 order by 1;

Boris Godunov@123456
Gotterdammerung@1234
I1 Trovatore@l1l234567
La Cenerentola (Cind
Salome01234567890123
(5 rows)

Funcion LTRIM

Recorta los caracteres desde el principio de una cadena. Elimina la cadena mas larga que contiene
solo caracteres de la lista de caracteres de recorte. El recorte se completa cuando no aparece ningun
caracter de recorte en la cadena de entrada.

Sintaxis

LTRIM(string [, trim_chars])

Argumentos
string

Una columna de cadena, una expresion o un literal de cadena que se va a recortar.

trim_chars

Una columna de cadena, expresion o literal de cadena que representa los caracteres que se van
a recortar desde el principio de la cadena. Si no se especifica, se utiliza un espacio como caracter
de recorte.

Tipo de devolucién

La funcién LTRIM devuelve una cadena de caracteres con el mismo tipo de datos que la cadena de
entrada (CHAR o VARCHAR).

Funciones de cadena 292

AWS Clean Rooms

Referencia de SQL

Ejemplos

En el siguiente ejemplo, se recorta el aio de la columna 1istime. Los caracteres de recorte del
literal de cadena '2008-"' indican los caracteres que se recortaran desde la izquierda. Si utiliza los
caracteres de recorte '028-"', obtendra el mismo resultado.

select listid, listtime, ltrim(listtime, '2008-')

from listing
oxder by 1, 2, 3

limit 10;

listid | listtime

_______ oo e e e ————————
1 | 2008-01-24 06:43:29
2 | 2008-03-05 12:25:29
3 | 2008-11-01 07:35:33
4 | 2008-05-24 01:18:37
5 | 2008-05-17 02:29:11
6 | 2008-08-15 02:08:13
7 | 2008-11-15 09:38:15
8 | 2008-11-09 05:07:30
9 | 2008-09-09 08:03:36
10 | 2008-06-17 09:44:54

1-24 06:43:29
3-05 12:25:29
11-01 07:35:33
5-24 01:18:37
5-17 02:29:11
15 02:08:13
11-15 09:38:15
11-09 05:07:30
9-09 08:03:36
6-17 09:44:54

LTRIM elimina cualquiera de los caracteres de trim_chars cuando aparecen al principio de la cadena.

En el siguiente ejemplo, se recortan los caracteres «C», «D» y «G» cuando aparecen al principio de
VENUENAME, que es una columna VARCHAR.

select venueid, venuename, ltrim(venuename, 'CDG')

from venue

where venuename like '%Park’
oxder by 2

limit 7;

venueid venuename

I
+
| ATT Park
109 | Citizens Bank Park
I
I
I
I

102 Comerica Park

9 | Dick's Sporting Goods Park
97 Fenway Park
112 Great American Ball Park

I

+

| ATT Park

| itizens Bank Park
| omerica Park

| ick's Sporting Goods Park
| Fenway Park

| reat American Ball Park

Funciones de cadena

293

AWS Clean Rooms Referencia de SQL

114 | Miller Park | Miller Park

En el siguiente ejemplo. se utiliza el caracter de recorte 2 que se recupera de la columna venueid.

select ltrim('2008-01-24 06:43:29', venueid)
from venue where venueid=2;

008-01-24 06:43:29

En el siguiente ejemplo, no se recorta ningun caracter porque se encuentra un 2 antes del caracter
de recorte '0".

select ltrim('2008-01-24 06:43:29', '0');

2008-01-24 06:43:29

En el siguiente ejemplo, se utiliza el caracter de recorte de espacio predeterminado y se recortan los
dos espacios desde el principio de la cadena.

select ltrim(' 2008-01-24 06:43:29');

2008-01-24 06:43:29

Funcion POSITION

Devuelve la ubicacién de la subcadena especificada dentro de una cadena.

Sintaxis

POSITION(substring IN string)

Funciones de cadena 294

AWS Clean Rooms Referencia de SQL

Argumentos
subcadena

Subcadena que se va a buscar dentro de la cadena.

string

La cadena o columna que se buscara.

Tipo de devoluciéon

La funcion POSITION devuelve un valor entero correspondiente a la posicion de la subcadena
(basado en 1, no basado en cero). La posicidon se basa en la cantidad de caracteres, no bytes, por lo
que los caracteres multibyte se cuentan como caracteres simples.

Notas de uso
POSITION devuelve 0 si no se encuentra subcadena dentro de la cadena:
select position('dog' in 'fish');

position

Ejemplos
En el siguiente ejemplo, se muestra la posicion de la cadena fish dentro de la palabra dogfish:
select position('fish' in 'dogfish');

position

El siguiente ejemplo devuelve la cantidad de transacciones de venta con un parametro
COMMISSION que supere los 999,00 de la tabla SALES:

select distinct position('.' in commission), count (position('.' in commission))

Funciones de cadena 295

AWS Clean Rooms Referencia de SQL

from sales where position('.' in commission) > 4 group by position('.' in commission)

order by 1,2;

position | count

Funcion REGEXP_COUNT

Busca una cadena para un patron de expresion regular y devuelve un valor entero que indica la
cantidad de veces que el patron aparece en la cadena. Si no se encuentra coincidencia, la funcién

devuelve 0.

Sintaxis

REGEXP_COUNT (source_string, pattern [, position [, parameters]])

Argumentos

source_string

Una expresion de cadena, como un nombre de columna, que se buscara.

pattern

Un literal de cadena que representa un patron de expresion regular.
position

Valor entero positivo que indica la posicion dentro de source_string (cadena_de_origen) para
comenzar la busqueda. La posicidn se basa en la cantidad de caracteres, no bytes, por lo que
los caracteres multibyte se cuentan como caracteres simples. El valor predeterminado de es 1.
Si el valor de position (posicion) es menor que 1, la busqueda comienza en el primer caracter de
source-string (cadena_de_origen). Si el valor de position (posicién) es mayor que el numero de
caracteres de source-string (cadena_de_origen), el resultado es 0.

parameters

Uno o varios literales de cadena que indican el grado de coincidencia de la funcidn con el patrén.
Los valores posibles son los siguientes:

+ c: aplica la coincidencia que distingue entre mayusculas y minusculas. El comportamiento
predeterminado es utilizar la coincidencia que distingue entre mayusculas y minusculas.

Funciones de cadena 296

AWS Clean Rooms Referencia de SQL

* i: aplica la coincidencia que no distingue entre mayusculas y minusculas.

 p: interpreta el patron con el dialecto de expresién regular compatible con Perl (PCRE).

Tipo de devolucion

Entero

Ejemplo

En el siguiente ejemplo, se cuenta la cantidad de veces en que aparece una secuencia de tres letras.
SELECT regexp_count('abcdefghijklmnopqrstuvwxyz', '[a-z]1{3}');

regexp_count

En el siguiente ejemplo, se cuenta la cantidad de veces en que el nombre del dominio de nivel
superior es org o edu.

SELECT email, regexp_count(email, '@[”.]*\\.(org|edu)')FROM users
ORDER BY userid LIMIT 4;

Suspendisse.tristiquee@nonnisiAenean.edu

I
+
Etiam.laoreet.libero@sodalesMaurisblandit.edu |
I
amet.faucibus.ut@condimentumegetvolutpat.ca |

I

sed@lacusUtnec.ca

En el siguiente ejemplo, se cuenta cuantas veces aparece la cadena FOX, con una coincidencia que
no distingue entre mayusculas y minusculas.

SELECT regexp_count('the fox', 'FOX', 1, 'i');

regexp_count

En el siguiente ejemplo, se utiliza un patrén escrito en el dialecto de PCRE para localizar palabras
que contengan al menos un numero y una letra en minusculas. Se utiliza el operador ?=, que tiene

Funciones de cadena 297

AWS Clean Rooms Referencia de SQL

una connotacion especifica de anticipacion en PCRE. En este ejemplo, se cuenta cuantas veces
aparecen dichas palabras, con una coincidencia que distingue entre mayusculas y minusculas.

SELECT regexp_count('passwd7 plain Al1234 al234', '(?=[~ 1*[a-z])(?=[~ 1*[0-9]1)[~ 1+',
1, 'p");

regexp_count

En el siguiente ejemplo, se utiliza un patron escrito en el dialecto de PCRE para localizar palabras
que contengan al menos un numero y una letra en minusculas. Se utiliza el operador ?=, que tiene
una connotacion especifica en PCRE. En este ejemplo, se cuenta cuantas veces aparecen dichas
palabras, pero difiere del ejemplo anterior, ya que se utiliza una coincidencia sin distincion entre
mayusculas y minusculas.

SELECT regexp_count('passwd?7 plain A1234 al234', '(?=[~]1*[a-z])(?=[~]*[0-91)[~ 1+',
1, 'ip');

regexp_count

Funcion REGEXP_INSTR

Busca una cadena para un patrén de expresion regular y devuelve un valor entero que indica la
posicion de inicio o de finalizacion de la subcadena coincidente. Si no se encuentra coincidencia, la
funcion devuelve 0. REGEXP_INSTR es similar a la funcion POSITION, pero le permite buscar un
patrén de expresion regular en una cadena.

Sintaxis

REGEXP_INSTR (source_string, pattern [, position [, occurrence] [, option
[, parameters 1 11 1)

Argumentos
source_string

Una expresion de cadena, como un nombre de columna, que se buscara.

Funciones de cadena 298

AWS Clean Rooms Referencia de SQL

pattern

Un literal de cadena que representa un patron de expresion regular.

position

Valor entero positivo que indica la posicion dentro de source_string (cadena_de_origen) para
comenzar la busqueda. La posicidn se basa en la cantidad de caracteres, no bytes, por lo que
los caracteres multibyte se cuentan como caracteres simples. El valor predeterminado de es 1.
Si el valor de position (posicion) es menor que 1, la busqueda comienza en el primer caracter de
source-string (cadena_de_origen). Si el valor de position (posicidn) es mayor que el numero de
caracteres de source-string (cadena_de_origen), el resultado es 0.

occurrence

Un numero entero positivo que indica qué coincidencia del patron se va a utilizar.
REGEXP_INSTR omite las primeras coincidencias especificadas por el valor de occurrence
menos uno. El valor predeterminado de es 1. Si occurrence es menor que 1 o mayor que el
numero de caracteres de source_string, la busqueda se omite y el resultado es 0.

option

Valor que indica si se va a devolver la posicion del primer caracter de la coincidencia () o la
posicion del primer caracter situado a continuacion del final de la coincidencia (1). Un valor
distinto de cero es lo mismo que 1. El valor predeterminado es 0.

parameters

Uno o varios literales de cadena que indican el grado de coincidencia de la funcidn con el patrén.
Los valores posibles son los siguientes:

« c: aplica la coincidencia que distingue entre mayusculas y minusculas. El comportamiento
predeterminado es utilizar la coincidencia que distingue entre mayusculas y minusculas.

* i: aplica la coincidencia que no distingue entre mayusculas y minusculas.

 e: extrae una subcadena mediante una subexpresion.

Si pattern incluye una subexpresion, REGEXP_INSTR realiza la comparacion con una
subcadena utilizando la primera subexpresion de pattern. REGEXP_INSTR solo tiene en
cuenta la primera subexpresion; las subexpresiones adicionales se omiten. Si el patron no
incluye una subexpresion, REGEXP_INSTR omite el parametro 'e'.

 p: interpreta el patron con el dialecto de expresidn regular compatible con Perl (PCRE).

Funciones de cadena 299

AWS Clean Rooms Referencia de SQL

Tipo de devolucion
Entero
Ejemplo

En el siguiente ejemplo, se busca el caracter @ que comience un nombre de dominio y se devuelve la
posicion inicial de la primera coincidencia.

SELECT email, regexp_instr(email, '@[*.]*')
FROM users
ORDER BY userid LIMIT 4;

email | regexp_instr
___ o= =
Etiam.laoreet.liberoeexample.com | 21
Suspendisse.tristique@nonnisiAenean.edu | 22
amet.faucibus.ut@condimentumegetvolutpat.ca | 17
sed@lacusUtnec.ca | 4

En el siguiente ejemplo, se buscan variantes de la palabra Center y se devuelve la posicion inicial
de la primera coincidencia.

SELECT venuename, regexp_instr(venuename,'[cClent(er|re)$')
FROM venue

WHERE regexp_instr(venuename, '[cClent(er|re)$') > 0

ORDER BY venueid LIMIT 4;

venuename | regexp_instr
_______________________ N
The Home Depot Center | 16
Izod Center | 6
Wachovia Center | 10
Air Canada Centre | 12

En el siguiente ejemplo, se encuentra la posicion inicial de la primera vez que aparece la cadena
FOX, con una légica que no distingue entre mayusculas y minusculas.

SELECT regexp_instr('the fox', 'FOX', 1, 1, 0, 'i');

regexp_instr

Funciones de cadena 300

AWS Clean Rooms Referencia de SQL

En el siguiente ejemplo, se utiliza un patron escrito en el dialecto de PCRE para localizar palabras
que contengan al menos un numero y una letra en minusculas. Se utiliza el operador ?=, que tiene
una connotacion especifica de anticipacion en PCRE. En este ejemplo, se encuentra la posicion
inicial de la segunda palabra que reune esas caracteristicas.

SELECT regexp_instr('passwd7 plain Al1234 al234', '(?=[~ 1*[a-z])(?=[~ 1*[0-9]1)[~ 1+',
1I 2I 0I 'p');

regexp_instr

En el siguiente ejemplo, se utiliza un patrén escrito en el dialecto de PCRE para localizar palabras
que contengan al menos un numero y una letra en minusculas. Se utiliza el operador ?=, que tiene
una connotacion especifica de anticipacion en PCRE. En este ejemplo, se encuentra la posicion
inicial de la segunda palabra que reune esas caracteristicas, pero difiere del ejemplo anterior, ya que
se utiliza una coincidencia sin distincion entre mayusculas y minusculas.

SELECT regexp_instr('passwd7 plain A1234 al234', '(?=[~]1*[a-z])(?=[»]*[0-9])[~ I+',
1I 2I 0’ 'ip');

regexp_instr

Funcion REGEXP_REPLACE

Busca una cadena para un patron de expresion regular y reemplaza cada coincidencia del patron
con una cadena especificada. REGEXP_REPLACE es similar a Funcion REPLACE, pero le permite
buscar un patrén de expresion regular en una cadena.

REGEXP_REPLACE es similar a Funcion TRANSLATE y a Funcion REPLACE, salvo que
TRANSLATE realiza varias sustituciones de caracteres unicos y REPLACE sustituye una cadena
entera por otra cadena, mientras que REGEXP_REPLACE le permite buscar un patrén de expresion

regular en una cadena.

Funciones de cadena 301

AWS Clean Rooms Referencia de SQL

Sintaxis

REGEXP_REPLACE (source_string, pattern [, replace_string [, position [, parameters

111)

Argumentos
source_string

Una expresion de cadena, como un nombre de columna, que se buscara.

pattern

Un literal de cadena que representa un patron de expresion regular.

replace_string

Una expresion de cadena, como un nombre de columna, que reemplazara cada coincidencia del
patron. El valor predeterminado es una cadena vacia (™).

position

Valor entero positivo que indica la posicion dentro de source_string (cadena_de_origen) para
comenzar la busqueda. La posicidon se basa en la cantidad de caracteres, no bytes, por lo
que los caracteres multibyte se cuentan como caracteres simples. El valor predeterminado
de es 1. Si el valor de position (posicion) es menor que 1, la busqueda comienza en el primer
caracter de source-string (cadena_de_origen). Si el valor de position (posicidn) es mayor que
la cantidad de caracteres de source-string (cadena_de_origen), el resultado es source_string
(cadena_de_origen).

parameters

Uno o varios literales de cadena que indican el grado de coincidencia de la funcién con el patrén.
Los valores posibles son los siguientes:

« c: aplica la coincidencia que distingue entre mayusculas y minusculas. EI comportamiento
predeterminado es utilizar la coincidencia que distingue entre mayusculas y minusculas.

* i: aplica la coincidencia que no distingue entre mayusculas y minusculas.

 p: interpreta el patron con el dialecto de expresidn regular compatible con Perl (PCRE).

Tipo de devolucion

VARCHAR

Funciones de cadena 302

AWS Clean Rooms Referencia de SQL

Si el valor de pattern o la replace_string es NULL, el valor devuelto es NULL.
Ejemplo
En el siguiente ejemplo, se elimina el @ y el nombre de dominio de direcciones de correo electronico.

SELECT email, regexp_replace(email, '@.*\\.(org|gov|com|edu|ca)$"')
FROM users
ORDER BY userid LIMIT 4;

regexp_replace

Suspendisse.tristiquee@nonnisiAenean.edu
amet.faucibus.ut@condimentumegetvolutpat.ca

Suspendisse.tristique

I

+
Etiam.laoreet.libero@sodalesMaurisblandit.edu | Etiam.laoreet.libero

I

| amet.faucibus.ut

I

sed@lacusUtnec.ca sed

En el siguiente ejemplo, se reemplazan los nombres de dominio de las direcciones de email con este
valor: internal.company.com.

SELECT email, regexp_replace(email, '@.*\\.[[:alpha:]1]1{2,3}’,
'@internal.company.com') FROM users
ORDER BY userid LIMIT 4;

email regexp_replace

Etiam.laoreet.libero@sodalesMaurisblandit.edu |
Etiam.laoreet.libero@internal.company.com

Suspendisse.tristiquee@nonnisiAenean.edu |
Suspendisse.tristique@internal.company.com
amet.faucibus.ut@econdimentumegetvolutpat.ca | amet.faucibus.ut@internal.company.com
sede@lacusUtnec.ca | sede@internal.company.com

En el siguiente ejemplo, se reemplazan todas las veces que aparece la cadena FOX en el valor
quick brown fox, con una coincidencia que no distingue entre mayusculas y minusculas.

SELECT regexp_replace('the fox', 'FOX', 'quick brown fox',6 1, 'i');

regexp_replace

Funciones de cadena 303

AWS Clean Rooms Referencia de SQL

the quick brown fox

En el siguiente ejemplo, se utiliza un patrdn escrito en el dialecto de PCRE para localizar palabras
que contengan al menos un numero y una letra en minusculas. Se utiliza el operador ?=, que tiene
una connotacidn especifica de anticipaciéon en PCRE. En este ejemplo, se reemplaza cada vez que
aparece una palabra que reune esas caracteristicas con el valor [hidden].

SELECT regexp_replace('passwd7 plain A1234 al234', '(?=[~]1*[a-z])(?=[~ 1*[0-91)[~ 1+',
'[hidden]', 1, 'p');

regexp_replace

[hidden] plain A1234 [hidden]

En el siguiente ejemplo, se utiliza un patrén escrito en el dialecto de PCRE para localizar palabras
que contengan al menos un numero y una letra en minusculas. Se utiliza el operador ?=, que tiene
una connotacién especifica de anticipaciéon en PCRE. En este ejemplo, se reemplaza cada vez que
aparece una palabra que reune esas caracteristicas con el valor [hidden], pero difiere del ejemplo
anterior, ya que se utiliza una coincidencia sin distincion entre mayusculas y minusculas.

SELECT regexp_replace('passwd7 plain Al1234 al234', '(?=[* J*[a-z])(?=[~ 1*[@-9]1)[~ 1+,
'[hidden]', 1, 'ip');

regexp_replace

[hidden] plain [hidden] [hidden]

Funcion REGEXP_SUBSTR

Devuelve los caracteres de una cadena al buscar un patron de expresion regular.
REGEXP_SUBSTR es similar a la funcion Funcion SUBSTRING, pero le permite buscar un patron
de expresion regular en una cadena. Si la funcion no puede hacer coincidir la expresidn regular con
ningun caracter de la cadena, devuelve una cadena vacia.

Sintaxis

REGEXP_SUBSTR (source_string, pattern [, position [, occurrence [, parameters] 1])

Funciones de cadena 304

AWS Clean Rooms Referencia de SQL

Argumentos

source_string

Una expresion de cadena que se va a buscar.

pattern

Un literal de cadena que representa un patron de expresion regular.

position

Valor entero positivo que indica la posicion dentro de source_string (cadena_de_origen) para
comenzar la busqueda. La posicidn se basa en la cantidad de caracteres, no bytes, por lo que
los caracteres multibyte se cuentan como caracteres simples. El valor predeterminado de es 1.
Si el valor de position (posicion) es menor que 1, la busqueda comienza en el primer caracter de
source-string (cadena_de_origen). Si el valor de position (posicidn) es mayor que el numero de
caracteres de source-string (cadena_de_origen), el resultado es una cadena vacia (™).

occurrence

Un numero entero positivo que indica qué coincidencia del patrén se va a utilizar.
REGEXP_SUBSTR omite las primeras coincidencias especificadas por el valor de occurrence
menos uno. El valor predeterminado de es 1. Si occurrence es menor que 1 o mayor que el
numero de caracteres de source_string, la busqueda se omite y el resultado es NULL.

parameters

Uno o varios literales de cadena que indican el grado de coincidencia de la funcidn con el patrén.
Los valores posibles son los siguientes:

« c: aplica la coincidencia que distingue entre mayusculas y minusculas. EI comportamiento
predeterminado es utilizar la coincidencia que distingue entre mayusculas y minusculas.

* i: aplica la coincidencia que no distingue entre mayusculas y minusculas.

 e: extrae una subcadena mediante una subexpresion.

Si pattern incluye una subexpresion, REGEXP_SUBSTR realiza la comparaciéon con una
subcadena utilizando la primera subexpresion de pattern. Una subexpresion es una expresion
dentro del patron que esta entre paréntesis. Por ejemplo, para que el patrén 'This is a
(\\w+) ' coincida con la primera expresion con la cadena 'This is a ' seguida de una
palabra. En lugar de devolver el patrén, REGEXP_SUBSTR con el parametro e devuelve solo
la cadena dentro de la subexpresion.

Funciones de cadena 305

AWS Clean Rooms Referencia de SQL

REGEXP_SUBSTR solo tiene en cuenta la primera subexpresion; las subexpresiones
adicionales se omiten. Si el patron no incluye una subexpresion, REGEXP_SUBSTR omite el
parametro 'e'.

 p: interpreta el patron con el dialecto de expresién regular compatible con Perl (PCRE).

Tipo de devolucion
VARCHAR
Ejemplo

El siguiente ejemplo devuelve la parte de una direccion de correo electronico entre el caracter @ y la
extension de dominio.

SELECT email, regexp_substr(email, '@[*.]1*")
FROM users
ORDER BY userid LIMIT 4;

|

+
Etiam.laoreet.liberoesodalesMaurisblandit.edu | @sodalesMaurisblandit

I

|

I

Suspendisse.tristique@nonnisiAenean.edu @nonnisiAenean
amet.faucibus.utecondimentumegetvolutpat.ca @condimentumegetvolutpat
sed@lacusUtnec.ca @lacusUtnec

El siguiente ejemplo devuelve la parte de la entrada que corresponde a la primera vez que aparece
la cadena FOX, con una coincidencia que no distingue entre mayusculas y minusculas.

SELECT regexp_substr('the fox', 'FOX', 1, 1, 'i');

regexp_substr

El ejemplo siguiente devuelve la primera parte de la entrada que comienza en minuscula. Esto es
funcionalmente idéntico a la misma instruccion SELECT sin el parametro c.

SELECT regexp_substr('THE SECRET CODE IS THE LOWERCASE PART OF 1931abc@EZ.', '[a-z]+',
1, 1, 'c');

Funciones de cadena 306

AWS Clean Rooms Referencia de SQL

regexp_substr

En el siguiente ejemplo, se utiliza un patrén escrito en el dialecto de PCRE para localizar palabras
que contengan al menos un numero y una letra en minusculas. Se utiliza el operador ?=, que tiene
una connotacion especifica de anticipaciéon en PCRE. En este ejemplo, se devuelve la parte de la
entrada que corresponde a la segunda palabra que reune esas caracteristicas.

SELECT regexp_substr('passwd7 plain A1234 al234', '(?=[~]*[a-z])(?=[~]*[0-91)[~ 1+',
L, 2, "B')7

regexp_substr

En el siguiente ejemplo, se utiliza un patrén escrito en el dialecto de PCRE para localizar palabras
que contengan al menos un numero y una letra en minusculas. Se utiliza el operador ?=, que tiene
una connotacion especifica de anticipacion en PCRE. En este ejemplo, se devuelve la parte de

la entrada que corresponde a la segunda palabra que reune esas caracteristicas, pero difiere del
ejemplo anterior, ya que se utiliza una coincidencia sin distincidon entre mayusculas y minusculas.

SELECT regexp_substr('passwd?7 plain A1234 al234', '(?=[~]1*[a-z])(?=[~ 1*[0-91)[~ 1+',
1, 2, 'ip');

regexp_substr

En el ejemplo siguiente se utiliza una subexpresion para buscar la segunda cadena que coincida
con el patron 'this is a (\\w+)' con una coincidencia que no distingue entre mayusculas y
minusculas. Devuelve la subexpresidon entre paréntesis.

select regexp_substr(
'This is a cat, this is a dog. This is a mouse.',
'this is a (\\w+)', 1, 2, 'ie');

regexp_substr

Funciones de cadena

307

AWS Clean Rooms Referencia de SQL

Funcion REPEAT

Repite una cadena la cantidad especificada de veces. Si el parametro de entrada es numérico,
REPEAT lo trata como una cadena.

Sintaxis

REPEAT(string, integer)

Argumentos
string

El primer parametro de entrada es la cadena que se repetira.

integer

El segundo parametro es un valor entero que indica la cantidad de veces que se repite la cadena.

Tipo de devolucion
La funcion REPEAT devuelve una cadena.
Ejemplos

En el siguiente ejemplo, se repite tres veces el valor de la columna CATID en la tabla CATEGORY:

select catid, repeat(catid,3)
from category
order by 1,2;

O© 0o NO U A NN P

999
101010

[
S

Funciones de cadena 308

AWS Clean Rooms Referencia de SQL

11 | 111111
(11 rows)

Funcion REPLACE

Reemplaza todas las coincidencias de un conjunto de caracteres dentro de una cadena existente con
otros caracteres especificados.

REPLACE es similar a Funcion TRANSLATE y a Funcion REGEXP_REPLACE, salvo que
TRANSLATE realiza varias sustituciones de caracteres unicos y REGEXP_REPLACE le permite
buscar un patrén de expresion regular en una cadena, mientras que REPLACE sustituye una cadena
entera por otra cadena.

Sintaxis

REPLACE(stringl, old_chars, new_chars)

Argumentos
string

Cadena CHAR o VARCHAR que se buscara

old_chars

Cadena CHAR o VARCHAR que se reemplazara.

new_chars

Nueva cadena CHAR o VARCHAR que reemplaza a old_string (cadena_anterior).

Tipo de devolucion

VARCHAR

Si old_chars o new_chars es NULL, el valor devuelto es NULL.
Ejemplos

En el siguiente ejemplo, se convierte la cadena Shows en Theatre en el campo CATGROUP:

select catid, catgroup,
replace(catgroup, 'Shows', 'Theatre')

Funciones de cadena 309

AWS Clean Rooms Referencia de SQL

from category
order by 1,2,3;

catid | catgroup | replace
_______ o
1 | Sports | Sports
2 | Sports | Sports
3 | Sports | Sports
4 | Sports | Sports
5 | Sports | Sports
6 | Shows | Theatre
7 | Shows | Theatre
8 | Shows | Theatre
9 | Concerts | Concerts
10 | Concerts | Concerts
11 | Concerts | Concerts
(11 rows)

Funcion REVERSE

La funcion REVERSE opera en una cadena y devuelve los caracteres en orden inverso. Por ejemplo,
reverse('abcde') devuelve edcba. Esta funcién trabaja sobre tipos de datos numéricos y de
fecha, ademas de tipos de datos de caracteres; no obstante, en la mayoria de los casos, tiene valor
practico para las cadenas de caracteres.

Sintaxis

REVERSE (expression)

Argumento
expresion

Una expresion con un tipo de datos de caracter, fecha, marca temporal 0 nimero que representa
el destino de la reversion de caracter. Todas las expresiones se convierten implicitamente a
cadenas de caracteres de longitud variable. Se ignoran los espacios a la derecha en cadenas de
caracteres de ancho fijo.

Tipo de devolucion

REVERSE devuelve un VARCHAR.

Funciones de cadena 310

AWS Clean Rooms Referencia de SQL

Ejemplos

Seleccione cinco nombres distintos de ciudades y sus correspondientes nombres invertidos de la
tabla USERS:

select distinct city as cityname, reverse(cityname)
from users order by city limit 5;

reverse

I
+
Aberdeen | needrebA
I
I
I
I

Abilene enelibA
Ada adA
Agat tagA
Agawam mawagA
(5 rows)

Seleccione cinco numeros de venta IDs y su correspondiente distribucion invertida IDs como
cadenas de caracteres:

select salesid, reverse(salesid)::varchar
from sales order by salesid desc limit 5;

salesid reverse

I
+
172456 | 654271
I
I
I
I

172455 554271
172454 454271
172453 354271
172452 254271
(5 rows)

Funcion RTRIM

La funcion RTRIM recorta un conjunto especificado de caracteres desde el final de una cadena.
Elimina la cadena mas larga que contiene solo caracteres de la lista de caracteres de recorte. El
recorte se completa cuando un caracter de recorte no aparece en la cadena de entrada.

Sintaxis

RTRIM(string, trim_chars)

Funciones de cadena 311

AWS Clean Rooms Referencia de SQL

Argumentos
string

Una columna de cadena, una expresion o un literal de cadena que se va a recortar.

trim_chars

Es una columna de cadena, expresion o literal de cadena que representa los caracteres que se
deben recortar desde el final de string. Si no se especifica, se utiliza un espacio como caracter de
recorte.

Tipo de devolucion
Cadena que es del mismo tipo de datos que el argumento string.
Ejemplo

En el siguiente ejemplo, se recortan espacios a la izquierda y a la derecha de la cadena ' abc ':

select ' abc ' as untrim, rtrim(' abc ') as trim;
untrim | trim
__________ Fmm e

abc | abc

En el siguiente ejemplo, se eliminan las cadenas 'xyz' ala derecha de la cadena
'xyzaxyzbxyzcxyz'. Las coincidencias a la derecha de 'xyz' se eliminan, pero las coincidencias
internas dentro de la cadena no se eliminan.

select 'xyzaxyzbxyzcxyz' as untrim,
rtrim('xyzaxyzbxyzcxyz', 'xyz') as trim;

xyzaxyzbxyzcxyz | xyzaxyzbxyzc

En el siguiente ejemplo, se eliminan las partes a la derecha de la cadena
'setuphistorycassettes' que coinciden con cualquiera de los caracteres de la lista trim_chars
'tes'. Cualquier t, e 0 s que aparezca antes de cualquier caracter que no esté en la lista
trim_chars al final de la cadena de entrada se eliminara.

Funciones de cadena 312

AWS Clean Rooms Referencia de SQL

SELECT rtrim('setuphistorycassettes', 'tes');

setuphistoryca

En el siguiente ejemplo, se recortan los caracteres "Park" del final de VENUENAME, cuando
corresponde:

select venueid, venuename, rtrim(venuename, 'Park')
from venue
oxder by 1, 2, 3

limit 10;
venueid | venuename | rtrim
________ oo e e e e e o — — — — — — — — ———————————
1 | Toyota Park | Toyota
2 | Columbus Crew Stadium | Columbus Crew Stadium
3 | RFK Stadium | RFK Stadium
4 | CommunityAmerica Ballpark | CommunityAmerica Ballp
5 | Gillette Stadium | Gillette Stadium
6 | New York Giants Stadium | New York Giants Stadium
7 | BMO Field | BMO Field
8 | The Home Depot Center | The Home Depot Cente
9 | Dick's Sporting Goods Park | Dick's Sporting Goods
10 | Pizza Hut Park | Pizza Hut

Tenga en cuenta que RTRIM elimina cualquiera de los caracteres P, a, r o k cuando aparecen al
final de un VENUENAME.

Funcion SPLIT

La funcion SPLIT permite extraer subcadenas de una cadena mas grande y trabajar con ellas como
una matriz. La funcion DIVIDIR resulta util cuando se necesita dividir una cadena en componentes
individuales en funcion de un patrén o delimitador especifico.

Sintaxis

split(str, regex, limit)

Funciones de cadena 313

AWS Clean Rooms Referencia de SQL

Argumentos

estrella

Una expresion de cadena para dividir.
regex
Una cadena que representa una expresion regular. La cadena de expresiones regulares debe ser
una expresion regular de Java.
limit
Una expresion entera que controla el nimero de veces que se aplica la expresion regular.

* limite > 0O: la longitud de la matriz resultante no superara el limite y la ultima entrada de
la matriz resultante contendra todas las entradas mas alla de la ultima expresion regular
coincidente.

+ limite <= 0: la expresion regular se aplicara tantas veces como sea posible y la matriz
resultante puede ser de cualquier tamano.

Tipo de devolucion
<STRING>La funcién DIVIDIR devuelve una MATRIZ.

Silimit > @: lalongitud de la matriz resultante no superara el limite y la ultima entrada de la matriz
resultante contendra todas las entradas mas alla de la ultima expresion regular coincidente.

Silimit <= 0:la expresion regular se aplicara tantas veces como sea posible y la matriz resultante
puede ser de cualquier tamano.

Ejemplo

En este ejemplo, la funciéon SPLIT divide la cadena de entrada 'oneAtwoBthreeC' siempre que
encuentre los caracteres 'A' o 'C' (segun lo especificado en el patron de expresiones regulares).
'B' '[ABC] "' El resultado es una matriz de cuatro elementos:"one", "two""three", y una
cadena "" vacia.

SELECT split('oneAtwoBthreeC', '[ABC]');
["OI’]e", "tWO"’ Ilthreell’ Illl]

Funciones de cadena 314

AWS Clean Rooms Referencia de SQL

Funcion SPLIT_PART

Divide una cadena en el delimitador especificado y devuelve la parte en la posicion especificada.

Sintaxis

SPLIT_PART(string, delimiter, position)

Argumentos
string

Es una columna de cadena, una expresion o un literal de cadena que se va a dividir. La cadena
puede ser CHAR o VARCHAR.

delimiter
Es la cadena delimitadora que indica las secciones del string de entrada.

Si el delimitador es un literal, enciérrelo entre comillas simples.

position

Posicion de la porcion de string a devolver (contando desde 1). Debe ser un numero entero mayor
que 0. Si position es mayor que la cantidad de porciones de la cadena, SPLIT_PART devuelve
una cadena vacia. Si no se encuentra el delimitador en cadena, entonces el valor devuelto
contiene el contenido de la parte especificado, que podria ser la cadena completa o un valor
vacio.

Tipo de devolucion

Una cadena CHAR o VARCHAR, igual que el parametro string.

Ejemplos

En el siguiente ejemplo, se divide un literal de cadena en partes mediante el uso del delimitador $
que devuelve la segunda parte.

select split_part('abcdefghi','$',2)

split_part

Funciones de cadena 315

AWS Clean Rooms Referencia de SQL

def

En el siguiente ejemplo, se divide un literal de cadena en partes mediante el uso del delimitador $
que devuelve la segunda parte. Devuelve una cadena vacia porque no se encuentra la parte 4.

select split_part('abcdefghi’','$',4)

split_part

En el siguiente ejemplo, se divide un literal de cadena en partes mediante el uso del delimitador #
que devuelve la segunda parte. Devuelve la cadena completa, que es la primera parte, porque no se
encuentra el delimitador.

select split_part('abcdefghi','#',1)

split_part

abcdefghi

En el siguiente ejemplo, se divide el campo de la marca temporal LISTTIME entre los componentes
de ano, mes y dia.

select listtime, split_part(listtime,'-',1) as year,
split_part(listtime,'-"',2) as month,
split_part(split_part(listtime,'-',3),' ',1) as day
from listing limit 5;

listtime

I I I
————————————————————— R R Rl R
2008-03-05 12:25:29 | 2008 | 03 | 05
I I I
I I I
I I I
I I I

2008-09-09 08:03:36 | 2008 | 09 09
2008-09-26 05:43:12 | 2008 | 09 26
2008-10-04 02:00:30 | 2008 | 10 04
2008-01-06 08:33:11 | 2008 | 01 06

En el siguiente ejemplo, se selecciona el campo de la marca temporal LISTTIME y se lo divide
teniendo en cuenta el caracter ' -' para obtener el mes (la segunda parte de la cadena LISTTIME).
Luego, se cuenta la cantidad de entradas para cada mes:

Funciones de cadena 316

AWS Clean Rooms Referencia de SQL

select split_part(listtime,'-',2) as month, count(*)
from listing

group by split_part(listtime,'-',2)

oxder by 1, 2;

month | count

_______ e
01 | 18543
02 | 16620
03 | 17594
04 | 16822
05 | 17618
06 | 17158
07 | 17626
08 | 17881
@9 | 17378
10 | 17756
11 | 12912
12 | 4589

Funcion SUBSTRING

Devuelve el subconjunto de una cadena basado en la posicion inicial especificada.

Si la entrada es una cadena de caracteres, la posicion inicial y el numero de caracteres extraidos se
basan en caracteres, y no en bytes, de modo tal que los caracteres de varios bytes se cuentan como
si fueran simples. Si la entrada es una expresion binaria, la posicidn inicial y la subcadena extraida
se basan en bytes. No puede especificar una longitud negativa, pero puede especificar una posicion
de inicio negativa.

Sintaxis

SUBSTRING(charactestring FROM start_position [FOR numbecharacters])

SUBSTRING(charactestring, start_position, numbecharacters)

SUBSTRING(binary_expression, start_byte, numbebytes)

SUBSTRING(binary expression, start_byte)

Funciones de cadena 317

AWS Clean Rooms Referencia de SQL

Argumentos
cadena de caracteres

La cadena que se buscara. Los tipos de datos que no son caracteres se tratan como una cadena.

start_position

La posicion dentro de la cadena para comenzar la extraccion, comenzando en 1. En valor de
start_position (posicion_de_inicio) se basa en la cantidad de caracteres, no bytes, por lo que los
caracteres multibyte se cuentan como caracteres simples. Este numero puede ser negativo.

numerar caracteres

La cantidad de caracteres para extraer (la longitud de la subcadena). El nUmero de caracteres
se basa en el numero de caracteres, no en bytes, de modo que los caracteres de varios bytes se
cuentan como caracteres individuales. Este numero no puede ser negativo.

start_byte

La posicidén dentro de la expresidn binaria desde donde comienza la extraccion, con punto de
partida en 1. Este numero puede ser negativo.

bytes numéricos
La cantidad de bytes para extraer, es decir, la longitud de la subcadena. Este numero no puede
ser negativo.

Tipo de devolucion

VARCHAR

Notas de uso de cadenas de caracteres

El siguiente ejemplo devuelve una cadena de cuatro caracteres comenzando con el sexto caracter.

select substring('caterpillar',6,4);
substring

Si la posicion inicial + el numero de caracteres supera la longitud de la cadena, SUBSTRING
devuelve una subcadena desde la posicion inicial hasta el final de la cadena. Por ejemplo:

Funciones de cadena 318

AWS Clean Rooms Referencia de SQL

select substring('caterpillar',6,8);
substring

Sistart_position es negativo o 0, la funcion SUBSTRING devuelve una cadena que comienza
en el primer caracter de la cadena con una longitud de start_position + numbecharacters -1.
Por ejemplo:

select substring('caterpillar',-2,6);
substring

Sistart_position + numbecharacters -1 es menor o igual a cero, SUBSTRING devuelve una
cadena vacia. Por ejemplo:

select substring('caterpillar',-5,4);
substring

Ejemplos

El siguiente ejemplo devuelve el mes de la cadena LISTTIME en la tabla LISTING:

select listid, listtime,
substring(listtime, 6, 2) as month
from listing

order by 1, 2, 3

limit 10;
listid | listtime | month
________ o
1 | 2008-01-24 06:43:29 | 01
2 | 2008-03-05 12:25:29 | 03
3 | 2008-11-01 07:35:33 | 11
4 | 2008-05-24 01:18:37 | 05

Funciones de cadena 319

AWS Clean Rooms Referencia de SQL

5 | 2008-05-17 ©02:29:11 | @5

6 | 2008-08-15 02:08:13 | @8

7 | 2008-11-15 ©9:38:15 | 11

8 | 2008-11-09 05:07:30 | 11

9 | 2008-09-09 08:03:36 | @9

10 | 2008-06-17 09:44:54 | 06
(10 rows)

El siguiente ejemplo es igual al anterior, pero utiliza la opcion FROM...FOR:

select listid, listtime,
substring(listtime from 6 for 2) as month
from listing

order by 1, 2, 3

limit 10;
listid | listtime | month
________ o
1 | 2008-01-24 06:43:29 | 01
2 | 2008-03-05 12:25:29 | 03
3 | 2008-11-01 07:35:33 | 11
4 | 2008-05-24 01:18:37 | 05
5 | 2008-05-17 02:29:11 | 05
6 | 2008-08-15 02:08:13 | 08
7 | 2008-11-15 09:38:15 | 11
8 | 2008-11-09 05:07:30 | 11
9 | 2008-09-09 08:03:36 | 09
10 | 2008-06-17 09:44:54 | 06
)

No se puede utilizar SUBSTRING para extraer de forma predecible el prefijo de una cadena que
pueda contener caracteres de varios bytes, ya que es necesario especificar la longitud de una
cadena de varios bytes en funcién de la cantidad de bytes, y no de la cantidad de caracteres. Para
extraer el segmento inicial de una cadena en funcion de la longitud en bytes, puede utilizar CAST

y convertir la cadena en VARCHAR((byte_length) para truncarla, donde byte_length es la longitud
requerida. En el siguiente ejemplo, se extraen los 5 primeros bytes de la cadena ' Fourscore and
seven'.

select cast('Fourscore and seven' as varchar(5));

varchar

Funciones de cadena 320

AWS Clean Rooms Referencia de SQL

Fours

El ejemplo siguiente devuelve el nombre Ana que aparece después del ultimo espacio de la cadena
de entrada Silva, Ana.

select reverse(substring(reverse('Silva, Ana'), 1, position(' ' IN reverse('Silva,

Ana'))))

reverse

Funcion TRANSLATE

Para una expresion dada, reemplaza todas las coincidencias de caracteres especificados con
sustitutos especificados. Los caracteres existentes se asignan a caracteres de reemplazo en
funcién de su posicion en los argumentos characters_to_replace y characters_to_substitute.

Si se especifican mas caracteres en el argumento characters_to_replace que en el argumento
characters_to_substitute, los caracteres adicionales del argumento characters_to_replace se omiten
en el valor devuelto.

TRANSLATE es similar a Funcion REPLACE y a Funcion REGEXP_REPLACE, salvo que REPLACE
sustituye una cadena entera por otra cadena y REGEXP_REPLACE le permite buscar un patrén de
expresion regular en una cadena para, mientras que TRANSLATE realiza varias sustituciones de
caracteres unicos.

Si un argumento es nulo, el valor de retorno es NULL.

Sintaxis

TRANSLATE (expression, characters_to_replace, characters_to_substitute)

Argumentos
expresion

La expresion que se traducira.

characters_to_replace

Una cadena que tiene los caracteres que se reemplazaran.

Funciones de cadena 321

AWS Clean Rooms Referencia de SQL

characters_to_substitute

Una cadena que tiene los caracteres que se sustituiran.

Tipo de devolucion
VARCHAR
Ejemplos

En el siguiente ejemplo, se reemplazan varios caracteres en una cadena:

select translate('mint tea', 'inea', 'osin');

translate

En el siguiente ejemplo, se reemplaza el signo (@) con un punto para todos los valores en una
columna:

select email, translate(email, '@', '.') as obfuscated_email
from users limit 10;

email obfuscated_email
Etiam.laoreet.libero@esodalesMaurisblandit.edu
Etiam.laoreet.libero.sodalesMaurisblandit.edu
amet.faucibus.utecondimentumegetvolutpat.ca
amet.faucibus.ut.condimentumegetvolutpat.ca

turpis@accumsanlaoreet.org turpis.accumsanlaoreet.org
ullamcorper.nisl@Cras.edu ullamcorper.nisl.Cras.edu
arcu.Curabituresenectusetnetus.com arcu.Curabitur.senectusetnetus.com
ac@velit.ca ac.velit.ca

Aliquam.vulputate.ullamcorper@amalesuada.org
Aliquam.vulputate.ullamcorper.amalesuada.ozrg

vel.est@velitegestas.edu vel.est.velitegestas.edu
dolor.nonummy@ipsumdolorsit.ca dolor.nonummy.ipsumdolorsit.ca
et@Nunclaoreet.ca et.Nunclaoreet.ca

En el siguiente ejemplo, se reemplazan espacios con guiones bajos y se quitan los puntos para todos
los valores en una columna:

Funciones de cadena 322

AWS Clean Rooms

Referencia de SQL

select city, translate(city, ' .', '_') from users

where city like 'Sain%' or city like 'St%'

group by city
order by city;

Saint Joseph
Saint Louis
Saint Paul
St. George
St. Marys

St. Petersburg
Stafford
Stamford
Stanton
Starkville
Statesboro
Staunton
Steubenville
Stevens Point
Stillwater
Stockton
Sturgis

Funcion TRIM

translate

Saint_Albans
Saint_Cloud
Saint_Joseph
Saint_Louis
Saint_Paul
St_George
St_Marys
St_Petersburg
Stafford
Stamford
Stanton
Starkville
Statesboro
Staunton
Steubenville
Stevens_Point
Stillwater
Stockton
Sturgis

Recorta una cadena al eliminar espacios o caracteres a la izquierda y a la derecha que coincidan con
una cadena especifica opcional.

Sintaxis

TRIM([BOTH 1 [trim_chars FROM] string

Argumentos

trim_chars

(Opcional) Los caracteres que se recortaran de la cadena. Si se omite este parametro, se

recortan los espacios en blanco.

Funciones de cadena

323

AWS Clean Rooms Referencia de SQL

string

La cadena que se recortara.

Tipo de devolucion

La funcion TRIM devuelve una cadena VARCHAR o CHAR. Si utiliza la funcion TRIM con un
comando SQL, convierte implicitamente los resultados en VARCHAR. AWS Clean Rooms Si utiliza
la funcién TRIM de la lista SELECT para una funcion SQL, AWS Clean Rooms no convierte los
resultados de forma implicita y es posible que necesite realizar una conversion explicita para evitar
un error de discordancia en los tipos de datos. Consulte la Funcion CAST funcion para obtener
informacion sobre las conversiones explicitas.

Ejemplo

En el siguiente ejemplo, se recortan espacios a la izquierda y a la derecha de la cadena ' abc ':

select ' abc ' as untrim, trim(’' abc ') as trim;
untrim | trim
__________ Fmm e

abc | abc

En el siguiente ejemplo, se eliminan las comillas dobles que rodean la cadena "dog":

select trim('"' FROM '"dog"');

TRIM elimina cualquiera de los caracteres de trim_chars cuando aparecen al principio del string. En
el siguiente ejemplo, se recortan los caracteres «C», «D» y «G» cuando aparecen al principio de
VENUENAME, que es una columna VARCHAR.

select venueid, venuename, trim(venuename, 'CDG')
from venue

where venuename like '%Park’

oxder by 2

limit 7;

Funciones de cadena 324

AWS Clean Rooms Referencia de SQL

venueid | venuename | btrim

________ o S
121 | ATT Park | ATT Park
109 | Citizens Bank Park | itizens Bank Park
102 | Comerica Park | omerica Park

9 | Dick's Sporting Goods Park | ick's Sporting Goods Park

97 | Fenway Park | Fenway Park
112 | Great American Ball Park | reat American Ball Park
114 | Miller Park | Miller Park

Funcion UPPER

Convierte una cadena a mayusculas. UPPER admite caracteres multibyte UTF-8 de hasta un
maximo de cuatro bytes por caracter.

Sintaxis

UPPER(string)

Argumentos
string

El parametro de entrada es una cadena VARCHAR (o cualquier otro tipo de datos, como CHAR,
que se pueda convertir de forma implicita a VARCHAR).

Tipo de devolucién

La funciéon UPPER devuelve una cadena de caracteres que tiene el mismo tipo de datos que la
cadena de entrada.

Ejemplos

El siguiente ejemplo convierte el campo CATNAME a mayusculas:

select catname, upper(catname) from category order by 1,2;

catname | upper
__________ B
Classical | CLASSICAL
Jazz | JAZZ

Funciones de cadena 325

AWS Clean Rooms Referencia de SQL

MLB | MLB
MLS | MLS
Musicals | MUSICALS
NBA | NBA
NFL | NFL
NHL | NHL
Opera | OPERA
Plays | PLAYS
Pop | POP
(11 rows)
Funcion UUID

La funcion UUID genera un identificador unico universal (UUID).

UUIDs son identificadores unicos a nivel mundial que se utilizan habitualmente para proporcionar
identificadores unicos con diversos fines, como:

+ Identificar registros de bases de datos u otras entidades de datos.
» Generar nombres o claves unicos para archivos, directorios u otros recursos.
» Rastrear y correlacionar datos en sistemas distribuidos.

» Proporcionar identificadores unicos para paquetes de red, componentes de software u otros
activos digitales.

La funcion UUID genera un valor UUID que es unico con una probabilidad muy alta, incluso en
sistemas distribuidos y durante largos periodos de tiempo. UUIDs se generan normalmente mediante
una combinacion de la marca de tiempo actual, la direccion de red del ordenador y otros datos
aleatorios o pseudoaleatorios, lo que garantiza que es muy poco probable que cada UUID generado
entre en conflicto con cualquier otro UUID.

En el contexto de una consulta SQL, la funcion UUID se puede utilizar para generar identificadores
unicos para los nuevos registros que se insertan en una base de datos, o para proporcionar claves
unicas para la particion de datos, la indexacidn u otros fines en los que se requiera un identificador
unico.

(® Note

La funcion UUID no es determinista.

Funciones de cadena 326

AWS Clean Rooms Referencia de SQL

Sintaxis

uuid()

Argumentos
La funcion UUID no admite ningun argumento.
Tipo de devolucién

El UUID devuelve una cadena de identificador unico universal (UUID). El valor se devuelve como una
cadena candnica de 36 caracteres del UUID.

Ejemplo

El siguiente ejemplo genera un identificador unico universal (UUID). El resultado es una cadena de
36 caracteres que representa un identificador unico universal.

SELECT uuid();
46707d92-02f4-4817-8116-a4c3b23e6266

Funciones relacionadas con la privacidad

AWS Clean Rooms proporciona funciones que le ayudan a cumplir con las normas relacionadas con
la privacidad en relacion con las siguientes especificaciones.

» Plataforma de privacidad global (GPP): especificacion de la Oficina de Publicidad Interactiva
(IAB) que establece un marco global y estandarizado para la privacidad en linea y el uso de los
datos. Para obtener mas informacion sobre las especificaciones técnicas de la GPP, consulte la
documentacion de la Plataforma de privacidad global en. GitHub

* Marco de transparencia y consentimiento (TCF): un componente clave de la GPP, lanzada en
2020, que proporciona un marco técnico estandarizado para ayudar a las empresas a cumplir
con las normas de privacidad, como el Reglamento General de Proteccidon de Datos (GDPR) de
la UE. EI TCF permite a los clientes conceder o denegar su consentimiento a la recopilacion y el
procesamiento de datos. Para obtener mas informacion sobre las especificaciones técnicas del
TCF, consulte la documentacion del TCF en. GitHub

Temas

Funciones relacionadas con la privacidad 327

https://github.com/InteractiveAdvertisingBureau/Global-Privacy-Platform
https://github.com/InteractiveAdvertisingBureau/GDPR-Transparency-and-Consent-Framework/tree/master/TCFv2

AWS Clean Rooms Referencia de SQL

 funcion consent_gpp_v1_decode

» funcidn consent_tcf v2_decode

funcidn consent_gpp_v1_decode

La consent_gpp_v1_decode funcion se utiliza para decodificar los datos de consentimiento de

la version 1 de la Global Privacy Platform (GPP). Toma la cadena de consentimiento codificada
como entrada y devuelve los datos de consentimiento decodificados, que incluyen informacién sobre
las preferencias de privacidad y las opciones de consentimiento del usuario. Esta funcién resulta

util cuando se trabaja con datos que incluyen informacién de consentimiento de la GPP v1, ya que
permite acceder a los datos de consentimiento y analizarlos en un formato estructurado.

Sintaxis

consent_gpp_vl_decode(gpp_string)

Argumentos

gpp_string

La cadena de consentimiento codificada del GPP v1.

Devuelve

El diccionario devuelto incluye los siguientes pares clave-valor:

» version: La version de la especificacion GPP utilizada (actualmente 1).

« cmpId: el ID de la plataforma de gestidon del consentimiento (CMP) que codifico la cadena de
consentimiento.

« cmpVersion: la version de la CMP que codificé la cadena de consentimiento.

« consentScreen: el ID de la pantalla de la interfaz de usuario de la CMP en la que el usuario dio
su consentimiento.

+ consentLanguage: El codigo de idioma de la informacion de consentimiento.
* vendorListVersion: La version de la lista de proveedores utilizada.

* publisherCountryCode: El codigo de pais del editor.

Funciones relacionadas con la privacidad 328

AWS Clean Rooms Referencia de SQL

* purposeConsent: una lista de numeros enteros que representan los fines para los que el usuario
ha dado su consentimiento.

* purposelLegitimateInterest: Una lista de propdsitos IDs para los que se ha comunicado de
forma transparente el interés legitimo del usuario.

* specialFeatureOptIns: una lista de numeros enteros que representan las funciones
especiales que el usuario ha elegido.

+ vendorConsent: una lista de proveedores a los IDs que el usuario ha dado su consentimiento.

* vendorLegitimateInterest: una lista de proveedores IDs para los que se ha comunicado de
forma transparente el interés legitimo del usuario.

Ejemplo

El siguiente ejemplo utiliza un unico argumento, que es la cadena de consentimiento codificada.
Devuelve un diccionario que contiene los datos de consentimiento decodificados, incluida
informacion sobre las preferencias de privacidad del usuario, las opciones de consentimiento y otros
metadatos.

SELECT * FROM consent_gpp_vl_decode('ABCDEFGHIJK');

La estructura basica de los datos de consentimiento devueltos incluye informacion sobre la version
de la cadena de consentimiento, los detalles de la CMP (plataforma de gestion del consentimiento),
las opciones de consentimiento e interés legitimo del usuario para los distintos fines y proveedores, y
otros metadatos.

"version": 1,

"cmpId": 12,
"cmpVersion": 34,
"consentScreen": 5,
"consentlLanguage": "en",
"vendorListVersion": 89,
"publisherCountryCode": "US",
"purposeConsent": [1],
"purposelegitimateInterests": [1],
"specialFeatureOptins": [1],
"vendorConsent": [1],
"vendorLegitimateInterests": [1]}

Funciones relacionadas con la privacidad 329

AWS Clean Rooms Referencia de SQL

funcion consent_tcf v2_decode

La consent_tcf_v2_decode funcion se utiliza para decodificar los datos de consentimiento del
Marco de Transparencia y Consentimiento (TCF) v2. Toma la cadena de consentimiento codificada
como entrada y devuelve los datos de consentimiento decodificados, que incluyen informacién sobre
las preferencias de privacidad y las opciones de consentimiento del usuario. Esta funcién resulta util
cuando se trabaja con datos que incluyen informacién de consentimiento segun el TCF v2, ya que
permite acceder a los datos de consentimiento y analizarlos en un formato estructurado.

Sintaxis

consent_tcf_v2_decode(tcf_string)

Argumentos
tcf_string

La cadena de consentimiento codificada del TCF v2.

Devuelve

La consent_tcf_v2_decode funcion devuelve un diccionario que contiene los datos de
consentimiento decodificados de una cadena de consentimiento del Marco de Transparencia y
Consentimiento (TCF) v2.

El diccionario devuelto incluye los siguientes pares clave-valor:
Segmento principal

» version: La version de la especificacion TCF utilizada (actualmente 2).
* created: Lafechay la hora en que se cred la cadena de consentimiento.
* lastUpdated: la fecha y la hora en que se actualiz6 por ultima vez la cadena de consentimiento.

« cmpld: el ID de la plataforma de gestion del consentimiento (CMP) que codifico la cadena de
consentimiento.

+ cmpVersion: la version de la CMP que codifico la cadena de consentimiento.

+ consentScreen: el ID de la pantalla de la interfaz de usuario de la CMP en la que el usuario dio
su consentimiento.

Funciones relacionadas con la privacidad 330

AWS Clean Rooms Referencia de SQL

+ consentlLanguage: El codigo de idioma de la informacion de consentimiento.
* vendorListVersion: La version de la lista de proveedores utilizada.

* tcfPolicyVersion: La version de la politica del TCF en la que se basa la cadena de
consentimiento.

« isServiceSpecific: un valor booleano que indica si el consentimiento es especifico de un
servicio en particular o se aplica a todos los servicios.

» useNonStandardStacks: un valor booleano que indica si se utilizan pilas no estandar.

* specialFeatureOptIns: una lista de nUmeros enteros que representan las funciones
especiales que el usuario ha elegido.

* purposeConsent: una lista de numeros enteros que representan los fines para los que el usuario
ha dado su consentimiento.

* purposesLITransparency: una lista de numeros enteros que representan los fines para los que
el usuario ha dado transparencia a sus intereses legitimos.

* purposeOneTreatment: Un valor booleano que indica si el usuario ha solicitado el «tratamiento
con un unico proposito» (es decir, todos los fines se tratan por igual).

* publisherCountryCode: el cddigo de pais del editor.
* vendorConsent: una lista de proveedores a los IDs que el usuario ha dado su consentimiento.

* vendorLegitimateInterest: una lista de proveedores IDs para los que se ha comunicado de
forma transparente el interés legitimo del usuario.

* pubRestrictionEntry: una lista de restricciones para editores. Este campo contiene el
identificador de propésito, el tipo de restriccidon y la lista de proveedores IDs sujetos a esa
restriccion de proposito.

Segmento de proveedores divulgado
« disclosedVendors: una lista de numeros enteros que representan los proveedores y que se ha
revelado al usuario.

Segmento de fines editoriales

* pubPurposesConsent: una lista de nUmeros enteros que representan los fines especificos del
editor para los que el usuario ha dado su consentimiento.

* pubPurposesLITransparency: una lista de numeros enteros que representan los fines
especificos del editor para los que el usuario ha expresado su interés legitimo en la transparencia.

Funciones relacionadas con la privacidad 331

AWS Clean Rooms Referencia de SQL

+ customPurposesConsent: una lista de numeros enteros que representan los fines
personalizados para los que el usuario ha dado su consentimiento.

+ customPurposesLITransparency: una lista de numeros enteros que representan los fines
personalizados para los que el usuario ha dado transparencia a sus intereses legitimos.

Estos datos detallados de consentimiento se pueden utilizar para comprender y respetar las
preferencias de privacidad del usuario cuando trabaja con datos personales.

Ejemplo

El siguiente ejemplo utiliza un unico argumento, que es la cadena de consentimiento codificada.
Devuelve un diccionario que contiene los datos de consentimiento decodificados, incluida
informacion sobre las preferencias de privacidad del usuario, las opciones de consentimiento y otros
metadatos.

from aws_clean_rooms.functions import consent_tcf_v2_decode

consent_string = "C01234567890abcdef"
consent_data = consent_tcf_v2_decode(consent_string)

print(consent_data)

La estructura basica de los datos de consentimiento devueltos incluye informacion sobre la version
de la cadena de consentimiento, los detalles de la CMP (plataforma de gestion del consentimiento),
las opciones de consentimiento e interés legitimo del usuario para los distintos fines y proveedores, y
otros metadatos.

/** core segment **/

version: 2,

created: "2023-10-01T12:00:00Z",
lastUpdated: "2023-10-01T12:00:00Z2",
cmpId: 1234,
cmpVersion: 5,
consentScreen: 1,
consentlLanguage:
vendorListVersion: 2,
tcfPolicyVersion: 2,
isServiceSpecific: false,
useNonStandardStacks: false,

en",

Funciones relacionadas con la privacidad 332

AWS Clean Rooms Referencia de SQL

specialFeatureOptIns: [1, 2, 3],

purposeConsent: [1, 2, 3],

purposesLITransparency: [1, 2, 3],

purposeOneTreatment: true,

publisherCountryCode: "US",

vendorConsent: [1, 2, 3],

vendorLegitimateInterest: [1, 2, 3],

pubRestrictionEntry: [

{ purpose: 1, restrictionType: 2, restrictionDescription: "Example

restriction" },

]I

/** disclosed vendor segment **/
disclosedVendors: [1, 2, 31,

/** publisher purposes segment **/
pubPurposesConsent: [1, 2, 3],
pubPurposesLITransparency: [1, 2, 3],
customPurposesConsent: [1, 2, 3],
customPurposesLITransparency: [1, 2, 3],

i

Funciones de ventana

Con las funciones de ventana, puede crear consultas empresariales analiticas de manera mas
eficiente. Las funciones de ventana operan en una particion o "ventana" de un conjunto de resultados
y devuelven un valor para cada fila de esa ventana. Por el contrario, las funciones que no son de
ventana realizan sus calculos respecto de cada fila en el conjunto de resultados. A diferencia de las
funciones de grupo que agregan las filas de resultados, las funciones de ventana retienen todas las
filas de la expresion de tabla.

Los valores devueltos se calculan con los valores de los conjuntos de filas en esa ventana. Para
cada fila en la tabla, la ventana define un conjunto de filas que se usan para computar atributos
adicionales. Una ventana se define utilizando una especificacion de ventana (la clausula OVER) y se
basa en tres conceptos principales:

 Particionamiento de ventana, que forma grupos de filas (clausula PARTITION).

» Ordenacion de ventana, que define un orden o una secuencia de filas dentro de cada particion
(clausula ORDER BY).

« Marcos de ventana, que se definen en funcidn de cada fila para restringir aun mas el conjunto de
filas (especificacion ROWS).

Funciones de ventana 333

AWS Clean Rooms Referencia de SQL

Las funciones de ventana son el ultimo conjunto de operaciones realizadas en una consulta, excepto
por la clausula final ORDER BY. Todas las combinaciones y todas las clausulas WHERE, GROUP
BY y HAVING se completan antes de que se procesen las funciones de ventana. Por lo tanto, las
funciones de ventana pueden figurar solamente en la lista SELECT o en la clausula ORDER BY. Se
pueden usar distintas funciones de ventana dentro de una unica consulta con diferentes clausulas
de marco. También se pueden usar las funciones de ventana en otras expresiones escalares, como
CASE.

Resumen de la sintaxis de la funcion de ventana

Las funciones de ventana siguen una sintaxis estandar, que es la que se indica a continuacion.

function (expression) OVER (
[PARTITION BY expr_list]
[ORDER BY order_list [frame_clause]])

Aqui, function es una de las funciones que se describen en esta seccion

La apariencia de expr_list es la siguiente.

expression | column_name [, expr_list]

El order_list tiene la siguiente apariencia.

expression | column_name [ASC | DESC]
[NULLS FIRST | NULLS LAST]
[, order list]

La frame_clause tiene la siguiente apariencia.

ROWS
{ UNBOUNDED PRECEDING | unsigned_value PRECEDING | CURRENT ROW } |

{ BETWEEN

{ UNBOUNDED PRECEDING | unsigned_value { PRECEDING | FOLLOWING } | CURRENT ROW}
AND

{ UNBOUNDED FOLLOWING | unsigned_value { PRECEDING | FOLLOWING } | CURRENT ROW }}

Funciones de ventana 334

AWS Clean Rooms Referencia de SQL

Argumentos
funcion

La funcion de ventana. Para obtener mas informacion, consulte las descripciones de las funciones
individuales.

OVER

La clausula que define la especificacion de ventana. La clausula OVER es obligatoria para las
funciones de ventana y distingue funciones de ventana de otras funciones SQL.

PARTITION BY expr_list

(Opcional) La clausula PARTITION BY subdivide el conjunto de resultado en particiones, muy
similar a la clausula GROUP BY. Si hay una clausula de particion, la funcién se calcula para las
filas en cada particion. Si no se especifica una clausula de particién, una unica particion tiene toda
la tabla y la funcion se computa para la tabla completa.

Las funciones de clasificacion, DENSE_RANK, NTILE, RANK y ROW_NUMBER, requieren

una comparacion global de todas las filas en el conjunto de resultados. Cuando se utiliza una
clausula PARTITION BY, el optimizador de consultas puede ejecutar cada agregacion en paralelo
mediante la distribucion de la carga de trabajo entre distintos sectores, segun las particiones.

Si no hay clausula PARTITION BY, el paso de agregacion se debe ejecutar en serie en un

unico sector, lo que puede tener consecuencias negativas importantes en el rendimiento,
especialmente en el caso de clusteres grandes.

AWS Clean Roomsno admite cadenas literales en las clausulas PARTITION BY.

ORDER BY order _list

(Opcional) La funcién de ventana se aplica a las filas dentro de cada particion ordenada, segun la
especificacion de orden en ORDER BY. Esta clausula ORDER BY es distinta y no guarda relacién
alguna con las clausulas ORDER BY de frame_clause. La clausula ORDER BY se puede usar sin
la clausula PARTITION BY.

Para las funciones de clasificacion, la clausula ORDER BY identifica las medidas para los valores
de clasificacion. Para las funciones de agregacion, las filas particionadas se deben ordenar antes
de que la funcion de agregacion se compute para cada marco. Para obtener mas informacién
acerca de los tipos de funciones de ventana, consulte Funciones de ventana.

Funciones de ventana 335

AWS Clean Rooms Referencia de SQL

Se requieren identificadores de columnas o expresiones que toman el valor de los identificadores
de columnas en la lista de ordenacion. No se pueden usar constantes ni expresiones constantes
como sustitutos para los nombres de columnas.

Los valores NULLS se tratan como su propio grupo; se ordenan y se clasificacion segun la opcion
NULLS FIRST o NULLS LAST. De manera predeterminada, los valores NULL se ordenan y
clasificacion al final en orden ASC, y se ordenan y se clasifican primero en orden DESC.

AWS Clean Roomsno admite cadenas literales en las clausulas ORDER BY.

Si se omite la clausula ORDER BY, el orden de las filas no es determinista.

@ Note

En cualquier sistema paralelo, por ejemploAWS Clean Rooms, cuando una clausula
ORDER BY no produce un orden unico y total de los datos, el orden de las filas no es
determinista. Es decir, si la expresion ORDER BY produce valores duplicados (un orden
parcial), el orden de retorno de esas filas puede variar de una serie AWS Clean Rooms
a otra. A su vez, las funciones de ventana pueden devolver resultados inesperados o
inconsistente. Para obtener mas informacioén, consulte Ordenacion unica de datos para

funciones de ventana.

column_name

Nombre de una columna que se particionara u ordenara.
ASC | DESC

Opcidén que define el orden de ordenacion para la expresion, de la siguiente manera:

» ASC: ascendente (por ejemplo, de menor a mayor para valores numéricos y de la A a la Z para
cadenas con caracteres). Si no se especifica ninguna opcion, los datos se ordenan, de manera
predeterminada, en orden ascendente.

» DESC: descendente (de mayor a menor para valores numéricos y de la Z a la A para cadenas).
NULLS FIRST | NULLS LAST

Opcidén que especifica si los valores NULL se deben ordenar en primer lugar, antes de los valores
no nulos, o al final, después de los valores no nulos. De manera predeterminada, los valores
NULL se ordenan y clasificacion al final en orden ASC, y se ordenan y se clasifican primero en
orden DESC.

Funciones de ventana 336

AWS Clean Rooms Referencia de SQL

frame_clause

Para funciones de agregacion, la clausula de marco limita el conjunto de filas en una ventana
de funcion al usar ORDER BY. Le permite incluir o excluir conjuntos de filas dentro del resultado
ordenado. La clausula de marco consta de la palabra clave ROWS y de los especificadores
correspondientes.

La clausula de marco no se aplica a las funciones de clasificacion. Ademas, no es necesaria
cuando no se utiliza una clausula ORDER BY en la clausula OVER para una funcion de
agrupacion. Si se utiliza una clausula ORDER BY para una funcion de agregacion, se necesita
una clausula de marco explicita.

Cuando no se especifica una clausula ORDER BY, el marco implicito es ilimitado, lo que es
equivalente a ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

ROWS

Esta clausula define el marco de ventana especificando un desplazamiento fisico desde la fila
actual .

Esta clausula especifica las filas en la ventana o particion actual que se combinara con el valor
de la fila actual. Utiliza argumentos que especifican la posicion de la fila, que puede ser antes
o después de la fila actual. El punto de referencia para todos los marcos de ventana es la fila
actual. Cada fila se convierte en la fila actual cuando el marco de ventana se desplaza hacia
delante en la particién.

El marco puede ser un conjunto simple de filas hasta la fila actual, que se incluye.

{UNBOUNDED PRECEDING | offset PRECEDING | CURRENT ROW}

O bien, puede ser un conjunto de filas entre dos limites.

BETWEEN

{ UNBOUNDED PRECEDING | offset { PRECEDING | FOLLOWING } | CURRENT ROW }
AND

{ UNBOUNDED FOLLOWING | offset { PRECEDING | FOLLOWING } | CURRENT ROW }

UNBOUNDED PRECEDING indica que la ventana comienza en la primera fila de la particion;
offset PRECEDING indica que la ventana comienza en un numero de filas equivalente al valor de
desplazamiento antes de la fila actual. UNBOUNDED PRECEDING es el valor predeterminado.

Funciones de ventana 337

AWS Clean Rooms Referencia de SQL

CURRENT ROW indica que la ventana comienza o finaliza en la fila actual.

UNBOUNDED FOLLOWING indica que la ventana finaliza en la ultima fila de la particion;
offset FOLLOWING indica que la ventana finaliza en un numero de filas equivalente al valor de
desplazamiento después de la fila actual.

offset identifica un numero fisico de filas antes o después de la fila actual. En este caso,
offset debe ser una constante que se evalue como un valor numérico positivo. Por ejemplo, 5
FOLLOWING finaliza el marco de cinco filas después de la fila actual.

Cuando no se especifica BETWEEN, el marco se limita implicitamente a la fila actual. Por
ejemplo, ROWS 5 PRECEDING equivale a ROWS BETWEEN 5 PRECEDING AND CURRENT ROW.
Ademas, ROWS UNBOUNDED FOLLOWING equivale a ROWS BETWEEN CURRENT ROW AND
UNBOUNDED FOLLOWING.

(® Note

No puede especificar un marco en el que el limite de inicio sea mayor que el limite final.
Por ejemplo, no puede especificar ninguno de estos marcos.

between 5 following and 5 preceding
between current row and 2 preceding
between 3 following and current row

Ordenacion unica de datos para funciones de ventana

Si una clausula ORDER BY para una funcion de ventana no produce una ordenacion total y

unica de los datos, el orden de las filas no es deterministico. Si la expresion ORDER BY produce
valores duplicados (una ordenacion parcial), el orden de retorno de esas filas puede variar en
distintas ejecuciones. En este caso, las funciones de ventana también pueden devolver resultados
inesperados o inconsistentes.

Por ejemplo, la siguiente consulta devuelve resultados diferentes con las multiples ejecuciones.
Estos resultados diferentes se producen porque order by dateid no genera una ordenacién
unica de los datos para la funcion de ventana SUM.

select dateid, pricepaid,
sum(pricepaid) over(order by dateid rows unbounded preceding) as sumpaid

Funciones de ventana 338

AWS Clean Rooms Referencia de SQL

from sales
group by dateid, pricepaid;

dateid | pricepaid | sumpaid
________ s
1827 | 1730.00 | 1730.00
1827 | 708.00 | 2438.00
1827 | 234.00 | 2672.00

select dateid, pricepaid,

sum(pricepaid) over(order by dateid rows unbounded preceding) as sumpaid
from sales

group by dateid, pricepaid;

dateid | pricepaid | sumpaid
________ s
1827 | 234.00 | 234.00
1827 | 472.00 | 706.00
1827 | 347.00 | 1053.00

En este caso, agregar una segunda columna ORDER BY a la funcién de ventana puede solucionar el
problema.

select dateid, pricepaid,

sum(pricepaid) over(order by dateid, pricepaid rows unbounded preceding) as sumpaid
from sales

group by dateid, pricepaid;

dateid | pricepaid | sumpaid

________ s
1827 | 234.00 | 234.00
1827 | 337.00 | 571.00
1827 | 347.00 | 918.00

Funciones compatibles
AWS Clean RoomsSpark SQL admite dos tipos de funciones de ventana: agregar y clasificar.

A continuacion, se indican las funciones de agregado admitidas:

Funciones de ventana 339

AWS Clean Rooms Referencia de SQL

* Funcion de ventana CUME_DIST

* Funcion de ventana DENSE_RANK

« PRIMERA funcién de ventana

* Funcion de ventana FIRST VALUE

* Funcion de ventana LAG

* Funcion de ultima ventana

* Funcion de ventana LAST_VALUE

* Funcion de ventana LEAD

A continuacion, se indican las funciones de clasificacion admitidas:

* Funcidon de ventana DENSE_RANK

* Funcidon de ventana PERCENT_ RANK

* Funcion de ventana RANK

* Funcion de ventana ROW_NUMBER

Tabla de muestra para ejemplos de funciones de ventana

Puede encontrar ejemplos especificos de funciones de ventana con la descripcién de cada funcion.
Algunos de los ejemplos utilizan una tabla denominada WINSALES que tiene 11 filas, tal como se
muestra a continuacion.

SALESID DATEID SELLERID BUYERID QTY QTY_SHIPP
ED

30001 8/2/2003 3 B 10 10

10001 12/24/2003 1 C 10 10

10005 12/24/2003 1 A 30

40001 1/9/2004 4 A 40

10006 1/18/2004 1 C 10

Funciones de ventana 340

AWS Clean Rooms

Referencia de SQL

SALESID

20001

40005

20002

30003

30004

30007

DATEID

2/12/2004

2/12/2004

2/16/2004

4/18/2004

4/18/2004

9/7/2004

SELLERID

Funcion de ventana CUME_DIST

BUYERID

QTY

20

10

20

15

20

30

QTY_SHIPP
ED

20
10

20

Calcula la distribucion acumulada de un valor dentro de una ventana o particion. Si se asume un

orden ascendente, la distribucidon acumulada se determina utilizando esta férmula:

count of rows with values <= x / count of rows in the window or partition

donde x equivale al valor en la fila actual de la columna especificada en la cladusula ORDER BY. El

siguiente conjunto de datos ilustra el uso de esta formula:

Row# Value

1 2500
2 2600
3 2800
4 2900
5 3100

El rango de valor de retorno es > 0 a 1, inclusive.

Sintaxis

CUME_DIST ()
OVER (

Calculation

(1)/(5)
(2)/(5)
(3)/(5)
(4)/(5)
(5)/(5)

CUME_DIST
0.2
0.4
0.6
0.8
1.0

[PARTITION BY partition_expression]
[ORDER BY order_list]

Funciones de ventana

341

AWS Clean Rooms Referencia de SQL

)

Argumentos
OVER

Una clausula que especifica la particion de ventana. La clausula OVER no puede tener una
especificaciéon de marco de ventana.

PARTITION BY partition_expression

Opcional. Una expresion que establece el rango de registros para cada grupo en la clausula
OVER.

ORDER BY order _list

La expresion sobre la cual se calcula la distribucién acumulada. La expresidon debe tener un tipo
de dato numérico o ser implicitamente convertible a un dato numérico. Si se omite ORDER BY, el
valor de retorno es 1 para todas las filas.

Si ORDER BY no produce una ordenacion unica, el orden de las filas no es deterministico. Para
obtener mas informacion, consulte Ordenacion unica de datos para funciones de ventana.

Tipo de devolucion
FLOATS8
Ejemplos

En el siguiente ejemplo, se calcula la distribucién acumulada de la cantidad para cada vendedor:

select sellerid, qty, cume_dist()
over (partition by sellerid order by qty)
from winsales;

sellerid gty cume_dist

1 10.00 0.33
1 10.64 0.67
1 30.37 1

3 10.04 0.25
3 15.15 0.5
3 20.75 0.75

Funciones de ventana 342

AWS Clean Rooms Referencia de SQL

3 30.55 1
2 20.09 0.5
2 20.12 1
4 10.12 0.5
4 40.23 1

Para ver una descripcion de la tabla WINSALES, consulte Tabla de muestra para ejemplos de
funciones de ventana.

Funcion de ventana DENSE_RANK

La funcion de ventana DENSE_RANK determina la clasificacion de un valor en un grupo de valores,
segun la expresidon ORDER BY en la clausula OVER. Si hay una clausula opcional PARTITION BY,
las clasificaciones de restablecen para cada grupo de filas. Las filas con valores iguales para el
criterio de clasificacion reciben la misma clasificacion. La funcion DENSE_RANK difiere de RANK en
un aspecto: si se vinculan dos o mas filas, no hay brecha en la secuencia de valores clasificados. Por
ejemplo, si dos filas tienen clasificacion 1, la siguiente clasificacion es 2.

Puede tener funciones de clasificacion con diferentes clausulas PARTITION BY y ORDER BY en la
misma consulta.

Sintaxis

DENSE_RANK () OVER

(
[PARTITION BY expr_list]

[ORDER BY order_list]
)

Argumentos

()

La funcién no toma argumentos, pero se necesitan los paréntesis vacios.

OVER

Las clausulas de ventana para la funcion DENSE_RANK.

PARTITION BY expr_list

Opcional. Una o mas expresiones que definen la ventana.

Funciones de ventana 343

AWS Clean Rooms Referencia de SQL

ORDER BY order _list

Opcional. La expresion en que se basan los valores de clasificacion. Si no se especifica
PARTITION BY, ORDER BY utiliza toda la tabla. Si se omite ORDER BY, el valor de retorno es 1
para todas las filas.

Si ORDER BY no produce una ordenacion unica, el orden de las filas no es deterministico. Para
obtener mas informacion, consulte Ordenacion unica de datos para funciones de ventana.

Tipo de devolucion
INTEGER
Ejemplos

En el siguiente ejemplo, se ordena la tabla segun la cantidad vendida (en orden descendiente) y
se asigna a cada fila tanto una clasificacién densa como una regular. Los resultados se ordenan
después de que se apliquen los resultados de la funcidon de ventana.

select salesid, qty,

dense_rank() over(order by gty desc) as d_rnk,
rank() over(order by qty desc) as rnk

from winsales

order by 2,1;

————————— B et et
10001 | 10 | 5 | 8
10006 | 10 | 5 | 8
30001 | 10 | 5 | 8
40005 | 10 | 5 | 8
30003 | 15 | 4 | 7
20001 | 20 | 3 | 4
20002 | 20 | 3 | 4
30004 | 20 | 3 | 4
10005 | 30 | 2 | 2
30007 | 30 | 2 | 2
40001 | 40 | 1| 1
(11 rows)

Tenga en cuenta la diferencia entre las clasificaciones asignadas al mismo conjunto de filas cuando
se usan las funciones DENSE_RANK y RANK en simultdneo en la misma consulta. Para ver una

Funciones de ventana 344

AWS Clean Rooms Referencia de SQL

descripcion de la tabla WINSALES, consulte Tabla de muestra para ejemplos de funciones de
ventana.

En el siguiente ejemplo, se divide la tabla segun SELLERID, se ordena cada particion segun la
cantidad (en orden descendiente) y se asigna a cada fila una clasificacion densa. Los resultados se
ordenan después de que se apliquen los resultados de la funcion de ventana.

select salesid, sellerid, qty,

dense_rank() over(partition by sellerid order by qty desc) as d_rnk
from winsales

order by 2,3,1;

salesid | sellerid | gty | d_rnk

————————— e e
10001 | 1] 10 | 2
10006 | 1| 10 | 2
10005 | 1] 30| 1
20001 | 2| 20 | 1
20002 | 2| 20 | 1
30001 | 3| 10 | 4
30003 | 3| 15 | 3
30004 | 3] 20 | 2
30007 | 31 30 | 1
40005 | 4| 10 | 2
40001 | 4 40 | 1
(11 rows)

Para ver una descripcion de la tabla WINSALES, consulte Tabla de muestra para ejemplos de
funciones de ventana.

PRIMERA funcion de ventana

Dado un conjunto ordenado de filas, FIRST devuelve el valor de la expresion especificada con
respecto a la primera fila del marco de la ventana.

Para obtener informacion sobre como seleccionar la ultima fila del marco, consulte Funcion de ultima

ventana.

Sintaxis

FIRST(expression)[IGNORE NULLS | RESPECT NULLS]

Funciones de ventana 345

AWS Clean Rooms Referencia de SQL

OVER (

[PARTITION BY expr_list]

[ORDER BY order_list frame_clause]
)

Argumentos
expresion

La columna o expresion de destino sobre la que opera la funcion.

IGNORE NULLS

Cuando se utiliza esta opcion con FIRST, la funcion devuelve el primer valor del marco que no
sea NULL (o NULL si todos los valores son NULL).

RESPECT NULLS

Indica que se AWS Clean Rooms deben incluir valores nulos a la hora de determinar qué fila
utilizar. De manera predeterminada, se admite RESPECT NULLS si no especifica IGNORE
NULLS.

OVER

Introduce las clausulas de ventana para la funcion.

PARTITION BY expr_list

Define la ventana para la funcion en términos de una o mas expresiones.

ORDER BY order _list

Ordena las filas dentro de cada particion. Si no se especifica clausula PARTITION BY, ORDER
BY ordena toda la tabla. Si especifica una clausula ORDER BY, también debe especificar una
frame_clause (clausula_de_marco).

Los resultados de la funcidon FIRST dependen del orden de los datos. En los siguientes casos, los
resultados son no deterministicos:

» Cuando no se especifica una clausula ORDER BY y una particion tiene dos valores diferentes
para una expresion

» Cuando la expresidon toma valores diferentes que corresponden al mismo valor en la lista
ORDER BY.

Funciones de ventana 346

AWS Clean Rooms Referencia de SQL

frame_clause

Si se utiliza una clausula ORDER BY para una funcién de agregacion, se necesita una clausula
de marco explicita. La clausula de marco limita el conjunto de filas en una ventana de funcién e
incluye o excluye conjuntos de filas en del resultado ordenado. La clausula de marco consta de la
palabra clave ROWS y de los especificadores correspondientes. Consulte Resumen de la sintaxis
de la funcién de ventana.

Tipo de devolucion

Estas funciones admiten expresiones que utilizan tipos de AWS Clean Rooms datos primitivos. El
tipo de retorno es el mismo que el tipo de datos de la expression.

Ejemplos

El siguiente ejemplo devuelve la capacidad de asientos para cada lugar en la tabla VENUE, con

los resultados ordenados por capacidad (de mayor a menor). La funcion FIRST se utiliza para
seleccionar el nombre del lugar que corresponde a la primera fila del cuadro: en este caso, la fila con
el mayor numero de asientos. Los resultados se particionan por estado, por lo que cuando cambia

el valor VENUESTATE, se selecciona un nuevo primer valor. El marco de ventana esta ilimitado de
modo que el primer valor se selecciona para cada fila en cada particion.

Para California, Qualcomm Stadium tiene la mayor cantidad de asientos (70561), por lo que
nombre es el primer valor para todas las filas en la particion CA.

select venuestate, venueseats, venuename,
first(venuename)

over(partition by venuestate

oxrder by venueseats desc

rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)

oxrder by venuestate;

venuestate | venueseats | venuename first

| | Qualcomm Stadium | Qualcomm Stadium
| | Monster Park | Qualcomm Stadium
CA | 63026 | McAfee Coliseum | Qualcomm Stadium
| | Dodger Stadium | Qualcomm Stadium
| | Angel Stadium of Anaheim | Qualcomm Stadium

Funciones de ventana 347

AWS Clean Rooms

Referencia de SQL

CA
CA
CA
co
co
DC
FL
FL
FL
FL

42445
41503
22000
76125
50445
41888
74916
73800
65647
36048

PETCO Park

AT&T Park

Shoreline Amphitheatre

INVESCO Field

Coors Field

Nationals Park

Dolphin Stadium

Jacksonville Municipal Stadium
Raymond James Stadium
Tropicana Field

Funcion de ventana FIRST_VALUE

Qualcomm Stadium
Qualcomm Stadium
Qualcomm Stadium
INVESCO Field
INVESCO Field
Nationals Park
Dolphin Stadium
Dolphin Stadium
Dolphin Stadium
Dolphin Stadium

Dado un conjunto ordenado de filas, FIRST_VALUE devuelve el valor de la expresion especificada

respecto de la primera fila en el marco de ventana.

Para obtener informacion sobre como seleccionar la ultima fila del marco, consulte Funcion de
ventana LAST VALUE.

Sintaxis

FIRST_VALUE(expression)[IGNORE NULLS | RESPECT NULLS]

OVER (

[PARTITION BY expr_list]

[ORDER BY order_list frame_clause]

)

Argumentos

expresion

La columna o expresion de destino sobre la que opera la funcion.

IGNORE NULLS

Cuando se utiliza esta opcion con FIRST_VALUE, la funcién devuelve el primer valor en el marco
que no sea NULL (o NULL si todos los valores son NULL).

RESPECT NULLS

Indica que se AWS Clean Rooms deben incluir valores nulos a la hora de determinar qué fila
utilizar. De manera predeterminada, se admite RESPECT NULLS si no especifica IGNORE

NULLS.

Funciones de ventana

348

AWS Clean Rooms Referencia de SQL

OVER

Introduce las clausulas de ventana para la funcion.

PARTITION BY expr_list

Define la ventana para la funcion en términos de una 0 mas expresiones.

ORDER BY order _list

Ordena las filas dentro de cada particion. Si no se especifica clausula PARTITION BY, ORDER
BY ordena toda la tabla. Si especifica una clausula ORDER BY, también debe especificar una
frame_clause (clausula_de_marco).

Los resultados de la funcion FIRST_VALUE dependen del orden de los datos. En los siguientes
casos, los resultados son no deterministicos:

« Cuando no se especifica una clausula ORDER BY y una particion tiene dos valores diferentes
para una expresion

» Cuando la expresion toma valores diferentes que corresponden al mismo valor en la lista
ORDER BY.

frame_clause

Si se utiliza una clausula ORDER BY para una funcién de agregacion, se necesita una clausula
de marco explicita. La clausula de marco limita el conjunto de filas en una ventana de funcién e
incluye o excluye conjuntos de filas en del resultado ordenado. La clausula de marco consta de la
palabra clave ROWS y de los especificadores correspondientes. Consulte Resumen de la sintaxis
de la funcion de ventana.

Tipo de devolucion

Estas funciones admiten expresiones que utilizan tipos de AWS Clean Rooms datos primitivos. El
tipo de retorno es el mismo que el tipo de datos de la expression.

Ejemplos

El siguiente ejemplo devuelve la capacidad de asientos para cada lugar en la tabla VENUE, con

los resultados ordenados por capacidad (de mayor a menor). La funcion FIRST_VALUE se utiliza
para seleccionar el nombre del lugar que corresponda a la primera fila en el marco: en este caso, la
fila con la mayor cantidad de asientos. Los resultados se particionan por estado, por lo que cuando

Funciones de ventana 349

AWS Clean Rooms Referencia de SQL

cambia el valor VENUESTATE, se selecciona un nuevo primer valor. EI marco de ventana esta
ilimitado de modo que el primer valor se selecciona para cada fila en cada particion.

Para California, Qualcomm Stadium tiene la mayor cantidad de asientos (70561), por lo que
nombre es el primer valor para todas las filas en la particion CA.

select venuestate, venueseats, venuename,
first_value(venuename)

over(partition by venuestate

oxrder by venueseats desc

rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)

oxder by venuestate;

venuestate | venueseats | venuename first_value
___________ L U
0

CA | 70561 | Qualcomm Stadium | Qualcomm Stadium
CA | 69843 | Monster Park | Qualcomm Stadium
CA | 63026 | McAfee Coliseum | Qualcomm Stadium
CA | 56000 | Dodger Stadium | Qualcomm Stadium
CA | 45050 | Angel Stadium of Anaheim | Qualcomm Stadium
CA | 42445 | PETCO Park | Qualcomm Stadium
CA | 41503 | AT&T Park | Qualcomm Stadium
CA | 22000 | Shoreline Amphitheatre | Qualcomm Stadium
co | 76125 | INVESCO Field | INVESCO Field

co | 50445 | Coors Field | INVESCO Field

DC | 41888 | Nationals Park | Nationals Park
FL | 74916 | Dolphin Stadium | Dolphin Stadium
FL | 73800 | Jacksonville Municipal Stadium | Dolphin Stadium
FL | 65647 | Raymond James Stadium | Dolphin Stadium
FL | 36048 | Tropicana Field | Dolphin Stadium

Funcion de ventana LAG

La funcién de ventana LAG devuelve los valores para una fila en un desplazamiento dado arriba
(antes) de la fila actual en la particion.

Sintaxis

LAG (value_expr [, offset 1)
[IGNORE NULLS | RESPECT NULLS]

Funciones de ventana 350

AWS Clean Rooms Referencia de SQL

OVER ([PARTITION BY window_partition] ORDER BY window_ordering)

Argumentos

value_expr

La columna o expresion de destino sobre la que opera la funcion.

desplazamiento

Un parametro opcional que especifica la cantidad de filas antes de la fila actual para la cual
devolver valores. El desplazamiento puede ser un valor entero constante o una expresion que
tome un valor entero. Si no especifica un desfase, 1 lo AWS Clean Rooms utiliza como valor por
defecto. Un desplazamiento de 0 indica la fila actual.

IGNORE NULLS

Especificacion opcional que indica que se AWS Clean Rooms deben omitir los valores nulos a la
hora de determinar qué fila utilizar. Los valores nulos se incluyen si no se indica IGNORE NULLS.

@ Note

Puede usar una expresion NVL o COALESCE para reemplazar los valores nulos con otro
valor.

RESPECT NULLS

Indica que se AWS Clean Rooms deben incluir valores nulos en la determinacién de la fila que se
debe utilizar. De manera predeterminada, se admite RESPECT NULLS si no especifica IGNORE
NULLS.

OVER

Especifica la particion de ventana y el ordenamiento. La clausula OVER no puede tener una
especificaciéon de marco de ventana.

PARTITION BY window_partition

Un argumento opcional que establece el rango de registros para cada grupo en la clausula
OVER.

ORDER BY window_ordering

Ordena las filas dentro de cada particion.

Funciones de ventana 351

AWS Clean Rooms

Referencia de SQL

La funcion de ventana LAG admite expresiones que utilizan cualquiera de los tipos de AWS Clean

Rooms datos. El tipo de valor devuelto es el mismo que el tipo de la value_expr (expresion_de_valor).

Ejemplos

En el siguiente ejemplo, se muestra la cantidad de tickets vendidos al comprador con un ID de
comprador de 3y la hora en que el comprador 3 compro los tickets. Para comparar cada venta con
la venta anterior para el comprador 3, la consulta devuelve la cantidad anterior vendida para cada
venta. Debido a que no hay compras antes del 01/16/2008, el primer valor de cantidad vendida

anterior es nulo:

select buyerid, saletime, qgtysold,
lag(qtysold,1) over (order by buyerid, saletime) as prev_qtysold
from sales where buyerid = 3 order by buyerid, saletime;

~N W W W W W W W W o oo w

Funcion de ultima ventana

2008-01-16
2008-01-28
2008-03-12
2008-03-13
2008-03-29
2008-04-27
2008-08-16
2008-08-22
2008-09-12
2008-10-01
2008-10-20
2008-10-28
TOoWS)

saletime

P NP P NNRPRNRPRRPR

| gtysold | prev_qgtysold

N R R NNRNRRRR

Dado un conjunto ordenado de filas, la funcién LAST devuelve el valor de la expresidén con respecto

a la ultima fila del marco.

Para obtener informacion sobre como seleccionar la primera fila del marco, consulte PRIMERA

funcion de ventana.

Sintaxis

LAST(expression)[IGNORE NULLS | RESPECT NULLS]

Funciones de ventana

352

AWS Clean Rooms Referencia de SQL

OVER (

[PARTITION BY expr_list]

[ORDER BY order_list frame_clause]
)

Argumentos
expresion

La columna o expresion de destino sobre la que opera la funcion.

IGNORE NULLS

La funcion devuelve el ultimo valor en el marco que no sea NULL (o NULL si todos los valores
son NULL).

RESPECT NULLS

Indica que se AWS Clean Rooms deben incluir valores nulos a la hora de determinar qué fila
utilizar. De manera predeterminada, se admite RESPECT NULLS si no especifica IGNORE
NULLS.

OVER

Introduce las clausulas de ventana para la funcion.

PARTITION BY expr_list

Define la ventana para la funcion en términos de una o mas expresiones.

ORDER BY order _list

Ordena las filas dentro de cada particion. Si no se especifica clausula PARTITION BY, ORDER
BY ordena toda la tabla. Si especifica una clausula ORDER BY, también debe especificar una
frame_clause (clausula_de_marco).

Los resultados dependen del orden de los datos. En los siguientes casos, los resultados son no
deterministicos:

» Cuando no se especifica una clausula ORDER BY y una particion tiene dos valores diferentes
para una expresion

» Cuando la expresidon toma valores diferentes que corresponden al mismo valor en la lista
ORDER BY.

Funciones de ventana 353

AWS Clean Rooms Referencia de SQL

frame_clause

Si se utiliza una clausula ORDER BY para una funcién de agregacion, se necesita una clausula
de marco explicita. La clausula de marco limita el conjunto de filas en una ventana de funcién e
incluye o excluye conjuntos de filas en del resultado ordenado. La clausula de marco consta de la
palabra clave ROWS y de los especificadores correspondientes. Consulte Resumen de la sintaxis
de la funcién de ventana.

Tipo de devolucion

Estas funciones admiten expresiones que utilizan tipos de AWS Clean Rooms datos primitivos. El
tipo de retorno es el mismo que el tipo de datos de la expression.

Ejemplos

El siguiente ejemplo devuelve la capacidad de asientos para cada lugar en la tabla VENUE, con los
resultados ordenados por capacidad (de mayor a menor). La funcidon LAST se utiliza para seleccionar
el nombre del lugar que corresponde a la ultima fila del cuadro: en este caso, la fila con el menor
numero de asientos. Los resultados se particionan por estado, por lo que cuando cambia el valor
VENUESTATE, se selecciona un nuevo ultimo valor. El marco de la ventana esta ilimitado de modo
que el ultimo valor se selecciona para cada fila en cada particion.

Para California, se devuelve Shoreline Amphitheatre para cada fila en la particion porque tiene
la menor cantidad de asientos (22000).

select venuestate, venueseats, venuename,

last(venuename)

over(partition by venuestate

oxrder by venueseats desc

rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)

oxrder by venuestate;

venuestate | venueseats | venuename last

Qualcomm Stadium
Monster Park

| | Shoreline Amphitheatre
I I
CA | 63026 | McAfee Coliseum
I I
I I

Shoreline Amphitheatre
Shoreline Amphitheatre
Shoreline Amphitheatre
Shoreline Amphitheatre

Dodger Stadium
Angel Stadium of Anaheim

Funciones de ventana 354

AWS Clean Rooms

Referencia de SQL

CA | 42445 | PETCO Park | Shoreline Amphitheatre
CA | 41503 | AT&T Park | Shoreline Amphitheatre
CA | 22000 | Shoreline Amphitheatre | Shoreline Amphitheatre
co | 76125 | INVESCO Field | Coors Field

co | 50445 | Coors Field | Coors Field

DC | 41888 | Nationals Park | Nationals Park

FL | 74916 | Dolphin Stadium | Tropicana Field

FL | 73800 | Jacksonville Municipal Stadium | Tropicana Field

FL | 65647 | Raymond James Stadium | Tropicana Field

FL | 36048 | Tropicana Field | Tropicana Field

Funcion de ventana LAST_VALUE

Con un conjunto de filas ordenado, la funcién LAST_VALUE devuelve el valor de la expresion con
respecto a la ultima fila del marco.

Para obtener informacion sobre como seleccionar la primera fila del marco, consulte Funcion de
ventana FIRST_VALUE.

Sintaxis

LAST_VALUE(expression)[IGNORE NULLS | RESPECT NULLS]
OVER (

[PARTITION BY expr_list]

[ORDER BY order_list frame_clause]

)

Argumentos
expresion
La columna o expresion de destino sobre la que opera la funcion.

IGNORE NULLS

La funcion devuelve el ultimo valor en el marco que no sea NULL (o NULL si todos los valores
son NULL).

RESPECT NULLS

Indica que se AWS Clean Rooms deben incluir valores nulos a la hora de determinar qué fila
utilizar. De manera predeterminada, se admite RESPECT NULLS si no especifica IGNORE
NULLS.

Funciones de ventana 355

AWS Clean Rooms Referencia de SQL

OVER

Introduce las clausulas de ventana para la funcion.

PARTITION BY expr_list

Define la ventana para la funcion en términos de una 0 mas expresiones.

ORDER BY order _list

Ordena las filas dentro de cada particion. Si no se especifica clausula PARTITION BY, ORDER
BY ordena toda la tabla. Si especifica una clausula ORDER BY, también debe especificar una
frame_clause (clausula_de_marco).

Los resultados dependen del orden de los datos. En los siguientes casos, los resultados son no
deterministicos:

« Cuando no se especifica una clausula ORDER BY y una particion tiene dos valores diferentes
para una expresion

» Cuando la expresion toma valores diferentes que corresponden al mismo valor en la lista
ORDER BY.

frame_clause

Si se utiliza una clausula ORDER BY para una funcién de agregacion, se necesita una clausula
de marco explicita. La clausula de marco limita el conjunto de filas en una ventana de funcién e
incluye o excluye conjuntos de filas en del resultado ordenado. La clausula de marco consta de la
palabra clave ROWS y de los especificadores correspondientes. Consulte Resumen de la sintaxis
de la funcion de ventana.

Tipo de devolucion

Estas funciones admiten expresiones que utilizan tipos de AWS Clean Rooms datos primitivos. El
tipo de retorno es el mismo que el tipo de datos de la expression.

Ejemplos

El siguiente ejemplo devuelve la capacidad de asientos para cada lugar en la tabla VENUE, con los
resultados ordenados por capacidad (de mayor a menor). La funcion LAST_VALUE se utiliza para
seleccionar el nombre del lugar que corresponda a la ultima fila en el marco: en este caso, la fila con
la menor cantidad de asientos. Los resultados se particionan por estado, por lo que cuando cambia

Funciones de ventana 356

AWS Clean Rooms

Referencia de SQL

el valor VENUESTATE, se selecciona un nuevo ultimo valor. El marco de la ventana esta ilimitado de
modo que el ultimo valor se selecciona para cada fila en cada particion.

Para California, se devuelve Shoreline Amphitheatre para cada fila en la particion porque tiene

la menor cantidad de asientos (22000).

select venuestate, venueseats, venuename,
last_value(venuename)

over(partition by venuestate

oxrder by venueseats desc

rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)

order by venuestate;

venuestate | venueseats | venuename
___________ L U
e e e e e E e — e —,— e —————

CA | 70561 | Qualcomm Stadium

CA | 69843 | Monster Park

CA | 63026 | McAfee Coliseum

CA | 56000 | Dodger Stadium

CA | 45050 | Angel Stadium of Anaheim

CA | 42445 | PETCO Park

CA | 41503 | AT&T Park

CA | 22000 | Shoreline Amphitheatre

co | 76125 | INVESCO Field

co | 50445 | Coors Field

DC | 41888 | Nationals Park

FL | 74916 | Dolphin Stadium

FL | 73800 | Jacksonville Municipal Stadium
FL | 65647 | Raymond James Stadium

FL | 36048 | Tropicana Field

Funcion de ventana LEAD

La funcion de ventana LEAD devuelve los valores para una fila en un desplazamiento dado abajo

(después) de la fila actual en la particion.

Sintaxis

LEAD (value_expr [, offset])
[IGNORE NULLS | RESPECT NULLS]

Shoreline
Shoreline
Shoreline
Shoreline
Shoreline
Shoreline
Shoreline
Shoreline
Coors Fie
Coors Fie
Nationals
Tropicana
Tropicana
Tropicana
Tropicana

last_value

Amphitheatre
Amphitheatre
Amphitheatre
Amphitheatre
Amphitheatre
Amphitheatre
Amphitheatre
Amphitheatre
1d
1d
Park
Field
Field
Field
Field

Funciones de ventana

357

AWS Clean Rooms Referencia de SQL

OVER ([PARTITION BY window_partition] ORDER BY window_ordering)

Argumentos

value_expr

La columna o expresion de destino sobre la que opera la funcion.

desplazamiento

Un parametro opcional que especifica la cantidad de filas debajo de la fila actual para la cual
devolver valores. El desplazamiento puede ser un valor entero constante o una expresion que
tome un valor entero. Si no especifica un desfase, 1 lo AWS Clean Rooms utiliza como valor por
defecto. Un desplazamiento de 0 indica la fila actual.

IGNORE NULLS

Especificacion opcional que indica que se AWS Clean Rooms deben omitir los valores nulos a la
hora de determinar qué fila utilizar. Los valores nulos se incluyen si no se indica IGNORE NULLS.

@ Note

Puede usar una expresion NVL o COALESCE para reemplazar los valores nulos con otro
valor.

RESPECT NULLS

Indica que se AWS Clean Rooms deben incluir valores nulos en la determinacién de la fila que se
debe utilizar. De manera predeterminada, se admite RESPECT NULLS si no especifica IGNORE
NULLS.

OVER

Especifica la particion de ventana y el ordenamiento. La clausula OVER no puede tener una
especificaciéon de marco de ventana.

PARTITION BY window_partition

Un argumento opcional que establece el rango de registros para cada grupo en la clausula
OVER.

ORDER BY window_ordering

Ordena las filas dentro de cada particion.

Funciones de ventana 358

AWS Clean Rooms

Referencia de SQL

La funcion de ventana LEAD admite expresiones que utilizan cualquiera de los tipos de AWS Clean
Rooms datos. El tipo de valor devuelto es el mismo que el tipo de la value_expr (expresion_de_valor).

Ejemplos

En el siguiente ejemplo, se proporciona la comision para eventos en la tabla SALES para los cuales

se vendieron tickets el 1y el 2 de enero de 2008, y la comision pagada por la venta de tickets de la

venta subsiguiente.

select eventid,
lead(commission, 1) over (order by saletime) as next_comm
'2008-01-01 00:00:00'

commission,

from sales where saletime between

order by saletime;

eventid | commission | saletime | next_comm
————————— B e e R e e T S
6213 | 52.05 | 2008-01-01 01:00:19 | 106.20
7003 | 106.20 | 2008-01-01 02:30:52 | 103.20
8762 | 103.20 | 2008-01-01 03:50:02 | 70.80
1150 | 70.80 | 2008-01-01 06:06:57 | 50.55
1749 | 50.55 | 2008-01-01 07:05:02 | 125.40
8649 | 125.40 | 2008-01-01 07:26:20 | 35.10
2903 | 35.10 | 2008-01-01 09:41:06 | 259.50
6605 | 259.50 | 2008-01-01 12:50:55 | 628.80
6870 | 628.80 | 2008-01-01 12:59:34 | 74.10
6977 | 74.10 | 2008-01-02 01:11:16 | 13.50
4650 | 13.50 | 2008-01-02 01:40:59 | 26.55
4515 | 26.55 | 2008-01-02 01:52:35 | 22.80
5465 | 22.80 | 2008-01-02 02:28:01 | 45.60
5465 | 45.60 | 2008-01-02 02:28:02 | 53.10
7003 | 53.10 | 2008-01-02 02:31:12 | 70.35
4124 | 70.35 | 2008-01-02 03:12:50 | 36.15
1673 | 36.15 | 2008-01-02 03:15:00 | 1300.80
(39 rows)

saletime,

Funcion de ventana PERCENT_RANK

Calcula la clasificacidn de porcentaje de una fila dada. La clasificacion de porcentaje se determina

utilizando la siguiente férmula:

(x - 1) / (the number of rows in the window or partition - 1)

and '2008-01-02 12:59:59'

Funciones de ventana

359

AWS Clean Rooms Referencia de SQL

donde x es la clasificacion de la fila actual. El siguiente conjunto de datos ilustra el uso de esta
férmula:

Row# Value Rank Calculation PERCENT_RANK

1151 (1-1)/(7-1) 0.0000
2 20 2 (2-1)/(7-1) 0.1666
320 2 (2-1)/(7-1) 0.1666
4 20 2 (2-1)/(7-1) 0.1666
5305 (5-1)/(7-1) 0.6666
6 30 5 (5-1)/(7-1) 0.6666
7 40 7 (7-1)/(7-1) 1.0000

El rango de valor de retorno es 0 a 1, inclusive. La primera fila en cualquier conjunto tiene un
PERCENT_RANK de 0.

Sintaxis

PERCENT_RANK ()

OVER (

[PARTITION BY partition_expression]
[ORDER BY order_list]

)

Argumentos

()

La funcion no toma argumentos, pero se necesitan los paréntesis vacios.
OVER

Una clausula que especifica la particion de ventana. La clausula OVER no puede tener una
especificacién de marco de ventana.

PARTITION BY partition_expression

Opcional. Una expresion que establece el rango de registros para cada grupo en la clausula
OVER.

ORDER BY order_list

Opcional. La expresidn sobre la cual se calcula la clasificacion de porcentaje. La expresion debe
tener un tipo de dato numérico o ser implicitamente convertible a un dato numérico. Si se omite
ORDER BY, el valor de retorno es 0 para todas las filas.

Funciones de ventana 360

AWS Clean Rooms Referencia de SQL

Si ORDER BY no produce un ordenamiento unico, el orden de las filas no es deterministico. Para
obtener mas informacion, consulte Ordenacion unica de datos para funciones de ventana.

Tipo de devolucion
FLOATS
Ejemplos

En el siguiente ejemplo, se calcula la clasificacion de porcentaje de las cantidades de ventas para
cada vendedor:

select sellerid, qty, percent_rank()
over (partition by sellerid order by qty)
from winsales;

sellerid qty percent_rank

A AN DNWWWW®WERPRR
N
S
~N
ul

P O r Or OO Fr oo
(e)]
~N

Para ver una descripcion de la tabla WINSALES, consulte Tabla de muestra para ejemplos de
funciones de ventana.

Funcion de ventana RANK

La funcion de ventana RANK determina la clasificacion de un valor en un grupo de valores, segun
la expresion ORDER BY en la clausula OVER. Si hay una clausula opcional PARTITION BY, las
clasificaciones de restablecen para cada grupo de filas. Las filas con valores iguales para los
criterios de clasificacion reciben la misma clasificacion. AWS Clean Roomssuma el numero de filas
empatadas a la clasificacion empatada para calcular la siguiente clasificacion y, por lo tanto, es

Funciones de ventana 361

AWS Clean Rooms Referencia de SQL

posible que las filas no sean numeros consecutivos. Por ejemplo, si dos filas tienen clasificacion 1, la
siguiente clasificacion es 3.

RANK difiere de Funcion de ventana DENSE_RANK en un aspecto: para DENSE_RANK, si se
vinculan dos o mas filas, no hay brecha en la secuencia de valores clasificados. Por ejemplo, si dos
filas tienen clasificacion 1, la siguiente clasificacion es 2.

Puede tener funciones de clasificacion con diferentes clausulas PARTITION BY y ORDER BY en la
misma consulta.

Sintaxis

RANK () OVER

(
[PARTITION BY expr_list]
[ORDER BY order_list]

)

Argumentos

()

La funcion no toma argumentos, pero se necesitan los paréntesis vacios.
OVER

Las clausulas de ventana para la funcion RANK.
PARTITION BY expr_list

Opcional. Una o mas expresiones que definen la ventana.
ORDER BY order_list

Opcional. Define las columnas en que se basan los valores de clasificacion. Si no se especifica
PARTITION BY, ORDER BY utiliza toda la tabla. Si se omite ORDER BY, el valor de retorno es 1
para todas las filas.

Si ORDER BY no produce un ordenamiento unico, el orden de las filas no es deterministico. Para
obtener mas informacion, consulte Ordenacion unica de datos para funciones de ventana.

Tipo de devolucion

INTEGER

Funciones de ventana 362

AWS Clean Rooms Referencia de SQL

Ejemplos

En el siguiente ejemplo, se ordena la tabla por la cantidad vendida (orden ascendiente
predeterminado) y se asigna una clasificacion a cada fila. Un valor de 1 es la mejor clasificacion. Los
resultados se ordenan después de que se apliquen los resultados de la funcion de ventana:

select salesid, qty,

rank() over (order by qty) as rnk
from winsales

order by 2,1;

salesid | qty | rnk

________ B B
10001 | 10 | 1
10006 | 10 | 1
30001 | 10 | 1
40005 | 10 | 1
30003 | 15| 5
20001 | 20 | 6
20002 | 20 | 6
30004 | 20| 6
10005 | 30 | 9
30007 | 30 | 9
40001 | 40 | 11
(11 rows)

Tenga en cuenta que la clausula ORDER BY externa de este ejemplo incluye las columnas 2 y 1
para garantizar que AWS Clean Rooms devuelva resultados ordenados de forma coherente cada
vez que se ejecute la consulta. Por ejemplo, las filas con ventas IDs 10001 y 10006 tienen valores de
QTY y RNK idénticos. Ordenar el resultado final por columna 1 garantiza que la fila 10001 siempre
esté antes que la 10006. Para ver una descripcion de la tabla WINSALES, consulte Tabla de muestra
para ejemplos de funciones de ventana.

En el siguiente ejemplo, la ordenacién se invierte para la funcién de ventana (order by qty
desc). Ahora, el valor mas alto de clasificacion se aplica al valor QTY mas alto.

select salesid, qty,

rank() over (order by qty desc) as rank
from winsales

order by 2,1;

Funciones de ventana 363

AWS Clean Rooms

Referencia de SQL

salesid

40001
(11 rows

)

I
+
I
I
I
I
I
I
I
I
I
I
I

P NN NN PN SN 00 0

Para ver una descripcion de la tabla WINSALES, consulte Tabla de muestra para ejemplos de

funciones de ventana.

En el siguiente ejemplo, se divide la tabla segun SELLERID, se ordena cada particion segun la

cantidad (en orden descendiente) y se asigna una clasificacién a cada fila. Los resultados se

ordenan después de que se apliquen los resultados de la funcidén de ventana.

select salesid, sellerid, qty, rank() over

(partition by sellerid
order by gty desc) as rank
from winsales

order by 2,3,1;

salesid

40001
(11 rows

A A N W W WDNMNNPREREPRPR

P NP NN PP PRPEPNDN

Funciones de ventana

364

AWS Clean Rooms Referencia de SQL

Funcion de ventana ROW_NUMBER

Determina el numero ordinal de la fila actual dentro de un grupo de filas, contando desde 1, segun
la expresion ORDER BY en la clausula OVER. Si hay una clausula opcional PARTITION BY, los
numeros ordinales se restablecen para cada grupo de filas. Las filas con valores iguales para las
expresiones ORDER BY reciben los diferentes numeros de fila de manera no deterministica.

Sintaxis

ROW_NUMBER () OVER

(

[PARTITION BY expr_list]
[ORDER BY order_list]

)

Argumentos

()

La funcion no toma argumentos, pero se necesitan los paréntesis vacios.

OVER

Las clausulas de ventana para la funcion ROW_NUMBER.

PARTITION BY expr_list

Opcional. Una o mas expresiones que definen la funcion ROW_NUMBER.

ORDER BY order _list

Opcional. La expresiéon que define las columnas en que se basan los numeros de fila. Si no se
especifica PARTITION BY, ORDER BY utiliza toda la tabla.

Si ORDER BY no produce una ordenacion unica o se omite, el orden de las filas no es
deterministico. Para obtener mas informacion, consulte Ordenacion unica de datos para funciones
de ventana.

Tipo de devolucion

BIGINT

Funciones de ventana 365

AWS Clean Rooms Referencia de SQL

Ejemplos

En el siguiente ejemplo, se particiona la tabla segun SELLERID y se ordena cada particiéon segun
QTY (en orden ascendiente); luego, se asigna un numero a cada fila. Los resultados se ordenan
después de que se apliquen los resultados de la funcién de ventana.

select salesid, sellerid, qty,
row_number() over

(partition by sellerid

order by qty asc) as row
from winsales

order by 2,4;
salesid | sellerid | qty | row
--------- e e e
10006 | 1| 10 | 1
10001 | 1| 10 | 2
10005 | 1| 30 | 3
20001 | 2 | 20 | 1
20002 | 2 | 20 | 2
30001 | 31 10] 1
30003 | 3] 15 | 2
30004 | 3] 20 | 3
30007 | 3] 30 | 4
40005 | 41 10 1
40001 | 4 | 40 | 2
(11 rows)

Para ver una descripcion de la tabla WINSALES, consulte Tabla de muestra para ejemplos de

funciones de ventana.

AWS Clean Rooms Condiciones de Spark SQL

Las condiciones son instrucciones de una o mas expresiones y operadores légicos que resuelven
con un valor de verdadero, falso o desconocido. A las condiciones a veces se las denomina
predicados.

Sintaxis

comparison_condition
| logical_condition
| range_condition

Condiciones SQL 366

AWS Clean Rooms Referencia de SQL

pattern_matching_condition
null_condition
EXISTS_condition
IN_condition

(@ Note

Todas las comparaciones de cadenas y coincidencias del patron LIKE distinguen entre
mayusculas y minusculas. Por ejemplo, "A" y "a" no coinciden. Sin embargo, puede hacer
una coincidencia de patrones que no distinga entre mayusculas y minusculas al utilizar el
predicado ILIKE.

AWS Clean Rooms Spark SQL admite las siguientes condiciones de SQL.

Temas

Operadores de comparacion

Condiciones légicas

Condiciones de coincidencia de patrones
Condicion de rango BETWEEN

Condicioén nula
Condiciéon EXISTS

Condicioén IN

Operadores de comparacion

Las condiciones de comparacion indican relaciones légicas entre dos valores. Todas las condiciones
de comparacién son operadores binarios con un tipo devuelto booleano.

AWS Clean Rooms Spark SQL admite los operadores de comparacion que se describen en la
siguiente tabla.

Operador Sintaxis Descripcién

lexpression EI NOT operador logico. Se
usa para negar una expresion
booleana, lo que significa que

Operadores de comparaciéon 367

AWS Clean Rooms Referencia de SQL

Operador Sintaxis Descripcién

devuelve el valor opuesto al
de la expresion.

iEl' El operador también

se puede combinar con
otros operadores légicos,
como AND y OR, para crear
expresiones booleanas mas
complejas.

< a<bhb El operador de comparaci
6n menor que. Se utiliza
para comparar dos valores
y determinar si el valor de la
izquierda es menor que el
valor de la derecha.

> a>b El operador de comparaci
on mayor que. Se utiliza
para comparar dos valores
y determinar si el valor de la
izquierda es mayor que el
valor de la derecha.

<= a<=b El operador de comparacion
menor o igual a. Se utiliza
para comparar dos valores y
devuelve true si el valor de
la izquierda es menor o igual
que el valor de la derecha, o si
false no.

Operadores de comparaciéon 368

AWS Clean Rooms Referencia de SQL

Operador Sintaxis Descripcién

>= a>=»>b El operador de comparaci
6n mayor o igual a. Se utiliza
para comparar dos valores
y determinar si el valor de la
izquierda es mayor o igual que
el valor de la derecha.

= a=>b El operador de comparacion
de igualdad, que compara dos
valores y devuelve true si
son iguales o si false no.

<>0l= a <>boa l!=b El operador de comparacion
no igual, que compara dos
valores y devuelve resultados
true si no son iguales o si no
false lo son.

Operadores de comparaciéon 369

AWS Clean Rooms

Referencia de SQL

Operador

Ejemplos

Sintaxis

d

b

Descripcién

El operador de comparaci

6n de igualdad estandar,

que compara dos valores y
devuelve true si son iguales
o si false no lo son.

(@ Note

El operador ==
distingue entre
mayusculas y
minusculas al
comparar valores de
cadenas. Si necesita
realizar una comparaci
on que no distinga
entre mayusculas y
minusculas, puede
utilizar funciones como
UPPER () o LOWER

() para convertir los
valores en mayusculas
y minusculas antes de
la comparacion.

A continuacion se muestran algunos ejemplos sencillos de condiciones de comparacion:

a=>5
a<bhb
min(x) >= 5

gtysold = any (select qtysold from sales where dateid = 1882

Operadores de comparaciéon

370

AWS Clean Rooms Referencia de SQL

La siguiente consulta devuelve los valores de identificacion de todas las ardillas que actualmente no
estan buscando alimento.

SELECT id FROM squirrels
WHERE !is_foraging

La siguiente consulta devuelve los lugares con mas de 10 000 asientos de la tabla VENUE:

select venueid, venuename, venueseats from venue
where venueseats > 10000
order by venueseats desc;

venueid | venuename | venueseats
_________ S SO
83 | FedExField | 91704

6 | New York Giants Stadium | 80242

79 | Arrowhead Stadium | 79451

78 | INVESCO Field | 76125

69 | Dolphin Stadium | 74916

67 | Ralph Wilson Stadium | 73967

76 | Jacksonville Municipal Stadium | 73800

89 | Bank of America Stadium | 73298

72 | Cleveland Browns Stadium | 73200

86 | Lambeau Field | 72922

(57 rows)

Este ejemplo selecciona los usuarios (USERID) de la tabla USERS que les gusta el rock:

select userid from users where likerock = 't' order by 1 limit 5;

userid

13
16
(5 rows)

Este ejemplo selecciona los usuarios (USERID) de la tabla USERS para los que se desconoce si les
gusta el rock:

Operadores de comparaciéon 371

AWS Clean Rooms Referencia de SQL

select firstname, lastname, likerock
from users

where likerock is unknown

order by userid limit 10;

firstname | lastname | likerock
__________ o
Rafael | Taylor |

Vladimir | Humphrey |

Barry | Roy |

Tamekah | Juarez |

Mufutau | Watkins |

Naida | Calderon |

Anika | Huff |

Bruce | Beck |

Mallory | Farrell |

Scarlett | Mayer |

(10 rows

Ejemplos con una columna TIME

La siguiente tabla de ejemplo, TIME_TEST, tiene una columna TIME_VAL (tipo TIME) con tres
valores insertados.

select time_val from time_test;

time_val

20:00:00
00:00:00.5550
00:58:00

En el siguiente ejemplo, se extraen las horas de cada timetz_val.

select time_val from time_test where time_val < '3:00';
time_val

00:00:00.5550
00:58:00

En el siguiente ejemplo, se comparan dos literales de tiempo.

Operadores de comparaciéon 372

AWS Clean Rooms Referencia de SQL

select time '18:25:33.123456' = time '18:25:33.123456"';
?column?

Ejemplos con una columna TIMETZ

La siguiente tabla de ejemplo, TIMETZ_TEST, tiene una columna TIMETZ_VAL (tipo TIMETZ) con
tres valores insertados.

select timetz_val from timetz_test;

timetz_val

04:00:00+00
00:00:00.5550+00
05:58:00+00

En el siguiente ejemplo, se seleccionan solo los valores TIMETZ menores que 3:00:00 UTC. La
comparacion se realiza después de convertir el valor a la UTC.

select timetz_val from timetz_test where timetz_val < '3:00:00 UTC';
timetz_val

00:00:00.5550+00

En el siguiente ejemplo, se comparan dos literales TIMETZ. Para la comparacion, se ignora la zona
horaria.

select time '18:25:33.123456 PST' < time '19:25:33.123456 EST';

?column?

Condiciones légicas

Las condiciones l6gicas combinan el resultado de dos condiciones para producir un unico resultado.
Todas las condiciones légicas son operadores binarios con un tipo devuelto booleano.

Condiciones légicas 373

AWS Clean Rooms Referencia de SQL

Sintaxis

expression

{ AND | OR }
expression

NOT expression

Las condiciones logicas utilizan un I6gico booleano de tres valores donde el valor nulo representa
una relacion desconocida. En la siguiente tabla se describen los resultados de condiciones logicas,
donde E1 y E2 representan expresiones:

E1 E2 E1 AND E2 E1 ORE2 NOT E2
TRUE TRUE TRUE TRUE FALSO
TRUE FALSO FALSO TRUE TRUE
TRUE UNKNOWN UNKNOWN TRUE UNKNOWN
FALSO TRUE FALSO TRUE

FALSO FALSO FALSO FALSO

FALSO UNKNOWN FALSO UNKNOWN

UNKNOWN TRUE UNKNOWN TRUE

UNKNOWN FALSO FALSO UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN

El operador NOT se evalua antes de AND, y el operador AND se evalua antes del operador OR.
Cualquier paréntesis utilizado puede invalidar este orden de evaluacion predeterminado.

Ejemplos

En el siguiente ejemplo se devuelve USERID y USERNAME de la tabla USERS donde al usuario le
gusta Las Vegas y los deportes:

select userid, username from users

Condiciones légicas 374

AWS Clean Rooms

Referencia de SQL

where likevegas
order by userid;

userid | username
________ P

1 | JSG99FHE

67 | TWU1@MZT
87 | DUF19VXU
92 | HYP36WEQ

109
120
123
130
133
144
165
169
184

(2128

FPL38HZK
DMJ24GUZ
QZR22XGQ
ZQC82ALK
LBN45WCH
UCX@4JKN
TEY6S0EB
AYQ83HGO
TVX65AZX

rows)

1 and likesports

En el siguiente ejemplo se devuelve el USERID y USERNAME de la tabla USERS donde al usuario
le gusta Las Vegas o los deportes, 0 ambos. Esta consulta devuelve todos los resultados del ejemplo

anterior ademas de los usuarios que solo les gustan Las Vegas o los deportes.

select userid,

where likevegas
order by userid;

userid | username

J
p
I

SGO9FHE
GLOSLII
FT66TXU

AEB55QTM

N
M

DQ15VBM

SD36KVR

WKW41AIW
QTF33MCG
OwU78MTR
ZMG93CDD
RHT62AGI
KOY@2CVE

username from users
1 or likesports

Condiciones légicas

375

AWS Clean Rooms Referencia de SQL

29 | HUH27PKK

(18968 rows)

La siguiente consulta usa paréntesis alrededor de la condicion OR para encontrar lugares en Nueva
York o California donde se realiz6 Macbeth:

select distinct venuename, venuecity

from venue join event on venue.venueid=event.venueid

where (venuestate = 'NY' or venuestate = 'CA') and eventname='Macbeth'
order by 2,1;

venuename venuecity
__ N,
Geffen Playhouse | Los Angeles
Greek Theatre | Los Angeles
Royce Hall | Los Angeles
American Airlines Theatre | New York City
August Wilson Theatre | New York City
Belasco Theatre | New York City
I

Bernard B. Jacobs Theatre New York City

Eliminar los paréntesis en este ejemplo cambia la légica y los resultados de la consulta.

En el siguiente ejemplo se usa el operador NOT:

select * from category
where not catid=1

order by 1;

catid | catgroup | catname | catdesc

——————— et it ettt ittt
2 | Sports | NHL | National Hockey League

3 | Sports | NFL | National Football League

4 | Sports | NBA | National Basketball Association

5 | Sports | MLS | Major League Soccer

En el siguiente ejemplo se usa una condicién NOT seguida de una condicion AND:

select * from category

Condiciones légicas 376

AWS Clean Rooms Referencia de SQL

where (not catid=1) and catgroup='Sports'
order by catid;

catid | catgroup | catname | catdesc

——————— R e it ittt ettt
2 | Sports | NHL | National Hockey League

3 | Sports | NFL | National Football League

4 | Sports | NBA | National Basketball Association

5 | Sports | MLS | Major League Soccer

(4 rows)

Condiciones de coincidencia de patrones

Un operador de coincidencia de patrones busca en una cadena un patron especificado en la
expresion condicional y devuelve verdadero o falso en funcidon de si encuentra una coincidencia.
AWS Clean Rooms Spark SQL utiliza los siguientes métodos para la coincidencia de patrones:

* Expresiones LIKE

El operador LIKE compara una expresion de cadena, como el nombre de una columna, con
un patrén que usa caracteres comodines % (porcentaje) y _ (guion bajo). La coincidencia de
patrones LIKE siempre cubre la cadena completa. LIKE realiza una coincidencia que distingue
entre mayusculas y minusculas.

Temas
+ LIKE
 RLIKE

LIKE

El operador LIKE compara una expresion de cadena, como el nombre de una columna, con un
patrén que usa caracteres comodines % (porcentaje) y _ (guion bajo). La coincidencia de patrones
LIKE siempre cubre la cadena completa. Para relacionar una secuencia en cualquier lugar dentro de
una cadena, el patron debe comenzar y finalizar con un signo de porcentaje.

LIKE distingue entre mayusculas y minusculas.

Condiciones de coincidencia de patrones 377

AWS Clean Rooms Referencia de SQL

Sintaxis
expression [NOT] LIKE | pattern [ESCAPE 'escape_char']

Argumentos
expresion

Una expresion de caracter UTF-8 valido, como un nombre de columna.
LIKE

LIKE realiza una coincidencia de patrones que distingue entre mayusculas y minusculas.
Para ejecutar una coincidencia de patrones sin distinguir entre mayusculas y minusculas con
caracteres multibyte, utilice la funcion LOWER de expresion y patron con una condicion LIKE.

A diferencia de los predicados de comparacion, como =y <>, los predicados LIKE no ignoran
implicitamente los espacios finales. Para omitir los espacios finales, utilice RTRIM o convierta
explicitamente una columna CHAR en VARCHAR.

El ~~ operador equivale a LIKE. Ademas, el ! ~~ operador equivale a NOT LIKE.

pattern

Una expresion de caracter UTF-8 valido con el patrén que se relacionara.

escape_char (caracter_de_escape)
Una expresion de caracter que aplicara escape a metacaracteres en el patron. La predeterminada
es dos barras diagonales invertidas ("\\").

Si el patron no contiene metacaracteres, solo representa la propia cadena; en ese caso, LIKE actua

igual que el operador de igualdad.

Cualquiera de las expresiones de caracter pueden ser tipos de datos CHAR o VARCHAR. Si son
diferentes, AWS Clean Rooms convierte el patrén al tipo de datos de la expresion.

LIKE admite los siguientes metacaracteres de coincidencia de patrén:

Operador Descripcion

% Coincide con cualquier secuencia de cero o mas caracteres.

Condiciones de coincidencia de patrones 378

AWS Clean Rooms Referencia de SQL

Operador Descripcion

Coincide con cualquier caracter.

Ejemplos

En la tabla siguiente se muestran ejemplos de coincidencia de patrones a través de LIKE:

Expression Devuelve
"abc' LIKE 'abc' True
"abc' LIKE 'a%' True
'abc' LIKE '_B_' False
'abc' LIKE 'c%' False

En el siguiente ejemplo se encuentran todas las ciudades cuyos nombres comienzan con "E":

select distinct city from users
where city like 'E%' order by city;
city

East Hartford

East Lansing

East Rutherford

East St. Louis

Easthampton

Easton

Eatontown

Eau Claire

En el siguiente ejemplo se encuentran usuarios cuyos apellidos contienen "ten":

select distinct lastname from users
where lastname like '%ten%' order by lastname;
lastname

Condiciones de coincidencia de patrones 379

AWS Clean Rooms Referencia de SQL

Christensen
Wooten

En el siguiente ejemplo, se buscan ciudades cuyo tercer y cuarto caracter son «ea» . :

select distinct city from users where city like '__EA%' order by city;
city

Brea

Clearwater

Great Falls

Ocean City

Olean

Wheaton

(6 rows)

En el siguiente ejemplo se usa la cadena de escape predeterminada (\\) para buscar cadenas que
incluyan «start_» (el texto start seguido de un guion bajo _):

select tablename, "column" from my_table_def
where "column" like '%start_%'
limit 5;

tablename | column

start_time
xact_start_ts

my_s3client
my_tr_conflict

my_unload_log start_time
my_vacuum_detail start_row
(5 rows)

I
|
my_undone | undo_start_ts
|
I

En el siguiente ejemplo se especifica «*» como el caracter de escape y, luego, se utiliza el caracter
de escape para buscar cadenas que incluyan «start_» (el texto start seguido de un guion bajo _):

select tablename, "column" from my_table_def

where "column" like '%start”_%' escape '/’
limit 5;

Condiciones de coincidencia de patrones 380

AWS Clean Rooms Referencia de SQL

tablename | column
___________________ S

my_s3client start_time

my_tr_conflict

I

| xact_start_ts
my_undone | undo_start_ts

I

I

my_unload_log start_time
my_vacuum_detail start_row
(5 rows)

RLIKE

El operador RLIKE permite comprobar si una cadena coincide con un patrén de expresion regular
especificado.

Devuelve true si str coincide regexp o false no.

Sintaxis

rlike(str, regexp)

Argumentos

str

Una expresion de cadena

expresion regular

Una expresion de cadena. La cadena de expresiones regulares debe ser una expresion regular
de Java.

Los literales de cadena (incluidos los patrones de expresiones regulares) no tienen escapes en
nuestro analizador SQL. Por ejemplo, para que coincida con «\ abcy», una expresidn regular para
expresiones regulares puede ser «*\ abc$».

Ejemplos

El siguiente ejemplo establece el valor del parametro de configuracion
enspark.sql.parser.escapedStringlLiterals. true Este parametro es especifico del motor
SQL de Spark. El spark.sql.parser.escapedStringlLiterals parametro de Spark SQL
controla la forma en que el analizador SQL gestiona los literales de cadena escapados. Cuando se

Condiciones de coincidencia de patrones 381

AWS Clean Rooms Referencia de SQL

establece entrue, el analizador interpretara los caracteres de barra invertida (\) de los literales de
cadena como caracteres de escape, lo que te permitira incluir caracteres especiales como lineas
nuevas, tabulaciones y comillas dentro de los valores de la cadena.

SET spark.sql.parser.escapedStringlLiterals=true;
spark.sql.parser.escapedStringlLiterals true

Por ejemplo, conspark.sql.parser.escapedStringlLiterals=true, podrias usar el siguiente
literal de cadena en tu consulta SQL:

SELECT 'Hello, world!\n'

El caracter de nueva linea se \n interpretaria como un caracter de nueva linea literal en la salida.

En el siguiente ejemplo, se realiza una coincidencia de patrones de expresiones regulares. El primer
argumento se pasa al operador RLIKE. Es una cadena que representa la ruta de un archivo, donde
el nombre de usuario real se sustituye por el patrén "***'. El segundo argumento es el patrén de
expresion regular utilizado para la coincidencia. El resultado (true) indica que la primera cadena
('%SystemDrive%\Users****"') coincide con el patrén de expresion regular (' %SystemDrive%
\\Users.*").

SELECT rlike('%SystemDrive%\Users\John', '%SystemDrive%\Users.*');
true

Condicion de rango BETWEEN

Una condicion BETWEEN prueba expresiones para incluirlas en un rango de valores, con las palabras
clave BETWEEN y AND.

Sintaxis

expression [NOT] BETWEEN expression AND expression

Las expresiones pueden ser tipos de datos de fecha y hora, numéricos o caracteres, pero deben ser
compatibles. El rango es inclusivo.

Ejemplos

El primer ejemplo cuenta cuantas transacciones registraron ventas de 2, 3 o 4 tickets:

Condicién de rango BETWEEN 382

AWS Clean Rooms Referencia de SQL

select count(*) from sales
where qtysold between 2 and 4;

104021
(1 row)

La condicidon de rango incluye los valores de inicio y final.

select min(dateid), max(dateid) from sales
where dateid between 1900 and 1910;

La primera expresion en una condicidon de rango debe ser el valor mas bajo y la segunda expresion,
el valor mas alto. En el siguiente ejemplo SIEMPRE se devuelven cero filas debido a los valores de
las expresiones:

select count(*) from sales
where qtysold between 4 and 2;

Sin embargo, aplicar el modificador NOT invertira la ld6gica y producira un conteo de todas las filas:

select count(*) from sales
where qtysold not between 4 and 2;

172456
(1 row)

La siguiente consulta devuelve una lista de lugares que tienen entre 20 000 y 50 000 asientos:

Condicién de rango BETWEEN 383

AWS Clean Rooms Referencia de SQL

select venueid, venuename, venueseats from venue
where venueseats between 20000 and 50000
order by venueseats desc;

venueid | venuename | venueseats
_________ D
116 | Busch Stadium | 49660

106 | Rangers BallPark in Arlington | 49115

96 | Oriole Park at Camden Yards | 48876

(22 rows)

En el siguiente ejemplo, se demuestra el uso de BETWEEN para valores de fecha:

select salesid, qtysold, pricepaid, commission, saletime
from sales
where eventid between 1000 and 2000

and saletime between '2008-01-01' and '2008-01-03'
order by saletime asc;

salesid | qtysold | pricepaid | commission | saletime
———————— R e el ekt il
65082 | 4 | 472 | 70.8 | 1/1/2008 06:06
110917 | 1 | 337 | 50.55 | 1/1/2008 07:05
112103 | 1| 241 | 36.15 | 1/2/2008 03:15
137882 | 3| 1473 | 220.95 | 1/2/2008 05:18
40331 | 2 | 58 | 8.7 | 1/2/2008 05:57
110918 | 3 1011 | 151.65 | 1/2/2008 07:17
96274 | 1| 104 | 15.6 | 1/2/2008 07:18
150499 | 3| 135 | 20.25 | 1/2/2008 07:20
68413 | 2 | 158 | 23.7 | 1/2/2008 08:12

Tenga en cuenta que, aunque el intervalo de BETWEEN es inclusivo, las fechas tienen un valor de
hora predeterminado de 00:00:00. La unica fila valida del 3 de enero para la consulta de ejemplo
seria una fila con un valor de saletime de 1/3/2008 00:00:00.

Condiciéon nula

La NULL la condicion comprueba si hay valores nulos cuando falta un valor o se desconoce.

Condicion nula 384

AWS Clean Rooms Referencia de SQL

Sintaxis

expression IS [NOT] NULL

Argumentos
expresion

Cualquier expresion, como una columna.

IS NULL

Es true cuando el valor de la expresion es nulo y false cuando tiene un valor.

IS NOT NULL

Es false cuando el valor de la expresion es nulo y true cuando tiene un valor.

Ejemplo
Este ejemplo indica cuantas veces la tabla SALES contiene un valor nulo en el campo QTYSOLD:

select count(*) from sales
where qtysold is null;
count

Condicion EXISTS

Las condiciones EXISTS realizan pruebas en busca de la existencia de filas en una subconsulta,
y devuelve true si una subconsulta devuelve al menos una fila. Si se especifica NOT, la condicion
devuelve true si una subconsulta no devuelve filas.

Sintaxis

[NOT] EXISTS (table_subquery)

Condicion EXISTS 385

AWS Clean Rooms Referencia de SQL

Argumentos

EXISTS

Es true cuando table_subquery (subconsulta_de_tabla) devuelve al menos una fila.
NOT EXISTS

Es true cuando table_subquery (subconsulta_de_tabla) no devuelve filas.

table_subquery (subconsulta_de_tabla)

Una subconsulta que toma el valor de una tabla con una o mas columnas y una o mas filas.

Ejemplo

Este ejemplo devuelve todos los identificadores de fecha, uno a la vez, para cada fecha que tuvo una
venta de cualquier tipo:

select dateid from date

where exists (

select 1 from sales

where date.dateid = sales.dateid

)
order by dateid;

dateid

Condicion IN

Un registro IN la condicion comprueba la pertenencia de un valor a un conjunto de valores o0 a una
subconsulta.

Sintaxis

expression [NOT] IN (expr_list | table_subquery)

Condicioén IN 386

AWS Clean Rooms Referencia de SQL

Argumentos
expresion

Expresion temporal, de caracter o numérica que se compara con expr_list (lista_de_expresiones)
o table_subquery (subconsulta_de_tabla) y debe ser compatible con el tipo de datos de esa lista o
subconsulta.

expr_list (lista_de_expresiones)

Una o mas expresiones separadas por comas 0 uno 0 mas conjuntos de expresiones separados
por comas entre paréntesis.

table_subquery (subconsulta_de_tabla)

Una subconsulta que toma el valor de una tabla con una o mas filas, pero esta limitada a una
columna en su lista selecta.

IN | NOT IN

IN devuelve true si la expresion es un miembro de la consulta o lista de expresiones. NOT IN
devuelve true si la expresion no es un miembro. IN y NOT IN devuelven NULL y no devuelven
filas en los siguientes casos: si la expresion genera un valor nulo o si no hay valores de expr_list o
table_subquery que coincidan y al menos una de estas filas de comparacién genera un valor nulo.

Ejemplos
Las siguientes condiciones son true solo para esos valores enumerados:

qtysold in (2, 4, 5)
date.day in ('Mon', 'Tues')
date.month not in ('Oct', 'Nov', 'Dec')

Optimizacién para listas IN grandes

Para optimizar el rendimiento de la consulta, una lista IN que incluye mas de 10 valores se evalua
internamente como una matriz escalar. Las listas IN con menos de 10 valores se evaluan como una
serie de predicados OR. Esta optimizacién se admite para los tipos de datos SMALLINT, INTEGER,
BIGINT, REAL, DOUBLE PRECISION, BOOLEAN, CHAR, VARCHAR, DATE, TIMESTAMP y
TIMESTAMPTZ.

Condicioén IN 387

AWS Clean Rooms Referencia de SQL

Observe el resultado de EXPLAIN de la consulta para ver el efecto de esta optimizacion. Por
ejemplo:

explain select * from sales
QUERY PLAN

XN Seq Scan on sales (cost=0.00..6035.96 rows=86228 width=53)
Filter: (salesid = ANY ('{1,2,3,4,5,6,7,8,9,10,11}"'::integex[]))
(2 rows)

Condicioén IN 388

AWS Clean Rooms Referencia de SQL

Consultar datos anidados

AWS Clean Rooms ofrece acceso compatible con SQL a datos relacionales y anidados.

AWS Clean Rooms utiliza la notacion punteada y el subindice matricial para navegar por las rutas
al acceder a los datos anidados. También habilita la FROM los elementos de la clausula se repiten
sobre matrices y se utilizan en operaciones no anidadas. En los temas siguientes se describen

los diferentes patrones de consulta que combinan el uso del tipo de array/struct/map datos con la
navegacion por rutas y matrices, el desanidamiento y las uniones.

Temas

« Navegacion
» Desanidar consultas

+ Semantica laxa

 Tipos de introspeccion

Navegacion

AWS Clean Rooms permite navegar por matrices y estructuras mediante la notacionde [...]
corchetes y puntos, respectivamente. Ademas, puede combinar la navegacion en estructuras
utilizando la notacién con puntos y matrices con la notacion con corchetes.

Example

Por ejemplo, en la siguiente consulta de ejemplo, se presupone que la columna de datos de matriz
c_orders es una matriz con una estructura y que un atributo se denomina o_orderkey.

SELECT cust.c_orders[@].o_orderkey FROM customer_orders_lineitem AS cust;

Puede utilizar las notaciones con puntos y corchetes en todos los tipos de consultas, como las de
filtrado, combinacién y agregacion. También puede utilizar estas notaciones en una consulta en la
que por lo general hay referencias de columnas.

Example

En el siguiente ejemplo, se utiliza una instruccion SELECT que filtra los resultados.

Navegacioén 389

AWS Clean Rooms Referencia de SQL

SELECT count(*) FROM customer_orders_lineitem WHERE c_orders[@].o_orderkey IS NOT NULL;

Example

En el siguiente ejemplo, se utiliza la navegacion con corchetes y puntos tanto en las clausulas
GROUP BY como ORDER BY.

SELECT c_orders[@].o_orderdate,
c_orders[0@].o_orderstatus,
count(*)

FROM customer_orders_lineitem

WHERE c_orders[@].o_orderkey IS NOT NULL

GROUP BY c_orders[0@].o_orderstatus,

c_orders[0].o_orderdate

ORDER BY c_orders[@].o_orderdate;

Desanidar consultas

Para deshacer las consultas, AWS Clean Rooms habilita la iteracidon sobre matrices. Para ello,
navega por la matriz utilizando la clausula FROM de una consulta.

Example

Continuando con el ejemplo anterior, el siguiente ejemplo itera los valores de atributo de c_orders.

SELECT o FROM customer_orders_lineitem c, c.c_orders o;

La sintaxis de desanidamiento es una extension de la clausula FROM. En SQL estandar, la

clausula FROM x (AS) vy significa que y itera cada tupla en relaciéon con x. En este caso, x hace
referencia a una relacion e y hace referencia a un alias de relacion x. Del mismo modo, la sintaxis de
desanidamiento con el elemento de clausula FROM x (AS) vy significa que y itera cada valor en la
expresion de matriz x. En este caso, x es una expresion de matriz e y es un alias de x.

El operando izquierdo también puede utilizar la notacion con puntos y corchetes para la navegacion
normal.

Example

En el ejemplo anterior:

Desanidar consultas 390

AWS Clean Rooms Referencia de SQL

 customer_orders_lineitem c es laiteracion sobre la tabla base
customer_order_lineitem

* c.c_orders o eslaiteracion sobrela c.c_orders array

Para iterar el atributo o_lineitems, que es una matriz dentro de otra matriz, debe anadir varias
clausulas.

SELECT o, 1 FROM customer_orders_lineitem c, c.c_orders o, o.o_lineitems 1;

AWS Clean Rooms también admite un indice de matriz cuando se itera sobre la matriz mediante AT

palabra clave. La clausula x AS y AT z iterala matriz x y genera el campo z, que es el indice de la
matriz.

Example

En el siguiente ejemplo se muestra como funciona un indice de matrices.

SELECT c_name,

orders.o_orderkey AS orderkey,

index AS orderkey_index
FROM customer_orders_lineitem c, c.c_orders AS orders AT index
ORDER BY orderkey_index;

Cc_name | orderkey | orderkey_index

___________________ e

Customer#000008251 | 3020007 | 0

Customer#000009452 | 4043971 | @ (2 rows)
Example

En el siguiente ejemplo se itera una matriz escalar.

CREATE TABLE bar AS SELECT json_parse('{"scalar_array": [1, 2.3, 45000000]}') AS data;
SELECT index, element FROM bar AS b, b.data.scalar_array AS element AT index;

index | element
_______ e -
0|1
1] 2.3
2 | 45000000

Desanidar consultas 391

AWS Clean Rooms Referencia de SQL

(3 rows)

Example

En el siguiente ejemplo se itera una matriz de varios niveles. En el ejemplo se utilizan varias
clausulas de desanidamiento para iterar en las matrices mas internas. la f .multi_level_array,
AS la matriz se itera. multi_level_array La matriz AS el elemento es la iteracion sobre las
matrices que contiene. multi_level_array

CREATE TABLE foo AS SELECT json_parse('[[1.1, 1.2], [2.1, 2.2], [3.1, 3.2]]1') AS
multi_level_array;

SELECT array, element FROM foo AS f, f.multi_level_array AS array, array AS element;

[3.1,3.2]
(6 rows)

Semantica laxa

De manera predeterminada, las operaciones de navegacion en valores de datos anidados devuelven
valores nulos en lugar de devolver un error cuando la navegacién no es valida. La navegacion por
objetos no es valida si el valor de datos anidado no es un objeto, o si el valor de datos anidado es un
objeto, pero no contiene el nombre del atributo utilizado en la consulta.

Example

Por ejemplo, la siguiente accede a un nombre de atributo no valido de la columna de datos anidados
c_orders:

SELECT c.c_orders.something FROM customer_orders_lineitem c;

La navegacion por matrices devuelve el valor nulo si el valor de datos anidado no es una matriz o si
el indice de la matriz esta fuera de limites.

Semantica laxa 392

AWS Clean Rooms Referencia de SQL

Example

La siguiente consulta devuelve el valor nulo porque c_orders[1][1] esta fuera de limites.

SELECT c.c_orders[1][1] FROM customer_orders_lineitem c;

Tipos de introspeccion

Las columnas de datos anidados admiten funciones de inspeccion que devuelven el tipo y otra
informacion del tipo relativa al valor. AWS Clean Rooms admite las siguientes funciones booleanas
para las columnas de datos anidados:

+ DECIMAL_PRECISION
+ DECIMAL_SCALE
+ IS_ARRAY

* IS_BIGINT

+ IS_CHAR

+ IS_DECIMAL

« IS_FLOAT

+ IS_INTEGER

« IS_OBJECT

+ IS_SCALAR

* IS_SMALLINT

* IS_VARCHAR

+ JSON_TYPEOF

Todas estas funciones devuelven un valor false si el valor de entrada es nulo. IS_SCALAR,
IS_OBJECT e IS_ARRAY son mutuamente excluyentes y cubren todos los valores posibles, excepto
los nulos. Para deducir los tipos correspondientes a los datos, AWS Clean Rooms utiliza la funcién
JSON_TYPEOF, que devuelve el tipo (el nivel superior) del valor de los datos anidados, como se
muestra en el siguiente ejemplo:

SELECT JSON_TYPEOF(r_nations) FROM region_nations;
json_typeof

Tipos de introspeccién 393

AWS Clean Rooms Referencia de SQL

array
(1 row)

SELECT JSON_TYPEOF(r_nations[@].n_nationkey) FROM region_nations;
json_typeof

number

Tipos de introspeccién 394

AWS Clean Rooms Referencia de SQL

Historial de documentos de la referencia AWS Clean Rooms
de SQL

En la siguiente tabla se describen las versiones de la documentacion de la Referencia AWS Clean
Rooms SQL.

Para obtener notificaciones sobre las actualizaciones de esta documentacion, puede suscribirse
a la fuente RSS. Para suscribirse a las actualizaciones RSS, debe tener un complemento de RSS
habilitado para el navegador que esté utilizando.

Cambio Descripcién Fecha
Spark SQL es compatible con ~ AWS Clean Rooms Spark 20 de enero de 2026
Hints SQL admite sugerencias de

consulta para optimizar el
rendimiento de las consultas
y reducir los costes de
procesamiento.

Spark SQL es compatible con ~ AWS Clean Rooms Spark 22 de octubre de 2025
CACHE TABLE SQL admite el comando

CACHE TABLE, que permite

a los clientes almacenar en

caché las tablas existentes

o crear y almacenar nuevas

tablas a partir de los resultado

s de las consultas para

mejorar el rendimiento de las

consultas.
Spark SQL admite las AWS Clean Rooms Spark 12 de junio de 2025
funciones FIRST y LAST SQL admite las siguientes
Window funciones de ventana: FIRST y

LAST.

395

https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-hints-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-hints-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-cache-table.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-cache-table.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/Window_functions.html#Window_function_supported
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/Window_functions.html#Window_function_supported
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/Window_functions.html#Window_function_supported

AWS Clean Rooms

Referencia de SQL

Actualizaciones de la

documentacion de las
funciones SQL de S

AWS Clean Rooms Spark
SQL

Actualizacion exclusiva de la
documentacion para reflejar
con precision las funciones
de Spark SQL compatibles.
Se ha eliminado la documenta
cion de 25 funciones no
compatibles, incluidas <=>
operator, SIMILAR TO,
LISTAGG y ARRAY_INS
ERT. Se corrigieron los
nombres de las funciones de
DATEADD a DATE_ADD,
DATEDIFF a DATE_DIFF

, ISNULL a IS_NULL e
ISNOTNULL a IS_NOT_NU
LL. Se ha corregido un error
tipografico en los ejemplos de
DATE_PART.

Los clientes ahora pueden
ejecutar consultas utilizand
o algunas condiciones,
funciones, comandos y
convenciones de SQL
compatibles con el motor de
analisis SQL de Spark.

20 de mayo de 2025

29 de octubre de 2024

396

https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html

AWS Clean Rooms

Referencia de SQL

Comandos y funciones SQL.:
actualizacion

Funciones SQL: actualizacién

Compatibilidad con tipos de
datos anidados

Reglas de nomenclatura de
SQL.: actualizacion

Disponibilidad general

Se han agregado ejemplos
para la clausula JOIN,
operador de conjunto
EXCEPT, expresion condicion
al CASE vy las siguientes
funciones: ANY_VALUE, NVL
y COALESCE, NULLIF, CAST,
CONVERT, CONVERT_T
IMEZONE, EXTRACT, MOD,
SIGN, CONCAT, FIRST_VAL
UE y LAST_VALUE.

AWS Clean Rooms ahora es
compatible con las siguiente
s funciones SQL.: Array,
SUPER y VARBYTE. Ahora
se admiten las siguiente

s funciones matematicas:
ACOS, ASIN, ATAN, COT
ATANZ2, DEXP, PI, POW,
RADIANS y SIN. Ahora

se admiten las siguientes
funciones JSON: CAN_JSON_
PARSE, JSON_PARSE y
JSON_SERIALIZE.

AWS Clean Rooms ahora
admite tipos de datos
anidados.

Cambios solo en la documenta
cion para aclarar los nombres
de columnas reservadas.

La referencia AWS Clean
Rooms de SQL ahora esta
disponible de forma general.

28 de febrero de 2024

6 de octubre de 2023

30 de agosto de 2023

16 de agosto de 2023

31 de julio de 2023

397

https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-functions-topic.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/nested-data-type.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/nested-data-type.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-ref-naming.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-ref-naming.html

AWS Clean Rooms Referencia de SQL

Las traducciones son generadas a través de traduccién automatica. En caso de conflicto entre la
traduccioén y la version original de inglés, prevalecera la version en inglés.

ccexeviii

	AWS Clean Rooms
	Table of Contents
	Descripción general de SQL en AWS Clean Rooms
	Convenciones de referencia a SQL
	Reglas de nomenclatura de SQL
	Columnas y nombres de asociación de tablas configuradas
	Palabras reservadas

	Soporte de tipos de datos mediante el motor SQL
	Tipos de datos numéricos
	Tipos de datos booleanos
	Tipos de datos de fecha y hora
	Tipos de datos de caracteres
	Tipos de datos estructurados

	AWS Clean Rooms Spark SQL
	Literales
	+ Operador (concatenación)
	Sintaxis
	Argumentos
	Ejemplo

	Tipos de datos
	Caracteres multibyte
	Tipos numéricos
	Tipos de enteros
	Tipo DECIMAL o NUMERIC
	Notas acerca del uso de las columnas DECIMAL o NUMERIC de 128 bits

	Tipos de números en coma flotante
	Cómputos con valores numéricos
	Tipos devueltos para cómputos
	Precisión y escala de resultados DECIMAL computados
	Notas sobre las operaciones de división
	Condiciones de desbordamiento
	Cálculos numéricos con tipos INTEGER y DECIMAL

	Tipos de caracteres
	CHAR o CHARACTER
	VARCHAR o CHARACTER VARYING
	Importancia de los espacios en blancos anteriores y posteriores

	Tipos de fecha y hora
	DATE
	TIMESTAMP_LTZ
	TIMESTAMP_NTZ
	Ejemplos con tipos de fecha y hora
	Ejemplos de fecha
	Ejemplos de tiempo

	Literales de fecha, hora y marca temporal
	Fechas
	Times
	Valores de fecha y hora especiales

	Literales de intervalo
	Ejemplos

	Literales y tipos de datos de intervalo
	Sintaxis del tipo de datos de intervalo
	Sintaxis de literal de intervalo
	Argumentos
	Aritmética de intervalos
	Estilos de intervalo
	Ejemplos de tipo de datos de intervalo
	Ejemplos de literales de intervalo
	Ejemplos de literales de intervalo sin sintaxis de calificador

	Tipo booleano
	Ejemplos
	Literales booleanos
	Sintaxis
	Ejemplo

	Tipo binario
	Tipo anidado
	Tipo de matriz
	Tipo de mapa
	Tipo de estructura
	Ejemplos de tipos de datos anidados

	Conversión y compatibilidad de tipos
	Compatibilidad
	Reglas generales de conversión y compatibilidad
	Tipos de conversiones implícitas

	AWS Clean Rooms Comandos SQL de Spark
	TABLA DE CACHÉ
	Sintaxis
	Parámetros
	Ejemplos
	Cree y almacene en caché una tabla filtrada a partir de los resultados de la consulta
	Almacene en caché los resultados de las consultas con sentencias SELECT entre paréntesis
	Almacene en caché una tabla existente con las condiciones del filtro

	Sugerencias
	Sintaxis
	Tipos de sugerencias compatibles
	Únase a las sugerencias
	EMISIÓN
	MERGE
	SHUFFLE_HASH
	SHUFFLE_REPLICATE_NL
	Consejos para la solución de problemas en Spark SQL

	Sugerencias de particionamiento
	COALESCE
	REPARTICIÓN
	REPARTICIÓN_POR_RANGO
	REEQUILIBRAR

	Combinar varias sugerencias
	Consideraciones y limitaciones

	SELECT
	SELECT list
	Sintaxis
	Parameters

	Cláusula WITH
	Sintaxis
	Parameters
	Notas de uso
	Ejemplos

	Cláusula FROM
	Sintaxis
	Parameters
	Notas de uso

	Cláusula JOIN
	Sintaxis
	Parameters
	Ejemplo
	Tipos de combinación
	INNER
	IZQUIERDA [EXTERIOR]
	DERECHA [EXTERIOR]
	COMPLETO [EXTERIOR]
	[IZQUIERDA] SEMIRREMOLQUE
	CROSS JOIN
	ANTIUNIÓN
	NATURAL

	Cláusula WHERE
	Sintaxis
	condition
	Notas de uso
	Ejemplo

	cláusula VALUES
	Sintaxis
	Parameters
	Ejemplo

	Cláusula GROUP BY
	Sintaxis
	Parámetros
	Extensiones de agregación
	GROUPING SETS
	ROLLUP
	CUBE

	Cláusula HAVING
	Sintaxis
	Notas de uso
	Ejemplos

	Operadores de establecimiento
	Sintaxis
	Parameters
	Orden de evaluación para los operadores de conjunto
	Notas de uso
	Ejemplo de consultas UNION
	Ejemplo de consultas UNION ALL
	Ejemplo de consultas INTERSECT
	Ejemplo de consulta EXCEPT

	Cláusula ORDER BY
	Sintaxis
	Parameters
	Notas de uso
	Ejemplos con ORDER BY

	Ejemplos de subconsultas
	Subconsulta de la lista SELECT
	Subconsulta de la cláusula WHERE
	Subconsultas de la cláusula WITH

	Subconsultas correlacionadas
	Patrones de subconsultas correlacionadas que no se admiten

	AWS Clean Rooms Funciones de Spark SQL
	Funciones de agregación
	Función ANY_VALUE
	Sintaxis
	Argumentos
	Devuelve
	Notas de uso
	Ejemplos

	Función APPROX COUNT_DISTINCT
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Función APROX. PERCENTIL
	Sintaxis
	Argumentos
	Devuelve
	Ejemplos

	Función de AVG
	Sintaxis
	Argumentos
	Tipos de datos
	Ejemplo

	Función BOOL_AND
	Sintaxis
	Argumentos
	Ejemplos

	Función BOOL_OR
	Sintaxis
	Argumentos
	Ejemplos

	Función CARDINALIDAD
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Función COLLECT_LIST
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Función COLLECT_SET
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Funciones COUNT y COUNT DISTINCT
	Sintaxis
	Argumentos
	Tipos de datos
	Ejemplos

	Función COUNT
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función MAX
	Sintaxis
	Argumentos
	Tipos de datos
	Ejemplos

	Función MEDIAN
	Sintaxis
	Argumentos

	Función MIN
	Sintaxis
	Argumentos
	Tipos de datos
	Ejemplos

	Función PERCENTIL
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Función de ASIMETRÍA
	Sintaxis
	Argumentos
	Devuelve
	Ejemplos

	Funciones STDDEV_SAMP y STDDEV_POP
	Sintaxis
	Notas de uso
	Ejemplos

	Funciones SUM y SUM DISTINCT
	Sintaxis
	Argumentos
	Ejemplos

	Funciones VAR_SAMP y VAR_POP
	Sintaxis
	Notas de uso
	Ejemplos

	Funciones de matriz
	Función ARRAY
	Sintaxis
	Argumento
	Tipo de retorno
	Ejemplo

	Función ARRAY_CONTAINS
	Sintaxis
	Argumentos
	Tipo de retorno
	Ejemplos

	Función ARRAY_DISTINCT
	Sintaxis
	Argumentos
	Tipo de retorno
	Ejemplos

	Función ARRAY_EXCEPT
	Sintaxis
	Argumentos
	Tipo de retorno
	Ejemplos

	Función ARRAY_INTERSECT
	Sintaxis
	Argumentos
	Tipo de retorno
	Ejemplos

	Función ARRAY_JOIN
	Sintaxis
	Argumentos
	Tipo de retorno
	Ejemplos

	Función ARRAY_REMOVE
	Sintaxis
	Argumentos
	Tipo de retorno
	Ejemplos

	Función ARRAY_UNION
	Sintaxis
	Argumentos
	Tipo de retorno
	Ejemplo

	Función EXPLODE
	Sintaxis
	Argumentos
	Tipo de retorno
	Ejemplos

	Función FLATTEN
	Sintaxis
	Argumentos
	Tipo de retorno
	Ejemplo

	Expresiones condicionales
	Expresión condicional CASE
	Sintaxis
	Argumentos
	Ejemplos

	expresión COALESCE
	Sintaxis
	Ejemplos

	Expresión máxima y mínima
	Sintaxis
	Parámetros
	Devuelve
	Ejemplo

	Expresión IF
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Expresión IS_NULL
	Sintaxis
	Argumentos
	Devuelve
	Ejemplos

	Expresión IS_NOT_NULL
	Sintaxis
	Argumentos
	Devuelve
	Ejemplos

	Funciones NVL y COALESCE
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	NVL2 función
	Sintaxis
	Argumentos
	Tipo de devolución
	Notas de uso
	Ejemplo

	Función NULLIF
	Sintaxis
	Argumentos
	Ejemplos

	Funciones del constructor
	función constructora MAP
	Sintaxis
	Argumentos
	Devuelve
	Ejemplos

	Función constructora NAMED_STRUCT
	Sintaxis
	Argumentos
	Devuelve
	Ejemplos

	Función constructora STRUCT
	Sintaxis
	Argumentos
	Devuelve
	Ejemplos

	Funciones de formato de tipo de datos
	BASE64 función
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función CAST
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función DECODE
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función ENCODE
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función HEX
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función STR_TO_MAP
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	TO_CHAR
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función TO_DATE
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	TO_NUMBER
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	UNBASE64 función
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función UNHEX
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Cadenas de formatos de fecha y hora
	Cadenas de formatos numéricos

	Funciones de fecha y hora
	Función ADD_MONTHS
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función CONVERT_TIMEZONE
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función CURRENT_DATE
	Sintaxis
	Tipo de devolución
	Ejemplo

	Función CURRENT_TIMESTAMP
	Sintaxis
	Tipo de devolución
	Ejemplo

	Función DATE_ADD
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos
	Notas de uso

	Función DATE_DIFF
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos con una columna DATE
	Ejemplos con una columna TIME
	Ejemplos con una columna TIMETZ

	Función DATE_PART
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función DATE_TRUNC
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función DAY
	Sintaxis
	Argumentos
	Devuelve
	Ejemplos

	Función DAYOFMONTH
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Función DAYOFWEEK
	Sintaxis
	Argumentos
	Devuelve
	Ejemplos

	Función DAYOFYEAR
	Sintaxis
	Argumentos
	Devuelve
	Ejemplos

	Función EXTRACT
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos con TIME

	Función FROM_UTC_TIMESTAMP
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Función HOUR
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Función MINUTE
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Función MONTH
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	SEGUNDA función
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Función TIMESTAMP
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Función TO_TIMESTAMP
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función YEAR
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Partes de fecha para funciones de fecha o marca temporal
	Variaciones en resultados con segundos, milisegundos y microsegundos
	Notas acerca de CENTURY, EPOCH, DECADE y MIL

	Funciones de cifrado y descifrado
	Función AES_ENCRYPT
	Sintaxis
	Argumentos
	Tipo de retorno
	Ejemplos

	Función AES_DECRYPT
	Sintaxis
	Argumentos
	Tipo de retorno
	Ejemplos

	Funciones hash
	MD5 función
	Sintaxis
	Argumentos
	Tipo de retorno
	Ejemplos

	Función SHA
	SHA1 función
	Sintaxis
	Argumentos
	Tipo de retorno
	Ejemplo

	SHA2 función
	Sintaxis
	Argumentos
	Tipo de retorno
	Ejemplo

	función xx HASH64
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Funciones de hiperloglog
	función HLL_SKETCH_AGG
	Sintaxis
	Argumento
	Tipo de retorno
	Ejemplos

	Función HLL_SKETCH_ESTIMATE
	Sintaxis
	Argumento
	Tipo de retorno
	Ejemplos

	Función HLL_UNION
	Sintaxis
	Argumento
	Tipo de retorno
	Ejemplos

	Función HLL_UNION_AGG
	Sintaxis
	Argumento
	Tipo de retorno
	Ejemplos

	Funciones JSON
	Función GET_JSON_OBJECT
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Función TO_JSON
	Sintaxis
	Argumentos
	Devuelve
	Ejemplos

	Funciones matemáticas
	Símbolos de operadores matemáticos
	Operadores admitidos
	Ejemplos

	Función ABS
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función ACOS
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función ASIN
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función ATAN
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	ATAN2 función
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función CBRT
	Sintaxis
	Argumento
	Tipo de devolución
	Ejemplos

	Función CEILING (o CEIL)
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función COS
	Sintaxis
	Argumento
	Tipo de devolución
	Ejemplos

	Función COT
	Sintaxis
	Argumento
	Tipo de devolución
	Ejemplos

	Función DEGREES
	Sintaxis
	Argumento
	Tipo de devolución
	Ejemplo

	Función DIV
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función EXP
	Sintaxis
	Argumento
	Tipo de devolución
	Ejemplo

	Función FLOOR
	Sintaxis
	Argumento
	Tipo de devolución
	Ejemplo

	Función LN
	Sintaxis
	Argumento
	Tipo de devolución
	Ejemplo

	Función LOG
	Sintaxis
	Argumento
	Tipo de devolución
	Ejemplo

	Función MOD
	Sintaxis
	Argumentos
	Tipo de devolución
	Notas de uso
	Ejemplos

	Función PI
	Sintaxis
	Tipo de devolución
	Ejemplos

	Función POWER
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función RADIANS
	Sintaxis
	Argumento
	Tipo de devolución
	Ejemplo

	Función RAND
	Sintaxis
	Tipo de devolución
	Ejemplo

	Función RANDOM
	Sintaxis
	Tipo de devolución
	Ejemplos

	Función ROUND
	Sintaxis
	Argumento
	Tipo de devolución
	Ejemplos

	Función SIGN
	Sintaxis
	Argumento
	Tipo de devolución
	Ejemplos

	Función SIN
	Sintaxis
	Argumento
	Tipo de devolución
	Ejemplo

	Función SQRT
	Sintaxis
	Argumento
	Tipo de devolución
	Ejemplos

	Función TRUNC
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Funciones escalares
	Función SIZE
	Sintaxis
	Argumentos
	Tipo de retorno
	Ejemplo

	Funciones de cadena
	|| Operador (concatenación)
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función BTRIM
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función CONCAT
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función FORMAT_STRING
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Funciones LEFT y RIGHT
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función LENGTH
	Función LOWER
	Sintaxis
	Argumento
	Tipo de devolución
	Ejemplos

	Funciones LPAD y RPAD
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función LTRIM
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función POSITION
	Sintaxis
	Argumentos
	Tipo de devolución
	Notas de uso
	Ejemplos

	Función REGEXP_COUNT
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función REGEXP_INSTR
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función REGEXP_REPLACE
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función REGEXP_SUBSTR
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función REPEAT
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función REPLACE
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función REVERSE
	Sintaxis
	Argumento
	Tipo de devolución
	Ejemplos

	Función RTRIM
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función SPLIT
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función SPLIT_PART
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función SUBSTRING
	Sintaxis
	Argumentos
	Tipo de devolución
	Notas de uso de cadenas de caracteres
	Ejemplos

	Función TRANSLATE
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función TRIM
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Función UPPER
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función UUID
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplo

	Funciones relacionadas con la privacidad
	función consent_gpp_v1_decode
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	función consent_tcf_v2_decode
	Sintaxis
	Argumentos
	Devuelve
	Ejemplo

	Funciones de ventana
	Resumen de la sintaxis de la función de ventana
	Argumentos

	Ordenación única de datos para funciones de ventana
	Funciones compatibles
	Tabla de muestra para ejemplos de funciones de ventana
	Función de ventana CUME_DIST
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función de ventana DENSE_RANK
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	PRIMERA función de ventana
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función de ventana FIRST_VALUE
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función de ventana LAG
	Sintaxis
	Argumentos
	Ejemplos

	Función de última ventana
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función de ventana LAST_VALUE
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función de ventana LEAD
	Sintaxis
	Argumentos
	Ejemplos

	Función de ventana PERCENT_RANK
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función de ventana RANK
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	Función de ventana ROW_NUMBER
	Sintaxis
	Argumentos
	Tipo de devolución
	Ejemplos

	AWS Clean Rooms Condiciones de Spark SQL
	Operadores de comparación
	Ejemplos
	Ejemplos con una columna TIME
	Ejemplos con una columna TIMETZ

	Condiciones lógicas
	Sintaxis
	Ejemplos

	Condiciones de coincidencia de patrones
	LIKE
	Sintaxis
	Argumentos
	Ejemplos

	RLIKE
	Sintaxis
	Argumentos
	Ejemplos

	Condición de rango BETWEEN
	Sintaxis
	Ejemplos

	Condición nula
	Sintaxis
	Argumentos
	Ejemplo

	Condición EXISTS
	Sintaxis
	Argumentos
	Ejemplo

	Condición IN
	Sintaxis
	Argumentos
	Ejemplos
	Optimización para listas IN grandes

	Consultar datos anidados
	Navegación
	Desanidar consultas
	Semántica laxa
	Tipos de introspección

	Historial de documentos de la referencia AWS Clean Rooms de SQL
	

