Support for Hugging Face Transformer Models
The SageMaker model parallelism library's tensor parallelism offers out-of-the-box support for the following Hugging Face Transformer models:
- 
                    GPT-2, BERT, and RoBERTa (Available in the SageMaker model parallelism library v1.7.0 and later) 
- 
                    GPT-J (Available in the SageMaker model parallelism library v1.8.0 and later) 
- 
                    GPT-Neo (Available in the SageMaker model parallelism library v1.10.0 and later) 
Note
For any other Transformers models, you need to use the smdistributed.modelparallel.torch.tp_register_with_module()
Note
To use tensor parallelism for training Hugging Face Transformer models, make
                    sure you use Hugging Face Deep Learning Containers for PyTorch that has the SageMaker
                    model parallelism library v1.7.0 and later. For more information, see the SageMaker model parallelism library release notes
Supported Models Out of the Box
For the Hugging Face transformer models supported by the library out of the
                    box, you don't need to manually implement hooks to translate Transformer APIs to
                        smdistributed transformer layers. You can activate tensor
                    parallelism by using the context manager smdistributed.modelparallel.torch.tensor_parallelism()smp.tp_register API.
The state_dict translation functions between Hugging Face
                    Transformers and smdistributed.modelparallel can be accessed as
                    follows.
- 
                        smdistributed.modelparallel.torch.nn.huggingface.gpt2.translate_state_dict_to_hf_gpt2(state_dict, max_seq_len=None)
- 
                        smdistributed.modelparallel.torch.nn.huggingface.gpt2.translate_hf_state_dict_to_smdistributed_gpt2(state_dict)
- 
                        smdistributed.modelparallel.torch.nn.huggingface.bert.translate_state_dict_to_hf_bert(state_dict, max_seq_len=None)
- 
                        smdistributed.modelparallel.torch.nn.huggingface.bert.translate_hf_state_dict_to_smdistributed_bert(state_dict)
- 
                        smdistributed.modelparallel.torch.nn.huggingface.roberta.translate_state_dict_to_hf_roberta(state_dict, max_seq_len=None)
- 
                        smdistributed.modelparallel.torch.nn.huggingface.roberta.translate_hf_state_dict_to_smdistributed_roberta(state_dict)
- 
                        smdistributed.modelparallel.torch.nn.huggingface.gptj.translate_state_dict_to_hf_gptj(state_dict, max_seq_len=None)(Available in the SageMaker model parallelism library v1.8.0 and later)
- 
                        smdistributed.modelparallel.torch.nn.huggingface.gptj.translate_hf_gptj_state_dict_to_smdistributed_gptj(Available in the SageMaker model parallelism library v1.8.0 and later)
- 
                        smdistributed.modelparallel.torch.nn.huggingface.gptneo.translate_state_dict_to_hf_gptneo(state_dict, max_seq_len=None)(Available in the SageMaker model parallelism library v1.10.0 and later)
- 
                        smdistributed.modelparallel.torch.nn.huggingface.gptneo.translate_hf_state_dict_to_smdistributed_gptneo(state_dict)(Available in the SageMaker model parallelism library v1.10.0 and later)
Example usage of the GPT-2 translation function
Start with wrapping the model as shown in the following code.
from transformers import AutoModelForCausalLM with smp.tensor_parallelism(): model = AutoModelForCausalLM.from_config(hf_gpt2_config) model = smp.DistributedModel(model)
Given a state_dict from the DistributedModel object,
                    you can load the weights into the original Hugging Face GPT-2 model using the
                        translate_state_dict_to_hf_gpt2 function as shown in the
                    following code.
from smdistributed.modelparallel.torch.nn.huggingface.gpt2 \ import translate_state_dict_to_hf_gpt2 max_seq_len = 1024 # [... code block for training ...] if smp.rdp_rank() == 0: state_dict = dist_model.state_dict() hf_state_dict = translate_state_dict_to_hf_gpt2(state_dict, max_seq_len) # can now call model.load_state_dict(hf_state_dict) to the original HF model
Example usage of the RoBERTa translation function
Similarly, given a supported HuggingFace model state_dict, you
                    can use the translate_hf_state_dict_to_smdistributed function to
                    convert it to a format readable by smp.DistributedModel. This can
                    be useful in transfer learning use cases, where a pre-trained model is loaded
                    into a smp.DistributedModel for model-parallel fine-tuning:
from smdistributed.modelparallel.torch.nn.huggingface.roberta \ import translate_state_dict_to_smdistributed model = AutoModelForMaskedLM.from_config(roberta_config) model = smp.DistributedModel(model) pretrained_model = AutoModelForMaskedLM.from_pretrained("roberta-large") translated_state_dict = translate_state_dict_to_smdistributed(pretrained_model.state_dict()) # load the translated pretrained weights into the smp.DistributedModel model.load_state_dict(translated_state_dict) # start fine-tuning...