Use Debugger built-in rules with custom parameter values
If you want to adjust the built-in rule parameter values and customize tensor
            collection regex, configure the base_config and
                rule_parameters parameters for the ProfilerRule.sagemaker
            and Rule.sagemaker classmethods. In case of the Rule.sagemaker
            class methods, you can also customize tensor collections through the
                collections_to_save parameter. The instruction of how to use the
                CollectionConfig class is provided at Configure tensor collections
                    using the CollectionConfig API. 
Use the following configuration template for built-in rules to customize parameter values. By changing the rule parameters as you want, you can adjust the sensitivity of the rules to be triggered.
- 
                The base_configargument is where you call the built-in rule methods.
- 
                The rule_parametersargument is to adjust the default key values of the built-in rules listed in List of Debugger built-in rules.
- 
                The collections_to_saveargument takes in a tensor configuration through theCollectionConfigAPI, which requiresnameandparametersarguments.- 
                        To find available tensor collections for name, see Debugger Built-in Tensor Collections. 
- 
                        For a full list of adjustable parameters, see Debugger CollectionConfig API. 
 
- 
                        
For more information about the Debugger rule class, methods, and parameters, see SageMaker AI
                Debugger Rule class
from sagemaker.debugger import Rule, ProfilerRule, rule_configs, CollectionConfig rules=[ Rule.sagemaker( base_config=rule_configs.built_in_rule_name(), rule_parameters={ "key": "value" }, collections_to_save=[ CollectionConfig( name="tensor_collection_name", parameters={ "key": "value" } ) ] ) ]
The parameter descriptions and value customization examples are provided for each rule at List of Debugger built-in rules.