Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Erstellen eines Multicontainer-Endpunkts (Boto 3)
Erstellen Sie einen Endpunkt mit mehreren Containern, indem Sie CreateModel,, aufrufen CreateEndpointConfig, und CreateEndpoint APIs zwar so, als würden Sie alle anderen Endpunkte erstellen. Sie können diese Container sequentiell als Inferenzpipeline ausführen oder jeden einzelnen Container mithilfe eines direkten Aufrufs ausführen. Multi-Container Endpunkte haben die folgenden Anforderungen, wenn Sie create_model aufrufen:
-
Verwenden Sie den
ContainersParameter anstelle vonPrimaryContainerund schließen Sie mehr als einen Container in denContainersParameter ein. -
Der
ContainerHostnameParameter ist für jeden Container in einem Endpunkt mit mehreren Containern und direktem Aufruf erforderlich. -
Setzen Sie den
ModeParameter desInferenceExecutionConfigFelds aufDirectfür den direkten Aufruf jedes Containers oderSerialauf die Verwendung von Containern als Inferenz-Pipeline. Der Standardmodus istSerial.
Anmerkung
Derzeit gibt es ein Limit von bis zu 15 Containern, die auf einem Endpunkt mit mehreren Containern unterstützt werden.
Im folgenden Beispiel wird ein Modell mit mehreren Containern für den direkten Aufruf erstellt.
-
Erstellen Sie Containerelemente und
InferenceExecutionConfigmit direktem Aufruf.container1 = { 'Image': '123456789012.dkr.ecr.us-east-1.amazonaws.com/myimage1:mytag', 'ContainerHostname': 'firstContainer' } container2 = { 'Image': '123456789012.dkr.ecr.us-east-1.amazonaws.com/myimage2:mytag', 'ContainerHostname': 'secondContainer' } inferenceExecutionConfig = {'Mode': 'Direct'} -
Erstellen Sie das Modell mit den Containerelementen und legen Sie das
InferenceExecutionConfigFeld fest.import boto3 sm_client = boto3.Session().client('sagemaker') response = sm_client.create_model( ModelName = 'my-direct-mode-model-name', InferenceExecutionConfig = inferenceExecutionConfig, ExecutionRoleArn = role, Containers = [container1, container2] )
Um einen Endpunkt zu erstellen, würden Sie dann create_endpoint_config