SageMaker Debugger zum Speichern von Tensoren konfigurieren - Amazon SageMaker KI

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

SageMaker Debugger zum Speichern von Tensoren konfigurieren

Tensoren sind Datensammlungen aktualisierter Parameter aus den Rückwärts- und Vorwärtsdurchläufen jeder Trainingsiteration. Der SageMaker Debugger sammelt die Ausgabetensoren, um den Status eines Trainingsauftrags zu analysieren. Die Debugger CollectionConfig und DebuggerHookConfig API-Operationen von SageMaker bieten Methoden zum Gruppieren von Tensoren in Sammlungen und zum Speichern in einem Ziel-S3-Bucket. Die folgenden Themen enthalten die Verwendung der API-Operationen CollectionConfig und DebuggerHookConfig, gefolgt von Beispielen zur Verwendung des Debugger Hook zum Speichern, Zugreifen und Visualisieren von Ausgabetensoren.

Aktivieren Sie beim Erstellen eines SageMaker-AI-Schätzers den SageMaker-Debugger, indem Sie den debugger_hook_config Parameter angeben. Die folgenden Themen enthalten Beispiele für die Einrichtung von debugger_hook_config unter Verwendung der CollectionConfig und DebuggerHookConfig API-Operationen, um Tensoren aus Ihren Trainingsjobs zu ziehen und sie zu speichern.

Anmerkung

Nach der ordnungsgemäßen Konfiguration und Aktivierung speichert der SageMaker Debugger die Ausgabetensoren in einem Standard-S3-Bucket, sofern nicht anders angegeben. Das Format der standardmäßigen S3-Bucket-URI ist s3://amzn-s3-demo-bucket-sagemaker-<region>-<12digit_account_id>/<training-job-name>/debug-output/.