

Handbuch "Erste Schritte"

Amazon Redshift

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Redshift: Handbuch "Erste Schritte"

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Die Handelsmarken und Handelsaufmachung von Amazon dürfen nicht in einer Weise in Verbindung mit nicht von Amazon stammenden Produkten oder Services verwendet werden, auf eine Art und Weise, dass Kunden irrgeführt werden könnten oder Amazon schlecht gemacht oder diskreditiert werden könnte. Alle anderen Handelsmarken, die nicht im Besitz von Amazon sind, gehören den jeweiligen Besitzern, die möglicherweise zu Amazon gehören oder nicht, mit Amazon verbunden sind oder von Amazon gesponsert werden.

Table of Contents

	. v
Beginnen Sie mit serverlosen Data Warehouses	. 1
Melden Sie sich an für AWS	. 1
Erstellen eines Data Warehouse mit Amazon Redshift Serverless	. 2
Laden von Beispieldaten	. 4
Ausführen von Beispielabfragen	. 7
Laden von Daten aus Amazon S3	. 9
Beginnen Sie mit bereitgestellten Data Warehouses	17
Melden Sie sich an für AWS	20
Festlegen von Firewall-Regeln	20
Schritt 1: Einen Beispiel-Cluster erstellen	21
Schritt 2: Regeln für eingehenden Datenverkehr für SQL-Clients konfigurieren	24
Schritt 3: Gewähren Sie Zugriff auf einen SQL-Client und führen Sie Abfragen aus	25
Gewähren des Zugriffs auf Abfrage-Editor v2	26
Schritt 4: Daten aus Amazon S3 in Amazon Redshift laden	27
Laden von Daten aus Amazon S3 mithilfe von SQL-Befehlen	27
Laden von Daten aus Amazon S3 mit dem Abfrage-Editor v2	29
Erstellen Sie TICKIT-Daten in Ihrem Cluster	30
Schritt 5: Beispielabfragen mit dem Abfrage-Editor testen	31
Schritt 6: Umgebung zurücksetzen	32
Definieren und verwenden Sie eine Datenbank in Ihrem Data Warehouse	34
Verbinden mit Amazon Redshift	35
Erstellen einer -Datenbank	36
Erstellen eines Benutzers	37
Erstellen Sie ein Schema	37
Erstellen einer Tabelle	39
Einfügen von Datenzeilen in eine Tabelle	40
Auswahl von Daten aus einer Tabelle	41
Daten laden	41
Fragen Sie die Systemtabellen und Ansichten ab	41
Anzeigen einer Liste von Tabellennamen	42
Anzeigen von Benutzern	43
Anzeigen aktueller Abfragen	44
Ermitteln Sie die Sitzungs-ID einer laufenden Abfrage	45

Stornieren Sie eine Abfrage	45
Abbrechen einer Abfrage mit der Superuser-Warteschlange	48
Daten abfragen, die sich nicht in Ihrer Amazon Redshift Redshift-Datenbank befinden	49
Abfragen von Data Lakes	49
Abfragen von Remote-Datenquellen	50
Zugreifen auf Daten in anderen Datenbanken	50
Training von ML-Modellen mit Redshift-Daten	51
Lernen Sie die Konzepte von Amazon Redshift kennen	52
Zusätzliche Lernressourcen	56
Dokumentverlauf	58

Amazon Redshift wird UDFs ab dem 1. November 2025 die Erstellung von neuem Python nicht mehr unterstützen. Wenn Sie Python verwenden möchten UDFs, erstellen Sie das UDFs vor diesem Datum liegende. Bestehendes Python UDFs wird weiterhin wie gewohnt funktionieren. Weitere Informationen finden Sie im <u>Blogbeitrag</u>.

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Erste Schritte mit Amazon Redshift Serverless Data Warehouses

Wenn Sie Amazon Redshift Serverless zum ersten Mal verwenden, empfehlen wir Ihnen, die folgenden Abschnitte zu lesen, um Ihnen den Einstieg in die Verwendung von Amazon Redshift Serverless zu erleichtern. Der grundlegende Ablauf von Amazon Redshift Serverless besteht darin, Serverless-Ressourcen zu erstellen, eine Verbindung zu Amazon Redshift Serverless herzustellen, Beispieldaten zu laden und dann Abfragen für die Daten auszuführen. Bei Verwendung dieses Handbuchs haben Sie die Möglichkeit, Beispieldaten aus Amazon Redshift Serverless oder aus einem Amazon-S3-Bucket zu laden. Die Beispieldaten werden in der gesamten Amazon Redshift Redshift-Dokumentation verwendet, um Funktionen zu demonstrieren. Erste Schritte mit der Verwendung von von Amazon Redshift bereitgestellten Data Warehouses finden Sie unter. <u>Erste</u> Schritte mit von Amazon Redshift bereitgestellten Data Warehouses

- the section called "Melden Sie sich an für AWS"
- the section called "Erstellen eines Data Warehouse mit Amazon Redshift Serverless"
- the section called "Laden von Daten aus Amazon S3"

Melden Sie sich an für AWS

Wenn Sie noch kein AWS Konto haben, registrieren Sie sich für eines. Wenn Sie bereits ein Konto besitzen, können Sie diesen Schritt überspringen und Ihr vorhandenes Konto verwenden.

- 1. Öffne https://portal.aws.amazon.com/billing/die Registrierung.
- 2. Folgen Sie den Online-Anweisungen.

Wenn Sie sich für ein AWS Konto registrieren, wird ein Root-Benutzer für das AWS Konto erstellt. Der Root-Benutzer hat Zugriff auf alle AWS Dienste und Ressourcen im Konto. Als bewährte Methode zur Gewährleistung der Sicherheit sollten Sie den <u>administrativen Zugriff</u> einem administrativen Benutzer zuweisen und nur den Root-Benutzer verwenden, um <u>Aufgaben</u> auszuführen, die Root-Benutzerzugriff erfordern.

Erstellen eines Data Warehouse mit Amazon Redshift Serverless

Wenn Sie sich zum ersten Mal bei der Amazon-Redshift-Serverless-Konsole anmelden, werden Sie aufgefordert, auf die Informationen zu den ersten Schritten zuzugreifen, die Sie zum Erstellen und Verwalten von Serverless-Ressourcen verwenden können. In diesem Handbuch werden Sie Serverless-Ressourcen unter Verwendung der Standardeinstellungen von Amazon Redshift Serverless erstellen.

Wenn Sie Ihre Einrichtung genauer kontrollieren möchten, wählen Sie Customize settings (Einstellungen anpassen) aus.

Note

Redshift Serverless erfordert eine Amazon-VPC mit drei Subnetzen in drei verschiedenen Verfügbarkeitszonen. Redshift Serverless benötigt außerdem mindestens 3 verfügbare IP-Adressen. Stellen Sie sicher, dass die Amazon VPC, die Sie für Redshift Serverless verwenden, drei Subnetze in drei verschiedenen Availability Zones und mindestens 3 verfügbare IP-Adressen hat, bevor Sie fortfahren. Weitere Informationen zum Erstellen von Subnetzen in einer Amazon VPC finden Sie unter Erstellen eines Subnetzes im Amazon Virtual Private Cloud Cloud-Benutzerhandbuch. Weitere Informationen zu IP-Adressen in einer Amazon VPC finden Sie unter IP-Adressierung für Ihre VPCs und Subnetze.

So nehmen Sie die Konfiguration mit Standardeinstellungen vor:

 Melden Sie sich bei der an AWS Management Console und öffnen Sie die Amazon Redshift Redshift-Konsole unter <u>https://console.aws.amazon.com/redshiftv2/</u>.

Wählen Sie Redshift Serverless Free Trial testen.

 Wählen Sie unter Configuration (Konfiguration) die Option Use default settings (Standardeinstellungen verwenden) aus. Amazon Redshift Serverless erstellt einen Standard-Namespace mit einer Standardarbeitsgruppe, die diesem Namespace zugeordnet ist. Wählen Sie Save configuration (Konfiguration speichern) aus.

Note

Ein Namespace ist eine Sammlung von Datenbankobjekten und Benutzern. Namespaces gruppieren alle Ressourcen, die Sie in Redshift Serverless verwenden, wie Schemas, Tabellen, Benutzer, Datenfreigaben und Snapshots. Eine Arbeitsgruppe ist eine Sammlung von Rechenressourcen. Arbeitsgruppen beherbergen Rechenressourcen, die Redshift Serverless zur Ausführung von Rechenaufgaben verwendet.

Der folgende Screenshot zeigt die Standardeinstellungen für Amazon Redshift Serverless.

3. Nachdem die Einrichtung abgeschlossen ist, wählen Sie Continue (Weiter), um zu Serverless Dashboard zu wechseln. Wie Sie sehen, sind die Serverless-Arbeitsgruppe und der Serverless-Namespace verfügbar.

Note

Wenn Redshift Serverless die Arbeitsgruppe nicht erfolgreich erstellt, können Sie wie folgt vorgehen:

- Beheben Sie alle Fehler, die Redshift Serverless meldet, wie z. B. zu wenige Subnetze in Ihrer Amazon VPC.
- Löschen Sie den Namespace, indem Sie im Redshift Serverless-Dashboard Default-Namespace und dann Aktionen, Namespace löschen auswählen. Das Löschen eines Namespaces dauert mehrere Minuten.
- Wenn Sie die Redshift Serverless-Konsole erneut öffnen, wird der Willkommensbildschirm angezeigt.

Laden von Beispieldaten

Nachdem Sie Ihr Data Warehouse mit Amazon Redshift Serverless eingerichtet haben, können Sie den Amazon Redshift Query Editor v2 verwenden, um Beispieldaten zu laden.

 Um Query Editor v2 über die Amazon-Redshift-Serverless-Konsole zu starten, wählen Sie Daten abfragen aus. Wenn Sie den Abfrage-Editor v2 über die Amazon-Redshift-Serverless-Konsole aufrufen, wird er in einer neuen Browser-Registerkarte geöffnet. Der Abfrage-Editor v2 stellt eine Verbindung von Ihrem Clientcomputer mit der Amazon-Redshift-Serverless-Umgebung her.

- Für dieses Handbuch verwenden Sie Ihr AWS Administratorkonto und das Standardkonto. AWS KMS key Informationen zur Konfiguration des Abfrage-Editors v2, einschließlich der erforderlichen Berechtigungen, finden Sie unter <u>Konfiguration Ihres AWS-Konto</u> im Amazon Redshift Management Guide. Informationen zur Konfiguration von Amazon Redshift für die Verwendung eines vom Kunden verwalteten Schlüssels oder zur Änderung des von Amazon Redshift verwendeten KMS-Schlüssels finden Sie unter <u>Ändern des AWS KMS Schlüssels für</u> <u>einen Namespace</u>.
- 3. Um eine Verbindung zu einer Arbeitsgruppe herzustellen, wählen Sie den Namen der Arbeitsgruppe im Strukturansichtsbereich aus.

4. Wenn Sie in Query Editor v2 zum ersten Mal eine Verbindung zu einer neuen Arbeitsgruppe herstellen, müssen Sie den Authentifizierungstyp auswählen, der für die Verbindung

zur Arbeitsgruppe verwendet werden soll. Lassen Sie für diese Anleitung die Option Verbundbenutzer ausgewählt und wählen Sie Verbindung erstellen aus.

	to default-workgroup	1
IAM Conn Your	Identity Center lect to Amazon Redshift with your single sign-on credentials from your identity provider (IdP). cluster or workgroup must be enabled for IAM Identity Center.	
🕽 Othe	er ways to connect Learn more 🖸	
0	Federated user The query editor v2 generates a temporary password to connect to the database.	
0	Database user name and password Provide a database user and password for the database that you are connecting to. The query editor v2 stores your credentials in AWS Secrets Manager on your behalf.	
0	AWS Secrets Manager Choose a secret with credentials that are associated with the namespace or that you created in AWS Secrets Manager. Only secrets tagged with a key starting with 'Redshift' are listed.	
Database	e	
dev		

Sobald Sie verbunden sind, können Sie Beispieldaten aus Amazon Redshift Serverless oder aus einem Amazon-S3-Bucket laden.

5. Erweitern Sie unter der Standardarbeitsgruppe von Amazon Redshift Serverless die Datenbank sample_data_dev. Es gibt drei Beispielschemata, die drei Beispieldatensätzen entsprechen, die Sie in die Amazon-Redshift-Serverless-Datenbank laden können. Wählen Sie den Beispieldatensatz, den Sie laden möchten, und dann Beispiel-Notebooks öffnen aus.

 Serverless: default 	0:	
> 🖿 dev		
🗸 🖿 sample_data_dev		
> 🔚 tickit	Open sample notebooks	
> 🔚 tpcds	5	
> 🔚 tpch	53	

1 Note

Ein SQL-Notizbuch ist ein Container für SQL- und Markdown-Zellen. Sie können Notizbücher verwenden, um mehrere SQL-Befehle in einem einzigen Dokument zu organisieren, zu kommentieren und gemeinsam zu nutzen.

6. Wenn Sie zum ersten Mal Daten laden, fordert Query Editor v2 Sie auf, eine Beispieldatenbank zu erstellen. Wählen Sie Erstellen aus.

Ausführen von Beispielabfragen

Nachdem Sie Amazon Redshift Serverless eingerichtet haben, können Sie einen Beispieldatensatz in Amazon Redshift Serverless verwenden. Amazon Redshift Serverless lädt den Beispieldatensatz, z. B. den Tickit-Datensatz, automatisch und Sie können die Daten sofort abfragen.

 Sobald Amazon Redshift Serverless mit dem Laden der Beispieldaten fertig ist, werden alle Beispielabfragen in den Editor geladen. Sie können Alle ausführen auswählen, um alle Abfragen aus den Beispiel-Notebooks auszuführen.

Sales per event			~ ~	m #1
▶ Run ■ 💽 Limit 10	00		~ ~	m #2
1 SET search_path t	to tickit;			
2 SELECT eventname,	, total_price			
3 FROM (SELECT eve	entid, total_price, ntil	e(1000) over(order by total_price desc) as percentile		
4 FRUM (SELE	CI eventid, sum(pricepa	(d) total_price		
6 GROL	JP BY eventid)) 0. ticki	t.event E		
7 WHERE Q.ev	ventid = E.eventid			
8 AND percer	ntile = 1			
9 ORDER BY total_pr	rice desc;			
	_			
📰 Result 1 📰 Result 2	2 (9)	<u>↑</u> Export ▼		Chart
eventname	total_price			
Adriana Lecouvreur	51846			
Janet Jackson	51049			
Phantom of the Opera	50301			
The Little Mermaid	49956			
Citizen Cope	49823			
Sevendust	48020			
Electra	47883			
Mary Poppins	46780			
Live	46661			
		Elapsed time: 401 ms	Total	rows: 9

Sie können die Ergebnisse auch als JSON- oder CSV-Datei exportieren oder die Ergebnisse in einem Diagramm anzeigen.

+ 🖽 tickit-s	sample-noteb	ook ×															
🕨 Run all 🗖	💽 Isola	ated session 🕕	Serverless: defa	ault 🔻	sample_data_dev	•					Last saved:	a few seconds	s ago	+		57 6 9	•••
Sales per	event												, d	^ ^	~	Î	#1
► Run	C Limit	100												^	~	<u>ش</u>	#2
2 SELEC 3 FROM 4 5 6 7 8 9 ORDEF 9 ORDEF	CT eventnam (SELECT e FROM (SE FF GF WHERE Q. AND perc & BY total	<pre>e, total_pric eventid, total LECT eventid, totkit.s 00UP BY eventid eventid = E.e entile = 1 price desc;</pre>	e _price, ntile sum(pricepai ales d)) Q, tickit ventid	e(1000) id) tot	over(order by to cal_price E	tal_price de	sc) as per	centile				5 1	Export	•		Cha	rt
✓ Structure Traces	∽ ∧ tra	ce 0	+ Trac	•				Click to	enter P	lot title							
Subplots Transforms	Туре	► Line		•	8									/	-		
> Style	x	Data inlined in	figure 🗸		e e												
> Annotate	Y	Choose data	~		to enter Y ay												

Sie können Daten auch aus einem Amazon-S3-Bucket laden. Weitere Informationen hierzu finden Sie unter the section called "Laden von Daten aus Amazon S3".

Laden von Daten aus Amazon S3

Nachdem Sie Ihr Data Warehouse erstellt haben, können Sie Daten aus Amazon S3 laden.

An diesem Punkt verfügen Sie über eine Datenbank namens dev. Als Nächstes legen Sie Tabellen in der Datenbank an, laden Daten in die Tabellen hoch und führen testweise eine Abfrage durch. Die Beispieldaten werden der Einfachheit halber in einem Amazon-S3-Bucket bereitgestellt.

 Vor dem Laden von Daten aus Amazon S3 müssen Sie zunächst eine IAM-Rolle mit den erforderlichen Berechtigungen erstellen und Ihrem Serverless-Namespace anfügen. Kehren Sie dazu zur Redshift Serverless-Konsole zurück und wählen Sie Namespace-Konfiguration. Wählen Sie im Navigationsmenü Ihren Namespace und dann Sicherheit und Verschlüsselung aus. Wählen Sie IAM-Rollen verwalten.

default Info	
General information	
Namespace default Namespace ID example-namespace-id Namespace ARN example-namespace-arn	Status
Workgroup Data backup Security and end	cryption Datashares Tags
Workgroup name Set up compute resources for your workgroup.	
Workgroup default	Status

2. Erweitern Sie das Menü IAM-Rollen verwalten und wählen Sie IAM-Rolle erstellen aus.

anage IAM ro	les			
Permissions				
 Associate an IAM rol role as the default for attached. This policy Amazon Redshift Se services, such as Am able to run these SC 	e so that your serverless e or this configuration that / includes permissions to r rverless. This policy also g azon S3, Amazon CloudW QL commands without an	endpoint can LOAD has the AmazonRe run SQL commands grants permissions /atch logs, Amazon IAM role attached t	and UNLOAD dat dshiftAllComman to COPY, UNLOA to run SELECT sta SageMaker, and A o your namespace	ta. You can create an IAM ndsFullAccess 2 policy D, and query data with tements for related AWS Glue. You won't be e.
Associated IAM ro Create, associate, or remove default.	les (1) an IAM role. You can associat Manage IAM roles 🔺	e up to 50 IAM roles. Y	'ou can also choose a	an IAM role and set it as the
Q Search for associa	Associate IAM roles	or role type		
	Create IAM role			
	Remove IAM roles			< 1 >
IAM roles 🖸		∇	Status	⊽ Role type ⊽

3. Wählen Sie die Ebene des S3-Bucket-Zugriffs aus, die Sie dieser Rolle gewähren möchten, und wählen Sie IAM-Rolle als Standard erstellen aus.

Create the default IAM role	×
Associate an IAM role so that your serverless endpoint can LOAD and UNLOAD data. You can create an IAM role as the default for this configuration that has the AmazonRedshiftAllCommandsFullAccess 2 policy attached. This policy includes permissions to run SQL commands to COPY, UNLOAD, and query data with Amazon Redshift Serverless. This policy also grants permissions to run SELECT statements for related services, such as Amazon S3, Amazon CloudWatch logs, Amazon SageMaker, and AWS Glue. You won't be able to run these SQL commands without an IAM role attached to your namespace.	n :
Specify an S3 bucket for the IAM role to access To create a new bucket, visit S3 🔀	
 No additional S3 bucket Create the IAM role without specifying S3 buckets. 	
 Any S3 bucket Allow users that have access to your Redshift Serverless data to also access any S3 bucket and contents in your AWS account. 	d its
 Specific S3 buckets Specify one or more S3 buckets that the IAM role being created has permission to access. 	
Cancel Create IAM role as defau	lt

4. Wählen Sie Änderungen speichern aus. Sie können jetzt Beispieldaten aus Amazon S3 laden.

In den folgenden Schritten werden Daten in einem öffentlichen Amazon-Redshift-S3-Bucket verwendet, Sie können jedoch dieselben Schritte unter Verwendung Ihres eigenen S3-Buckets und eigener SQL-Befehle wiederholen.

Laden von Beispieldaten aus Amazon S3

1. Wählen Sie in Query Editor v2 "

+

hinzufügen" und dann Notebook aus, um ein neues SQL-Notebook zu erstellen.

Redshift query editor v2	+ Editor
 ⊕ Create ▼ ● Load data ≪ Q Filter resources 	
🗸 🐼 Serverless: default 🛛 i i	
> 🖿 dev	
> 🚞 sample_data_dev	

2. Wechseln Sie zur dev-Datenbank.

+ 🛱 Untitled 1 ×	
▶ Run all	ess: default 💌 sample_data_dev 💌
Run 🔲 🌄 Limit 100	Q Filter
	dev
1	sample_data_dev

3. Erstellen Sie Tabellen.

Wenn Sie Query Editor v2 verwenden, kopieren Sie die folgenden Create-Table-Anweisungen und führen Sie sie aus, um Tabellen in der dev-Datenbank zu erstellen. Weitere Informationen

zur Syntax finden Sie unter <u>CREATE TABLE</u> im Datenbankentwicklerhandbuch zu Amazon Redshift.

```
create table users(
userid integer not null distkey sortkey,
username char(8),
firstname varchar(30),
lastname varchar(30),
city varchar(30),
state char(2),
email varchar(100),
phone char(14),
likesports boolean,
liketheatre boolean,
likeconcerts boolean,
likejazz boolean,
likeclassical boolean,
likeopera boolean,
likerock boolean,
likevegas boolean,
likebroadway boolean,
likemusicals boolean);
create table event(
eventid integer not null distkey,
venueid smallint not null,
catid smallint not null,
dateid smallint not null sortkey,
eventname varchar(200),
starttime timestamp);
create table sales(
salesid integer not null,
listid integer not null distkey,
sellerid integer not null,
buyerid integer not null,
eventid integer not null,
dateid smallint not null sortkey,
qtysold smallint not null,
pricepaid decimal(8,2),
commission decimal(8,2),
saletime timestamp);
```

4. Erstellen Sie in Query Editor v2 eine neue SQL-Zelle in Ihrem Notebook.

Run all Isolated session Serverless: default dev Last save	ved: a few secon	nds ago 🕇		K7	•••
Run I imit 100	SQL	ŝ	~	m #1	1
	Markdown	-	Ť	Ш #1	
1 create table users(
2 userid integer not null distkey sortkey,					
3 username char(8),					
4 firstname varchar(30),					
5 lastname varchar(30),					
6 city varchar(30),					

 Verwenden Sie nun den Befehl COPY in Query Editor v2, um große Datensätze aus Amazon S3 oder Amazon DynamoDB in Amazon Redshift zu laden. Weitere Informationen zur COPY-Syntax finden Sie unter COPY im Datenbankentwicklerhandbuch zu Amazon Redshift.

Sie können den Befehl COPY mit Beispieldaten ausführen, die in einem öffentlichen S3-Bucket verfügbar sind. Führen Sie die folgenden SQL-Befehle in Query Editor v2 aus.

```
COPY users
FROM 's3://redshift-downloads/tickit/allusers_pipe.txt'
DELIMITER '|'
TIMEFORMAT 'YYYY-MM-DD HH:MI:SS'
IGNOREHEADER 1
REGION 'us-east-1'
IAM_ROLE default;
COPY event
FROM 's3://redshift-downloads/tickit/allevents_pipe.txt'
DELIMITER '|'
TIMEFORMAT 'YYYY-MM-DD HH:MI:SS'
IGNOREHEADER 1
REGION 'us-east-1'
IAM_ROLE default;
COPY sales
FROM 's3://redshift-downloads/tickit/sales_tab.txt'
DELIMITER '\t'
TIMEFORMAT 'MM/DD/YYYY HH:MI:SS'
IGNOREHEADER 1
REGION 'us-east-1'
IAM_ROLE default;
```

 Erstellen Sie nach dem Laden der Daten eine weitere SQL-Zelle in Ihrem Notebook und probieren Sie einige Beispielabfragen aus. Weitere Informationen zur Verwendung des SELECT-Befehls finden Sie unter <u>SELECT</u> im Amazon-Redshift-Entwicklerhandbuch. Verwenden Sie Query Editor v2, um die Struktur und die Schemata der Beispieldaten zu verstehen.

```
-- Find top 10 buyers by quantity.
SELECT firstname, lastname, total_quantity
FROM
       (SELECT buyerid, sum(qtysold) total_quantity
        FROM sales
        GROUP BY buyerid
        ORDER BY total_quantity desc limit 10) Q, users
WHERE Q.buyerid = userid
ORDER BY Q.total_quantity desc;
-- Find events in the 99.9 percentile in terms of all time gross sales.
SELECT eventname, total_price
FROM (SELECT eventid, total_price, ntile(1000) over(order by total_price desc) as
 percentile
       FROM (SELECT eventid, sum(pricepaid) total_price
             FROM
                    sales
             GROUP BY eventid)) Q, event E
      WHERE Q.eventid = E.eventid
       AND percentile = 1
ORDER BY total_price desc;
```

Nachdem Sie nun Daten geladen und einige Beispielabfragen ausgeführt haben, können Sie andere Bereiche von Amazon Redshift Serverless erkunden. In der folgenden Übersicht erfahren Sie mehr über die Verwendungsmöglichkeiten von Amazon Redshift Serverless.

- Sie können Daten aus einem Amazon-S3-Bucket laden. Weitere Informationen finden Sie unter Laden von Daten aus Amazon S3.
- Sie können Query Editor v2 verwenden, um Daten aus einer lokalen zeichengetrennten Datei mit weniger als 5 MB zu laden. Weitere Informationen finden Sie unter <u>Laden von Daten aus einer</u> lokalen Datei.
- Sie können eine Verbindung zu Amazon Redshift Serverless mit SQL-Tools von Drittanbietern mit dem JDBC- und ODBC-Treiber herstellen. Weitere Informationen finden Sie unter <u>Verbinden mit</u> Amazon Redshift Serverless.

- Sie können die Amazon-Redshift-Daten-API auch verwenden, um eine Verbindung mit Amazon Redshift Serverless herzustellen. Weitere Informationen finden Sie unter <u>Verwenden der Amazon-</u> Redshift-Daten-API.
- Sie können Ihre Daten in Amazon Redshift Serverless mit Redshift ML verwenden, um Machine-Learning-Modelle mit dem Befehl CREATE MODEL zu erstellen. Im <u>Tutorial: Erstellen von</u> <u>Kundenabwanderungsmodellen</u> erfahren Sie, wie Sie ein Redshift-ML-Modell erstellen.
- Sie können Daten aus einem Amazon S3 Data Lake abfragen, ohne Daten in Amazon Redshift Serverless laden zu müssen. Weitere Informationen finden Sie unter Abfragen eines Data Lake.

Erste Schritte mit von Amazon Redshift bereitgestellten Data Warehouses

Wenn Sie Amazon Redshift zum ersten Mal verwenden, empfehlen wir Ihnen, die folgenden Abschnitte zu lesen, um Ihnen die ersten Schritte mit der Verwendung bereitgestellter Cluster zu erleichtern. Der grundlegende Ablauf von Amazon Redshift besteht darin, bereitgestellte Ressourcen zu erstellen, eine Verbindung zu Amazon Redshift herzustellen, Beispieldaten zu laden und dann Abfragen für die Daten auszuführen. In diesem Handbuch können Sie wählen, ob Sie Beispieldaten aus Amazon Redshift oder aus einem Amazon S3 S3-Bucket laden möchten. Die Beispieldaten werden in der gesamten Amazon Redshift Redshift-Dokumentation verwendet, um Funktionen zu demonstrieren.

Dieses Tutorial zeigt, wie Sie von Amazon Redshift bereitgestellte Cluster verwenden, bei denen es sich um AWS Data Warehouse-Objekte handelt, für die Sie Systemressourcen verwalten. Sie können Amazon Redshift auch mit serverlosen Arbeitsgruppen verwenden. Dabei handelt es sich um Data Warehouse-Objekte, die je nach Nutzung automatisch skaliert werden. Informationen zu den ersten Schritten mit Redshift Serverless finden Sie unter. <u>Erste Schritte mit Amazon Redshift Serverless</u> Data Warehouses

Nachdem Sie die bereitgestellte Amazon Redshift Redshift-Konsole erstellt und sich dort angemeldet haben, können Sie Amazon Redshift Redshift-Objekte, einschließlich Cluster, Knoten und Datenbanken, erstellen und verwalten. Sie können mit einem SQL-Client auch Abfragen ausführen, Abfragen anzeigen und andere Operationen in der SQL Data Definition Language (DDL) und Data Manipulation Language (DML) ausführen.

🛕 Important

Der Cluster, den Sie für diese Übung bereitstellen, wird in einer Live-Umgebung ausgeführt. Solange er läuft, fallen Gebühren für Sie an. AWS-Konto Informationen zu Preisen finden Sie auf der Amazon-Redshift-Preisseite.

Um unnötige Kosten zu vermeiden, sollten Sie den Cluster löschen, wenn Sie damit fertig sind. Im letzten Abschnitt dieses Kapitels wird erklärt, wie das geht.

Melden Sie sich bei der an AWS Management Console und öffnen Sie die Amazon Redshift Redshift-Konsole unter https://console.aws.amazon.com/redshiftv2/. Wir empfehlen Ihnen, zunächst das Dashboard für bereitgestellte Cluster aufzurufen, um mit der Nutzung der Amazon Redshift Redshift-Konsole zu beginnen.

Abhängig von Ihrer Konfiguration werden die folgenden Elemente im Navigationsbereich der von Amazon Redshift bereitgestellten Konsole angezeigt:

- Redshift Serverless Greifen Sie auf Daten zu und analysieren Sie sie, ohne die von Amazon Redshift bereitgestellten Cluster einrichten, optimieren und verwalten zu müssen.
- Dashboard f
 ür bereitgestellte Cluster Sehen Sie sich die Liste der Cluster in Ihrem an AWS-Region,
 überpr
 üfen Sie Cluster-Metriken und Abfrage
 übersicht, um Einblicke in Metrikdaten (wie CPU-Auslastung) und Abfrage
 informationen zu erhalten. Damit k
 önnen Sie feststellen, ob Ihre Leistungsdaten
 über einen bestimmten Zeitraum anomal sind.
- Cluster Sehen Sie sich hier Ihre Clusterliste an AWS-Region, wählen Sie einen Cluster aus, um mit der Abfrage zu beginnen, oder führen Sie clusterbezogene Aktionen durch. Sie können von dieser Seite aus auch einen neuen Cluster erstellen.
- Abfrage-Editor Führen Sie Abfragen für Datenbanken aus, die auf Ihrem Amazon Redshift Redshift-Cluster gehostet werden. Wir empfehlen, stattdessen den Query-Editor v2 zu verwenden.
- Query Editor v2 Amazon Redshift Query Editor v2 ist eine separate webbasierte SQL-Client-Anwendung zum Verfassen und Ausführen von Abfragen in Ihrem Amazon Redshift Data Warehouse. Sie können Ihre Ergebnisse in Diagrammen darstellen und Abfragen mit anderen im Team teilen.
- Queries and loads (Abfragen und Ladevorgänge) Rufen Sie Informationen als Referenz oder zur Fehlerbehebung auf, z. B. eine Liste der letzten Abfragen und den SQL-Text f
 ür jede Abfrage.
- Datashares Als Administratoren eines Produzentenkontos können Sie entweder Konsumentenkonten zum Zugreifen auf Datashares autorisieren oder keinen Zugriff autorisieren. Um ein autorisiertes Datashare zu verwenden, kann ein Administrator eines Benutzerkontos das Datashare entweder einem ganzen AWS-Konto oder bestimmten Cluster-Namespaces in einem Konto zuordnen. Ein Administrator kann ein Datashare auch ablehnen.
- Zero-ETL-Integrationen Verwalten Sie Integrationen, die Transaktionsdaten in Amazon Redshift verfügbar machen, nachdem sie in unterstützte Quellen geschrieben wurden.
- IAM Identity Center-Verbindungen Konfigurieren Sie die Verbindung zwischen Amazon Redshift und IAM Identity Center.
- Configurations (Konfigurationen) Stellen Sie über Java-Database-Connectivity(JDBC)- und Open-Database-Connectivity(ODBC)-Verbindungen eine Verbindung von SQL-Client-Tools zu Amazon-Redshift-Clustern her. Sie können auch einen von Amazon Redshift verwalteten Virtual Private

Cloud (VPC)-Endpunkt einrichten. Dadurch wird eine private Verbindung hergestellt zwischen einer VPC, die auf dem Amazon-VPC-Service basiert, der einen Cluster enthält, und einer anderen VPC, in der ein Client-Tool ausgeführt wird.

- AWS Partnerintegration Erstellen Sie eine Integration mit einem unterstützten Partner. AWS
- Advisor Erhalten Sie spezifische Empfehlungen zu Änderungen, die Sie an Ihrem Amazon-Redshift-Cluster vornehmen können, um Ihre Optimierungen zu priorisieren.
- AWS Marketplace Informieren Sie sich über andere Tools oder AWS Services, die mit Amazon Redshift funktionieren.
- Alarms (Alarme) Erstellen Sie Alarme f
 ür Cluster-Metriken, um Leistungsdaten anzuzeigen und Metriken
 über einen von Ihnen festgelegten Zeitraum nachzuverfolgen.
- Events (Ereignisse) Verfolgen Sie Ereignisse nach und rufen Sie Berichte mit Informationen wie dem Datum des Ereignisses, einer Beschreibung oder der Ereignisquelle ab.
- What's new (Neuerungen) Zeigen Sie neue Funktionen und Produktaktualisierungen von Amazon Redshift an.

In diesem Tutorial führen Sie die folgenden Schritte durch:

rules for SQL clients editor

Themen

- Melden Sie sich an für AWS
- Festlegen von Firewall-Regeln
- Schritt 1: Erstellen eines Amazon-Redshift-Beispielclusters
- Schritt 2: Regeln für eingehenden Datenverkehr für SQL-Clients konfigurieren
- · Schritt 3: Gewähren Sie Zugriff auf einen SQL-Client und führen Sie Abfragen aus
- Schritt 4: Daten aus Amazon S3 in Amazon Redshift laden
- Schritt 5: Beispielabfragen mit dem Abfrage-Editor testen
- <u>Schritt 6: Umgebung zurücksetzen</u>

Melden Sie sich an für AWS

Wenn Sie noch keine haben AWS-Konto, melden Sie sich für eine an. Wenn Sie bereits ein Konto besitzen, können Sie diesen Schritt überspringen und Ihr vorhandenes Konto verwenden.

- 1. Öffne https://portal.aws.amazon.com/billing/die Anmeldung.
- 2. Folgen Sie den Online-Anweisungen.

Ein Teil des Anmeldevorgangs umfasst den Empfang eines Telefonanrufs oder einer Textnachricht und die Eingabe eines Bestätigungscodes auf der Telefontastatur.

Wenn Sie sich für eine anmelden AWS-Konto, wird eine Root-Benutzer des AWS-Kontoserstellt. Der Root-Benutzer hat Zugriff auf alle AWS-Services und Ressourcen des Kontos. Als bewährte Sicherheitsmethode weisen Sie einem Administratorbenutzer Administratorzugriff zu und verwenden Sie nur den Root-Benutzer, um Aufgaben auszuführen, die Root-Benutzerzugriff erfordern.

Festlegen von Firewall-Regeln

Note

In diesem Tutorial wird davon ausgegangen, dass Ihr Cluster den Standardport 5439 verwendet und Amazon Redshift Query Editor v2 zur Ausführung von SQL-Befehlen verwendet werden kann. Es geht nicht auf Details zu Netzwerkkonfigurationen oder zur Einrichtung eines SQL-Clients ein, die in Ihrer Umgebung erforderlich sein könnten.

In einigen Umgebungen geben Sie einen Port an, wenn Sie Ihren Amazon Redshift Redshift-Cluster starten. Sie verwenden diesen Port zusammen mit der Endpunkt-URL des Clusters, um auf den Cluster zuzugreifen. Des Weiteren erstellen Sie eine Zugangsregel für eingehenden Datenverkehr in einer Sicherheitsgruppe, die den Zugriff auf den Cluster über den Port regelt.

Wenn der Client-Computer durch eine Firewall geschützt ist, müssen Sie wissen, welcher Port offen ist. Über diesen offenen Port können Sie von einem SQL-Client-Tool eine Verbindung zum Cluster herstellen und Abfragen ausführen. Sollten Sie keinen offenen Port kennen, bitten Sie jemanden, der sich mit den Firewall-Regeln in Ihrem Netzwerk auskennt, einen offenen Port in der Firewall zu ermitteln. Standardmäßig verwendet Amazon Redshift Port 5439. Eine Verbindung ist aber nur möglich, wenn dieser Port in der Firewall auch geöffnet ist. Sie können die Portnummer für den Amazon-Redshift-Cluster nach der Erstellung nicht mehr ändern. Stellen Sie daher sicher, dass Sie einen offenen Port angeben, der in Ihrer Umgebung beim Startvorgang funktioniert.

Schritt 1: Erstellen eines Amazon-Redshift-Beispielclusters

In diesem Tutorial gehen Sie durch den Prozess zur Erstellung eines Amazon Redshift Redshift-Clusters mit einer Datenbank. Anschließend laden Sie einen Datensatz von Amazon S3 in Tabellen in Ihrer Datenbank. Anhand dieses Beispiel-Clusters können Sie den Dienst Amazon Redshift auswerten.

Bevor Sie mit der Einrichtung eines Amazon Redshift Redshift-Clusters beginnen, stellen Sie sicher, dass Sie alle erforderlichen Voraussetzungen wie <u>Melden Sie sich an für AWS</u> und <u>Festlegen von</u> <u>Firewall-Regeln</u> erfüllen.

Für jeden Vorgang, der auf Daten von einer anderen AWS Ressource zugreift, benötigt Ihr Cluster die Erlaubnis, in Ihrem Namen auf die Ressource und die Daten auf der Ressource zuzugreifen. Ein Beispiel ist die Verwendung eines SQL COPY-Befehls zum Laden von Daten aus Amazon Simple Storage Service (Amazon S3). Sie stellen diese Berechtigungen mithilfe von AWS Identity and Access Management (IAM) bereit. Sie können dies über eine IAM-Rolle tun, die Sie erstellen und Ihrem Cluster zuordnen. Weitere Informationen zu Anmeldeinformationen und Zugriffsberechtigungen finden Sie unter Anmeldeinformationen und Zugriffsberechtigungen im Amazon Redshift Database Developer Guide.

So erstellen Sie einen Amazon-Redshift-Cluster

1. Melden Sie sich bei der an AWS Management Console und öffnen Sie die Amazon Redshift Redshift-Konsole unter https://console.aws.amazon.com/redshiftv2/.

🛕 Important

Wenn Sie IAM-Benutzeranmeldeinformationen verwenden, stellen Sie sicher, dass Sie über die erforderlichen Berechtigungen verfügen, um die Cluster-Operationen durchzuführen. Weitere Informationen finden Sie unter <u>Sicherheit in Amazon Redshift</u> im Amazon Redshift Management Guide.

 Wählen Sie auf der AWS Konsole den AWS-Region Ort aus, an dem Sie den Cluster erstellen möchten.

- 3. Wählen Sie im Navigationsmenü Clusters (Cluster) und dann Create cluster (Cluster erstellen) aus. Die Seite Create Cluster (Cluster erstellen) wird angezeigt.
- 4. Geben Sie im Bereich Cluster configuration (Cluster-Konfiguration) Werte für Cluster identifier (Cluster-ID), Node type (Knotentyp) und Nodes (Knoten) an:
 - Cluster Identifier (Cluster-ID): Geben Sie f
 ür dieses Tutorial examplecluster ein. Diese ID muss eindeutig sein. Die ID muss aus 1—63 Zeichen bestehen und darf nur die Buchstaben a–z (nur Kleinschreibung) und - (Bindestriche) enthalten.
 - Wählen Sie eine der folgenden Methoden zur Bestimmung der Größe Ihres Clusters aus:

Note

Im folgenden Schritt wird von einem System ausgegangen AWS-Region , das RA3 Knotentypen unterstützt. Eine Liste der AWS-Regionen unterstützten RA3 Knotentypen finden Sie unter <u>Überblick über RA3 Knotentypen</u> im Amazon Redshift Management Guide. Weitere Informationen über die Knotenspezifikationen für die einzelnen Knotentypen und -größen finden Sie unter <u>Details zu Knotentypen</u>.

 Wenn Sie nicht wissen, wie groß Ihr Cluster sein sollte, wählen Sie Help me choose (Hilfe bei der Auswahl) aus. Dadurch wird ein Größenrechner geöffnet, der Ihnen Fragen zur Größe und zu den Abfrageeigenschaften der Daten stellt, die Sie in Ihrem Data Warehouse speichern möchten.

Wenn Sie die erforderliche Größe Ihres Clusters kennen (d. h. den Knotentyp und die Anzahl der Knoten), wählen Sie I'll choose (Ich entscheide) aus. Wählen Sie den Node type (Knotentyp) und die Anzahl der Nodes (Knoten) aus, um die Größe Ihres Clusters für den Machbarkeitsnachweis zu bestimmen.

Wählen Sie für dieses Tutorial ra3.4xlarge als Knotentyp und 2 für Anzahl der Knoten.

Wenn eine AZ-Konfiguration verfügbar ist, wählen Sie Single-AZ.

 Wählen Sie unter Sample data (Beispieldaten) Load sample data (Beispieldaten laden) aus, um den Beispieldatensatz zu verwenden, den Amazon Redshift bereitstellt. Amazon Redshift lädt den Beispieldatensatz Tickit in die standardmäßige dev-Datenbank und das public-Schema.

- 5. Geben Sie im Bereich Datenbankkonfiguration einen Wert für Administrator-Benutzername ein. Wählen Sie für Administratorpasswort eine der folgenden Optionen aus:
 - Ein Passwort erstellen Verwendung eines von Amazon Redshift generierten Passworts.
 - Administratorpasswort manuell hinzufügen Verwendung Ihres eigenen Passworts.
 - Administratoranmeldedaten verwalten in AWS Secrets Manager Amazon Redshift verwendet AWS Secrets Manager, um Ihr Administratorkennwort zu generieren und zu verwalten. Für AWS Secrets Manager die Generierung und Verwaltung Ihres Passworts fällt eine Gebühr an. Informationen zu den Preisen für AWS Secrets Manager finden Sie unter <u>AWS Secrets Manager – Preise</u>.

Verwenden Sie für dieses Tutorial folgende Werte:

- Admin user name (Administratorbenutzername): Geben Sie awsuser ein.
- Admin-Benutzerpasswort: Geben Sie Changeit1 das Passwort ein.
- - a. Wählen Sie unter Cluster permissions (Cluster-Berechtigungen) bei Manage IAM roles (IAM-Rollen verwalten) die Option Create IAM role (IAM-Rolle erstellen) aus.
 - b. Geben Sie einen Amazon S3 Bucket an, auf den die IAM-Rolle zugreifen soll, indem Sie eine der folgenden Methoden verwenden:
 - Wählen Sie No additional Amazon S3 bucket (Kein zusätzlicher Amazon S3 Bucket) aus, damit die erstellte IAM-Rolle nur auf die Amazon S3 Buckets zugreifen kann, die als redshift benannt sind.
 - Wählen Sie Any Amazon S3 bucket (Beliebiger Amazon S3 Bucket) aus, damit die erstellte IAM-Rolle auf alle Amazon S3 Buckets zugreifen kann.
 - Wählen Sie Specific Amazon S3 buckets (Bestimmte Amazon S3 Buckets) aus, um einen oder mehrere Amazon S3 Buckets anzugeben, auf die die erstellte IAM-Rolle Zugriff hat.
 Wählen Sie dann einen oder mehrere Amazon S3 Buckets aus der Tabelle aus.
 - c. Wählen Sie Create IAM role as default (IAM-Rolle als Standard erstellen) aus. Amazon Redshift erstellt automatisch die Rolle und legt sie als Standard für Ihren Cluster fest.

Da Sie Ihre IAM-Rolle von der Konsole aus erstellt haben, ist ihr die Richtlinie AmazonRedshiftAllCommandsFullAccess angefügt. Dadurch kann Amazon Redshift Daten von Amazon-Ressourcen in Ihrem IAM-Konto kopieren, laden, abfragen und analysieren.

Informationen zur Verwaltung der Standard-IAM-Rolle für einen Cluster finden Sie unter Creating an IAM role as default for Amazon Redshift im Amazon Redshift Management Guide.

 (Optional) Deaktivieren Sie im Bereich Additional configurations (Zusätzliche Konfigurationen) die Option Use defaults (Standardwerte verwenden), um die Einstellungen Network and security (Netzwerk und Sicherheit), Database configuration (Datenbankkonfiguration), Maintenance (Wartung), Monitoring (Überwachung) und Backup anzupassen.

In manchen Fällen können Sie Ihren Cluster mit der Option Load sample data (Beispieldaten laden) erstellen. Dabei empfiehlt es sich möglicherweise, erweitertes Amazon-VPC-Routing zu aktivieren. In diesem Fall benötigt der Cluster in Ihrer Virtual Private Cloud (VPC) Zugriff auf den Amazon-S3-Endpunkt, damit Daten geladen werden können.

Um den Cluster öffentlich zugänglich zu machen, haben Sie zwei Möglichkeiten. Sie können eine NAT-Adresse (Network Address Translation) in Ihrer VPC konfigurieren, damit der Cluster auf das Internet zugreifen kann. Oder Sie können einen Amazon-S3-VPC-Endpunkt in Ihrer VPC konfigurieren. Weitere Informationen zu erweitertem Amazon VPC-Routing finden Sie unter <u>Verbessertes Amazon VPC-Routing</u> im Amazon Redshift Management Guide.

8. Wählen Sie Cluster erstellen. Warten Sie, bis Ihr Cluster mit dem **Available** Status auf der Cluster-Seite erstellt wurde.

Schritt 2: Regeln für eingehenden Datenverkehr für SQL-Clients konfigurieren

1 Note

Wir empfehlen Ihnen, diesen Schritt zu überspringen und mit dem Amazon Redshift Query Editor v2 auf Ihren Cluster zuzugreifen. Im weiteren Verlauf dieses Tutorials greifen Sie aus einer Virtual Private Cloud (VPC) auf Grundlage des Amazon-VPC-Service heraus auf Ihren Cluster zu. Wenn Sie einen SQL-Client von außerhalb Ihrer Firewall für den Zugriff auf den Cluster verwenden, müssen Sie jedoch den eingehenden Zugriff gewähren.

So überprüfen Sie Ihre Firewall und gewähren eingehenden Zugriff auf Ihren Cluster:

 Überprüfen Sie Ihre Firewall-Regeln, wenn auf Ihren Cluster von außerhalb einer Firewall zugegriffen werden muss. Ihr Client könnte beispielsweise eine Amazon Elastic Compute Cloud (Amazon EC2) -Instance oder ein externer Computer sein.

Weitere Informationen zu Firewallregeln finden Sie unter <u>Sicherheitsgruppenregeln</u> im EC2 Amazon-Benutzerhandbuch.

2. Um von einem EC2 externen Amazon-Client aus zuzugreifen, fügen Sie der mit Ihrem Cluster verbundenen Sicherheitsgruppe, die eingehenden Datenverkehr zulässt, eine Eingangsregel hinzu. Sie fügen EC2 Amazon-Sicherheitsgruppenregeln in der EC2 Amazon-Konsole hinzu. Ein Wert CIDR/IP von 192.0.2.0/24 ermöglicht es beispielsweise Clients in diesem IP-Adressbereich, eine Verbindung zu Ihrem Cluster herzustellen. Finden Sie das Richtige CIDR/IP für Ihre Umgebung heraus.

Schritt 3: Gewähren Sie Zugriff auf einen SQL-Client und führen Sie Abfragen aus

Um Datenbanken abzufragen, die von Ihrem Amazon Redshift Redshift-Cluster gehostet werden, haben Sie mehrere Optionen für SQL-Clients. Dazu zählen:

 Connect zu Ihrem Cluster her und f
ühren Sie Abfragen mit dem Amazon Redshift Query Editor v2 aus.

Wenn Sie den Abfrage-Editor v2 verwenden, müssen Sie keine SQL-Client-Anwendung herunterladen und einrichten. Sie starten den Amazon Redshift Query Editor v2 von der Amazon Redshift Redshift-Konsole aus.

- Stellen Sie mithilfe von RSQL eine Connect zu Ihrem Cluster her. Weitere Informationen finden Sie unter <u>Connecting with Amazon Redshift RSQL</u> im Amazon Redshift Management Guide.
- Connect Sie über ein SQL-Client-Tool wie SQL Workbench/J eine Verbindung zu Ihrem Cluster her. Weitere Informationen finden Sie unter <u>Connect zu Ihrem Cluster mithilfe von SQL Workbench/</u> <u>J</u> im Amazon Redshift Management Guide.

In diesem Tutorial wird Amazon Redshift Query Editor v2 als einfache Methode zum Ausführen von Abfragen in Datenbanken verwendet, die von Ihrem Amazon Redshift Redshift-Cluster gehostet werden. Nachdem Sie Ihren Cluster erstellt haben, können Sie sofort Abfragen ausführen. Einzelheiten zu Überlegungen bei der Verwendung des Amazon Redshift-Abfrage-Editors v2 finden Sie unter <u>Überlegungen bei der Arbeit mit dem Abfrage-Editor v2</u> im Amazon Redshift Management Guide.

Gewähren des Zugriffs auf Abfrage-Editor v2

Wenn ein Administrator den Abfrage-Editor v2 zum ersten Mal für Sie konfiguriert, wählt er den aus AWS-Konto, der zum Verschlüsseln der AWS KMS key Query Editor v2-Ressourcen verwendet wird. Zu den Ressourcen des Amazon Redshift Query Editor v2 gehören gespeicherte Abfragen, Notizbücher und Diagramme. Standardmäßig werden die Ressourcen mit einem AWS -eignen Schlüssel verschlüsselt. Alternativ kann ein Administrator einen vom Kunden verwalteten Schlüssel verwenden, indem er auf der Konfigurationsseite den Amazon-Ressourcennamen (ARN) für den Schlüssel auswählt. Nachdem Sie ein Konto konfiguriert haben, können die AWS KMS Verschlüsselungseinstellungen nicht mehr geändert werden. Weitere Informationen finden Sie unter Konfiguration Ihres AWS-Konto im Amazon Redshift Management Guide.

Um den Abfrage-Editor v2 aufzurufen, benötigen Sie eine Berechtigung. Ein Administrator kann eine der AWS verwalteten Richtlinien für Amazon Redshift Query Editor v2 an die IAM-Rolle oder den IAM-Benutzer anhängen, um Berechtigungen zu erteilen. Diese AWS verwalteten Richtlinien verfügen über verschiedene Optionen, mit denen gesteuert wird, wie das Markieren von Ressourcen die gemeinsame Nutzung von Abfragen ermöglicht. Sie können die IAM-Konsole (<u>https://console.aws.amazon.com/iam/</u>) verwenden, um IAM-Richtlinien anzuhängen. Weitere Informationen zu diesen Richtlinien finden Sie unter <u>Accessing the Query Editor v2</u> im Amazon Redshift Management Guide.

Sie können auch Ihre eigene Richtlinie erstellen, basierend auf den zulässigen und verweigerten Berechtigungen in den bereitgestellten verwalteten Richtlinien. Wenn Sie den IAM-Konsolenrichtlinien-Editor verwenden, um Ihre eigene Richtlinie zu erstellen, wählen Sie SQL Workbench als Service aus, für den Sie die Richtlinie im visuellen Editor erstellen. Der Abfrage-Editor v2 verwendet den Servicenamen AWS SQL Workbench im Visual Editor und im IAM Policy Simulator.

Weitere Informationen finden Sie unter <u>Arbeiten mit dem Abfrage-Editor v2</u> im Amazon-Redshift-Verwaltungshandbuch.

Schritt 4: Daten aus Amazon S3 in Amazon Redshift laden

Nachdem Sie Ihren Cluster erstellt haben, können Sie Daten aus Amazon S3 in Ihre Datenbanktabellen laden. Es gibt mehrere Möglichkeiten, Daten aus Amazon S3 zu laden.

- Sie können einen SQL-Client verwenden, um den SQL-Befehl CREATE TABLE auszuführen, um eine Tabelle in Ihrer Datenbank zu erstellen, und dann den Befehl SQL COPY verwenden, um Daten aus Amazon S3 zu laden. Der Amazon Redshift Query Editor v2 ist ein SQL-Client.
- Sie können den Ladeassistenten für den Amazon Redshift Query Editor v2 verwenden.

Dieses Tutorial zeigt, wie Sie den Amazon Redshift Query Editor v2 verwenden, um SQL-Befehle auszuführen, um Tabellen zu ERSTELLEN und Daten zu KOPIEREN. Starten Sie den Abfrage-Editor v2 über den Navigationsbereich der Amazon Redshift Redshift-Konsole. Stellen Sie im Query Editor v2 eine Verbindung zum examplecluster Cluster und zur Datenbank her, die dev mit Ihrem Admin-Benutzer awsuser benannt sind. Wählen Sie für dieses Tutorial Temporäre Anmeldeinformationen mit einem Datenbankbenutzernamen, wenn Sie die Verbindung herstellen. Einzelheiten zur Verwendung des Amazon Redshift Query Editors v2 finden Sie unter <u>Herstellen</u> einer Verbindung zu einer Amazon Redshift-Datenbank im Amazon Redshift Management Guide.

Laden von Daten aus Amazon S3 mithilfe von SQL-Befehlen

Vergewissern Sie sich im Abfrage-Editor-Bereich des Abfrage-Editors v2, dass Sie mit dem examplecluster Cluster und der dev Datenbank verbunden sind. Erstellen Sie als Nächstes Tabellen in der Datenbank und laden Sie Daten in die Tabellen. In diesem Tutorial sind die Daten, die Sie laden, in einem Amazon S3 S3-Bucket verfügbar, auf den von vielen aus zugegriffen werden kann AWS-Regionen.

Das folgende Verfahren erstellt Tabellen und lädt Daten aus einem öffentlichen Amazon S3 S3-Bucket.

Verwenden Sie den Amazon Redshift Redshift-Abfrage-Editor v2, um die folgende Anweisung create table zu kopieren und auszuführen, um eine Tabelle im public Schema der dev Datenbank zu erstellen. Weitere Informationen zur Syntax finden Sie unter <u>CREATE TABLE</u> im Datenbankentwicklerhandbuch zu Amazon Redshift.

Um Daten mit einem SQL-Client wie dem Abfrage-Editor v2 zu erstellen und zu laden

1. Führen Sie den folgenden SQL-Befehl aus, um die sales Tabelle zu ERSTELLEN.

drop table if exists sales; create table sales(salesid integer not null, listid integer not null distkey, sellerid integer not null, buyerid integer not null, eventid integer not null, dateid smallint not null sortkey, qtysold smallint not null, pricepaid decimal(8,2), commission decimal(8,2), saletime timestamp);

2. Führen Sie den folgenden SQL-Befehl aus, um die date Tabelle zu ERSTELLEN.

```
drop table if exists date;
create table date(
  dateid smallint not null distkey sortkey,
  caldate date not null,
  day character(3) not null,
  week smallint not null,
  month character(5) not null,
  qtr character(5) not null,
  year smallint not null,
  holiday boolean default('N'));
```

3. Laden Sie die sales Tabelle mit dem Befehl COPY aus Amazon S3.

Note

Wir empfehlen, den Befehl COPY zu verwenden, um große Datensätze von Amazon S3 in Amazon Redshift zu laden. Weitere Informationen zur COPY-Syntax finden Sie unter COPY im Datenbankentwicklerhandbuch zu Amazon Redshift.

Stellen Sie Authentifizierung für Ihren Cluster um Zugriff auf Amazon S3 in Ihrem Namen bereit, um die Beispieldaten zu laden. Sie stellen die Authentifizierung bereit, indem Sie auf die IAM- Rolle verweisen, die Sie erstellt und als default für Ihren Cluster festgelegt haben, als Sie bei der Erstellung des Clusters IAM-Rolle erstellen als Standard ausgewählt haben.

Laden Sie die sales Tabelle mit dem folgenden SQL-Befehl. Sie können optional die <u>Quelldaten</u> für die sales Tabelle von Amazon S3 herunterladen und anzeigen.

```
COPY sales

FROM 's3://redshift-downloads/tickit/sales_tab.txt'

DELIMITER '\t'

TIMEFORMAT 'MM/DD/YYYY HH:MI:SS'

REGION 'us-east-1'

IAM_ROLE default;
```

4. Laden Sie die date Tabelle mit dem folgenden SQL-Befehl. Sie können optional die <u>Quelldaten</u> für die date Tabelle von Amazon S3 herunterladen und anzeigen.

```
COPY date

FROM 's3://redshift-downloads/tickit/date2008_pipe.txt'

DELIMITER '|'

REGION 'us-east-1'

IAM_ROLE default;
```

Laden von Daten aus Amazon S3 mit dem Abfrage-Editor v2

In diesem Abschnitt wird beschrieben, wie Sie Ihre eigenen Daten in einen Amazon Redshift Redshift-Cluster laden. Der Abfrage-Editor v2 vereinfacht das Laden von Daten, wenn Sie den Assistenten zum Laden von Daten verwenden. Der COPY-Befehl, der im Query Editor v2 Wizard zum Laden von Daten generiert und verwendet wird, unterstützt viele der Parameter, die für die COPY-Befehlssyntax zum Laden von Daten aus Amazon S3 verfügbar sind. Weitere Informationen zum COPY-Befehl und zu seinen Optionen zum Kopieren und Laden aus Amazon S3 finden Sie unter <u>COPY aus dem Amazon Simple Storage Service</u> im Datenbankentwicklerhandbuch zu Amazon Redshift.

Um Ihre eigenen Daten aus Amazon S3 in Amazon Redshift zu laden, erfordert Amazon Redshift eine IAM-Rolle, die über die benötigten Berechtigungen zum Laden von Daten aus dem angegebenen Amazon S3 Bucket verfügt.

Um Ihre eigenen Daten von Amazon S3 nach Amazon Redshift zu laden, können Sie den Assistenten zum Laden von Daten im Abfrage-Editor v2 verwenden. Informationen zur Verwendung des Assistenten zum Laden von Daten finden Sie unter Daten aus Amazon S3 laden im Amazon Redshift Management Guide.

Erstellen Sie TICKIT-Daten in Ihrem Cluster

TICKIT ist eine Beispieldatenbank, die Sie optional in Ihren Amazon Redshift-Cluster laden können, um zu lernen, wie Sie Daten in Amazon Redshift abfragen. Sie können den vollständigen Satz von TICKIT-Tabellen erstellen und Daten auf folgende Weise in Ihren Cluster laden:

- Wenn Sie in der Amazon Redshift Redshift-Konsole einen Cluster erstellen, haben Sie die Möglichkeit, TICKIT-Beispieldaten gleichzeitig zu laden. Wählen Sie in der Amazon Redshift Redshift-Konsole Clusters, Create cluster aus. Wählen Sie im Abschnitt Beispieldaten die Option Beispieldaten laden aus. Amazon Redshift lädt seinen Beispieldatensatz während der Clustererstellung automatisch in Ihre Amazon Redshift dev Redshift-Cluster-Datenbank.
- Gehen Sie wie folgt vor, um eine Verbindung zu einem vorhandenen Cluster herzustellen:
 - Wählen Sie in der Amazon Redshift Redshift-Konsole in der Navigationsleiste Clusters aus.
 - Wählen Sie Ihren Cluster im Bereich Cluster aus.
 - Wählen Sie Daten abfragen, Abfrage im Abfrage-Editor v2 aus.
 - Erweitern Sie Examplecluster in der Ressourcenliste. Wenn Sie zum ersten Mal eine Verbindung zu Ihrem Cluster herstellen, wird Connect to examplecluster angezeigt. Wählen Sie Datenbank-Benutzername und Passwort. Belassen Sie die Datenbank alsdev. Geben Sie awsuser den Benutzernamen und Changeit1 das Passwort an.
 - Wählen Sie Create Connection (Verbindung erstellen) aus.
- Mit dem Amazon Redshift Query Editor v2 können Sie TICKIT-Daten in eine Beispieldatenbank mit dem Namen sample_data_dev laden. Wählen Sie die Datenbank sample_data_dev in der Ressourcenliste aus. Wählen Sie neben dem Tickit-Knoten das Symbol Beispielnotizbücher öffnen aus. Bestätigen Sie, dass Sie die Beispieldatenbank erstellen möchten.
- Der Amazon Redshift Query Editor v2 erstellt die Beispieldatenbank zusammen mit einem Beispielnotizbuch mit dem Namen tickit-sample-notebook. Sie können Alle ausführen wählen, um dieses Notizbuch auszuführen und Daten in der Beispieldatenbank abzufragen.

Einzelheiten zu den TICKIT-Daten finden Sie unter <u>Beispieldatenbank</u> im Amazon Redshift Database Developer Guide.

Schritt 5: Beispielabfragen mit dem Abfrage-Editor testen

Informationen zum Einrichten und Verwenden des Amazon Redshift-Abfrage-Editors v2 zum Abfragen einer Datenbank finden Sie unter <u>Arbeiten mit dem Abfrage-Editor v2</u> im Amazon Redshift Management Guide.

Testen Sie jetzt einige Beispielabfragen wie folgt. Um neue Abfragen im Abfrage-Editor v2 zu erstellen, wählen Sie das +-Symbol oben rechts im Abfragebereich und dann SQL. Eine neue Abfrageseite wird angezeigt, auf der Sie die folgenden SQL-Abfragen kopieren und einfügen können.

Note

Stellen Sie sicher, dass Sie zuerst die erste Abfrage im Notizbuch ausführen, wodurch der search_path Serverkonfigurationswert mit dem folgenden SQL-Befehl auf das tickit Schema festgelegt wird:

set search_path to tickit;

Weitere Informationen zur Arbeit mit dem SELECT-Befehl finden Sie unter <u>SELECT</u> im Amazon Redshift Database Developer Guide.

```
-- Get definition for the sales table.
SELECT *
FROM pg_table_def
WHERE tablename = 'sales';
```

```
-- Find total sales on a given calendar date.
SELECT sum(qtysold)
FROM sales, date
WHERE sales.dateid = date.dateid
AND caldate = '2008-01-05';
```

```
-- Find top 10 buyers by quantity.
SELECT firstname, lastname, total_quantity
FROM (SELECT buyerid, sum(qtysold) total_quantity
FROM sales
GROUP BY buyerid
ORDER BY total_quantity desc limit 10) Q, users
```

```
WHERE Q.buyerid = userid
ORDER BY Q.total_quantity desc;
```

```
-- Find events in the 99.9 percentile in terms of all time gross sales.
SELECT eventname, total_price
FROM (SELECT eventid, total_price, ntile(1000) over(order by total_price desc) as
percentile
FROM (SELECT eventid, sum(pricepaid) total_price
FROM sales
GROUP BY eventid)) Q, event E
WHERE Q.eventid = E.eventid
AND percentile = 1
ORDER BY total_price desc;
```

Schritt 6: Umgebung zurücksetzen

In den vorherigen Schritten haben Sie erfolgreich einen Amazon Redshift-Cluster erstellt, Daten in Tabellen geladen und Daten mit einem SQL-Client wie dem Amazon Redshift Query Editor v2 abgefragt.

Wenn Sie dieses Tutorial abgeschlossen haben, empfehlen wir, dass Sie Ihre Umgebung auf den vorherigen Zustand zurücksetzen, indem Sie Ihren Beispielcluster löschen. Es fallen so lange Amazon-Redshift-Nutzungsgebühren, bis Sie den Cluster löschen.

Möglicherweise möchten Sie den Beispielcluster jedoch weiterlaufen lassen, wenn Sie Aufgaben in anderen Amazon Redshift Redshift-Handbüchern oder Aufgaben ausprobieren möchten, die unter beschrieben sind. <u>Befehle ausführen, um eine Datenbank in Ihrem Data Warehouse zu definieren</u> und zu verwenden

Löschen eines Clusters

- 1. Melden Sie sich bei der an AWS Management Console und öffnen Sie die Amazon Redshift Redshift-Konsole unter https://console.aws.amazon.com/redshiftv2/.
- 2. Wählen Sie im Navigationsmenü Clusters (Cluster) aus, um Ihre Liste der Cluster anzuzeigen.
- 3. Wählen Sie den Cluster examplecluster aus. Klicken Sie bei Actions auf Delete. Der Delete Example-Cluster? Die Seite wird angezeigt.
- Bestätigen Sie, dass der Cluster gelöscht werden soll, deaktivieren Sie die Einstellung Endgültigen Snapshot erstellen und geben Sie dann die Eingabetaste ein, delete um das Löschen zu bestätigen. Wählen Sie Delete cluster (Cluster löschen) aus.

Auf der Seite mit der Clusterliste wird der Clusterstatus aktualisiert, wenn der Cluster gelöscht wird.

Nach Abschluss dieses Tutorials finden Sie weitere Informationen über Amazon Redshift sowie die nächsten Schritte unter Zusätzliche Ressourcen, um mehr über Amazon Redshift zu erfahren.

Befehle ausführen, um eine Datenbank in Ihrem Data Warehouse zu definieren und zu verwenden

Sowohl Redshift Serverless Data Warehouses als auch von Amazon Redshift bereitgestellte Data Warehouses enthalten Datenbanken. Nachdem Sie Ihr Data Warehouse gestartet haben, können Sie die meisten Datenbankaktionen mithilfe von SQL-Befehlen verwalten. Mit wenigen Ausnahmen sind die Funktionalität und Syntax von SQL für alle Amazon Redshift Redshift-Datenbanken identisch. Einzelheiten zu den in Amazon Redshift verfügbaren SQL-Befehlen finden Sie unter <u>SQL-Befehle</u> im Amazon Redshift Database Developer Guide.

Wenn Sie Ihr Data Warehouse erstellen, erstellt Amazon Redshift in den meisten Szenarien auch die dev Standarddatenbank. Nachdem Sie eine Verbindung mit der dev Datenbank hergestellt haben, können Sie eine weitere Datenbank erstellen.

In den folgenden Abschnitten werden allgemeine Datenbankaufgaben bei der Arbeit mit Amazon Redshift Redshift-Datenbanken beschrieben. Die Aufgaben beginnen mit dem Erstellen einer Datenbank. Wenn Sie mit der letzten Aufgabe fortfahren, können Sie alle von Ihnen erstellten Ressourcen löschen, indem Sie die Datenbank löschen.

Die Beispiele in diesem Abschnitt setzen Folgendes voraus:

- · Sie haben ein Amazon Redshift Data Warehouse erstellt.
- Sie haben über Ihr SQL-Client-Tool, z. B. den Amazon Redshift Query Editor v2, eine Verbindung zum Data Warehouse hergestellt. Weitere Informationen zum Abfrage-Editor v2 finden Sie unter <u>Abfragen einer Datenbank mit dem Amazon Redshift-Abfrage-Editor v2</u> im Amazon Redshift Management Guide.

Themen

- Verbindung zu Amazon Redshift Data Warehouses herstellen
- Erstellen einer -Datenbank
- Erstellen eines Benutzers
- Erstellen Sie ein Schema
- Erstellen einer Tabelle
- Daten laden

- · Fragen Sie die Systemtabellen und Ansichten ab
- Brechen Sie eine Abfrage ab

Verbindung zu Amazon Redshift Data Warehouses herstellen

Um eine Verbindung zu Amazon Redshift Redshift-Clustern herzustellen, erweitern Sie auf der Clusterseite der Amazon Redshift Redshift-Konsole die Option Mit Amazon Redshift Redshift-Clustern Connect und führen Sie einen der folgenden Schritte aus:

 Wählen Sie Daten abfragen, um mit dem Abfrage-Editor v2 Abfragen in Datenbanken auszuführen, die von Ihrem Amazon Redshift Redshift-Cluster gehostet werden. Nachdem Sie Ihren Cluster erstellt haben, können Sie mit dem Abfrageeditor v2 sofort Abfragen ausführen.

Weitere Informationen finden Sie unter <u>Abfragen einer Datenbank mit dem Amazon Redshift Query</u> Editor v2 im Amazon Redshift Management Guide.

 Wählen Sie unter Arbeiten mit Ihren Client-Tools Ihren Cluster aus und stellen Sie über Ihre Client-Tools mithilfe von JDBC- oder ODBC-Treibern eine Verbindung zu Amazon Redshift her, indem Sie die URL des JDBC- oder ODBC-Treibers kopieren. Verwenden Sie diese URL von Ihrem Client-Computer oder Ihrer Instance aus. Schreiben Sie Ihre Anwendungen so, dass sie JDBC- oder ODBC-API-Operationen für den Zugriff auf Daten nutzen, oder verwenden Sie SQL-Client-Tools, die JDBC oder ODBC unterstützen.

Weitere Informationen darüber, wie Sie Ihre Cluster-Verbindungszeichenfolge finden, erhalten Sie unter Suche der Zeichenfolge für die Verbindung mit dem Cluster.

 Wenn Ihr SQL-Client-Tool einen Treiber benötigt, können Sie Ihren JDBC- oder ODBC-Treiber auswählen, um einen betriebssystemspezifischen Treiber für die Verbindung mit Amazon Redshift von Ihren Client-Tools herunterzuladen.

Weitere Informationen zum Installieren des geeigneten Treibers für Ihren SQL-Client finden Sie unter Konfigurieren einer Verbindung mit JDBC-Treiberversion 2.0.

Weitere Informationen zum Konfigurieren einer ODBC-Verbindung finden Sie unter Konfigurierung einer ODBC-Verbindung.

Gehen Sie auf der Serverless-Dashboard-Seite der Amazon Redshift-Konsole wie folgt vor, um eine Verbindung zum Redshift Serverless Data Warehouse herzustellen:

 Verwenden Sie den Amazon Redshift Query Editor v2, um Abfragen in Datenbanken auszuführen, die von Ihrem Redshift Serverless Data Warehouse gehostet werden. Nachdem Sie Ihr Data Warehouse erstellt haben, können Sie Abfragen sofort mit dem Abfrage-Editor v2 ausführen.

Weitere Informationen finden Sie unter <u>Abfragen einer Datenbank mit dem Abfrage-Editor v2 von</u> Amazon Redshift.

• Stellen Sie mithilfe von JDBC- oder ODBC-Treibern eine Verbindung von Ihren Client-Tools zu Amazon Redshift her, indem Sie die URL des JDBC- oder ODBC-Treibers kopieren.

Um mit Daten in Ihrem Data Warehouse arbeiten zu können, benötigen Sie JDBC- oder ODBC-Treiber für die Konnektivität von Ihrem Client-Computer oder Ihrer Instanz aus. Schreiben Sie Ihre Anwendungen so, dass sie JDBC- oder ODBC-API-Operationen für den Zugriff auf Daten nutzen, oder verwenden Sie SQL-Client-Tools, die JDBC oder ODBC unterstützen.

Weitere Informationen zum Auffinden Ihrer Verbindungszeichenfolge finden Sie unter <u>Connecting</u> to <u>Redshift Serverless</u> im Amazon Redshift Management Guide.

Erstellen einer -Datenbank

Nachdem Sie sich vergewissert haben, dass Ihr Data Warehouse betriebsbereit ist, können Sie eine Datenbank erstellen. In dieser Datenbank erstellen Sie Tabellen, laden Daten und führen Abfragen aus. Ein Data Warehouse kann mehrere Datenbanken hosten. Sie können beispielsweise eine Datenbank für Verkaufsdaten SALESDB und eine Datenbank für Bestelldaten ORDERSDB in demselben Data Warehouse benennen.

Um eine Datenbank mit dem Namen zu erstellen**SALESDB**, führen Sie den folgenden Befehl in Ihrem SQL-Client-Tool aus.

CREATE DATABASE salesdb;

Note

Stellen Sie nach der Ausführung des Befehls sicher, dass Sie die Liste der Objekte in Ihrem Data Warehouse in Ihrem SQL-Client-Tool aktualisieren, um die neuen Objekte zu sehensalesdb. Für diese Übung übernehmen wir die Standardeinstellungen. Weitere Informationen über Befehlsoptionen finden Sie unter <u>CREATE DATABASE</u> im Datenbankentwicklerhandbuch zu Amazon Redshift. Informationen zum Löschen einer Datenbank und ihres Inhalts finden Sie unter <u>DROP</u> <u>DATABASE</u> im Amazon Redshift Database Developer Guide.

Nachdem Sie die SALESDB-Datenbank erstellt haben, können Sie von Ihrem SQL-Client aus eine Verbindung zu der neuen Datenbank herstellen. Verwenden Sie dieselben Verbindungsparameter wie für Ihre aktuelle Verbindung, ändern Sie aber den Namen der Datenbank in SALESDB.

Erstellen eines Benutzers

Standardmäßig hat nur der Admin-Benutzer, den Sie beim Start des Data Warehouse erstellt haben, Zugriff auf die Standarddatenbank im Data Warehouse. Um anderen Benutzern den Zugriff zu gewähren, erstellen Sie ein oder mehrere Benutzerkonten. Datenbankbenutzerkonten gelten global für alle Datenbanken in einem Data Warehouse und nicht für jede einzelne Datenbank.

Verwenden Sie den Befehl CREATE USER, um einen neuen Benutzer zu erstellen. Wenn Sie einen neuen Benutzer erstellen, geben Sie dessen Namen und ein Passwort an. Es wird empfohlen, dass Sie ein Passwort für den Benutzer angeben. Dies muss aus 8–64 Zeichen bestehen und mindestens einen Großbuchstaben, einen Kleinbuchstaben und eine Ziffer enthalten.

Führen Sie beispielsweise zur Erstellung eines Benutzers mit dem Namen **GUEST** und dem Passwort **ABCd4321** den folgenden Befehl aus:

```
CREATE USER GUEST PASSWORD 'ABCd4321';
```

Um eine Verbindung mit der SALESDB-Datenbank als der GUEST-Benutzer herzustellen, verwenden Sie das Passwort, das Sie bei der Benutzererstellung gewählt haben, zum Beispiel ABCd4321.

Informationen über weitere Befehlsoptionen finden Sie unter <u>CREATE USER</u> im Datenbankentwicklerhandbuch zu Amazon Redshift.

Erstellen Sie ein Schema

Nach dem Erstellen einer neuen Datenbank können Sie ein neues Schema in der aktuellen Datenbank erstellen. Ein Schema ist ein Namespace, der benannte Datenbankobjekte wie Tabellen, Ansichten und benutzerdefinierte Funktionen () UDFs enthält. Eine Datenbank kann ein oder mehrere Schemata enthalten, und jedes Schema gehört nur zu einer Datenbank. Zwei Schemata können verschiedene Objekte mit demselben Namen haben.

Sie können mehrere Schemata in derselben Datenbank erstellen, um Daten so zu organisieren, wie Sie möchten, oder um Ihre Daten funktional zu gruppieren. Sie können beispielsweise ein Schema erstellen, um alle Staging-Daten zu speichern, und ein anderes Schema zum Speichern aller Berichtstabellen. Sie können auch verschiedene Schemata erstellen, um Daten zu speichern, die für verschiedene Unternehmensgruppen relevant sind, die sich in derselben Datenbank befinden. Jedes Schema kann unterschiedliche Datenbankobjekte wie Tabellen, Ansichten und benutzerdefinierte Funktionen () speichern. UDFs Darüber hinaus können Sie Schemata mit der AUTHORIZATION-Klausel erstellen. Diese Klausel gewährt einem bestimmten angegebenen Benutzer Besitz oder legt ein Kontingent für den maximalen Speicherplatz fest, den das angegebene Schema verwenden kann.

Amazon Redshift erstellt automatisch ein Schema namens public für jede neue Datenbank. Wenn Sie den Schemanamen beim Erstellen von Datenbankobjekten nicht angeben, gehen die Objekte in das public-Schema über.

Um auf ein Objekt in einem Schema zuzugreifen, qualifizieren Sie das Objekt mithilfe der schema_name.table_name-Notation. Der qualifizierte Name des Schemas besteht aus dem Schemanamen und dem Tabellennamen, die durch einen Punkt getrennt sind. Zum Beispiel kann ein sales-Schema eine price-Tabelle und ein inventory-Schema eine price-Tabelle haben. Wenn Sie die price-Tabelle referenzieren, müssen Sie sie als sales.price oder inventory.price qualifizieren.

Im folgenden Beispiel wird ein Schema mit dem Namen SALES für den Benutzer GUEST erstellt.

```
CREATE SCHEMA SALES AUTHORIZATION GUEST;
```

Weitere Informationen über Befehlsoptionen finden Sie unter <u>CREATE SCHEMA</u> im Datenbankentwicklerhandbuch zu Amazon Redshift.

Führen Sie den folgenden Befehl aus, um die Liste der Schemata in Ihrer Datenbank anzuzeigen.

select * from pg_namespace;

Die Ausgabe sollte in etwa folgendermaßen aussehen:

nspname | nspowner | nspacl

sales		100	
pg_toast	Ι	1	
pg_internal	Ι	1	I
catalog_history	Ι	1	I
pg_temp_1		1	
pg_catalog		1	<pre> {rdsdb=UC/rdsdb,=U/rdsdb}</pre>
public		1	<pre> {rdsdb=UC/rdsdb,=U/rdsdb}</pre>
information_schema	Ι	1	<pre>{ rdsdb=UC/rdsdb,=U/rdsdb}</pre>

Weitere Informationen zum Abfragen von Katalogtabellen finden Sie unter <u>Abfragen der</u> <u>Katalogtabellen</u> im Datenbankentwicklerhandbuch zu Amazon Redshift.

Verwenden Sie die GRANT-Anweisung, um Benutzern Berechtigungen für die Schemata zu erteilen.

Im folgenden Beispiel wird dem GUEST Benutzer die Berechtigung erteilt, mithilfe einer SELECT-Anweisung Daten aus allen Tabellen oder Ansichten im SALES Schema auszuwählen.

GRANT SELECT ON ALL TABLES IN SCHEMA SALES TO GUEST;

Im folgenden Beispiel werden dem GUEST Benutzer alle verfügbaren Berechtigungen gleichzeitig gewährt.

GRANT ALL ON SCHEMA SALES TO GUEST;

Erstellen einer Tabelle

Nach dem Erstellen Ihrer neuen Datenbank erstellen Sie Tabellen für Ihre Daten. Geben Sie die Spalteninformationen an, wenn Sie die Tabelle erstellen.

Zum Beispiel können Sie mit dem folgenden Befehl eine Tabelle namens **DEMO** erstellen.

```
CREATE TABLE Demo (
   PersonID int,
   City varchar (255)
);
```

Standardmäßig werden neue Datenbankobjekte, wie z. B. Tabellen, in dem Standardschema mit dem Namen erstellt, das bei der Data Warehouse-Erstellung public erstellt wurde, erstellt. Sie können ein anderes Schema verwenden, um Datenbankobjekte zu erstellen. Weitere Informationen über

Schemata finden Sie unter <u>Verwalten der Datenbanksicherheit</u> im Datenbankentwicklerhandbuch zu Amazon Redshift.

Darüber hinaus können Sie mit der schema_name.object_name-Notation auch eine Tabelle im SALES-Schema erstellen.

```
CREATE TABLE SALES.DEMO (
  PersonID int,
  City varchar (255)
);
```

Um Schemas und ihre Tabellen anzuzeigen und zu überprüfen, können Sie den Amazon Redshift Redshift-Abfrage-Editor v2 verwenden. Oder Sie können die Liste der Tabellen in Schemata mithilfe von Systemansichten ansehen. Weitere Informationen finden Sie unter Fragen Sie die Systemtabellen und Ansichten ab.

Die Spalten encoding, distkey und sortkey werden von Amazon Redshift für die parallele Verarbeitung verwendet. Für weitere Informationen zum Entwurf von Tabellen mit diesen Elementen siehe Bewährte Methoden für die Gestaltung von Tabellen mit Amazon Redshift.

Einfügen von Datenzeilen in eine Tabelle

Nach der Erstellung der Tabelle fügen Sie Datenzeilen darin ein.

Zeilen werden mit dem Befehl <u>INSERT</u> in Tabellen eingefügt. Verwenden Sie für Standard-Masseneinfügungen den Befehl <u>COPY</u>. Weitere Informationen finden Sie unter <u>Verwenden</u> eines COPY-Befehls zum Laden von Daten.

Um zum Beispiel Werte in die Tabelle DEMO einzufügen, führen Sie folgenden Befehl aus.

INSERT INTO DEMO VALUES (781, 'San Jose'), (990, 'Palo Alto');

Um Daten in eine Tabelle einzufügen, die sich in einem bestimmten Schema befindet, führen Sie den folgenden Befehl aus.

INSERT INTO SALES.DEMO VALUES (781, 'San Jose'), (990, 'Palo Alto');

Note

Auswahl von Daten aus einer Tabelle

Nachdem Sie eine Tabelle erstellt und mit Daten gefüllt haben, verwenden Sie eine SELECT-Anweisung, um die in der Tabelle enthaltenen Daten anzuzeigen. Die Anweisung SELECT * gibt alle Spaltennamen und Zeilenwerte für alle Daten in einer Tabelle zurück. Die Verwendung von SELECT ist eine gute Möglichkeit, um zu prüfen, ob kürzlich hinzugefügte Daten korrekt in die Tabelle eingefügt wurden.

Um die Daten anzuzeigen, die Sie in die Tabelle **DEMO** eingegeben haben, führen Sie den folgenden Befehl aus:

SELECT * from DEMO;

Das Ergebnis sollte wie das folgende aussehen.

```
personid | city
------
781 | San Jose
990 | Palo Alto
(2 rows)
```

Weitere Informationen zur Verwendung der SELECT-Anweisung zur Abfrage von Tabellen finden Sie unter <u>SELECT</u>.

Daten laden

Viele der Beispiele in diesem Handbuch verwenden den TICKIT-Beispieldatensatz. Sie können die Datei <u>tickitdb.zip</u> herunterladen. Diese enthält einzelne Beispieldatendateien. Anschließend können Sie die Beispieldaten in Ihren eigenen Amazon S3 S3-Bucket hochladen.

Um die Beispieldaten für Ihre Datenbank zu laden, erstellen Sie zuerst die Tabellen. Verwenden Sie dann den COPY-Befehl, um die Tabellen mit Beispieldaten zu laden, die in einem Amazon S3 Bucket gespeichert sind. Weitere Informationen zu den Schritten für die Erstellung von Tabellen und das Laden von Beispieldaten finden Sie unter Schritt 4: Daten aus Amazon S3 in Amazon Redshift laden.

Fragen Sie die Systemtabellen und Ansichten ab

Zusätzlich zu den Tabellen, die Sie erstellen, enthält Ihr Data Warehouse eine Reihe von Systemtabellen und Ansichten. Diese Tabellen und Ansichten enthalten Informationen über Ihre Installation und die verschiedenen Abfragen und Prozesse, die auf dem System ausgeführt werden. Sie können diese Systemtabellen und Ansichten abfragen, um Informationen über Ihre Datenbank zu sammeln. Weitere Informationen finden Sie unter <u>Referenz zu Systemtabellen und -ansichten</u> im Amazon Redshift Database Developer Guide. Die Beschreibung jeder Tabelle oder Ansicht gibt an, ob eine Tabelle für alle Benutzer oder nur für Superuser sichtbar ist. Um nur für Superuser sichtbare Tabellen anzuzeigen, melden Sie sich als Superuser an.

Anzeigen einer Liste von Tabellennamen

Um eine Liste aller Tabellen in einem Schema anzuzeigen, können Sie die Systemkatalogtabelle PG_TABLE_DEF abfragen. Sie können zunächst die Einstellung für prüfen search_path.

SHOW search_path;

Das Ergebnis sollte in etwa wie folgt aussehen.

search_path -----\$user, public

Im folgenden Beispiel wird dasSALES-Schema dem Suchpfad hinzugefügt und es werden alle Tabellen im SALES-Schema angezeigt.

```
set search_path to '$user', 'public', 'sales';
SHOW search_path;
    search_path
"$user", public, sales
select * from pg_table_def where schemaname = 'sales';
schemaname | tablename | column |
                                    type
                                                | encoding | distkey |
sortkey | notnull
   ----+---
+-----
sales
         | demo
                | personid | integer
                                                | az64 | f
                                                                 T
 0 | f
```

Amazon	Redshift
--------	----------

```
sales | demo | city | character varying(255) | lzo | f |
0 | f
```

Im folgenden Beispiel wird eine Liste aller Tabellen mit dem Namen DEMO in allen Schemata der aktuellen Datenbank angezeigt.

```
set search_path to '$user', 'public', 'sales';
select * from pg_table_def where tablename = 'demo';
schemaname | tablename | column |
                                               | encoding | distkey |
                                   type
sortkey | notnull
+-----
public
         | demo
                  | personid | integer
                                               az64
                                                       l f
                                                               T
 0 | f
public
         demo
                  | city
                           | character varying(255) | lzo
                                                       | f
                                                               0 | f
         | demo
                  | personid | integer
                                                       | f
sales
                                               az64
                                                               0 | f
sales
         | demo
                  | city
                           | character varying(255) | lzo
                                                       | f
                                                               0 | f
```

Weitere Informationen finden Sie in der Tabelle <u>PG_TABLE_DEF</u>.

Sie können auch den Amazon Redshift Redshift-Abfrage-Editor v2 verwenden, um alle Tabellen in einem bestimmten Schema anzuzeigen, indem Sie zunächst eine Datenbank auswählen, zu der Sie eine Verbindung herstellen möchten.

Anzeigen von Benutzern

Sie können den Katalog PG_USER abfragen, um eine Liste aller Benutzer zusammen mit Benutzer-ID (USESYSID) und Benutzerberechtigungen anzuzeigen.

```
SELECT * FROM pg_user;
        | usesysid | usecreatedb | usesuper | usecatupd | passwd | valuntil |
 usename
useconfig
+----
rdsdb
              1 | true
                        | true
                                | true
                                         ****** | infinity |
        awsuser
       100 | true
                        | true
                                | false
```

Amazon Redshift						Handbuch "Erste Schritte"
guest	Ι	104 true	false	false	******	I

Der Benutzername rdsdb wird intern von Amazon Redshift für Routine-Verwaltungs- und Wartungsaufgaben verwendet. Sie können Ihre Abfrage so filtern, dass nur benutzerdefinierte Benutzernamen angezeigt werden, indem Sie Ihrer SELECT-Anweisung where usesysid > 1 hinzufügen.

```
SELECT * FROM pg_user WHERE usesysid > 1;
        | usesysid | usecreatedb | usesuper | usecatupd | passwd | valuntil |
 usename
useconfig
                             +----
                           | true
awsuser
             100 | true
                                   | false
                                            *******
                                                            L
                          | false
                                   | false
quest
       104 | true
                                                            L
```

Anzeigen aktueller Abfragen

Im vorherigen Beispiel ist die Benutzer-ID (user_id) für adminuser 100. Um die vier zuletzt von ausgeführten Abfragen aufzulistenadminuser, können Sie die Ansicht SYS_QUERY_HISTORY abfragen.

Sie können diese Ansicht verwenden, um die Abfrage-ID (query_id) oder die Prozess-ID (session_id) für eine kürzlich ausgeführte Abfrage zu finden. Sie können diese Ansicht auch verwenden, um zu überprüfen, wie lange eine Abfrage in Anspruch nahm. SYS_QUERY_HISTORY enthält die ersten 4.000 Zeichen der Abfragezeichenfolge (query_text), um Ihnen das Auffinden einer bestimmten Abfrage zu erleichtern. Verwenden Sie die LIMIT-Klausel mit Ihrer SELECT-Anweisung, um die Ergebnisse einzuschränken.

```
SELECT query_id, session_id, elapsed_time, query_text
FROM sys_query_history
WHERE user_id = 100
ORDER BY start_time desc
LIMIT 4;
```

Das Ergebnis sieht in etwa wie folgt aus.

892 from		21046	Ι	55868	SELECT query, pid, elapsed, substring
620		17635	I	1296265	SELECT query, pid, elapsed, substring
TIOM	•				
610		17607		82555	SELECT * from DEMO;
596	I	16762	I	226372	INSERT INTO DEMO VALUES (100);

Ermitteln Sie die Sitzungs-ID einer laufenden Abfrage

Um Systemtabelleninformationen zu einer Abfrage abzurufen, müssen Sie möglicherweise die Sitzungs-ID (Prozess-ID) angeben, die dieser Abfrage zugeordnet ist. Oder Sie müssen möglicherweise die Sitzungs-ID für eine Abfrage ermitteln, die noch ausgeführt wird. Beispielsweise benötigen Sie die Sitzungs-ID, wenn Sie eine Abfrage abbrechen müssen, deren Ausführung auf einem bereitgestellten Cluster zu lange dauert. Sie können die STV_RECENTS-Systemtabelle abfragen, um eine Liste der Sitzungen IDs für laufende Abfragen zusammen mit der entsprechenden Abfragezeichenfolge zu erhalten. Wenn Ihre Abfrage mehrere Sitzungen zurückgibt, können Sie anhand des Abfragetextes ermitteln, welche Sitzungs-ID Sie benötigen.

Führen Sie die folgende SELECT-Anweisung aus, um die Sitzungs-ID einer laufenden Abfrage zu ermitteln.

```
SELECT session_id, user_id, start_time, query_text
FROM sys_query_history
WHERE status='running';
```

Brechen Sie eine Abfrage ab

Wenn Sie eine Abfrage ausführen, die zu lange dauert oder zu viele Ressourcen verbraucht, brechen Sie die Abfrage ab. Zum Beispiel: Erstellen Sie eine Liste von Ticketverkäufern, die die Namen der Verkäufer und die Anzahl der verkauften Tickets enthält. Die folgende Abfrage wählt Daten aus der SALES-Tabelle und der USERS-Tabelle aus und verbindet beide Tabellen durch den Abgleich von SELLERID und USERID in der WHERE-Klausel.

```
SELECT sellerid, firstname, lastname, sum(qtysold)
FROM sales, users
WHERE sales.sellerid = users.userid
GROUP BY sellerid, firstname, lastname
ORDER BY 4 desc;
```

Das Ergebnis sieht in etwa wie folgt aus.

sellerid	l	firstname	I	lastname		sum
	+		• + •		+.	
48950		Nayda		Hood		184
19123	I	Scott	Ι	Simmons	I	164
20029	I	Drew	Ι	Mcguire	I	164
36791	I	Emerson	Ι	Delacruz	I	160
13567	I	Imani	Ι	Adams	I	156
9697	I	Dorian	Ι	Ray	I	156
41579	I	Harrison	Ι	Durham	I	156
15591	I	Phyllis	Ι	Clay	I	152
3008	I	Lucas	Ι	Stanley	I	148
44956	I	Rachel	ľ	Villarreal	I	148

Note

Dies ist eine komplexe Abfrage. Für dieses Tutorial müssen Sie sich über den Aufbau dieser Abfrage keine Gedanken machen.

Die vorherige Abfrage dauert wenige Sekunden und gibt 2 102 Zeilen aus.

Angenommen, Sie hätten die WHERE-Klausel vergessen.

```
SELECT sellerid, firstname, lastname, sum(qtysold)
FROM sales, users
GROUP BY sellerid, firstname, lastname
ORDER BY 4 desc;
```

Der Ergebnissatz enthält dann alle Zeilen in der SALES-Tabelle, multipliziert mit allen Zeilen in der USERS-Tabelle (49989*3766). Dies ist eine so genannte Cartesische Verbindung, die nicht zu empfehlen ist. Das Ergebnis sind mehr als 188 Millionen Zeichen, und die Verarbeitungszeit ist extrem lang.

Um eine laufende Abfrage abzubrechen, verwenden Sie den Befehl CANCEL mit der Sitzungs-ID der Abfrage. Mit dem Amazon Redshift Redshift-Abfrage-Editor v2 können Sie eine Abfrage abbrechen, indem Sie auf die Schaltfläche Abbrechen klicken, während die Abfrage ausgeführt wird.

Um die Sitzungs-ID zu finden, starten Sie eine neue Sitzung und fragen Sie die Tabelle STV_RECENTS ab, wie im vorherigen Schritt gezeigt. Das folgende Beispiel zeigt, wie Sie die Ergebnisse lesbarer machen können. Verwenden Sie dazu die TRIM-Funktion, um nachfolgende Leerzeichen abzuschneiden, und zeigen Sie nur die ersten 20 Zeichen der Abfragezeichenfolge an.

Führen Sie die folgende SELECT-Anweisung aus, um die Sitzungs-ID einer laufenden Abfrage zu ermitteln.

```
SELECT user_id, session_id, start_time, query_text
FROM sys_query_history
WHERE status='running';
```

Das Ergebnis sieht in etwa wie folgt aus.

user_id | session_id | start_time | query_text
-----+
+----100 | 1073791534 | 2024-03-19 22:26:21.205739 | SELECT user_id, session_id,
start_time, query_text FROM ...

Führen Sie den folgenden Befehl aus1073791534, um die Abfrage mit der Sitzungs-ID abzubrechen.

```
CANCEL 1073791534;
```

Note

Der Befehl CANCEL stoppt eine Transaktion nicht. Um eine Transaktion zu stoppen oder rückgängig zu machen, müssen Sie den Befehl ABORT oder ROLLBACK verwenden. Um eine mit einer Transaktion verbundene Abfrage abzubrechen, brechen Sie zuerst die Abfrage ab und stoppen Sie dann die Transaktion.

Wenn die abgebrochene Abfrage mit einer Transaktion verbunden ist, verwenden Sie den Befehl ABORT oder ROLLBACK, um die Transaktion abzubrechen und alle an den Daten vorgenommen Änderungen zu verwerfen:

ABORT;

Sie können nur Ihre eigenen Abfragen abbrechen, sofern Sie nicht als Superuser angemeldet sind. Superuser können alle Abfragen abbrechen. Wenn Ihr Abfragetool nicht die gleichzeitige Ausführung von Abfragen unterstützt, starten Sie zum Abbruch der Abfrage eine weitere Sitzung.

Weitere Informationen zum Stornieren einer Abfrage finden Sie unter <u>CANCEL</u> im Amazon Redshift Database Developer Guide.

Abbrechen einer Abfrage mit der Superuser-Warteschlange

Wenn in Ihrer aktuellen Sitzung zu viele Abfragen gleichzeitig ausgeführt werden, können Sie möglicherweise erst dann den CANCEL-Befehl ausführen, wenn eine andere Abfrage abgeschlossen ist. Führen Sie in diesem Fall den CANCEL-Befehl mit einer anderen Workload-Verwaltungs-Abfragewarteschlange aus.

Workload-Verwaltung ermöglicht Ihnen die Ausführung von Abfragen in verschiedenen Abfragewarteschlangen, so dass Sie nicht warten müssen, bis eine andere Abfrage abgeschlossen ist. Der Workload Manager erstellt eine separate Warteschlange mit der Bezeichnung "Superuser-Warteschlange", die Sie für Fehlerbehebungszwecke verwenden können. Um die Superuser-Warteschlange verwenden zu können, melden Sie sich als Superuser an und setzen Sie die Abfragegruppe mit dem SET-Befehl auf "Superuser". Setzen Sie nach der Ausführung Ihrer Befehle die Abfragegruppe mit dem RESET-Befehl wieder zurück.

Um eine Abfrage mithilfe der Superuser-Warteschlange abzubrechen, führen Sie diese Befehle aus.

```
SET query_group T0 'superuser';
CANCEL 1073791534;
RESET query_group;
```

Daten abfragen, die sich nicht in Ihrer Amazon Redshift Redshift-Datenbank befinden

Im Folgenden finden Sie Informationen zu den ersten Schritten beim Abfragen von Daten aus Remote-Quellen, einschließlich Amazon S3 S3-Daten, Remote-Datenbankmanagern, Amazon Redshift-Remote-Datenbanken und zum Trainieren von Modellen für maschinelles Lernen (ML) mit Amazon Redshift.

Themen

- Abfragen Ihres Data Lake
- Abfragen von Daten auf Remote-Datenbankmanagern
- Zugreifen auf Daten in anderen Amazon Redshift Redshift-Datenbanken
- Training von Machine-Learning-Modellen mit Amazon-Redshift-Daten

Abfragen Ihres Data Lake

Mit Amazon Redshift Spectrum können Sie Daten in Amazon-S3-Dateien abfragen, ohne die Daten in Amazon-Redshift-Tabellen laden zu müssen. Amazon Redshift bietet SQL-Funktionen für die schnelle Online-Analyseverarbeitung (OLAP) von sehr großen Datensätzen, die sowohl in Amazon-Redshift-Clustern als auch Amazon-S3-Data-Lakes gespeichert sind. Sie können Daten in vielen Formaten abfragen, darunter Parquet, ORC,,, RCFile, TextFile,, SequenceFile RegexSerde, OpenCSV und AVRO. Um die Struktur der Dateien in Amazon S3 zu definieren, erstellen Sie externe Schemata und Tabellen. Anschließend verwenden Sie einen externen Datenkatalog wie AWS Glue oder Ihren eigenen Apache Hive Metastore. Änderungen an einem der Datenkatalogtypen sind sofort für jeden Ihrer Amazon-Redshift-Cluster verfügbar.

Nachdem Ihre Daten in einem AWS Glue Datenkatalog registriert und aktiviert wurden AWS Lake Formation, können Sie sie mithilfe von Redshift Spectrum abfragen.

Redshift Spectrum befindet sich auf dedizierten Amazon-Redshift-Servern, die von Ihrem Cluster unabhängig sind. Redshift Spectrum verschiebt viele datenverarbeitungsintensive Aufgaben, wie etwa die Prädikatfilterung und -aggregierung, auf die Redshift-Spectrum-Ebene. Redshift Spectrum lässt sich auch intelligent skalieren, um die Vorteile der massiv parallelen Verarbeitung zu nutzen.

Sie können die externen Tabellen in einer oder mehreren Spalten partitionieren, um die Abfrageleistung durch Partitionseliminierung zu optimieren. Sie können die externen Tabellen mit

Amazon-Redshift-Tabellen abfragen und verknüpfen. Sie können auf externe Tabellen aus mehreren Amazon Redshift Redshift-Clustern zugreifen und die Amazon S3 S3-Daten von jedem Cluster in derselben AWS Region abfragen. Wenn Sie Amazon-S3-Datendateien aktualisieren, stehen diese Daten sofort zur Abfrage von allen Ihren Amazon-Redshift-Clustern aus zur Verfügung.

Weitere Informationen zu Redshift Spectrum, einschließlich zur Arbeit mit Redshift Spectrum und Data Lakes, finden Sie unter <u>Erste Schritte mit Amazon Redshift Spectrum</u> im Datenbankentwicklerhandbuch zu Amazon Redshift.

Abfragen von Daten auf Remote-Datenbankmanagern

Sie können Daten aus einer Amazon RDS-Datenbank und einer Amazon Aurora Aurora-Datenbank mithilfe einer Verbundabfrage mit Daten in Ihrer Amazon Redshift Redshift-Datenbank verbinden. Mit Amazon Redshift können Sie Betriebsdaten direkt abfragen (ohne sie zu verschieben), Transformationen anwenden und Daten in Ihre Redshift-Tabellen einfügen. Ein Teil der Berechnung für Verbundabfragen wird an die Remote-Datenquellen verteilt.

Um Verbundabfragen auszuführen, stellt Amazon Redshift zunächst eine Verbindung zur Remote-Datenquelle her. Amazon Redshift ruft dann Metadaten zu den Tabellen in der Remote-Datenquelle ab, gibt Abfragen aus und ruft dann die Ergebniszeilen ab. Amazon Redshift verteilt die Ergebniszeilen dann zur weiteren Verarbeitung an Amazon-Redshift-Rechenknoten.

Weitere Informationen zum Einrichten der Umgebung für Verbundabfragen finden Sie in den folgenden Themen im Datenbankentwicklerhandbuch zu Amazon Redshift:

- Erste Schritte mit der Verwendung von Verbundabfragen an PostgreSQL
- Erste Schritte beim Verwenden von Verbundabfragen für MySQL

Zugreifen auf Daten in anderen Amazon Redshift Redshift-Datenbanken

Mithilfe von Amazon Redshift Data Sharing können Sie Live-Daten mit hoher Sicherheit und einfacher über Amazon Redshift Redshift-Cluster oder AWS Konten zu Lesezwecken austauschen. Sie profitieren von sofortigem, granularem und leistungsstarkem Zugriff auf Daten in Amazon-Redshift-Clustern, ohne diese manuell zu kopieren oder zu verschieben. Ihre Benutzer können die meisten up-to-date und konsistentesten Informationen sehen, sobald sie in Amazon Redshift Redshift-Clustern aktualisiert werden. Sie können Daten auf verschiedenen Ebenen gemeinsam nutzen, z. B. Datenbanken, Schemas, Tabellen, Ansichten (einschließlich regulärer Ansichten, Late-Binding-Ansichten und materialisierter Ansichten) und benutzerdefinierte SQL-Funktionen (). UDFs

Die Amazon-Redshift-Datenfreigabe ist besonders für folgende Anwendungsfälle nützlich:

- Zentralisierung geschäftskritischer Workloads Verwenden Sie einen zentralen Extract, Transform, Load (ETL)-Cluster, der Daten mit mehreren Business Intelligence (BI)- oder Analyse-Clustern gemeinsam verwendet. Dieser Ansatz bietet Lese-Workload-Isolation und Rückbelastung für einzelne Workloads.
- Freigabe von Daten zwischen Umgebungen Teilen Sie Daten in Entwicklungs-, Test- und Produktionsumgebungen. Sie können die Teamagilität verbessern, indem Sie Daten auf verschiedenen Granularitätsstufen teilen.

Weitere Informationen zur gemeinsamen Nutzung von Daten finden Sie unter <u>Verwaltung von</u> <u>Datenfreigabeaufgaben</u> im Amazon Redshift Database Developer Guide.

Training von Machine-Learning-Modellen mit Amazon-Redshift-Daten

Mit Amazon Redshift Machine Learning (Amazon Redshift ML) können Sie ein Modell trainieren, indem Sie die Daten an Amazon Redshift bereitstellen. Dann erstellt Amazon Redshift ML Modelle, die Muster in den Eingabedaten erfassen. Sie können diese Modelle dann verwenden, um Prognosen für neue Eingabedaten zu generieren, ohne dass zusätzliche Kosten entstehen. Mithilfe von Amazon Redshift ML können Sie Machine-Learning-Modelle mithilfe von SQL-Anweisungen trainieren und sie in SQL-Abfragen für Prognosen aufrufen. Sie können die Genauigkeit der Prognosen weiter verbessern, indem Sie die Parameter iterativ ändern und Ihre Trainingsdaten verbessern.

Amazon Redshift ML erleichtert SQL-Benutzern das Erstellen, Trainieren und Bereitstellen von Machine-Learning-Modellen mit vertrauten SQL-Befehlen. Mithilfe von Amazon Redshift ML können Sie Ihre Daten in Amazon Redshift Redshift-Clustern verwenden, um Modelle mit Amazon SageMaker Al Autopilot zu trainieren und automatisch das beste Modell zu erhalten. Sie können dann die Modelle lokalisieren und Prognosen innerhalb einer Amazon-Redshift-Datenbank erstellen.

Weitere Informationen zu Amazon Redshift ML finden Sie unter Erste Schritte mit Amazon Redshift ML im Datenbankentwicklerhandbuch zu Amazon Redshift.

Lernen Sie die Konzepte von Amazon Redshift kennen

Mit Amazon Redshift Serverless können Sie auf Daten zugreifen und diese analysieren, ohne alle Konfigurationen wie bei einem bereitgestellten Data Warehouse vornehmen zu müssen. Ressourcen werden automatisch bereitgestellt und die Data-Warehouse-Kapazität wird intelligent skaliert, um eine schnelle Leistung selbst für anspruchsvollste und unvorhersehbare Workloads zu erzielen. Es fallen keine Kosten an, wenn das Data Warehouse inaktiv ist, Sie zahlen also nur für das, was Sie tatsächlich nutzen. Sie können Daten laden und sofort mit der Abfrage beginnen. Hierfür können Sie Amazon Redshift Query Editor v2 oder Ihr bevorzugtes Business Intelligence (BI)-Tool nutzen. Genießen Sie das beste Preis-Leistungs-Verhältnis und die vertrauten SQL-Funktionen in einer easy-to-use Umgebung ohne Verwaltungsaufwand.

Wenn Sie Amazon Redshift zum ersten Mal verwenden, empfehlen wir Ihnen, zunächst die folgenden Abschnitte zu lesen:

- <u>Übersicht über die Funktionen von Amazon Redshift Serverless</u> Unter diesem Thema finden Sie eine Übersicht über Amazon Redshift Serverless und seine wichtigsten Funktionen.
- <u>Service-Merkmale und Preise</u> Auf dieser Produktdetailseite erfahren Sie mehr zu den Merkmalen und Preisen von Amazon Redshift Serverless.
- Erste Schritte mit Amazon Redshift Serverless Data Warehouses. In diesem Thema erfahren Sie mehr darüber, wie Sie ein Amazon Redshift Serverless Data Warehouse erstellen und mit dem Abfragen von Daten mit dem Abfrage-Editor v2 beginnen.

Wenn Sie Ihre Amazon-Redshift-Ressourcen lieber manuell verwalten möchten, können Sie bereitgestellte Cluster für Ihre Datenabfrageanforderungen erstellen. Weitere Informationen finden Sie unter Amazon-Redshift-Cluster.

Wenn Ihre Organisation berechtigt ist und Ihr Cluster in einem Gebiet erstellt wird, in AWS-Region dem Amazon Redshift Serverless nicht verfügbar ist, können Sie möglicherweise im Rahmen des kostenlosen Testprogramms von Amazon Redshift einen Cluster erstellen. Wählen Sie entweder Produktion oder Kostenlose Testversion als Antwort auf die Frage: Wofür möchten Sie diesen Cluster verwenden? Wenn Sie Kostenlose Testversion auswählen, erstellen Sie eine Konfiguration mit dem Knotentyp dc2.large. Weitere Informationen zur Auswahl einer kostenlosen Testversion finden Sie unter Kostenloses Testprogramm für Amazon Redshift. Eine Liste, AWS-Regionen wo Amazon Redshift Serverless verfügbar ist, finden Sie in den Amazon Redshift Redshift-Endpunkten, die für die Redshift Serverless API aufgeführt sind, im. Allgemeine Amazon Web Services-Referenz

Im Folgenden sind einige wichtige Konzepte von Amazon Redshift Serverless aufgeführt.

- Namespace Eine Sammlung von Datenbankobjekten und Benutzern. In Namespaces sind alle Ressourcen zusammengefasst, die Sie in Amazon Redshift Serverless verwenden, wie Schemas, Tabellen, Benutzer, Datashares und Snapshots.
- Arbeitsgruppe Eine Sammlung von Rechenressourcen. In Arbeitsgruppen sind Rechenressourcen enthalten, die Amazon Redshift Serverless zur Ausführung von Datenverarbeitungsaufgaben verwendet. Einige Beispiele für solche Ressourcen sind Redshift Processing Units (RPUs), Sicherheitsgruppen und Nutzungsbeschränkungen. Arbeitsgruppen verfügen über Netzwerk- und Sicherheitseinstellungen, die Sie mit der Amazon Redshift Serverless-Konsole AWS Command Line Interface, dem oder dem Amazon Redshift Serverless konfigurieren können. APIs

Weitere Informationen zum Konfigurieren von Namespace- und Arbeitsgruppenressourcen finden Sie unter Arbeiten mit Namespaces und Arbeiten mit Arbeitsgruppen.

Im Folgenden sind einige wichtige Konzepte im Zusammenhang mit von Amazon Redshift bereitgestellten Clustern aufgeführt:

 Cluster – Die zentrale Infrastrukturkomponente eines Amazon-Redshift-Data-Warehouse ist ein Cluster.

Ein Cluster besteht aus einem oder mehreren Datenverarbeitungsknoten. Die Datenverarbeitungsknoten führen den kompilierten Code aus.

Wird ein Cluster mit zwei oder mehr Datenverarbeitungsknoten bereitgestellt, koordiniert ein zusätzlicher Führungsknoten die Datenverarbeitungsknoten. Der Führungsknoten übernimmt die externe Kommunikation mit Anwendungen, wie Business-Intelligence-Tools und Abfrage-Editoren. Ihre Client-Anwendung interagiert nur mit dem Führungsknoten direkt. Die Datenverarbeitungsknoten sind für externe Anwendungen transparent.

• Datenbank – Ein Cluster enthält eine oder mehrere Datenbanken.

Benutzerdaten werden in einer oder mehreren Datenbanken auf den Datenverarbeitungsknoten gespeichert. Ihr SQL-Client kommuniziert mit dem Führungsknoten, der wiederum die Abfrageausführung mit den Datenverarbeitungsknoten koordiniert. Weitere Informationen zu Datenverarbeitungs- und Führungsknoten finden Sie unter <u>Data-Warehouse-Systemarchitektur</u>. Innerhalb einer Datenbank sind Benutzerdaten in einem Schema oder mehreren Schemata organisiert.

Amazon Redshift ist ein relationales Datenbankmanagementsystem (RDBMS) und ist mit anderen RDBMS-Anwendungen kompatibel. Amazon Redshift stellt dieselben Funktionen wie ein typisches RDBMS bereit, einschließlich Funktionen zur Online-Transaktionsverarbeitung (Online Transaction Processing, OLTP), wie das Einfügen und Löschen von Daten. Amazon Redshift ist auch für leistungsfähige Batchanalysen und Berichterstattung von Datensätzen optimiert.

Im Folgenden finden Sie eine Beschreibung des typischen Datenverarbeitungsablaufs in Amazon Redshift sowie Beschreibungen verschiedener Teile im Ablauf. Weitere Informationen zur Amazon-Redshift-Systemarchitektur finden Sie unter Architektur des Data-Warehouse-Systems.

Das folgende Diagramm zeigt einen typischen Datenverarbeitungsablauf in Amazon Redshift.

Ein Amazon-Redshift-Data-Warehouse ist eine Abfrage- und Verwaltungssystem der Enterprise-Klasse für relationale Datenbanken. Amazon Redshift unterstützt Client-Verbindungen mit vielen Arten von Anwendungen, einschließlich Business Intelligence (BI), Berichterstellung, Daten und Analysetools. Bei Analyseabfragen werden große Datenmengen in mehrphasigen Operationen abgerufen, verglichen und bewertet, um ein Endergebnis zurückzugeben.

In der Ebene der Datenerfassung laden verschiedene Arten von Datenquellen kontinuierlich strukturierte, halbstrukturierte oder unstrukturierte Daten in die Datenspeicher-Ebene hoch. Dieser Datenspeicherbereich dient als Staging-Bereich, der Daten in verschiedenen Zuständen der Nutzungsbereitschaft speichert. Ein Beispiel für einen solchen Speicher ist ein Amazon Simple Storage Service (Amazon S3)-Bucket.

In der optionalen Ebene Datenverarbeitung durchlaufen die Quelldaten die Vorverarbeitung, Validierung und Transformation über Extract, Transform, Load (ETL)-oder Extract, Load, Transform (ELT)-Pipelines. Diese Rohdatensätze werden dann mithilfe von ETL-Operationen verfeinert. Ein Beispiel für eine ETL-Engine ist AWS Glue.

In der Ebene Datennutzung werden Daten in Ihren Amazon-Redshift-Cluster geladen, wo Sie Analyse-Workloads ausführen können.

Beispiele für Analyse-Workloads finden Sie unter Abfragen von externen Datenquellen.

Zusätzliche Ressourcen, um mehr über Amazon Redshift zu erfahren

Wenn Sie mehr über Amazon Redshift Serverless erfahren möchten, empfehlen wir Ihnen, Ihr Wissen über die in diesem Handbuch vorgestellten Konzepte unter Verwendung der folgenden Ressourcen zu Amazon Redshift zu vertiefen:

- Feature-Videos: Diese Videos helfen Ihnen, mehr über die Funktionen von Amazon Redshift zu erfahren.
 - Um eine allgemeine Vorstellung von Amazon Redshift Serverless zu erhalten, sehen Sie sich das folgende Video an. <u>Amazon Redshift Serverless Explained in 90 Seconds</u> (Amazon Redshift Serverless in 90 Sekunden erklärt).
 - Wenn Sie wissen möchten, wie Sie ein Serverless Data Warehouse einrichten und mit dem Abfragen von Daten beginnen können, sehen Sie sich das folgende Video an. <u>Getting Started</u> with Amazon Redshift Serverless (Erste Schritte mit Amazon Redshift Serverless)
- <u>Amazon-Redshift-Verwaltungshandbuch</u>: Dieser Leitfaden baut auf dem Handbuch Erste Schritte mit Amazon Redshift auf. Sie erhalten darin detaillierte Informationen über die Konzepte und Aufgaben für die Erstellung, Verwaltung und Überwachung von Clustern, die von Amazon Redshift Serverless und Amazon Redshift bereitgestellt werden.
- <u>Datenbankentwicklerhandbuch zu Amazon Redshift</u>: Dieses Handbuch baut ebenfalls auf dem Handbuch Erste Schritte mit Amazon Redshift auf. Es richtet sich an Datenbankentwickler und vermittelt fundierte Kenntnisse auf den Gebieten Entwurf, Entwicklung, Abfrage und Verwaltung von Datenbanken in einem Data Warehouse.
 - <u>SQL-Referenz</u>: In diesem Thema werden SQL-Befehle und Funktionsreferenzen f
 ür Amazon Redshift beschrieben.
 - <u>Referenz zu Systemtabellen und Ansichten</u>: In diesem Thema werden Systemtabellen und Ansichten für Amazon Redshift beschrieben.
- Tutorials f
 ür Amazon Redshift: In diesem Thema werden Tutorials zu den Funktionen von Amazon Redshift angezeigt.
 - <u>So laden Sie Daten aus Amazon S3</u>: In diesem Tutorial wird beschrieben, wie Sie Daten aus Datendateien in einem Amazon-S3-Bucket in Ihre Amazon-Redshift-Datenbanktabellen laden.
 - <u>Erste Schritte mit der Datenfreigabe</u>: In diesem Abschnitt wird beschrieben, wie Sie Daten freigeben und auf Daten in anderen Amazon-Redshift-Clustern zugreifen können.

- <u>Verwendung von Geo-SQL-Funktionen mit Amazon Redshift</u>: In diesem Tutorial wird gezeigt, wie Sie einige der Geo-SQL-Funktionen mit Amazon Redshift verwenden.
- <u>Abfragen verschachtelter Daten mit Amazon Redshift Spectrum</u>: In diesem Tutorial wird beschrieben, wie Sie Redshift Spectrum verwenden, um verschachtelte Daten in den Dateiformaten Parquet, ORC, JSON und Ion mit externen Tabellen abzufragen.
- Konfigurieren von manuellen Workload-Management (WLM)-Warteschlangen: In diesem Tutorial wird beschrieben, wie Sie das manuelle Workload-Management (WLM) in Amazon Redshift konfigurieren.
- <u>Erste Schritte mit Amazon Redshift ML</u>: In diesem Abschnitt wird beschrieben, wie Benutzer unter Verwendung von vertrauten SQL-Befehlen Machine-Learning-Modelle erstellen, trainieren und bereitstellen können.
- <u>Neuerungen</u>: Diese Webseite listet neue Funktionen von Amazon Redshift und Produktaktualisierungen auf.

Dokumentverlauf

Note

Eine Beschreibung der neuen Funktionen in Amazon Redshift finden Sie unter Was ist neu.

In der folgenden Tabelle werden die wichtigen Änderungen an der Dokumentation zum Amazon Redshift Getting Started Guide beschrieben.

Änderung	Beschreibung	Datum der Veröffentlichung
Aktualisierung der Dokumentation	Das Handbuch wurde aktualisiert, um die von Query Editor v2 verwalteten Richtlinienänderungen und die verbesserten Zugriffsberechtigungen für serverlose Namespaces und Arbeitsgruppen widerzuspiegeln.	21. Februar 2024
Aktualisierung der Dokumentation	Die Screenshots und Verfahren wurden aktualisiert, um den neuesten Verbesserungen der Konsoleno berfläche und dem Query Editor v2 Rechnung zu tragen.	11. März 2023
Neues Feature	Der Leitfaden wurde aktualisiert und enthält nun auch Verfahren und Workflows für die ersten Schritte mit Amazon Redshift Serverless. Ein umfassender Abschnitt zur Erstellung und Verwaltung serverloser Data Warehouses wurde hinzugefügt.	12. Juli 2022
Aktualisierung der Dokumentation	Das Handbuch wurde aktualisiert, sodass der Query Editor v2 als primäre Abfrageschnittstelle verwendet wird und die Verweise auf den alten Abfrage-Editor ersetzt wurden.	Februar 2022
Aktualisierung der Dokumentation	Das Handbuch wurde aktualisiert, um neue Abschnitt e über die ersten Schritte mit allgemeinen Datenbank aufgaben, das Abfragen Ihres Data Lake, das	30. Juni 2021

Amazon Redshift

Änderung	Beschreibung	Datum der Veröffentlichung
	Abfragen von Daten auf entfernten Quellen, das Freigeben von Daten und das Training von Machine- Learning-Modellen mit Amazon-Redshift-Daten zu enthalten.	
Neues Feature	Aktualisierung des Handbuchs, um das Verfahren des neuen Beispielladevorgangs zu beschreiben.	4. Juni 2021
Aktualisierung der Dokumentation	Die ursprüngliche Amazon-Redshift-Konsole wurde aus dem Handbuch entfernt und der Ablauf der Schritte wurde verbessert.	14. August 2020
New console	Das Handbuch enthält nun eine Beschreibung der neuen Amazon-Redshift-Konsole.	11. November 2019
Neues Feature	Aktualisierung des Handbuchs, um das Verfahren für schnelle Clusterstarts zu beschreiben.	10. August 2018
Neues Feature	Das Handbuch enthält nun Informationen zum Starten von Clustern über das Amazon-Redshift-Dashboard.	28. Juli 2015
Neues Feature	Das Handbuch enthält nun Informationen zur Verwendung von neuen Knotentypnamen.	9. Juni 2015
Aktualisierung der Dokumentation	Die Dokumentation enthält aktualisierte Screensho ts und Verfahren zur Konfiguration der VPC-Siche rheitsgruppen.	30. April 2015
Aktualisierung der Dokumentation	Die Dokumentation enthält aktualisierte Screenshots und beschreibt, wie sich die aktuelle Konsole und die Screenshots aufeinander abstimmen lassen.	12. November 2014

Amazon Redshift

Änderung	Beschreibung	Datum der Veröffentlichung
Aktualisierung der Dokumentation	Zur besseren Auffindbarkeit wurden die Informati onen zum Laden von Daten von Amazon S3 in einen separaten Abschnitt verschoben und der Abschnitt mit den nächsten Schritten wurde in den letzten Schritt integriert.	13. Mai 2014
Aktualisierung der Dokumentation	Die Willkommensseite wurde entfernt; ihr Inhalt befindet sich nun auf der Hauptseite der Seite "Erste Schritte".	14. März 2014
Aktualisierung der Dokumentation	Bei dieser Dokumentation handelt es sich um eine neue Version des Handbuchs Erste Schritte mit Amazon Redshift, die Kundenfeedback und Service-U pdates berücksichtigt.	14. März 2014
Neues Handbuch	Dies ist die erste Version des Handbuchs Erste Schritte mit Amazon Redshift.	14. Februar 2013