Datensatzanforderungen für die Verwendung von ML Insights mit Amazon QuickSight - Amazon QuickSight

Datensatzanforderungen für die Verwendung von ML Insights mit Amazon QuickSight

Zur Verwendung der Machine Learning-Funktionen von Amazon QuickSight müssen Sie Ihre Daten verbinden oder importieren. Sie können einen vorhandenen Amazon QuickSight-Datensatz verwenden oder einen neuen erstellen. Sie können Ihre SQL-kompatible Quelle direkt abfragen oder die Daten in SPICE aufnehmen.

Die Daten müssen die folgenden Eigenschaften aufweisen:

  • Mindestens eine Metrik (z. B. Verkäufe, Bestellungen, gelieferte Einheiten, Anmeldungen usw.).

  • Mindestens eine Kategoriedimension (z. B. Produktkategorie, Kanal, Segment, Industrie usw.). Kategorien mit NULL-Werten werden ignoriert.

  • Die Anomalieerkennung erfordert mindestens 15 Datenpunkte für die Schulung. Beispiel: Wenn das Aggregationsintervall Ihrer Daten täglich ist, benötigen Sie Daten von mindestens 15 Tagen. Wenn das Aggregationsintervall monatlich ist, benötigen Sie Daten von mindestens 15 Monaten.

  • Prognosen funktionieren am besten mit mehr Daten. Stellen Sie sicher, dass Ihr Datensatz über genügend historische Daten verfügt, um optimale Ergebnisse zu erzielen. Beispiel: Wenn das Aggregationsintervall Ihrer Daten täglich ist, benötigen Sie Daten von mindestens 38 Tagen. Wenn das Aggregationsintervall monatlich ist, benötigen Sie Daten von mindestens 43 Monaten. Im Folgenden finden Sie die Anforderungen für jedes Aggregationsintervall:

    • Jahre: 32 Datenpunkte

    • Quartale: 35 Datenpunkte

    • Monate: 43 Datenpunkte

    • Wochen: 35 Datenpunkte

    • Tage: 38 Datenpunkte

    • Stunden: 39 Datenpunkte

    • Minuten: 46 Datenpunkte

    • Sekunden: 46 Datenpunkte

  • Wenn Sie Anomalien oder Prognosen analysieren möchten, benötigen Sie auch mindestens eine Datumsdimension.

Wenn Sie über keinen Datensatz verfügen, um zu beginnen, können Sie diesen Beispieldatensatz herunterladen: ML Insights-Beispieldatensatz VI. Nachdem Sie über einen Datensatz verfügen, erstellen Sie eine neue Analyse anhand des Datensatzes.