Code library - Amazon Nova

Code library

This section provides code examples for common Amazon Nova operations using either the Converse API or the InvokeModel API.

Converse API Examples

Basic request

Send a basic text request to Amazon Nova models using the Converse API.

Non-streaming
import boto3 from botocore.config import Config # Create the Bedrock Runtime client, using an extended timeout configuration # to support long-running requests. bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(read_timeout=3600), ) # Invoke the model response = bedrock.converse( modelId="us.amazon.nova-2-lite-v1:0", messages=[ { "role": "user", "content": [{"text": "Write a short story. End the story with 'THE END'."}], } ], system=[{"text": "You are a children's book author."}], # Optional inferenceConfig={ # These parameters are optional "maxTokens": 1500, "temperature": 0.7, "topP": 0.9, "stopSequences": ["THE END"], }, additionalModelRequestFields={ # These parameters are optional "inferenceConfig": { "topK": 50, } }, ) # Extract the text response content_list = response["output"]["message"]["content"] for content in content_list: if "text" in content: print(content["text"])
Streaming
import boto3 from botocore.config import Config # Create the Bedrock Runtime client, using an extended timeout configuration # to support long-running requests. bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(connect_timeout=3600, read_timeout=3600), ) # Invoke the model response = bedrock.converse_stream( modelId="us.amazon.nova-2-lite-v1:0", messages=[ { "role": "user", "content": [{"text": "Write a short story. End the story with 'THE END'."}], } ], system=[{"text": "You are a children's book author."}], # Optional inferenceConfig={ # These parameters are optional "maxTokens": 1500, "temperature": 0.7, "topP": 0.9, "stopSequences": ["THE END"], }, additionalModelRequestFields={ # These parameters are optional "inferenceConfig": { "topK": 50, } }, ) # Handle streaming events for event in response["stream"]: if "contentBlockDelta" in event: delta = event["contentBlockDelta"]["delta"] if "text" in delta: print(delta["text"], end="", flush=True)

Multimodal input using embedded asset

Process multimodal content by embedding document, image, video, or audio data directly in the request. This example uses image data. For details on the content structure for other modalities, see the ContentBlock details in the Amazon Bedrock API documentation.

Non-streaming
import boto3 from botocore.config import Config # Read a document, image, video, or audio file with open("sample_image.png", "rb") as image_file: binary_data = image_file.read() data_format = "png" # Define message with image messages = [ { "role": "user", "content": [ { "image": { "format": data_format, "source": { "bytes": binary_data # For Invoke API, encode as Base64 string }, }, }, {"text": "Provide a brief caption for this asset."}, ], } ] # Create the Bedrock Runtime client, using an extended timeout configuration # to support long-running requests. bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(read_timeout=3600), ) # Invoke model response = bedrock.converse( modelId="us.amazon.nova-2-lite-v1:0", messages=messages, ) # Extract the text response content_list = response["output"]["message"]["content"] for content in content_list: if "text" in content: print(content["text"])
Streaming
import boto3 from botocore.config import Config # Read a document, image, video, or audio file with open("sample_image.png", "rb") as image_file: binary_data = image_file.read() data_format = "png" # Define message with image messages = [ { "role": "user", "content": [ { "image": { "format": data_format, "source": { "bytes": binary_data # For Invoke API, encode as Base64 string }, }, }, {"text": "Provide a brief caption for this asset."}, ], } ] # Create the Bedrock Runtime client, using an extended timeout configuration # to support long-running requests. bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(connect_timeout=3600, read_timeout=3600), ) # Invoke model with streaming response = bedrock.converse_stream( modelId="us.amazon.nova-2-lite-v1:0", messages=messages, ) # Handle streaming events for event in response["stream"]: if "contentBlockDelta" in event: delta = event["contentBlockDelta"]["delta"] if "text" in delta: print(delta["text"], end="", flush=True)

Multimodal input using S3 URI

Process multimodal content by referencing documents, images, videos, or audio files stored in S3. This example uses an image reference. For details on the content structure for other modalities, see the ContentBlock details in the Amazon Bedrock API documentation.

Non-streaming
import boto3 from botocore.config import Config # Define message with image messages = [ { "role": "user", "content": [ { "image": { "format": "png", "source": { "s3Location": { "uri": "s3://path/to/your/asset", # "bucketOwner": "<account_id>" # Optional } }, }, }, {"text": "Provide a brief caption for this asset."}, ], } ] # Create the Bedrock Runtime client, using an extended timeout configuration # to support long-running requests. bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(read_timeout=3600), ) # Invoke model response = bedrock.converse( modelId="us.amazon.nova-2-lite-v1:0", messages=messages, ) # Extract the text response content_list = response["output"]["message"]["content"] for content in content_list: if "text" in content: print(content["text"])
Streaming
import boto3 from botocore.config import Config # Define message with image messages = [ { "role": "user", "content": [ { "image": { "format": "png", "source": { "s3Location": { "uri": "s3://path/to/your/asset", # "bucketOwner": "<account_id>" # Optional } }, }, }, {"text": "Provide a brief caption for this asset."}, ], } ] # Create the Bedrock Runtime client, using an extended timeout configuration # to support long-running requests. bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(connect_timeout=3600, read_timeout=3600), ) # Invoke model with streaming response = bedrock.converse_stream( modelId="us.amazon.nova-2-lite-v1:0", messages=messages, ) # Handle streaming events for event in response["stream"]: if "contentBlockDelta" in event: delta = event["contentBlockDelta"]["delta"] if "text" in delta: print(delta["text"], end="", flush=True)

Extended thinking (reasoning)

Enable extended thinking for complex problem-solving tasks.

Non-streaming
import boto3 from botocore.config import Config # Create the Bedrock Runtime client, using an extended timeout configuration # to support long-running requests. bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(read_timeout=3600), ) # Invoke the model response = bedrock.converse( modelId="us.amazon.nova-2-lite-v1:0", messages=[ { "role": "user", "content": [ { "text": 'How many capital letters appear in the following passage. Your response must include only the number: "Wilfred ordered an anvil from ACME. Shipping was expensive."' } ], } ], additionalModelRequestFields={ "reasoningConfig": { "type": "enabled", "maxReasoningEffort": "low", # "low" | "medium" | "high" } }, ) # Extract response content content_list = response["output"]["message"]["content"] for content in content_list: # Extract the reasoning response if "reasoningContent" in content: print("\n== Reasoning ==") print(content["reasoningContent"]["reasoningText"]["text"]) # Extract the text response if "text" in content: print("\n== Text ==") print(content["text"])
Streaming
import boto3 from botocore.config import Config # Create the Bedrock Runtime client, using an extended timeout configuration # to support long-running requests. bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(connect_timeout=3600, read_timeout=3600), ) # Invoke the model response = bedrock.converse_stream( modelId="us.amazon.nova-2-lite-v1:0", messages=[ { "role": "user", "content": [ { "text": 'How many capital letters appear in the following passage. Your response must include only the number: "Wilfred ordered an anvil from ACME. Shipping was expensive."' } ], } ], additionalModelRequestFields={ "reasoningConfig": { "type": "enabled", "maxReasoningEffort": "low", # "low" | "medium" | "high" }, }, ) # Process the streaming response reasoning_output = "" text_output = "" for event in response["stream"]: if "contentBlockDelta" in event: delta = event["contentBlockDelta"]["delta"] if "reasoningContent" in delta: if len(reasoning_output) == 0: print("\n\n== Reasoning ==") reasoning_text_chunk = delta["reasoningContent"]["text"] print(reasoning_text_chunk, end="", flush=True) reasoning_output += reasoning_text_chunk elif "text" in delta: if len(text_output) == 0: print("\n\n== Text ==") text_chunk = delta["text"] print(text_chunk, end="", flush=True) text_output += text_chunk

Built-in tool: Nova Grounding with citations

Use Nova Grounding to retrieve real-time information from the web with citations.

Non-streaming
import boto3 from botocore.config import Config # Define the list of tools the model may use tool_config = {"tools": [{"systemTool": {"name": "nova_grounding"}}]} # Create the Bedrock Runtime client, using an extended timeout configuration # to support long-running requests. bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(read_timeout=3600), ) messages = [ { "role": "user", "content": [ {"text": "What is the latest news about renewable energy sources?"} ], } ] # Invoke the model response = bedrock.converse( modelId="us.amazon.nova-2-lite-v1:0", messages=messages, toolConfig=tool_config ) # Extract the text with interleaved citations output_with_citations = "" content_list = response["output"]["message"]["content"] for content in content_list: if "text" in content: output_with_citations += content["text"] elif "citationsContent" in content: citations = content["citationsContent"]["citations"] for citation in citations: url = citation["location"]["web"]["url"] output_with_citations += f"[{url}]" print(output_with_citations)
Streaming
import boto3 from botocore.config import Config # Define the list of tools the model may use tool_config = {"tools": [{"systemTool": {"name": "nova_grounding"}}]} # Create the Bedrock Runtime client, using an extended timeout configuration # to support long-running requests. bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(read_timeout=3600), ) messages = [ { "role": "user", "content": [ {"text": "What is the latest news about renewable energy sources?"} ], } ] # Invoke the model with streaming response = bedrock.converse_stream( modelId="us.amazon.nova-2-lite-v1:0", messages=messages, toolConfig=tool_config ) # Process the streaming response with interleaved citations for event in response["stream"]: if "contentBlockDelta" in event: delta = event["contentBlockDelta"]["delta"] if "text" in delta: print(delta["text"], end="", flush=True) elif "citation" in delta: url = delta["citation"]["location"]["web"]["url"] print(f"[{url}]", end="", flush=True)

Built-in tool: Code Interpreter

Use the Code Interpreter tool to execute Python code for calculations and data analysis.

Non-streaming
import boto3 from botocore.config import Config # Define the list of tools the model may use tool_config = {"tools": [{"systemTool": {"name": "nova_code_interpreter"}}]} # Create the Bedrock Runtime client, using an extended timeout configuration # to support long-running requests. bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(read_timeout=3600), ) messages = [ { "role": "user", "content": [ { "text": "What is the average of 10, 24, 2, 3, 43, 52, 13, 68, 6, 7, 902, 82?" } ], } ] # Invoke the model response = bedrock.converse( modelId="us.amazon.nova-2-lite-v1:0", messages=messages, toolConfig=tool_config ) # Extract the text and the code the was executed content_list = response["output"]["message"]["content"] for content in content_list: if "text" in content: print("\n== Text ==") print(content["text"]) elif "toolUse" in content and content["toolUse"]["name"] == "nova_code_interpreter": print("\n== Code Interpreter: input.snippet ==") print(content["toolUse"]["input"]["snippet"])
Streaming
import boto3 from botocore.config import Config import json # Define the list of tools the model may use tool_config = {"tools": [{"systemTool": {"name": "nova_code_interpreter"}}]} messages = [ { "role": "user", "content": [ { "text": "What is the average of 10, 24, 2, 3, 43, 52, 13, 68, 6, 7, 902, 82?" } ], } ] # Create the Bedrock Runtime client, using an extended timeout configuration # to support long-running requests. bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(connect_timeout=3600, read_timeout=3600), ) # Invoke the model with streaming response = bedrock.converse_stream( modelId="us.amazon.nova-2-lite-v1:0", messages=messages, toolConfig=tool_config ) # Process the streaming response current_block_start = None response_text = "" for event in response["stream"]: if "contentBlockStart" in event: current_block_start = event["contentBlockStart"]["start"] elif "contentBlockStop" in event: current_block_start = None elif "contentBlockDelta" in event: delta = event["contentBlockDelta"]["delta"] if ( current_block_start and "toolUse" in current_block_start and current_block_start["toolUse"]["name"] == "nova_code_interpreter" ): # This is code interpreter content tool_input = json.loads(delta["toolUse"]["input"]) print("\n== Executed Code Snippet ==") print(tool_input["snippet"], end="", flush=True) elif "text" in delta: # This is text response content if len(response_text) == 0: print("\n== Text ==") text = delta["text"] response_text += text print(text, end="", flush=True)

Tool use

Define custom tools for the model to use during conversation.

Non-streaming
import boto3 from botocore.config import Config def get_weather(city): # Mock function to simulate weather API return {"temperatureF": 48, "conditions": "light rain"} # Define the toolSpec for the weather tool weather_tool = { "toolSpec": { "name": "get_weather", "description": "Get the current weather conditions in a given location", "inputSchema": { "json": { "type": "object", "properties": { "city": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", } }, "required": ["city"], } }, } } # Define the list of tools the model may use tool_config = {"tools": [weather_tool]} # Create the Bedrock Runtime client, using an extended timeout configuration # to support long-running requests. bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(read_timeout=3600), ) # Start tracking message history messages = [] messages.append( { "role": "user", "content": [ { "text": "Suggest some activities to do in Seattle based on the current weather." } ], } ) # Invoke the model response = bedrock.converse( modelId="us.amazon.nova-2-lite-v1:0", messages=messages, toolConfig=tool_config ) assistant_message = response["output"]["message"] # Add the assistant response to the message history messages.append(assistant_message) content_list = assistant_message["content"] stop_reason = response["stopReason"] if stop_reason == "tool_use": # Extract the toolUse details tool_use = next( content["toolUse"] for content in content_list if "toolUse" in content ) tool_name = tool_use["name"] tool_use_id = tool_use["toolUseId"] if tool_name == "get_weather": # Call the tool weather = get_weather(tool_use["input"]["city"]) # Send the result back to the model messages.append( { "role": "user", "content": [ { "toolResult": { "toolUseId": tool_use_id, "content": [{"json": weather}], } } ], } ) # Submit the tool result back to the model response = bedrock.converse( modelId="us.amazon.nova-2-lite-v1:0", messages=messages, toolConfig=tool_config, ) content_list = response["output"]["message"]["content"] for content in content_list: # Extract the text response if "text" in content: print("\n== Text ==") print(content["text"]) else: # A tool call was not needed for content in content_list: # Extract the text response if "text" in content: print("\n== Text ==") print(content["text"])
Streaming
import boto3 from botocore.config import Config import json def get_weather(city): # Mock function to simulate weather API return {"temperatureF": 48, "conditions": "light rain"} # Define the toolSpec for the weather tool weather_tool = { "toolSpec": { "name": "get_weather", "description": "Get the current weather conditions in a given location", "inputSchema": { "json": { "type": "object", "properties": { "city": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", } }, "required": ["city"], } }, } } # Define the list of tools the model may use tool_config = {"tools": [weather_tool]} # Create the Bedrock Runtime client, using an extended timeout configuration # to support long-running requests. bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(read_timeout=3600), ) # Start tracking message history messages = [] messages.append( { "role": "user", "content": [ { "text": "Suggest some activities to do in Seattle based on the current weather." } ], } ) # Invoke the model with streaming response = bedrock.converse_stream( modelId="us.amazon.nova-2-lite-v1:0", messages=messages, toolConfig=tool_config ) # Process the streaming response assistant_message = {"role": "assistant", "content": []} current_tool_use = None stop_reason = None for event in response["stream"]: if "contentBlockStart" in event: start = event["contentBlockStart"]["start"] if "toolUse" in start: current_tool_use = start["toolUse"] current_tool_use["input"] = "" elif "contentBlockDelta" in event: delta = event["contentBlockDelta"]["delta"] if "toolUse" in delta: current_tool_use["input"] += delta["toolUse"]["input"] elif "text" in delta: print(delta["text"], end="", flush=True) elif "contentBlockStop" in event: if current_tool_use: # Parse the accumulated tool input current_tool_use["input"] = json.loads(current_tool_use["input"]) assistant_message["content"].append({"toolUse": current_tool_use}) current_tool_use = None elif "messageStop" in event: stop_reason = event["messageStop"]["stopReason"] if stop_reason == "end_turn": exit # Add the assistant response to the message history messages.append(assistant_message) if stop_reason == "tool_use": # Extract the toolUse details tool_use = next( content["toolUse"] for content in assistant_message["content"] if "toolUse" in content ) tool_name = tool_use["name"] tool_use_id = tool_use["toolUseId"] if tool_name == "get_weather": # Call the tool weather = get_weather(tool_use["input"]["city"]) # Send the result back to the model messages.append( { "role": "user", "content": [ { "toolResult": { "toolUseId": tool_use_id, "content": [{"json": weather}], } } ], } ) # Submit the tool result back to the model with streaming response = bedrock.converse_stream( modelId="us.amazon.nova-2-lite-v1:0", messages=messages, toolConfig=tool_config, ) # Handle the final streaming response print("\n== Text ==") for event in response["stream"]: if "contentBlockDelta" in event: delta = event["contentBlockDelta"]["delta"] if "text" in delta: print(delta["text"], end="", flush=True)

InvokeModel API Examples

The examples below focus on the few key areas where the Invoke API's request and response structures differ slightly from those of the Converse API. In most other ways, the two APIs are compatible, so you should be able to easily adapt the Converse API examples above to work with the InvokeModel API.

Basic request

Send a basic text request to Amazon Nova 2 models using the InvokeModel API.

Non-streaming
import json import boto3 from botocore.config import Config # Configure the request request_body = { "messages": [ { "role": "user", "content": [{"text": "Write a short story. End the story with 'THE END'."}], } ], "system": [{"text": "You are a children's book author."}], # Optional "inferenceConfig": { # These parameters are optional "maxTokens": 1500, "temperature": 0.7, "topP": 0.9, "topK": 50, "stopSequences": ["THE END"], }, } bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(read_timeout=3600), ) # Invoke the model response = bedrock.invoke_model( modelId="us.amazon.nova-2-lite-v1:0", body=json.dumps(request_body) ) response_body = json.loads(response["body"].read()) # Extract the text response content_list = response_body["output"]["message"]["content"] for content in content_list: if "text" in content: print(content["text"])
Streaming
import json import boto3 from botocore.config import Config # Configure the request request_body = { "messages": [ { "role": "user", "content": [{"text": "Write a short story. End the story with 'THE END'."}], } ], "system": [{"text": "You are a children's book author."}], # Optional "inferenceConfig": { # These parameters are optional "maxTokens": 1500, "temperature": 0.7, "topP": 0.9, "topK": 50, "stopSequences": ["THE END"], }, } bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(connect_timeout=3600, read_timeout=3600), ) # Invoke the model with streaming response = bedrock.invoke_model_with_response_stream( modelId="us.amazon.nova-2-lite-v1:0", body=json.dumps(request_body) ) # Process the streaming response for event in response["body"]: chunk = json.loads(event["chunk"]["bytes"]) if "contentBlockDelta" in chunk: delta = chunk["contentBlockDelta"]["delta"] if "text" in delta: print(delta["text"], end="", flush=True)

InvokeModel API with reasoning

Use the InvokeModel API with reasoning enabled for complex problem-solving.

Non-streaming
import json import boto3 from botocore.config import Config # Configure the request request_body = { "messages": [ { "role": "user", "content": [ { "text": 'How many capital letters appear in the following passage. Your response must include only the number: "Wilfred ordered an anvil from ACME. Shipping was expensive."' } ], } ], "reasoningConfig": { "type": "enabled", "maxReasoningEffort": "low", # "low" | "medium" | "high" }, } bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(read_timeout=3600), ) # Invoke the model response = bedrock.invoke_model( modelId="us.amazon.nova-2-lite-v1:0", body=json.dumps(request_body) ) response_body = json.loads(response["body"].read()) # Extract response content content_list = response_body["output"]["message"]["content"] for content in content_list: # Extract the reasoning response if "reasoningContent" in content: print("\n== Reasoning ==") print(content["reasoningContent"]["reasoningText"]["text"]) # Extract the text response if "text" in content: print("\n== Text ==") print(content["text"])
Streaming
import json import boto3 from botocore.config import Config # Configure the request request_body = { "messages": [ { "role": "user", "content": [ { "text": 'How many capital letters appear in the following passage. Your response must include only the number: "Wilfred ordered an anvil from ACME. Shipping was expensive."' } ], } ], "reasoningConfig": { "type": "enabled", "maxReasoningEffort": "low", # "low" | "medium" | "high" }, } bedrock = boto3.client( "bedrock-runtime", region_name="us-east-1", config=Config(connect_timeout=3600, read_timeout=3600), ) # Invoke the model with streaming response = bedrock.invoke_model_with_response_stream( modelId="us.amazon.nova-2-lite-v1:0", body=json.dumps(request_body) ) # Process the streaming response for event in response["body"]: chunk = json.loads(event["chunk"]["bytes"]) if "contentBlockDelta" in chunk: delta = chunk["contentBlockDelta"]["delta"] # Extract the reasoning response if "reasoningContent" in delta: print("\n== Reasoning ==") print(delta["reasoningContent"]["reasoningText"]["text"], end="", flush=True) # Extract the text response if "text" in delta: print("\n== Text ==") print(delta["text"], end="", flush=True)