
Entwicklerhandbuch

AWS SDK für Datenbankverschlüsselung

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

AWS SDK für Datenbankverschlüsselung: Entwicklerhandbuch

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Die Handelsmarken und Handelsaufmachung von Amazon dürfen nicht in einer Weise in Verbindung
mit nicht von Amazon stammenden Produkten oder Services verwendet werden, durch die Kunden
irregeführt werden könnten oder Amazon in schlechtem Licht dargestellt oder diskreditiert werden
könnte. Alle anderen Handelsmarken, die nicht Eigentum von Amazon sind, gehören den jeweiligen
Besitzern, die möglicherweise zu Amazon gehören oder nicht, mit Amazon verbunden sind oder von
Amazon gesponsert werden.

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Table of Contents
Was ist das AWS Database Encryption SDK? .. 1

Entwickelt in Open-Source-Repositorien ... 3
Support und Wartung .. 3
Senden von Feedback .. 4
Konzepte .. 4

Umschlagverschlüsselung ... 5
Datenschlüssel .. 7
Schlüssel zum Umschließen .. 8
Schlüsselanhänger .. 9
Kryptografische Aktionen .. 9
Materialbeschreibung .. 10
Verschlüsselungskontext ... 11
Manager von kryptographischen Materialien .. 12
Symmetrische und asymmetrische Verschlüsselung ... 12
Wichtiges Engagement ... 13
Digitale Signaturen .. 14

Funktionsweise .. 15
Verschlüsseln und signieren ... 16
Entschlüsseln und verifizieren .. 18

Unterstützte Algorithmen-Pakete ... 19
Standard-Algorithmus-Suite .. 22
AES-GCM ohne digitale ECDSA-Signaturen ... 22

Interagieren mit AWS KMS .. 25
Konfigurieren des SDKs ... 27

Auswahl einer Programmiersprache ... 27
Auswahl von Wraping-Schlüsseln ... 27
Einen Discovery-Filter erstellen ... 29
Arbeiten mit Mehrmandantendatenbanken ... 31
Signierte Beacons erstellen ... 31

Schlüsselspeicher ... 39
Terminologie und Konzepte von Key Stores .. 39
Implementieren der geringsten Berechtigungen ... 40
Einen Schlüsselspeicher erstellen ... 41
Schlüsselspeicheraktionen konfigurieren .. 43

iii

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Konfigurieren Sie Ihre Schlüsselspeicher-Aktionen .. 44
Erstellen eines Zweigs .. 47
Drehe deinen aktiven Filialschlüssel ... 51

Schlüsselringe ... 53
Funktionsweise von Schlüsselbunden ... 54
AWS KMS Schlüsselringe ... 55

AWS KMS Erforderliche Berechtigungen für Schlüsselanhänger .. 56
Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund 57
Einen Schlüsselbund erstellen AWS KMS ... 58
Multi-Region verwenden AWS KMS keys .. 61
Verwenden Sie einen Discovery-Schlüsselbund AWS KMS .. 64
Verwenden Sie einen AWS KMS Regional Discovery-Schlüsselbund 67

AWS KMS Hierarchische Schlüsselanhänger ... 69
Funktionsweise .. 71
Voraussetzungen .. 74
Erforderliche Berechtigungen ... 74
Wählen Sie einen Cache .. 75
Erstellen Sie einen hierarchischen Schlüsselbund ... 84
Verwendung des hierarchischen Schlüsselbunds für durchsuchbare Verschlüsselung 91

AWS KMS ECDH-Schlüsselanhänger ... 95
AWS KMS Erforderliche Berechtigungen für ECDH-Schlüsselanhänger 96
Einen ECDH-Schlüsselbund AWS KMS erstellen .. 97
Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen ... 101

Unformatierte AES-Schlüsselbunde .. 104
Unformatierte RSA-Schlüsselbunde .. 106
Raw ECDH Schlüsselanhänger ... 110

Einen RAW-ECDH-Schlüsselbund erstellen ... 111
Multi-Schlüsselbunde ... 121

Durchsuchbare Verschlüsselung .. 125
Sind Beacons das Richtige für meinen Datensatz? .. 126
Durchsuchbares Verschlüsselungsszenario .. 129
Leuchtfeuer .. 131

Standard-Beacons ... 132
Zusammengesetzte Beacons ... 134

Leuchtfeuer planen .. 135
Überlegungen zu Mehrmandantendatenbanken .. 136

iv

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Auswahl eines Beacon-Typs .. 137
Wahl einer Beacon-Länge .. 144
Einen Beacon-Namen wählen .. 151

Konfiguration von Beacons ... 152
Konfiguration von Standard-Beacons ... 153
Konfiguration von Compound-Beacons .. 162
Beispielkonfigurationen ... 173

Verwendung von Beacons .. 178
Beacons abfragen ... 181

Durchsuchbare Verschlüsselung für Multitenant-Datenbanken .. 182
Abfragen von Beacons in einer mandantenfähigen Datenbank ... 185

Amazon-DynamoDB ... 188
Clientseitige und serverseitige Verschlüsselung ... 189
Welche Felder sind verschlüsselt und signiert? .. 191

Verschlüsseln von Attributwerten ... 192
Signieren des Elements .. 193

Durchsuchbare Verschlüsselung in DynamoDB ... 193
Konfiguration sekundärer Indizes mit Beacons .. 194
Testen der Beacon-Ausgaben .. 195

Aktualisierung Ihres Datenmodells .. 202
Fügen Sie neue ENCRYPT_AND_SIGNSIGN_ONLY, und
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribute hinzu 204
Entfernen Sie vorhandene Attribute ... 204
Ändern Sie ein vorhandenes ENCRYPT_AND_SIGN Attribut in SIGN_ONLY oder
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT .. 205
Ändern Sie ein vorhandenes SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribut
SIGN_ONLY oder ENCRYPT_AND_SIGN ... 206
Fügen Sie ein neues DO_NOTHING Attribut hinzu ... 206
Ändern Sie ein vorhandenes SIGN_ONLY Attribut in
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT .. 207
Ändern Sie ein vorhandenes SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribut in
SIGN_ONLY ... 208

Programmiersprachen .. 209
Java ... 209
.NET .. 247
Rust ... 264

v

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Veraltet ... 270
AWS Database Encryption SDK für DynamoDB-Versionsunterstützung 271
Funktionsweise .. 271
Konzepte ... 275
Anbieter von kryptografischem Material ... 280
Programmiersprachen ... 313
Ändern Ihres Datenmodells .. 341
Fehlerbehebung .. 347

DynamoDB Encryption Client umbenennen ... 351
Referenz ... 353

Format der Materialbeschreibung .. 353
AWS KMS Technische Details zum hierarchischen Schlüsselbund ... 357

Dokumentverlauf ... 359
... ccclxii

vi

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Was ist das AWS Database Encryption SDK?

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK umbenannt
. AWS Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB Encryption
Client.

Das AWS Database Encryption SDK besteht aus einer Reihe von Softwarebibliotheken, mit denen
Sie die clientseitige Verschlüsselung in Ihr Datenbankdesign integrieren können. Das AWS Database
Encryption SDK bietet Verschlüsselungslösungen auf Datensatzebene. Sie geben an, welche Felder
verschlüsselt sind und welche Felder in den Signaturen enthalten sind, die die Authentizität Ihrer
Daten sicherstellen. Durch die Verschlüsselung Ihrer sensiblen Daten während der Übertragung und
im Speicher wird sichergestellt, dass Ihre Klartextdaten nicht für Dritte verfügbar sind, einschließlich.
AWS Das AWS Database Encryption SDK wird kostenlos unter der Apache 2.0-Lizenz bereitgestellt.

Dieses Entwicklerhandbuch bietet einen konzeptionellen Überblick über das AWS Database
Encryption SDK, einschließlich einer Einführung in seine Architektur, Einzelheiten darüber, wie es
Ihre Daten schützt, wie es sich von serverseitiger Verschlüsselung unterscheidet, und Anleitungen
zur Auswahl kritischer Komponenten für Ihre Anwendung, um Ihnen den Einstieg zu erleichtern.

Das AWS Database Encryption SDK unterstützt Amazon DynamoDB mit Verschlüsselung auf
Attributebene.

Das AWS Database Encryption SDK bietet die folgenden Vorteile:

Speziell für Datenbankanwendungen entwickelt

Sie müssen kein Kryptografie-Experte sein, um das AWS Database Encryption SDK verwenden
zu können. Die Implementierungen beinhalten Hilfsmethoden, die so konzipiert sind, dass sie mit
Ihren vorhandenen Anwendungen funktionieren.

Nachdem Sie die erforderlichen Komponenten erstellt und konfiguriert haben, verschlüsselt und
signiert der Verschlüsselungsclient Ihre Datensätze transparent, wenn Sie sie einer Datenbank
hinzufügen, und verifiziert und entschlüsselt sie, wenn Sie sie abrufen.

Beinhaltet sichere Verschlüsselung und Signierung

Das AWS Database Encryption SDK umfasst sichere Implementierungen, die die Feldwerte in
jedem Datensatz mit einem eindeutigen Datenverschlüsselungsschlüssel verschlüsseln und den

1

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Datensatz anschließend signieren, um ihn vor unbefugten Änderungen wie dem Hinzufügen oder
Löschen von Feldern oder dem Austauschen verschlüsselter Werte zu schützen.

Verwendet kryptographisches Material aus beliebigen Quellen

Das AWS Database Encryption SDK verwendet Schlüsselringe, um den eindeutigen
Datenverschlüsselungsschlüssel zu generieren, zu verschlüsseln und zu entschlüsseln, der Ihren
Datensatz schützt. Schlüsselringe bestimmen die Umschließungsschlüssel, mit denen dieser
Datenschlüssel verschlüsselt wird.

Sie können Schlüssel aus jeder beliebigen Quelle einschließen, einschließlich
Kryptografiediensten wie AWS Key Management Service()AWS KMS oder. AWS CloudHSM Das
AWS Database Encryption SDK benötigt keinen AWS-Konto oder keinen AWS Dienst.

Support für das Zwischenspeichern kryptografischer Materialien

Der AWS KMS hierarchische Schlüsselbund ist eine Caching-Lösung für kryptografisches
Material, die die Anzahl der AWS KMS Aufrufe reduziert, indem AWS KMS geschützte Branch-
Schlüssel verwendet werden, die in einer Amazon DynamoDB-Tabelle gespeichert sind, und
anschließend das für Ver- und Entschlüsselungsvorgänge verwendete Zweigschlüsselmaterial
lokal zwischenspeichert. Damit können Sie Ihre kryptografischen Materialien mit einem KMS-
Schlüssel mit symmetrischer Verschlüsselung schützen, ohne jedes Mal, wenn Sie einen
Datensatz ver- oder entschlüsseln, erneut aufrufen zu müssen. AWS KMS Der AWS KMS
hierarchische Schlüsselbund ist eine gute Wahl für Anwendungen, bei denen die Anzahl der
Aufrufe minimiert werden muss. AWS KMS

Durchsuchbare Verschlüsselung

Sie können Datenbanken entwerfen, die verschlüsselte Datensätze durchsuchen können, ohne
die gesamte Datenbank zu entschlüsseln. Abhängig von Ihrem Bedrohungsmodell und Ihren
Abfrageanforderungen können Sie eine durchsuchbare Verschlüsselung verwenden, um Suchen
nach exakten Treffern oder individuellere komplexe Abfragen in Ihrer verschlüsselten Datenbank
durchzuführen.

Support für mehrinstanzenfähige Datenbankschemas

Mit dem AWS Database Encryption SDK können Sie Daten schützen, die in Datenbanken mit
einem gemeinsamen Schema gespeichert sind, indem Sie jeden Mandanten mit unterschiedlichen
Verschlüsselungsmaterialien isolieren. Wenn mehrere Benutzer Verschlüsselungsvorgänge
in Ihrer Datenbank durchführen, verwenden Sie einen der AWS KMS Schlüsselbunde,
um jedem Benutzer einen eigenen Schlüssel zur Verfügung zu stellen, den er für seine

2

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

kryptografischen Operationen verwenden kann. Weitere Informationen finden Sie unter Arbeiten
mit Mehrmandantendatenbanken.

Support für nahtlose Schemaaktualisierungen

Wenn Sie das AWS Database Encryption SDK konfigurieren, stellen Sie kryptografische Aktionen
bereit, die dem Client mitteilen, welche Felder verschlüsselt und signiert, welche Felder signiert
(aber nicht verschlüsselt) und welche ignoriert werden sollen. Nachdem Sie das AWS Database
Encryption SDK zum Schutz Ihrer Datensätze verwendet haben, können Sie immer noch
Änderungen an Ihrem Datenmodell vornehmen. Sie können Ihre kryptografischen Aktionen,
wie das Hinzufügen oder Entfernen verschlüsselter Felder, in einer einzigen Bereitstellung
aktualisieren.

Entwickelt in Open-Source-Repositorien

Das AWS Database Encryption SDK wurde in Open-Source-Repositorien am entwickelt. GitHub Sie
können diese Repositorys verwenden, um den Code einzusehen, Probleme zu lesen und zu melden
sowie Informationen zu finden, die für Ihre Implementierung spezifisch sind.

Das AWS Datenbankverschlüsselungs-SDK für DynamoDB

• Das Repository aws-database-encryption-sdk-dynamodb on GitHub unterstützt die neuesten
Versionen des AWS Database Encryption SDK für DynamoDB in Java, .NET und Rust.

Das AWS Database Encryption SDK für DynamoDB ist ein Produkt von Dafny, einer
überprüfungsfähigen Sprache, in der Sie Spezifikationen, den Code zu ihrer Implementierung und
die Beweise, um sie zu testen, schreiben. Das Ergebnis ist eine Bibliothek, die die Funktionen
des AWS Database Encryption SDK für DynamoDB in einem Framework implementiert, das die
funktionale Korrektheit gewährleistet.

Support und Wartung

Das AWS Database Encryption SDK verwendet dieselbe Wartungsrichtlinie wie das AWS SDK
und die Tools, einschließlich der Versionierungs- und Lebenszyklusphasen. Als bewährte Methode
empfehlen wir, dass Sie die neueste verfügbare Version des AWS Database Encryption SDK für
Ihre Datenbankimplementierung verwenden und ein Upgrade durchführen, sobald neue Versionen
veröffentlicht werden.

Entwickelt in Open-Source-Repositorien 3

https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/dafny-lang/dafny/blob/master/README.md
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Weitere Informationen finden Sie in den Wartungsrichtlinien AWS SDKs und Tools im AWS SDKs
Tools-Referenzhandbuch.

Senden von Feedback

Wir freuen uns über Ihr Feedback! Wenn Sie eine Frage oder einen Kommentar haben oder ein
Problem melden möchten, verwenden Sie bitte die folgenden Ressourcen.

Wenn Sie eine potenzielle Sicherheitslücke im AWS Database Encryption SDK entdecken,
benachrichtigen Sie bitte den AWS Sicherheitsdienst. Erstellen Sie kein öffentliches GitHub Problem.

Über den auf jeder Seite angezeigten Feedback-Link können Sie Feedback zu dieser Dokumentation
bereitstellen.

AWS SDK-Konzepte für Datenbankverschlüsselung

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

In diesem Thema werden die im AWS Database Encryption SDK verwendeten Konzepte und
Terminologie erläutert.

Informationen zum Zusammenspiel der Komponenten des AWS Database Encryption SDK finden Sie
unterSo funktioniert das AWS Database Encryption SDK.

Weitere Informationen zum AWS Database Encryption SDK finden Sie in den folgenden Themen.

• Erfahren Sie, wie das AWS Database Encryption SDK Umschlagverschlüsselung verwendet, um
Ihre Daten zu schützen.

• Erfahren Sie mehr über die Elemente der Umschlagverschlüsselung: die Datenschlüssel, die Ihre
Datensätze schützen, und die Umhüllungsschlüssel, die Ihre Datenschlüssel schützen.

• Erfahren Sie mehr über die Schlüsselanhänger, die bestimmen, welche Verpackungsschlüssel Sie
verwenden.

• Erfahren Sie mehr über den Verschlüsselungskontext, der Ihrem Verschlüsselungsprozess
Integrität verleiht.

Senden von Feedback 4

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://aws.amazon.com/security/vulnerability-reporting/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Erfahren Sie mehr über die Materialbeschreibung, die die Verschlüsselungsmethoden Ihrem
Datensatz hinzufügen.

• Erfahren Sie mehr über die kryptografischen Aktionen, die dem AWS Database Encryption SDK
mitteilen, welche Felder verschlüsselt und signiert werden sollen.

Themen

• Umschlagverschlüsselung

• Datenschlüssel

• Schlüssel zum Umschließen

• Schlüsselanhänger

• Kryptografische Aktionen

• Materialbeschreibung

• Verschlüsselungskontext

• Manager von kryptographischen Materialien

• Symmetrische und asymmetrische Verschlüsselung

• Wichtiges Engagement

• Digitale Signaturen

Umschlagverschlüsselung

Die Sicherheit Ihrer verschlüsselten Daten hängt teilweise vom Schutz des Datenschlüssels ab,
der sie entschlüsseln kann. Eine akzeptierte bewährte Methode zum Schutz des Datenschlüssels
ist seine Verschlüsselung. Dazu benötigen Sie einen weiteren Verschlüsselungsschlüssel,
einen sogenannten Schlüsselverschlüsselungsschlüssel oder Wrapping-Schlüssel. Die Praxis,
Datenschlüssel mit einem Wrapping-Schlüssel zu verschlüsseln, wird als Envelope-Verschlüsselung
bezeichnet.

Schutz von Datenschlüsseln

Das AWS Database Encryption SDK verschlüsselt jedes Feld mit einem eindeutigen
Datenschlüssel. Anschließend verschlüsselt es jeden Datenschlüssel unter dem von Ihnen
angegebenen Wrapping-Schlüssel. Es speichert die verschlüsselten Datenschlüssel in der
Materialbeschreibung.

Um Ihren Verpackungsschlüssel anzugeben, verwenden Sie einen Schlüsselbund.

Umschlagverschlüsselung 5

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verschlüsseln derselben Daten unter mehreren Wrapping-Schlüsseln

Sie können den Datenschlüssel mit mehreren Umschließungsschlüsseln verschlüsseln.
Möglicherweise möchten Sie unterschiedliche Umschließungsschlüssel für verschiedene Benutzer
oder Umschließungsschlüssel unterschiedlichen Typs oder an verschiedenen Speicherorten
bereitstellen. Jeder der Umschließungsschlüssel verschlüsselt denselben Datenschlüssel. Das
AWS Database Encryption SDK speichert alle verschlüsselten Datenschlüssel zusammen mit den
verschlüsselten Feldern in der Materialbeschreibung.

Um die Daten zu entschlüsseln, müssen Sie mindestens einen Wrapping-Schlüssel angeben, mit
dem die verschlüsselten Datenschlüssel entschlüsselt werden können.

Kombination der Stärken mehrerer Algorithmen

Um Ihre Daten zu verschlüsseln, verwendet das AWS Database Encryption SDK
standardmäßig eine Algorithmussuite mit symmetrischer AES-GCM-Verschlüsselung,
einer HMAC-basierten Schlüsselableitungsfunktion (HKDF) und ECDSA-Signatur. Um den
Datenschlüssel zu verschlüsseln, können Sie einen symmetrischen oder asymmetrischen
Verschlüsselungsalgorithmus angeben, der zu Ihrem Wrapping-Schlüssel passt.

Im Allgemeinen sind symmetrische Schlüsselverschlüsselungsalgorithmen schneller und
erzeugen kleinere Verschlüsselungstexte als eine asymmetrische Verschlüsselung oder eine
Verschlüsselung mit öffentlichem Schlüssel. Algorithmen mit öffentlichen Schlüsseln bieten jedoch
eine inhärente Rollentrennung. Um die Stärken der beiden zu kombinieren, können Sie den
Datenschlüssel mit einer Verschlüsselung mit öffentlichen Schlüsseln verschlüsseln.

Wir empfehlen, wann immer möglich einen der AWS KMS Schlüsselringe zu verwenden. Wenn
Sie den AWS KMS Schlüsselbund verwenden, können Sie die Stärken mehrerer Algorithmen

Umschlagverschlüsselung 6

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

kombinieren, indem Sie einen asymmetrischen RSA AWS KMS key als Umschließungsschlüssel
angeben. Sie können auch einen KMS-Schlüssel für die symmetrische Verschlüsselung
verwenden.

Datenschlüssel

Ein Datenschlüssel ist ein Verschlüsselungsschlüssel, den das AWS Database Encryption SDK
verwendet, um die Felder in einem Datensatz zu verschlüsseln, die ENCRYPT_AND_SIGN in
den kryptografischen Aktionen markiert sind. Jeder Datenschlüssel ist ein Byte-Array, das die
Anforderungen für kryptografische Schlüssel erfüllt. Das AWS Database Encryption SDK verwendet
einen eindeutigen Datenschlüssel, um jedes Attribut zu verschlüsseln.

Sie müssen Datenschlüssel nicht spezifizieren, generieren, implementieren, erweitern, schützen oder
verwenden. Das AWS Database Encryption SDK erledigt das für Sie, wenn Sie die Verschlüsselungs-
und Entschlüsselungsvorgänge aufrufen.

Um Ihre Datenschlüssel zu schützen, verschlüsselt das AWS Database Encryption SDK sie mit
einem oder mehreren Schlüsselverschlüsselungsschlüsseln, den sogenannten Wrapping Keys.
Nachdem das AWS Database Encryption SDK Ihre Klartext-Datenschlüssel verwendet hat, um Ihre
Daten zu verschlüsseln, werden sie so schnell wie möglich aus dem Speicher entfernt. Speichert
dann den verschlüsselten Datenschlüssel in der Materialbeschreibung. Details hierzu finden Sie unter
So funktioniert das AWS Database Encryption SDK.

Tip

Im AWS Database Encryption SDK unterscheiden wir Datenschlüssel von
Datenverschlüsselungsschlüsseln. Als bewährte Methode verwenden alle unterstützten
Algorithmus-Suiten eine Funktion zur Schlüsselableitung. Die Schlüsselableitungsfunktion
verwendet einen Datenschlüssel als Eingabe und gibt die Datenverschlüsselungsschlüssel
zurück, die tatsächlich zur Verschlüsselung Ihrer Datensätze verwendet werden. Aus diesem
Grund sagen wir oft, dass die Daten „unter“ einem Datenschlüssel verschlüsselt werden, statt
„von“ dem Datenschlüssel.

Jeder verschlüsselte Datenschlüssel enthält Metadaten, einschließlich der Kennung des Wrapping-
Schlüssels, mit dem er verschlüsselt wurde. Diese Metadaten ermöglichen es dem AWS Database
Encryption SDK, beim Entschlüsseln gültige Wrapping-Schlüssel zu identifizieren.

Datenschlüssel 7

https://en.wikipedia.org/wiki/Key_derivation_function

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schlüssel zum Umschließen

Ein Wrapping Key ist ein Schlüssel zur Verschlüsselung, den das AWS Database Encryption SDK
verwendet, um den Datenschlüssel zu verschlüsseln, der Ihre Datensätze verschlüsselt. Jeder
Datenschlüssel kann mit einem oder mehreren Umschließungsschlüsseln verschlüsselt werden. Bei
der Konfiguration eines Schlüsselbunds legen Sie fest, welche Umschließungsschlüssel zum Schutz
Ihrer Daten verwendet werden.

Das AWS Database Encryption SDK unterstützt mehrere häufig verwendete Wrapping-Schlüssel, wie
z. B. AWS Key Management Service(AWS KMS) KMS-Schlüssel mit symmetrischer Verschlüsselung
(einschließlich Schlüssel für mehrere Regionen) und asymmetrische AWS KMS RSA-KMS-
Schlüssel, AES-GCM-Rohschlüssel (Advanced Encryption Standard/Galois Counter Mode) und RSA-
Rohschlüssel. Wir empfehlen, wann immer möglich KMS-Schlüssel zu verwenden. Informationen zur
Entscheidung, welchen Wrapping-Schlüssel Sie verwenden sollten, finden Sie unter Auswählen von
Wrapping-Schlüsseln.

Wenn Sie die Envelope-Verschlüsselung verwenden, müssen Sie Ihre Wrapping Keys vor
unberechtigtem Zugriff schützen. Sie können dies auf eine der folgenden Arten tun:

• Verwenden Sie einen Dienst, der für diesen Zweck entwickelt wurde, z. B. AWS Key Management
Service (AWS KMS).

• Verwenden Sie ein Hardwaresicherheitsmodul (HSM), wie z. B. die Angebote von AWS CloudHSM.

• Verwenden Sie andere wichtige Verwaltungstools und -dienste.

Wenn Sie kein Schlüsselverwaltungssystem haben, empfehlen wir AWS KMS. Das AWS Database
Encryption SDK lässt sich integrieren AWS KMS , damit Sie Ihre Wrapping-Schlüssel schützen und
verwenden können.

Schlüssel zum Umschließen 8

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/asymmetric-key-specs.html#key-spec-rsa
https://docs.aws.amazon.com/kms/latest/developerguide/asymmetric-key-specs.html#key-spec-rsa
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://en.wikipedia.org/wiki/Hardware_security_module
https://aws.amazon.com/cloudhsm/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schlüsselanhänger

Um die Wrapping-Schlüssel anzugeben, die Sie für die Verschlüsselung und Entschlüsselung
verwenden, verwenden Sie einen Schlüsselbund. Sie können die Schlüsselbunde verwenden, die
das AWS Database Encryption SDK bereitstellt, oder Ihre eigenen Implementierungen entwerfen.

Ein Schlüsselbund generiert, verschlüsselt und entschlüsselt Datenschlüssel. Es generiert auch
die MAC-Schlüssel, die zur Berechnung der Hash-Based Message Authentication Codes (HMACs)
in der Signatur verwendet werden. Wenn Sie einen Schlüsselbund definieren, können Sie die
Wrapping-Schlüssel angeben, mit denen Ihre Datenschlüssel verschlüsselt werden. Die meisten
Schlüsselbunde spezifizieren mindestens einen Umschließungsschlüssel oder einen Dienst, der
Schlüssel zum Umschließen bereitstellt und schützt. Bei der Verschlüsselung verwendet das AWS
Database Encryption SDK alle im Schlüsselbund angegebenen Umschließungsschlüssel, um den
Datenschlüssel zu verschlüsseln. Hilfe zur Auswahl und Verwendung der Schlüsselbunde, die das
AWS Database Encryption SDK definiert, finden Sie unter Schlüsselbunde verwenden.

Kryptografische Aktionen

Kryptografische Aktionen teilen dem Verschlüsseler mit, welche Aktionen für jedes Feld in einem
Datensatz ausgeführt werden sollen.

Bei den kryptografischen Aktionswerten kann es sich um einen der folgenden Werte handeln:

• Verschlüsseln und signieren — Verschlüsseln Sie das Feld. Schließt das verschlüsselte Feld in die
Signatur ein.

• Nur signieren — Schließt das Feld in die Signatur ein.

• Signieren und in den Verschlüsselungskontext aufnehmen — Schließt das Feld in den Signatur-
und Verschlüsselungskontext ein.

Standardmäßig sind die Partitions- und Sortierschlüssel das einzige Attribut, das im
Verschlüsselungskontext enthalten ist. Sie könnten erwägen, zusätzliche Felder zu definieren,
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT damit der Anbieter der Branch-Schlüssel-ID
für Ihren AWS KMS hierarchischen Schlüsselbund ermitteln kann, welcher Filialschlüssel für die
Entschlüsselung aus dem Verschlüsselungskontext erforderlich ist. Weitere Informationen finden
Sie unter Lieferant für die Filialschlüssel-ID.

Schlüsselanhänger 9

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Note

Um die SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT kryptografische
Aktion verwenden zu können, müssen Sie Version 3.3 oder höher des AWS
Database Encryption SDK verwenden. Stellen Sie die neue Version für alle
Lesegeräte bereit, bevor Sie Ihr Datenmodell so aktualisieren, dass es diese
enthältSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

• Nichts tun — Verschlüsseln Sie das Feld nicht und nehmen Sie es nicht in die Signatur auf.

Verwenden Sie für jedes Feld, in dem vertrauliche Daten gespeichert werden können,
die Option Verschlüsseln und Signieren. Verwenden Sie für Primärschlüsselwerte (z.
B. einen Partitionsschlüssel und einen Sortierschlüssel in einer DynamoDB-Tabelle) im
Verschlüsselungskontext nur signieren oder Signieren und einschließen. Wenn Sie Attribute vom Typ
„Signieren“ und „Im Verschlüsselungskontext einschließen“ angeben, müssen auch die Partitions-
und Sortierattribute „Im Verschlüsselungskontext signieren und einbeziehen“ lauten. Sie müssen
keine kryptografischen Aktionen für die Materialbeschreibung angeben. Das AWS Database
Encryption SDK signiert automatisch das Feld, in dem die Materialbeschreibung gespeichert ist.

Wählen Sie Ihre kryptografischen Aktionen sorgfältig aus. Verwenden Sie im Zweifelsfall
Verschlüsseln und signieren. Nachdem Sie das AWS Database Encryption SDK zum Schutz
Ihrer Datensätze verwendet haben, können Sie weder ein vorhandenes ENCRYPT_AND_SIGN
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Feld noch die einem vorhandenen DO_NOTHING
Feld zugewiesene kryptografische Aktion ändern. SIGN_ONLY DO_NOTHING Sie können jedoch
weiterhin andere Änderungen an Ihrem Datenmodell vornehmen. Sie können beispielsweise
verschlüsselte Felder in einer einzigen Bereitstellung hinzufügen oder entfernen.

Materialbeschreibung

Die Materialbeschreibung dient als Header für einen verschlüsselten Datensatz. Wenn Sie Felder mit
dem AWS Database Encryption SDK verschlüsseln und signieren, zeichnet der Verschlüsseler die
Materialbeschreibung auf, während er die kryptografischen Materialien zusammenstellt, und speichert
die Materialbeschreibung in einem neuen Feld (aws_dbe_head), das der Verschlüsseler Ihrem
Datensatz hinzufügt.

Bei der Materialbeschreibung handelt es sich um eine übertragbare, formatierte
Datenstruktur, die verschlüsselte Kopien der Datenschlüssel und andere Informationen

Materialbeschreibung 10

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

wie Verschlüsselungsalgorithmen, Verschlüsselungskontext sowie Verschlüsselungs- und
Signieranweisungen enthält. Der Verschlüsseler zeichnet die Materialbeschreibung auf, während
er die kryptografischen Materialien für die Verschlüsselung und Signierung zusammenstellt. Wenn
er später kryptografisches Material zusammenstellen muss, um ein Feld zu verifizieren und zu
entschlüsseln, verwendet er die Materialbeschreibung als Leitfaden.

Wenn Sie die verschlüsselten Datenschlüssel zusammen mit dem verschlüsselten Feld speichern,
wird der Entschlüsselungsvorgang optimiert und Sie müssen keine verschlüsselten Datenschlüssel
unabhängig von den Daten, die sie verschlüsseln, speichern und verwalten.

Technische Informationen zur Materialbeschreibung finden Sie unter. Format der
Materialbeschreibung

Verschlüsselungskontext

Um die Sicherheit Ihrer kryptografischen Operationen zu verbessern, enthält das AWS Database
Encryption SDK in allen Anfragen zum Verschlüsseln und Signieren eines Datensatzes einen
Verschlüsselungskontext.

Ein Verschlüsselungskontext ist eine Gruppe von Name-Wert-Paaren mit willkürlichen, nicht
geheimen, zusätzlich authentifizierten Daten. Das AWS Database Encryption SDK enthält den
logischen Namen für Ihre Datenbank und Primärschlüsselwerte (z. B. einen Partitionsschlüssel und
einen Sortierschlüssel in einer DynamoDB-Tabelle) im Verschlüsselungskontext. Wenn Sie ein Feld
verschlüsseln und signieren, ist der Verschlüsselungskontext kryptografisch an den verschlüsselten
Datensatz gebunden, sodass derselbe Verschlüsselungskontext erforderlich ist, um das Feld zu
entschlüsseln.

Wenn Sie einen AWS KMS Schlüsselbund verwenden, verwendet das AWS Database Encryption
SDK auch den Verschlüsselungskontext, um zusätzliche authentifizierte Daten (AAD) in den Aufrufen
des Schlüsselbunds bereitzustellen. AWS KMS

Immer wenn Sie die Standard-Algorithmus-Suite verwenden, fügt der Cryptographic
Materials Manager (CMM) dem Verschlüsselungskontext ein Name-Wert-Paar hinzu, das
aus einem reservierten Namen und einem Wert bestehtaws-crypto-public-key, der den
öffentlichen Bestätigungsschlüssel darstellt. Der öffentliche Bestätigungsschlüssel wird in der
Materialbeschreibung gespeichert.

Verschlüsselungskontext 11

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Manager von kryptographischen Materialien

Der Cryptographic Materials Manager (CMM) stellt die kryptografischen Materialien zusammen,
die zum Verschlüsseln, Entschlüsseln und Signieren Ihrer Daten verwendet werden. Wann immer
Sie die Standardalgorithmussuite verwenden, umfassen die kryptografischen Materialien Klartext-
und verschlüsselte Datenschlüssel, symmetrische Signaturschlüssel und einen asymmetrischen
Signaturschlüssel. Sie interagieren nie direkt mit dem CMM. Die Ver- und Entschlüsselungsmethoden
übernehmen das für Sie.

Da das CMM als Bindeglied zwischen dem AWS Database Encryption SDK und einem
Schlüsselbund fungiert, ist es ein idealer Ort für Anpassungen und Erweiterungen, z. B. zur
Unterstützung der Richtliniendurchsetzung. Sie können ein CMM explizit angeben, dies ist jedoch
nicht erforderlich. Wenn Sie einen Schlüsselbund angeben, erstellt das AWS Database Encryption
SDK ein Standard-CMM für Sie. Das Standard-CMM ruft die Ver- oder Entschlüsselungsmaterialien
aus dem von Ihnen angegebenen Schlüsselbund ab. Dabei könnte es sich um einen Aufruf eines
kryptographischen Dienstes handeln, z. B. AWS Key Management Service (AWS KMS).

Symmetrische und asymmetrische Verschlüsselung

Bei der symmetrischen Verschlüsselung wird derselbe Schlüssel zum Verschlüsseln und
Entschlüsseln von Daten verwendet.

Asymmetrische Verschlüsselung verwendet ein mathematisch verwandtes Datenschlüsselpaar. Ein
Schlüssel des Paares verschlüsselt die Daten; nur der andere Schlüssel im Paar kann die Daten
entschlüsseln.

Das AWS Database Encryption SDK verwendet Umschlagverschlüsselung. Es verschlüsselt
Ihre Daten mit einem symmetrischen Datenschlüssel. Es verschlüsselt den symmetrischen
Datenschlüssel mit einem oder mehreren symmetrischen oder asymmetrischen Wrapping-
Schlüsseln. Es fügt dem Datensatz eine Materialbeschreibung hinzu, die mindestens eine
verschlüsselte Kopie des Datenschlüssels enthält.

Verschlüsselung Ihrer Daten (symmetrische Verschlüsselung)

Um Ihre Daten zu verschlüsseln, verwendet das AWS Database Encryption SDK einen
symmetrischen Datenschlüssel und eine Algorithmussuite, die einen symmetrischen
Verschlüsselungsalgorithmus enthält. Um die Daten zu entschlüsseln, verwendet das AWS
Database Encryption SDK denselben Datenschlüssel und dieselbe Algorithmus-Suite.

Manager von kryptographischen Materialien 12

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verschlüsselung Ihres Datenschlüssels (symmetrische oder asymmetrische Verschlüsselung)

Der Schlüsselbund, den Sie für einen Verschlüsselungs- und Entschlüsselungsvorgang angeben,
bestimmt, wie der symmetrische Datenschlüssel ver- und entschlüsselt wird. Sie können
einen Schlüsselbund wählen, der symmetrische Verschlüsselung verwendet, z. B. einen AWS
KMS Schlüsselbund mit einem symmetrischen Verschlüsselungs-KMS-Schlüssel, oder einen
Schlüsselbund, der asymmetrische Verschlüsselung verwendet, z. B. einen Schlüsselbund mit
einem asymmetrischen RSA-KMS-Schlüssel. AWS KMS

Wichtiges Engagement

Das AWS Database Encryption SDK unterstützt Key Commitment (manchmal auch als Robustheit
bezeichnet), eine Sicherheitseigenschaft, die sicherstellt, dass jeder Chiffretext nur in einen einzigen
Klartext entschlüsselt werden kann. Zu diesem Zweck stellt Key Commitment sicher, dass nur der
Datenschlüssel, mit dem Ihr Datensatz verschlüsselt wurde, zum Entschlüsseln verwendet wird.
Das AWS Database Encryption SDK beinhaltet Key Commitment für alle Verschlüsselungs- und
Entschlüsselungsvorgänge.

Die meisten modernen symmetrischen Chiffren (einschließlich AES) verschlüsseln Klartext unter
einem einzigen geheimen Schlüssel, wie dem eindeutigen Datenschlüssel, den das AWS Database
Encryption SDK verwendet, um jedes in einem Datensatz markierte Klartextfeld zu verschlüsseln.
ENCRYPT_AND_SIGN Beim Entschlüsseln dieses Datensatzes mit demselben Datenschlüssel
wird ein Klartext zurückgegeben, der mit dem Original identisch ist. Die Entschlüsselung mit einem
anderen Schlüssel schlägt normalerweise fehl. Obwohl schwierig, ist es technisch möglich, einen
Chiffretext unter zwei verschiedenen Schlüsseln zu entschlüsseln. In seltenen Fällen ist es möglich,
einen Schlüssel zu finden, der Chiffretext teilweise in einen anderen, aber dennoch verständlichen
Klartext entschlüsseln kann.

Das AWS Database Encryption SDK verschlüsselt jedes Attribut immer unter einem eindeutigen
Datenschlüssel. Es kann diesen Datenschlüssel unter mehreren Umschließungsschlüsseln
verschlüsseln, aber die Umschließungsschlüssel verschlüsseln immer denselben
Datenschlüssel. Dennoch kann ein ausgeklügelter, manuell erstellter verschlüsselter Datensatz
tatsächlich unterschiedliche Datenschlüssel enthalten, von denen jeder mit einem anderen
Umschließungsschlüssel verschlüsselt ist. Wenn beispielsweise ein Benutzer den verschlüsselten
Datensatz entschlüsselt, gibt er 0x0 (falsch) zurück, während ein anderer Benutzer, der denselben
verschlüsselten Datensatz entschlüsselt, 0x1 (wahr) erhält.

Wichtiges Engagement 13

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Um dieses Szenario zu verhindern, beinhaltet das AWS Database Encryption SDK wichtige
Verpflichtungen beim Verschlüsseln und Entschlüsseln. Bei der Verschlüsselungsmethode wird der
eindeutige Datenschlüssel, der den Chiffretext erzeugt hat, kryptografisch mit der Schlüsselzusage
verknüpft. Dabei handelt es sich um einen Hash-Based Message Authentication Code (HMAC),
der anhand der Materialbeschreibung anhand einer Ableitung des Datenschlüssels berechnet wird.
Anschließend wird die Schlüsselzusage in der Materialbeschreibung gespeichert. Wenn es einen
Datensatz mit Schlüsselzusage entschlüsselt, überprüft das AWS Database Encryption SDK, ob der
Datenschlüssel der einzige Schlüssel für diesen verschlüsselten Datensatz ist. Wenn die Überprüfung
des Datenschlüssels fehlschlägt, schlägt der Entschlüsselungsvorgang fehl.

Digitale Signaturen

Das AWS Database Encryption SDK verschlüsselt Ihre Daten mit einem authentifizierten
Verschlüsselungsalgorithmus, AES-GCM, und der Entschlüsselungsprozess überprüft die Integrität
und Authentizität einer verschlüsselten Nachricht ohne Verwendung einer digitalen Signatur. Da
AES-GCM jedoch symmetrische Schlüssel verwendet, könnte jeder, der den zur Entschlüsselung
des Chiffretextes verwendeten Datenschlüssel entschlüsseln kann, auch manuell einen neuen
verschlüsselten Chiffretext erstellen, was zu potenziellen Sicherheitsbedenken führen könnte.
Wenn Sie beispielsweise einen AWS KMS key als Umschließungsschlüssel verwenden, könnte
ein Benutzer mit entsprechenden Berechtigungen verschlüsselte Chiffretexte erstellen, ohne ihn
anzurufen. kms:Decrypt kms:Encrypt

Um dieses Problem zu vermeiden, fügt die Standard-Algorithmus-Suite verschlüsselten
Datensätzen eine ECDSA-Signatur (Elliptic Curve Digital Signature Algorithm) hinzu. Die Standard-
Algorithmus-Suite verschlüsselt die Felder in Ihrem Datensatz, die mit einem authentifizierten
Verschlüsselungsalgorithmus, ENCRYPT_AND_SIGN AES-GCM, markiert sind. Anschließend
berechnet sie sowohl Hash-basierte Nachrichtenauthentifizierungscodes (HMACs) als auch
asymmetrische ECDSA-Signaturen für die mit, und markierten Felder in Ihrem Datensatz.
ENCRYPT_AND_SIGN SIGN_ONLY SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Bei der
Entschlüsselung wird anhand der Signaturen überprüft, ob ein autorisierter Benutzer den Datensatz
verschlüsselt hat.

Wenn die Standard-Algorithmus-Suite verwendet wird, generiert das AWS Database Encryption
SDK für jeden verschlüsselten Datensatz ein temporäres Paar aus privatem Schlüssel und
öffentlichem Schlüssel. Das AWS Database Encryption SDK speichert den öffentlichen Schlüssel
in der Materialbeschreibung und verwirft den privaten Schlüssel. Dadurch wird sichergestellt, dass
niemand eine weitere Signatur erstellen kann, die mit dem öffentlichen Schlüssel verifiziert wird.
Der Algorithmus bindet den öffentlichen Schlüssel als zusätzliche authentifizierte Daten in der

Digitale Signaturen 14

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Materialbeschreibung an den verschlüsselten Datenschlüssel und verhindert so, dass Benutzer, die
nur Felder entschlüsseln können, den öffentlichen Schlüssel ändern oder die Signaturüberprüfung
beeinträchtigen.

Das AWS Database Encryption SDK beinhaltet immer die HMAC-Verifizierung. Digitale ECDSA-
Signaturen sind standardmäßig aktiviert, aber nicht erforderlich. Wenn die Benutzer, die Daten
verschlüsseln, und die Benutzer, die Daten entschlüsseln, gleichermaßen vertrauenswürdig sind,
sollten Sie die Verwendung einer Algorithmussuite in Betracht ziehen, die keine digitalen Signaturen
enthält, um Ihre Leistung zu verbessern. Weitere Informationen zur Auswahl alternativer Algorithmus-
Suiten finden Sie unter Auswahl einer Algorithmus-Suite.

Note

Wenn ein Schlüsselbund nicht zwischen Verschlüsselern und Entschlüsselern unterscheidet,
bieten digitale Signaturen keinen kryptografischen Wert.

AWS KMS Schlüsselbunde, einschließlich des asymmetrischen RSA-Schlüsselbunds, können
auf der Grundlage von AWS KMS Schlüssel- und IAM-Richtlinien zwischen Verschlüsselern und
Entschlüsselern unterscheiden. AWS KMS

Aufgrund ihres kryptografischen Charakters können die folgenden Schlüsselbunde nicht zwischen
Verschlüsselern und Entschlüsselern unterscheiden:

• AWS KMS Hierarchischer Schlüsselbund

• AWS KMS ECDH-Schlüsselanhänger

• Unformatierter AES-Schlüsselbund

• Unformatierter RSA-Schlüsselbund

• Roher ECDH-Schlüsselanhänger

So funktioniert das AWS Database Encryption SDK

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK umbenannt
. AWS Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB Encryption
Client.

Funktionsweise 15

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Das AWS Database Encryption SDK bietet clientseitige Verschlüsselungsbibliotheken, die speziell
für den Schutz der Daten entwickelt wurden, die Sie in Datenbanken speichern. Die Bibliotheken
enthalten sichere Implementierungen, die Sie erweitern oder unverändert verwenden können.
Weitere Informationen zur Definition und Verwendung benutzerdefinierter Komponenten finden Sie im
GitHub Repository für Ihre Datenbankimplementierung.

In den Workflows in diesem Abschnitt wird erklärt, wie das AWS Database Encryption SDK
die Daten in Ihrer Datenbank verschlüsselt, signiert und entschlüsselt und verifiziert. Diese
Workflows beschreiben den grundlegenden Prozess unter Verwendung abstrakter Elemente und
der Standardfunktionen. Einzelheiten dazu, wie das AWS Database Encryption SDK mit Ihrer
Datenbankimplementierung zusammenarbeitet, finden Sie im Thema Was ist verschlüsselt für Ihre
Datenbank.

Das AWS Database Encryption SDK verwendet Umschlagverschlüsselung, um Ihre Daten zu
schützen. Jeder Datensatz wird unter einem eindeutigen Datenschlüssel verschlüsselt. Der
Datenschlüssel wird verwendet, um einen eindeutigen Datenverschlüsselungsschlüssel für
jedes Feld abzuleiten, das ENCRYPT_AND_SIGN in Ihren kryptografischen Aktionen markiert ist.
Anschließend wird eine Kopie des Datenschlüssels mit den von Ihnen angegebenen Wrapping-
Schlüsseln verschlüsselt. Um den verschlüsselten Datensatz zu entschlüsseln, verwendet das
AWS Database Encryption SDK die von Ihnen angegebenen Wrapping-Schlüssel, um mindestens
einen verschlüsselten Datenschlüssel zu entschlüsseln. Anschließend kann es den Chiffretext
entschlüsseln und einen Klartexteintrag zurückgeben.

Weitere Hinweise zu den im AWS Database Encryption SDK verwendeten Begriffen finden Sie unter.
AWS SDK-Konzepte für Datenbankverschlüsselung

Verschlüsseln und signieren

Im Kern ist das AWS Database Encryption SDK ein Datensatzverschlüsseler, der die Datensätze in
Ihrer Datenbank verschlüsselt, signiert, verifiziert und entschlüsselt. Es enthält Informationen über
Ihre Datensätze und Anweisungen darüber, welche Felder verschlüsselt und signiert werden müssen.
Es ruft die Verschlüsselungsmaterialien und Anweisungen zu ihrer Verwendung von einem Manager
für kryptografische Materialien ab, der anhand des von Ihnen angegebenen Verpackungsschlüssels
konfiguriert wurde.

In der folgenden exemplarischen Vorgehensweise wird beschrieben, wie das AWS Database
Encryption SDK Ihre Dateneinträge verschlüsselt und signiert.

Verschlüsseln und signieren 16

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

1. Der Cryptographic Materials Manager stellt dem AWS Database Encryption SDK eindeutige
Datenverschlüsselungsschlüssel zur Verfügung: einen Klartext-Datenschlüssel, eine Kopie des
mit dem angegebenen Wrapping-Schlüssel verschlüsselten Datenschlüssels und einen MAC-
Schlüssel.

Note

Sie können den Datenschlüssel unter mehreren Wrapping-Schlüsseln verschlüsseln.
Jeder der Umschließungsschlüssel verschlüsselt eine separate Kopie des
Datenschlüssels. Das AWS Database Encryption SDK speichert alle verschlüsselten
Datenschlüssel in der Materialbeschreibung. Das AWS Database Encryption
SDK fügt dem Datensatz, der die Materialbeschreibung speichert, ein neues Feld
(aws_dbe_head) hinzu.
Für jede verschlüsselte Kopie des Datenschlüssels wird ein MAC-Schlüssel abgeleitet.
Die MAC-Schlüssel sind nicht in der Materialbeschreibung gespeichert. Stattdessen
verwendet die Entschlüsselungsmethode die Wrapping-Schlüssel, um die MAC-
Schlüssel erneut abzuleiten.

2. Die Verschlüsselungsmethode verschlüsselt jedes Feld, das ENCRYPT_AND_SIGN in den von
Ihnen angegebenen kryptografischen Aktionen als markiert ist.

3. Die Verschlüsselungsmethode leitet a commitKey aus dem Datenschlüssel ab und generiert
daraus einen Wert für die Schlüsselzuweisung. Anschließend wird der Datenschlüssel verworfen.

4. Die Verschlüsselungsmethode fügt dem Datensatz eine Materialbeschreibung hinzu. Die
Materialbeschreibung enthält die verschlüsselten Datenschlüssel und die anderen Informationen
über den verschlüsselten Datensatz. Eine vollständige Liste der in der Materialbeschreibung
enthaltenen Informationen finden Sie unter Format der Materialbeschreibung.

5. Die Verschlüsselungsmethode verwendet die in Schritt 1 zurückgegebenen MAC-
Schlüssel, um die HMAC-Werte (Hash-Based Message Authentication Code) anhand
der Kanonisierung der Materialbeschreibung, des Verschlüsselungskontextes
und aller mit ENCRYPT_AND_SIGNSIGN_ONLY, oder markierten Felder
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT in den kryptografischen Aktionen zu
berechnen. Die HMAC-Werte werden in einem neuen Feld (aws_dbe_foot) gespeichert, das
die Verschlüsselungsmethode dem Datensatz hinzufügt.

6. Die Verschlüsselungsmethode berechnet anhand der Kanonisierung der Materialbeschreibung,
des Verschlüsselungskontextes und jedes mit, oder markierten ENCRYPT_AND_SIGN Felds eine

Verschlüsseln und signieren 17

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

ECDSA-Signatur SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT und speichert die ECDSA-
Signaturen in dem Feld. SIGN_ONLY aws_dbe_foot

Note

ECDSA-Signaturen sind standardmäßig aktiviert, aber nicht erforderlich.

7. Die Verschlüsselungsmethode speichert den verschlüsselten und signierten Datensatz in Ihrer
Datenbank

Entschlüsseln und verifizieren

1. Der Cryptographic Materials Manager (CMM) stellt die Entschlüsselungsmethode mit den in
der Materialbeschreibung gespeicherten Entschlüsselungsmaterialien bereit, einschließlich des
Klartext-Datenschlüssels und des zugehörigen MAC-Schlüssels.

• Das CMM entschlüsselt den verschlüsselten Datenschlüssel, wobei die Schlüssel im
angegebenen Schlüsselbund eingeschlossen sind, und gibt den Klartext-Datenschlüssel
zurück.

2. Bei der Entschlüsselungsmethode wird der in der Materialbeschreibung angegebene Wert für die
Schlüsselzusage verglichen und verifiziert.

3. Die Entschlüsselungsmethode überprüft die Signaturen im Signaturfeld.

Sie identifiziert, welche Felder markiert sind ENCRYPT_AND_SIGNSIGN_ONLY, oder
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT anhand der Liste der erlaubten, nicht
authentifizierten Felder, die Sie definiert haben. Die Entschlüsselungsmethode verwendet
den in Schritt 1 zurückgegebenen MAC-Schlüssel, um die HMAC-Werte für die mit, oder
markierten Felder neu zu berechnen und zu vergleichen. ENCRYPT_AND_SIGN SIGN_ONLY
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Anschließend werden die ECDSA-
Signaturen anhand des im Verschlüsselungskontext gespeicherten öffentlichen Schlüssels
überprüft.

4. Die Entschlüsselungsmethode verwendet den Klartext-Datenschlüssel, um jeden markierten
Wert zu entschlüsseln. ENCRYPT_AND_SIGN Das AWS Database Encryption SDK verwirft dann
den Klartext-Datenschlüssel.

5. Die Entschlüsselungsmethode gibt den Klartext-Datensatz zurück.

Entschlüsseln und verifizieren 18

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Unterstützte Algorithmus-Suiten im AWS Database Encryption SDK

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Ein Algorithmen-Paket ist eine Sammlung von kryptografischen Algorithmen und zugehörigen
Werten. Kryptografische Systeme verwenden die Implementierung des Algorithmus, um den
Chiffretext zu generieren.

Das AWS Database Encryption SDK verwendet eine Algorithmus-Suite, um die Felder in Ihrer
Datenbank zu verschlüsseln und zu signieren. Alle unterstützten Algorithmus-Suiten verwenden den
Advanced Encryption Standard (AES) -Algorithmus mit Galois/Counter Mode (GCM), auch bekannt
als AES-GCM, zur Verschlüsselung von Rohdaten. Das Database Encryption SDK unterstützt 256-
Bit-Verschlüsselungsschlüssel AWS . Die Länge des Authentifizierungs-Tags beträgt immer 16 Bytes.

AWS Algorithmus-Suiten für das Datenbankverschlüsselungs-SDK

Algorithm
us

Verschlüs
selungsal
gorithmus

Länge des
Datenschl
üssels (in
Bit)

Schlüssel
ableitung
salgorith
mus

Symmetris
cher
Signatura
lgorithmus

Asymmetri
scher
Signatura
lgorithmus

Wichtiges
Engagemen
t

Standard AES-GCM 256 HKDF mit
SHA-512

HMAC-
SHA-384

ECDSA mit
P-384 und
SHA-384

HKDF mit
SHA-512

AES-
GCM ohne
digitale
ECDSA-
Signaturen

AES-GCM 256 HKDF mit
SHA-512

HMAC-
SHA-384

Keine HKDF mit
SHA-512

Unterstützte Algorithmen-Pakete 19

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verschlüsselungsalgorithmus

Der Name und der Modus des verwendeten Verschlüsselungsalgorithmus. Die Algorithmus-
Suiten im AWS Database Encryption SDK verwenden den Advanced Encryption Standard (AES) -
Algorithmus mit Galois/Counter Mode (GCM).

Länge des Datenschlüssels

Die Länge des Datenschlüssels in Bits. Das AWS Database Encryption SDK unterstützt 256-
Bit-Datenschlüssel. Der Datenschlüssel wird als Eingabe für eine HMAC-basierte extract-
and-expand Schlüsselableitungsfunktion (HKDF) verwendet. Die Ausgabe des HKDF wird als
Datenverschlüsselungsschlüssel im Verschlüsselungsalgorithmus verwendet.

Schlüsselableitungsalgorithmus

Die HMAC-basierte extract-and-expand Schlüsselableitungsfunktion (HKDF), die zur Ableitung
des Datenverschlüsselungsschlüssels verwendet wird. Das AWS Database Encryption SDK
verwendet das in RFC 5869 definierte HKDF.

• Die verwendete Hash-Funktion ist SHA-512

• Für den Extraktionsschritt:

• Es wird kein Salt verwendet. Gemäß dem RFC ist das Salz auf eine Zeichenfolge aus Nullen
gesetzt.

• Das Eingabematerial ist der Datenschlüssel aus dem Schlüsselbund.

• Für den Expansionsschritt:

• Der pseudozufällige Eingabeschlüssel ist die Ausgabe aus dem Extraktionsschritt.

• Die Schlüsselbezeichnung besteht aus den UTF-8-kodierten Bytes der DERIVEKEY
Zeichenfolge in Big-Endian-Byte-Reihenfolge.

• Die Eingabeinformationen sind eine Verkettung der Algorithmus-ID und der
Schlüsselbezeichnung (in dieser Reihenfolge).

• Die Länge des Ausgabe-Keying-Materials entspricht der Länge des Datenschlüssels.
Diese Ausgabe wird als Datenverschlüsselungsschlüssel im Verschlüsselungsalgorithmus
verwendet.

Symmetrischer Signaturalgorithmus

Der HMAC-Algorithmus (Hash-Based Message Authentication Code), der zur Generierung einer
symmetrischen Signatur verwendet wird. Alle unterstützten Algorithmus-Suiten beinhalten die
HMAC-Verifizierung.

Unterstützte Algorithmen-Pakete 20

https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Das AWS Database Encryption SDK serialisiert die Materialbeschreibung
und alle mitENCRYPT_AND_SIGN, SIGN_ONLY oder markierten Felder.
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Anschließend verwendet es HMAC mit einem
kryptografischen Hashfunktions-Algorithmus (SHA-384), um die Kanonisierung zu signieren.

Die symmetrische HMAC-Signatur wird in einem neuen Feld (aws_dbe_foot) gespeichert, das
das Database Encryption SDK dem AWS Datensatz hinzufügt.

Asymmetrischer Signaturalgorithmus

Der Signaturalgorithmus, der zur Generierung einer asymmetrischen digitalen Signatur verwendet
wird.

Das AWS Database Encryption SDK serialisiert die Materialbeschreibung
und alle mitENCRYPT_AND_SIGN, SIGN_ONLY oder markierten Felder.
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Anschließend verwendet es den Elliptic Curve
Digital Signature Algorithm (ECDSA) mit den folgenden Besonderheiten, um die Kanonisierung zu
signieren:

• Bei der verwendeten elliptischen Kurve handelt es sich um die P-384, wie sie im Digital
Signature Standard (DSS) (FIPS PUB 186-4) definiert ist.

• Die verwendete Hash-Funktion ist SHA-384.

Die asymmetrische ECDSA-Signatur wird zusammen mit der symmetrischen HMAC-Signatur im
Feld gespeichert. aws_dbe_foot

Digitale ECDSA-Signaturen sind standardmäßig enthalten, aber nicht erforderlich.

Wichtiges Engagement

Die HMAC-basierte extract-and-expand Schlüsselableitungsfunktion (HKDF), die zur Ableitung
des Commit-Schlüssels verwendet wird.

• Die verwendete Hash-Funktion ist SHA-512

• Für den Extraktionsschritt:

• Es wird kein Salt verwendet. Gemäß dem RFC ist das Salz auf eine Zeichenfolge aus Nullen
gesetzt.

• Das Eingabematerial ist der Datenschlüssel aus dem Schlüsselbund.

• Für den Expansionsschritt:

• Der pseudozufällige Eingabeschlüssel ist die Ausgabe aus dem Extraktionsschritt.

Unterstützte Algorithmen-Pakete 21

http://doi.org/10.6028/NIST.FIPS.186-4
http://doi.org/10.6028/NIST.FIPS.186-4

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Die Eingabeinformationen sind die UTF-8-kodierten Bytes der COMMITKEY Zeichenfolge in
Big-Endian-Byte-Reihenfolge.

• Die Länge des Ausgangs-Keying-Materials beträgt 256 Bit. Diese Ausgabe wird als Commit-
Schlüssel verwendet.

Mit dem Commit-Schlüssel wird das Record Commitment, ein eindeutiger 256-Bit-HMAC-Hash
(Hash-Based Message Authentication Code), anhand der Materialbeschreibung berechnet. Eine
technische Erläuterung des Hinzufügens von Key Commitment zu einer Algorithmus-Suite finden
Sie unter Key AEADs Committing in Cryptology ePrint Archive.

Standard-Algorithmus-Suite

Standardmäßig verwendet das AWS Database Encryption SDK eine Algorithmus-Suite mit
AES-GCM, einer HMAC-basierten extract-and-expand Schlüsselableitungsfunktion (HKDF),
HMAC-Verifizierung, digitalen ECDSA-Signaturen, Key Commitment und einem 256-Bit-
Verschlüsselungsschlüssel.

Die Standard-Algorithmus-Suite umfasst HMAC-Verifizierung (symmetrische Signaturen) und digitale
ECDSA-Signaturen (asymmetrische Signaturen). Diese Signaturen werden in einem neuen Feld
(aws_dbe_foot) gespeichert, das das AWS Database Encryption SDK dem Datensatz hinzufügt.
Digitale ECDSA-Signaturen sind besonders nützlich, wenn die Autorisierungsrichtlinie es einer
Benutzergruppe erlaubt, Daten zu verschlüsseln und einer anderen Benutzergruppe, Daten zu
entschlüsseln.

Die standardmäßige Algorithmussuite leitet außerdem eine Schlüsselzusage ab — einen HMAC-
Hash, der den Datenschlüssel mit dem Datensatz verknüpft. Der Key Commitment-Wert ist ein
HMAC, der anhand der Materialbeschreibung und des Commit-Schlüssels berechnet wird. Der
Key Commitment Value wird dann in der Materialbeschreibung gespeichert. Key Commitment
stellt sicher, dass jeder Chiffretext nur in einen Klartext entschlüsselt wird. Dazu validieren sie
den Datenschlüssel, der als Eingabe für den Verschlüsselungsalgorithmus verwendet wird. Bei
der Verschlüsselung leitet die Algorithmus-Suite eine Schlüsselzusage (HMAC) ab. Vor der
Entschlüsselung überprüfen sie, ob der Datenschlüssel dieselbe Schlüsselzusage (HMAC) erzeugt.
Ist dies nicht der Fall, schlägt der Entschlüsselungsaufruf fehl.

AES-GCM ohne digitale ECDSA-Signaturen

Obwohl die Standard-Algorithmus-Suite wahrscheinlich für die meisten Anwendungen geeignet
ist, können Sie auch eine alternative Algorithmussuite wählen. Einige Vertrauensmodelle würden

Standard-Algorithmus-Suite 22

https://eprint.iacr.org/2020/1153

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

beispielsweise durch eine Algorithmussuite ohne digitale ECDSA-Signaturen erfüllt. Verwenden
Sie diese Suite nur, wenn die Benutzer, die Daten verschlüsseln, und die Benutzer, die Daten
entschlüsseln, gleichermaßen vertrauenswürdig sind.

Alle Algorithmus-Suiten des AWS Database Encryption SDK beinhalten HMAC-Verifizierung
(symmetrische Signaturen). Der einzige Unterschied besteht darin, dass der AES-GCM-
Algorithmussuite ohne digitale ECDSA-Signatur die asymmetrische Signatur fehlt, die eine
zusätzliche Ebene für Authentizität und Unwiderlegbarkeit bietet.

Wenn Ihr Schlüsselbund,, und beispielsweise mehrere Schlüssel zum Umschließen enthält
und Sie einen Datensatz mithilfe der symmetrischen wrappingKeyB HMAC-Signatur
entschlüsselnwrappingKeyC, bestätigt die symmetrische HMAC-SignaturwrappingKeyA, dass der
Datensatz von einem Benutzer mit Zugriff auf verschlüsselt wurde. wrappingKeyA wrappingKeyA
Wenn Sie die standardmäßige Algorithmussuite verwendet haben, HMACs stellen sie dieselbe
Überprüfung von bereit und verwenden zusätzlich die digitale ECDSA-SignaturwrappingKeyA, um
sicherzustellen, dass der Datensatz von einem Benutzer mit Verschlüsselungsberechtigungen für
verschlüsselt wurde. wrappingKeyA

Um die AES-GCM-Algorithmussuite ohne digitale Signaturen auszuwählen, nehmen Sie den
folgenden Ausschnitt in Ihre Verschlüsselungskonfiguration auf.

Java

Der folgende Ausschnitt spezifiziert die AES-GCM-Algorithmussuite ohne digitale
ECDSA-Signaturen. Weitere Informationen finden Sie unter the section called
“Verschlüsselungskonfiguration”.

.algorithmSuiteId(
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384)

C# / .NET

Der folgende Ausschnitt spezifiziert die AES-GCM-Algorithmussuite ohne digitale
ECDSA-Signaturen. Weitere Informationen finden Sie unter the section called
“Verschlüsselungskonfiguration”.

AlgorithmSuiteId =
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384

AES-GCM ohne digitale ECDSA-Signaturen 23

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Rust

Der folgende Ausschnitt spezifiziert die AES-GCM-Algorithmussuite ohne digitale
ECDSA-Signaturen. Weitere Informationen finden Sie unter the section called
“Verschlüsselungskonfiguration”.

.algorithm_suite_id(
 DbeAlgorithmSuiteId::AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)

AES-GCM ohne digitale ECDSA-Signaturen 24

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verwenden des AWS Database Encryption SDK mit AWS
KMS

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Um das AWS Database Encryption SDK verwenden zu können, müssen Sie einen Schlüsselbund
konfigurieren und einen oder mehrere Wrapping-Schlüssel angeben. Wenn Sie keine
Schlüsselinfrastruktur haben, empfehlen wir die Verwendung von AWS Key Management Service
(AWS KMS).

Das AWS Database Encryption SDK unterstützt zwei Arten von AWS KMS Schlüsselbunden. Der
herkömmliche AWS KMS Schlüsselbund wird AWS KMS keyszum Generieren, Verschlüsseln
und Entschlüsseln von Datenschlüsseln verwendet. Sie können entweder symmetrische
Verschlüsselung (SYMMETRIC_DEFAULT) oder asymmetrische RSA-KMS-Schlüssel verwenden.
Da das AWS Database Encryption SDK jeden Datensatz mit einem eindeutigen Datenschlüssel
verschlüsselt und signiert, muss der AWS KMS Schlüsselbund bei jedem Verschlüsselungs-
und AWS KMS Entschlüsselungsvorgang aufgerufen werden. Für Anwendungen, die die Anzahl
der Aufrufe minimieren müssen AWS KMS, unterstützt das AWS Database Encryption SDK
auch den hierarchischen Schlüsselbund.AWS KMS Der hierarchische Schlüsselbund ist eine
Lösung zum Zwischenspeichern von kryptografischem Material, die die Anzahl der AWS KMS
Aufrufe reduziert, indem AWS KMS geschützte Branch-Schlüssel verwendet werden, die in einer
Amazon DynamoDB-Tabelle gespeichert sind, und anschließend das bei Verschlüsselungs- und
Entschlüsselungsvorgängen verwendete Zweigschlüsselmaterial lokal zwischengespeichert wird. Wir
empfehlen, wann immer möglich, die Schlüsselringe zu verwenden. AWS KMS

Für die Interaktion mit dem AWS KMS AWS Database Encryption SDK ist das AWS KMS Modul von
erforderlich. AWS SDK für Java

Zur Vorbereitung der Verwendung des AWS Database Encryption SDK mit AWS KMS

1. Erstellen Sie ein AWS-Konto. Wie das geht, erfahren Sie unter Wie erstelle und aktiviere ich ein
neues Amazon Web Services Services-Konto? im AWS Knowledge Center.

25

https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

2. Erstellen Sie eine symmetrische Verschlüsselung AWS KMS key. Hilfe finden Sie unter Creating
Keys im AWS Key Management Service Developer Guide.

Tip

Um das AWS KMS key programmgesteuert verwenden zu können, benötigen Sie den
Amazon-Ressourcennamen (ARN) von. AWS KMS key Hilfe bei der Suche nach dem
ARN eines AWS KMS keyfinden Sie unter Suchen der Schlüssel-ID und des ARN im
AWS Key Management Service Entwicklerhandbuch.

3. Generieren Sie eine Zugriffsschlüssel-ID und einen Sicherheitszugriffsschlüssel. Sie können
entweder die Zugriffsschlüssel-ID und den geheimen Zugriffsschlüssel für einen IAM-Benutzer
verwenden oder Sie können die verwenden, AWS Security Token Service um eine neue Sitzung
mit temporären Sicherheitsanmeldeinformationen zu erstellen, die eine Zugriffsschlüssel-ID,
einen geheimen Zugriffsschlüssel und ein Sitzungstoken enthalten. Aus Sicherheitsgründen
empfehlen wir, temporäre Anmeldeinformationen anstelle der langfristigen Anmeldeinformationen
zu verwenden, die Ihren IAM-Benutzer- oder AWS (Root-) Benutzerkonten zugeordnet sind.

Informationen zum Erstellen eines IAM-Benutzers mit einem Zugriffsschlüssel finden Sie unter
Creating IAM Users Guide im IAM-Benutzerhandbuch.

Informationen zum Generieren temporärer Sicherheitsanmeldedaten finden Sie unter Temporäre
Sicherheitsanmeldeinformationen anfordern im IAM-Benutzerhandbuch.

4. Richten Sie Ihre AWS Anmeldeinformationen anhand der Anweisungen in AWS SDK für
Javasowie der Zugriffsschlüssel-ID und dem geheimen Zugriffsschlüssel ein, die Sie in Schritt 3
generiert haben. Wenn Sie temporäre Anmeldeinformationen generiert haben, müssen Sie auch
das Sitzungstoken angeben.

Dieses Verfahren ermöglicht es AWS SDKs , Anfragen AWS für Sie zu signieren. Bei
Codebeispielen im AWS Database Encryption SDK, die mit interagieren, wird AWS KMS davon
ausgegangen, dass Sie diesen Schritt abgeschlossen haben.

26

https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html#id_users_create_console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Konfiguration des Database Encryption SDK AWS

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Das AWS Database Encryption SDK ist so konzipiert, dass es einfach zu bedienen ist. Obwohl
das AWS Database Encryption SDK über mehrere Konfigurationsoptionen verfügt, wurden die
Standardwerte sorgfältig ausgewählt, damit sie für die meisten Anwendungen praktisch und
sicher sind. Möglicherweise müssen Sie jedoch Ihre Konfiguration anpassen, um die Leistung zu
verbessern, oder eine benutzerdefinierte Funktion in Ihr Design aufnehmen.

Themen

• Auswahl einer Programmiersprache

• Auswahl von Wraping-Schlüsseln

• Einen Discovery-Filter erstellen

• Arbeiten mit Mehrmandantendatenbanken

• Signierte Beacons erstellen

Auswahl einer Programmiersprache

Das AWS Database Encryption SDK für DynamoDB ist in mehreren Programmiersprachen verfügbar.
Die Sprachimplementierungen sind so konzipiert, dass sie vollständig interoperabel sind und
dieselben Funktionen bieten, obwohl sie möglicherweise auf unterschiedliche Weise implementiert
werden. In der Regel verwenden Sie die Bibliothek, die mit Ihrer Anwendung kompatibel ist.

Auswahl von Wraping-Schlüsseln

Das AWS Database Encryption SDK generiert einen eindeutigen symmetrischen Datenschlüssel,
um jedes Feld zu verschlüsseln. Sie müssen die Datenschlüssel nicht konfigurieren, verwalten oder
verwenden. Das AWS Database Encryption SDK erledigt das für Sie.

Sie müssen jedoch einen oder mehrere Wrapping-Schlüssel auswählen, um jeden Datenschlüssel zu
verschlüsseln. Das AWS Database Encryption SDK unterstützt AWS Key Management Service(AWS

Auswahl einer Programmiersprache 27

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

KMS) symmetrische Verschlüsselungs-KMS-Schlüssel und asymmetrische RSA-KMS-Schlüssel.
Es unterstützt auch symmetrische AES-Schlüssel und asymmetrische RSA-Schlüssel, die Sie in
verschiedenen Größen bereitstellen. Sie sind für die Sicherheit und Haltbarkeit Ihrer Wrapping-
Schlüssel verantwortlich. Wir empfehlen Ihnen daher, einen Verschlüsselungsschlüssel in einem
Hardware-Sicherheitsmodul oder einem wichtigen Infrastrukturdienst zu verwenden, wie z. AWS KMS

Um Ihre Verpackungsschlüssel für die Verschlüsselung und Entschlüsselung anzugeben, verwenden
Sie einen Schlüsselbund. Je nach Art des verwendeten Schlüsselbundes können Sie einen
Wrapping-Schlüssel oder mehrere Wrap-Schlüssel desselben oder verschiedener Typen angeben.
Wenn Sie für den Umbruch eines Datenschlüssels mehrere Schlüssel verwenden, verschlüsselt
jeder Umbruchschlüssel eine Kopie desselben Datenschlüssels. Die verschlüsselten Datenschlüssel
(einer pro Umschließungsschlüssel) werden in der Materialbeschreibung gespeichert, die neben dem
verschlüsselten Feld gespeichert wird. Um die Daten zu entschlüsseln, muss das AWS Database
Encryption SDK zunächst einen Ihrer Verpackungsschlüssel verwenden, um einen verschlüsselten
Datenschlüssel zu entschlüsseln.

Wir empfehlen, wann immer möglich, einen der AWS KMS Schlüsselringe zu verwenden. Das AWS
Database Encryption SDK stellt den AWS KMS Schlüsselbund und den AWS KMS hierarchischen
Schlüsselbund bereit, wodurch die Anzahl der Aufrufe reduziert wird. AWS KMS Um einen AWS KMS
key in einem Schlüsselbund anzugeben, verwenden Sie eine unterstützte Schlüssel-ID. AWS KMS
Wenn Sie den AWS KMS hierarchischen Schlüsselbund verwenden, müssen Sie den Schlüssel-ARN
angeben. Einzelheiten zu den Schlüsselbezeichnern für einen AWS KMS Schlüssel finden Sie unter
Schlüsselkennungen im Entwicklerhandbuch.AWS Key Management Service

• Wenn Sie mit einem AWS KMS Schlüsselbund verschlüsseln, können Sie eine beliebige gültige
Schlüssel-ID (Schlüssel-ARN, Aliasname, Alias-ARN oder Schlüssel-ID) für einen KMS-Schlüssel
mit symmetrischer Verschlüsselung angeben. Wenn Sie einen asymmetrischen RSA-KMS-
Schlüssel verwenden, müssen Sie den Schlüssel-ARN angeben.

Wenn Sie bei der Verschlüsselung einen Aliasnamen oder Alias-ARN für einen KMS-Schlüssel
angeben, speichert das AWS Database Encryption SDK den Schlüssel-ARN, der derzeit mit
diesem Alias verknüpft ist; es speichert den Alias nicht. Änderungen am Alias wirken sich nicht auf
den KMS-Schlüssel aus, der zum Entschlüsseln Ihrer Datenschlüssel verwendet wird.

• Standardmäßig entschlüsselt der AWS KMS Schlüsselbund Datensätze im strikten Modus (in dem
Sie bestimmte KMS-Schlüssel angeben). Sie müssen einen Schlüssel-ARN verwenden, um sich
AWS KMS keys für die Entschlüsselung zu identifizieren.

Auswahl von Wraping-Schlüsseln 28

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Wenn Sie mit einem AWS KMS Schlüsselbund verschlüsseln, speichert das AWS Database
Encryption SDK den Schlüssel ARN von AWS KMS key in der Materialbeschreibung zusammen
mit dem verschlüsselten Datenschlüssel. Bei der Entschlüsselung im strikten Modus überprüft das
AWS Database Encryption SDK, ob derselbe Schlüssel-ARN im Schlüsselbund erscheint, bevor
es versucht, den Wrapping-Schlüssel zum Entschlüsseln des verschlüsselten Datenschlüssels
zu verwenden. Wenn Sie eine andere Schlüssel-ID verwenden, erkennt oder verwendet das
AWS Database Encryption SDK diese nicht AWS KMS key, auch wenn sich die Kennungen auf
denselben Schlüssel beziehen.

• Beim Entschlüsseln im Discovery-Modus geben Sie keine Wrapping-Schlüssel an. Zunächst
versucht das AWS Database Encryption SDK, den Datensatz mit dem Schlüssel ARN zu
entschlüsseln, der in der Materialbeschreibung gespeichert ist. Wenn das nicht funktioniert, bittet
das AWS Database Encryption SDK darum, den Datensatz mit dem KMS-Schlüssel AWS KMS
zu entschlüsseln, mit dem er verschlüsselt wurde, unabhängig davon, wem dieser KMS-Schlüssel
gehört oder wer Zugriff darauf hat.

Um einen AES-Rohschlüssel oder ein RSA-Rohschlüsselpaar als Umschließungsschlüssel in
einem Schlüsselbund anzugeben, müssen Sie einen Namespace und einen Namen angeben. Beim
Entschlüsseln müssen Sie für jeden Rohverpackungsschlüssel genau denselben Namespace und
denselben Namen verwenden wie beim Verschlüsseln. Wenn Sie einen anderen Namespace oder
Namen verwenden, erkennt oder verwendet das AWS Database Encryption SDK den Wrapping-
Schlüssel nicht, selbst wenn das Schlüsselmaterial identisch ist.

Einen Discovery-Filter erstellen

Beim Entschlüsseln von Daten, die mit KMS-Schlüsseln verschlüsselt wurden, hat es sich bewährt,
im strikten Modus zu entschlüsseln, d. h., die verwendeten Wrapping-Schlüssel auf die von
Ihnen angegebenen zu beschränken. Bei Bedarf können Sie jedoch auch im Discovery-Modus
entschlüsseln, in dem Sie keine Umschließungsschlüssel angeben. In diesem Modus AWS KMS
können Sie den verschlüsselten Datenschlüssel mithilfe des KMS-Schlüssels entschlüsseln, mit dem
er verschlüsselt wurde, unabhängig davon, wem dieser KMS-Schlüssel gehört oder wer Zugriff darauf
hat.

Wenn Sie im Discovery-Modus entschlüsseln müssen, empfehlen wir, immer einen Discovery-Filter
zu verwenden, der die KMS-Schlüssel, die verwendet werden können, auf diejenigen beschränkt, die
sich in einer bestimmten Partition befinden AWS-Konto . Der Discovery-Filter ist optional, hat sich
aber bewährt.

Einen Discovery-Filter erstellen 29

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verwenden Sie die folgende Tabelle, um den Partitionswert für Ihren Discovery-Filter zu ermitteln.

Region Partition

AWS-Regionen aws

Regionen in China aws-cn

AWS GovCloud (US) Regions aws-us-gov

Das folgende Beispiel zeigt, wie Sie einen Discovery-Filter erstellen. Bevor Sie den Code verwenden,
ersetzen Sie die Beispielwerte durch gültige Werte für Ihre Partition AWS-Konto und.

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();

C# / .NET

var discoveryFilter = new DiscoveryFilter
{
 Partition = "aws",
 AccountIds = 111122223333
};

Rust

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .partition("aws")
 .account_ids(111122223333)
 .build()?;

Einen Discovery-Filter erstellen 30

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Arbeiten mit Mehrmandantendatenbanken

Mit dem AWS Database Encryption SDK können Sie die clientseitige Verschlüsselung für
Datenbanken mit einem gemeinsamen Schema konfigurieren, indem Sie jeden Mandanten mit
unterschiedlichen Verschlüsselungsmaterialien isolieren. Wenn Sie eine mehrinstanzenfähige
Datenbank in Betracht ziehen, sollten Sie sich etwas Zeit nehmen, um Ihre Sicherheitsanforderungen
zu überprüfen und zu überprüfen, wie sich die Mehrmandantenfähigkeit darauf auswirken könnte.
Beispielsweise kann die Verwendung einer Mehrmandantendatenbank Ihre Fähigkeit beeinträchtigen,
das AWS Database Encryption SDK mit einer anderen serverseitigen Verschlüsselungslösung zu
kombinieren.

Wenn mehrere Benutzer Verschlüsselungsvorgänge in Ihrer Datenbank durchführen, können Sie
einen der AWS KMS Schlüsselbunde verwenden, um jedem Benutzer einen eigenen Schlüssel zur
Verfügung zu stellen, den er für seine kryptografischen Operationen verwenden kann. Die Verwaltung
der Datenschlüssel für eine clientseitige Verschlüsselungslösung mit mehreren Mandanten kann
kompliziert sein. Wir empfehlen, Ihre Daten wann immer möglich nach Mandanten zu organisieren.
Wenn der Mandant anhand der Primärschlüsselwerte identifiziert wird (z. B. der Partitionsschlüssel in
einer Amazon DynamoDB-Tabelle), ist die Verwaltung Ihrer Schlüssel einfacher.

Sie können den AWS KMS Schlüsselbund verwenden, um jeden Mandanten mit einem eigenen
AWS KMS Schlüsselbund und zu isolieren. AWS KMS keys Je nach Anzahl der pro Mandant AWS
KMS getätigten Anrufe möchten Sie möglicherweise den AWS KMS hierarchischen Schlüsselbund
verwenden, um die Anzahl der Anrufe zu minimieren. AWS KMS Der AWS KMS hierarchische
Schlüsselbund ist eine Lösung zum Zwischenspeichern von kryptografischem Material, die die
Anzahl der AWS KMS Aufrufe reduziert, indem AWS KMS geschützte Branch-Schlüssel verwendet
werden, die in einer Amazon DynamoDB-Tabelle gespeichert sind, und anschließend das bei
Verschlüsselungs- und Entschlüsselungsvorgängen verwendete Zweigschlüsselmaterial lokal
zwischengespeichert wird. Sie müssen den hierarchischen Schlüsselbund verwenden, um eine
durchsuchbare Verschlüsselung in Ihrer Datenbank zu AWS KMS implementieren.

Signierte Beacons erstellen

Das AWS Database Encryption SDK verwendet Standardbeacons und zusammengesetzte Beacons,
um durchsuchbare Verschlüsselungslösungen bereitzustellen, mit denen Sie verschlüsselte
Datensätze durchsuchen können, ohne die gesamte abgefragte Datenbank entschlüsseln zu
müssen. Das AWS Database Encryption SDK unterstützt jedoch auch signierte Beacons, die
vollständig aus Klartext-signierten Feldern konfiguriert werden können. Signierte Beacons sind eine

Arbeiten mit Mehrmandantendatenbanken 31

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Art von zusammengesetzten Beacons, die komplexe Abfragen von Feldern indizieren und ausführen.
SIGN_ONLY SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Wenn Sie beispielsweise über eine Mehrmandantendatenbank verfügen, möchten Sie
möglicherweise ein signiertes Beacon erstellen, mit dem Sie Ihre Datenbank nach Datensätzen
abfragen können, die mit einem bestimmten Mandantenschlüssel verschlüsselt wurden. Weitere
Informationen finden Sie unter Abfragen von Beacons in einer mandantenfähigen Datenbank.

Sie müssen den AWS KMS hierarchischen Schlüsselbund verwenden, um signierte Beacons zu
erstellen.

Um ein signiertes Beacon zu konfigurieren, geben Sie die folgenden Werte an.

Java

Konfiguration eines zusammengesetzten Beacons

Im folgenden Beispiel werden die signierten Teilelisten lokal innerhalb der signierten Beacon-
Konfiguration definiert.

List<CompoundBeacon> compoundBeaconList = new ArrayList<>();
CompoundBeacon exampleCompoundBeacon = CompoundBeacon.builder()
 .name("compoundBeaconName")
 .split(".")
 .signed(signedPartList)
 .constructors(constructorList)
 .build();
compoundBeaconList.add(exampleCompoundBeacon);

Definition der Beacon-Version

Das folgende Beispiel definiert die signierten Teilelisten global in der Beacon-Version. Weitere
Informationen zur Definition der Beacon-Version finden Sie unter Beacons verwenden.

 List<BeaconVersion> beaconVersions = new ArrayList<>();
beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .signedParts(signedPartList)
 .version(1) // MUST be 1

Signierte Beacons erstellen 32

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .keyStore(keyStore)
 .keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branchKeyId)
 .cacheTTL(6000)
 .build())
 .build())
 .build()
);

C# / .NET

Sehen Sie sich das vollständige Codebeispiel an: .cs BeaconConfig

Signierte Beacon-Konfiguration

Das folgende Beispiel definiert die signierten Teilelisten lokal innerhalb der signierten Beacon-
Konfiguration.

var compoundBeaconList = new List<CompoundBeacon>();
var exampleCompoundBeacon = new CompoundBeacon
 {
 Name = "compoundBeaconName",
 Split = ".",
 Signed = signedPartList,
 Constructors = constructorList
 };
compoundBeaconList.Add(exampleCompoundBeacon);

Definition der Beacon-Version

Das folgende Beispiel definiert die signierten Teilelisten global in der Beacon-Version. Weitere
Informationen zur Definition der Beacon-Version finden Sie unter Beacons verwenden.

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1

Signierte Beacons erstellen 33

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/complexexample/BeaconConfig.cs

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 KeyStore = keyStore,
 KeySource = new BeaconKeySource
 {
 Single = new SingleKeyStore
 {
 KeyId = branchKeyId,
 CacheTTL = 6000
 }
 }
 }
};

Sie können Ihre signierten Teile in lokal oder global definierten Listen definieren. Wir empfehlen, Ihre
signierten Teile wann immer möglich in einer globalen Liste in der Beacon-Version zu definieren.
Durch die globale Definition signierter Teile können Sie jedes Teil einmal definieren und die Teile
dann in mehreren Compound-Beacon-Konfigurationen wiederverwenden. Wenn Sie beabsichtigen,
ein signiertes Teil nur einmal zu verwenden, können Sie es in einer lokalen Liste in der signierten
Beacon-Konfiguration definieren. Sie können in Ihrer Konstruktorliste sowohl auf lokale als auch auf
globale Teile verweisen.

Wenn Sie Ihre signierten Teilelisten global definieren, müssen Sie eine Liste von Konstruktorteilen
bereitstellen, die alle Möglichkeiten aufzeigt, wie der signierte Beacon die Felder in Ihrer Beacon-
Konfiguration zusammenstellen kann.

Note

Um signierte Teilelisten global zu definieren, müssen Sie Version 3.2 oder höher des
AWS Database Encryption SDK verwenden. Stellen Sie die neue Version allen Lesern zur
Verfügung, bevor Sie neue Teile global definieren.
Sie können bestehende Beacon-Konfigurationen nicht aktualisieren, um signierte Teilelisten
global zu definieren.

Name des Beacons

Der Name, den Sie bei der Abfrage des Beacons verwenden.

Ein signierter Beacon-Name darf nicht derselbe Name wie ein unverschlüsseltes Feld sein. Keine
zwei Beacons können denselben Beacon-Namen haben.

Signierte Beacons erstellen 34

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Charakter teilen

Das Zeichen, das verwendet wird, um die Teile zu trennen, aus denen Ihr signiertes Beacon
besteht.

Das Trennzeichen darf in den Klartextwerten der Felder, aus denen der signierte Beacon
aufgebaut ist, nicht vorkommen.

Liste der signierten Teile

Identifiziert die signierten Felder, die im signierten Beacon enthalten sind.

Jeder Teil muss einen Namen, eine Quelle und ein Präfix enthalten. Die Quelle ist das
SIGN_ONLY SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT ODER-Feld, das der Teil
identifiziert. Die Quelle muss ein Feldname oder ein Index sein, der auf den Wert eines
verschachtelten Felds verweist. Wenn Ihr Teilname die Quelle identifiziert, können Sie die Quelle
weglassen und das AWS Database Encryption SDK verwendet den Namen automatisch als
Quelle. Wir empfehlen, wann immer möglich, die Quelle als Teilnamen anzugeben. Das Präfix
kann eine beliebige Zeichenfolge sein, muss jedoch eindeutig sein. Keine zwei signierten Teile
in einem signierten Beacon dürfen dasselbe Präfix haben. Wir empfehlen, einen kurzen Wert zu
verwenden, der den Teil von anderen Teilen unterscheidet, die vom Compound Beacon bedient
werden.

Wir empfehlen, Ihre signierten Teile nach Möglichkeit global zu definieren. Sie könnten erwägen,
ein signiertes Teil lokal zu definieren, wenn Sie es nur in einem Compound Beacon verwenden
möchten. Ein lokal definierter Teil kann nicht dasselbe Präfix oder denselben Namen haben wie
ein global definierter Teil.

Java

List<SignedPart> signedPartList = new ArrayList<>);
 SignedPart signedPartExample = SignedPart.builder()
 .name("signedFieldName")
 .prefix("S-")
 .build();
 signedPartList.add(signedPartExample);

C# / .NET

var signedPartsList = new List<SignedPart>
{

Signierte Beacons erstellen 35

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 new SignedPart { Name = "signedFieldName1", Prefix = "S-" },
 new SignedPart { Name = "signedFieldName2", Prefix = "SF-" }
};

Konstruktorliste (optional)

Identifiziert die Konstruktoren, die die verschiedenen Arten definieren, wie die signierten Teile
durch den signierten Beacon zusammengebaut werden können.

Wenn Sie keine Konstruktorliste angeben, baut das AWS Database Encryption SDK den
signierten Beacon mit dem folgenden Standardkonstruktor zusammen.

• Alle signierten Teile in der Reihenfolge, in der sie der signierten Teileliste hinzugefügt wurden

• Alle Teile sind erforderlich

Konstruktoren

Jeder Konstruktor ist eine geordnete Liste von Konstruktorteilen, die eine Art und Weise
definiert, wie das signierte Beacon zusammengebaut werden kann. Die Konstruktorteile
werden in der Reihenfolge zusammengefügt, in der sie der Liste hinzugefügt wurden, wobei
jeder Teil durch das angegebene Trennzeichen getrennt wird.

Jeder Konstruktorteil benennt einen Teil mit Vorzeichen und definiert, ob dieser Teil innerhalb
des Konstruktors erforderlich oder optional ist. Wenn Sie beispielsweise ein signiertes Beacon
aufField1, und abfragen möchten Field1.Field2Field1.Field2.Field3, markieren
Sie und Field3 als optional Field2 und erstellen Sie einen Konstruktor.

Jeder Konstruktor muss mindestens einen erforderlichen Teil haben. Wir empfehlen, den
ersten Teil in jedem Konstruktor als erforderlich festzulegen, damit Sie den BEGINS_WITH
Operator in Ihren Abfragen verwenden können.

Ein Konstruktor ist erfolgreich, wenn alle erforderlichen Teile im Datensatz vorhanden
sind. Wenn Sie einen neuen Datensatz schreiben, bestimmt der signierte Beacon anhand
der Konstruktorliste, ob der Beacon aus den bereitgestellten Werten zusammengesetzt
werden kann. Es versucht, den Beacon in der Reihenfolge zusammenzustellen, in der die
Konstruktoren der Konstruktorliste hinzugefügt wurden, und verwendet den ersten Konstruktor,
der erfolgreich ist. Wenn keine Konstruktoren erfolgreich sind, wird der Beacon nicht in den
Datensatz geschrieben.

Alle Leser und Autoren sollten dieselbe Reihenfolge der Konstruktoren angeben, um
sicherzustellen, dass ihre Abfrageergebnisse korrekt sind.

Signierte Beacons erstellen 36

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verwenden Sie die folgenden Verfahren, um Ihre eigene Konstruktorliste anzugeben.

1. Erstellen Sie für jedes signierte Teil ein Konstruktorteil, um zu definieren, ob dieses Teil
erforderlich ist oder nicht.

Der Name des Konstruktorteils muss der Name des signierten Felds sein.

Das folgende Beispiel zeigt, wie ein Konstruktorteil für ein signiertes Feld erstellt wird.

Java

ConstructorPart field1ConstructorPart = ConstructorPart.builder()
 .name("Field1")
 .required(true)
 .build();

C# / .NET

var field1ConstructorPart = new ConstructorPart { Name = "Field1", Required
 = true };

2. Erstellen Sie einen Konstruktor für jede mögliche Art und Weise, wie das signierte Beacon
zusammengebaut werden kann. Verwenden Sie dazu die Konstruktorteile, die Sie in Schritt 1
erstellt haben.

Wenn Sie beispielsweise nach Field1.Field2.Field3 und abfragen
möchtenField4.Field2.Field3, müssen Sie zwei Konstruktoren erstellen. Field1und
Field4 können beide erforderlich sein, da sie in zwei separaten Konstruktoren definiert sind.

Java

// Create a list for Field1.Field2.Field3 queries
List<ConstructorPart> field123ConstructorPartList = new ArrayList<>();
field123ConstructorPartList.add(field1ConstructorPart);
field123ConstructorPartList.add(field2ConstructorPart);
field123ConstructorPartList.add(field3ConstructorPart);
Constructor field123Constructor = Constructor.builder()
 .parts(field123ConstructorPartList)
 .build();
// Create a list for Field4.Field2.Field1 queries
List<ConstructorPart> field421ConstructorPartList = new ArrayList<>();
field421ConstructorPartList.add(field4ConstructorPart);
field421ConstructorPartList.add(field2ConstructorPart);

Signierte Beacons erstellen 37

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

field421ConstructorPartList.add(field1ConstructorPart);
Constructor field421Constructor = Constructor.builder()
 .parts(field421ConstructorPartList)
 .build();

C# / .NET

// Create a list for Field1.Field2.Field3 queries
 var field123ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field1ConstructorPart,
 field2ConstructorPart, field3ConstructorPart }
};
// Create a list for Field4.Field2.Field1 queries
var field421ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field4ConstructorPart,
 field2ConstructorPart, field1ConstructorPart }
};

3. Erstellen Sie eine Konstruktorliste, die alle Konstruktoren enthält, die Sie in Schritt 2 erstellt
haben.

Java

List<Constructor> constructorList = new ArrayList<>();
constructorList.add(field123Constructor)
constructorList.add(field421Constructor)

C# / .NET

var constructorList = new List<Constructor>
{
 field123Constructor,
 field421Constructor
};

4. Geben Sie anconstructorList, wann Sie Ihr signiertes Beacon erstellen.

Signierte Beacons erstellen 38

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schlüsselspeicher im AWS Database Encryption SDK
Im AWS Database Encryption SDK ist ein Schlüsselspeicher eine Amazon DynamoDB-Tabelle, die
hierarchische Daten speichert, die vom hierarchischen Schlüsselbund verwendet werden.AWS KMS
Der Schlüsselspeicher trägt dazu bei, die Anzahl der Aufrufe zu reduzieren, die Sie tätigen müssen,
um kryptografische Operationen mit AWS KMS dem hierarchischen Schlüsselbund durchzuführen.

Der Schlüsselspeicher bleibt erhalten und verwaltet die Zweigschlüssel, die der
hierarchische Schlüsselbund für die Umschlagverschlüsselung und den Schutz von
Datenverschlüsselungsschlüsseln verwendet. Der Schlüsselspeicher speichert den aktiven Branch-
Schlüssel und alle vorherigen Versionen des Branch-Schlüssels. Der aktive Zweigschlüssel ist
die neueste Version des Zweigschlüssels. Der hierarchische Schlüsselbund verwendet für jede
Verschlüsselungsanforderung einen eindeutigen Datenverschlüsselungsschlüssel und verschlüsselt
jeden Datenverschlüsselungsschlüssel mit einem eindeutigen Umschließungsschlüssel, der vom
aktiven Filialschlüssel abgeleitet wird. Der hierarchische Schlüsselbund hängt von der Hierarchie ab,
die zwischen aktiven Zweigschlüsseln und ihren abgeleiteten Umschließungsschlüsseln festgelegt
wurde.

Terminologie und Konzepte von Key Stores

Key Store (Schlüsselspeicher)

Die DynamoDB-Tabelle, die hierarchische Daten wie Verzweigungsschlüssel und Beacon-
Schlüssel persistiert.

Stammschlüssel

Ein KMS-Schlüssel mit symmetrischer Verschlüsselung, der die Filialschlüssel und Beacon-
Schlüssel in Ihrem Schlüsselspeicher generiert und schützt.

Filialschlüssel

Ein Datenschlüssel, der wiederverwendet wird, um einen eindeutigen Verpackungsschlüssel
für die Umschlagverschlüsselung abzuleiten. Sie können mehrere Zweigschlüssel in einem
Schlüsselspeicher erstellen, aber für jeden Zweigschlüssel kann jeweils nur eine aktive Version
des Zweigschlüssels vorhanden sein. Der aktive Zweigschlüssel ist die neueste Version des
Zweigschlüssels.

Verzweigungsschlüssel werden AWS KMS keys mithilfe der GenerateDataKeyWithoutPlaintext
Operation kms: abgeleitet.

Terminologie und Konzepte von Key Stores 39

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schlüssel umschließen

Ein eindeutiger Datenschlüssel, der zur Verschlüsselung des bei Verschlüsselungsvorgängen
verwendeten Datenverschlüsselungsschlüssels verwendet wird.

Wrapping-Schlüssel werden von Zweigschlüsseln abgeleitet. Weitere Informationen zur
Schlüsselableitung finden Sie unter Technische Details zum AWS KMS hierarchischen
Schlüsselbund.

Schlüssel zur Datenverschlüsselung

Ein Datenschlüssel, der bei Verschlüsselungsvorgängen verwendet wird. Der hierarchische
Schlüsselbund verwendet für jede Verschlüsselungsanforderung einen eindeutigen
Datenverschlüsselungsschlüssel.

Beacon-Schlüssel

Ein Datenschlüssel, der zur Generierung von Beacons für eine durchsuchbare Verschlüsselung
verwendet wird. Weitere Informationen finden Sie unter Durchsuchbare Verschlüsselung.

Implementieren der geringsten Berechtigungen

Bei der Verwendung eines Schlüsselspeichers und AWS KMS hierarchischer Schlüsselbunde
empfehlen wir, dass Sie dem Prinzip der geringsten Rechte folgen, indem Sie die folgenden Rollen
definieren:

Schlüsselspeicher-Administrator

Schlüsselspeicheradministratoren sind für die Erstellung und Verwaltung des Schlüsselspeichers
und der Filialschlüssel verantwortlich, die dieser speichert und schützt. Key-Store-Administratoren
sollten die einzigen Benutzer mit Schreibberechtigungen für die Amazon DynamoDB-Tabelle
sein, die als Ihr Schlüsselspeicher dient. Sie sollten die einzigen Benutzer sein, die Zugriff auf
privilegierte Administratoroperationen wie CreateKeyund haben. VersionKey Sie können diese
Operationen nur ausführen, wenn Sie Ihre Schlüsselspeicher-Aktionen statisch konfigurieren.

CreateKeyist eine privilegierte Operation, die Ihrer Schlüsselspeicher-Zulassungsliste einen
neuen KMS-Schlüssel-ARN hinzufügen kann. Mit diesem KMS-Schlüssel können neue aktive
Zweigschlüssel erstellt werden. Wir empfehlen, den Zugriff auf diesen Vorgang einzuschränken,
da ein KMS-Schlüssel, der einmal dem Zweigschlüsselspeicher hinzugefügt wurde, nicht gelöscht
werden kann.

Implementieren der geringsten Berechtigungen 40

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schlüsselspeicher-Benutzer

In den meisten Anwendungsfällen interagiert der Schlüsselspeicher-Benutzer beim Verschlüsseln,
Entschlüsseln, Signieren und Überprüfen von Daten nur über den hierarchischen Schlüsselbund
mit dem Schlüsselspeicher. Daher benötigen sie nur Leseberechtigungen für die Amazon
DynamoDB-Tabelle, die als Ihr Schlüsselspeicher dient. Key-Store-Benutzer sollten nur Zugriff
auf die Verwendungsvorgänge benötigen, die kryptografische Operationen ermöglichen,
wieGetActiveBranchKey, undGetBranchKeyVersion. GetBeaconKey Sie benötigen keine
Berechtigungen, um die von ihnen verwendeten Branch-Schlüssel zu erstellen oder zu verwalten.

Sie können Verwendungsvorgänge ausführen, wenn Ihre Schlüsselspeicher-Aktionen
statisch konfiguriert sind oder wenn sie für die Erkennung konfiguriert sind. Sie können
keine Administratoroperationen (CreateKeyundVersionKey) ausführen, wenn Ihre
Schlüsselspeicher-Aktionen für die Erkennung konfiguriert sind.

Wenn Ihr Filialschlüsselspeicheradministrator mehrere KMS-Schlüssel in Ihrem
Zweigschlüsselspeicher zugelassen hat, empfehlen wir Ihren Schlüsselspeicher-Benutzern,
ihre Schlüsselspeicher-Aktionen für die Erkennung so zu konfigurieren, dass ihr hierarchischer
Schlüsselbund mehrere KMS-Schlüssel verwenden kann.

Einen Schlüsselspeicher erstellen

Bevor Sie Branch-Schlüssel erstellen oder einen AWS KMS hierarchischen Schlüsselbund
verwenden können, müssen Sie Ihren Schlüsselspeicher erstellen, eine Amazon DynamoDB-Tabelle,
die Ihre Branch-Schlüssel verwaltet und schützt.

Important

Löschen Sie nicht die DynamoDB-Tabelle, in der Ihre Branch-Schlüssel gespeichert sind.
Wenn Sie diese Tabelle löschen, können Sie keine Daten entschlüsseln, die mit dem
hierarchischen Schlüsselbund verschlüsselt wurden.

Folgen Sie den Verfahren zum Erstellen einer Tabelle im Amazon DynamoDB Developer Guide und
verwenden Sie dabei die folgenden erforderlichen Zeichenkettenwerte für den Partitionsschlüssel und
den Sortierschlüssel.

Einen Schlüsselspeicher erstellen 41

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Partitionsschlüssel Sortierschlüssel

Basistabelle branch-key-id type

Name des logischen Schlüsselspeichers

Bei der Benennung der DynamoDB-Tabelle, die als Schlüsselspeicher dient, ist es wichtig, den
logischen Schlüsselspeicher-Namen, den Sie bei der Konfiguration Ihrer Schlüsselspeicheraktionen
angeben, sorgfältig zu berücksichtigen. Der Name des logischen Schlüsselspeichers dient als
Kennung für Ihren Schlüsselspeicher und kann nicht geändert werden, nachdem er ursprünglich vom
ersten Benutzer definiert wurde. Sie müssen in Ihren Schlüsselspeicher-Aktionen immer denselben
logischen Schlüsselspeicher-Namen angeben.

Es muss eine one-to-one Zuordnung zwischen dem DynamoDB-Tabellennamen und dem Namen
des logischen Schlüsselspeichers bestehen. Der Name des logischen Schlüsselspeichers
ist kryptografisch an alle in der Tabelle gespeicherten Daten gebunden, um DynamoDB-
Wiederherstellungsvorgänge zu vereinfachen. Der Name des logischen Schlüsselspeichers kann
sich zwar von Ihrem DynamoDB-Tabellennamen unterscheiden, wir empfehlen jedoch dringend,
Ihren DynamoDB-Tabellennamen als logischen Schlüsselspeichername anzugeben. Falls sich
Ihr Tabellenname nach dem Wiederherstellen Ihrer DynamoDB-Tabelle aus einer Sicherung
ändert, kann der Name des logischen Schlüsselspeichers dem neuen DynamoDB-Tabellennamen
zugeordnet werden, um sicherzustellen, dass der hierarchische Schlüsselbund weiterhin auf Ihren
Schlüsselspeicher zugreifen kann.

Nehmen Sie keine vertraulichen oder sensiblen Informationen in den Namen Ihres logischen
Schlüsselspeichers auf. Der Name des logischen Schlüsselspeichers wird in AWS KMS CloudTrail
Ereignissen im Klartext als. tablename

Nächste Schritte

1. the section called “Schlüsselspeicheraktionen konfigurieren”

2. the section called “Erstellen eines Zweigs”

3. Erstellen Sie einen AWS KMS hierarchischen Schlüsselbund

Einen Schlüsselspeicher erstellen 42

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schlüsselspeicheraktionen konfigurieren

Schlüsselspeicher-Aktionen bestimmen, welche Operationen Ihre Benutzer ausführen können
und wie ihr AWS KMS hierarchischer Schlüsselbund die KMS-Schlüssel verwendet, die in Ihrem
Schlüsselspeicher zugelassen sind. Das AWS Database Encryption SDK unterstützt die folgenden
Konfigurationen für Schlüsselspeicher-Aktionen.

Statisch

Wenn Sie Ihren Schlüsselspeicher statisch konfigurieren, kann der Schlüsselspeicher nur
den KMS-Schlüssel verwenden, der dem KMS-Schlüssel-ARN zugeordnet ist, den Sie
kmsConfiguration bei der Konfiguration Ihrer Schlüsselspeicheraktionen angeben. Eine
Ausnahme wird ausgelöst, wenn beim Erstellen, Versionieren oder Abrufen eines Zweigschlüssels
auf einen anderen KMS-Schlüssel-ARN gestoßen wird.

Sie können einen KMS-Schlüssel für mehrere Regionen in Ihrem angebenkmsConfiguration,
aber der gesamte ARN des Schlüssels, einschließlich der Region, wird in den vom KMS-Schlüssel
abgeleiteten Zweigschlüsseln beibehalten. Sie können keinen Schlüssel in einer anderen Region
angeben. Sie müssen exakt denselben Schlüssel für mehrere Regionen angeben, damit die Werte
übereinstimmen.

Wenn Sie Ihre Schlüsselspeicher-Aktionen statisch konfigurieren, können Sie
Verwendungsvorgänge (GetActiveBranchKeyGetBranchKeyVersion,GetBeaconKey)
und Verwaltungsvorgänge (CreateKeyundVersionKey) ausführen. CreateKeyist eine
privilegierte Operation, die Ihrer Schlüsselspeicher-Zulassungsliste einen neuen KMS-Schlüssel-
ARN hinzufügen kann. Mit diesem KMS-Schlüssel können neue aktive Zweigschlüssel erstellt
werden. Wir empfehlen, den Zugriff auf diesen Vorgang einzuschränken, da ein KMS-Schlüssel,
der einmal dem Schlüsselspeicher hinzugefügt wurde, nicht gelöscht werden kann.

Erkennung

Wenn Sie Ihre Schlüsselspeicheraktionen für die Erkennung konfigurieren, kann der
Schlüsselspeicher jeden AWS KMS key ARN verwenden, der in Ihrem Schlüsselspeicher
zugelassen ist. Es wird jedoch eine Ausnahme ausgelöst, wenn ein KMS-Schlüssel mit mehreren
Regionen gefunden wird und die Region im ARN des Schlüssels nicht mit der Region des
verwendeten AWS KMS Clients übereinstimmt.

Wenn Sie Ihren Schlüsselspeicher für die Erkennung konfigurieren, können Sie keine
administrativen Operationen wie CreateKey und VersionKey ausführen. Sie können nur die

Schlüsselspeicheraktionen konfigurieren 43

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verwendungsvorgänge ausführen, die Verschlüsselungs-, Entschlüsselungs-, Signierungs- und
Überprüfungsvorgänge ermöglichen. Weitere Informationen finden Sie unter the section called
“Implementieren der geringsten Berechtigungen”.

Konfigurieren Sie Ihre Schlüsselspeicher-Aktionen

Bevor Sie Ihre Schlüsselspeicher-Aktionen konfigurieren, stellen Sie sicher, dass die folgenden
Voraussetzungen erfüllt sind.

• Ermitteln Sie, welche Operationen Sie ausführen müssen. Weitere Informationen finden Sie unter
the section called “Implementieren der geringsten Berechtigungen”.

• Wählen Sie einen Namen für den logischen Schlüsselspeicher

Es muss eine one-to-one Zuordnung zwischen dem DynamoDB-Tabellennamen und dem Namen
des logischen Schlüsselspeichers bestehen. Der Name des logischen Schlüsselspeichers
ist kryptografisch an alle in der Tabelle gespeicherten Daten gebunden, um DynamoDB-
Wiederherstellungsvorgänge zu vereinfachen. Er kann nicht geändert werden, nachdem er
ursprünglich vom ersten Benutzer definiert wurde. Sie müssen in Ihren Schlüsselspeicheraktionen
immer denselben logischen Schlüsselspeicher-Namen angeben. Weitere Informationen finden Sie
unter logical key store name.

Statische Konfiguration

Im folgenden Beispiel werden Schlüsselspeicheraktionen statisch konfiguriert. Sie müssen den
Namen der DynamoDB-Tabelle angeben, die als Ihr Schlüsselspeicher dient, einen logischen Namen
für den Schlüsselspeicher und den KMS-Schlüssel-ARN, der einen KMS-Schlüssel mit symmetrischer
Verschlüsselung identifiziert.

Note

Berücksichtigen Sie sorgfältig den KMS-Schlüssel-ARN, den Sie bei der statischen
Konfiguration Ihres Schlüsselspeicherdienstes angeben. Der CreateKey Vorgang fügt den
KMS-Schlüssel ARN zu Ihrer Zulassungsliste für den Branch Key Store hinzu. Sobald ein
KMS-Schlüssel dem Branch-Schlüsselspeicher hinzugefügt wurde, kann er nicht gelöscht
werden.

Konfigurieren Sie Ihre Schlüsselspeicher-Aktionen 44

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())
 .ddbTableName(keyStoreName)
 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .kmsKeyArn(kmsKeyArn)
 .build())
 .build()).build();

C# / .NET

var kmsConfig = new KMSConfiguration { KmsKeyArn = kmsKeyArn };
 var keystoreConfig = new KeyStoreConfig
 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = kmsConfig,
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Rust

let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let key_store_config = KeyStoreConfig::builder()
 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
 .ddb_client(aws_sdk_dynamodb::Client::new(&sdk_config))
 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)
 .kms_configuration(KmsConfiguration::KmsKeyArn(kms_key_arn.to_string()))
 .build()?;

let keystore = keystore_client::Client::from_conf(key_store_config)?;

Konfigurieren Sie Ihre Schlüsselspeicher-Aktionen 45

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Discovery-Konfiguration

Im folgenden Beispiel werden Schlüsselspeicheraktionen für die Erkennung konfiguriert. Sie müssen
den Namen der DynamoDB-Tabelle, die als Ihr Schlüsselspeicher dient, und einen logischen
Schlüsselspeicher-Namen angeben.

Java

final KeyStore keystore = KeyStore.builder().KeyStoreConfig(
 KeyStoreConfig.builder()
 .ddbClient(DynamoDbClient.create())
 .ddbTableName(keyStoreName)
 .logicalKeyStoreName(logicalKeyStoreName)
 .kmsClient(KmsClient.create())
 .kmsConfiguration(KMSConfiguration.builder()
 .discovery(Discovery.builder().build())
 .build())
 .build()).build();

C# / .NET

var keystoreConfig = new KeyStoreConfig
 {
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsConfiguration = new KMSConfiguration {Discovery = new Discovery()},
 DdbTableName = keyStoreName,
 DdbClient = new AmazonDynamoDBClient(),
 LogicalKeyStoreName = logicalKeyStoreName
 };
 var keystore = new KeyStore(keystoreConfig);

Rust

let key_store_config = KeyStoreConfig::builder()
 .kms_client(kms_client)
 .ddb_client(ddb_client)
 .ddb_table_name(key_store_name)
 .logical_key_store_name(logical_key_store_name)

 .kms_configuration(KmsConfiguration::Discovery(Discovery::builder().build()?))
 .build()?;

Konfigurieren Sie Ihre Schlüsselspeicher-Aktionen 46

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Erstellen Sie einen aktiven Filialschlüssel

Ein Verzweigungsschlüssel ist ein Datenschlüssel AWS KMS key , der von einem abgeleitet ist und
den der AWS KMS hierarchische Schlüsselbund verwendet, um die Anzahl der Aufrufe zu reduzieren.
AWS KMS Der aktive Zweigschlüssel ist die neueste Version des Zweigschlüssels. Der hierarchische
Schlüsselbund generiert für jede Verschlüsselungsanforderung einen eindeutigen Datenschlüssel
und verschlüsselt jeden Datenschlüssel mit einem eindeutigen Umschließungsschlüssel, der vom
aktiven Zweigschlüssel abgeleitet wird.

Um einen neuen aktiven Zweigschlüssel zu erstellen, müssen Sie Ihre Schlüsselspeicher-Aktionen
statisch konfigurieren. CreateKeyist eine privilegierte Operation, die den in Ihrer Konfiguration
für Schlüsselspeicheraktionen angegebenen KMS-Schlüssel-ARN zu Ihrer Schlüsselspeicher-
Zulassungsliste hinzufügt. Anschließend wird der KMS-Schlüssel verwendet, um den neuen aktiven
Branch-Schlüssel zu generieren. Wir empfehlen, den Zugriff auf diesen Vorgang einzuschränken,
da ein KMS-Schlüssel, der einmal zum Schlüsselspeicher hinzugefügt wurde, nicht gelöscht werden
kann.

Wir empfehlen, den CreateKey Vorgang über die KeyStore Admin-Oberfläche in der
Steuerungsebene Ihrer Anwendung zu verwenden. Dieser Ansatz entspricht den bewährten
Methoden für die Schlüsselverwaltung.

Erstellen Sie keine Zweigschlüssel auf der Datenebene. Diese Vorgehensweise kann zu folgenden
Ergebnissen führen:

• Unnötige Anrufe an AWS KMS

• Mehrere gleichzeitige Aufrufe AWS KMS in Umgebungen mit hoher Parallelität

• Mehrere TransactWriteItems Aufrufe der zugrunde liegenden DynamoDB-Tabelle.

Der CreateKey Vorgang beinhaltet eine Zustandsprüfung im TransactWriteItems Aufruf, um
zu verhindern, dass vorhandene Verzweigungsschlüssel überschrieben werden. Das Erstellen von
Schlüsseln auf der Datenebene kann jedoch immer noch zu ineffizienter Ressourcennutzung und
potenziellen Leistungsproblemen führen.

Sie können einen KMS-Schlüssel in Ihrem Schlüsselspeicher zulassen, oder Sie können mehrere
KMS-Schlüssel zulassen, indem Sie den KMS-Schlüssel-ARN, den Sie in Ihrer Konfiguration für
Schlüsselspeicher-Aktionen angeben, aktualisieren und erneut aufrufenCreateKey. Wenn Sie
mehrere KMS-Schlüssel auf die Zulassungsliste setzen, sollten Ihre Schlüsselspeicher-Benutzer

Erstellen eines Zweigs 47

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

ihre Schlüsselspeicher-Aktionen für die Erkennung so konfigurieren, dass sie alle Schlüssel auf
der Zulassungsliste im Schlüsselspeicher verwenden können, auf die sie Zugriff haben. Weitere
Informationen finden Sie unter the section called “Schlüsselspeicheraktionen konfigurieren”.

Erforderliche -Berechtigungen

Um Zweigschlüssel zu erstellen, benötigen Sie die ReEncrypt Berechtigungen kms:
GenerateDataKeyWithoutPlaintext und kms: für den KMS-Schlüssel, der in Ihren
Schlüsselspeicheraktionen angegeben ist.

Erstellen eines Zweigs

Der folgende Vorgang erstellt einen neuen aktiven Branch-Schlüssel unter Verwendung des KMS-
Schlüssels, den Sie in Ihrer Konfiguration für Schlüsselspeicher-Aktionen angegeben haben, und fügt
den aktiven Branch-Schlüssel zur DynamoDB-Tabelle hinzu, die als Ihr Schlüsselspeicher dient.

Wenn Sie aufrufenCreateKey, können Sie wählen, ob Sie die folgenden optionalen Werte angeben
möchten.

• branchKeyIdentifier: definiert eine benutzerdefiniertebranch-key-id.

Um einen benutzerdefinierten zu erstellenbranch-key-id, müssen Sie dem
encryptionContext Parameter auch einen zusätzlichen Verschlüsselungskontext hinzufügen.

• encryptionContext: definiert einen optionalen Satz nicht geheimer Schlüssel-Wert-Paare, der
zusätzliche authentifizierte Daten (AAD) in dem Verschlüsselungskontext bereitstellt, der im kms: -
Aufruf enthalten ist. GenerateDataKeyWithoutPlaintext

Dieser zusätzliche Verschlüsselungskontext wird mit dem Präfix angezeigt. aws-crypto-ec:

Java

final Map<String, String> additionalEncryptionContext =
 Collections.singletonMap("Additional Encryption Context for",
 "custom branch key id");

 final String BranchKey = keystore.CreateKey(
 CreateKeyInput.builder()
 .branchKeyIdentifier(custom-branch-key-id) //OPTIONAL
 .encryptionContext(additionalEncryptionContext) //OPTIONAL

Erstellen eines Zweigs 48

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .build()).branchKeyIdentifier();

C# / .NET

var additionalEncryptionContext = new Dictionary<string, string>();
 additionalEncryptionContext.Add("Additional Encryption Context for", "custom
 branch key id");

 var branchKeyId = keystore.CreateKey(new CreateKeyInput
 {
 BranchKeyIdentifier = "custom-branch-key-id", // OPTIONAL
 EncryptionContext = additionalEncryptionContext // OPTIONAL
 });

Rust

let additional_encryption_context = HashMap::from([
 ("Additional Encryption Context for".to_string(), "custom branch key
 id".to_string())
]);

let branch_key_id = keystore.create_key()
 .branch_key_identifier("custom-branch-key-id") // OPTIONAL
 .encryption_context(additional_encryption_context) // OPTIONAL
 .send()
 .await?
 .branch_key_identifier
 .unwrap();

Zunächst generiert die CreateKey Operation die folgenden Werte.

• Ein Universally Unique Identifier (UUID) der Version 4 für branch-key-id (sofern Sie keinen
benutzerdefinierten Namen angegeben haben). branch-key-id

• Eine UUID der Version 4 für die Branch Key-Version

• A timestamp im ISO 8601-Datums- und Uhrzeitformat in koordinierter Weltzeit (Coordinated
Universal Time, UTC).

Dann ruft der CreateKey Vorgang kms: GenerateDataKeyWithoutPlaintext mit der folgenden
Anforderung auf.

Erstellen eines Zweigs 49

https://www.ietf.org/rfc/rfc4122.txt
https://www.iso.org/iso-8601-date-and-time-format.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

{
 "EncryptionContext": {
 "branch-key-id" : "branch-key-id",
 "type" : "type",
 "create-time" : "timestamp",
 "logical-key-store-name" : "the logical table name for your key store",
 "kms-arn" : the KMS key ARN,
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 },
 "KeyId": "the KMS key ARN you specified in your key store actions",
 "NumberOfBytes": "32"
 }

Note

Der CreateKey Vorgang erstellt einen aktiven Branch-Schlüssel und einen Beacon-
Schlüssel, auch wenn Sie Ihre Datenbank nicht für durchsuchbare Verschlüsselung
konfiguriert haben. Beide Schlüssel werden in Ihrem Schlüsselspeicher gespeichert.
Weitere Informationen finden Sie unter Verwenden des hierarchischen Schlüsselbundes für
durchsuchbare Verschlüsselung.

Als Nächstes ruft der CreateKey Vorgang kms: ReEncrypt auf, um einen aktiven Datensatz für den
Branch-Schlüssel zu erstellen, indem der Verschlüsselungskontext aktualisiert wird.

Zuletzt ruft der CreateKey Vorgang ddb: TransactWriteItems auf, um ein neues Element zu
schreiben, das den Verzweigungsschlüssel in der Tabelle, die Sie in Schritt 2 erstellt haben,
beibehält. Dieser Artikel hat die folgenden Attribute.

{
 "branch-key-id" : branch-key-id,
 "type" : "branch:ACTIVE",
 "enc" : the branch key returned by the GenerateDataKeyWithoutPlaintext call,
 "version": "branch:version:the branch key version UUID",
 "create-time" : "timestamp",
 "kms-arn" : "the KMS key ARN you specified in Step 1",
 "hierarchy-version" : "1",
 "aws-crypto-ec:contextKey": "contextValue"
 }

Erstellen eines Zweigs 50

https://docs.aws.amazon.com/kms/latest/APIReference/AAPI_ReEncrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Drehe deinen aktiven Filialschlüssel

Für jeden Filialschlüssel kann es jeweils nur eine aktive Version geben. In der Regel wird jede aktive
Version des Zweigschlüssels verwendet, um mehrere Anfragen zu erfüllen. Sie kontrollieren jedoch,
in welchem Umfang aktive Zweigschlüssel wiederverwendet werden, und bestimmen, wie oft der
aktive Zweigschlüssel rotiert wird.

Zweigschlüssel werden nicht zur Verschlüsselung von Klartext-Datenschlüsseln verwendet.
Sie werden verwendet, um die eindeutigen Wrapping-Schlüssel abzuleiten, mit denen Klartext-
Datenschlüssel verschlüsselt werden. Bei der Ableitung des Wrapping-Schlüssels wird ein
einzigartiger 32-Byte-Wrapping-Schlüssel mit 28 Byte Zufälligkeit erzeugt. Das bedeutet, dass aus
einem Zweigschlüssel mehr als 79 Oktillionen oder 2.96 einzigartige Wrapping-Schlüssel abgeleitet
werden können, bevor es zu einem kryptografischen Verschleiß kommt. Trotz dieses sehr geringen
Erschöpfungsrisikos müssen Sie Ihre aktiven Filialschlüssel möglicherweise aufgrund von Geschäfts-
oder Vertragsregeln oder behördlichen Vorschriften rotieren.

Die aktive Version des Zweigschlüssels bleibt aktiv, bis Sie ihn rotieren. Frühere Versionen des
aktiven Zweigschlüssels werden nicht zur Ausführung von Verschlüsselungsvorgängen verwendet
und können auch nicht zum Ableiten neuer Umschließungsschlüssel verwendet werden. Sie können
jedoch weiterhin abgefragt werden und stellen Umschließungsschlüssel zur Verfügung, um die
Datenschlüssel zu entschlüsseln, die sie verschlüsselt haben, während sie aktiv waren.

Warning

Das Löschen von Zweigschlüsseln in Testumgebungen ist irreversibel. Sie können gelöschte
Zweigschlüssel nicht wiederherstellen. Wenn Sie in Testumgebungen Zweigschlüssel mit
derselben ID löschen und neu erstellen, können die folgenden Probleme auftreten:

• Materialien aus früheren Testläufen verbleiben möglicherweise im Cache

• Einige Testhosts oder Threads verschlüsseln möglicherweise Daten mit gelöschten
Zweigschlüsseln

• Daten, die mit gelöschten Branches verschlüsselt wurden, können nicht entschlüsselt
werden

Gehen Sie wie folgt vor, um Verschlüsselungsfehler bei Integrationstests zu verhindern:

• Setzen Sie die hierarchische Schlüsselbundreferenz zurück, bevor Sie neue
Zweigschlüssel erstellen ODER

Drehe deinen aktiven Filialschlüssel 51

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Verwenden Sie IDs für jeden Test einen eindeutigen Zweigschlüssel

Erforderliche Berechtigungen

Um Zweigschlüssel rotieren zu können, benötigen Sie die ReEncrypt Berechtigungen kms:
GenerateDataKeyWithoutPlaintext und kms: für den KMS-Schlüssel, der in Ihren Schlüsselspeicher-
Aktionen angegeben ist.

Rotiert einen aktiven Zweigschlüssel

Verwenden Sie die VersionKey Operation, um Ihren aktiven Zweigschlüssel zu drehen.
Wenn Sie den aktiven Abzweigschlüssel rotieren, wird ein neuer Abzweigschlüssel erstellt, der
die vorherige Version ersetzt. Das branch-key-id ändert sich nicht, wenn Sie den aktiven
Abzweigschlüssel drehen. Sie müssen den Schlüssel angebenbranch-key-id, der den aktuell
aktiven Abzweigschlüssel identifiziert, wenn Sie anrufenVersionKey.

Java

keystore.VersionKey(
 VersionKeyInput.builder()
 .branchKeyIdentifier("branch-key-id")
 .build()
);

C# / .NET

 keystore.VersionKey(new VersionKeyInput{BranchKeyIdentifier = branchKeyId});

Rust

keystore.version_key()
 .branch_key_identifier(branch_key_id)
 .send()
 .await?;

Drehe deinen aktiven Filialschlüssel 52

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schlüsselringe

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Das AWS Database Encryption SDK verwendet Schlüsselringe, um die Envelope-Verschlüsselung
durchzuführen. Schlüsselbunde generieren, verschlüsseln und entschlüsseln Datenschlüssel.
Schlüsselringe bestimmen die Quelle der eindeutigen Datenschlüssel, die jeden verschlüsselten
Datensatz schützen, und der Umschließungsschlüssel, mit denen dieser Datenschlüssel
verschlüsselt wird. Sie geben bei der Verschlüsselung einen Schlüsselbund und bei der
Entschlüsselung denselben oder einen anderen Schlüsselbund an.

Sie können jeden Schlüsselbund einzeln verwenden oder Schlüsselbunde in einen Multi-
Schlüsselbund kombinieren. Obwohl die meisten Schlüsselbunde Datenschlüssel generieren,
verschlüsseln und entschlüsseln können, können Sie einen Schlüsselbund erstellen, der nur eine
bestimmte Operation ausführt, wie z. B. einen Schlüsselbund, der nur Datenschlüssel generiert.
Dieser Schlüsselbund kann dann in Kombination mit anderen verwendet werden.

Wir empfehlen Ihnen, einen Schlüsselbund zu verwenden, der Ihre Umschließungsschlüssel schützt
und kryptografische Operationen innerhalb einer sicheren Grenze ausführt, wie z. B. den AWS
KMS Schlüsselbund, der diesen Never Never Leave () AWS KMS keys unverschlüsselt verwendet.
AWS Key Management ServiceAWS KMS Sie können auch einen Schlüsselbund schreiben,
bei dem Schlüssel zum Umschließen von Schlüsseln verwendet werden, die in Ihren Hardware-
Sicherheitsmodulen (HSMs) gespeichert oder durch andere Master-Key-Dienste geschützt sind.

Ihr Schlüsselbund bestimmt die Umschließungsschlüssel, die Ihre Datenschlüssel und letztlich
Ihre Daten schützen. Verwenden Sie die sichersten Verpackungsschlüssel, die für Ihre Aufgabe
praktisch sind. Verwenden Sie nach Möglichkeit Schlüssel, die durch ein Hardwaresicherheitsmodul
(HSM) oder eine Schlüsselverwaltungsinfrastruktur geschützt sind, z. B. KMS-Schlüssel in AWS Key
Management Service(AWS KMS) oder Verschlüsselungsschlüssel in AWS CloudHSM.

Das AWS Database Encryption SDK bietet verschiedene Schlüsselringe und
Schlüsselbundkonfigurationen, und Sie können Ihre eigenen benutzerdefinierten Schlüsselbunde
erstellen. Sie können auch einen Mehrfachschlüsselbund erstellen, der einen oder mehrere
Schlüsselanhänger desselben oder eines anderen Typs enthält.

53

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/cloudhsm/latest/userguide/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Themen

• Funktionsweise von Schlüsselbunden

• AWS KMS Schlüsselringe

• AWS KMS Hierarchische Schlüsselanhänger

• AWS KMS ECDH-Schlüsselanhänger

• Unformatierte AES-Schlüsselbunde

• Unformatierte RSA-Schlüsselbunde

• Raw ECDH Schlüsselanhänger

• Multi-Schlüsselbunde

Funktionsweise von Schlüsselbunden

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Wenn Sie ein Feld in Ihrer Datenbank verschlüsseln und signieren, fragt das AWS Database
Encryption SDK den Schlüsselbund nach Verschlüsselungsmaterialien. Der Schlüsselbund gibt
einen Klartext-Datenschlüssel zurück, eine Kopie des Datenschlüssels, der durch jeden der
Umschließungsschlüssel im Schlüsselbund verschlüsselt wurde, und einen MAC-Schlüssel, der
dem Datenschlüssel zugeordnet ist. Das AWS Database Encryption SDK verwendet den Klartext-
Schlüssel, um die Daten zu verschlüsseln, und entfernt dann den Klartext-Datenschlüssel so
schnell wie möglich aus dem Speicher. Anschließend fügt das AWS Database Encryption SDK
eine Materialbeschreibung hinzu, die die verschlüsselten Datenschlüssel und andere Informationen
wie Verschlüsselungs- und Signieranweisungen enthält. Das AWS Database Encryption SDK
verwendet den MAC-Schlüssel, um Hash-Based Message Authentication Codes (HMACs) über
die Kanonisierung der Materialbeschreibung und aller mit oder markierten Feldern zu berechnen.
ENCRYPT_AND_SIGN SIGN_ONLY

Wenn Sie Daten entschlüsseln, können Sie denselben Schlüsselbund verwenden, den Sie zum
Verschlüsseln der Daten verwendet haben, oder einen anderen. Um die Daten zu entschlüsseln,
muss ein Entschlüsselungsschlüsselbund Zugriff auf mindestens einen Umschließungsschlüssel im
Verschlüsselungsschlüsselbund haben.

Funktionsweise von Schlüsselbunden 54

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Das AWS Database Encryption SDK übergibt die verschlüsselten Datenschlüssel aus der
Materialbeschreibung an den Schlüsselbund und fordert den Schlüsselbund auf, einen davon
zu entschlüsseln. Der Schlüsselbund verwendet seine Umhüllungsschlüssel zum Entschlüsseln
eines der verschlüsselten Datenschlüssel und gibt einen Klartext-Datenschlüssel zurück. Das AWS
Database Encryption SDK verwendet den Klartext-Datenschlüssel, um die Daten zu entschlüsseln.
Wenn keiner der Umhüllungsschlüssel im Schlüsselbund einen der verschlüsselten Datenschlüssel
entschlüsseln kann, schlägt der Entschlüsselungsvorgang fehl.

Sie können einen einzelnen Schlüsselbund verwenden oder Schlüsselbunde desselben Typs oder
eines anderen Typs in einem Multi-Schlüsselbund kombinieren. Wenn Sie Daten verschlüsseln,
gibt der Mehrfachschlüsselbund eine Kopie des Datenschlüssels zurück, der mit allen Schlüsseln
in allen Schlüsselbunden, aus denen der Mehrfachschlüsselbund besteht, und einem MAC-
Schlüssel, der dem Datenschlüssel zugeordnet ist, verschlüsselt wurde. Sie können die Daten
mithilfe eines Schlüsselbundes entschlüsseln, wobei jeder der Schlüssel im Mehrfachschlüsselbund
eingeschlossen ist.

AWS KMS Schlüsselringe

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Ein AWS KMS Schlüsselbund verwendet symmetrische Verschlüsselung oder asymmetrisches
RSA, um Datenschlüssel AWS KMS keyszu generieren, zu verschlüsseln und zu entschlüsseln.
AWS Key Management Service (AWS KMS) schützt Ihre KMS-Schlüssel und führt kryptografische
Operationen innerhalb der FIPS-Grenze durch. Wir empfehlen, wann immer möglich einen AWS KMS
Schlüsselbund oder einen Schlüsselbund mit ähnlichen Sicherheitseigenschaften zu verwenden.

Sie können auch einen symmetrischen KMS-Schlüssel für mehrere Regionen in einem
Schlüsselbund verwenden. AWS KMS Weitere Informationen und Beispiele zur Verwendung von
AWS KMS keys Multiregion finden Sie unter. Multi-Region verwenden AWS KMS keys Informationen
zu Schlüsseln für mehrere Regionen finden Sie unter Verwenden von Schlüsseln für mehrere
Regionen im AWS Key Management Service Entwicklerhandbuch.

AWS KMS Schlüsselanhänger können zwei Arten von Schlüssellösungen beinhalten:

AWS KMS Schlüsselringe 55

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Generatorschlüssel: Generiert einen Klartext-Datenschlüssel und verschlüsselt ihn. Ein
Schlüsselbund, der Daten verschlüsselt, muss einen Generatorschlüssel haben.

• Zusätzliche Schlüssel: Verschlüsselt den Klartext-Datenschlüssel, den der Generatorschlüssel
generiert hat. AWS KMS Schlüsselbunde können null oder mehr zusätzliche Schlüssel haben.

Sie benötigen einen Generatorschlüssel, um Datensätze zu verschlüsseln. Wenn ein AWS KMS
Schlüsselbund nur einen AWS KMS Schlüssel hat, wird dieser Schlüssel verwendet, um den
Datenschlüssel zu generieren und zu verschlüsseln.

Wie alle Schlüsselanhänger können AWS KMS Schlüsselringe unabhängig voneinander oder in
einem Mehrfachschlüsselbund mit anderen Schlüsselanhängern desselben oder eines anderen Typs
verwendet werden.

Themen

• AWS KMS Erforderliche Berechtigungen für Schlüsselanhänger

• Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund

• Einen Schlüsselbund erstellen AWS KMS

• Multi-Region verwenden AWS KMS keys

• Verwenden Sie einen Discovery-Schlüsselbund AWS KMS

• Verwenden Sie einen AWS KMS Regional Discovery-Schlüsselbund

AWS KMS Erforderliche Berechtigungen für Schlüsselanhänger

Das AWS Database Encryption SDK benötigt kein AWS-Konto und ist auch nicht von einem
abhängig. AWS-Service Um einen AWS KMS Schlüsselbund verwenden zu können, benötigen
Sie jedoch eine AWS-Konto und die folgenden Mindestberechtigungen für AWS KMS keys den
Schlüsselbund.

• Um mit einem AWS KMS Schlüsselbund zu verschlüsseln, benötigen Sie die kms:
GenerateDataKey -Berechtigung für den Generatorschlüssel. Sie benötigen die kms:Encrypt-
Berechtigung für alle zusätzlichen Schlüssel im Schlüsselbund. AWS KMS

• Um mit einem AWS KMS Schlüsselbund zu entschlüsseln, benötigen Sie die kms:Decrypt-
Berechtigung für mindestens einen Schlüssel im Schlüsselbund. AWS KMS

• Um mit einem Mehrfachschlüsselbund zu verschlüsseln, der aus Schlüsselbunden besteht,
benötigen Sie die kms-Berechtigung für den AWS KMS Generatorschlüssel im Generator-

AWS KMS Erforderliche Berechtigungen für Schlüsselanhänger 56

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schlüsselbund. GenerateDataKey Sie benötigen die kms:Encrypt-Berechtigung für alle anderen
Schlüssel in allen anderen Schlüsselbunden. AWS KMS

• Um mit einem asymmetrischen AWS KMS RSA-Schlüsselbund zu verschlüsseln, benötigen Sie
kms: GenerateDataKey oder kms:Encrypt nicht, da Sie bei der Erstellung des Schlüsselbunds das
Material der öffentlichen Schlüssel angeben müssen, das Sie für die Verschlüsselung verwenden
möchten. Bei der Verschlüsselung mit diesem Schlüsselbund werden keine Anrufe getätigt. AWS
KMS Um mit einem asymmetrischen AWS KMS RSA-Schlüsselbund zu entschlüsseln, benötigen
Sie die kms:Decrypt-Berechtigung.

Ausführliche Informationen zu den Berechtigungen für finden Sie unter Authentifizierung und AWS
KMS keys Zugriffskontrolle im Entwicklerhandbuch.AWS Key Management Service

Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund

Ein AWS KMS Schlüsselbund kann einen oder mehrere enthalten. AWS KMS keys Um
AWS KMS key in einem AWS KMS Schlüsselbund eine anzugeben, verwenden Sie eine
unterstützte AWS KMS Schlüssel-ID. Die Schlüsselbezeichner, die Sie zur Identifizierung eines
AWS KMS key in einem Schlüsselbund verwenden können, variieren je nach Vorgang und
Sprachimplementierung. Einzelheiten zu den Schlüsselbezeichnern für einen AWS KMS key finden
Sie unter Schlüsselkennungen im Entwicklerhandbuch.AWS Key Management Service

Es hat sich bewährt, die spezifischste Schlüssel-ID zu verwenden, die für Ihre Aufgabe praktikabel ist.

• Um mit einem AWS KMS Schlüsselbund zu verschlüsseln, können Sie eine Schlüssel-ID, einen
Schlüssel-ARN, einen Aliasnamen oder einen Alias-ARN verwenden, um Daten zu verschlüsseln.

Note

Wenn Sie einen Aliasnamen oder Alias-ARN für einen KMS-Schlüssel in einem
Verschlüsselungsschlüsselbund angeben, speichert der Verschlüsselungsvorgang
den Schlüssel-ARN, der derzeit mit dem Alias verknüpft ist, in den Metadaten des
verschlüsselten Datenschlüssels. Der Alias wird nicht gespeichert. Änderungen am Alias
wirken sich nicht auf den KMS-Schlüssel aus, der zum Entschlüsseln Ihrer verschlüsselten
Datenschlüssel verwendet wird.

• Um mit einem AWS KMS Schlüsselbund zu entschlüsseln, müssen Sie einen Schlüssel-ARN zur
Identifizierung verwenden. AWS KMS keys Details hierzu finden Sie unter Auswahl von Wraping-
Schlüsseln.

Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund 57

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-id
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-name
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-alias-ARN

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• In einem Schlüsselbund, der für die Verschlüsselung und Entschlüsselung verwendet wird, müssen
Sie einen Schlüssel-ARN verwenden, um AWS KMS keys zu identifizieren.

Beim Entschlüsseln durchsucht das AWS Database Encryption SDK den AWS KMS Schlüsselbund
nach einem Schlüssel AWS KMS key , der einen der verschlüsselten Datenschlüssel entschlüsseln
kann. Insbesondere verwendet das AWS Database Encryption SDK das folgende Muster für jeden
verschlüsselten Datenschlüssel in der Materialbeschreibung.

• Das AWS Database Encryption SDK ruft den Schlüssel ARN des Schlüssels ab AWS KMS key ,
der den Datenschlüssel verschlüsselt hat, aus den Metadaten der Materialbeschreibung.

• Das AWS Database Encryption SDK durchsucht den Schlüsselbund für die Entschlüsselung nach
einem AWS KMS key ARN mit einem passenden Schlüssel.

• Wenn es einen ARN AWS KMS key mit einem passenden Schlüssel im Schlüsselbund findet,
fordert das AWS Database Encryption SDK auf, den KMS-Schlüssel AWS KMS zum Entschlüsseln
des verschlüsselten Datenschlüssels zu verwenden.

• Andernfalls springt er zum nächsten verschlüsselten Datenschlüssel, falls vorhanden.

Einen Schlüsselbund erstellen AWS KMS

Sie können jeden AWS KMS Schlüsselbund mit einem AWS KMS key oder mehreren
Schlüsselbändern AWS KMS keys im selben oder einem anderen AWS-Konten und konfigurieren.
AWS-Regionen Der AWS KMS key muss ein symmetrischer Verschlüsselungsschlüssel
(SYMMETRIC_DEFAULT) oder ein asymmetrischer RSA-KMS-Schlüssel sein. Sie können auch einen
KMS-Schlüssel für mehrere Regionen mit symmetrischer Verschlüsselung verwenden. Sie können
einen oder mehrere AWS KMS Schlüsselbunde in einem Mehrfachschlüsselbund verwenden.

Sie können einen AWS KMS Schlüsselbund erstellen, der Daten ver- und entschlüsselt, oder Sie
können AWS KMS Schlüsselbunde speziell für das Verschlüsseln oder Entschlüsseln erstellen.
Wenn Sie einen AWS KMS Schlüsselbund zum Verschlüsseln von Daten erstellen, müssen Sie
einen Generatorschlüssel angeben. Dieser wird verwendet, um einen Klartext-Datenschlüssel zu
generieren und AWS KMS key diesen zu verschlüsseln. Der Datenschlüssel hat mathematisch
nichts mit dem KMS-Schlüssel zu tun. Wenn Sie möchten, können Sie dann weitere angeben,
AWS KMS keys die denselben Klartext-Datenschlüssel verschlüsseln. Um ein durch diesen
Schlüsselbund geschütztes verschlüsseltes Feld zu entschlüsseln, muss der von Ihnen verwendete
Entschlüsselungsschlüsselbund mindestens einen der im Schlüsselbund AWS KMS keys definierten

Einen Schlüsselbund erstellen AWS KMS 58

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Werte enthalten, oder nein. AWS KMS keys(Ein AWS KMS Schlüsselbund ohne AWS KMS keys wird
als Discovery-Schlüsselbund bezeichnet.)AWS KMS

Alle Schlüssel, die in einen Verschlüsselungsschlüsselbund oder einen Mehrfachschlüsselbund
eingeschlossen werden, müssen in der Lage sein, den Datenschlüssel zu verschlüsseln. Wenn ein
Umschließungsschlüssel nicht verschlüsselt werden kann, schlägt die Verschlüsselungsmethode fehl.
Daher muss der Anrufer über die erforderlichen Berechtigungen für alle Schlüssel im Schlüsselbund
verfügen. Wenn Sie einen Discovery-Schlüsselbund verwenden, um Daten allein oder in einem
Mehrfachschlüsselbund zu verschlüsseln, schlägt der Verschlüsselungsvorgang fehl.

In den folgenden Beispielen wird die CreateAwsKmsMrkMultiKeyring Methode verwendet,
um einen AWS KMS Schlüsselbund mit einem symmetrischen Verschlüsselungs-KMS-Schlüssel
zu erstellen. Die CreateAwsKmsMrkMultiKeyring Methode erstellt den AWS KMS Client
automatisch und stellt sicher, dass der Schlüsselbund sowohl Schlüssel mit einer Region als auch
Schlüssel mit mehreren Regionen korrekt verarbeitet. In diesen Beispielen wird ein Schlüssel
verwendet, ARNs um die KMS-Schlüssel zu identifizieren. Details hierzu finden Sie unter
Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyArn)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput
{
 Generator = kmsKeyArn
};
var awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Einen Schlüsselbund erstellen AWS KMS 59

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id-key-ARN

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Rust

let provider_config = MaterialProvidersConfig::builder().build()?;
let mat_prov = client::Client::from_conf(provider_config)?;
let kms_keyring = mat_prov
 .create_aws_kms_mrk_multi_keyring()
 .generator(kms_key_id)
 .send()
 .await?;

In den folgenden Beispielen CreateAwsKmsRsaKeyring wird die Methode verwendet, um einen
AWS KMS Schlüsselbund mit einem asymmetrischen RSA-KMS-Schlüssel zu erstellen. Um einen
asymmetrischen AWS KMS RSA-Schlüsselbund zu erstellen, geben Sie die folgenden Werte an.

• kmsClient: einen neuen Client erstellen AWS KMS

• kmsKeyID: der Schlüssel-ARN, der Ihren asymmetrischen RSA-KMS-Schlüssel identifiziert

• publicKey: eine Datei ByteBuffer aus einer UTF-8-codierten PEM-Datei, die den öffentlichen
Schlüssel des Schlüssels darstellt, an den Sie übergeben haben kmsKeyID

• encryptionAlgorithm: Der Verschlüsselungsalgorithmus muss oder sein
RSAES_OAEP_SHA_256 RSAES_OAEP_SHA_1

Java

 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsRsaKeyringInput createAwsKmsRsaKeyringInput =
 CreateAwsKmsRsaKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .kmsKeyId(rsaKMSKeyArn)
 .publicKey(publicKey)
 .encryptionAlgorithm(EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256)
 .build();
IKeyring awsKmsRsaKeyring =
 matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());

Einen Schlüsselbund erstellen AWS KMS 60

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

var createAwsKmsRsaKeyringInput = new CreateAwsKmsRsaKeyringInput
{
 KmsClient = new AmazonKeyManagementServiceClient(),
 KmsKeyId = rsaKMSKeyArn,
 PublicKey = publicKey,
 EncryptionAlgorithm = EncryptionAlgorithmSpec.RSAES_OAEP_SHA_256
};
IKeyring awsKmsRsaKeyring =
 matProv.CreateAwsKmsRsaKeyring(createAwsKmsRsaKeyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let sdk_config =
 aws_config::load_defaults(aws_config::BehaviorVersion::latest()).await;
let kms_rsa_keyring = mpl
 .create_aws_kms_rsa_keyring()
 .kms_key_id(rsa_kms_key_arn)
 .public_key(public_key)

 .encryption_algorithm(aws_sdk_kms::types::EncryptionAlgorithmSpec::RsaesOaepSha256)
 .kms_client(aws_sdk_kms::Client::new(&sdk_config))
 .send()
 .await?;

Multi-Region verwenden AWS KMS keys

Sie können Multiregion AWS KMS keys als Schlüssel im AWS Database Encryption SDK verwenden.
Wenn Sie mit einem Schlüssel für mehrere Regionen in einem verschlüsseln AWS-Region, können
Sie die Verschlüsselung mit einem zugehörigen Schlüssel für mehrere Regionen in einer anderen
Region durchführen. AWS-Region

KMS-Schlüssel für mehrere Regionen bestehen aus AWS KMS keys verschiedenen Schlüsseln
AWS-Regionen , die dasselbe Schlüsselmaterial und dieselbe Schlüssel-ID haben. Sie
können diese verwandten Schlüssel so verwenden, als ob es sich um denselben Schlüssel
in verschiedenen Regionen handeln würde. Schlüssel mit mehreren Regionen unterstützen
gängige Notfallwiederherstellungs- und Sicherungsszenarien, bei denen die Verschlüsselung
in einer Region und die Entschlüsselung in einer anderen Region erforderlich ist, ohne dass
ein regionsübergreifender Anruf erforderlich ist. AWS KMSInformationen zu Schlüsseln für

Multi-Region verwenden AWS KMS keys 61

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

mehrere Regionen finden Sie unter Verwenden von Schlüsseln für mehrere Regionen im
Entwicklerhandbuch.AWS Key Management Service

Um Schlüssel für mehrere Regionen zu unterstützen, enthält das AWS Database Encryption SDK
Schlüsselringe. AWS KMS multi-Region-aware Die CreateAwsKmsMrkMultiKeyring Methode
unterstützt sowohl Schlüssel mit einer Region als auch Schlüssel mit mehreren Regionen.

• Bei Schlüsseln mit nur einer Region verhält sich das multi-Region-aware Symbol genauso
wie der Schlüsselbund mit nur einer Region. AWS KMS Es versucht, Chiffretext nur mit
dem Schlüssel für eine einzelne Region zu entschlüsseln, mit dem die Daten verschlüsselt
wurden. Um den Umgang mit dem AWS KMS Schlüsselbund zu vereinfachen, empfehlen wir,
CreateAwsKmsMrkMultiKeyring diese Methode immer dann zu verwenden, wenn Sie einen
KMS-Schlüssel mit symmetrischer Verschlüsselung verwenden.

• Bei Schlüsseln mit mehreren Regionen versucht das multi-Region-aware Symbol, Chiffretext mit
demselben Schlüssel für mehrere Regionen zu entschlüsseln, mit dem die Daten verschlüsselt
wurden, oder mit dem zugehörigen Schlüssel für mehrere Regionen in der von Ihnen angegebenen
Region.

In den multi-Region-aware Schlüsselbunden, die mehr als einen KMS-Schlüssel benötigen, können
Sie mehrere Schlüssel für eine Region und mehrere Regionen angeben. Sie können jedoch nur einen
Schlüssel aus jedem Satz verwandter Schlüssel für mehrere Regionen angeben. Wenn Sie mehr als
einen Schlüsselbezeichner mit derselben Schlüssel-ID angeben, schlägt der Konstruktoraufruf fehl.

In den folgenden Beispielen wird ein AWS KMS Schlüsselbund mit einem KMS-Schlüssel für
mehrere Regionen erstellt. In den Beispielen wird ein Schlüssel mit mehreren Regionen als
Generatorschlüssel und ein Schlüssel mit nur einer Region als untergeordneter Schlüssel
angegeben.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(multiRegionKeyArn)
 .kmsKeyIds(Collections.singletonList(kmsKeyArn))
 .build();

Multi-Region verwenden AWS KMS keys 62

https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

IKeyring awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput
{
 Generator = multiRegionKeyArn,
 KmsKeyIds = new List<String> { kmsKeyArn }
};
var awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let aws_kms_mrk_multi_keyring = mpl
 .create_aws_kms_mrk_multi_keyring()
 .generator(multiRegion_key_arn)
 .kms_key_ids(vec![key_arn.to_string()])
 .send()
 .await?;

Wenn Sie AWS KMS Schlüsselringe mit mehreren Regionen verwenden, können Sie Chiffretext
im strikten Modus oder im Discover-Modus entschlüsseln. Um den Chiffretext im strikten Modus
zu entschlüsseln, instanziieren Sie das multi-Region-aware Symbol mit dem Schlüssel ARN des
zugehörigen Multi-Region-Schlüssels in der Region, in der Sie den Chiffretext entschlüsseln. Wenn
Sie den Schlüssel-ARN eines zugehörigen Multi-Region-Schlüssels in einer anderen Region angeben
(z. B. der Region, in der der Datensatz verschlüsselt wurde), ruft das multi-Region-aware Symbol
diesen Schlüssel regionsübergreifend auf. AWS KMS key

Bei der Entschlüsselung im strikten Modus benötigt das multi-Region-aware Symbol einen Schlüssel-
ARN. Es akzeptiert nur einen Schlüssel-ARN aus jedem Satz verwandter Schlüssel für mehrere
Regionen.

Sie können auch im Discovery-Modus mit Schlüsseln für AWS KMS mehrere Regionen
entschlüsseln. Beim Entschlüsseln im Discovery-Modus geben Sie keine an. AWS KMS

Multi-Region verwenden AWS KMS keys 63

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

keys(Informationen zu Schlüsselanhängern für die AWS KMS Erkennung einzelner Regionen finden
Sie unter.) Verwenden Sie einen Discovery-Schlüsselbund AWS KMS

Wenn Sie mit einem Schlüssel für mehrere Regionen verschlüsselt haben, versucht das multi-
Region-aware Symbol im Erkennungsmodus, mithilfe eines zugehörigen Regionsschlüssels in der
lokalen Region zu entschlüsseln. Wenn keine vorhanden ist, schlägt der Anruf fehl. Im Discovery-
Modus versucht das AWS Database Encryption SDK nicht, den Schlüssel für mehrere Regionen, der
für die Verschlüsselung verwendet wird, regionsübergreifend aufzurufen.

Verwenden Sie einen Discovery-Schlüsselbund AWS KMS

Beim Entschlüsseln empfiehlt es sich, die Umschließungsschlüssel anzugeben, die das AWS
Database Encryption SDK verwenden kann. Um dieser bewährten Methode zu folgen, verwenden Sie
einen Schlüsselbund für die AWS KMS Entschlüsselung, der die AWS KMS Umschließungsschlüssel
auf die von Ihnen angegebenen beschränkt. Sie können jedoch auch einen AWS KMS Discovery-
Schlüsselbund erstellen, d. h. einen Schlüsselbund, der keine AWS KMS Schlüssel zum
Umschließen von Schlüsseln festlegt.

Das AWS Database Encryption SDK bietet einen AWS KMS Standard-Discovery-Schlüsselbund
und einen Discovery-Schlüsselbund für Schlüssel mit mehreren Regionen. AWS KMS Hinweise zur
Verwendung von Schlüsseln für mehrere Regionen mit dem AWS Database Encryption SDK finden
Sie unter. Multi-Region verwenden AWS KMS keys

Da er keine Umschließungsschlüssel spezifiziert, kann ein Discovery-Schlüsselbund keine Daten
verschlüsseln. Wenn Sie einen Discovery-Schlüsselbund verwenden, um Daten allein oder in einem
Mehrfachschlüsselbund zu verschlüsseln, schlägt der Verschlüsselungsvorgang fehl.

Beim Entschlüsseln ermöglicht ein Discovery-Schlüsselbund dem AWS Database Encryption
SDK, jeden verschlüsselten Datenschlüssel mithilfe des verschlüsselten Schlüssels AWS KMS zu
entschlüsseln, unabhängig davon, wem AWS KMS key dieser gehört oder wer Zugriff darauf hat.
AWS KMS key Der Anruf ist nur erfolgreich, wenn der Anrufer die Erlaubnis für hat. kms:Decrypt
AWS KMS key

Important

Wenn Sie einen AWS KMS Discovery-Schlüsselbund in einen Mehrschlüsselbund
für die Entschlüsselung aufnehmen, setzt der Discovery-Schlüsselbund alle KMS-
Schlüsseleinschränkungen außer Kraft, die durch andere Schlüsselbunde im
Mehrfachschlüsselbund festgelegt wurden. Der Mehrfachschlüsselbund verhält sich wie

Verwenden Sie einen Discovery-Schlüsselbund AWS KMS 64

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

sein am wenigsten restriktiver Schlüsselbund. Wenn Sie einen Discovery-Schlüsselbund
verwenden, um Daten allein oder in einem Mehrfachschlüsselbund zu verschlüsseln, schlägt
der Verschlüsselungsvorgang fehl

Das AWS Database Encryption SDK bietet der Einfachheit halber einen Discovery-Schlüsselbund
AWS KMS . Wir empfehlen jedoch aus folgenden Gründen, dass Sie nach Möglichkeit einen
beschränkteren Schlüsselbund verwenden.

• Authentizität — Ein AWS KMS Discovery-Schlüsselbund kann jeden Schlüsselbund verwenden
AWS KMS key , der zur Verschlüsselung eines Datenschlüssels in der Materialbeschreibung
verwendet wurde, sofern der Anrufer die Erlaubnis hat, diesen Schlüssel zum Entschlüsseln zu
verwenden. AWS KMS key Dies ist möglicherweise nicht der AWS KMS key , den der Anrufer
verwenden möchte. Beispielsweise könnte einer der verschlüsselten Datenschlüssel unter einer
weniger sicheren Methode verschlüsselt worden sein AWS KMS key , die jeder verwenden kann.

• Latenz und Leistung — Ein AWS KMS Discovery-Schlüsselbund ist möglicherweise deutlich
langsamer als andere Schlüsselbunde, da das AWS Database Encryption SDK versucht, alle
verschlüsselten Datenschlüssel zu entschlüsseln, einschließlich der Schlüssel, die AWS KMS
keys in anderen AWS-Konten und Regionen verschlüsselt wurden, und für die der Anrufer keine
Berechtigung hat, sie zur Entschlüsselung zu verwenden. AWS KMS keys

Wenn Sie einen Discovery-Schlüsselbund verwenden, empfehlen wir Ihnen, einen Discovery-Filter
zu verwenden, um die KMS-Schlüssel, die verwendet werden können, auf diejenigen in bestimmten
Partitionen und Partitionen zu beschränken. AWS-Konten Hilfe bei der Suche nach Ihrer Konto-ID
und Partition finden Sie unter Ihre AWS-Konto Identifikatoren und das ARN-Format in der Allgemeine
AWS-Referenz.

In den folgenden Codebeispielen wird ein AWS KMS Discovery-Schlüsselbund mit einem Discovery-
Filter instanziiert, der die KMS-Schlüssel, die das AWS Database Encryption SDK verwenden kann,
auf diejenigen in der aws Partition und im Beispielkonto beschränkt. 111122223333

Bevor Sie diesen Code verwenden, ersetzen Sie die Beispiel AWS-Konto - und Partitionswerte durch
gültige Werte für Ihre AWS-Konto Partition und. Wenn sich Ihre KMS-Schlüssel in China Regionen
befinden, verwenden Sie den aws-cn Partitionswert. Wenn sich Ihre KMS-Schlüssel befinden AWS
GovCloud (US) Regions, verwenden Sie den aws-us-gov Partitionswert. Verwenden Sie für alle
anderen AWS-Regionen den aws Partitionswert.

Verwenden Sie einen Discovery-Schlüsselbund AWS KMS 65

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Java

// Create discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

C# / .NET

// Create discovery filter
var discoveryFilter = new DiscoveryFilter
{
 Partition = "aws",
 AccountIds = 111122223333
};
// Create the discovery keyring
var createAwsKmsMrkDiscoveryMultiKeyringInput = new
 CreateAwsKmsMrkDiscoveryMultiKeyringInput
{
 DiscoveryFilter = discoveryFilter
};
var decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Rust

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .partition("aws")
 .account_ids(111122223333)
 .build()?;

// Create the discovery keyring
let decrypt_keyring = mpl
 .create_aws_kms_mrk_discovery_multi_keyring()

Verwenden Sie einen Discovery-Schlüsselbund AWS KMS 66

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .discovery_filter(discovery_filter)
 .send()
 .await?;

Verwenden Sie einen AWS KMS Regional Discovery-Schlüsselbund

Ein AWS KMS Regional Discovery-Schlüsselbund ist ein Schlüsselbund, der ARNs die KMS-
Schlüssel nicht spezifiziert. Stattdessen ermöglicht er dem AWS Database Encryption SDK die
Entschlüsselung, wobei nur die KMS-Schlüssel verwendet werden. AWS-Regionen

Bei der Entschlüsselung mit einem AWS KMS regionalen Discovery-Schlüsselbund entschlüsselt
das AWS Database Encryption SDK alle verschlüsselten Datenschlüssel, die unter einem AWS KMS
key der angegebenen Zeichen verschlüsselt wurden. AWS-Region Um erfolgreich zu sein, muss
der Aufrufer über kms:Decrypt Berechtigungen für mindestens einen der angegebenen Schlüssel
verfügen AWS-Region , AWS KMS keys der einen Datenschlüssel verschlüsselt hat.

Wie andere Discovery-Schlüsselringe hat auch der regionale Discovery-Schlüsselbund keine
Auswirkung auf die Verschlüsselung. Er funktioniert nur, wenn verschlüsselte Felder entschlüsselt
werden. Wenn Sie einen regionalen Erkennungsschlüsselbund in einem Schlüsselbund mit mehreren
Schlüsseln verwenden, der zum Verschlüsseln und Entschlüsseln verwendet wird, ist dieser
nur beim Entschlüsseln wirksam. Wenn Sie einen Schlüsselbund für die Erkennung mehrerer
Regionen verwenden, um Daten allein oder in einem Schlüsselbund zu verschlüsseln, schlägt der
Verschlüsselungsvorgang fehl.

Important

Wenn Sie einen AWS KMS regionalen Discovery-Schlüsselbund in einen Schlüsselbund für
die Entschlüsselung mit mehreren Schlüsseln aufnehmen, setzt der regionale Discovery-
Schlüsselbund alle KMS-Schlüsseleinschränkungen außer Kraft, die durch andere
Schlüsselbunde im Mehrfachschlüsselbund festgelegt wurden. Der Mehrfachschlüsselbund
verhält sich wie sein am wenigsten restriktiver Schlüsselbund. Ein AWS KMS Discovery-
Schlüsselbund hat keine Auswirkung auf die Verschlüsselung, wenn er alleine oder in einem
Mehrfachschlüsselbund verwendet wird.

Der regionale Discovery-Schlüsselbund im AWS Database Encryption SDK versucht, nur mit KMS-
Schlüsseln in der angegebenen Region zu entschlüsseln. Wenn Sie einen Discovery-Schlüsselbund
verwenden, konfigurieren Sie die Region auf dem Client. AWS KMS Diese Implementierungen des

Verwenden Sie einen AWS KMS Regional Discovery-Schlüsselbund 67

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

AWS Database Encryption SDK filtern KMS-Schlüssel nicht nach Region, aber AWS KMS eine
Entschlüsselungsanforderung für KMS-Schlüssel außerhalb der angegebenen Region schlägt fehl.

Wenn Sie einen Discovery-Schlüsselbund verwenden, empfehlen wir die Verwendung eines
Discovery-Filters, um die bei der Entschlüsselung verwendeten KMS-Schlüssel auf die in den
angegebenen Partitionen verwendeten KMS-Schlüssel zu beschränken. AWS-Konten

Mit dem folgenden Code wird beispielsweise ein AWS KMS regionaler Discovery-Schlüsselbund mit
einem Discovery-Filter erstellt. Dieser Schlüsselbund beschränkt das AWS Database Encryption SDK
auf KMS-Schlüssel im Konto 111122223333 in der Region USA West (Oregon) (us-west-2).

Java

// Create the discovery filter
DiscoveryFilter discoveryFilter = DiscoveryFilter.builder()
 .partition("aws")
 .accountIds(111122223333)
 .build();
// Create the discovery keyring
CreateAwsKmsMrkDiscoveryMultiKeyringInput createAwsKmsMrkDiscoveryMultiKeyringInput
 = CreateAwsKmsMrkDiscoveryMultiKeyringInput.builder()
 .discoveryFilter(discoveryFilter)
 .regions("us-west-2")
 .build();
IKeyring decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

C# / .NET

// Create discovery filter
var discoveryFilter = new DiscoveryFilter
{
 Partition = "aws",
 AccountIds = 111122223333
};
// Create the discovery keyring
var createAwsKmsMrkDiscoveryMultiKeyringInput = new
 CreateAwsKmsMrkDiscoveryMultiKeyringInput
{
 DiscoveryFilter = discoveryFilter,
 Regions = us-west-2
};

Verwenden Sie einen AWS KMS Regional Discovery-Schlüsselbund 68

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

var decryptKeyring =
 matProv.CreateAwsKmsMrkDiscoveryMultiKeyring(createAwsKmsMrkDiscoveryMultiKeyringInput);

Rust

// Create discovery filter
let discovery_filter = DiscoveryFilter::builder()
 .partition("aws")
 .account_ids(111122223333)
 .build()?;

// Create the discovery keyring
let decrypt_keyring = mpl
 .create_aws_kms_mrk_discovery_multi_keyring()
 .discovery_filter(discovery_filter)
 .regions(us-west-2)
 .send()
 .await?;

AWS KMS Hierarchische Schlüsselanhänger

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK umbenannt
. AWS Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB Encryption
Client.

Note

Seit dem 24. Juli 2023 werden Branch-Schlüssel, die während der Developer Preview erstellt
wurden, nicht unterstützt. Erstellen Sie neue Branch-Schlüssel, um den Schlüsselspeicher,
den Sie während der Developer Preview erstellt haben, weiterhin verwenden zu können.

Mit dem AWS KMS hierarchischen Schlüsselbund können Sie Ihre kryptografischen Materialien
mit einem KMS-Schlüssel mit symmetrischer Verschlüsselung schützen, ohne AWS KMS jedes
Mal, wenn Sie einen Datensatz ver- oder entschlüsseln, erneut aufrufen zu müssen. Es ist eine
gute Wahl für Anwendungen, bei denen die Anzahl der Aufrufe minimiert werden muss AWS

AWS KMS Hierarchische Schlüsselanhänger 69

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

KMS, und für Anwendungen, die kryptografisches Material wiederverwenden können, ohne ihre
Sicherheitsanforderungen zu verletzen.

Der hierarchische Schlüsselbund ist eine Lösung zum Zwischenspeichern von kryptografischem
Material, die die Anzahl der AWS KMS Aufrufe reduziert, indem AWS KMS geschützte Branch-
Schlüssel verwendet werden, die in einer Amazon DynamoDB-Tabelle gespeichert sind,
und anschließend das bei Verschlüsselungs- und Entschlüsselungsvorgängen verwendete
Zweigschlüsselmaterial lokal zwischengespeichert wird. Die DynamoDB-Tabelle dient als
Schlüsselspeicher für die Verwaltung und den Schutz von Zweigschlüsseln. Sie speichert den aktiven
Branch-Schlüssel und alle vorherigen Versionen des Branch-Schlüssels. Der aktive Zweigschlüssel
ist die neueste Version des Zweigschlüssels. Der hierarchische Schlüsselbund verwendet für jede
Verschlüsselungsanforderung einen eindeutigen Datenverschlüsselungsschlüssel und verschlüsselt
jeden Datenverschlüsselungsschlüssel mit einem eindeutigen Umschließungsschlüssel, der vom
aktiven Filialschlüssel abgeleitet wird. Der hierarchische Schlüsselbund hängt von der Hierarchie ab,
die zwischen aktiven Zweigschlüsseln und ihren abgeleiteten Umschließungsschlüsseln festgelegt
wurde.

Der hierarchische Schlüsselbund verwendet in der Regel jede Version des Zweigschlüssels, um
mehrere Anfragen zu erfüllen. Sie kontrollieren jedoch, in welchem Umfang aktive Zweigschlüssel
wiederverwendet werden, und bestimmen, wie oft der aktive Zweigschlüssel rotiert wird. Die aktive
Version des Abzweigschlüssels bleibt aktiv, bis Sie ihn drehen. Frühere Versionen des aktiven
Zweigschlüssels werden nicht zur Ausführung von Verschlüsselungsvorgängen verwendet, sie
können jedoch weiterhin abgefragt und bei Entschlüsselungsvorgängen verwendet werden.

Wenn Sie den hierarchischen Schlüsselbund instanziieren, erstellt er einen lokalen Cache. Sie geben
ein Cache-Limit an, das die maximale Zeitspanne definiert, für die die Branch-Schlüsselmaterialien
im lokalen Cache gespeichert werden, bevor sie ablaufen und aus dem Cache entfernt werden.
Der hierarchische Schlüsselbund führt einen AWS KMS Aufruf durch, um den Zweigschlüssel
zu entschlüsseln und die Zweigschlüsselmaterialien zusammenzustellen, wenn a zum ersten
Mal in einem Vorgang angegeben branch-key-id wird. Anschließend werden die Materialien
der Verzweigungsschlüssel im lokalen Cache gespeichert und für alle Verschlüsselungs- und
Entschlüsselungsvorgänge, die dies spezifizieren, wiederverwendet, bis das Cache-Limit abläuft.
branch-key-id Das Speichern von Zweigschlüsselmaterialien im lokalen Cache reduziert die
Anzahl der Aufrufe. AWS KMS Stellen Sie sich beispielsweise ein Cache-Limit von 15 Minuten
vor. Wenn Sie 10.000 Verschlüsselungsvorgänge innerhalb dieses Cache-Limits ausführen,
müsste der herkömmliche AWS KMS Schlüsselbund 10.000 AWS KMS Aufrufe tätigen, um 10.000
Verschlüsselungsvorgänge zu erfüllen. Wenn Sie einen aktiven Schlüsselbund habenbranch-

AWS KMS Hierarchische Schlüsselanhänger 70

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

key-id, muss der hierarchische Schlüsselbund nur einen AWS KMS Aufruf tätigen, um 10.000
Verschlüsselungsvorgänge abzuwickeln.

Der lokale Cache trennt Verschlüsselungsmaterialien von Entschlüsselungsmaterialien. Die
Verschlüsselungsmaterialien werden aus dem aktiven Zweigschlüssel zusammengesetzt und
für alle Verschlüsselungsvorgänge wiederverwendet, bis das Cache-Limit abgelaufen ist. Die
Entschlüsselungsmaterialien werden aus der Zweigschlüssel-ID und der Version zusammengestellt,
die in den Metadaten des verschlüsselten Felds identifiziert wurden, und sie werden für alle
Entschlüsselungsvorgänge im Zusammenhang mit der Branch-Schlüssel-ID und -version
wiederverwendet, bis das Cache-Limit abläuft. Im lokalen Cache können mehrere Versionen
desselben Zweigschlüssels gleichzeitig gespeichert werden. Wenn der lokale Cache für die
Verwendung von konfiguriert istbranch key ID supplier, kann er auch Zweigschlüsselmaterial von
mehreren aktiven Zweigschlüsseln gleichzeitig speichern.

Note

Alle Erwähnungen des hierarchischen Schlüsselbundes im AWS Database Encryption SDK
beziehen sich auf den AWS KMS hierarchischen Schlüsselbund.

Themen

• Funktionsweise

• Voraussetzungen

• Erforderliche Berechtigungen

• Wählen Sie einen Cache

• Erstellen Sie einen hierarchischen Schlüsselbund

• Verwendung des hierarchischen Schlüsselbunds für durchsuchbare Verschlüsselung

Funktionsweise

In den folgenden exemplarischen Vorgehensweisen wird beschrieben, wie der hierarchische
Schlüsselbund Verschlüsselungs- und Entschlüsselungsmaterialien zusammenstellt und welche
verschiedenen Aufrufe der Schlüsselbund für Verschlüsselungs- und Entschlüsselungsvorgänge
vornimmt. Technische Einzelheiten zur Ableitung von Schlüsseln und zur Verschlüsselung
von Klartext-Datenschlüsseln finden Sie unter Technische Details zum hierarchischen
Schlüsselbund.AWS KMS

Funktionsweise 71

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verschlüsseln und signieren

In der folgenden exemplarischen Vorgehensweise wird beschrieben, wie der hierarchische
Schlüsselbund Verschlüsselungsmaterialien zusammenstellt und daraus einen eindeutigen
Umschließungsschlüssel ableitet.

1. Die Verschlüsselungsmethode fragt den hierarchischen Schlüsselbund nach
Verschlüsselungsmaterialien. Der Schlüsselbund generiert einen Klartext-Datenschlüssel und
überprüft dann, ob sich im lokalen Cache gültiges Zweigschlüsselmaterial für die Generierung
des Wrapping-Schlüssels befindet. Wenn gültiges Schlüsselmaterial für die Zweige vorhanden
ist, fährt der Schlüsselbund mit Schritt 4 fort.

2. Wenn kein gültiges Material für Zweigschlüssel vorhanden ist, fragt der hierarchische
Schlüsselbund den Schlüsselspeicher nach dem aktiven Zweigschlüssel ab.

a. Der Schlüsselspeicher ruft AWS KMS zur Entschlüsselung des aktiven Zweigschlüssels
auf und gibt den aktiven Zweigschlüssel im Klartext zurück. Daten, die den aktiven
Zweigschlüssel identifizieren, werden serialisiert, um zusätzliche authentifizierte Daten
(AAD) beim Entschlüsselungsaufruf von bereitzustellen. AWS KMS

b. Der Schlüsselspeicher gibt den Klartext-Zweigschlüssel und die ihn identifizierenden Daten
zurück, z. B. die Version des Zweigschlüssels.

3. Der hierarchische Schlüsselbund stellt die Schlüsselmaterialien der Zweige zusammen (die
Version mit dem Zweigschlüssel im Klartext und der Zweigschlüsselversion) und speichert eine
Kopie davon im lokalen Cache.

4. Der hierarchische Schlüsselbund leitet aus dem Klartext-Verzweigungsschlüssel und einem
16-Byte-Zufallssalz einen eindeutigen Umbruchschlüssel ab. Er verwendet den abgeleiteten
Umschließungsschlüssel, um eine Kopie des Klartext-Datenschlüssels zu verschlüsseln.

Die Verschlüsselungsmethode verwendet die Verschlüsselungsmaterialien, um den Datensatz zu
verschlüsseln und zu signieren. Weitere Informationen darüber, wie Datensätze im AWS Database
Encryption SDK verschlüsselt und signiert werden, finden Sie unter Verschlüsseln und Signieren.

Entschlüsseln und verifizieren

In der folgenden exemplarischen Vorgehensweise wird beschrieben, wie der hierarchische
Schlüsselbund Entschlüsselungsmaterialien zusammenstellt und den verschlüsselten Datenschlüssel
entschlüsselt.

Funktionsweise 72

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

1. Die Entschlüsselungsmethode identifiziert den verschlüsselten Datenschlüssel aus dem
Materialbeschreibungsfeld des verschlüsselten Datensatzes und übergibt ihn an den
hierarchischen Schlüsselbund.

2. Der hierarchische Schlüsselbund deserialisiert Daten, die den verschlüsselten Datenschlüssel
identifizieren, einschließlich der Version des Zweigschlüssels, des 16-Byte-Salts und anderer
Informationen, die beschreiben, wie der Datenschlüssel verschlüsselt wurde.

Weitere Informationen finden Sie unter AWS KMS Technische Details zum hierarchischen
Schlüsselbund.

3. Mit dem hierarchischen Schlüsselbund wird geprüft, ob sich im lokalen Cache gültiges
Zweigschlüsselmaterial befindet, das mit der in Schritt 2 identifizierten Version des
Zweigschlüssels übereinstimmt. Wenn gültiges Schlüsselmaterial für die Zweige vorhanden ist,
fährt der Schlüsselbund mit Schritt 6 fort.

4. Wenn kein gültiges Material für Zweigschlüssel vorhanden ist, fragt der hierarchische
Schlüsselbund den Schlüsselspeicher nach dem Zweigschlüssel ab, der mit der in Schritt 2
identifizierten Version des Zweigschlüssels übereinstimmt.

a. Der Schlüsselspeicher ruft AWS KMS zur Entschlüsselung des Zweigschlüssels auf und
gibt den aktiven Zweigschlüssel im Klartext zurück. Daten, die den aktiven Zweigschlüssel
identifizieren, werden serialisiert, um zusätzliche authentifizierte Daten (AAD) beim
Entschlüsselungsaufruf von bereitzustellen. AWS KMS

b. Der Schlüsselspeicher gibt den Klartext-Zweigschlüssel und die ihn identifizierenden Daten
zurück, z. B. die Version des Zweigschlüssels.

5. Der hierarchische Schlüsselbund stellt die Schlüsselmaterialien der Zweige zusammen (die
Version mit dem Zweigschlüssel im Klartext und der Zweigschlüsselversion) und speichert eine
Kopie davon im lokalen Cache.

6. Der hierarchische Schlüsselbund verwendet die zusammengestellten Zweigschlüsselmaterialien
und das in Schritt 2 identifizierte 16-Byte-Salt, um den eindeutigen Wrapping-Schlüssel zu
reproduzieren, mit dem der Datenschlüssel verschlüsselt wurde.

7. Der hierarchische Schlüsselbund verwendet den reproduzierten Wrapping-Schlüssel, um den
Datenschlüssel zu entschlüsseln, und gibt den Klartext-Datenschlüssel zurück.

Bei der Entschlüsselungsmethode werden die Entschlüsselungsmaterialien und der Klartext-
Datenschlüssel verwendet, um den Datensatz zu entschlüsseln und zu verifizieren. Weitere

Funktionsweise 73

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Informationen darüber, wie Datensätze im AWS Database Encryption SDK entschlüsselt und
verifiziert werden, finden Sie unter Entschlüsseln und Überprüfen.

Voraussetzungen

Bevor Sie einen hierarchischen Schlüsselbund erstellen und verwenden, stellen Sie sicher, dass die
folgenden Voraussetzungen erfüllt sind.

• Sie oder Ihr Schlüsselspeicheradministrator haben einen Schlüsselspeicher und mindestens einen
aktiven Zweigschlüssel erstellt.

• Sie haben Ihre Schlüsselspeicheraktionen konfiguriert.

Note

Wie Sie Ihre Schlüsselspeicher-Aktionen konfigurieren, bestimmt, welche Operationen Sie
ausführen können und welche KMS-Schlüssel der hierarchische Schlüsselbund verwenden
kann. Weitere Informationen finden Sie unter Schlüsselspeicher-Aktionen.

• Sie verfügen über die erforderlichen AWS KMS Berechtigungen, um auf den Schlüsselspeicher und
die Zweigschlüssel zuzugreifen und diese zu verwenden. Weitere Informationen finden Sie unter
the section called “Erforderliche Berechtigungen”.

• Sie haben die unterstützten Cachetypen überprüft und den Cachetyp konfiguriert, der Ihren
Anforderungen am besten entspricht. Weitere Informationen finden Sie unter the section called
“Wählen Sie einen Cache”

Erforderliche Berechtigungen

Das AWS Database Encryption SDK benötigt kein AWS-Konto und ist auch von keinem abhängig
AWS-Service. Um einen hierarchischen Schlüsselbund verwenden zu können, benötigen Sie jedoch
mindestens die folgenden Mindestberechtigungen für die symmetrische (n) Verschlüsselung AWS
KMS key(en) in Ihrem Schlüsselspeicher. AWS-Konto

• Um Daten mit dem hierarchischen Schlüsselbund zu ver- und entschlüsseln, benötigen Sie
kms:Decrypt.

• Um Zweigschlüssel zu erstellen und zu rotieren, benötigen Sie kms: und kms:.
GenerateDataKeyWithoutPlaintext ReEncrypt

Voraussetzungen 74

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_ReEncrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Weitere Informationen zur Steuerung des Zugriffs auf Ihre Filialschlüssel und Ihren Schlüsselspeicher
finden Sie unterthe section called “Implementieren der geringsten Berechtigungen”.

Wählen Sie einen Cache

Der hierarchische Schlüsselbund reduziert die Anzahl der Aufrufe, AWS KMS indem er die bei den
Verschlüsselungs- und Entschlüsselungsvorgängen verwendeten Filialschlüsselmaterialien lokal
zwischenspeichert. Bevor Sie Ihren hierarchischen Schlüsselbund erstellen, müssen Sie entscheiden,
welche Art von Cache Sie verwenden möchten. Sie können den Standard-Cache verwenden oder
den Cache an Ihre Bedürfnisse anpassen.

Der hierarchische Schlüsselbund unterstützt die folgenden Cachetypen:

• the section called “Standard-Cache”

• the section called “MultiThreaded Cache”

• the section called “StormTracking Zwischenspeicher”

• the section called “Gemeinsam genutzter Cache”

Standard-Cache

Für die meisten Benutzer erfüllt der Standard-Cache ihre Threading-Anforderungen. Der Standard-
Cache ist so konzipiert, dass er Umgebungen mit hohem Multithreading-Anteil unterstützt. Wenn ein
Eintrag für Branch-Schlüssel-Materialien abläuft, verhindert der Standard-Cache den Aufruf mehrerer
Threads, AWS KMS indem ein Thread 10 Sekunden im Voraus darüber informiert wird, dass der
Eintrag für Branch-Schlüssel-Materialien abläuft. Dadurch wird sichergestellt, dass nur ein Thread
eine Anfrage AWS KMS zur Aktualisierung des Caches sendet.

Standard und StormTracking Caches unterstützen dasselbe Threading-Modell, aber Sie müssen nur
die Eingangskapazität angeben, um den Standard-Cache verwenden zu können. Für detailliertere
Cache-Anpassungen verwenden Sie den. the section called “StormTracking Zwischenspeicher”

Sofern Sie nicht die Anzahl der Materialeinträge für Branch Key anpassen möchten, die im
lokalen Cache gespeichert werden können, müssen Sie bei der Erstellung des hierarchischen
Schlüsselbunds keinen Cachetyp angeben. Wenn Sie keinen Cachetyp angeben, verwendet der
hierarchische Schlüsselbund den Standard-Cachetyp und legt die Eintragskapazität auf 1000 fest.

Um den Standard-Cache anzupassen, geben Sie die folgenden Werte an:

Wählen Sie einen Cache 75

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Eintragskapazität: Schränkt die Anzahl der Einträge für wichtige Materialien der Branche ein, die im
lokalen Cache gespeichert werden können.

Java

.cache(CacheType.builder()
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())

C# / .NET

CacheType defaultCache = new CacheType
{
 Default = new DefaultCache{EntryCapacity = 100}
};

Rust

let cache: CacheType = CacheType::Default(
 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

MultiThreaded Cache

Der MultiThreaded Cache kann sicher in Multithread-Umgebungen verwendet werden, bietet jedoch
keine Funktionen zur Minimierung AWS KMS von Amazon DynamoDB DynamoDB-Aufrufen. Daher
werden alle Threads gleichzeitig benachrichtigt, wenn ein Eintrag für wichtige Materialien in einer
Branche abläuft. Dies kann zu mehreren AWS KMS Aufrufen führen, um den Cache zu aktualisieren.

Um den MultiThreaded Cache zu verwenden, geben Sie die folgenden Werte an:

• Eintragskapazität: Beschränkt die Anzahl der Einträge für Branch-Schlüsselmaterialien, die im
lokalen Cache gespeichert werden können.

• Größe des Endstücks des Eintrags: Definiert die Anzahl der Einträge, die beschnitten werden
müssen, wenn die Eingangskapazität erreicht ist.

Wählen Sie einen Cache 76

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Java

.cache(CacheType.builder()
 .MultiThreaded(MultiThreadedCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)
 .build())

C# / .NET

CacheType multithreadedCache = new CacheType
{
 MultiThreaded = new MultiThreadedCache
 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1
 }
};

Rust

CacheType::MultiThreaded(
 MultiThreadedCache::builder()
 .entry_capacity(100)
 .entry_pruning_tail_size(1)
 .build()?)

StormTracking Zwischenspeicher

Der StormTracking Cache ist so konzipiert, dass er Umgebungen mit vielen Threads unterstützt.
Wenn ein Eintrag für Branch-Schlüssel-Materialien abläuft, verhindert der StormTracking Cache den
Aufruf mehrerer Threads, AWS KMS indem ein Thread im Voraus darüber informiert wird, dass der
Eintrag für Branch-Schlüssel-Materialien abläuft. Dadurch wird sichergestellt, dass nur ein Thread
eine Anfrage AWS KMS zur Aktualisierung des Caches sendet.

Um den StormTracking Cache zu verwenden, geben Sie die folgenden Werte an:

• Eintragskapazität: Beschränkt die Anzahl der Einträge für Branch-Schlüsselmaterialien, die im
lokalen Cache gespeichert werden können.

Wählen Sie einen Cache 77

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Standardwert: 1000 Einträge

• Größe des Eintrags zum Beschneiden: Definiert die Anzahl der Einträge für wichtige Materialien in
der Branche, die gleichzeitig beschnitten werden sollen.

Standardwert: 1 Eintrag

• Übergangszeit: Definiert die Anzahl der Sekunden vor Ablauf, nach der versucht wird, die
wichtigsten Materialien der Branche zu aktualisieren.

Standardwert: 10 Sekunden

• Verlängerungsintervall: Definiert die Anzahl der Sekunden zwischen Versuchen, die
Schlüsselmaterialien der Filiale zu aktualisieren.

Standardwert: 1 Sekunden

• Fan Out: Definiert die Anzahl der gleichzeitigen Versuche, die Schlüsselmaterialien der Filiale zu
aktualisieren.

Standardwert: 20 Versuche

• In Flight Time to Live (TTL): Definiert die Anzahl der Sekunden, bis beim Versuch, die
Schlüsselmaterialien der Filiale zu aktualisieren, ein Timeout auftritt. Jedes Mal, wenn
der Cache als Antwort auf eine zurückkehrt NoSuchEntryGetCacheEntry, gilt dieser
Verzweigungsschlüssel als aktiv, bis derselbe Schlüssel zusammen mit einem PutCache Eintrag
geschrieben wird.

Standardwert: 10 Sekunden

• Ruhezustand: Definiert die Anzahl der Sekunden, die ein Thread in den Ruhezustand versetzen
soll, wenn der Wert überschritten fanOut wird.

Standardwert: 20 Millisekunden

Java

.cache(CacheType.builder()
 .StormTracking(StormTrackingCache.builder()
 .entryCapacity(100)
 .entryPruningTailSize(1)
 .gracePeriod(10)
 .graceInterval(1)
 .fanOut(20)

Wählen Sie einen Cache 78

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .inFlightTTL(10)
 .sleepMilli(20)
 .build())

C# / .NET

CacheType stormTrackingCache = new CacheType
{
 StormTracking = new StormTrackingCache
 {
 EntryCapacity = 100,
 EntryPruningTailSize = 1,
 FanOut = 20,
 GraceInterval = 1,
 GracePeriod = 10,
 InFlightTTL = 10,
 SleepMilli = 20
 }
};

Rust

CacheType::StormTracking(
 StormTrackingCache::builder()
 .entry_capacity(100)
 .entry_pruning_tail_size(1)
 .grace_period(10)
 .grace_interval(1)
 .fan_out(20)
 .in_flight_ttl(10)
 .sleep_milli(20)
 .build()?)

Gemeinsam genutzter Cache

Standardmäßig erstellt der hierarchische Schlüsselbund jedes Mal, wenn Sie den Schlüsselbund
instanziieren, einen neuen lokalen Cache. Der Shared Cache kann jedoch dabei helfen,
Speicherplatz zu sparen, indem er es Ihnen ermöglicht, einen Cache für mehrere hierarchische
Schlüsselbunde gemeinsam zu nutzen. Anstatt für jeden hierarchischen Schlüsselbund, den Sie
instanziieren, einen neuen Cache für kryptografisches Material zu erstellen, speichert der Shared
Cache nur einen Cache im Arbeitsspeicher, der von allen hierarchischen Schlüsselbunden verwendet

Wählen Sie einen Cache 79

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

werden kann, die auf ihn verweisen. Der gemeinsam genutzte Cache trägt zur Optimierung
der Speichernutzung bei, indem verhindert wird, dass kryptografisches Material in mehreren
Schlüsselbunden doppelt vorhanden ist. Stattdessen können die hierarchischen Schlüsselbunde auf
denselben zugrunde liegenden Cache zugreifen, wodurch der Gesamtspeicherbedarf reduziert wird.

Wenn Sie Ihren Shared Cache erstellen, definieren Sie immer noch den Cachetyp. Sie können einen
the section called “Standard-Cache”the section called “MultiThreaded Cache”, oder the section
called “StormTracking Zwischenspeicher” als Cachetyp angeben oder einen beliebigen kompatiblen
benutzerdefinierten Cache ersetzen.

Partitionen

Ein einziger gemeinsam genutzter Cache kann von mehreren hierarchischen Schlüsselbunden
verwendet werden. Wenn Sie einen hierarchischen Schlüsselbund mit einem gemeinsam
genutzten Cache erstellen, können Sie eine optionale Partitions-ID definieren. Die Partitions-ID
unterscheidet, welcher hierarchische Schlüsselbund in den Cache schreibt. Wenn zwei hierarchische
Schlüsselbunde auf dieselbe Partitions-ID und dieselbe Zweigschlüssel-ID verweisenlogical key
store name, teilen sich die beiden Schlüsselbunde dieselben Cache-Einträge im Cache. Wenn Sie
zwei hierarchische Schlüsselbunde mit demselben Shared Cache, aber unterschiedlicher Partition
IDs erstellen, greift jeder Schlüsselbund nur auf die Cache-Einträge von der eigenen zugewiesenen
Partition innerhalb des Shared Caches zu. Die Partitionen dienen als logische Unterteilungen
innerhalb des gemeinsam genutzten Caches, sodass jeder hierarchische Schlüsselbund unabhängig
auf seiner eigenen zugewiesenen Partition betrieben werden kann, ohne die in der anderen Partition
gespeicherten Daten zu beeinträchtigen.

Wenn Sie beabsichtigen, die Cache-Einträge in einer Partition wiederzuverwenden oder
gemeinsam zu nutzen, müssen Sie Ihre eigene Partitions-ID definieren. Wenn Sie die Partitions-
ID an Ihren hierarchischen Schlüsselbund übergeben, kann der Schlüsselbund die Cache-
Einträge wiederverwenden, die bereits im Shared Cache vorhanden sind, anstatt die Branch-
Schlüsselmaterialien erneut abrufen und autorisieren zu müssen. Wenn Sie keine Partitions-ID
angeben, wird dem Schlüsselbund bei jeder Instanziierung des hierarchischen Schlüsselbunds
automatisch eine eindeutige Partitions-ID zugewiesen.

Die folgenden Verfahren veranschaulichen, wie ein gemeinsam genutzter Cache mit dem Standard-
Cachetyp erstellt und an einen hierarchischen Schlüsselbund übergeben wird.

1. Erstellen Sie einen CryptographicMaterialsCache (CMC) mithilfe der Material Providers
Library (MPL).

Wählen Sie einen Cache 80

https://github.com/aws/aws-cryptographic-material-providers-library
https://github.com/aws/aws-cryptographic-material-providers-library

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Java

// Instantiate the MPL
final MaterialProviders matProv =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

// Create a CacheType object for the Default cache
final CacheType cache =
 CacheType.builder()
 .Default(DefaultCache.builder().entryCapacity(100).build())
 .build();

// Create a CMC using the default cache
final CreateCryptographicMaterialsCacheInput cryptographicMaterialsCacheInput =
 CreateCryptographicMaterialsCacheInput.builder()
 .cache(cache)
 .build();

final ICryptographicMaterialsCache sharedCryptographicMaterialsCache =
 matProv.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

C# / .NET

// Instantiate the MPL
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create a CacheType object for the Default cache
var cache = new CacheType { Default = new DefaultCache{EntryCapacity = 100} };

// Create a CMC using the default cache
var cryptographicMaterialsCacheInput = new
 CreateCryptographicMaterialsCacheInput {Cache = cache};

var sharedCryptographicMaterialsCache =
 materialProviders.CreateCryptographicMaterialsCache(cryptographicMaterialsCacheInput);

Rust

// Instantiate the MPL

Wählen Sie einen Cache 81

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create a CacheType object for the default cache
let cache: CacheType = CacheType::Default(
 DefaultCache::builder()
 .entry_capacity(100)
 .build()?,
);

// Create a CMC using the default cache
let shared_cryptographic_materials_cache: CryptographicMaterialsCacheRef = mpl.
 create_cryptographic_materials_cache()
 .cache(cache)
 .send()
 .await?;

2. Erstellen Sie ein CacheType Objekt für den Shared Cache.

Übergeben sharedCryptographicMaterialsCache Sie das, was Sie in Schritt 1 erstellt
haben, an das neue CacheType Objekt.

Java

// Create a CacheType object for the sharedCryptographicMaterialsCache
final CacheType sharedCache =
 CacheType.builder()
 .Shared(sharedCryptographicMaterialsCache)
 .build();

C# / .NET

// Create a CacheType object for the sharedCryptographicMaterialsCache
var sharedCache = new CacheType { Shared = sharedCryptographicMaterialsCache };

Rust

// Create a CacheType object for the shared_cryptographic_materials_cache
let shared_cache: CacheType =
 CacheType::Shared(shared_cryptographic_materials_cache);

Wählen Sie einen Cache 82

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

3. Übergeben Sie das sharedCache Objekt aus Schritt 2 an Ihren hierarchischen Schlüsselbund.

Wenn Sie einen hierarchischen Schlüsselbund mit einem gemeinsam genutzten Cache erstellen,
können Sie optional a definieren, um Cache-Einträge für mehrere hierarchische Schlüsselbunde
gemeinsam partitionID zu nutzen. Wenn Sie keine Partitions-ID angeben, weist der
hierarchische Schlüsselbund dem Schlüsselbund automatisch eine eindeutige Partitions-ID zu.

Note

Ihre hierarchischen Schlüsselbunde verwenden dieselben Cacheeinträge in einem
gemeinsam genutzten Cache, wenn Sie zwei oder mehr Schlüsselbunde erstellen, die
auf dieselbe Partitions-ID und Verzweigungsschlüssel-ID verweisen. logical key store
name Wenn Sie nicht möchten, dass sich mehrere Schlüsselbunde dieselben Cache-
Einträge teilen, müssen Sie für jeden hierarchischen Schlüsselbund eine eindeutige
Partitions-ID verwenden.

Im folgenden Beispiel wird ein hierarchischer Schlüsselbund mit einem und einem branch key ID
supplier Cache-Limit von 600 Sekunden erstellt. Weitere Informationen zu den Werten, die in der
folgenden hierarchischen Schlüsselbundkonfiguration definiert sind, finden Sie unter. the section
called “Erstellen Sie einen hierarchischen Schlüsselbund”

Java

// Create the Hierarchical keyring
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(sharedCache)
 .partitionID(partitionID)
 .build();
final IKeyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

// Create the Hierarchical keyring
var createKeyringInput = new CreateAwsKmsHierarchicalKeyringInput

Wählen Sie einen Cache 83

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 Cache = sharedCache,
 TtlSeconds = 600,
 PartitionId = partitionID
};
var keyring =
 materialProviders.CreateAwsKmsHierarchicalKeyring(createKeyringInput);

Rust

// Create the Hierarchical keyring
let keyring1 = mpl
 .create_aws_kms_hierarchical_keyring()
 .key_store(key_store1)
 .branch_key_id(branch_key_id.clone())
 // CryptographicMaterialsCacheRef is an Rc (Reference Counted), so if you
 clone it to
 // pass it to different Hierarchical Keyrings, it will still point to the
 same
 // underlying cache, and increment the reference count accordingly.
 .cache(shared_cache.clone())
 .ttl_seconds(600)
 .partition_id(partition_id.clone())
 .send()
 .await?;

Erstellen Sie einen hierarchischen Schlüsselbund

Um einen hierarchischen Schlüsselbund zu erstellen, müssen Sie die folgenden Werte angeben:

• Ein Name für den Schlüsselspeicher

Der Name der DynamoDB-Tabelle, die Sie oder Ihr Schlüsselspeicheradministrator als
Schlüsselspeicher erstellt haben.

•

Ein Cache-Limit Time to Live (TTL)

Erstellen Sie einen hierarchischen Schlüsselbund 84

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Die Zeitspanne in Sekunden, in der ein Eintrag für Branch-Schlüsselmaterialien im lokalen Cache
verwendet werden kann, bevor er abläuft. Das Cache-Limit TTL bestimmt, wie oft der Client anruft,
AWS KMS um die Verwendung der Branch-Schlüssel zu autorisieren. Dieser Wert muss größer als
null sein. Nach Ablauf des Cache-Limits TTL wird der Eintrag nicht mehr bearbeitet und aus dem
lokalen Cache entfernt.

• Eine Schlüssel-ID für eine Zweigstelle

Sie können den entweder statisch konfigurierenbranch-key-id, der einen einzelnen
aktiven Zweigschlüssel in Ihrem Schlüsselspeicher identifiziert, oder einen Lieferanten für die
Zweigschlüssel-ID angeben.

Der Anbieter der Zweigschlüssel-ID bestimmt anhand der im Verschlüsselungskontext
gespeicherten Felder, welcher Filialschlüssel zum Entschlüsseln eines Datensatzes erforderlich ist.
Standardmäßig sind nur die Partitions- und Sortierschlüssel im Verschlüsselungskontext enthalten.
Sie können die SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT kryptografische Aktion jedoch
verwenden, um zusätzliche Felder in den Verschlüsselungskontext aufzunehmen.

Wir empfehlen dringend, für Mehrmandantendatenbanken, bei denen jeder Mandant über einen
eigenen Branch-Schlüssel verfügt, einen Branch-Schlüssel-ID-Anbieter zu verwenden. Sie
können den Anbieter für die Branch-Schlüssel-ID verwenden, um einen benutzerfreundlichen
Namen für Ihren Branch-Schlüssel IDs zu erstellen, damit Sie die richtige Branch-Schlüssel-ID
für einen bestimmten Mandanten leicht erkennen können. Mit dem Anzeigenamen können Sie
beispielsweise auf einen Zweigschlüssel als tenant1 statt auf verweisenb3f61619-4d35-48ad-
a275-050f87e15122.

Für Entschlüsselungsvorgänge können Sie entweder einen einzelnen hierarchischen
Schlüsselbund statisch konfigurieren, um die Entschlüsselung auf einen einzelnen Mandanten zu
beschränken, oder Sie können den Branch-Schlüssel-ID-Anbieter verwenden, um zu ermitteln,
welcher Mandant für die Entschlüsselung eines Datensatzes verantwortlich ist.

• (Optional) Ein Cache

Wenn Sie Ihren Cachetyp oder die Anzahl der Einträge für Branch-Schlüsselmaterialien, die im
lokalen Cache gespeichert werden können, anpassen möchten, geben Sie den Cachetyp und die
Eintragskapazität an, wenn Sie den Schlüsselbund initialisieren.

Erstellen Sie einen hierarchischen Schlüsselbund 85

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Der hierarchische Schlüsselbund unterstützt die folgenden Cachetypen: Standard, MultiThreaded,
StormTracking und Shared. Weitere Informationen und Beispiele zur Definition der einzelnen
Cachetypen finden Sie unter. the section called “Wählen Sie einen Cache”

Wenn Sie keinen Cache angeben, verwendet der hierarchische Schlüsselbund automatisch den
Standard-Cachetyp und legt die Eintragskapazität auf 1000 fest.

• (Optional) Eine Partitions-ID

Wenn Sie die angebenthe section called “Gemeinsam genutzter Cache”, können Sie optional eine
Partitions-ID definieren. Die Partitions-ID unterscheidet, welcher hierarchische Schlüsselbund
in den Cache schreibt. Wenn Sie beabsichtigen, die Cache-Einträge in einer Partition
wiederzuverwenden oder gemeinsam zu nutzen, müssen Sie Ihre eigene Partitions-ID definieren.
Sie können eine beliebige Zeichenfolge für die Partitions-ID angeben. Wenn Sie keine Partitions-
ID angeben, wird dem Schlüsselbund bei der Erstellung automatisch eine eindeutige Partitions-ID
zugewiesen.

Weitere Informationen finden Sie unter Partitions.

Note

Ihre hierarchischen Schlüsselbunde verwenden dieselben Cache-Einträge in einem
gemeinsam genutzten Cache, wenn Sie zwei oder mehr Schlüsselbunde erstellen, die auf
dieselbe Partitions-ID und Verzweigungsschlüssel-ID verweisen. logical key store name
Wenn Sie nicht möchten, dass sich mehrere Schlüsselbunde dieselben Cache-Einträge
teilen, müssen Sie für jeden hierarchischen Schlüsselbund eine eindeutige Partitions-ID
verwenden.

• (Optional) Eine Liste von Grant-Tokens

Wenn Sie den Zugriff auf den KMS-Schlüssel in Ihrem hierarchischen Schlüsselbund mit Grants
steuern, müssen Sie bei der Initialisierung des Schlüsselbunds alle erforderlichen Grant-Token
angeben.

Erstellen Sie einen hierarchischen Schlüsselbund mit einer statischen Zweigschlüssel-ID

Die folgenden Beispiele zeigen, wie Sie einen hierarchischen Schlüsselbund mit einer statischen
Zweigschlüssel-ID, derthe section called “Standard-Cache”, und einem Cache-Limit von 600
Sekunden erstellen.

Erstellen Sie einen hierarchischen Schlüsselbund 86

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(branchKeyStoreName)
 .branchKeyId(branch-key-id)
 .ttlSeconds(600)
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .branch_key_id(branch_key_id)
 .key_store(branch_key_store_name)
 .ttl_seconds(600)
 .send()
 .await?;

Erstellen Sie einen hierarchischen Schlüsselbund 87

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Erstellen Sie einen hierarchischen Schlüsselbund mit einem Lieferanten für die Zweigschlüssel-ID

Die folgenden Verfahren zeigen, wie Sie einen hierarchischen Schlüsselbund mit einem
Branchenschlüssel-ID-Lieferanten erstellen.

1. Erstellen Sie einen Lieferanten für die Zweigschlüssel-ID

Im folgenden Beispiel werden benutzerfreundliche Namen für die
beiden in Schritt 1 erstellten Verzweigungsschlüssel erstellt, und es wird
aufgerufenCreateDynamoDbEncryptionBranchKeyIdSupplier, mit dem AWS Database
Encryption SDK für DynamoDB-Client einen Branch-Schlüssel-ID-Lieferanten zu erstellen.

Java

// Create friendly names for each branch-key-id
class ExampleBranchKeyIdSupplier implements IDynamoDbKeyBranchKeyIdSupplier {
 private static String branchKeyIdForTenant1;
 private static String branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {
 this.branchKeyIdForTenant1 = tenant1Id;
 this.branchKeyIdForTenant2 = tenant2Id;
 }
// Create the branch key ID supplier
final DynamoDbEncryption ddbEnc = DynamoDbEncryption.builder()
 .DynamoDbEncryptionConfig(DynamoDbEncryptionConfig.builder().build())
 .build();
final BranchKeyIdSupplier branchKeyIdSupplier =
 ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 CreateDynamoDbEncryptionBranchKeyIdSupplierInput.builder()
 .ddbKeyBranchKeyIdSupplier(new ExampleBranchKeyIdSupplier(branch-
key-ID-tenant1, branch-key-ID-tenant2))
 .build()).branchKeyIdSupplier();

C# / .NET

// Create friendly names for each branch-key-id
 class ExampleBranchKeyIdSupplier : DynamoDbKeyBranchKeyIdSupplierBase {
 private String _branchKeyIdForTenant1;
 private String _branchKeyIdForTenant2;

 public ExampleBranchKeyIdSupplier(String tenant1Id, String tenant2Id) {

Erstellen Sie einen hierarchischen Schlüsselbund 88

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 this._branchKeyIdForTenant1 = tenant1Id;
 this._branchKeyIdForTenant2 = tenant2Id;
 }
// Create the branch key ID supplier
var ddbEnc = new DynamoDbEncryption(new DynamoDbEncryptionConfig());
var branchKeyIdSupplier = ddbEnc.CreateDynamoDbEncryptionBranchKeyIdSupplier(
 new CreateDynamoDbEncryptionBranchKeyIdSupplierInput
 {
 DdbKeyBranchKeyIdSupplier = new ExampleBranchKeyIdSupplier(branch-key-
ID-tenant1, branch-key-ID-tenant2)
 }).BranchKeyIdSupplier;

Rust

// Create friendly names for each branch_key_id
pub struct ExampleBranchKeyIdSupplier {
 branch_key_id_for_tenant1: String,
 branch_key_id_for_tenant2: String,
}

impl ExampleBranchKeyIdSupplier {
 pub fn new(tenant1_id: &str, tenant2_id: &str) -> Self {
 Self {
 branch_key_id_for_tenant1: tenant1_id.to_string(),
 branch_key_id_for_tenant2: tenant2_id.to_string(),
 }
 }
}

// Create the branch key ID supplier
let dbesdk_config = DynamoDbEncryptionConfig::builder().build()?;
let dbesdk = dbesdk_client::Client::from_conf(dbesdk_config)?;
let supplier = ExampleBranchKeyIdSupplier::new(tenant1_branch_key_id,
 tenant2_branch_key_id);

let branch_key_id_supplier = dbesdk
 .create_dynamo_db_encryption_branch_key_id_supplier()
 .ddb_key_branch_key_id_supplier(supplier)
 .send()
 .await?
 .branch_key_id_supplier
 .unwrap();

Erstellen Sie einen hierarchischen Schlüsselbund 89

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

2. Erstellen Sie einen hierarchischen Schlüsselbund

In den folgenden Beispielen wird ein hierarchischer Schlüsselbund mit dem in Schritt 1 erstellten
Branch-Schlüssel-ID-Lieferanten, einem Cache-Limit von 600 Sekunden und einer maximalen
Cachegröße von 1000 initialisiert.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(keystore)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(CacheType.builder() //OPTIONAL
 .Default(DefaultCache.builder()
 .entryCapacity(100)
 .build())
 .build();
final Keyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600,
 Cache = new CacheType
 {
 Default = new DefaultCache { EntryCapacity = 100 }
 }
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;

Erstellen Sie einen hierarchischen Schlüsselbund 90

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

let mpl = mpl_client::Client::from_conf(mpl_config)?;

let hierarchical_keyring = mpl
 .create_aws_kms_hierarchical_keyring()
 .branch_key_id_supplier(branch_key_id_supplier)
 .key_store(key_store)
 .ttl_seconds(600)
 .send()
 .await?;

Verwendung des hierarchischen Schlüsselbunds für durchsuchbare
Verschlüsselung

Mit der durchsuchbaren Verschlüsselung können Sie verschlüsselte Datensätze durchsuchen,
ohne die gesamte Datenbank zu entschlüsseln. Dies wird erreicht, indem der Klartextwert eines
verschlüsselten Felds mit einem Beacon indexiert wird. Um eine durchsuchbare Verschlüsselung zu
implementieren, müssen Sie einen hierarchischen Schlüsselbund verwenden.

Der CreateKey Schlüsselspeichervorgang generiert sowohl einen Zweigschlüssel als auch einen
Beacon-Schlüssel. Der Zweigschlüssel wird bei der Verschlüsselung und Entschlüsselung von
Datensätzen verwendet. Der Beacon-Schlüssel wird zur Generierung von Beacons verwendet.

Der Branch-Schlüssel und der Beacon-Schlüssel sind durch dasselbe geschützt AWS KMS key ,
das Sie bei der Erstellung Ihres Schlüsselspeicherdienstes angegeben haben. Nachdem der
CreateKey Vorgang AWS KMS zur Generierung des Branch-Schlüssels aufgerufen hat, ruft er
kms: GenerateDataKeyWithoutPlaintext ein zweites Mal auf, um den Beacon-Schlüssel mithilfe der
folgenden Anforderung zu generieren.

{
 "EncryptionContext": {
 "branch-key-id" : "branch-key-id",
 "type" : type,
 "create-time" : "timestamp",
 "logical-key-store-name" : "the logical table name for your key store",
 "kms-arn" : the KMS key ARN,
 "hierarchy-version" : 1
 },
 "KeyId": "the KMS key ARN",
 "NumberOfBytes": "32"
}

Verwendung des hierarchischen Schlüsselbunds für durchsuchbare Verschlüsselung 91

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKeyWithoutPlaintext.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Nachdem beide Schlüssel generiert wurden, ruft die CreateKey Operation ddb: TransactWriteItems
auf, um zwei neue Elemente zu schreiben, die den Branch-Schlüssel und den Beacon-Schlüssel in
Ihrem Branch-Schlüsselspeicher speichern.

Wenn Sie ein Standard-Beacon konfigurieren, fragt das AWS Database Encryption SDK den
Schlüsselspeicher nach dem Beacon-Schlüssel ab. Anschließend verwendet es eine HMAC-basierte
extract-and-expand Schlüsselableitungsfunktion (HKDF), um den Beacon-Schlüssel mit dem Namen
des Standard-Beacons zu kombinieren, um den HMAC-Schlüssel für einen bestimmten Beacon zu
erstellen.

Im Gegensatz zu Zweigschlüsseln gibt es in einem Schlüsselspeicher nur eine Beacon-
Schlüsselversion pro Beacon-Schlüssel. branch-key-id Der Beacon-Schlüssel wird niemals
gedreht.

Definieren Sie Ihre Beacon-Schlüsselquelle

Wenn Sie die Beacon-Version für Ihre Standard- und Verbund-Beacons definieren, müssen Sie den
Beacon-Schlüssel identifizieren und ein Cache-Limit für die Gültigkeitsdauer (Time to Live, TTL)
für die Beacon-Schlüsselmaterialien definieren. Beacon-Schlüsselmaterialien werden in einem von
den Branch-Schlüsseln getrennten lokalen Cache gespeichert. Der folgende Ausschnitt zeigt, wie
die keySource für eine Single-Tenant-Datenbank definiert wird. Identifizieren Sie Ihren Beacon-
Schlüssel anhand dessen, mit dem branch-key-id er verknüpft ist.

Java

keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branch-key-id)
 .cacheTTL(6000)
 .build())
 .build())

C# / .NET

KeySource = new BeaconKeySource
{
 Single = new SingleKeyStore
 {
 KeyId = branch-key-id,
 CacheTTL = 6000
 }

Verwendung des hierarchischen Schlüsselbunds für durchsuchbare Verschlüsselung 92

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_TransactWriteItems.html
https://en.wikipedia.org/wiki/HKDF

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

}

Rust

 .key_source(BeaconKeySource::Single(
 SingleKeyStore::builder()
 // `keyId` references a beacon key.
 // For every branch key we create in the keystore,
 // we also create a beacon key.
 // This beacon key is not the same as the branch key,
 // but is created with the same ID as the branch key.
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .build()?,
))

Definition der Beacon-Quelle in einer mandantenfähigen Datenbank

Wenn Sie über eine Multitenant-Datenbank verfügen, müssen Sie bei der Konfiguration der die
folgenden Werte angeben. keySource

•

keyFieldName

Definiert den Namen des Felds, in dem der dem Beacon branch-key-id zugeordnete
Schlüssel gespeichert wird, der zur Generierung von Beacons für einen bestimmten Mandanten
verwendet wurde. Dabei keyFieldName kann es sich um eine beliebige Zeichenfolge handeln,
sie muss jedoch für alle anderen Felder in Ihrer Datenbank eindeutig sein. Wenn Sie neue
Datensätze in Ihre Datenbank schreiben, wird der Beacon-Schlüsselbranch-key-id, der zur
Generierung von Beacons für diesen Datensatz verwendet wurde, in diesem Feld gespeichert.
Sie müssen dieses Feld in Ihre Beacon-Abfragen aufnehmen und die entsprechenden Beacon-
Schlüsselmaterialien identifizieren, die für die Neuberechnung des Beacons erforderlich sind.
Weitere Informationen finden Sie unter Abfragen von Beacons in einer mandantenfähigen
Datenbank.

• CacheTTL

Der Zeitraum in Sekunden, in dem ein Eintrag für Beacon-Schlüsselmaterialien im lokalen
Beacon-Cache verwendet werden kann, bevor er abläuft. Dieser Wert muss größer als null sein.
Wenn das Cache-Limit TTL abläuft, wird der Eintrag aus dem lokalen Cache entfernt.

Verwendung des hierarchischen Schlüsselbunds für durchsuchbare Verschlüsselung 93

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• (Optional) Ein Cache

Wenn Sie Ihren Cachetyp oder die Anzahl der Einträge für Branch-Schlüsselmaterialien, die im
lokalen Cache gespeichert werden können, anpassen möchten, geben Sie den Cachetyp und
die Eintragskapazität an, wenn Sie den Schlüsselbund initialisieren.

Der hierarchische Schlüsselbund unterstützt die folgenden Cachetypen: Standard,
MultiThreaded, StormTracking und Shared. Weitere Informationen und Beispiele zur Definition
der einzelnen Cachetypen finden Sie unter. the section called “Wählen Sie einen Cache”

Wenn Sie keinen Cache angeben, verwendet der hierarchische Schlüsselbund automatisch den
Standard-Cachetyp und legt die Eintragskapazität auf 1000 fest.

Im folgenden Beispiel wird ein hierarchischer Schlüsselbund mit einem Branch-Schlüssel-ID-
Lieferanten, einem Cache-Limit (TLL) von 600 Sekunden und einer Eingabekapazität von 1000
erstellt.

Java

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsHierarchicalKeyringInput keyringInput =
 CreateAwsKmsHierarchicalKeyringInput.builder()
 .keyStore(branchKeyStoreName)
 .branchKeyIdSupplier(branchKeyIdSupplier)
 .ttlSeconds(600)
 .cache(CacheType.builder() //OPTIONAL
 .Default(DefaultCache.builder()
 .entryCapacity(1000)
 .build())
 .build();
final IKeyring hierarchicalKeyring =
 matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

C# / .NET

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsHierarchicalKeyringInput
{
 KeyStore = keystore,
 BranchKeyIdSupplier = branchKeyIdSupplier,
 TtlSeconds = 600,

Verwendung des hierarchischen Schlüsselbunds für durchsuchbare Verschlüsselung 94

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 Cache = new CacheType
 {
 Default = new DefaultCache { EntryCapacity = 1000 }
 }
};
var hierarchicalKeyring = matProv.CreateAwsKmsHierarchicalKeyring(keyringInput);

Rust

let provider_config = MaterialProvidersConfig::builder().build()?;
 let mat_prov = client::Client::from_conf(provider_config)?;
 let kms_keyring = mat_prov
 .create_aws_kms_hierarchical_keyring()
 .branch_key_id(branch_key_id)
 .key_store(key_store)
 .ttl_seconds(600)
 .send()
 .await?;

AWS KMS ECDH-Schlüsselanhänger

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK umbenannt
. AWS Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB Encryption
Client.

Important

Der AWS KMS ECDH-Schlüsselbund ist nur mit Version 1.5.0 oder höher der Material
Providers Library verfügbar.

Ein AWS KMS ECDH-Schlüsselbund verwendet eine asymmetrische Schlüsselvereinbarung, AWS
KMS keysum einen gemeinsamen symmetrischen Wrapping-Schlüssel zwischen zwei Parteien
abzuleiten. Zunächst verwendet der Schlüsselbund den Schlüsselvereinbarungsalgorithmus Elliptic
Curve Diffie-Hellman (ECDH), um ein gemeinsames Geheimnis aus dem privaten Schlüssel im
KMS-Schlüsselpaar des Absenders und dem öffentlichen Schlüssel des Empfängers abzuleiten.
Anschließend leitet der Schlüsselbund anhand des gemeinsamen geheimen Schlüssels den

AWS KMS ECDH-Schlüsselanhänger 95

https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-types.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

gemeinsamen Wrapping-Schlüssel ab, der Ihre Datenverschlüsselungsschlüssel schützt. Die
Schlüsselableitungsfunktion, die das AWS Database Encryption SDK (KDF_CTR_HMAC_SHA384)
verwendet, um den gemeinsamen Wrapping-Schlüssel abzuleiten, entspricht den NIST-
Empfehlungen für die Schlüsselableitung.

Die Funktion zur Schlüsselableitung gibt 64 Byte an Schlüsselmaterial zurück. Um sicherzustellen,
dass beide Parteien das richtige Schlüsselmaterial verwenden, verwendet das AWS Database
Encryption SDK die ersten 32 Byte als Commitment-Schlüssel und die letzten 32 Byte als
gemeinsamen Wrapping-Schlüssel. Wenn der Schlüsselbund beim Entschlüsseln nicht denselben
Commitment-Schlüssel und denselben gemeinsamen Wrapping-Schlüssel reproduzieren kann,
die im Materialbeschreibungsfeld des verschlüsselten Datensatzes gespeichert sind, schlägt der
Vorgang fehl. Wenn Sie beispielsweise einen Datensatz mit einem Schlüsselbund verschlüsseln,
der mit Alices privatem Schlüssel und Bobs öffentlichem Schlüssel konfiguriert ist, reproduziert ein
Schlüsselbund, der mit Bobs privatem Schlüssel und Alices öffentlichem Schlüssel konfiguriert ist,
denselben Commitment-Schlüssel und gemeinsamen Wrapping-Schlüssel und kann den Datensatz
entschlüsseln. Wenn Bobs öffentlicher Schlüssel nicht von einem KMS-Schlüsselpaar stammt, kann
Bob einen Raw ECDH-Schlüsselbund erstellen, um den Datensatz zu entschlüsseln.

Der AWS KMS ECDH-Schlüsselbund verschlüsselt Datensätze mit einem symmetrischen Schlüssel
unter Verwendung von AES-GCM. Der Datenschlüssel wird dann mit dem abgeleiteten gemeinsamen
Wrapping-Schlüssel unter Verwendung von AES-GCM umhüllt. Jeder AWS KMS ECDH-
Schlüsselbund kann nur einen gemeinsamen Wrapping-Schlüssel haben, aber Sie können mehrere
AWS KMS ECDH-Schlüsselanhänger, einzeln oder zusammen mit anderen Schlüsselbunden, in
einen Mehrfachschlüsselbund aufnehmen.

Themen

• AWS KMS Erforderliche Berechtigungen für ECDH-Schlüsselanhänger

• Einen ECDH-Schlüsselbund AWS KMS erstellen

• Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen

AWS KMS Erforderliche Berechtigungen für ECDH-Schlüsselanhänger

Für das AWS Database Encryption SDK ist kein AWS Konto erforderlich und es ist von keinem AWS
Dienst abhängig. Um einen AWS KMS ECDH-Schlüsselbund verwenden zu können, benötigen
Sie jedoch ein AWS Konto und die folgenden Mindestberechtigungen für AWS KMS keys den
Schlüsselbund. Die Berechtigungen variieren je nachdem, welches Schlüsselvereinbarungsschema
Sie verwenden.

AWS KMS Erforderliche Berechtigungen für ECDH-Schlüsselanhänger 96

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Um Datensätze mithilfe des KmsPrivateKeyToStaticPublicKey
Schlüsselvereinbarungsschemas zu verschlüsseln und zu entschlüsseln, benötigen Sie kms:
GetPublicKey und kms: DeriveSharedSecret auf dem asymmetrischen KMS-Schlüsselpaar des
Absenders. Wenn Sie den DER-codierten öffentlichen Schlüssel des Absenders direkt angeben,
wenn Sie Ihren Schlüsselbund instanziieren, benötigen Sie nur die kms: DeriveSharedSecret -
Berechtigung für das asymmetrische KMS-Schlüsselpaar des Absenders.

• Um Datensätze mithilfe des KmsPublicKeyDiscovery Schlüsselvereinbarungsschemas zu
entschlüsseln, benötigen Sie die GetPublicKey Berechtigungen kms: DeriveSharedSecret und kms:
für das angegebene asymmetrische KMS-Schlüsselpaar.

Einen ECDH-Schlüsselbund AWS KMS erstellen

Um einen AWS KMS ECDH-Schlüsselbund zu erstellen, der Daten ver- und entschlüsselt, müssen
Sie das Schlüsselvereinbarungsschema verwenden. KmsPrivateKeyToStaticPublicKey Um
einen AWS KMS ECDH-Schlüsselbund mit dem Schlüsselvereinbarungsschema zu initialisieren,
geben Sie die folgenden KmsPrivateKeyToStaticPublicKey Werte an:

• ID des Absenders AWS KMS key

Muss ein von NIST empfohlenes asymmetrisches KMS-Schlüsselpaar mit elliptischer Kurve
(ECC) mit einem Wert von identifizieren. KeyUsage KEY_AGREEMENT Der private Schlüssel des
Absenders wird verwendet, um den gemeinsamen geheimen Schlüssel abzuleiten.

• (Optional) Der öffentliche Schlüssel des Absenders

Muss ein DER-codierter öffentlicher X.509-Schlüssel sein, auch bekannt als
SubjectPublicKeyInfo (SPKI), wie in RFC 5280 definiert.

Die AWS KMS GetPublicKeyOperation gibt den öffentlichen Schlüssel eines asymmetrischen KMS-
Schlüsselpaars im erforderlichen DER-codierten Format zurück.

Um die Anzahl der AWS KMS Anrufe zu reduzieren, die Ihr Schlüsselbund tätigt, können Sie
den öffentlichen Schlüssel des Absenders direkt angeben. Wenn kein Wert für den öffentlichen
Schlüssel des Absenders angegeben wird, ruft der Schlüsselbund auf, AWS KMS um den
öffentlichen Schlüssel des Absenders abzurufen.

• Der öffentliche Schlüssel des Empfängers

Sie müssen den DER-codierten öffentlichen X.509-Schlüssel des Empfängers, auch bekannt als
SubjectPublicKeyInfo (SPKI), wie in RFC 5280 definiert, angeben.

Einen ECDH-Schlüsselbund AWS KMS erstellen 97

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Die AWS KMS GetPublicKeyOperation gibt den öffentlichen Schlüssel eines asymmetrischen KMS-
Schlüsselpaars im erforderlichen DER-codierten Format zurück.

• Kurvenspezifikation

Identifiziert die Spezifikation für elliptische Kurven in den angegebenen Schlüsselpaaren. Sowohl
die Schlüsselpaare des Absenders als auch des Empfängers müssen dieselbe Kurvenspezifikation
haben.

Zulässige Werte: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Optional) Eine Liste von Grant-Tokens

Wenn Sie den Zugriff auf den KMS-Schlüssel in Ihrem AWS KMS ECDH-Schlüsselbund mit Grants
steuern, müssen Sie bei der Initialisierung des Schlüsselbunds alle erforderlichen Grant-Token
angeben.

C# / .NET

Im folgenden Beispiel wird ein AWS KMS ECDH-Schlüsselbund mit dem KMS-Schlüssel des
Absenders, dem öffentlichen Schlüssel des Absenders und dem öffentlichen Schlüssel des
Empfängers erstellt. In diesem Beispiel wird der optionale senderPublicKey Parameter
verwendet, um den öffentlichen Schlüssel des Absenders bereitzustellen. Wenn Sie den
öffentlichen Schlüssel des Absenders nicht angeben, ruft der Schlüsselbund auf, AWS KMS um
den öffentlichen Schlüssel des Absenders abzurufen. Sowohl die Schlüsselpaare des Absenders
als auch des Empfängers befinden sich auf der ECC_NIST_P256 Kurve.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Must be DER-encoded X.509 public keys
var BobPublicKey = new MemoryStream(new byte[] { });
var AlicePublicKey = new MemoryStream(new byte[] { });

// Create the AWS KMS ECDH static keyring
var staticConfiguration = new KmsEcdhStaticConfigurations
{
 KmsPrivateKeyToStaticPublicKey = new KmsPrivateKeyToStaticPublicKeyInput
 {
 SenderKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",

Einen ECDH-Schlüsselbund AWS KMS erstellen 98

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/grants.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 SenderPublicKey = BobPublicKey,
 RecipientPublicKey = AlicePublicKey
 }
};

var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = staticConfiguration
};

var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Java

Im folgenden Beispiel wird ein AWS KMS ECDH-Schlüsselbund mit dem KMS-Schlüssel des
Absenders, dem öffentlichen Schlüssel des Absenders und dem öffentlichen Schlüssel des
Empfängers erstellt. In diesem Beispiel wird der optionale senderPublicKey Parameter
verwendet, um den öffentlichen Schlüssel des Absenders bereitzustellen. Wenn Sie den
öffentlichen Schlüssel des Absenders nicht angeben, ruft der Schlüsselbund auf, AWS KMS um
den öffentlichen Schlüssel des Absenders abzurufen. Sowohl die Schlüsselpaare des Absenders
als auch des Empfängers befinden sich auf der ECC_NIST_P256 Kurve.

// Retrieve public keys
// Must be DER-encoded X.509 public keys
ByteBuffer BobPublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab");
 ByteBuffer AlicePublicKey = getPublicKeyBytes("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321");

// Create the AWS KMS ECDH static keyring
 final CreateAwsKmsEcdhKeyringInput senderKeyringInput =
 CreateAwsKmsEcdhKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPrivateKeyToStaticPublicKey(
 KmsPrivateKeyToStaticPublicKeyInput.builder()
 .senderKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab")

Einen ECDH-Schlüsselbund AWS KMS erstellen 99

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .senderPublicKey(BobPublicKey)
 .recipientPublicKey(AlicePublicKey)
 .build()).build()).build();

Rust

Im folgenden Beispiel wird ein AWS KMS ECDH-Schlüsselbund mit dem KMS-Schlüssel des
Absenders, dem öffentlichen Schlüssel des Absenders und dem öffentlichen Schlüssel des
Empfängers erstellt. In diesem Beispiel wird der optionale sender_public_key Parameter
verwendet, um den öffentlichen Schlüssel des Absenders bereitzustellen. Wenn Sie den
öffentlichen Schlüssel des Absenders nicht angeben, ruft der Schlüsselbund auf, AWS KMS um
den öffentlichen Schlüssel des Absenders abzurufen.

// Retrieve public keys
// Must be DER-encoded X.509 keys
let public_key_file_content_sender =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_SENDER))?;
let parsed_public_key_file_content_sender = parse(public_key_file_content_sender)?;
let public_key_sender_utf8_bytes = parsed_public_key_file_content_sender.contents();

let public_key_file_content_recipient =
 std::fs::read_to_string(Path::new(EXAMPLE_KMS_ECC_PUBLIC_KEY_FILENAME_RECIPIENT))?;
let parsed_public_key_file_content_recipient =
 parse(public_key_file_content_recipient)?;
let public_key_recipient_utf8_bytes =
 parsed_public_key_file_content_recipient.contents();

// Create KmsPrivateKeyToStaticPublicKeyInput
let kms_ecdh_static_configuration_input =
 KmsPrivateKeyToStaticPublicKeyInput::builder()
 .sender_kms_identifier(arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab)
 // Must be a UTF8 DER-encoded X.509 public key
 .sender_public_key(public_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let kms_ecdh_static_configuration =
 KmsEcdhStaticConfigurations::KmsPrivateKeyToStaticPublicKey(kms_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;

Einen ECDH-Schlüsselbund AWS KMS erstellen 100

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH keyring
let kms_ecdh_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client)
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_static_configuration)
 .send()
 .await?;

Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen

Beim Entschlüsseln empfiehlt es sich, die Schlüssel anzugeben, die das AWS Database
Encryption SDK verwenden kann. Um dieser bewährten Methode zu folgen, verwenden Sie
einen AWS KMS ECDH-Schlüsselbund mit dem KmsPrivateKeyToStaticPublicKey
Schlüsselvereinbarungsschema. Sie können jedoch auch einen AWS KMS ECDH-Discovery-
Schlüsselbund erstellen, d. h. einen AWS KMS ECDH-Schlüsselbund, der jeden Datensatz
entschlüsseln kann, bei dem der öffentliche Schlüssel des angegebenen KMS-Schlüsselpaars mit
dem öffentlichen Schlüssel des Empfängers übereinstimmt, der im Materialbeschreibungsfeld des
verschlüsselten Datensatzes gespeichert ist.

Important

Wenn Sie Datensätze mithilfe des KmsPublicKeyDiscovery
Schlüsselvereinbarungsschemas entschlüsseln, akzeptieren Sie alle öffentlichen Schlüssel,
unabhängig davon, wem sie gehören.

Um einen AWS KMS ECDH-Schlüsselbund mit dem Schlüsselvereinbarungsschema zu initialisieren,
geben Sie die KmsPublicKeyDiscovery folgenden Werte an:

• ID des Empfängers AWS KMS key

Muss ein von NIST empfohlenes asymmetrisches KMS-Schlüsselpaar mit elliptischer Kurve (ECC)
mit einem Wert von identifizieren. KeyUsage KEY_AGREEMENT

• Kurvenspezifikation

Identifiziert die elliptische Kurvenspezifikation im KMS-Schlüsselpaar des Empfängers.

Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen 101

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Zulässige Werte: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

• (Optional) Eine Liste von Grant-Tokens

Wenn Sie den Zugriff auf den KMS-Schlüssel in Ihrem AWS KMS ECDH-Schlüsselbund mit Grants
steuern, müssen Sie bei der Initialisierung des Schlüsselbunds alle erforderlichen Grant-Token
angeben.

C# / .NET

Im folgenden Beispiel wird ein AWS KMS ECDH-Discovery-Schlüsselbund mit einem KMS-
Schlüsselpaar auf der ECC_NIST_P256 Kurve erstellt. Sie müssen über die DeriveSharedSecret
Berechtigungen kms: GetPublicKey und kms: für das angegebene KMS-Schlüsselpaar verfügen.
Dieser Schlüsselbund kann jeden Datensatz entschlüsseln, bei dem der öffentliche Schlüssel
des angegebenen KMS-Schlüsselpaars mit dem öffentlichen Schlüssel des Empfängers
übereinstimmt, der im Materialbeschreibungsfeld des verschlüsselten Datensatzes gespeichert ist.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());

// Create the AWS KMS ECDH discovery keyring
var discoveryConfiguration = new KmsEcdhStaticConfigurations
{
 KmsPublicKeyDiscovery = new KmsPublicKeyDiscoveryInput
 {
 RecipientKmsIdentifier = "arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321"
 }

};
var createKeyringInput = new CreateAwsKmsEcdhKeyringInput
{
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KmsClient = new AmazonKeyManagementServiceClient(),
 KeyAgreementScheme = discoveryConfiguration
};
var keyring = materialProviders.CreateAwsKmsEcdhKeyring(createKeyringInput);

Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen 102

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Java

Im folgenden Beispiel wird ein AWS KMS ECDH-Discovery-Schlüsselbund mit einem KMS-
Schlüsselpaar auf der ECC_NIST_P256 Kurve erstellt. Sie müssen über die DeriveSharedSecret
Berechtigungen kms: GetPublicKey und kms: für das angegebene KMS-Schlüsselpaar verfügen.
Dieser Schlüsselbund kann jeden Datensatz entschlüsseln, bei dem der öffentliche Schlüssel
des angegebenen KMS-Schlüsselpaars mit dem öffentlichen Schlüssel des Empfängers
übereinstimmt, der im Materialbeschreibungsfeld des verschlüsselten Datensatzes gespeichert ist.

// Create the AWS KMS ECDH discovery keyring
final CreateAwsKmsEcdhKeyringInput recipientKeyringInput =
 CreateAwsKmsEcdhKeyringInput.builder()
 .kmsClient(KmsClient.create())
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 KmsEcdhStaticConfigurations.builder()
 .KmsPublicKeyDiscovery(
 KmsPublicKeyDiscoveryInput.builder()
 .recipientKmsIdentifier("arn:aws:kms:us-
west-2:111122223333:key/0987dcba-09fe-87dc-65ba-ab0987654321").build()
).build())
 .build();

Rust

// Create KmsPublicKeyDiscoveryInput
let kms_ecdh_discovery_static_configuration_input =
 KmsPublicKeyDiscoveryInput::builder()
 .recipient_kms_identifier(ecc_recipient_key_arn)
 .build()?;

let kms_ecdh_discovery_static_configuration =
 KmsEcdhStaticConfigurations::KmsPublicKeyDiscovery(kms_ecdh_discovery_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create AWS KMS ECDH discovery keyring
let kms_ecdh_discovery_keyring = mpl
 .create_aws_kms_ecdh_keyring()
 .kms_client(kms_client.clone())

Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen 103

https://docs.aws.amazon.com/kms/latest/APIReference/API_GetPublicKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DeriveSharedSecret.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(kms_ecdh_discovery_static_configuration)
 .send()
 .await?;

Unformatierte AES-Schlüsselbunde

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Mit dem AWS Database Encryption SDK können Sie einen symmetrischen AES-Schlüssel
verwenden, den Sie als Wrapping-Schlüssel angeben, der Ihren Datenschlüssel schützt. Sie müssen
das Schlüsselmaterial generieren, speichern und schützen, vorzugsweise in einem Hardware-
Sicherheitsmodul (HSM) oder einem Schlüsselverwaltungssystem. Verwenden Sie einen RAW-AES-
Schlüsselbund, wenn Sie den Wrap-Schlüssel bereitstellen und die Datenschlüssel lokal oder offline
verschlüsseln müssen.

Der Raw AES-Schlüsselbund verschlüsselt Daten mithilfe des AES-GCM-Algorithmus und
eines Wrapping-Schlüssels, den Sie als Byte-Array angeben. Sie können in jedem Raw-
AES-Schlüsselbund nur einen Wrap-Schlüssel angeben, aber Sie können mehrere Raw
AES-Schlüsselanhänger, allein oder zusammen mit anderen Schlüsselbunden, in einen
Mehrfachschlüsselbund aufnehmen.

Wichtige Namespaces und Namen

Um den AES-Schlüssel in einem Schlüsselbund zu identifizieren, verwendet der Raw AES-
Schlüsselbund einen Schlüsselnamespace und einen Schlüsselnamen, die Sie angeben.
Diese Werte sind nicht geheim. Sie erscheinen im Klartext in der Materialbeschreibung, die das
AWS Database Encryption SDK dem Datensatz hinzufügt. Wir empfehlen, für Ihr HSM- oder
Schlüsselverwaltungssystem einen Schlüsselnamespace und einen Schlüsselnamen zu verwenden,
der den AES-Schlüssel in diesem System identifiziert.

Unformatierte AES-Schlüsselbunde 104

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Note

Der Schlüsselnamespace und der Schlüsselname entsprechen den Feldern Provider-ID (oder
Provider) und Key-ID in. JceMasterKey

Wenn Sie verschiedene Schlüsselbunde zum Verschlüsseln und Entschlüsseln eines
bestimmten Felds erstellen, sind die Namespace- und Namenswerte entscheidend. Wenn der
Schlüsselnamespace und der Schlüsselname im Schlüsselbund für die Entschlüsselung nicht exakt
und unter Berücksichtigung der Groß- und Kleinschreibung mit dem Schlüsselnamespace und dem
Schlüsselnamen im Verschlüsselungsschlüsselbund übereinstimmen, wird der Schlüsselbund nicht
verwendet, auch wenn die Schlüsselmaterial-Bytes identisch sind.

Sie könnten beispielsweise einen RAW-AES-Schlüsselbund mit Schlüsselnamespace und
Schlüsselname definieren. HSM_01 AES_256_012 Anschließend verwenden Sie diesen
Schlüsselbund, um einige Daten zu verschlüsseln. Um diese Daten zu entschlüsseln, erstellen Sie
einen RAW-AES-Schlüsselbund mit demselben Schlüsselnamespace, demselben Schlüsselnamen
und demselben Schlüsselmaterial.

Die folgenden Beispiele zeigen, wie Sie einen Raw AES-Schlüsselbund erstellen. Die
AESWrappingKey Variable steht für das von Ihnen bereitgestellte Schlüsselmaterial.

Java

final CreateRawAesKeyringInput keyringInput = CreateRawAesKeyringInput.builder()
 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

C# / .NET

var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

Unformatierte AES-Schlüsselbunde 105

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

// This example uses the key generator in Bouncy Castle to generate the key
 material.
// In production, use key material from a secure source.
var aesWrappingKey = new
 MemoryStream(GeneratorUtilities.GetKeyGenerator("AES256").GenerateKey());

// Create the keyring
var keyringInput = new CreateRawAesKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 WrappingKey = AESWrappingKey,
 WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
};

var matProv = new MaterialProviders(new MaterialProvidersConfig());
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;
let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name("AES_256_012")
 .key_namespace("HSM_01")
 .wrapping_key(aes_key_bytes)
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

Unformatierte RSA-Schlüsselbunde

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Der Raw RSA Keyring führt eine asymmetrische Verschlüsselung und Entschlüsselung von
Datenschlüsseln im lokalen Speicher mit den von Ihnen bereitgestellten öffentlichen und privaten

Unformatierte RSA-Schlüsselbunde 106

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

RSA-Schlüsseln durch. Sie müssen den privaten Schlüssel generieren, speichern und schützen,
vorzugsweise in einem Hardware-Sicherheitsmodul (HSM) oder einem Schlüsselverwaltungssystem.
Die Verschlüsselungsfunktion verschlüsselt den Datenschlüssel unter dem öffentlichen RSA-
Schlüssel. Die Entschlüsselungsfunktion entschlüsselt den Datenschlüssel mithilfe des privaten
Schlüssels. Sie können aus mehreren RSA-Padding-Modi auswählen.

Ein unformatierter RSA-Schlüsselbund, der verschlüsselt und entschlüsselt, muss ein
asymmetrisches öffentliches und privates Schlüsselpaar enthalten. Sie können Daten jedoch
mit einem Raw RSA Keyring verschlüsseln, der nur über einen öffentlichen Schlüssel verfügt,
und Sie können Daten mit einem Raw RSA Schlüsselbund entschlüsseln, der nur über einen
privaten Schlüssel verfügt. Sie können einen beliebigen Raw RSA-Schlüsselbund in einen
Mehrfachschlüsselbund aufnehmen. Wenn Sie einen Raw RSA-Schlüsselbund mit einem öffentlichen
und einem privaten Schlüssel konfigurieren, stellen Sie sicher, dass sie Teil desselben key pair sind.

Der Raw RSA-Schlüsselbund entspricht den JceMasterKeyin und arbeitet mit ihnen
zusammen, AWS-Verschlüsselungs-SDK for Java wenn sie mit asymmetrischen RSA-
Verschlüsselungsschlüsseln verwendet werden.

Note

Der Raw RSA-Schlüsselbund unterstützt keine asymmetrischen KMS-Schlüssel. Um
asymmetrische RSA-KMS-Schlüssel zu verwenden, erstellen Sie einen Schlüsselbund.AWS
KMS

Namespaces und Namen

Um das RSA-Schlüsselmaterial in einem Schlüsselbund zu identifizieren, verwendet der RSA-RSA-
Schlüsselbund einen Schlüsselnamespace und einen Schlüsselnamen, die Sie angeben. Diese
Werte sind nicht geheim. Sie erscheinen im Klartext in der Materialbeschreibung, die das AWS
Database Encryption SDK dem Datensatz hinzufügt. Wir empfehlen, den Schlüsselnamespace und
den Schlüsselnamen zu verwenden, die das RSA-Schlüsselpaar (oder seinen privaten Schlüssel) in
Ihrem HSM oder Schlüsselverwaltungssystem identifizieren.

Note

Der Schlüsselnamespace und der Schlüsselname entsprechen den Feldern Provider-ID (oder
Provider) und Key-ID in. JceMasterKey

Unformatierte RSA-Schlüsselbunde 107

https://aws.github.io/aws-encryption-sdk-java/com/amazonaws/encryptionsdk/jce/JceMasterKey.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Wenn Sie verschiedene Schlüsselbunde zum Verschlüsseln und Entschlüsseln eines bestimmten
Datensatzes erstellen, sind die Namespace- und Namenswerte entscheidend. Wenn der
Schlüsselnamespace und der Schlüsselname im Entschlüsselungsschlüsselbund nicht exakt
und unter Berücksichtigung der Groß- und Kleinschreibung für den Schlüsselnamespace
und den Schlüsselnamen im Verschlüsselungsschlüsselbund übereinstimmen, wird der
Entschlüsselungsschlüsselbund nicht verwendet, auch wenn die Schlüssel aus demselben key pair
stammen.

Der Schlüsselnamespace und der Schlüsselname des Schlüsselmaterials in den Verschlüsselungs-
und Entschlüsselungsschlüsselbunden müssen identisch sein, unabhängig davon, ob der
Schlüsselbund den öffentlichen RSA-Schlüssel, den privaten RSA-Schlüssel oder beide
Schlüssel im key pair enthält. Nehmen wir beispielsweise an, Sie verschlüsseln Daten mit einem
RSA-Rohschlüsselbund für einen öffentlichen RSA-Schlüssel mit Schlüsselnamespace und
Schlüsselname. HSM_01 RSA_2048_06 Um diese Daten zu entschlüsseln, erstellen Sie einen RSA-
Rohschlüsselbund mit dem privaten Schlüssel (oder key pair) und demselben Schlüsselnamespace
und Namen.

Padding-Modus

Sie müssen einen Füllmodus für RSA-Rohschlüsselringe angeben, die für die Verschlüsselung und
Entschlüsselung verwendet werden, oder Funktionen Ihrer Sprachimplementierung verwenden, die
ihn für Sie spezifizieren.

Der AWS Encryption SDK unterstützt die folgenden Füllmodi, die den Einschränkungen der
jeweiligen Sprache unterliegen. Wir empfehlen einen OAEP-Padding-Modus, insbesondere OAEP
mit SHA-256 und mit SHA-256 Padding. MGF1 Der Padding-Modus wird nur aus Gründen der
Abwärtskompatibilität unterstützt. PKCS1

• OAEP mit SHA-1 und mit SHA-1 Padding MGF1

• OAEP mit SHA-256 und mit SHA-256-Padding MGF1

• OAEP mit SHA-384 und mit SHA-384-Padding MGF1

• OAEP mit SHA-512 und mit SHA-512-Padding MGF1

• PKCS1 v1.5 Polsterung

Das folgende Java-Beispiel zeigt, wie ein Raw RSA-Schlüsselbund mit dem öffentlichen und privaten
Schlüssel eines RSA-Schlüsselpaars und dem OAEP mit SHA-256 und dem SHA-256-Padding-
Modus erstellt wird. MGF1 Die Variablen und stellen das von Ihnen bereitgestellte Schlüsselmaterial
dar. RSAPublicKey RSAPrivateKey

Unformatierte RSA-Schlüsselbunde 108

https://tools.ietf.org/html/rfc8017#section-7.1
https://tools.ietf.org/html/rfc8017#section-7.2

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Java

final CreateRawRsaKeyringInput keyringInput = CreateRawRsaKeyringInput.builder()
 .keyName("RSA_2048_06")
 .keyNamespace("HSM_01")
 .paddingScheme(PaddingScheme.OAEP_SHA256_MGF1)
 .publicKey(RSAPublicKey)
 .privateKey(RSAPrivateKey)
 .build();
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
IKeyring rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

C# / .NET

var keyNamespace = "HSM_01";
var keyName = "RSA_2048_06";

// Get public and private keys from PEM files
var publicKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePublicKey.pem"));
var privateKey = new
 MemoryStream(System.IO.File.ReadAllBytes("RSAKeyringExamplePrivateKey.pem"));

// Create the keyring input
var keyringInput = new CreateRawRsaKeyringInput
{
 KeyNamespace = keyNamespace,
 KeyName = keyName,
 PaddingScheme = PaddingScheme.OAEP_SHA512_MGF1,
 PublicKey = publicKey,
 PrivateKey = privateKey
};

// Create the keyring
var matProv = new MaterialProviders(new MaterialProvidersConfig());
var rawRsaKeyring = matProv.CreateRawRsaKeyring(keyringInput);

Rust

let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

Unformatierte RSA-Schlüsselbunde 109

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

let raw_rsa_keyring = mpl
 .create_raw_rsa_keyring()
 .key_name("RSA_2048_06")
 .key_namespace("HSM_01")
 .padding_scheme(PaddingScheme::OaepSha256Mgf1)
 .public_key(RSA_public_key)
 .private_key(RSA_private_key)
 .send()
 .await?;

Raw ECDH Schlüsselanhänger

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK umbenannt
. AWS Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB Encryption
Client.

Important

Der Raw ECDH-Schlüsselbund ist nur mit Version 1.5.0 der Material Providers Library
verfügbar.

Der Raw ECDH-Schlüsselbund verwendet die öffentlich-privaten Schlüsselpaare mit elliptischer
Kurve, die Sie angeben, um einen gemeinsamen Wrapping-Schlüssel zwischen zwei Parteien
abzuleiten. Zunächst leitet der Schlüsselbund mithilfe des privaten Schlüssels des Absenders, des
öffentlichen Schlüssels des Empfängers und des Schlüsselvereinbarungsalgorithmus Elliptic Curve
Diffie-Hellman (ECDH) ein gemeinsames Geheimnis ab. Anschließend leitet der Schlüsselbund
anhand des gemeinsamen geheimen Schlüssels den gemeinsamen Wrapping-Schlüssel ab, der
Ihre Datenverschlüsselungsschlüssel schützt. Die Schlüsselableitungsfunktion, mit der das AWS
Database Encryption SDK (KDF_CTR_HMAC_SHA384) den gemeinsamen Wrapping-Schlüssel
ableitet, entspricht den NIST-Empfehlungen für die Schlüsselableitung.

Die Funktion zur Schlüsselableitung gibt 64 Byte an Schlüsselmaterial zurück. Um sicherzustellen,
dass beide Parteien das richtige Schlüsselmaterial verwenden, verwendet das AWS Database
Encryption SDK die ersten 32 Byte als Commitment-Schlüssel und die letzten 32 Byte als
gemeinsamen Wrapping-Schlüssel. Wenn der Schlüsselbund beim Entschlüsseln nicht denselben

Raw ECDH Schlüsselanhänger 110

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1-upd1.pdf

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Commitment-Schlüssel und denselben gemeinsamen Wrapping-Schlüssel reproduzieren kann,
die im Materialbeschreibungsfeld des verschlüsselten Datensatzes gespeichert sind, schlägt der
Vorgang fehl. Wenn Sie beispielsweise einen Datensatz mit einem Schlüsselbund verschlüsseln,
der mit Alices privatem Schlüssel und Bobs öffentlichem Schlüssel konfiguriert ist, reproduziert ein
Schlüsselbund, der mit Bobs privatem Schlüssel und Alices öffentlichem Schlüssel konfiguriert ist,
denselben Commitment-Schlüssel und gemeinsamen Wrapping-Schlüssel und kann den Datensatz
entschlüsseln. Wenn Bobs öffentlicher Schlüssel aus einem AWS KMS key Paar stammt, kann Bob
einen AWS KMS ECDH-Schlüsselbund erstellen, um den Datensatz zu entschlüsseln.

Der Raw ECDH-Schlüsselbund verschlüsselt Datensätze mit einem symmetrischen Schlüssel
mithilfe von AES-GCM. Der Datenschlüssel wird dann mit dem abgeleiteten gemeinsamen
Wrapping-Schlüssel unter Verwendung von AES-GCM umhüllt. Jeder Raw ECDH-Schlüsselbund
kann nur einen gemeinsamen Wrap-Schlüssel haben, aber Sie können mehrere Raw
ECDH-Schlüsselanhänger, einzeln oder zusammen mit anderen Schlüsselbunden, in einen
Mehrfachschlüsselbund aufnehmen.

Sie sind dafür verantwortlich, Ihre privaten Schlüssel zu generieren, zu speichern und zu schützen,
vorzugsweise in einem Hardware-Sicherheitsmodul (HSM) oder einem Schlüsselverwaltungssystem.
Die Schlüsselpaare des Absenders und des Empfängers müssen sich auf derselben elliptischen
Kurve befinden. Das AWS Database Encryption SDK unterstützt die folgenden Spezifikationen für
elliptische Kurven:

• ECC_NIST_P256

• ECC_NIST_P384

• ECC_NIST_P512

Einen RAW-ECDH-Schlüsselbund erstellen

Der Raw ECDH-Schlüsselbund unterstützt drei wichtige Vereinbarungsschemata:, und.
RawPrivateKeyToStaticPublicKey EphemeralPrivateKeyToStaticPublicKey
PublicKeyDiscovery Das von Ihnen gewählte Schlüsselvereinbarungsschema bestimmt,
welche kryptografischen Operationen Sie ausführen können und wie die Schlüsselmaterialien
zusammengestellt werden.

Themen

• RawPrivateKeyToStaticPublicKey

• EphemeralPrivateKeyToStaticPublicKey

Einen RAW-ECDH-Schlüsselbund erstellen 111

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• PublicKeyDiscovery

RawPrivateKeyToStaticPublicKey

Verwenden Sie das RawPrivateKeyToStaticPublicKey Schlüsselvereinbarungsschema,
um den privaten Schlüssel des Absenders und den öffentlichen Schlüssel des Empfängers im
Schlüsselbund statisch zu konfigurieren. Dieses Schlüsselvereinbarungsschema kann Datensätze
ver- und entschlüsseln.

Um einen RAW-ECDH-Schlüsselbund mit dem Schlüsselvereinbarungsschema zu initialisieren,
RawPrivateKeyToStaticPublicKey geben Sie die folgenden Werte an:

• Der private Schlüssel des Absenders

Sie müssen den PEM-codierten privaten Schlüssel des Absenders (PKCS #8 PrivateKeyInfo -
Strukturen) gemäß der Definition in RFC 5958 angeben.

• Der öffentliche Schlüssel des Empfängers

Sie müssen den DER-codierten öffentlichen X.509-Schlüssel des Empfängers, auch bekannt als
SubjectPublicKeyInfo (SPKI), wie in RFC 5280 definiert, angeben.

Sie können den öffentlichen Schlüssel eines KMS-Schlüsselpaars mit asymmetrischer
Schlüsselvereinbarung oder den öffentlichen Schlüssel eines außerhalb von AWS generierten key
pair angeben.

• Spezifikation der Kurve

Identifiziert die Spezifikation für elliptische Kurven in den angegebenen Schlüsselpaaren. Sowohl
die Schlüsselpaare des Absenders als auch des Empfängers müssen dieselbe Kurvenspezifikation
haben.

Zulässige Werte: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var BobPrivateKey = new MemoryStream(new byte[] { });
 var AlicePublicKey = new MemoryStream(new byte[] { });

Einen RAW-ECDH-Schlüsselbund erstellen 112

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 // Create the Raw ECDH static keyring
 var staticConfiguration = new RawEcdhStaticConfigurations()
 {
 RawPrivateKeyToStaticPublicKey = new RawPrivateKeyToStaticPublicKeyInput
 {
 SenderStaticPrivateKey = BobPrivateKey,
 RecipientPublicKey = AlicePublicKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = staticConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

Das folgende Java-Beispiel verwendet das RawPrivateKeyToStaticPublicKey
Schlüsselvereinbarungsschema, um den privaten Schlüssel des Absenders und den öffentlichen
Schlüssel des Empfängers statisch zu konfigurieren. Beide Schlüsselpaare befinden sich auf der
ECC_NIST_P256 Kurve.

private static void StaticRawKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair senderKeys = GetRawEccKey();
 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH static keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .RawPrivateKeyToStaticPublicKey(
 RawPrivateKeyToStaticPublicKeyInput.builder()

Einen RAW-ECDH-Schlüsselbund erstellen 113

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 // Must be a PEM-encoded private key

 .senderStaticPrivateKey(ByteBuffer.wrap(senderKeys.getPrivate().getEncoded()))
 // Must be a DER-encoded X.509 public key

 .recipientPublicKey(ByteBuffer.wrap(recipient.getPublic().getEncoded()))
 .build()
)
 .build()
).build();

 final IKeyring staticKeyring =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Rust

Das folgende Python-Beispiel verwendet das raw_ecdh_static_configuration
Schlüsselvereinbarungsschema, um den privaten Schlüssel des Absenders und den öffentlichen
Schlüssel des Empfängers statisch zu konfigurieren. Beide Schlüsselpaare müssen sich auf
derselben Kurve befinden.

// Create keyring input
let raw_ecdh_static_configuration_input =
 RawPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .sender_static_private_key(private_key_sender_utf8_bytes)
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let raw_ecdh_static_configuration =
 RawEcdhStaticConfigurations::RawPrivateKeyToStaticPublicKey(raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

// Create raw ECDH static keyring
let raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(raw_ecdh_static_configuration)

Einen RAW-ECDH-Schlüsselbund erstellen 114

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .send()
 .await?;

EphemeralPrivateKeyToStaticPublicKey

Mit dem Schlüsselvereinbarungsschema konfigurierte
EphemeralPrivateKeyToStaticPublicKey Schlüsselringe erstellen lokal ein neues key pair
und leiten für jeden Verschlüsselungsaufruf einen eindeutigen gemeinsamen Wrapping-Schlüssel ab.

Dieses Schlüsselvereinbarungsschema kann nur Datensätze verschlüsseln. Um mit dem
EphemeralPrivateKeyToStaticPublicKey Schlüsselvereinbarungsschema verschlüsselte
Datensätze zu entschlüsseln, müssen Sie ein Discovery-Schlüsselvereinbarungsschema
verwenden, das mit dem öffentlichen Schlüssel desselben Empfängers konfiguriert
ist. Zum Entschlüsseln können Sie einen RAW-ECDH-Schlüsselbund mit dem
PublicKeyDiscoverySchlüsselvereinbarungsalgorithmus verwenden, oder, falls der
öffentliche Schlüssel des Empfängers aus einem KMS-Schlüsselpaar mit asymmetrischer
Schlüsselvereinbarung stammt, können Sie einen AWS KMS ECDH-Schlüsselbund mit dem
Schlüsselvereinbarungsschema verwenden. KmsPublicKeyDiscovery

Um einen Raw-ECDH-Schlüsselbund mit dem Schlüsselvereinbarungsschema zu initialisieren, geben
Sie die folgenden Werte anEphemeralPrivateKeyToStaticPublicKey:

• Der öffentliche Schlüssel des Empfängers

Sie müssen den DER-codierten öffentlichen X.509-Schlüssel des Empfängers, auch bekannt als
SubjectPublicKeyInfo (SPKI), wie in RFC 5280 definiert, angeben.

Sie können den öffentlichen Schlüssel eines KMS-Schlüsselpaars mit asymmetrischer
Schlüsselvereinbarung oder den öffentlichen Schlüssel eines außerhalb von AWS generierten key
pair angeben.

• Spezifikation der Kurve

Identifiziert die Spezifikation für elliptische Kurven im angegebenen öffentlichen Schlüssel.

Beim Verschlüsseln erstellt der Schlüsselbund ein neues key pair auf der angegebenen Kurve und
verwendet den neuen privaten Schlüssel und den angegebenen öffentlichen Schlüssel, um einen
gemeinsamen Wrapping-Schlüssel abzuleiten.

Zulässige Werte: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

Einen RAW-ECDH-Schlüsselbund erstellen 115

https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc5280

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

C# / .NET

Im folgenden Beispiel wird ein RAW-ECDH-Schlüsselbund mit dem
Schlüsselvereinbarungsschema erstellt. EphemeralPrivateKeyToStaticPublicKey Beim
Verschlüsseln erstellt der Schlüsselbund lokal auf der angegebenen ECC_NIST_P256 Kurve ein
neues key pair.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePublicKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH ephemeral keyring
 var ephemeralConfiguration = new RawEcdhStaticConfigurations()
 {
 EphemeralPrivateKeyToStaticPublicKey = new
 EphemeralPrivateKeyToStaticPublicKeyInput
 {
 RecipientPublicKey = AlicePublicKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = ephemeralConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

Im folgenden Beispiel wird ein RAW-ECDH-Schlüsselbund mit dem
EphemeralPrivateKeyToStaticPublicKey Schlüsselvereinbarungsschema erstellt. Beim
Verschlüsseln erstellt der Schlüsselbund lokal auf der angegebenen ECC_NIST_P256 Kurve ein
neues key pair.

private static void EphemeralRawEcdhKeyring() {
 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

Einen RAW-ECDH-Schlüsselbund erstellen 116

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 ByteBuffer recipientPublicKey = getPublicKeyBytes();

 // Create the Raw ECDH ephemeral keyring
 final CreateRawEcdhKeyringInput ephemeralInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .EphemeralPrivateKeyToStaticPublicKey(
 EphemeralPrivateKeyToStaticPublicKeyInput.builder()
 .recipientPublicKey(recipientPublicKey)
 .build()
)
 .build()
).build();

 final IKeyring ephemeralKeyring =
 materialProviders.CreateRawEcdhKeyring(ephemeralInput);
}

Rust

Im folgenden Beispiel wird ein RAW-ECDH-Schlüsselbund mit dem
ephemeral_raw_ecdh_static_configuration Schlüsselvereinbarungsschema erstellt.
Beim Verschlüsseln erstellt der Schlüsselbund lokal auf der angegebenen Kurve ein neues key
pair.

// Create EphemeralPrivateKeyToStaticPublicKeyInput
let ephemeral_raw_ecdh_static_configuration_input =
 EphemeralPrivateKeyToStaticPublicKeyInput::builder()
 // Must be a UTF8 DER-encoded X.509 public key
 .recipient_public_key(public_key_recipient_utf8_bytes)
 .build()?;

let ephemeral_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::EphemeralPrivateKeyToStaticPublicKey(ephemeral_raw_ecdh_static_configuration_input);

// Instantiate the material providers library
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

Einen RAW-ECDH-Schlüsselbund erstellen 117

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

// Create raw ECDH ephemeral private key keyring
let ephemeral_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(ephemeral_raw_ecdh_static_configuration)
 .send()
 .await?;

PublicKeyDiscovery

Beim Entschlüsseln empfiehlt es sich, die Umschließungsschlüssel anzugeben, die das AWS
Database Encryption SDK verwenden kann. Um dieser bewährten Methode zu folgen, verwenden
Sie einen ECDH-Schlüsselbund, der sowohl den privaten Schlüssel eines Absenders als auch den
öffentlichen Schlüssel des Empfängers angibt. Sie können jedoch auch einen Raw ECDH Discovery-
Schlüsselbund erstellen, d. h. einen Raw ECDH-Schlüsselbund, der jeden Datensatz entschlüsseln
kann, bei dem der öffentliche Schlüssel des angegebenen Schlüssels mit dem öffentlichen Schlüssel
des Empfängers übereinstimmt, der im Materialbeschreibungsfeld des verschlüsselten Datensatzes
gespeichert ist. Dieses Schlüsselvereinbarungsschema kann nur Datensätze entschlüsseln.

Important

Wenn Sie Datensätze mithilfe des PublicKeyDiscovery Schlüsselvereinbarungsschemas
entschlüsseln, akzeptieren Sie alle öffentlichen Schlüssel, unabhängig davon, wem sie
gehören.

Um einen RAW-ECDH-Schlüsselbund mit dem Schlüsselvereinbarungsschema zu initialisieren,
geben Sie die PublicKeyDiscovery folgenden Werte an:

• Statischer privater Schlüssel des Empfängers

Sie müssen den PEM-codierten privaten Schlüssel des Empfängers (PKCS #8 PrivateKeyInfo -
Strukturen) gemäß der Definition in RFC 5958 angeben.

• Spezifikation der Kurve

Identifiziert die Spezifikation für elliptische Kurven im angegebenen privaten Schlüssel. Sowohl die
Schlüsselpaare des Absenders als auch des Empfängers müssen dieselbe Kurvenspezifikation
haben.

Einen RAW-ECDH-Schlüsselbund erstellen 118

https://tools.ietf.org/html/rfc5958#section-2
https://tools.ietf.org/html/rfc5958#section-2

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Zulässige Werte: ECC_NIST_P256, ECC_NIS_P384, ECC_NIST_P512

C# / .NET

Im folgenden Beispiel wird ein Raw ECDH-Schlüsselbund mit dem PublicKeyDiscovery
Schlüsselvereinbarungsschema erstellt. Dieser Schlüsselbund kann jeden Datensatz
entschlüsseln, bei dem der öffentliche Schlüssel des angegebenen privaten Schlüssels mit dem
öffentlichen Schlüssel des Empfängers übereinstimmt, der im Materialbeschreibungsfeld des
verschlüsselten Datensatzes gespeichert ist.

// Instantiate material providers
var materialProviders = new MaterialProviders(new MaterialProvidersConfig());
 var AlicePrivateKey = new MemoryStream(new byte[] { });

 // Create the Raw ECDH discovery keyring
 var discoveryConfiguration = new RawEcdhStaticConfigurations()
 {
 PublicKeyDiscovery = new PublicKeyDiscoveryInput
 {
 RecipientStaticPrivateKey = AlicePrivateKey
 }
 };

 var createKeyringInput = new CreateRawEcdhKeyringInput()
 {
 CurveSpec = ECDHCurveSpec.ECC_NIST_P256,
 KeyAgreementScheme = discoveryConfiguration
 };

 var keyring = materialProviders.CreateRawEcdhKeyring(createKeyringInput);

Java

Im folgenden Beispiel wird ein RAW-ECDH-Schlüsselbund mit dem PublicKeyDiscovery
Schlüsselvereinbarungsschema erstellt. Dieser Schlüsselbund kann jeden Datensatz
entschlüsseln, bei dem der öffentliche Schlüssel des angegebenen privaten Schlüssels mit dem
öffentlichen Schlüssel des Empfängers übereinstimmt, der im Materialbeschreibungsfeld des
verschlüsselten Datensatzes gespeichert ist.

private static void RawEcdhDiscovery() {

Einen RAW-ECDH-Schlüsselbund erstellen 119

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 // Instantiate material providers
 final MaterialProviders materialProviders =
 MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();

 KeyPair recipient = GetRawEccKey();

 // Create the Raw ECDH discovery keyring
 final CreateRawEcdhKeyringInput rawKeyringInput =
 CreateRawEcdhKeyringInput.builder()
 .curveSpec(ECDHCurveSpec.ECC_NIST_P256)
 .KeyAgreementScheme(
 RawEcdhStaticConfigurations.builder()
 .PublicKeyDiscovery(
 PublicKeyDiscoveryInput.builder()
 // Must be a PEM-encoded private key

 .recipientStaticPrivateKey(ByteBuffer.wrap(sender.getPrivate().getEncoded()))
 .build()
)
 .build()
).build();

 final IKeyring publicKeyDiscovery =
 materialProviders.CreateRawEcdhKeyring(rawKeyringInput);
}

Rust

Im folgenden Beispiel wird ein RAW-ECDH-Schlüsselbund mit dem
discovery_raw_ecdh_static_configuration Schlüsselvereinbarungsschema erstellt.
Dieser Schlüsselbund kann jede Nachricht entschlüsseln, bei der der öffentliche Schlüssel des
angegebenen privaten Schlüssels mit dem öffentlichen Schlüssel des Empfängers übereinstimmt,
der im Chiffretext der Nachricht gespeichert ist.

// Create PublicKeyDiscoveryInput
let discovery_raw_ecdh_static_configuration_input =
 PublicKeyDiscoveryInput::builder()
 // Must be a UTF8 PEM-encoded private key
 .recipient_static_private_key(private_key_recipient_utf8_bytes)
 .build()?;

Einen RAW-ECDH-Schlüsselbund erstellen 120

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

let discovery_raw_ecdh_static_configuration =

 RawEcdhStaticConfigurations::PublicKeyDiscovery(discovery_raw_ecdh_static_configuration_input);

// Create raw ECDH discovery private key keyring
let discovery_raw_ecdh_keyring = mpl
 .create_raw_ecdh_keyring()
 .curve_spec(ecdh_curve_spec)
 .key_agreement_scheme(discovery_raw_ecdh_static_configuration)
 .send()
 .await?;

Multi-Schlüsselbunde

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Sie können Schlüsselbunde zu einem Multi-Schlüsselbund kombinieren. Ein Multi-Schlüsselbund
ist ein Schlüsselbund, der aus einem oder mehreren einzelnen Schlüsselbunden desselben oder
eines anderen Typs besteht. Das hat den gleichen Effekt wie die Verwendung von mehreren
Schlüsselbunden in einer Reihe. Wenn Sie einen Multi-Schlüsselbund verwenden, um Daten zu
verschlüsseln, können alle Umhüllungsschlüssel in einem seiner Schlüsselbunde diese Daten
entschlüsseln.

Wenn Sie einen Multi-Schlüsselbund erstellen, um Daten zu verschlüsseln, geben Sie einen
der Schlüsselbunde als Generator-Schlüsselbund an. Alle anderen Schlüsselbunde werden
als untergeordnete Schlüsselbunde bezeichnet. Der Generator-Schlüsselbund generiert und
verschlüsselt den Klartext-Datenschlüssel. Anschließend verschlüsseln alle Umhüllungsschlüssel
in den untergeordneten Schlüsselbunden den gleichen Klartext-Datenschlüssel. Der Multi-
Schlüsselbund gibt den Klartext-Datenschlüssel und einen verschlüsselten Datenschlüssel für
jeden Umhüllungsschlüssel im Multi-Schlüsselbund zurück. Wenn der Generator-Schlüsselbund
ein KMS-Schlüsselbund ist, generiert und verschlüsselt der Generatorschlüssel im AWS KMS
Schlüsselbund den Klartext-Schlüssel. Dann verschlüsseln alle zusätzlichen Schlüssel AWS KMS
keys im AWS KMS Schlüsselbund und alle Schlüssel in allen untergeordneten Schlüsselbunden im
Mehrfachschlüsselbund denselben Klartext-Schlüssel.

Multi-Schlüsselbunde 121

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Beim Entschlüsseln versucht das AWS Database Encryption SDK anhand der Schlüsselbunde, einen
der verschlüsselten Datenschlüssel zu entschlüsseln. Die Schlüsselbunde werden in der Reihenfolge
aufgerufen, in der sie im Multi-Schlüsselbund angegeben sind. Die Verarbeitung stoppt, sobald ein
Schlüssel in einem Schlüsselbund einen verschlüsselten Datenschlüssel entschlüsseln kann.

Zum Erstellen eines Multi-Schlüsselbunds müssen Sie zuerst die untergeordneten Schlüsselbunde
instanziieren. In diesem Beispiel verwenden wir einen Schlüsselbund und einen AWS KMS
Raw-AES-Schlüsselbund, aber Sie können jeden unterstützten Schlüsselbund zu einem
Mehrfachschlüsselbund kombinieren.

Java

// 1. Create the raw AES keyring.
final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateRawAesKeyringInput createRawAesKeyringInput =
 CreateRawAesKeyringInput.builder()
 .keyName("AES_256_012")
 .keyNamespace("HSM_01")
 .wrappingKey(AESWrappingKey)
 .wrappingAlg(AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16)
 .build();
IKeyring rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// 2. Create the AWS KMS keyring.
final CreateAwsKmsMrkMultiKeyringInput createAwsKmsMrkMultiKeyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyArn)
 .build();
IKeyring awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

C# / .NET

// 1. Create the raw AES keyring.
var keyNamespace = "HSM_01";
var keyName = "AES_256_012";

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var createRawAesKeyringInput = new CreateRawAesKeyringInput
{

Multi-Schlüsselbunde 122

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 KeyName = "keyName",
 KeyNamespace = "myNamespaces",
 WrappingKey = AESWrappingKey,
 WrappingAlg = AesWrappingAlg.ALG_AES256_GCM_IV12_TAG16
};
var rawAesKeyring = matProv.CreateRawAesKeyring(createRawAesKeyringInput);

// 2. Create the AWS KMS keyring.
// We create a MRK multi keyring, as this interface also supports
// single-region KMS keys,
// and creates the KMS client for us automatically.
var createAwsKmsMrkMultiKeyringInput = new CreateAwsKmsMrkMultiKeyringInput
{
 Generator = keyArn
};
var awsKmsMrkMultiKeyring =
 matProv.CreateAwsKmsMrkMultiKeyring(createAwsKmsMrkMultiKeyringInput);

Rust

// 1. Create the raw AES keyring
let mpl_config = MaterialProvidersConfig::builder().build()?;
let mpl = mpl_client::Client::from_conf(mpl_config)?;

let raw_aes_keyring = mpl
 .create_raw_aes_keyring()
 .key_name("AES_256_012")
 .key_namespace("HSM_01")
 .wrapping_key(aes_key_bytes)
 .wrapping_alg(AesWrappingAlg::AlgAes256GcmIv12Tag16)
 .send()
 .await?;

// 2. Create the AWS KMS keyring
let aws_kms_mrk_multi_keyring = mpl
 .create_aws_kms_mrk_multi_keyring()
 .generator(key_arn)
 .send()
 .await?;

Erstellen Sie als Nächstes den Multi-Schlüsselbund und geben Sie seinen Generator-Schlüsselbund
an, falls vorhanden. In diesem Beispiel erstellen wir einen Mehrfachschlüsselbund, bei dem

Multi-Schlüsselbunde 123

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

der Schlüsselbund der Generatorschlüsselbund und der AWS KMS AES-Schlüsselbund der
untergeordnete Schlüsselbund ist.

Java

Mit dem CreateMultiKeyringInput Java-Konstruktor können Sie einen Generator-
Schlüsselbund und untergeordnete Schlüsselanhänger definieren. Das resultierende
createMultiKeyringInput Objekt ist unveränderlich.

final CreateMultiKeyringInput createMultiKeyringInput =
 CreateMultiKeyringInput.builder()
 .generator(awsKmsMrkMultiKeyring)
 .childKeyrings(Collections.singletonList(rawAesKeyring))
 .build();
IKeyring multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

C# / .NET

Mit CreateMultiKeyringInput dem.NET-Konstruktor können Sie einen Generator-
Schlüsselbund und untergeordnete Schlüsselringe definieren. Das resultierende
CreateMultiKeyringInput Objekt ist unveränderlich.

var createMultiKeyringInput = new CreateMultiKeyringInput
{
 Generator = awsKmsMrkMultiKeyring,
 ChildKeyrings = new List<IKeyring> { rawAesKeyring }
};
var multiKeyring = matProv.CreateMultiKeyring(createMultiKeyringInput);

Rust

let multi_keyring = mpl
 .create_multi_keyring()
 .generator(aws_kms_mrk_multi_keyring)
 .child_keyrings(vec![raw_aes_keyring.clone()])
 .send()
 .await?;

Jetzt können Sie mit dem Multi-Schlüsselbund Daten ver- und entschlüsseln.

Multi-Schlüsselbunde 124

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Durchsuchbare Verschlüsselung

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Mit der durchsuchbaren Verschlüsselung können Sie verschlüsselte Datensätze durchsuchen,
ohne die gesamte Datenbank entschlüsseln zu müssen. Dies wird mithilfe von Beacons erreicht,
die eine Zuordnung zwischen dem Klartextwert, der in ein Feld geschrieben wird, und dem
verschlüsselten Wert, der tatsächlich in Ihrer Datenbank gespeichert ist, erstellen. Das AWS
Database Encryption SDK speichert den Beacon in einem neuen Feld, das es dem Datensatz
hinzufügt. Je nach verwendetem Beacontyp können Sie nach Ihren verschlüsselten Daten nach
exakten Übereinstimmungen suchen oder individuellere komplexe Abfragen durchführen.

Note

Die durchsuchbare Verschlüsselung im AWS Database Encryption SDK unterscheidet
sich von der durchsuchbaren symmetrischen Verschlüsselung, die in der akademischen
Forschung definiert wurde, z. B. durchsuchbare symmetrische Verschlüsselung.

Ein Beacon ist ein gekürztes HMAC-Tag (Hash-Based Message Authentication Code), das
eine Zuordnung zwischen Klartext- und verschlüsselten Werten eines Felds erstellt. Wenn Sie
einen neuen Wert in ein verschlüsseltes Feld schreiben, das für durchsuchbare Verschlüsselung
konfiguriert ist, berechnet das AWS Database Encryption SDK einen HMAC-Wert über dem Klartext-
Wert. Bei dieser HMAC-Ausgabe handelt es sich um eine 1:1 -Übereinstimmung mit dem Klartextwert
dieses Felds. Die HMAC-Ausgabe wird gekürzt, sodass mehrere unterschiedliche Klartextwerte
demselben gekürzten HMAC-Tag zugeordnet werden. Diese Fehlalarme schränken die Fähigkeit
eines nicht autorisierten Benutzers ein, charakteristische Informationen über den Klartext-Wert zu
identifizieren. Wenn Sie einen Beacon abfragen, filtert das AWS Database Encryption SDK diese
Fehlalarme automatisch heraus und gibt das Klartextergebnis Ihrer Abfrage zurück.

125

https://dl.acm.org/doi/10.1145/1180405.1180417
https://dl.acm.org/doi/10.1145/1180405.1180417
https://dl.acm.org/doi/10.1145/1180405.1180417

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Die durchschnittliche Anzahl der für jeden Beacon generierten Fehlalarme wird durch die Länge
des Beacons bestimmt, die nach der Kürzung noch übrig ist. Hilfe zur Bestimmung der geeigneten
Beacon-Länge für Ihre Implementierung finden Sie unter Bestimmung der Beacon-Länge.

Note

Die durchsuchbare Verschlüsselung ist so konzipiert, dass sie in neuen, nicht aufgefüllten
Datenbanken implementiert werden kann. Jedes Beacon, das in einer vorhandenen
Datenbank konfiguriert ist, ordnet nur neue Datensätze zu, die in die Datenbank hochgeladen
wurden. Es gibt keine Möglichkeit für ein Beacon, bestehende Daten zuzuordnen.

Themen

• Sind Beacons das Richtige für meinen Datensatz?

• Durchsuchbares Verschlüsselungsszenario

Sind Beacons das Richtige für meinen Datensatz?

Die Verwendung von Beacons zur Durchführung von Abfragen verschlüsselter Daten reduziert
die Leistungskosten, die mit clientseitig verschlüsselten Datenbanken verbunden sind. Wenn Sie
Beacons verwenden, gibt es einen inhärenten Kompromiss zwischen der Effizienz Ihrer Abfragen und
der Menge an Informationen, die über die Verteilung Ihrer Daten preisgegeben werden. Der Beacon
verändert den verschlüsselten Zustand des Feldes nicht. Wenn Sie ein Feld mit dem AWS Database
Encryption SDK verschlüsseln und signieren, wird der Klartextwert des Felds niemals der Datenbank
zugänglich gemacht. Die Datenbank speichert den zufälligen, verschlüsselten Wert des Felds.

Beacons werden zusammen mit den verschlüsselten Feldern gespeichert, aus denen sie
berechnet werden. Das heißt, selbst wenn ein nicht autorisierter Benutzer die Klartextwerte eines
verschlüsselten Felds nicht einsehen kann, kann er möglicherweise statistische Analysen der
Beacons durchführen, um mehr über die Verteilung Ihres Datensatzes zu erfahren und im Extremfall
die Klartextwerte zu identifizieren, denen ein Beacon zugeordnet ist. Die Art und Weise, wie Sie Ihre
Beacons konfigurieren, kann diese Risiken mindern. Insbesondere die Wahl der richtigen Beacon-
Länge kann Ihnen helfen, die Vertraulichkeit Ihres Datensatzes zu wahren.

Sicherheit versus Leistung

• Je kürzer die Länge des Beacons, desto besser ist die Sicherheit gewährleistet.

Sind Beacons das Richtige für meinen Datensatz? 126

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Je länger die Länge des Beacons ist, desto mehr Leistung bleibt erhalten.

Eine durchsuchbare Verschlüsselung kann möglicherweise nicht das gewünschte Leistungs- und
Sicherheitsniveau für alle Datensätze bieten. Überprüfen Sie Ihr Bedrohungsmodell, Ihre Sicherheits-
und Leistungsanforderungen, bevor Sie Beacons konfigurieren.

Beachten Sie die folgenden Anforderungen an die Eindeutigkeit von Datensätzen, wenn Sie
entscheiden, ob eine durchsuchbare Verschlüsselung für Ihren Datensatz geeignet ist.

Verteilung

Wie viel Sicherheit durch ein Beacon gewährleistet wird, hängt von der Verteilung Ihres
Datensatzes ab. Wenn Sie ein verschlüsseltes Feld für durchsuchbare Verschlüsselung
konfigurieren, berechnet das AWS Database Encryption SDK anhand der in dieses Feld
geschriebenen Klartextwerte einen HMAC. Alle für ein bestimmtes Feld berechneten Beacons
werden mit demselben Schlüssel berechnet, mit Ausnahme von Multitenant-Datenbanken, die
für jeden Mandanten einen eigenen Schlüssel verwenden. Das heißt, wenn derselbe Klartextwert
mehrmals in das Feld geschrieben wird, wird für jede Instanz dieses Klartextwerts derselbe
HMAC-Tag erstellt.

Sie sollten vermeiden, Beacons aus Feldern zu erstellen, die sehr häufig vorkommende
Werte enthalten. Stellen Sie sich zum Beispiel eine Datenbank vor, in der die Adressen aller
Einwohner des Bundesstaates Illinois gespeichert sind. Wenn Sie aus dem verschlüsselten
City Feld einen Beacon konstruieren, wird der über „Chicago“ berechnete Beacon aufgrund
des hohen Prozentsatzes der Bevölkerung von Illinois, der in Chicago lebt, überrepräsentiert
sein. Selbst wenn ein nicht autorisierter Benutzer nur die verschlüsselten Werte und Beacon-
Werte lesen kann, kann er möglicherweise feststellen, welche Datensätze Daten für Einwohner
von Chicago enthalten, wenn das Beacon diese Verteilung beibehält. Um die Menge an
identifizierenden Informationen, die über Ihre Verteilung preisgegeben werden, zu minimieren,
müssen Sie Ihr Beacon ausreichend kürzen. Die Länge des Beacons, die erforderlich ist, um
diese ungleichmäßige Verteilung zu verbergen, ist mit erheblichen Leistungseinbußen verbunden,
die möglicherweise nicht den Anforderungen Ihrer Anwendung entsprechen.

Sie müssen die Verteilung Ihres Datensatzes sorgfältig analysieren, um festzustellen, wie stark
Ihre Beacons gekürzt werden müssen. Die Länge der Beacons, die nach der Kürzung noch übrig
ist, steht in direktem Zusammenhang mit der Menge an statistischen Informationen, die über Ihre
Verteilung ermittelt werden können. Möglicherweise müssen Sie kürzere Beacon-Längen wählen,

Sind Beacons das Richtige für meinen Datensatz? 127

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

um die Menge an Unterscheidungsinformationen, die über Ihren Datensatz preisgegeben werden,
ausreichend zu minimieren.

In extremen Fällen können Sie keine Beacon-Länge für einen ungleichmäßig verteilten Datensatz
berechnen, der ein effektives Gleichgewicht zwischen Leistung und Sicherheit gewährleistet.
Sie sollten beispielsweise keinen Beacon aus einem Feld erstellen, in dem das Ergebnis eines
medizinischen Tests für eine seltene Krankheit gespeichert ist. Da davon ausgegangen wird,
dass NEGATIVE Ergebnisse innerhalb des Datensatzes deutlich häufiger vorkommen, können
POSITIVE Ergebnisse leicht anhand ihrer Seltenheit identifiziert werden. Es ist sehr schwierig,
die Verteilung zu verbergen, wenn das Feld nur zwei mögliche Werte hat. Wenn Sie eine Beacon-
Länge verwenden, die kurz genug ist, um die Verteilung zu verbergen, werden alle Klartextwerte
demselben HMAC-Tag zugeordnet. Wenn Sie eine längere Beacon-Länge verwenden, ist es
offensichtlich, welche Beacons den Klartext-Werten zugeordnet werden. POSITIVE

Korrelation

Wir empfehlen dringend, dass Sie vermeiden, unterschiedliche Beacons aus Feldern mit
korrelierten Werten zu erstellen. Beacons, die aus korrelierten Feldern erstellt wurden,
erfordern kürzere Beacon-Längen, um die Menge an Informationen, die über die Verteilung der
einzelnen Datensätze an einen nicht autorisierten Benutzer preisgegeben werden, ausreichend
zu minimieren. Sie müssen Ihren Datensatz sorgfältig analysieren, einschließlich seiner
Entropie und der gemeinsamen Verteilung der korrelierten Werte, um festzustellen, wie stark
Ihre Beacons gekürzt werden müssen. Wenn die resultierende Beacon-Länge nicht Ihren
Leistungsanforderungen entspricht, sind Beacons möglicherweise nicht für Ihren Datensatz
geeignet.

Sie sollten beispielsweise nicht zwei separate Beacons aus City und ZIPCode -Feldern
erstellen, da die Postleitzahl wahrscheinlich nur einer Stadt zugeordnet ist. In der Regel
schränken die von einem Beacon generierten Fehlalarme die Fähigkeit eines nicht autorisierten
Benutzers ein, charakteristische Informationen über Ihren Datensatz zu identifizieren. Die
Korrelation zwischen den ZIPCode Feldern City und bedeutet jedoch, dass ein nicht
autorisierter Benutzer leicht erkennen kann, welche Ergebnisse falsch positive Ergebnisse sind,
und die verschiedenen Postleitzahlen unterscheiden kann.

Sie sollten auch vermeiden, Beacons aus Feldern zu erstellen, die dieselben Klartextwerte
enthalten. Beispielsweise sollten Sie kein Beacon aus preferredPhone Feldern mobilePhone
und erstellen, da diese wahrscheinlich dieselben Werte enthalten. Wenn Sie aus beiden Feldern
unterschiedliche Beacons erstellen, erstellt das AWS Database Encryption SDK die Beacons
für jedes Feld unter unterschiedlichen Schlüsseln. Dies führt zu zwei verschiedenen HMAC-

Sind Beacons das Richtige für meinen Datensatz? 128

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Tags für denselben Klartext-Wert. Es ist unwahrscheinlich, dass die beiden unterschiedlichen
Beacons dieselben Fehlalarme haben, und ein nicht autorisierter Benutzer kann möglicherweise
verschiedene Telefonnummern unterscheiden.

Selbst wenn Ihr Datensatz korrelierte Felder enthält oder eine ungleichmäßige Verteilung aufweist,
können Sie möglicherweise Beacons erstellen, die die Vertraulichkeit Ihres Datensatzes wahren,
indem Sie kürzere Beacon-Längen verwenden. Die Beacon-Länge garantiert jedoch nicht, dass jeder
eindeutige Wert in Ihrem Datensatz zu einer Reihe von Fehlalarmen führt, wodurch die Menge an
Unterscheidungsinformationen, die über Ihren Datensatz preisgegeben werden, effektiv minimiert
wird. Mit der Beacon-Länge wird lediglich die durchschnittliche Anzahl der generierten Fehlalarme
geschätzt. Je ungleichmäßiger Ihr Datensatz verteilt ist, desto weniger effektiv ist die Beacon-Länge
bei der Bestimmung der durchschnittlichen Anzahl der erzeugten Fehlalarme.

Berücksichtigen Sie sorgfältig die Verteilung der Felder, aus denen Sie Beacons erstellen, und
überlegen Sie, um wie viel Sie die Beacon-Länge kürzen müssen, um Ihre Sicherheitsanforderungen
zu erfüllen. Bei den folgenden Themen in diesem Kapitel wird davon ausgegangen, dass Ihre
Beacons gleichmäßig verteilt sind und keine korrelierten Daten enthalten.

Durchsuchbares Verschlüsselungsszenario
Das folgende Beispiel zeigt eine einfache durchsuchbare Verschlüsselungslösung. In der
Anwendung entsprechen die in diesem Beispiel verwendeten Beispielfelder möglicherweise nicht
den Empfehlungen zur Verteilung und Korrelation zur Eindeutigkeit von Beacons. Sie können
dieses Beispiel als Referenz verwenden, wenn Sie in diesem Kapitel mehr über die Konzepte der
durchsuchbaren Verschlüsselung lesen.

Stellen Sie sich eine Datenbank mit dem Namen vorEmployees, die Mitarbeiterdaten eines
Unternehmens verfolgt. Jeder Datensatz in der Datenbank enthält Felder namens EmployeeID,
LastNameFirstName, und Address. Jedes Feld in der Employees Datenbank wird durch den
Primärschlüssel EmployeeID identifiziert.

Im Folgenden finden Sie ein Beispiel für einen Klartext-Datensatz in der Datenbank.

{
 "EmployeeID": 101,
 "LastName": "Jones",
 "FirstName": "Mary",
 "Address": {
 "Street": "123 Main",

Durchsuchbares Verschlüsselungsszenario 129

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345
 }
}

Wenn Sie ENCRYPT_AND_SIGN in Ihren kryptografischen Aktionen die FirstName Felder
LastName und als markiert haben, werden die Werte in diesen Feldern lokal verschlüsselt, bevor
sie in die Datenbank hochgeladen werden. Die verschlüsselten Daten, die hochgeladen werden,
sind vollständig randomisiert. Die Datenbank erkennt diese Daten nicht als geschützt. Sie erkennt
nur typische Dateneinträge. Das bedeutet, dass der Datensatz, der tatsächlich in der Datenbank
gespeichert ist, wie folgt aussehen könnte.

{
 "PersonID": 101,
 "LastName": "1d76e94a2063578637d51371b363c9682bad926cbd",
 "FirstName": "21d6d54b0aaabc411e9f9b34b6d53aa4ef3b0a35",
 "Address": {
 "Street": "123 Main",
 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345
 }
}

Wenn Sie die Datenbank nach exakten Übereinstimmungen im LastName Feld abfragen müssen,
konfigurieren Sie einen Standard-Beacon, der so benannt ist, LastNamedass er die in das LastName
Feld geschriebenen Klartextwerte den in der Datenbank gespeicherten verschlüsselten Werten
zuordnet.

Dieser Beacon berechnet anhand HMACs der Klartextwerte im Feld. LastName Jede HMAC-
Ausgabe wird gekürzt, sodass sie nicht mehr exakt dem Klartext-Wert entspricht. Der vollständige
Hash und der gekürzte Hash für Jones könnten beispielsweise wie folgt aussehen.

Vollständiger Hash

2aa4e9b404c68182562b6ec761fcca5306de527826a69468885e59dc36d0c3f824bdd44cab45526f70a2a18322000264f5451acf75f9f817e2b35099d408c833

Verkürzter Hash

b35099d408c833

Durchsuchbares Verschlüsselungsszenario 130

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Nachdem der Standard-Beacon konfiguriert wurde, können Sie Gleichheitssuchen für das LastName
Feld durchführen. Wenn Sie beispielsweise nach suchen möchtenJones, verwenden Sie den
LastNameBeacon, um die folgende Abfrage durchzuführen.

LastName = Jones

Das AWS Database Encryption SDK filtert automatisch die Fehlalarme heraus und gibt das
Klartextergebnis Ihrer Abfrage zurück.

Leuchtfeuer

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Ein Beacon ist ein gekürztes HMAC-Tag (Hash-Based Message Authentication Code), das eine
Zuordnung zwischen dem Klartextwert, der in ein Feld geschrieben wird, und dem verschlüsselten
Wert, der tatsächlich in Ihrer Datenbank gespeichert ist, erstellt. Der Beacon ändert den
verschlüsselten Status des Feldes nicht. Der Beacon berechnet anhand des Klartextwerts des
Felds einen HMAC und speichert ihn zusammen mit dem verschlüsselten Wert. Bei dieser HMAC-
Ausgabe handelt es sich um eine 1:1 -Übereinstimmung mit dem Klartextwert dieses Felds. Die
HMAC-Ausgabe wird gekürzt, sodass mehrere unterschiedliche Klartextwerte demselben gekürzten
HMAC-Tag zugeordnet werden. Diese Fehlalarme schränken die Fähigkeit eines nicht autorisierten
Benutzers ein, charakteristische Informationen über den Klartext-Wert zu identifizieren.

Beacons können nur aus Feldern erstellt werden, die markiert sind ENCRYPT_AND_SIGNSIGN_ONLY,
oder SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT in Ihren kryptografischen Aktionen enthalten
sind. Der Beacon selbst ist weder signiert noch verschlüsselt. Sie können kein Beacon mit markierten
Feldern erstellen. DO_NOTHING

Der Typ des Beacons, den Sie konfigurieren, bestimmt die Art der Abfragen, die Sie ausführen
können. Es gibt zwei Arten von Beacons, die durchsuchbare Verschlüsselung unterstützen. Standard-
Beacons führen Gleichheitssuchen durch. Zusammengesetzte Beacons kombinieren wörtliche
Klartext-Zeichenketten und Standard-Beacons, um komplexe Datenbankoperationen durchzuführen.
Nachdem Sie Ihre Beacons konfiguriert haben, müssen Sie für jedes Beacon einen sekundären Index
konfigurieren, bevor Sie in den verschlüsselten Feldern suchen können. Weitere Informationen finden
Sie unter Konfiguration sekundärer Indizes mit Beacons.

Leuchtfeuer 131

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Themen

• Standard-Beacons

• Zusammengesetzte Beacons

Standard-Beacons

Standard-Beacons sind die einfachste Methode, eine durchsuchbare Verschlüsselung in Ihrer
Datenbank zu implementieren. Sie können nur Gleichheitssuchen für ein einzelnes verschlüsseltes
oder virtuelles Feld durchführen. Informationen zur Konfiguration von Standard-Beacons finden Sie
unter Konfiguration von Standard-Beacons.

Das Feld, aus dem ein Standard-Beacon erstellt wird, wird als Beacon-Quelle bezeichnet. Es
identifiziert den Standort der Daten, die der Beacon für die Kartierung benötigt. Die Beacon-Quelle
kann entweder ein verschlüsseltes Feld oder ein virtuelles Feld sein. Die Beacon-Quelle in jedem
Standard-Beacon muss eindeutig sein. Sie können nicht zwei Beacons mit derselben Beacon-Quelle
konfigurieren.

Standard-Beacons können verwendet werden, um Gleichheitssuchen für ein verschlüsseltes oder
virtuelles Feld durchzuführen. Sie können auch verwendet werden, um zusammengesetzte Beacons
für komplexere Datenbankoperationen zu erstellen. Um Ihnen bei der Organisation und Verwaltung
von Standard-Beacons zu helfen, bietet das AWS Database Encryption SDK die folgenden optionalen
Beacon-Stile, die den Verwendungszweck eines Standard-Beacons definieren. Weitere Informationen
finden Sie unter Beacon-Stile definieren.

Sie können ein Standard-Beacon erstellen, das Gleichheitssuchen für ein einzelnes verschlüsseltes
Feld durchführt, oder Sie können ein Standard-Beacon erstellen, das Gleichheitssuchen bei der
Verkettung mehrererENCRYPT_AND_SIGN, und SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT -
Felder durchführtSIGN_ONLY, indem Sie ein virtuelles Feld erstellen.

Virtuelle Felder

Ein virtuelles Feld ist ein konzeptionelles Feld, das aus einem oder mehreren Quellfeldern
besteht. Beim Erstellen eines virtuellen Felds wird kein neues Feld in Ihren Datensatz
geschrieben. Das virtuelle Feld wird nicht explizit in Ihrer Datenbank gespeichert. Es wird in der

Standard-Beacons 132

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Standard-Beacon-Konfiguration verwendet, um dem Beacon Anweisungen zu geben, wie ein
bestimmtes Segment eines Feldes identifiziert oder mehrere Felder innerhalb eines Datensatzes
verkettet werden kann, um eine bestimmte Abfrage durchzuführen. Ein virtuelles Feld erfordert
mindestens ein verschlüsseltes Feld.

Note

Das folgende Beispiel zeigt, welche Arten von Transformationen und Abfragen Sie
mit einem virtuellen Feld durchführen können. In der Anwendung entsprechen die in
diesem Beispiel verwendeten Beispielfelder möglicherweise nicht den Empfehlungen zur
Verteilung und Korrelationseindeutigkeit für Beacons.

Wenn Sie beispielsweise Gleichheitssuchen für die Verkettung von FirstName und LastName -
Feldern durchführen möchten, können Sie eines der folgenden virtuellen Felder erstellen.

• Ein virtuelles NameTag Feld, das aus dem ersten Buchstaben des FirstName Felds, gefolgt
vom Feld, gebildet wird, alles in Kleinbuchstaben. LastName Mit diesem virtuellen Feld können
Sie Abfragen NameTag=mjones durchführen.

• Ein virtuelles LastFirst Feld, das aus dem LastName Feld, gefolgt vom
FirstName Feld, aufgebaut wird. Mit diesem virtuellen Feld können Sie Abfragen
durchführenLastFirst=JonesMary.

Oder, wenn Sie Gleichheitssuchen für ein bestimmtes Segment eines verschlüsselten Feldes
durchführen möchten, erstellen Sie ein virtuelles Feld, das das Segment identifiziert, das Sie
abfragen möchten.

Wenn Sie beispielsweise ein verschlüsseltes IPAddress Feld anhand der ersten drei Segmente
der IP-Adresse abfragen möchten, erstellen Sie das folgende virtuelle Feld.

• Ein virtuelles IPSegment Feld, aufgebaut ausSegments(‘.’, 0, 3). Mit diesem virtuellen
Feld können Sie Abfragen durchführenIPSegment=192.0.2. Die Abfrage gibt alle Datensätze
zurück, deren IPAddress Wert mit „192.0.2" beginnt.

Virtuelle Felder müssen eindeutig sein. Zwei virtuelle Felder können nicht aus exakt denselben
Quellfeldern erstellt werden.

Hilfe zur Konfiguration virtueller Felder und der Beacons, die sie verwenden, finden Sie unter
Virtuelles Feld erstellen.

Standard-Beacons 133

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Zusammengesetzte Beacons

Zusammengesetzte Beacons erstellen Indizes, die die Abfrageleistung verbessern und es Ihnen
ermöglichen, komplexere Datenbankoperationen durchzuführen. Sie können zusammengesetzte
Beacons verwenden, um literale Klartextzeichenfolgen und Standardbeacons zu kombinieren, um
komplexe Abfragen an verschlüsselten Datensätzen durchzuführen, z. B. um zwei verschiedene
Datensatztypen aus einem einzigen Index abzufragen oder um eine Kombination von Feldern mit
einem Sortierschlüssel abzufragen. Weitere Lösungsbeispiele für zusammengesetzte Beacons finden
Sie unter Wählen Sie einen Beacon-Typ.

Zusammengesetzte Beacons können aus Standardbeacons oder einer Kombination aus
Standardbeacons und signierten Feldern erstellt werden. Sie bestehen aus einer Liste von Teilen.
Alle zusammengesetzten Beacons sollten eine Liste verschlüsselter Teile enthalten, die die im
Beacon enthaltenen ENCRYPT_AND_SIGN Felder identifiziert. Jedes ENCRYPT_AND_SIGN Feld
muss durch einen Standard-Beacon identifiziert werden. Komplexere zusammengesetzte Beacons
können auch eine Liste von signierten Teilen enthalten, die den Klartext SIGN_ONLY oder die
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Felder identifizieren, die im Beacon enthalten
sind, und eine Liste von Konstruktorteilen, die alle Möglichkeiten angeben, wie der Compound
Beacon die Felder zusammenstellen kann.

Note

Das AWS Database Encryption SDK unterstützt auch signierte Beacons, die
vollständig aus Klartext und Feldern konfiguriert werden können. SIGN_ONLY
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Signierte Beacons sind eine Art von
zusammengesetzten Beacons, die signierte, aber nicht verschlüsselte Felder indexieren und
komplexe Abfragen in diesen ausführen. Weitere Informationen finden Sie unter Signierte
Beacons erstellen.

Hilfe zur Konfiguration von zusammengesetzten Beacons finden Sie unter Konfiguration von
zusammengesetzten Beacons.

Die Art und Weise, wie Sie Ihren Compound Beacon konfigurieren, bestimmt, welche Arten von
Abfragen er ausführen kann. Sie können beispielsweise einige verschlüsselte und signierte Teile
optional machen, um mehr Flexibilität bei Ihren Abfragen zu gewährleisten. Weitere Informationen zu
den Abfragetypen, die Compound Beacons ausführen können, finden Sie unterBeacons abfragen.

Zusammengesetzte Beacons 134

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Leuchtfeuer planen

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Beacons sind so konzipiert, dass sie in neuen, nicht aufgefüllten Datenbanken implementiert werden
können. Jedes Beacon, das in einer vorhandenen Datenbank konfiguriert ist, ordnet nur neue
Datensätze zu, die in die Datenbank geschrieben wurden. Beacons werden anhand des Klartextwerts
eines Felds berechnet. Sobald das Feld verschlüsselt ist, kann das Beacon keine vorhandenen Daten
zuordnen. Nachdem Sie neue Datensätze mit einem Beacon geschrieben haben, können Sie die
Konfiguration des Beacons nicht mehr aktualisieren. Sie können jedoch neue Beacons für neue
Felder hinzufügen, die Sie Ihrem Datensatz hinzufügen.

Um eine durchsuchbare Verschlüsselung zu implementieren, müssen Sie den AWS KMS
hierarchischen Schlüsselbund verwenden, um die Datenschlüssel zu generieren, zu verschlüsseln
und zu entschlüsseln, die zum Schutz Ihrer Datensätze verwendet werden. Weitere Informationen
finden Sie unter Verwendung des hierarchischen Schlüsselbunds für durchsuchbare
Verschlüsselung.

Bevor Sie Beacons für durchsuchbare Verschlüsselung konfigurieren können, müssen Sie Ihre
Verschlüsselungsanforderungen, Datenbankzugriffsmuster und Ihr Bedrohungsmodell überprüfen,
um die beste Lösung für Ihre Datenbank zu finden.

Der Typ des Beacons, den Sie konfigurieren, bestimmt die Art der Abfragen, die Sie ausführen
können. Die Beacon-Länge, die Sie in der Standard-Beacon-Konfiguration angeben, bestimmt die
erwartete Anzahl von Fehlalarmen, die für einen bestimmten Beacon erzeugt werden. Wir empfehlen
dringend, die Arten von Abfragen, die Sie durchführen müssen, zu identifizieren und zu planen, bevor
Sie Ihre Beacons konfigurieren. Sobald Sie ein Beacon verwendet haben, kann die Konfiguration
nicht mehr aktualisiert werden.

Wir empfehlen dringend, dass Sie die folgenden Aufgaben überprüfen und ausführen, bevor Sie
Beacons konfigurieren.

• Stellen Sie fest, ob Beacons für Ihren Datensatz geeignet sind

• Wählen Sie einen Beacon-Typ

• Wählen Sie eine Beacon-Länge

Leuchtfeuer planen 135

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Wählen Sie einen Beacon-Namen

Beachten Sie bei der Planung der durchsuchbaren Verschlüsselungslösung für Ihre Datenbank die
folgenden Anforderungen an die Eindeutigkeit von Beacons.

• Jeder Standard-Beacon muss über eine eindeutige Beacon-Quelle verfügen

Es können nicht mehrere Standard-Beacons aus demselben verschlüsselten oder virtuellen Feld
erstellt werden.

Ein einziger Standard-Beacon kann jedoch verwendet werden, um mehrere zusammengesetzte
Beacons zu erstellen.

• Vermeiden Sie es, ein virtuelles Feld mit Quellfeldern zu erstellen, die sich mit vorhandenen
Standard-Beacons überschneiden

Die Konstruktion eines Standard-Beacons aus einem virtuellen Feld, das ein Quellfeld enthält,
das zur Erstellung eines anderen Standard-Beacons verwendet wurde, kann die Sicherheit beider
Beacons verringern.

Weitere Informationen finden Sie unter Sicherheitsüberlegungen für virtuelle Felder.

Überlegungen zu Mehrmandantendatenbanken

Um Beacons abzufragen, die in einer Mehrmandantendatenbank konfiguriert sind, müssen Sie das
Feld, das die Daten speichert, die dem Mandanten branch-key-id zugeordnet sind, der den
Datensatz verschlüsselt hat, in Ihre Abfrage aufnehmen. Sie definieren dieses Feld, wenn Sie die
Beacon-Schlüsselquelle definieren. Damit die Abfrage erfolgreich ist, muss der Wert in diesem Feld
die entsprechenden Beacon-Schlüsselmaterialien identifizieren, die für die Neuberechnung des
Beacons erforderlich sind.

Bevor Sie Ihre Beacons konfigurieren, müssen Sie entscheiden, wie Sie sie in Ihre Abfragen
einbeziehen möchten. branch-key-id Weitere Informationen zu den verschiedenen Möglichkeiten,
wie Sie die branch-key-id in Ihre Abfragen einbeziehen können, finden Sie unterAbfragen von
Beacons in einer mandantenfähigen Datenbank.

Überlegungen zu Mehrmandantendatenbanken 136

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Auswahl eines Beacon-Typs

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Mit durchsuchbarer Verschlüsselung können Sie verschlüsselte Datensätze durchsuchen, indem Sie
die Klartextwerte in einem verschlüsselten Feld einem Beacon zuordnen. Der Typ des Beacons, den
Sie konfigurieren, bestimmt die Art der Abfragen, die Sie ausführen können.

Wir empfehlen dringend, die Arten von Abfragen, die Sie ausführen müssen, zu identifizieren und
zu planen, bevor Sie Ihre Beacons konfigurieren. Nachdem Sie Ihre Beacons konfiguriert haben,
müssen Sie für jedes Beacon einen sekundären Index konfigurieren, bevor Sie in den verschlüsselten
Feldern suchen können. Weitere Informationen finden Sie unter Konfiguration sekundärer Indizes mit
Beacons.

Beacons erstellen eine Zuordnung zwischen dem Klartextwert, der in ein Feld geschrieben wird,
und dem verschlüsselten Wert, der tatsächlich in Ihrer Datenbank gespeichert ist. Sie können die
Werte von zwei Standard-Beacons nicht vergleichen, selbst wenn sie denselben zugrunde liegenden
Klartext enthalten. Die beiden Standard-Beacons erzeugen zwei verschiedene HMAC-Tags für
dieselben Klartext-Werte. Daher können Standard-Beacons die folgenden Abfragen nicht ausführen.

• beacon1 = beacon2

• beacon1 IN (beacon2)

• value IN (beacon1, beacon2, ...)

• CONTAINS(beacon1, beacon2)

Sie können die obigen Abfragen nur durchführen, wenn Sie die signierten Teile von
zusammengesetzten Beacons vergleichen, mit Ausnahme des CONTAINS Operators, den Sie mit
zusammengesetzten Beacons verwenden können, um den gesamten Wert eines verschlüsselten
oder signierten Felds zu identifizieren, das der zusammengestellte Beacon enthält. Wenn Sie
signierte Teile vergleichen, können Sie optional das Präfix eines verschlüsselten Teils angeben,
nicht jedoch den verschlüsselten Wert eines Felds. Weitere Informationen zu den Abfragetypen, die
Standard- und Verbundbeacons ausführen können, finden Sie unter Abfragen von Beacons.

Auswahl eines Beacon-Typs 137

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Ziehen Sie bei der Überprüfung Ihrer Datenbankzugriffsmuster die folgenden durchsuchbaren
Verschlüsselungslösungen in Betracht. In den folgenden Beispielen wird definiert, welcher Beacon
konfiguriert werden muss, um unterschiedliche Verschlüsselungs- und Abfrageanforderungen zu
erfüllen.

Standard-Beacons

Standard-Beacons können nur Gleichheitssuchen durchführen. Sie können Standard-Beacons
verwenden, um die folgenden Abfragen durchzuführen.

Fragen Sie ein einzelnes verschlüsseltes Feld ab

Wenn Sie Datensätze identifizieren möchten, die einen bestimmten Wert für ein verschlüsseltes Feld
enthalten, erstellen Sie einen Standard-Beacon.

Beispiele

Stellen Sie sich für das folgende Beispiel eine Datenbank mit dem Namen vorUnitInspection,
die Inspektionsdaten für eine Produktionsanlage verfolgt. Jeder Datensatz in der Datenbank enthält
Felder mit den Namen work_idinspection_date,inspector_id_last4, undunit. Die
vollständige Inspektor-ID ist eine Zahl zwischen 0 und 99.999.999. Um jedoch sicherzustellen, dass
der Datensatz gleichmäßig verteilt ist, speichert The inspector_id_last4 nur die letzten vier
Ziffern der Inspektor-ID. Jedes Feld in der Datenbank wird durch den Primärschlüssel work_id
identifiziert. Die unit Felder inspector_id_last4 und sind ENCRYPT_AND_SIGN in den
kryptografischen Aktionen markiert.

Das Folgende ist ein Beispiel für einen Klartext-Eintrag in der UnitInspection Datenbank.

{
 "work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
 "inspection_date": 2023-06-07,
 "inspector_id_last4": 8744,
 "unit": 229304973450
}

Fragen Sie ein einzelnes verschlüsseltes Feld in einem Datensatz ab

Wenn das inspector_id_last4 Feld verschlüsselt werden muss, Sie es aber trotzdem nach
exakten Übereinstimmungen abfragen müssen, erstellen Sie aus dem inspector_id_last4
Feld ein Standard-Beacon. Verwenden Sie dann den Standard-Beacon, um einen sekundären

Auswahl eines Beacon-Typs 138

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Index zu erstellen. Sie können diesen sekundären Index verwenden, um das verschlüsselte
inspector_id_last4 Feld abzufragen.

Hilfe zur Konfiguration von Standard-Beacons finden Sie unter Konfiguration von Standard-Beacons.

Fragen Sie ein virtuelles Feld ab

Ein virtuelles Feld ist ein konzeptionelles Feld, das aus einem oder mehreren Quellfeldern besteht.
Wenn Sie Gleichheitssuchen für ein bestimmtes Segment eines verschlüsselten Felds oder
Gleichheitssuchen für die Verkettung mehrerer Felder durchführen möchten, konstruieren Sie
ein Standard-Beacon aus einem virtuellen Feld. Alle virtuellen Felder müssen mindestens ein
verschlüsseltes Quellfeld enthalten.

Beispiele

In den folgenden Beispielen werden virtuelle Felder für die Employees Datenbank erstellt. Im
Folgenden finden Sie ein Beispiel für einen Klartext-Datensatz in der Employees Datenbank.

{
 "EmployeeID": 101,
 "SSN": 000-00-0000,
 "LastName": "Jones",
 "FirstName": "Mary",
 "Address": {
 "Street": "123 Main",
 "City": "Anytown",
 "State": "OH",
 "ZIPCode": 12345
 }
}

Fragen Sie ein Segment eines verschlüsselten Felds ab

In diesem Beispiel ist das SSN Feld verschlüsselt.

Wenn Sie das SSN Feld mit den letzten vier Ziffern einer Sozialversicherungsnummer abfragen
möchten, erstellen Sie ein virtuelles Feld, das das Segment identifiziert, das Sie abfragen
möchten.

Ein virtuelles Last4SSN Feld, das aus erstellt wurde, Suffix(4) ermöglicht es Ihnen, Abfragen
durchzuführenLast4SSN=0000. Verwenden Sie dieses virtuelle Feld, um einen Standard-Beacon

Auswahl eines Beacon-Typs 139

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

zu erstellen. Verwenden Sie dann den Standard-Beacon, um einen sekundären Index zu erstellen.
Sie können diesen sekundären Index verwenden, um das virtuelle Feld abzufragen. Diese
Abfrage gibt alle Datensätze zurück, SSN deren Wert mit den letzten vier von Ihnen angegebenen
Ziffern endet.

Fragen Sie die Verkettung mehrerer Felder ab

Note

Das folgende Beispiel zeigt, welche Arten von Transformationen und Abfragen Sie
mit einem virtuellen Feld ausführen können. In der Anwendung entsprechen die in
diesem Beispiel verwendeten Beispielfelder möglicherweise nicht den Empfehlungen zur
Verteilung und Korrelationseindeutigkeit für Beacons.

Wenn Sie Gleichheitssuchen für eine Verkettung von FirstName und LastName -Feldern
durchführen möchten, können Sie ein virtuelles NameTag Feld erstellen, das aus dem ersten
Buchstaben des Felds, gefolgt von dem FirstName Feld, gebildet wird, alles in Kleinbuchstaben.
LastName Verwenden Sie dieses virtuelle Feld, um einen Standard-Beacon zu erstellen.
Verwenden Sie dann den Standard-Beacon, um einen sekundären Index zu erstellen. Sie können
diesen sekundären Index verwenden, um das virtuelle Feld abzufragenNameTag=mjones.

Mindestens eines der Quellfelder muss verschlüsselt sein. Entweder FirstName oder LastName
könnte verschlüsselt werden, oder beide könnten verschlüsselt sein. Alle Klartext-Quellfelder
müssen SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT in Ihren kryptografischen SIGN_ONLY
Aktionen als oder gekennzeichnet sein.

Hilfe zur Konfiguration virtueller Felder und der Beacons, die sie verwenden, finden Sie unter
Virtuelles Feld erstellen.

Zusammengesetzte Beacons

Zusammengesetzte Beacons erstellen einen Index aus wörtlichen Klartext-Zeichenketten
und Standard-Beacons, um komplexe Datenbankoperationen durchzuführen. Sie können
zusammengesetzte Beacons verwenden, um die folgenden Abfragen durchzuführen.

Auswahl eines Beacon-Typs 140

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Fragen Sie eine Kombination verschlüsselter Felder in einem einzelnen Index ab

Wenn Sie eine Kombination von verschlüsselten Feldern in einem einzelnen Index abfragen müssen,
erstellen Sie einen Verbundbeacon, der die einzelnen Standard-Beacons, die für jedes verschlüsselte
Feld erstellt wurden, zu einem einzigen Index kombiniert.

Nachdem Sie den Compound Beacon konfiguriert haben, können Sie einen sekundären
Index erstellen, der den Compound Beacon als Partitionsschlüssel für Abfragen mit exakter
Übereinstimmung oder mit einem Sortierschlüssel für komplexere Abfragen angibt. Sekundäre
Indizes, die den Compound Beacon als Sortierschlüssel angeben, können Abfragen mit exakter
Übereinstimmung und individuellere komplexe Abfragen ausführen.

Beispiele

Stellen Sie sich für die folgenden Beispiele eine Datenbank mit dem Namen vorUnitInspection,
die Inspektionsdaten für eine Produktionsanlage verfolgt. Jeder Datensatz in der Datenbank enthält
Felder mit den Namen work_idinspection_date,inspector_id_last4, undunit. Die
vollständige Inspektor-ID ist eine Zahl zwischen 0 und 99.999.999. Um jedoch sicherzustellen, dass
der Datensatz gleichmäßig verteilt ist, speichert The inspector_id_last4 nur die letzten vier
Ziffern der Inspektor-ID. Jedes Feld in der Datenbank wird durch den Primärschlüssel work_id
identifiziert. Die unit Felder inspector_id_last4 und sind ENCRYPT_AND_SIGN in den
kryptografischen Aktionen markiert.

Das Folgende ist ein Beispiel für einen Klartext-Eintrag in der UnitInspection Datenbank.

{
 "work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
 "inspection_date": 2023-06-07,
 "inspector_id_last4": 8744,
 "unit": 229304973450
}

Führen Sie Gleichheitssuchen in einer Kombination von verschlüsselten Feldern durch

Wenn Sie die UnitInspection Datenbank nach exakten Übereinstimmungen abfragen
möchteninspector_id_last4.unit, erstellen Sie zunächst unterschiedliche Standard-
Beacons für die unit Felder inspector_id_last4 und. Erstellen Sie dann aus den beiden
Standard-Beacons ein zusammengesetztes Beacon.

Nachdem Sie den Compound Beacon konfiguriert haben, erstellen Sie einen sekundären Index,
der den Compound Beacon als Partitionsschlüssel angibt. Verwenden Sie diesen sekundären

Auswahl eines Beacon-Typs 141

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Index, um nach exakten Übereinstimmungen zu suchen. inspector_id_last4.unit Sie
könnten diesen Beacon beispielsweise abfragen, um eine Liste von Inspektionen zu finden, die
ein Inspektor für eine bestimmte Einheit durchgeführt hat.

Führen Sie komplexe Abfragen für eine Kombination von verschlüsselten Feldern durch

Wenn Sie die UnitInspection Datenbank für inspector_id_last4 und abfragen
möchteninspector_id_last4.unit, erstellen Sie zunächst unterschiedliche
Standardbeacons für die unit Felder inspector_id_last4 und. Erstellen Sie dann ein
zusammengesetztes Beacon aus den beiden Standard-Beacons.

Nachdem Sie den zusammengesetzten Beacon konfiguriert haben, erstellen Sie einen
sekundären Index, der den zusammengesetzten Beacon als Sortierschlüssel angibt. Verwenden
Sie diesen sekundären Index, um die UnitInspection Datenbank nach Einträgen abzufragen,
die mit einem bestimmten Inspektor beginnen, oder fragen Sie die Datenbank nach einer
Liste aller Einheiten innerhalb eines bestimmten Einheiten-ID-Bereichs ab, die von einem
bestimmten Inspektor geprüft wurden. Sie können auch nach exakten Übereinstimmungen suchen
fürinspector_id_last4.unit.

Hilfe zur Konfiguration von zusammengesetzten Beacons finden Sie unter Konfiguration von
zusammengesetzten Beacons.

Fragen Sie eine Kombination aus verschlüsselten Feldern und Klartextfeldern in einem einzigen
Index ab

Wenn Sie eine Kombination aus verschlüsselten Feldern und Klartextfeldern in einem einzigen Index
abfragen müssen, erstellen Sie einen zusammengesetzten Beacon, der einzelne Standard-Beacons
und Klartextfelder zu einem einzigen Index kombiniert. Die Klartextfelder, die zur Erstellung des
Verbund-Beacons verwendet werden, müssen markiert SIGN_ONLY oder in Ihren kryptografischen
Aktionen enthalten sein. SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Nachdem Sie den Compound Beacon konfiguriert haben, können Sie einen sekundären Index
erstellen, der den Compound Beacon als Partitionsschlüssel für exakt passende Abfragen oder mit
einem Sortierschlüssel für komplexere Abfragen angibt. Sekundäre Indizes, die den Compound
Beacon als Sortierschlüssel angeben, können Abfragen mit exakter Übereinstimmung und
individuellere komplexe Abfragen ausführen.

Auswahl eines Beacon-Typs 142

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Beispiele

Stellen Sie sich für die folgenden Beispiele eine Datenbank mit dem Namen vorUnitInspection,
die Inspektionsdaten für eine Produktionsanlage verfolgt. Jeder Datensatz in der Datenbank enthält
Felder mit den Namen work_idinspection_date,inspector_id_last4, undunit. Die
vollständige Inspektor-ID ist eine Zahl zwischen 0 und 99.999.999. Um jedoch sicherzustellen, dass
der Datensatz gleichmäßig verteilt ist, speichert The inspector_id_last4 nur die letzten vier
Ziffern der Inspektor-ID. Jedes Feld in der Datenbank wird durch den Primärschlüssel work_id
identifiziert. Die unit Felder inspector_id_last4 und sind ENCRYPT_AND_SIGN in den
kryptografischen Aktionen markiert.

Das Folgende ist ein Beispiel für einen Klartext-Eintrag in der UnitInspection Datenbank.

{
 "work_id": "1c7fcff3-6e74-41a8-b7f7-925dc039830b",
 "inspection_date": 2023-06-07,
 "inspector_id_last4": 8744,
 "unit": 229304973450
}

Führen Sie Gleichheitssuchen in einer Kombination von Feldern durch

Wenn Sie die UnitInspection Datenbank nach Inspektionen abfragen möchten, die von einem
bestimmten Inspektor an einem bestimmten Datum durchgeführt wurden, erstellen Sie zunächst
einen Standard-Beacon für das inspector_id_last4 Feld. Das inspector_id_last4
Feld ist ENCRYPT_AND_SIGN in den kryptografischen Aktionen markiert. Alle verschlüsselten
Teile benötigen einen eigenen Standard-Beacon. Das inspection_date Feld ist markiert
SIGN_ONLY und benötigt keinen Standard-Beacon. Erstellen Sie als Nächstes ein Verbundsignal
aus dem inspection_date Feld und dem inspector_id_last4 Standardbeacon.

Nachdem Sie den Compound Beacon konfiguriert haben, erstellen Sie einen sekundären Index,
der den Compound Beacon als Partitionsschlüssel angibt. Verwenden Sie diesen sekundären
Index, um die Datenbanken nach Datensätzen abzufragen, die exakt mit einem bestimmten
Inspektor und einem bestimmten Inspektionsdatum übereinstimmen. Beispielsweise können Sie
die Datenbank nach einer Liste aller Inspektionen abfragen, die der Inspektor, dessen ID auf
endet, an einem bestimmten Datum 8744 durchgeführt hat.

Auswahl eines Beacon-Typs 143

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Führen Sie komplexe Abfragen für eine Kombination von Feldern durch

Wenn Sie die Datenbank nach Inspektionen abfragen möchten, die innerhalb eines bestimmten
inspection_date Bereichs durchgeführt wurden, oder die Datenbank nach Inspektionen
abfragen möchten, die für einen bestimmten inspection_date eingeschränkten Wert von
inspector_id_last4 oder durchgeführt wurdeninspector_id_last4.unit, erstellen
Sie zunächst separate Standard-Beacons für die Felder inspector_id_last4 undunit.
Erstellen Sie dann einen Verbundbeacon aus dem inspection_date Klartextfeld und den
beiden Standard-Beacons.

Nachdem Sie den zusammengesetzten Beacon konfiguriert haben, erstellen Sie einen
sekundären Index, der den zusammengesetzten Beacon als Sortierschlüssel angibt. Verwenden
Sie diesen sekundären Index, um Abfragen für Inspektionen durchzuführen, die an bestimmten
Terminen von einem bestimmten Inspektor durchgeführt wurden. Sie können beispielsweise die
Datenbank nach einer Liste aller am selben Tag inspizierten Einheiten abfragen. Oder Sie können
die Datenbank nach einer Liste aller Inspektionen abfragen, die an einer bestimmten Einheit
zwischen einem bestimmten Zeitraum von Inspektionsterminen durchgeführt wurden.

Hilfe zur Konfiguration von zusammengesetzten Beacons finden Sie unter Konfiguration von
zusammengesetzten Beacons.

Wahl einer Beacon-Länge

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Wenn Sie einen neuen Wert in ein verschlüsseltes Feld schreiben, das für durchsuchbare
Verschlüsselung konfiguriert ist, berechnet das AWS Database Encryption SDK einen HMAC-
Wert über dem Klartext-Wert. Bei dieser HMAC-Ausgabe handelt es sich um eine 1:1 -
Übereinstimmung mit dem Klartextwert dieses Felds. Die HMAC-Ausgabe wird gekürzt, sodass
mehrere unterschiedliche Klartextwerte demselben gekürzten HMAC-Tag zugeordnet werden.
Diese Kollisionen oder Fehlalarme schränken die Fähigkeit eines nicht autorisierten Benutzers ein,
charakteristische Informationen über den Klartext-Wert zu identifizieren.

Die durchschnittliche Anzahl der für jeden Beacon generierten Fehlalarme wird durch die Länge
des Beacons bestimmt, die nach der Kürzung noch übrig ist. Sie müssen die Beacon-Länge nur

Wahl einer Beacon-Länge 144

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

definieren, wenn Sie Standard-Beacons konfigurieren. Verbund-Beacons verwenden die Beacon-
Längen der Standard-Beacons, aus denen sie aufgebaut sind.

Der Beacon ändert den verschlüsselten Zustand des Feldes nicht. Bei der Verwendung von Beacons
besteht jedoch ein inhärenter Kompromiss zwischen der Effizienz Ihrer Abfragen und der Menge an
Informationen, die über die Verteilung Ihrer Daten preisgegeben werden.

Das Ziel der durchsuchbaren Verschlüsselung besteht darin, die mit clientseitig verschlüsselten
Datenbanken verbundenen Leistungskosten zu reduzieren, indem Beacons zur Durchführung
von Abfragen verschlüsselter Daten verwendet werden. Beacons werden zusammen mit den
verschlüsselten Feldern gespeichert, aus denen sie berechnet werden. Das bedeutet, dass sie
aussagekräftige Informationen über die Verteilung Ihres Datensatzes preisgeben können. In
extremen Fällen kann ein nicht autorisierter Benutzer die Informationen über Ihre Verteilung
analysieren und anhand dieser Informationen den Klartextwert eines Felds ermitteln. Die Wahl der
richtigen Beacon-Länge kann dazu beitragen, diese Risiken zu minimieren und die Vertraulichkeit
Ihrer Verteilung zu wahren.

Überprüfen Sie Ihr Bedrohungsmodell, um das Sicherheitsniveau zu ermitteln, das Sie benötigen.
Je mehr Personen beispielsweise Zugriff auf Ihre Datenbank haben, aber keinen Zugriff auf die
Klartextdaten haben sollten, desto mehr möchten Sie möglicherweise die Vertraulichkeit Ihrer
Datensatzverteilung schützen. Um die Vertraulichkeit zu erhöhen, muss ein Beacon mehr Fehlalarme
generieren. Eine erhöhte Vertraulichkeit führt zu einer verringerten Abfrageleistung.

Sicherheit versus Leistung

• Eine zu lange Beacon-Länge erzeugt zu wenige Fehlalarme und kann aussagekräftige
Informationen über die Verteilung Ihres Datensatzes preisgeben.

• Eine zu kurze Beacon-Länge erzeugt zu viele Fehlalarme und erhöht die Leistungseinbußen bei
Abfragen, da dafür ein umfassenderer Scan der Datenbank erforderlich ist.

Bei der Bestimmung der geeigneten Beacon-Länge für Ihre Lösung müssen Sie eine Länge wählen,
die die Sicherheit Ihrer Daten angemessen gewährleistet, ohne die Leistung Ihrer Abfragen mehr als
unbedingt erforderlich zu beeinträchtigen. Der Sicherheitsgrad, den ein Beacon gewährleistet, hängt
von der Verteilung Ihres Datensatzes und der Korrelation der Felder ab, aus denen Ihre Beacons
aufgebaut sind. In den folgenden Themen wird davon ausgegangen, dass Ihre Beacons gleichmäßig
verteilt sind und keine korrelierten Daten enthalten.

Themen

Wahl einer Beacon-Länge 145

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Berechnung der Beacon-Länge

• Beispiel

Berechnung der Beacon-Länge

Die Länge des Beacons wird in Bits definiert und bezieht sich auf die Anzahl der Bits des HMAC-
Tags, die nach der Kürzung beibehalten werden. Die empfohlene Beacon-Länge hängt von
der Verteilung des Datensatzes, dem Vorhandensein korrelierter Werte und Ihren spezifischen
Sicherheits- und Leistungsanforderungen ab. Wenn Ihr Datensatz gleichmäßig verteilt ist, können
Sie die folgenden Gleichungen und Verfahren verwenden, um die beste Beacon-Länge für Ihre
Implementierung zu ermitteln. Mit diesen Gleichungen wird nur die durchschnittliche Anzahl falsch
positiver Ergebnisse geschätzt, die der Beacon erzeugt. Sie garantieren nicht, dass jeder einzelne
Wert in Ihrem Datensatz eine bestimmte Anzahl falsch positiver Ergebnisse erzeugt.

Note

Die Wirksamkeit dieser Gleichungen hängt von der Verteilung Ihres Datensatzes ab. Wenn
Ihr Datensatz nicht gleichmäßig verteilt ist, finden Sie weitere Informationen unterSind
Beacons das Richtige für meinen Datensatz?.
Generell gilt: Je weiter Ihr Datensatz von einer gleichmäßigen Verteilung entfernt ist, desto
mehr müssen Sie Ihre Beacon-Länge verkürzen.

1.

Schätzen Sie die Population

Bei der Grundgesamtheit handelt es sich um die erwartete Anzahl von Einzelwerten in dem
Feld, aus dem Ihr Standard-Beacon erstellt wurde, nicht um die erwartete Gesamtanzahl der
im Feld gespeicherten Werte. Stellen Sie sich zum Beispiel ein verschlüsseltes Room Feld vor,
das den Ort von Mitarbeiterversammlungen identifiziert. Es wird erwartet, dass das Room Feld
insgesamt 100.000 Werte speichert, aber es gibt nur 50 verschiedene Räume, die Mitarbeiter für
Besprechungen reservieren können. Das bedeutet, dass die Population 50 beträgt, weil es nur
50 mögliche Einzelwerte gibt, die in dem Room Feld gespeichert werden können.

Wahl einer Beacon-Länge 146

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Note

Wenn Ihr Standard-Beacon aus einem virtuellen Feld besteht, entspricht die zur
Berechnung der Beacon-Länge verwendete Population der Anzahl der eindeutigen
Kombinationen, die durch das virtuelle Feld erzeugt werden.

Achten Sie bei der Schätzung Ihrer Population darauf, das prognostizierte Wachstum des
Datensatzes zu berücksichtigen. Nachdem Sie mit dem Beacon neue Datensätze geschrieben
haben, können Sie die Länge des Beacons nicht mehr aktualisieren. Überprüfen Sie Ihr
Bedrohungsmodell und alle vorhandenen Datenbanklösungen, um eine Schätzung der Anzahl
der Einzelwerte zu erstellen, die dieses Feld voraussichtlich in den nächsten fünf Jahren
speichern wird.

Ihre Population muss nicht genau sein. Identifizieren Sie zunächst die Anzahl der Einzelwerte in
Ihrer aktuellen Datenbank, oder schätzen Sie die Anzahl der Einzelwerte, die Sie voraussichtlich
im ersten Jahr speichern werden. Verwenden Sie als Nächstes die folgenden Fragen, um das
prognostizierte Wachstum der Einzelwerte in den nächsten fünf Jahren zu ermitteln.

• Erwarten Sie, dass sich die Einzelwerte mit 10 multiplizieren werden?

• Erwarten Sie, dass sich die Einzelwerte mit 100 multiplizieren?

• Erwarten Sie, dass sich die Einzelwerte mit 1000 multiplizieren?

Der Unterschied zwischen 50.000 und 60.000 Einzelwerten ist nicht signifikant und beide führen
zu derselben empfohlenen Beacon-Länge. Der Unterschied zwischen 50.000 und 500.000
Einzelwerten wirkt sich jedoch erheblich auf die empfohlene Beacon-Länge aus.

Erwägen Sie, öffentliche Daten zur Häufigkeit gängiger Datentypen wie Postleitzahlen
oder Nachnamen zu überprüfen. In den Vereinigte Staaten gibt es beispielsweise 41.707
Postleitzahlen. Die von Ihnen verwendete Population sollte proportional zu Ihrer eigenen
Datenbank sein. Wenn das ZIPCode Feld in Ihrer Datenbank Daten aus den gesamten
Vereinigte Staaten enthält, können Sie Ihre Bevölkerung als 41.707 definieren, auch wenn
das ZIPCode Feld derzeit keine 41.707 Einzelwerte enthält. Wenn das ZIPCode Feld in Ihrer
Datenbank nur Daten aus einem einzigen Bundesstaat enthält und immer nur Daten aus einem
einzigen Bundesstaat enthalten wird, können Sie Ihre Bevölkerung als die Gesamtzahl der
Postleitzahlen in diesem Bundesstaat statt als 41.704 definieren.

Wahl einer Beacon-Länge 147

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

2. Berechnen Sie den empfohlenen Bereich für die erwartete Anzahl von Kollisionen

Um die geeignete Beacon-Länge für ein bestimmtes Feld zu bestimmen, müssen Sie zunächst
einen geeigneten Bereich für die erwartete Anzahl von Kollisionen ermitteln. Die erwartete
Anzahl von Kollisionen stellt die durchschnittliche erwartete Anzahl eindeutiger Klartextwerte
dar, die einem bestimmten HMAC-Tag zugeordnet sind. Die erwartete Anzahl falsch positiver
Ergebnisse für einen eindeutigen Klartextwert liegt um eins unter der erwarteten Anzahl von
Kollisionen.

Wir empfehlen, dass die erwartete Anzahl von Kollisionen größer oder gleich zwei und kleiner als
die Quadratwurzel Ihrer Grundgesamtheit ist. Die folgenden Gleichungen funktionieren nur, wenn
Ihre Grundgesamtheit 16 oder mehr Einzelwerte hat.

2 ≤ number of collisions < √(Population)

Wenn die Anzahl der Kollisionen weniger als zwei beträgt, erzeugt der Beacon zu wenige
Fehlalarme. Wir empfehlen zwei als Mindestanzahl erwarteter Kollisionen, da dies bedeutet,
dass im Durchschnitt jeder Einzelwert im Feld mindestens ein falsches Positiv generiert, wenn er
einem anderen Einzelwert zugeordnet wird.

3. Berechnen Sie den empfohlenen Bereich für die Länge der Beacons

Nachdem Sie die minimale und maximale Anzahl erwarteter Kollisionen ermittelt haben,
verwenden Sie die folgende Gleichung, um einen Bereich geeigneter Beacon-Längen zu
ermitteln.

number of collisions = Population * 2-(beacon length)

Ermitteln Sie zunächst die Beacon-Länge, bei der die Anzahl der erwarteten Kollisionen gleich
zwei ist (die empfohlene Mindestanzahl erwarteter Kollisionen).

2 = Population * 2-(beacon length)

Berechne dann nach der Länge des Beacons, wobei die erwartete Anzahl von Kollisionen
der Quadratwurzel deiner Grundgesamtheit entspricht (der empfohlenen maximalen Anzahl
erwarteter Kollisionen).

√(Population) = Population * 2-(beacon length)

Wahl einer Beacon-Länge 148

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Wir empfehlen, die mit dieser Gleichung erzeugte Ausgabe auf die kürzere Beacon-Länge
abzurunden. Ergibt die Gleichung beispielsweise eine Beacon-Länge von 15,6, empfehlen wir,
diesen Wert auf 15 Bit abzurunden, anstatt ihn auf 16 Bit aufzurunden.

4. Wählen Sie eine Beacon-Länge

Diese Gleichungen geben nur einen empfohlenen Bereich von Beacon-Längen für Ihr
Fachgebiet an. Wir empfehlen, eine kürzere Beacon-Länge zu verwenden, um die Sicherheit
Ihres Datensatzes zu gewährleisten, wann immer dies möglich ist. Die Länge des Beacons,
das Sie tatsächlich verwenden, hängt jedoch von Ihrem Bedrohungsmodell ab. Berücksichtigen
Sie bei der Überprüfung Ihres Bedrohungsmodells Ihre Leistungsanforderungen, um die beste
Beacon-Länge für Ihr Einsatzgebiet zu ermitteln.

Die Verwendung einer kürzeren Beacon-Länge verringert die Abfrageleistung, während die
Verwendung einer längeren Beacon-Länge die Sicherheit verringert. Wenn Ihr Datensatz
ungleichmäßig verteilt ist oder Sie unterschiedliche Beacons aus korrelierten Feldern
erstellen, müssen Sie im Allgemeinen kürzere Beacon-Längen verwenden, um die Menge an
Informationen zu minimieren, die über die Verteilung Ihrer Datensätze preisgegeben werden.

Wenn Sie Ihr Bedrohungsmodell überprüfen und zu dem Schluss kommen, dass alle
offengelegten Unterscheidungsinformationen über die Verteilung eines Feldes keine Gefahr für
Ihre allgemeine Sicherheit darstellen, können Sie eine Beacon-Länge verwenden, die länger ist
als der von Ihnen berechnete empfohlene Bereich. Wenn Sie beispielsweise den empfohlenen
Bereich der Beacon-Längen für ein Feld mit 9—16 Bit berechnet haben, könnten Sie sich für eine
Beacon-Länge von 24 Bit entscheiden, um Leistungseinbußen zu vermeiden.

Wählen Sie Ihre Beacon-Länge sorgfältig aus. Nachdem Sie mit dem Beacon neue Datensätze
geschrieben haben, können Sie die Länge des Beacons nicht mehr aktualisieren.

Beispiel

Stellen Sie sich eine Datenbank vor, die das unit Feld als ENCRYPT_AND_SIGN in den
kryptografischen Aktionen markiert hat. Um einen Standard-Beacon für das unit Feld zu
konfigurieren, müssen wir die erwartete Anzahl von Fehlalarmen und die Länge des Beacons für das
Feld ermitteln. unit

1. Schätzen Sie die Bevölkerung

Wahl einer Beacon-Länge 149

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Nach der Überprüfung unseres Bedrohungsmodells und unserer aktuellen Datenbanklösung
gehen wir davon aus, dass das unit Feld irgendwann 100.000 eindeutige Werte haben wird.

Das bedeutet, dass Bevölkerung = 100.000 ist.

2. Berechnet den empfohlenen Bereich für die erwartete Anzahl von Kollisionen.

In diesem Beispiel sollte die erwartete Anzahl von Kollisionen zwischen 2 und 316 liegen.

2 ≤ number of collisions < √(Population)

a. 2 ≤ number of collisions < √(100,000)

b. 2 ≤ number of collisions < 316

3. Berechnen Sie den empfohlenen Bereich für die Länge des Beacons.

In diesem Beispiel sollte die Länge des Beacons zwischen 9 und 16 Bit liegen.

number of collisions = Population * 2-(beacon length)

a. Berechnen Sie die Länge des Beacons, bei der die erwartete Anzahl von Kollisionen dem in
Schritt 2 ermittelten Minimum entspricht.

2 = 100,000 * 2-(beacon length)

Länge des Beacons = 15,6 oder 15 Bit

b. Berechnen Sie die Länge des Beacons, wobei die erwartete Anzahl von Kollisionen dem in
Schritt 2 ermittelten Maximum entspricht.

316 = 100,000 * 2-(beacon length)

Länge des Beacons = 8,3 oder 8 Bit

4. Ermitteln Sie die Beacon-Länge, die Ihren Sicherheits- und Leistungsanforderungen entspricht.

Für jedes Bit unter 15 verdoppeln sich die Kosten für Leistung und Sicherheit.

• 16 Bit
Wahl einer Beacon-Länge 150

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Im Durchschnitt wird jeder Einzelwert 1,5 anderen Einheiten zugeordnet.

• Sicherheit: Bei zwei Datensätzen mit demselben gekürzten HMAC-Tag besteht eine
Wahrscheinlichkeit von 66%, dass sie denselben Klartextwert haben.

• Leistung: Eine Abfrage ruft 15 Datensätze für jeweils 10 Datensätze ab, die Sie tatsächlich
angefordert haben.

• 14 Bit

• Im Durchschnitt wird jeder Einzelwert 6,1 anderen Einheiten zugeordnet.

• Sicherheit: Bei zwei Datensätzen mit demselben gekürzten HMAC-Tag besteht eine
Wahrscheinlichkeit von 33%, dass sie denselben Klartextwert haben.

• Leistung: Eine Abfrage ruft 30 Datensätze für jeweils 10 Datensätze ab, die Sie tatsächlich
angefordert haben.

Einen Beacon-Namen wählen

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Jeder Beacon wird durch einen eindeutigen Beacon-Namen identifiziert. Sobald ein Beacon
konfiguriert ist, ist der Beacon-Name der Name, den Sie bei der Abfrage eines verschlüsselten Felds
verwenden. Ein Beacon-Name kann derselbe Name wie ein verschlüsseltes Feld oder virtuelles Feld
sein, er kann jedoch nicht derselbe Name wie ein unverschlüsseltes Feld sein. Zwei verschiedene
Beacons können nicht denselben Beacon-Namen haben.

Beispiele, die zeigen, wie Beacons benannt und konfiguriert werden, finden Sie unter Konfiguration
von Beacons.

Benennen von Standard-Beacons

Bei der Benennung von Standardbeacons empfehlen wir dringend, dass Ihr Beacon-Name nach
Möglichkeit in die Beacon-Quelle aufgelöst wird. Das bedeutet, dass der Beacon-Name und der
Name des verschlüsselten oder virtuellen Feldes, aus dem Ihr Standard-Beacon aufgebaut ist,

Einen Beacon-Namen wählen 151

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

identisch sind. Wenn Sie beispielsweise einen Standard-Beacon für ein verschlüsseltes Feld mit dem
Namen erstellenLastName, sollte Ihr Beacon-Name ebenfalls lauten. LastName

Wenn Ihr Beacon-Name mit der Beacon-Quelle identisch ist, können Sie die Beacon-Quelle aus Ihrer
Konfiguration weglassen und das AWS Database Encryption SDK verwendet den Beacon-Namen
automatisch als Beacon-Quelle.

Konfiguration von Beacons

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Es gibt zwei Arten von Beacons, die durchsuchbare Verschlüsselung unterstützen. Standard-
Beacons führen Gleichheitssuchen durch. Sie sind der einfachste Weg, eine durchsuchbare
Verschlüsselung in Ihrer Datenbank zu implementieren. Compound Beacons kombinieren wörtliche
Klartext-Zeichenketten und Standard-Beacons, um komplexere Abfragen durchzuführen.

Beacons sind so konzipiert, dass sie in neuen, nicht aufgefüllten Datenbanken implementiert werden
können. Jeder in einer vorhandenen Datenbank konfigurierte Beacon ordnet nur neue Datensätze zu,
die in die Datenbank geschrieben wurden. Beacons werden anhand des Klartextwerts eines Felds
berechnet. Sobald das Feld verschlüsselt ist, kann das Beacon keine vorhandenen Daten zuordnen.
Nachdem Sie neue Datensätze mit einem Beacon geschrieben haben, können Sie die Konfiguration
des Beacons nicht mehr aktualisieren. Sie können jedoch neue Beacons für neue Felder hinzufügen,
die Sie Ihrem Datensatz hinzufügen.

Nachdem Sie Ihre Zugriffsmuster bestimmt haben, sollte die Konfiguration von Beacons der zweite
Schritt in Ihrer Datenbankimplementierung sein. Nachdem Sie alle Ihre Beacons konfiguriert
haben, müssen Sie einen AWS KMS hierarchischen Schlüsselbund erstellen, die Beacon-Version
definieren, einen sekundären Index für jedes Beacon konfigurieren, Ihre kryptografischen Aktionen
definieren und Ihre Datenbank und den Database Encryption SDK-Client konfigurieren. AWS Weitere
Informationen finden Sie unter Verwenden von Beacons.

Um die Definition der Beacon-Version zu vereinfachen, empfehlen wir, Listen für Standard- und
Verbund-Beacons zu erstellen. Fügen Sie jedes Beacon, das Sie erstellen, bei der Konfiguration der
jeweiligen Standard- oder Verbund-Beacons hinzu.

Konfiguration von Beacons 152

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Themen

• Konfiguration von Standard-Beacons

• Konfiguration von Compound-Beacons

• Beispielkonfigurationen

Konfiguration von Standard-Beacons

Standard-Beacons sind die einfachste Methode, eine durchsuchbare Verschlüsselung in Ihrer
Datenbank zu implementieren. Sie können nur Gleichheitssuchen für ein einzelnes verschlüsseltes
oder virtuelles Feld durchführen.

Beispiel für eine Konfigurationssyntax

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beaconName")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C# / .NET

var standardBeaconList = new List<StandardBeacon>();
StandardBeacon exampleStandardBeacon = new StandardBeacon
 {
 Name = "beaconName",
 Length = 10
 };
standardBeaconList.Add(exampleStandardBeacon);

Rust

let standard_beacon_list = vec![

 StandardBeacon::builder().name("beacon_name").length(beacon_length_in_bits).build()?,

Konfiguration von Standard-Beacons 153

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Um ein Standard-Beacon zu konfigurieren, geben Sie die folgenden Werte an.

Name des Beacons

Der Name, den Sie bei der Abfrage eines verschlüsselten Felds verwenden.

Ein Beacon-Name kann derselbe Name wie ein verschlüsseltes Feld oder virtuelles Feld
sein, er kann jedoch nicht derselbe Name wie ein unverschlüsseltes Feld sein. Wir empfehlen
dringend, wann immer möglich den Namen des verschlüsselten Felds oder virtuellen Feldes zu
verwenden, aus dem Ihr Standard-Beacon erstellt wird. Zwei verschiedene Beacons können nicht
denselben Beacon-Namen haben. Hilfe bei der Bestimmung des besten Beacon-Namens für Ihre
Implementierung finden Sie unter Auswahl eines Beacon-Namens.

Länge des Beacons

Die Anzahl der Bits des Beacon-Hashwerts, die nach der Kürzung beibehalten werden.

Die Länge des Beacons bestimmt die durchschnittliche Anzahl von Fehlalarmen, die von einem
bestimmten Beacon erzeugt werden. Weitere Informationen und Hilfe bei der Bestimmung der
geeigneten Beacon-Länge für Ihre Implementierung finden Sie unter Bestimmung der Beacon-
Länge.

Beacon-Quelle (optional)

Das Feld, aus dem ein Standard-Beacon erstellt wird.

Die Beacon-Quelle muss ein Feldname oder ein Index sein, der auf den Wert eines
verschachtelten Felds verweist. Wenn Ihr Beacon-Name mit der Beacon-Quelle identisch ist,
können Sie die Beacon-Quelle aus Ihrer Konfiguration weglassen und das AWS Database
Encryption SDK verwendet den Beacon-Namen automatisch als Beacon-Quelle.

Ein virtuelles Feld erstellen

Um ein virtuelles Feld zu erstellen, müssen Sie einen Namen für das virtuelle Feld und eine Liste
der Quellfelder angeben. Die Reihenfolge, in der Sie der virtuellen Komponentenliste Quellfelder
hinzufügen, bestimmt die Reihenfolge, in der sie zum Aufbau des virtuellen Felds verkettet werden.
Im folgenden Beispiel werden zwei Quellfelder in ihrer Gesamtheit verkettet, um ein virtuelles Feld zu
erstellen.

Konfiguration von Standard-Beacons 154

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Note

Wir empfehlen, zu überprüfen, ob Ihre virtuellen Felder das erwartete Ergebnis liefern, bevor
Sie Ihre Datenbank auffüllen. Weitere Informationen finden Sie unter Beacon-Ausgaben
testen.

Java

Sehen Sie sich das vollständige Codebeispiel an: .java
VirtualBeaconSearchableEncryptionExample

List<VirtualPart> virtualPartList = new ArrayList<>();
 virtualPartList.add(sourceField1);
 virtualPartList.add(sourceField2);

VirtualField virtualFieldName = VirtualField.builder()
 .name("virtualFieldName")
 .parts(virtualPartList)
 .build();

List<VirtualField> virtualFieldList = new ArrayList<>();
 virtualFieldList.add(virtualFieldName);

C# / .NET

Sehen Sie sich das vollständige Codebeispiel an: .cs
VirtualBeaconSearchableEncryptionExample

var virtualPartList = new List<VirtualPart> { sourceField1, sourceField2 };

var virtualFieldName = new VirtualField
{
 Name = "virtualFieldName",
 Parts = virtualPartList
};

var virtualFieldList = new List<VirtualField> { virtualFieldName };

Rust

Sehen Sie sich das vollständige Codebeispiel an: virtual_beacon_searchable_encryption.rs

Konfiguration von Standard-Beacons 155

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/VirtualBeaconSearchableEncryptionExample.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/VirtualBeaconSearchableEncryptionExample.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/VirtualBeaconSearchableEncryptionExample.cs
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/VirtualBeaconSearchableEncryptionExample.cs
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/virtual_beacon_searchable_encryption.rs

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

let virtual_part_list = vec![source_field_one, source_field_two];

let state_and_has_test_result_field = VirtualField::builder()
 .name("virtual_field_name")
 .parts(virtual_part_list)
 .build()?;

let virtual_field_list = vec![virtual_field_name];

Um ein virtuelles Feld mit einem bestimmten Segment eines Quellfeldes zu erstellen, müssen Sie
diese Transformation definieren, bevor Sie das Quellfeld zu Ihrer virtuellen Teileliste hinzufügen.

Sicherheitsüberlegungen für virtuelle Felder

Beacons ändern den verschlüsselten Zustand des Feldes nicht. Bei der Verwendung von Beacons
besteht jedoch ein inhärenter Kompromiss zwischen der Effizienz Ihrer Abfragen und der Menge an
Informationen, die über die Verteilung Ihrer Daten preisgegeben werden. Die Art und Weise, wie Sie
Ihr Beacon konfigurieren, bestimmt das Sicherheitsniveau, das durch dieses Beacon gewährleistet
wird.

Vermeiden Sie es, ein virtuelles Feld mit Quellfeldern zu erstellen, die sich mit vorhandenen
Standard-Beacons überschneiden. Das Erstellen virtueller Felder, die ein Quellfeld enthalten, das
bereits zur Erstellung eines Standard-Beacons verwendet wurde, kann das Sicherheitsniveau
für beide Beacons verringern. Das Ausmaß, in dem die Sicherheit reduziert wird, hängt von der
Entropiestufe ab, die durch die zusätzlichen Quellfelder hinzugefügt wird. Der Grad der Entropie wird
durch die Verteilung der Einzelwerte im zusätzlichen Quellfeld und die Anzahl der Bits bestimmt, die
das zusätzliche Quellfeld zur Gesamtgröße des virtuellen Feldes beiträgt.

Sie können anhand der Population und der Beacon-Länge ermitteln, ob die Quellfelder für ein
virtuelles Feld die Sicherheit Ihres Datensatzes gewährleisten. Die Population ist die erwartete Anzahl
von Einzelwerten in einem Feld. Ihre Population muss nicht exakt sein. Hilfe zur Schätzung der
Grundgesamtheit eines Felds finden Sie unter Grundgesamtheit schätzen.

Betrachten Sie das folgende Beispiel, wenn Sie die Sicherheit Ihrer virtuellen Felder überprüfen.

• Beacon1 besteht aus. FieldA FieldAhat eine Population von mehr als 2 (Beacon1-Länge).

• Beacon2 wird ausVirtualField, was aus,, und aufgebaut istFieldA, FieldB konstruiert.

FieldC FieldD Zusammen FieldD haben, FieldBFieldC, und eine Population von mehr als 2 N

Konfiguration von Standard-Beacons 156

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Beacon2 gewährleistet die Sicherheit von Beacon1 und Beacon2, wenn die folgenden Aussagen
zutreffen:

N ≥ (Beacon1 length)/2

and

N ≥ (Beacon2 length)/2

Definition von Beacon-Stilen

Standard-Beacons können verwendet werden, um Gleichheitssuchen für ein verschlüsseltes oder
virtuelles Feld durchzuführen. Sie können auch verwendet werden, um zusammengesetzte Beacons
für komplexere Datenbankoperationen zu erstellen. Um Ihnen bei der Organisation und Verwaltung
von Standard-Beacons zu helfen, bietet das AWS Database Encryption SDK die folgenden optionalen
Beacon-Stile, die den Verwendungszweck eines Standard-Beacons definieren.

Note

Um Beacon-Stile zu definieren, müssen Sie Version 3.2 oder höher des Database Encryption
SDK verwenden. AWS Stellen Sie die neue Version für alle Leser bereit, bevor Sie Beacon-
Styles zu Ihren Beacon-Konfigurationen hinzufügen.

PartOnly

Ein Standard-Beacon, das als definiert ist, PartOnly kann nur zur Definition eines
verschlüsselten Teils eines zusammengesetzten Beacons verwendet werden. Sie können ein
PartOnly Standard-Beacon nicht direkt abfragen.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beaconName")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .partOnly(PartOnly.builder().build())

Konfiguration von Standard-Beacons 157

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C#/.NET

new StandardBeacon
{
 Name = "beaconName",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 PartOnly = new PartOnly()
 }
}

Rust

StandardBeacon::builder()
 .name("beacon_name")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::PartOnly(PartOnly::builder().build()?))
 .build()?

Shared

Standardmäßig generiert jedes Standard-Beacon einen eindeutigen HMAC-Schlüssel für die
Beacon-Berechnung. Daher können Sie keine Gleichheitssuche in den verschlüsselten Feldern
von zwei separaten Standard-Beacons durchführen. Ein als definierter Standard-Beacon Shared
verwendet für seine Berechnungen den HMAC-Schlüssel eines anderen Standard-Beacons.

Wenn Sie beispielsweise Felder mit beacon1 Feldern vergleichen müssen, definieren Sie es
beacon2 beacon2 als Shared Beacon, das den HMAC-Schlüssel von für seine Berechnungen
verwendet. beacon1

Note

Berücksichtigen Sie Ihre Sicherheits- und Leistungsanforderungen, bevor Sie
Beacons konfigurieren. Shared SharedBeacons können die Menge an statistischen

Konfiguration von Standard-Beacons 158

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Informationen, die über die Verteilung Ihres Datensatzes identifiziert werden können,
erhöhen. Sie könnten beispielsweise Aufschluss darüber geben, welche gemeinsam
genutzten Felder denselben Klartextwert enthalten.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beacon2")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .shared(Shared.builder().other("beacon1").build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C#/.NET

new StandardBeacon
{
 Name = "beacon2",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 Shared = new Shared { Other = "beacon1" }
 }
}

Rust

StandardBeacon::builder()
 .name("beacon2")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::Shared(
 Shared::builder().other("beacon1").build()?,
))
 .build()?

Konfiguration von Standard-Beacons 159

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

AsSet

Wenn es sich bei einem Feldwert um einen Satz handelt, berechnet das AWS Database
Encryption SDK standardmäßig einen einzelnen Standard-Beacon für den Satz. Daher können
Sie die Abfrage nicht ausführen, CONTAINS(a, :value) wenn sich ein verschlüsseltes
a Feld befindet. Ein Standard-Beacon, definiert als, AsSet berechnet einzelne Standard-
Beacon-Werte für jedes einzelne Element des Satzes und speichert den Beacon-Wert im
Element als Satz. Dadurch kann das AWS Database Encryption SDK die Abfrage durchführen.
CONTAINS(a, :value)

Um einen AsSet Standard-Beacon zu definieren, müssen die Elemente in der Gruppe aus
derselben Population stammen, sodass sie alle dieselbe Beacon-Länge verwenden können.
Das Beacon-Set enthält möglicherweise weniger Elemente als das Klartext-Set, wenn es bei der
Berechnung der Beacon-Werte zu Kollisionen kommen sollte.

Note

Berücksichtigen Sie Ihre Sicherheits- und Leistungsanforderungen, bevor Sie Beacons
konfigurieren. AsSet AsSetBeacons können die Menge an statistischen Informationen,
die über die Verteilung Ihres Datensatzes identifiziert werden können, erhöhen. Sie
könnten beispielsweise die Größe des Klartext-Datensatzes offenlegen.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beaconName")
 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .asSet(AsSet.builder().build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C#/.NET

new StandardBeacon

Konfiguration von Standard-Beacons 160

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

{
 Name = "beaconName",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 AsSet = new AsSet()
 }
}

Rust

StandardBeacon::builder()
 .name("beacon_name")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::AsSet(AsSet::builder().build()?))
 .build()?

SharedSet

Ein Standard-Beacon, definiert als, SharedSet kombiniert die AsSet Funktionen Shared
und, sodass Sie Gleichheitssuchen für die verschlüsselten Werte einer Menge und eines Felds
durchführen können. Auf diese Weise kann das AWS Database Encryption SDK die Abfrage
durchführen, CONTAINS(a, b) bei der a es sich um einen verschlüsselten Satz und um ein
verschlüsseltes Feld b handelt.

Note

Berücksichtigen Sie Ihre Sicherheits- und Leistungsanforderungen, bevor Sie Shared
Beacons konfigurieren. SharedSetBeacons können die Menge an statistischen
Informationen, die über die Verteilung Ihres Datensatzes identifiziert werden können,
erhöhen. Sie könnten beispielsweise Aufschluss darüber geben, wie groß der Klartextsatz
ist oder welche gemeinsam genutzten Felder denselben Klartextwert enthalten.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("beacon2")

Konfiguration von Standard-Beacons 161

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .length(beaconLengthInBits)
 .style(
 BeaconStyle.builder()
 .sharedSet(SharedSet.builder().other("beacon1").build())
 .build()
)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C#/.NET

new StandardBeacon
{
 Name = "beacon2",
 Length = beaconLengthInBits,
 Style = new BeaconStyle
 {
 SharedSet = new SharedSet { Other = "beacon1" }
 }
}

Rust

StandardBeacon::builder()
 .name("beacon2")
 .length(beacon_length_in_bits)
 .style(BeaconStyle::SharedSet(
 SharedSet::builder().other("beacon1").build()?,
))
 .build()?

Konfiguration von Compound-Beacons

Zusammengesetzte Beacons kombinieren wörtliche Klartext-Zeichenketten und Standard-Beacons,
um komplexe Datenbankoperationen durchzuführen, z. B. das Abfragen von zwei verschiedenen
Datensatztypen aus einem einzigen Index oder das Abfragen einer Kombination von Feldern mit
einem Sortierschlüssel. Zusammengesetzte Beacons können aus Feldern, und erstellt werden.
ENCRYPT_AND_SIGN SIGN_ONLY SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Sie müssen
für jedes verschlüsselte Feld, das im Verbund-Beacon enthalten ist, einen Standard-Beacon erstellen.

Konfiguration von Compound-Beacons 162

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Note

Wir empfehlen, zu überprüfen, ob Ihre Compound-Beacons das erwartete Ergebnis erzielen,
bevor Sie Ihre Datenbank auffüllen. Weitere Informationen finden Sie unter Beacon-
Ausgaben testen.

Beispiel für eine Konfigurationssyntax

Java

Konfiguration eines zusammengesetzten Beacons

Im folgenden Beispiel werden verschlüsselte und signierte Teilelisten lokal in der Konfiguration der
Compound Beacons definiert.

List<CompoundBeacon> compoundBeaconList = new ArrayList<>();
CompoundBeacon exampleCompoundBeacon = CompoundBeacon.builder()
 .name("compoundBeaconName")
 .split(".")
 .encrypted(encryptedPartList)
 .signed(signedPartList)
 .constructors(constructorList)
 .build();
compoundBeaconList.add(exampleCompoundBeacon);

Definition der Beacon-Version

Im folgenden Beispiel werden verschlüsselte und signierte Teilelisten global in der Beacon-
Version definiert. Weitere Informationen zur Definition der Beacon-Version finden Sie unter
Beacons verwenden.

 List<BeaconVersion> beaconVersions = new ArrayList<>();
beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .encryptedParts(encryptedPartList)
 .signedParts(signedPartList)
 .version(1) // MUST be 1
 .keyStore(keyStore)

Konfiguration von Compound-Beacons 163

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branchKeyId)
 .cacheTTL(6000)
 .build())
 .build())
 .build()
);

C# / .NET

Sehen Sie sich das vollständige Codebeispiel an: .cs BeaconConfig

Konfiguration eines zusammengesetzten Beacons

Im folgenden Beispiel werden verschlüsselte und signierte Teilelisten lokal in der Konfiguration der
Compound Beacons definiert.

var compoundBeaconList = new List<CompoundBeacon>();
var exampleCompoundBeacon = new CompoundBeacon
 {
 Name = "compoundBeaconName",
 Split = ".",
 Encrypted = encryptedPartList,
 Signed = signedPartList,
 Constructors = constructorList
 };
compoundBeaconList.Add(exampleCompoundBeacon);

Definition der Beacon-Version

Im folgenden Beispiel werden verschlüsselte und signierte Teilelisten global in der Beacon-
Version definiert. Weitere Informationen zur Definition der Beacon-Version finden Sie unter
Beacons verwenden.

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 EncryptedParts = encryptedPartsList,

Konfiguration von Compound-Beacons 164

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/complexexample/BeaconConfig.cs

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = keyStore,
 KeySource = new BeaconKeySource
 {
 Single = new SingleKeyStore
 {
 KeyId = branchKeyId,
 CacheTTL = 6000
 }
 }
 }
};

Rust

Sehen Sie sich das vollständige Codebeispiel an: beacon_config.rs

Konfiguration eines zusammengesetzten Beacons

Im folgenden Beispiel werden verschlüsselte und signierte Teilelisten lokal in der Konfiguration der
Compound Beacons definiert.

let compound_beacon_list = vec![
 CompoundBeacon::builder()
 .name("compound_beacon_name")
 .split(".")
 .encrypted(encrypted_parts_list)
 .signed(signed_parts_list)
 .constructors(constructor_list)
 .build()?

Definition der Beacon-Version

Im folgenden Beispiel werden verschlüsselte und signierte Teilelisten global in der Beacon-
Version definiert. Weitere Informationen zur Definition der Beacon-Version finden Sie unter
Beacons verwenden.

let beacon_versions = BeaconVersion::builder()
 .standard_beacons(standard_beacon_list)
 .compound_beacons(compound_beacon_list)
 .encrypted_parts(encrypted_parts_list)

Konfiguration von Compound-Beacons 165

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/complexexample/beacon_config.rs

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .signed_parts(signed_parts_list)
 .version(1) // MUST be 1
 .key_store(key_store.clone())
 .key_source(BeaconKeySource::Single(
 SingleKeyStore::builder()
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .build()?,
))
 .build()?;
let beacon_versions = vec![beacon_versions];

Sie können Ihre verschlüsselten und signierten Teile in lokal oder global definierten Listen definieren.
Wir empfehlen, Ihre verschlüsselten und signierten Teile wann immer möglich in einer globalen
Liste in der Beacon-Version zu definieren. Indem Sie verschlüsselte und signierte Teile global
definieren, können Sie jedes Teil einmal definieren und die Teile dann in mehreren Compound-
Beacon-Konfigurationen wiederverwenden. Wenn Sie beabsichtigen, einen verschlüsselten oder
signierten Teil nur einmal zu verwenden, können Sie ihn in einer lokalen Liste in der Compound-
Beacon-Konfiguration definieren. Sie können in Ihrer Konstruktorliste sowohl auf lokale als auch auf
globale Teile verweisen.

Wenn Sie Ihre verschlüsselten und signierten Teilelisten global definieren, müssen Sie eine Liste von
Konstruktorteilen bereitstellen, in der alle Möglichkeiten aufgeführt sind, wie der Compound Beacon
die Felder in Ihrer Compound-Beacon-Konfiguration zusammenstellen kann.

Note

Um verschlüsselte und signierte Teilelisten global zu definieren, müssen Sie Version 3.2 oder
höher des AWS Database Encryption SDK verwenden. Stellen Sie die neue Version allen
Lesern zur Verfügung, bevor Sie neue Teile global definieren.
Sie können bestehende Beacon-Konfigurationen nicht aktualisieren, um verschlüsselte und
signierte Teilelisten global zu definieren.

Um eine Verbundstation zu konfigurieren, geben Sie die folgenden Werte an.

Name des Beacons

Der Name, den Sie bei der Abfrage eines verschlüsselten Felds verwenden.

Konfiguration von Compound-Beacons 166

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Ein Beacon-Name kann derselbe Name wie ein verschlüsseltes Feld oder virtuelles Feld sein,
er kann jedoch nicht derselbe Name wie ein unverschlüsseltes Feld sein. Keine zwei Beacons
können denselben Beacon-Namen haben. Hilfe bei der Bestimmung des besten Beacon-Namens
für Ihre Implementierung finden Sie unter Auswahl eines Beacon-Namens.

Charakter teilen

Das Zeichen, das verwendet wird, um die Teile zu trennen, aus denen Ihr Verbundsignal besteht.

Das Trennzeichen darf in den Klartextwerten der Felder, aus denen der Verbundbeacon
aufgebaut ist, nicht vorkommen.

Verschlüsselte Teileliste

Identifiziert die ENCRYPT_AND_SIGN Felder, die im Compound Beacon enthalten sind.

Jeder Teil muss einen Namen und ein Präfix enthalten. Der Teilname muss der Name des
Standard-Beacons sein, der aus dem verschlüsselten Feld erstellt wurde. Das Präfix kann
eine beliebige Zeichenfolge sein, muss jedoch eindeutig sein. Ein verschlüsselter Teil kann
nicht dasselbe Präfix wie ein signierter Teil haben. Es wird empfohlen, einen kurzen Wert zu
verwenden, der den Teil von anderen Teilen unterscheidet, die vom Compound Beacon bedient
werden.

Wir empfehlen, Ihre verschlüsselten Teile nach Möglichkeit global zu definieren. Sie könnten
erwägen, einen verschlüsselten Teil lokal zu definieren, wenn Sie ihn nur in einem Compound
Beacon verwenden möchten. Ein lokal definierter verschlüsselter Teil kann nicht dasselbe Präfix
oder denselben Namen haben wie ein global definierter verschlüsselter Teil.

Java

List<EncryptedPart> encryptedPartList = new ArrayList<>);
EncryptedPart encryptedPartExample = EncryptedPart.builder()
 .name("standardBeaconName")
 .prefix("E-")
 .build();
encryptedPartList.add(encryptedPartExample);

C# / .NET

var encryptedPartList = new List<EncryptedPart>();
var encryptedPartExample = new EncryptedPart
 {
 Name = "compoundBeaconName",

Konfiguration von Compound-Beacons 167

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 Prefix = "E-"
 };
encryptedPartList.Add(encryptedPartExample);

Rust

let encrypted_parts_list = vec![
 EncryptedPart::builder()
 .name("standard_beacon_name")
 .prefix("E-")
 .build()?
];

Signierte Teileliste

Identifiziert die signierten Felder, die im Compound Beacon enthalten sind.

Note

Signierte Teile sind optional. Sie können einen Compound-Beacon konfigurieren, der
keine signierten Teile referenziert.

Jeder Teil muss einen Namen, eine Quelle und ein Präfix enthalten. Die Quelle ist das
SIGN_ONLY SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT ODER-Feld, das der Teil
identifiziert. Die Quelle muss ein Feldname oder ein Index sein, der auf den Wert eines
verschachtelten Felds verweist. Wenn Ihr Teilname die Quelle identifiziert, können Sie die Quelle
weglassen und das AWS Database Encryption SDK verwendet den Namen automatisch als
Quelle. Wir empfehlen, wann immer möglich, die Quelle als Teilnamen anzugeben. Das Präfix
kann eine beliebige Zeichenfolge sein, muss jedoch eindeutig sein. Ein signierter Teil kann nicht
dasselbe Präfix wie ein verschlüsselter Teil haben. Es wird empfohlen, einen kurzen Wert zu
verwenden, der den Teil von anderen Teilen unterscheidet, die vom Compound Beacon bedient
werden.

Wir empfehlen, Ihre signierten Teile nach Möglichkeit global zu definieren. Sie könnten erwägen,
ein signiertes Teil lokal zu definieren, wenn Sie es nur in einem Compound Beacon verwenden
möchten. Ein lokal definierter signierter Teil kann nicht dasselbe Präfix oder denselben Namen
haben wie ein global definierter signierter Teil.

Konfiguration von Compound-Beacons 168

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Java

List<SignedPart> signedPartList = new ArrayList<>);
SignedPart signedPartExample = SignedPart.builder()
 .name("signedFieldName")
 .prefix("S-")
 .build();
signedPartList.add(signedPartExample);

C# / .NET

var signedPartsList = new List<SignedPart>
{
 new SignedPart { Name = "signedFieldName1", Prefix = "S-" },
 new SignedPart { Name = "signedFieldName2", Prefix = "SF-" }
};

Rust

let signed_parts_list = vec![
 SignedPart::builder()
 .name("signed_field_name_1")
 .prefix("S-")
 .build()?,
 SignedPart::builder()
 .name("signed_field_name_2")
 .prefix("SF-")
 .build()?,
];

Liste der Konstruktoren

Identifiziert die Konstruktoren, die die verschiedenen Arten definieren, wie die verschlüsselten und
signierten Teile durch den Compound Beacon zusammengesetzt werden können. Sie können in
Ihrer Konstruktorliste sowohl auf lokale als auch auf globale Bauteile verweisen.

Wenn Sie Ihr Compound-Beacon aus global definierten, verschlüsselten und signierten Teilen
erstellen, müssen Sie eine Konstruktorliste angeben.

Wenn Sie keine global definierten, verschlüsselten oder signierten Teile verwenden, um Ihren
Compound-Beacon zu erstellen, ist die Liste der Konstruktoren optional. Wenn Sie keine

Konfiguration von Compound-Beacons 169

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Konstruktorliste angeben, stellt das AWS Database Encryption SDK den Compound Beacon mit
dem folgenden Standardkonstruktor zusammen.

• Alle signierten Teile in der Reihenfolge, in der sie der signierten Teileliste hinzugefügt wurden

• Alle verschlüsselten Teile in der Reihenfolge, in der sie der verschlüsselten Teileliste
hinzugefügt wurden

• Alle Teile sind erforderlich

Konstruktoren

Jeder Konstruktor ist eine geordnete Liste von Konstruktorteilen, die eine Art und Weise
definiert, wie der Compound Beacon zusammengebaut werden kann. Die Konstruktorteile
werden in der Reihenfolge zusammengefügt, in der sie der Liste hinzugefügt wurden, wobei
jeder Teil durch das angegebene Trennzeichen getrennt wird.

Jeder Konstruktorteil benennt einen verschlüsselten Teil oder einen signierten Teil und
definiert, ob dieser Teil innerhalb des Konstruktors erforderlich oder optional ist. Wenn
Sie beispielsweise ein zusammengesetztes Beacon für, und abfragen möchten Field1
Field1.Field2Field1.Field2.Field3, markieren Sie und Field3 als optional Field2
und erstellen Sie einen Konstruktor.

Jeder Konstruktor muss mindestens einen erforderlichen Teil haben. Wir empfehlen, den
ersten Teil in jedem Konstruktor als erforderlich festzulegen, damit Sie den BEGINS_WITH
Operator in Ihren Abfragen verwenden können.

Ein Konstruktor ist erfolgreich, wenn alle erforderlichen Teile im Datensatz vorhanden
sind. Wenn Sie einen neuen Datensatz schreiben, ermittelt der Verbundbeacon anhand
der Konstruktorliste, ob der Beacon aus den bereitgestellten Werten zusammengesetzt
werden kann. Es versucht, den Beacon in der Reihenfolge zusammenzustellen, in der die
Konstruktoren der Konstruktorliste hinzugefügt wurden, und verwendet den ersten Konstruktor,
der erfolgreich ist. Wenn keine Konstruktoren erfolgreich sind, wird der Beacon nicht in den
Datensatz geschrieben.

Alle Leser und Autoren sollten dieselbe Reihenfolge der Konstruktoren angeben, um
sicherzustellen, dass ihre Abfrageergebnisse korrekt sind.

Verwenden Sie die folgenden Verfahren, um Ihre eigene Konstruktorliste anzugeben.

1. Erstellen Sie für jeden verschlüsselten und signierten Teil einen Konstruktorteil, um zu
definieren, ob dieser Teil erforderlich ist oder nicht.

Konfiguration von Compound-Beacons 170

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Der Name des Konstruktorteils muss der Name des Standard-Beacons oder des signierten
Felds sein, für das er steht.

Java

ConstructorPart field1ConstructorPart = ConstructorPart.builder()
 .name("Field1")
 .required(true)
 .build();

C# / .NET

var field1ConstructorPart = new ConstructorPart { Name = "Field1", Required
 = true };

Rust

let field_1_constructor_part = ConstructorPart::builder()
 .name("field_1")
 .required(true)
 .build()?;

2. Erstellen Sie mithilfe der Konstruktorteile, die Sie in Schritt 1 erstellt haben, einen Konstruktor
für jede mögliche Art und Weise, wie das Verbundsignal zusammengebaut werden kann.

Wenn Sie beispielsweise nach Field1.Field2.Field3 und abfragen
möchtenField4.Field2.Field3, müssen Sie zwei Konstruktoren erstellen. Field1und
Field4 können beide erforderlich sein, da sie in zwei separaten Konstruktoren definiert sind.

Java

// Create a list for Field1.Field2.Field3 queries
List<ConstructorPart> field123ConstructorPartList = new ArrayList<>();
field123ConstructorPartList.add(field1ConstructorPart);
field123ConstructorPartList.add(field2ConstructorPart);
field123ConstructorPartList.add(field3ConstructorPart);
Constructor field123Constructor = Constructor.builder()
 .parts(field123ConstructorPartList)
 .build();
// Create a list for Field4.Field2.Field1 queries
List<ConstructorPart> field421ConstructorPartList = new ArrayList<>();

Konfiguration von Compound-Beacons 171

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

field421ConstructorPartList.add(field4ConstructorPart);
field421ConstructorPartList.add(field2ConstructorPart);
field421ConstructorPartList.add(field1ConstructorPart);
Constructor field421Constructor = Constructor.builder()
 .parts(field421ConstructorPartList)
 .build();

C# / .NET

// Create a list for Field1.Field2.Field3 queries
 var field123ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field1ConstructorPart,
 field2ConstructorPart, field3ConstructorPart }
};
// Create a list for Field4.Field2.Field1 queries
var field421ConstructorPartList = new Constructor
{
 Parts = new List<ConstructorPart> { field4ConstructorPart,
 field2ConstructorPart, field1ConstructorPart }
};

Rust

// Create a list for field1.field2.field3 queries
let field1_field2_field3_constructor = Constructor::builder()
 .parts(vec![
 field1_constructor_part,
 field2_constroctor_part.clone(),
 field3_constructor_part,
])
 .build()?;

// Create a list for field4.field2.field1 queries
let field4_field2_field1_constructor = Constructor::builder()
 .parts(vec![
 field4_constructor_part,
 field2_constroctor_part.clone(),
 field1_constructor_part,
])
 .build()?;

Konfiguration von Compound-Beacons 172

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

3. Erstellen Sie eine Konstruktorliste, die alle Konstruktoren enthält, die Sie in Schritt 2 erstellt
haben.

Java

List<Constructor> constructorList = new ArrayList<>();
constructorList.add(field123Constructor)
constructorList.add(field421Constructor)

C# / .NET

var constructorList = new List<Constructor>
{
 field123Constructor,
 field421Constructor
};

Rust

let constructor_list = vec![
 field1_field2_field3_constructor,
 field4_field2_field1_constructor,
];

4. Geben Sie den anconstructorList, wenn Sie Ihren Verbundbeacon erstellen.

Beispielkonfigurationen

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Die folgenden Beispiele zeigen, wie Standard- und Verbund-Beacons konfiguriert werden. Die
folgenden Konfigurationen bieten keine Beacon-Längen. Hilfe bei der Bestimmung der geeigneten
Beacon-Länge für Ihre Konfiguration finden Sie unter Wählen Sie eine Beacon-Länge.

Vollständige Codebeispiele, die die Konfiguration und Verwendung von Beacons demonstrieren,
finden Sie in den durchsuchbaren Verschlüsselungsbeispielen für Java, .NET und Rust im -
dynamodb-Repository unter. aws-database-encryption-sdk GitHub

Beispielkonfigurationen 173

https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Themen

• Standard-Beacons

• Zusammengesetzte Beacons

Standard-Beacons

Wenn Sie das inspector_id_last4 Feld nach exakten Übereinstimmungen abfragen möchten,
erstellen Sie ein Standard-Beacon mit der folgenden Konfiguration.

Java

List<StandardBeacon> standardBeaconList = new ArrayList<>();
StandardBeacon exampleStandardBeacon = StandardBeacon.builder()
 .name("inspector_id_last4")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(exampleStandardBeacon);

C# / .NET

var standardBeaconList = new List<StandardBeacon>>);
StandardBeacon exampleStandardBeacon = new StandardBeacon
 {
 Name = "inspector_id_last4",
 Length = 10
 };
standardBeaconList.Add(exampleStandardBeacon);

Rust

let last4_beacon = StandardBeacon::builder()
 .name("inspector_id_last4")
 .length(10)
 .build()?;

let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;

let standard_beacon_list = vec![last4_beacon, unit_beacon];

Beispielkonfigurationen 174

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Zusammengesetzte Beacons

Wenn Sie die UnitInspection Datenbank auf inspector_id_last4 und abfragen
möchteninspector_id_last4.unit, erstellen Sie ein zusammengesetztes Beacon mit der
folgenden Konfiguration. Für diesen Compound Beacon sind nur verschlüsselte Teile erforderlich.

Java

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
List<StandardBeacon> standardBeaconList = new ArrayList<>);
StandardBeacon inspectorBeacon = StandardBeacon.builder()
 .name("inspector_id_last4")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(inspectorBeacon);

StandardBeacon unitBeacon = StandardBeacon.builder()
 .name("unit")
 .length(beaconLengthInBits)
 .build();
standardBeaconList.add(unitBeacon);

// 2. Define the encrypted parts.
List<EncryptedPart> encryptedPartList = new ArrayList<>);

// Each encrypted part needs a name and prefix
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
EncryptedPart encryptedPartInspector = EncryptedPart.builder()
 .name("inspector_id_last4")
 .prefix("I-")
 .build();
encryptedPartList.add(encryptedPartInspector);

EncryptedPart encryptedPartUnit = EncryptedPart.builder()
 .name("unit")
 .prefix("U-")
 .build();
encryptedPartList.add(encryptedPartUnit);

// 3. Create the compound beacon.

Beispielkonfigurationen 175

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

// This compound beacon only requires a name, split character,
// and list of encrypted parts
CompoundBeacon inspectorUnitBeacon = CompoundBeacon.builder()
 .name("inspectorUnitBeacon")
 .split(".")
 .sensitive(encryptedPartList)
 .build();

C# / .NET

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
StandardBeacon inspectorBeacon = new StandardBeacon
 {
 Name = "inspector_id_last4",
 Length = 10
 };
standardBeaconList.Add(inspectorBeacon);
StandardBeacon unitBeacon = new StandardBeacon
 {
 Name = "unit",
 Length = 30
 };
standardBeaconList.Add(unitBeacon);

// 2. Define the encrypted parts.
var last4EncryptedPart = new EncryptedPart

// Each encrypted part needs a name and prefix
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
var last4EncryptedPart = new EncryptedPart
 {
 Name = "inspector_id_last4",
 Prefix = "I-"
 };
encryptedPartList.Add(last4EncryptedPart);

var unitEncryptedPart = new EncryptedPart
 {
 Name = "unit",
 Prefix = "U-"

Beispielkonfigurationen 176

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 };
encryptedPartList.Add(unitEncryptedPart);

// 3. Create the compound beacon.
// This compound beacon only requires a name, split character,
// and list of encrypted parts
var compoundBeaconList = new List<CompoundBeacon>>);
var inspectorCompoundBeacon = new CompoundBeacon
 {
 Name = "inspector_id_last4",
 Split = ".",
 Encrypted = encryptedPartList
 };
compoundBeaconList.Add(inspectorCompoundBeacon);

Rust

// 1. Create standard beacons for the inspector_id_last4 and unit fields.
let last4_beacon = StandardBeacon::builder()
 .name("inspector_id_last4")
 .length(10)
 .build()?;

let unit_beacon = StandardBeacon::builder().name("unit").length(30).build()?;

let standard_beacon_list = vec![last4_beacon, unit_beacon];

// 2. Define the encrypted parts.
// The name must be the name of the standard beacon
// The prefix must be unique
// For this example we use the prefix "I-" for "inspector_id_last4"
// and "U-" for "unit"
let encrypted_parts_list = vec![
 EncryptedPart::builder()
 .name("inspector_id_last4")
 .prefix("I-")
 .build()?,
 EncryptedPart::builder().name("unit").prefix("U-").build()?,
];

// 3. Create the compound beacon
// This compound beacon only requires a name, split character,
// and list of encrypted parts

Beispielkonfigurationen 177

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

let compound_beacon_list = vec![CompoundBeacon::builder()
 .name("last4UnitCompound")
 .split(".")
 .encrypted(encrypted_parts_list)
 .build()?];

Verwendung von Beacons

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Mit Beacons können Sie verschlüsselte Datensätze durchsuchen, ohne die gesamte abgefragte
Datenbank zu entschlüsseln. Beacons sind so konzipiert, dass sie in neuen, nicht aufgefüllten
Datenbanken implementiert werden können. Jedes Beacon, das in einer vorhandenen Datenbank
konfiguriert ist, ordnet nur neue Datensätze zu, die in die Datenbank geschrieben wurden. Beacons
werden anhand des Klartextwerts eines Felds berechnet. Sobald das Feld verschlüsselt ist, kann
das Beacon keine vorhandenen Daten zuordnen. Nachdem Sie neue Datensätze mit einem Beacon
geschrieben haben, können Sie die Konfiguration des Beacons nicht mehr aktualisieren. Sie können
jedoch neue Beacons für neue Felder hinzufügen, die Sie Ihrem Datensatz hinzufügen.

Nachdem Sie Ihre Beacons konfiguriert haben, müssen Sie die folgenden Schritte ausführen, bevor
Sie beginnen, Ihre Datenbank zu füllen und Abfragen an Ihren Beacons durchzuführen.

1. Erstellen Sie einen hierarchischen Schlüsselbund AWS KMS

Um eine durchsuchbare Verschlüsselung zu verwenden, müssen Sie den AWS KMS
hierarchischen Schlüsselbund verwenden, um die Datenschlüssel zu generieren, zu
verschlüsseln und zu entschlüsseln, die zum Schutz Ihrer Daten verwendet werden.

Nachdem Sie Ihre Beacons konfiguriert haben, stellen Sie die Voraussetzungen für den
hierarchischen Schlüsselbund zusammen und erstellen Sie Ihren hierarchischen Schlüsselbund.

Weitere Informationen darüber, warum der hierarchische Schlüsselbund erforderlich ist, finden
Sie unter Verwenden des hierarchischen Schlüsselbunds für durchsuchbare Verschlüsselung.

2.

Verwendung von Beacons 178

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Definieren Sie die Beacon-Version

Geben Sie IhrekeyStore,keySource, eine Liste aller von Ihnen konfigurierten Standard-
Beacons, eine Liste aller von Ihnen konfigurierten Verbund-Beacons, eine Liste der
verschlüsselten Teile, eine Liste der signierten Teile und eine Beacon-Version an. Sie
müssen die 1 Beacon-Version angeben. Hinweise zur Definition Ihres finden Sie keySource
unterDefinieren Sie Ihre Beacon-Schlüsselquelle.

Das folgende Java-Beispiel definiert die Beacon-Version für eine Single-Tenant-Datenbank.
Hilfe bei der Definition der Beacon-Version für eine Mehrmandantendatenbank finden Sie unter
Durchsuchbare Verschlüsselung für Mehrmandantendatenbanken.

Java

 List<BeaconVersion> beaconVersions = new ArrayList<>();
beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .encryptedParts(encryptedPartsList)
 .signedParts(signedPartsList)
 .version(1) // MUST be 1
 .keyStore(keyStore)
 .keySource(BeaconKeySource.builder()
 .single(SingleKeyStore.builder()
 .keyId(branchKeyId)
 .cacheTTL(6000)
 .build())
 .build())
 .build()
);

C# / .NET

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 EncryptedParts = encryptedPartsList,

Verwendung von Beacons 179

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = branchKeyStoreName,
 KeySource = new BeaconKeySource
 {
 Single = new SingleKeyStore
 {
 KeyId = branch-key-id,
 CacheTTL = 6000
 }
 }
 }
};

Rust

let beacon_version = BeaconVersion::builder()
 .standard_beacons(standard_beacon_list)
 .compound_beacons(compound_beacon_list)
 .version(1) // MUST be 1
 .key_store(key_store.clone())
 .key_source(BeaconKeySource::Single(
 SingleKeyStore::builder()
 // `keyId` references a beacon key.
 // For every branch key we create in the keystore,
 // we also create a beacon key.
 // This beacon key is not the same as the branch key,
 // but is created with the same ID as the branch key.
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .build()?,
))
 .build()?;
let beacon_versions = vec![beacon_version];

3. Konfigurieren Sie sekundäre Indizes

Nachdem Sie Ihre Beacons konfiguriert haben, müssen Sie einen sekundären Index
konfigurieren, der die einzelnen Beacons widerspiegelt, bevor Sie in den verschlüsselten Feldern
suchen können. Weitere Informationen finden Sie unter Konfiguration sekundärer Indizes mit
Beacons.

4. Definieren Sie Ihre kryptografischen Aktionen

Verwendung von Beacons 180

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Alle Felder, die zum Aufbau eines Standard-Beacons verwendet werden, müssen markiert
sein. ENCRYPT_AND_SIGN Alle anderen Felder, die zum Bau von Beacons verwendet werden,
müssen mit oder markiert SIGN_ONLY sein. SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

5. Konfigurieren Sie einen AWS Database Encryption SDK-Client

Informationen zur Konfiguration eines AWS Database Encryption SDK-Clients, der die
Tabellenelemente in Ihrer DynamoDB-Tabelle schützt, finden Sie unter Clientseitige Java-
Verschlüsselungsbibliothek für DynamoDB.

Beacons abfragen

Der Typ des Beacons, den Sie konfigurieren, bestimmt die Art der Abfragen, die Sie ausführen
können. Standard-Beacons verwenden Filterausdrücke, um Gleichheitssuchen durchzuführen.
Zusammengesetzte Beacons kombinieren wörtliche Klartext-Zeichenketten und Standard-Beacons,
um komplexe Abfragen durchzuführen. Wenn Sie verschlüsselte Daten abfragen, suchen Sie nach
dem Namen des Beacons.

Sie können die Werte von zwei Standard-Beacons nicht vergleichen, selbst wenn sie denselben
zugrunde liegenden Klartext enthalten. Die beiden Standard-Beacons erzeugen zwei verschiedene
HMAC-Tags für dieselben Klartext-Werte. Daher können Standard-Beacons die folgenden Abfragen
nicht ausführen.

• beacon1 = beacon2

• beacon1 IN (beacon2)

• value IN (beacon1, beacon2, ...)

• CONTAINS(beacon1, beacon2)

Compound Beacons können die folgenden Abfragen ausführen.

• BEGINS_WITH(a), wobei der gesamte Wert des Feldes a wiedergegeben wird, mit dem die
zusammengestellte Verbundstation beginnt. Sie können den BEGINS_WITH Operator nicht
verwenden, um einen Wert zu identifizieren, der mit einer bestimmten Teilzeichenfolge beginnt.
Sie können jedoch, where BEGINS_WITH(S_)S_, das Präfix für ein Teil verwenden, mit dem die
zusammengebaute Verbundleuchte beginnt.

• CONTAINS(a), wobei der gesamte Wert eines Feldes a wiedergegeben wird, das die
zusammengebaute Verbundleuchte enthält. Sie können den CONTAINS Operator nicht verwenden,

Beacons abfragen 181

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

um einen Datensatz zu identifizieren, der eine bestimmte Teilzeichenfolge oder einen Wert
innerhalb eines Satzes enthält.

Sie können beispielsweise keine Abfrage CONTAINS(path, "a" ausführen, die den Wert in
einem Satz a widerspiegelt.

• Sie können signierte Teile von Compound-Beacons vergleichen. Wenn Sie signierte Teile
vergleichen, können Sie optional das Präfix eines verschlüsselten Teils an einen oder mehrere
signierte Teile anhängen, aber Sie können den Wert eines verschlüsselten Felds nicht in eine
Abfrage einbeziehen.

Sie können beispielsweise signierte Teile vergleichen und nach signedField1 =
signedField2 oder value IN (signedField1, signedField2, ...) abfragen.

Sie können signierte Teile auch mit dem Präfix eines verschlüsselten Bauteils vergleichen, indem
Sie auf „Query on“ klickensignedField1.A_ = signedField2.B_.

• field BETWEEN a AND b, wo a und b sind signierte Teile. Sie können optional das Präfix eines
verschlüsselten Teils an einen oder mehrere signierte Teile anhängen, aber Sie können den Wert
eines verschlüsselten Felds nicht in eine Abfrage einbeziehen.

Sie müssen das Präfix für jeden Teil angeben, den Sie in eine Abfrage auf einem Compound Beacon
einbeziehen. Wenn Sie beispielsweise einen Verbundbeacon aus zwei Feldern encryptedField
und signedField erstellt habencompoundBeacon, müssen Sie bei der Abfrage des Beacons die
für diese beiden Teile konfigurierten Präfixe angeben.

compoundBeacon = E_encryptedFieldValue.S_signedFieldValue

Durchsuchbare Verschlüsselung für Multitenant-Datenbanken

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK umbenannt
. AWS Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB Encryption
Client.

Um eine durchsuchbare Verschlüsselung in Ihrer Datenbank zu implementieren, müssen Sie einen
AWS KMS hierarchischen Schlüsselbund verwenden. Der AWS KMS hierarchische Schlüsselbund
generiert, verschlüsselt und entschlüsselt die Datenschlüssel, die zum Schutz Ihrer Datensätze

Durchsuchbare Verschlüsselung für Multitenant-Datenbanken 182

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

verwendet werden. Er erstellt auch den Beacon-Schlüssel, der zur Generierung von Beacons
verwendet wird. Wenn Sie den AWS KMS hierarchischen Schlüsselbund mit Datenbanken mit
mehreren Mandanten verwenden, gibt es für jeden Mandanten einen eigenen Branch- und Beacon-
Schlüssel. Um verschlüsselte Daten in einer Multitenant-Datenbank abzufragen, müssen Sie die
Beacon-Schlüsselmaterialien identifizieren, die zur Generierung des abgefragten Beacons verwendet
wurden. Weitere Informationen finden Sie unter the section called “Verwendung des hierarchischen
Schlüsselbunds für durchsuchbare Verschlüsselung”.

Wenn Sie die Beacon-Version für eine Multitenant-Datenbank definieren, geben Sie eine Liste aller
von Ihnen konfigurierten Standard-Beacons, eine Liste aller von Ihnen konfigurierten Verbund-
Beacons, eine Beacon-Version und eine an. keySource Sie müssen Ihre Beacon-Schlüsselquelle
als eine MultiKeyStore Cache-Gültigkeitsdauer für den lokalen Beacon-Schlüssel-Cache und
eine maximale Cachegröße für den lokalen Beacon-Schlüssel-Cache definieren und diese angeben.
keyFieldName

Wenn Sie signierte Beacons konfiguriert haben, müssen diese in Ihrem enthalten sein.
compoundBeaconList Signierte Beacons sind eine Art von zusammengesetzten
Beacons, die komplexe Abfragen von End-Feldern indizieren und ausführen. SIGN_ONLY
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Java

List<BeaconVersion> beaconVersions = new ArrayList<>();
 beaconVersions.add(
 BeaconVersion.builder()
 .standardBeacons(standardBeaconList)
 .compoundBeacons(compoundBeaconList)
 .version(1) // MUST be 1
 .keyStore(branchKeyStoreName)
 .keySource(BeaconKeySource.builder()
 .multi(MultiKeyStore.builder()
 .keyFieldName(keyField)
 .cacheTTL(6000)
 .maxCacheSize(10)
 .build())
 .build())
 .build()
);

Durchsuchbare Verschlüsselung für Multitenant-Datenbanken 183

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

C# / .NET

var beaconVersions = new List<BeaconVersion>
{
 new BeaconVersion
 {
 StandardBeacons = standardBeaconList,
 CompoundBeacons = compoundBeaconList,
 EncryptedParts = encryptedPartsList,
 SignedParts = signedPartsList,
 Version = 1, // MUST be 1
 KeyStore = branchKeyStoreName,
 KeySource = new BeaconKeySource
 {
 Multi = new MultiKeyStore
 {
 KeyId = branch-key-id,
 CacheTTL = 6000,
 MaxCacheSize = 10
 }
 }
 }
};

Rust

let beacon_version = BeaconVersion::builder()
 .standard_beacons(standard_beacon_list)
 .compound_beacons(compound_beacon_list)
 .version(1) // MUST be 1
 .key_store(key_store.clone())
 .key_source(BeaconKeySource::Multi(
 MultiKeyStore::builder()
 // `keyId` references a beacon key.
 // For every branch key we create in the keystore,
 // we also create a beacon key.
 // This beacon key is not the same as the branch key,
 // but is created with the same ID as the branch key.
 .key_id(branch_key_id)
 .cache_ttl(6000)
 .max_cache_size(10)
 .build()?,
))

Durchsuchbare Verschlüsselung für Multitenant-Datenbanken 184

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .build()?;
let beacon_versions = vec![beacon_version];

keyFieldName

Das keyFieldNamedefiniert den Namen des Felds, in dem der dem Beacon branch-key-id
zugeordnete Schlüssel gespeichert wird, der zur Generierung von Beacons für einen bestimmten
Mandanten verwendet wurde.

Wenn Sie neue Datensätze in Ihre Datenbank schreiben, wird der Beacon-Schlüsselbranch-
key-id, der zur Generierung von Beacons für diesen Datensatz verwendet wurde, in diesem
Feld gespeichert.

Standardmäßig keyField ist das ein konzeptionelles Feld, das nicht explizit in Ihrer Datenbank
gespeichert wird. Das AWS Database Encryption SDK identifiziert den branch-key-id anhand
des verschlüsselten Datenschlüssels in der Materialbeschreibung und speichert den Wert im
KonzeptkeyField, sodass Sie in Ihren Compound Beacons und signierten Beacons darauf
verweisen können. Da die Materialbeschreibung signiert ist, gilt das Konzept keyField als
signiertes Teil.

Sie können das Feld auch als ODER-Feld keyField in Ihre kryptografischen Aktionen
aufnehmen, um das SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Feld explizit in Ihrer
Datenbank zu speichern. SIGN_ONLY In diesem Fall müssen Sie das branch-key-id
in keyField jedes Mal, wenn Sie einen Datensatz in Ihre Datenbank schreiben, manuell
hinzufügen.

Abfragen von Beacons in einer mandantenfähigen Datenbank

Um ein Beacon abzufragen, müssen Sie das keyField in Ihre Abfrage aufnehmen, um die
entsprechenden Beacon-Schlüsselmaterialien zu identifizieren, die für die Neuberechnung des
Beacons erforderlich sind. Sie müssen den Schlüssel angeben, der dem Beacon branch-key-id
zugeordnet ist, der zur Generierung der Beacons für einen Datensatz verwendet wurde. Sie können
den Anzeigenamen, der den Namen eines Mandanten identifiziert, nicht branch-key-id in der
Branch-Schlüssel-ID angeben. Sie können den auf folgende Weise keyField in Ihre Abfragen
einbeziehen.

Abfragen von Beacons in einer mandantenfähigen Datenbank 185

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Zusammengesetzte Beacons

Unabhängig davon, ob Sie sie explizit keyField in Ihren Aufzeichnungen speichern oder nicht,
können Sie sie keyField direkt als signierten Teil in Ihre Compound-Beacons aufnehmen. Der
keyField signierte Teil muss erforderlich sein.

Wenn Sie beispielsweise ein Verbundsignal aus zwei Feldern erstellen
möchtencompoundBeacon, müssen Sie auch das keyField als signierten Teil angeben.
encryptedField signedField Auf diese Weise können Sie die folgende Abfrage
ausführencompoundBeacon.

compoundBeacon = E_encryptedFieldValue.S_signedFieldValue.K_branch-key-id

Signierte Beacons

Das AWS Database Encryption SDK verwendet Standard- und Verbundbeacons, um
durchsuchbare Verschlüsselungslösungen bereitzustellen. Diese Beacons müssen mindestens
ein verschlüsseltes Feld enthalten. Das AWS Database Encryption SDK unterstützt jedoch auch
signierte Beacons, die vollständig aus Klartext SIGN_ONLY und Feldern konfiguriert werden
können. SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Signierte Beacons können aus einem einzigen Teil aufgebaut werden. Unabhängig davon, ob
Sie das explizit keyField in Ihren Aufzeichnungen speichern oder nicht, können Sie daraus ein
signiertes Beacon erstellen keyField und es verwenden, um zusammengesetzte Abfragen zu
erstellen, die eine Abfrage auf dem keyField signierten Beacon mit einer Abfrage auf einem
Ihrer anderen Beacons kombinieren. Sie könnten beispielsweise die folgende Abfrage ausführen.

keyField = K_branch-key-id AND compoundBeacon =
 E_encryptedFieldValue.S_signedFieldValue

Hilfe zur Konfiguration signierter Beacons finden Sie unter Signierte Beacons erstellen

Fragen Sie direkt auf dem keyField

Wenn Sie das keyField in Ihren kryptografischen Aktionen angegeben und das Feld explizit in
Ihrem Datensatz gespeichert haben, können Sie eine zusammengesetzte Abfrage erstellen, die
eine Abfrage auf Ihrem Beacon mit einer Abfrage auf dem kombiniert. keyField Sie können eine
direkte Abfrage auf dem wählen, keyField wenn Sie ein Standard-Beacon abfragen möchten.
Sie könnten beispielsweise die folgende Abfrage ausführen.

Abfragen von Beacons in einer mandantenfähigen Datenbank 186

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

keyField = branch-key-id AND standardBeacon = S_standardBeaconValue

Abfragen von Beacons in einer mandantenfähigen Datenbank 187

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

AWS Datenbankverschlüsselungs-SDK für DynamoDB

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK umbenannt
. AWS Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB Encryption
Client.

Das AWS Database Encryption SDK für DynamoDB ist eine Softwarebibliothek, mit der Sie
clientseitige Verschlüsselung in Ihr Amazon DynamoDB-Design integrieren können. Das AWS
Database Encryption SDK für DynamoDB bietet Verschlüsselung auf Attributebene und ermöglicht
es Ihnen, anzugeben, welche Elemente verschlüsselt werden sollen und welche Elemente in die
Signaturen aufgenommen werden sollen, die die Authentizität Ihrer Daten sicherstellen. Durch die
Verschlüsselung Ihrer sensiblen Daten während der Übertragung und im Speicher wird sichergestellt,
dass Ihre Klartextdaten nicht für Dritte verfügbar sind, auch nicht. AWS

Note

Das AWS Database Encryption SDK unterstützt PartiQL nicht.

In DynamoDB ist eine Tabelle eine Sammlung von Elementen. Jedes Element ist eine Sammlung von
Attributen. Jedes Attribut verfügt über einen Namen und einen Wert. Das AWS Database Encryption
SDK für DynamoDB verschlüsselt die Werte von Attributen. Dann berechnet er eine Signatur unter
Verwendung der Attribute. Sie geben an, welche Attributwerte verschlüsselt und welche in die
Signatur der kryptografischen Aktionen aufgenommen werden sollen.

Die Themen in diesem Kapitel bieten einen Überblick über das AWS Database Encryption SDK
für DynamoDB, einschließlich der verschlüsselten Felder, Anleitungen zur Client-Installation und -
Konfiguration sowie Java-Beispiele, die Ihnen den Einstieg erleichtern.

Themen

• Clientseitige und serverseitige Verschlüsselung

• Welche Felder sind verschlüsselt und signiert?

• Durchsuchbare Verschlüsselung in DynamoDB

• Aktualisierung Ihres Datenmodells

• AWS Database Encryption SDK für DynamoDB, verfügbare Programmiersprachen

188

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.TablesItemsAttributes

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Legacy-DynamoDB-Verschlüsselungsclient

Clientseitige und serverseitige Verschlüsselung

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Das AWS Database Encryption SDK für DynamoDB unterstützt die clientseitige Verschlüsselung, bei
der Sie Ihre Tabellendaten verschlüsseln, bevor Sie sie an Ihre Datenbank senden. DynamoDB bietet
jedoch eine serverseitige Funktion zur Verschlüsselung im Ruhezustand, die Ihre Tabelle transparent
verschlüsselt, wenn sie auf der Festplatte gespeichert wird, und sie entschlüsselt, wenn Sie auf die
Tabelle zugreifen.

Welche Tools Sie wählen, hängt von der Sensibilität Ihrer Daten und den Sicherheitsanforderungen
Ihrer Anwendung ab. Sie können sowohl das AWS Database Encryption SDK für DynamoDB
als auch Encryption at Rest verwenden. Wenn Sie verschlüsselte und signierte Elemente an
DynamoDB senden, erkennt DynamoDB die Elemente nicht als geschützt. Er erkennt nur typische
Tabellenelemente mit binären Attributwerten.

Serverseitige Verschlüsselung im Ruhezustand

DynamoDB unterstützt Encryption at Rest, eine serverseitige Verschlüsselungsfunktion, bei der
DynamoDB Ihre Tabellen transparent für Sie verschlüsselt, wenn die Tabelle dauerhaft auf der
Festplatte gespeichert wird, und sie entschlüsselt, wenn Sie auf die Tabellendaten zugreifen.

Wenn Sie ein AWS SDK für die Interaktion mit DynamoDB verwenden, werden Ihre Daten
standardmäßig bei der Übertragung über eine HTTPS-Verbindung verschlüsselt, am DynamoDB-
Endpunkt entschlüsselt und dann erneut verschlüsselt, bevor sie in DynamoDB gespeichert werden.

• Standardmäßig Verschlüsselung. DynamoDB verschlüsselt und entschlüsselt alle Tabellen
transparent, wenn sie geschrieben werden. Es ist nicht möglich, die Verschlüsselung im
Ruhezustand zu aktivieren oder zu deaktivieren.

• DynamoDB erstellt und verwaltet die kryptografischen Schlüssel.Der eindeutige Schlüssel für jede
Tabelle ist durch eine, die niemals AWS Key Management Service()AWS KMS unverschlüsselt
verlässt AWS KMS key, geschützt. Standardmäßig verwendet DynamoDB ein AWS-eigener
Schlüsselim DynamoDB-Dienstkonto, aber Sie können einen Von AWS verwalteter Schlüsseloder

Clientseitige und serverseitige Verschlüsselung 189

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-managed-cmk

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

einen vom Kunden verwalteten Schlüssel in Ihrem Konto wählen, um einige oder alle Ihre Tabellen
zu schützen.

• Alle Tabellendaten sind auf der Festplatte verschlüsselt.Wenn eine verschlüsselte Tabelle auf
der Festplatte gespeichert wird, verschlüsselt DynamoDB alle Tabellendaten, einschließlich
des Primärschlüssels und der lokalen und globalen Sekundärindizes. Wenn Ihre Tabelle einen
Sortierschlüssel hat, werden einige der Sortierschlüssel, die Bereichsgrenzen markieren, in Klartext
in den Metadaten der Tabelle gespeichert.

• Objekte, die sich auf Tabellen beziehen, werden ebenfalls verschlüsselt. Verschlüsselung im
Ruhezustand schützt DynamoDB-Streams, globale Tabellen und Backups, wann immer sie auf
dauerhafte Medien geschrieben werden.

• Ihre Elemente werden entschlüsselt, wenn Sie darauf zugreifen.Wenn Sie auf die Tabelle
zugreifen, entschlüsselt DynamoDB den Teil der Tabelle, der Ihr Zielelement enthält, und gibt das
Klartextelement an Sie zurück.

AWS Datenbankverschlüsselungs-SDK für DynamoDB

Die clientseitige Verschlüsselung bietet end-to-end Schutz für Ihre Daten bei der Übertragung und
im Speicher, von der Quelle bis zur Speicherung in DynamoDB. Ihre Klartextdaten werden niemals
Dritten zugänglich gemacht, auch nicht. AWS Sie können das AWS Database Encryption SDK für
DynamoDB mit neuen DynamoDB-Tabellen verwenden oder Ihre vorhandenen Amazon DynamoDB-
Tabellen auf die neueste Version des Database Encryption SDK für DynamoDB migrieren. AWS

• Ihre Daten sind während des Transports und im Ruhezustand geschützt. Es wird niemals Dritten
zugänglich gemacht, auch nicht. AWS

• Sie können Ihre Tabellenelemente signieren. Sie können das AWS Database Encryption SDK for
DynamoDB anweisen, eine Signatur für das gesamte oder einen Teil eines Tabellenelements,
einschließlich der Primärschlüsselattribute, zu berechnen. Mit dieser Signatur können Sie nicht
autorisierte Änderungen am gesamten Element erkennen, einschließlich des Hinzufügens oder
Löschens von Attributen oder des Vertauschens von Attributwerten.

• Sie bestimmen, wie Ihre Daten geschützt werden, indem Sie einen Schlüsselbund auswählen.
Ihr Schlüsselbund bestimmt die Umschließungsschlüssel, die Ihre Datenschlüssel und letztlich
Ihre Daten schützen. Verwenden Sie die sichersten Verpackungsschlüssel, die für Ihre Aufgabe
praktisch sind.

• Das AWS Database Encryption SDK für DynamoDB verschlüsselt nicht die gesamte Tabelle.
Sie wählen aus, welche Attribute in Ihren Elementen verschlüsselt werden. Das AWS Database
Encryption SDK für DynamoDB verschlüsselt nicht ein ganzes Element. Es verschlüsselt weder

Clientseitige und serverseitige Verschlüsselung 190

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.SecondaryIndexes
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.SecondaryIndexes
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.SecondaryIndexes
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BackupRestore.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Attributnamen noch die Namen oder Werte der Primärschlüsselattribute (Partitionsschlüssel und
Sortierschlüssel).

AWS Encryption SDK

Wenn Sie Daten verschlüsseln, die Sie in DynamoDB speichern, empfehlen wir das AWS Database
Encryption SDK für DynamoDB.

Die AWS Encryption SDK ist eine clientseitige Verschlüsselungsbibliothek, die Ihnen hilft, generische
Daten zu verschlüsseln und zu entschlüsseln. Obwohl sie beliebige Datentypen schützen kann,
ist sie nicht darauf ausgelegt, mit strukturierten Daten wie Datenbankeinträgen zu arbeiten. Im
Gegensatz zum AWS Database Encryption SDK für DynamoDB AWS Encryption SDK kann das
keine Integritätsprüfung auf Elementebene bereitstellen und hat keine Logik, um Attribute zu
erkennen oder die Verschlüsselung von Primärschlüsseln zu verhindern.

Wenn Sie das verwenden AWS Encryption SDK , um ein Element Ihrer Tabelle zu verschlüsseln,
denken Sie daran, dass es nicht mit dem AWS Database Encryption SDK für DynamoDB kompatibel
ist. Sie können nicht mit einer Bibliothek verschlüsseln und mit einer anderen entschlüsseln.

Welche Felder sind verschlüsselt und signiert?

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Das AWS Database Encryption SDK für DynamoDB ist eine clientseitige Verschlüsselungsbibliothek,
die speziell für Amazon DynamoDB DynamoDB-Anwendungen entwickelt wurde. Amazon
DynamoDB speichert Daten in Tabellen, bei denen es sich um eine Sammlung von Elementen
handelt. Jedes Element ist eine Sammlung von Attributen. Jedes Attribut verfügt über einen Namen
und einen Wert. Das AWS Database Encryption SDK für DynamoDB verschlüsselt die Werte von
Attributen. Dann berechnet er eine Signatur unter Verwendung der Attribute. Sie können festlegen,
welche Attributwerte verschlüsselt und welche in die Signatur aufgenommen werden sollen.

Die Verschlüsselung schützt die Vertraulichkeit des Attributwerts. Das Signieren sorgt für
die Integrität aller signierten Attribute und deren Beziehung zueinander, und ermöglicht eine
Authentifizierung. Es ermöglicht Ihnen, nicht autorisierte Änderungen am gesamten Element zu

Welche Felder sind verschlüsselt und signiert? 191

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.TablesItemsAttributes

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

erkennen, einschließlich des Hinzufügens oder Löschens von Attributen oder des Ersetzens eines
verschlüsselten Werts durch einen anderen.

In einem verschlüsselten Element verbleiben einige Daten im Klartext, einschließlich des
Tabellennamens, aller Attributnamen, der Attributwerte, die Sie nicht verschlüsseln, der Namen und
Werte der Primärschlüsselattribute (Partitionsschlüssel und Sortierschlüssel) und der Attributtypen.
Speichern Sie keine sensiblen Daten in diesen Feldern.

Weitere Informationen zur Funktionsweise des AWS Database Encryption SDK für DynamoDB finden
Sie unter. So funktioniert das AWS Database Encryption SDK

Note

Alle Erwähnungen von Attributaktionen in den Themen zum AWS Database Encryption SDK
für DynamoDB beziehen sich auf kryptografische Aktionen.

Themen

• Verschlüsseln von Attributwerten

• Signieren des Elements

Verschlüsseln von Attributwerten

Das AWS Database Encryption SDK für DynamoDB verschlüsselt die Werte (aber nicht den
Attributnamen oder -typ) der von Ihnen angegebenen Attribute. Um festzulegen, welche Attributwerte
verschlüsselt werden, verwenden Sie Attribut-Aktionen.

Das folgende Element beispielsweise enthält die Attribute example und test.

'example': 'data',
'test': 'test-value',
...

Wenn Sie das Attribut example verschlüsseln, aber nicht das Attribut test, sehen die Ergebnisse
wie folgt aus. Der Wert des verschlüsselten example-Attributs ist ein Binärwert anstelle einer
Zeichenfolge.

'example': Binary(b"'b\x933\x9a+s\xf1\xd6a\xc5\xd5\x1aZ\xed\xd6\xce\xe9X\xf0T\xcb\x9fY
\x9f\xf3\xc9C\x83\r\xbb\\"),

Verschlüsseln von Attributwerten 192

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

'test': 'test-value'
...

Die Primärschlüsselattribute — Partitionsschlüssel und Sortierschlüssel — jedes Elements müssen
im Klartext bleiben, da DynamoDB sie verwendet, um das Element in der Tabelle zu finden. Sie
sollten signiert, aber nicht verschlüsselt werden.

Das AWS Database Encryption SDK für DynamoDB identifiziert die Primärschlüsselattribute für
Sie und stellt sicher, dass ihre Werte signiert, aber nicht verschlüsselt sind. Und wenn Sie Ihren
Primärschlüssel identifizieren und dann versuchen, ihn zu verschlüsseln, wirft der Client eine
Ausnahme auf.

Der Client speichert die Materialbeschreibung in einem neuen Attribut (aws_dbe_head), das
er dem Artikel hinzufügt. Die Materialbeschreibung beschreibt, wie der Artikel verschlüsselt und
signiert wurde. Der Client verwendet diese Informationen, um das Element zu überprüfen und zu
entschlüsseln. Das Feld, in dem die Materialbeschreibung gespeichert ist, ist nicht verschlüsselt.

Signieren des Elements

Nach der Verschlüsselung der angegebenen Attributwerte berechnet das AWS Database Encryption
SDK for DynamoDB Hash-Based Message Authentication Codes (HMACs) und eine digitale
Signatur über die Kanonisierung der Materialbeschreibung, des Verschlüsselungskontextes
und jedes mit oder markierten ENCRYPT_AND_SIGN Felds in den Attributaktionen.
SIGN_ONLYSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT ECDSA-Signaturen sind
standardmäßig aktiviert, aber nicht erforderlich. Der Client speichert die HMACs UND-Signaturen in
einem neuen Attribut (aws_dbe_foot), das er dem Element hinzufügt.

Durchsuchbare Verschlüsselung in DynamoDB
Um Ihre Amazon DynamoDB-Tabellen für durchsuchbare Verschlüsselung zu konfigurieren, müssen
Sie den AWS KMS hierarchischen Schlüsselbund verwenden, um die Datenschlüssel zu generieren,
zu verschlüsseln und zu entschlüsseln, die zum Schutz Ihrer Elemente verwendet werden. Sie
müssen den auch in Ihre Tabellenverschlüsselungskonfiguration einbeziehen. SearchConfig

Note

Wenn Sie die clientseitige Java-Verschlüsselungsbibliothek für DynamoDB verwenden,
müssen Sie das AWS Low-Level-Datenbankverschlüsselungs-SDK für DynamoDB-API
verwenden, um Ihre Tabellenelemente zu verschlüsseln, zu signieren, zu verifizieren und

Signieren des Elements 193

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

zu entschlüsseln. Der DynamoDB Enhanced Client und niedrigere Versionen unterstützen
DynamoDBItemEncryptor keine durchsuchbare Verschlüsselung.

Themen

• Konfiguration sekundärer Indizes mit Beacons

• Testen der Beacon-Ausgaben

Konfiguration sekundärer Indizes mit Beacons

Nachdem Sie Ihre Beacons konfiguriert haben, müssen Sie einen sekundären Index konfigurieren,
der die einzelnen Beacons widerspiegelt, bevor Sie nach den verschlüsselten Attributen suchen
können.

Wenn Sie einen Standard- oder Verbundbeacon konfigurieren, fügt das AWS Database
Encryption SDK dem Beacon-Namen das aws_dbe_b_ Präfix hinzu, sodass der Server
Beacons leicht identifizieren kann. Wenn Sie beispielsweise einen zusammengesetzten
Beacon benennencompoundBeacon, lautet der vollständige Beacon-Name tatsächlich.
aws_dbe_b_compoundBeacon Wenn Sie Sekundärindizes konfigurieren möchten, die einen
Standard- oder Verbundbeacon enthalten, müssen Sie bei der Identifizierung des Beacon-Namens
das aws_dbe_b_ Präfix angeben.

Schlüssel partitionieren und sortieren

Sie können Primärschlüsselwerte nicht verschlüsseln. Ihre Partitions- und Sortierschlüssel
müssen signiert sein. Ihre Primärschlüsselwerte können kein Standard- oder Verbundbeacon sein.

Ihre Primärschlüsselwerte müssenSIGN_ONLY, sofern Sie keine
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribute angeben, auch die Partitions- und
Sortierattribute seinSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Ihre Primärschlüsselwerte können signierte Beacons sein. Wenn Sie für jeden Ihrer
Primärschlüsselwerte unterschiedliche signierte Beacons konfiguriert haben, müssen Sie den
Attributnamen, der den Primärschlüsselwert identifiziert, als signierten Beacon-Namen angeben.
Das AWS Database Encryption SDK fügt das aws_dbe_b_ Präfix jedoch nicht zu signierten
Beacons hinzu. Selbst wenn Sie unterschiedliche signierte Beacons für Ihre Primärschlüsselwerte
konfiguriert haben, müssen Sie bei der Konfiguration eines Sekundärindexes nur die
Attributnamen für die Primärschlüsselwerte angeben.

Konfiguration sekundärer Indizes mit Beacons 194

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SecondaryIndexes.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Lokale sekundäre Indizes

Der Sortierschlüssel für einen lokalen Sekundärindex kann ein Beacon sein.

Wenn Sie einen Beacon für den Sortierschlüssel angeben, muss der Typ String sein. Wenn
Sie einen Standard- oder Verbundbeacon für den Sortierschlüssel angeben, müssen Sie das
aws_dbe_b_ Präfix angeben, wenn Sie den Beacon-Namen angeben. Wenn Sie einen signierten
Beacon angeben, geben Sie den Beacon-Namen ohne Präfix an.

Globale sekundäre Indizes

Sowohl die Partitions- als auch die Sortierschlüssel für einen globalen sekundären Index können
Beacons sein.

Wenn Sie einen Beacon für die Partition oder den Sortierschlüssel angeben, muss der Typ String
sein. Wenn Sie einen Standard- oder Verbundbeacon für den Sortierschlüssel angeben, müssen
Sie das aws_dbe_b_ Präfix angeben, wenn Sie den Beacon-Namen angeben. Wenn Sie einen
signierten Beacon angeben, geben Sie den Beacon-Namen ohne Präfix an.

Attributprojektionen

Eine Projektion ist der Satz von Attributen, die aus einer Tabelle in einen sekundären Index
kopiert werden. Der Partitionsschlüssel und der Sortierschlüssel der Tabelle werden immer
in den Index projiziert. Sie können andere Attribute projizieren, um die Abfrageanforderungen
Ihrer Anwendung zu unterstützen. DynamoDB bietet drei verschiedene Optionen für
Attributprojektionen: KEYS_ONLYINCLUDE, und. ALL

Wenn Sie die INCLUDE-Attributprojektion verwenden, um auf einem Beacon zu suchen, müssen
Sie die Namen für alle Attribute angeben, aus denen das Beacon aufgebaut ist, sowie den
Beacon-Namen mit dem Präfix. aws_dbe_b_ Wenn Sie beispielsweise einen Verbundbeacon,,
von, compoundBeacon und konfiguriert haben field1field2, müssen Siefield3,, und in der
aws_dbe_b_compoundBeacon field1 Projektion field2 angeben. field3

Ein globaler sekundärer Index kann nur die in der Projektion explizit angegebenen Attribute
verwenden, ein lokaler sekundärer Index kann jedoch jedes beliebige Attribut verwenden.

Testen der Beacon-Ausgaben

Wenn Sie zusammengesetzte Beacons konfiguriert oder Ihre Beacons mithilfe virtueller Felder erstellt
haben, empfehlen wir, zu überprüfen, ob diese Beacons die erwartete Ausgabe erzeugen, bevor Sie
Ihre DynamoDB-Tabelle füllen.

Testen der Beacon-Ausgaben 195

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html#GSI.Projections

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Das AWS Database Encryption SDK bietet den DynamoDbEncryptionTransforms Service, der
Sie bei der Fehlerbehebung bei der Ausgabe virtueller Felder und zusammengesetzter Beacons
unterstützt.

Testen virtueller Felder

Der folgende Ausschnitt erstellt Testelemente, definiert den DynamoDbEncryptionTransforms
Dienst mit der DynamoDB-Tabellenverschlüsselungskonfiguration und zeigt, wie überprüft werden
kann, ob das virtuelle Feld die erwartete Ausgabe erzeugt. ResolveAttributes

Java

Sehen Sie sich das vollständige Codebeispiel an: .java
VirtualBeaconSearchableEncryptionExample

// Create test items
final PutItemRequest itemWithHasTestResultPutRequest = PutItemRequest.builder()
 .tableName(ddbTableName)
 .item(itemWithHasTestResult)
 .build();

final PutItemResponse itemWithHasTestResultPutResponse =
 ddb.putItem(itemWithHasTestResultPutRequest);

final PutItemRequest itemWithNoHasTestResultPutRequest = PutItemRequest.builder()
 .tableName(ddbTableName)
 .item(itemWithNoHasTestResult)
 .build();

final PutItemResponse itemWithNoHasTestResultPutResponse =
 ddb.putItem(itemWithNoHasTestResultPutRequest);

// Define the DynamoDbEncryptionTransforms service
final DynamoDbEncryptionTransforms trans = DynamoDbEncryptionTransforms.builder()
 .DynamoDbTablesEncryptionConfig(encryptionConfig).build();

// Verify configuration
final ResolveAttributesInput resolveInput = ResolveAttributesInput.builder()
 .TableName(ddbTableName)
 .Item(itemWithHasTestResult)
 .Version(1)
 .build();
final ResolveAttributesOutput resolveOutput = trans.ResolveAttributes(resolveInput);

Testen der Beacon-Ausgaben 196

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/VirtualBeaconSearchableEncryptionExample.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/VirtualBeaconSearchableEncryptionExample.java

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

// Verify that VirtualFields has the expected value
Map<String, String> vf = new HashMap<>();
vf.put("stateAndHasTestResult", "CAt");
assert resolveOutput.VirtualFields().equals(vf);

C# / .NET

Sehen Sie sich das vollständige Codebeispiel an:
VirtualBeaconSearchableEncryptionExample.cs.

 // Create item with hasTestResult=true
var itemWithHasTestResult = new Dictionary<String, AttributeValue>
{
 ["customer_id"] = new AttributeValue("ABC-123"),
 ["create_time"] = new AttributeValue { N = "1681495205" },
 ["state"] = new AttributeValue("CA"),
 ["hasTestResult"] = new AttributeValue { BOOL = true }
};

// Create item with hasTestResult=false
var itemWithNoHasTestResult = new Dictionary<String, AttributeValue>
{
 ["customer_id"] = new AttributeValue("DEF-456"),
 ["create_time"] = new AttributeValue { N = "1681495205" },
 ["state"] = new AttributeValue("CA"),
 ["hasTestResult"] = new AttributeValue { BOOL = false }
};

// Define the DynamoDbEncryptionTransforms service
var trans = new DynamoDbEncryptionTransforms(encryptionConfig);

// Verify configuration
var resolveInput = new ResolveAttributesInput
{
 TableName = ddbTableName,
 Item = itemWithHasTestResult,
 Version = 1
};
var resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that VirtualFields has the expected value
Debug.Assert(resolveOutput.VirtualFields.Count == 1);

Testen der Beacon-Ausgaben 197

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/VirtualBeaconSearchableEncryptionExample.cs

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Debug.Assert(resolveOutput.VirtualFields["stateAndHasTestResult"] == "CAt");

Rust

Sehen Sie sich das vollständige Codebeispiel an: virtual_beacon_searchable_encryption.rs.

// Create item with hasTestResult=true
let item_with_has_test_result = HashMap::from([
 (
 "customer_id".to_string(),
 AttributeValue::S("ABC-123".to_string()),
),
 (
 "create_time".to_string(),
 AttributeValue::N("1681495205".to_string()),
),
 ("state".to_string(), AttributeValue::S("CA".to_string())),
 ("hasTestResult".to_string(), AttributeValue::Bool(true)),
]);

// Create item with hasTestResult=false
let item_with_no_has_test_result = HashMap::from([
 (
 "customer_id".to_string(),
 AttributeValue::S("DEF-456".to_string()),
),
 (
 "create_time".to_string(),
 AttributeValue::N("1681495205".to_string()),
),
 ("state".to_string(), AttributeValue::S("CA".to_string())),
 ("hasTestResult".to_string(), AttributeValue::Bool(false)),
]);

// Define the transform service
let trans = transform_client::Client::from_conf(encryption_config.clone())?;

// Verify the configuration
let resolve_output = trans
 .resolve_attributes()
 .table_name(ddb_table_name)
 .item(item_with_has_test_result.clone())
 .version(1)
 .send()

Testen der Beacon-Ausgaben 198

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/virtual_beacon_searchable_encryption.rs

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .await?;

// Verify that VirtualFields has the expected value
let virtual_fields = resolve_output.virtual_fields.unwrap();
assert_eq!(virtual_fields.len(), 1);
assert_eq!(virtual_fields["stateAndHasTestResult"], "CAt");

Testen von Compound-Beacons

Der folgende Ausschnitt erstellt ein Testelement, definiert den DynamoDbEncryptionTransforms
Dienst mit der DynamoDB-Tabellenverschlüsselungskonfiguration und zeigt, wie überprüft werden
kann, ob der Compound Beacon die erwartete Ausgabe erzeugt. ResolveAttributes

Java

Sehen Sie sich das vollständige Codebeispiel an: .java
CompoundBeaconSearchableEncryptionExample

// Create an item with both attributes used in the compound beacon.
final HashMap<String, AttributeValue> item = new HashMap<>();
item.put("work_id", AttributeValue.builder().s("9ce39272-8068-4efd-a211-
cd162ad65d4c").build());
item.put("inspection_date", AttributeValue.builder().s("2023-06-13").build());
item.put("inspector_id_last4", AttributeValue.builder().s("5678").build());
item.put("unit", AttributeValue.builder().s("011899988199").build());

// Define the DynamoDbEncryptionTransforms service
final DynamoDbEncryptionTransforms trans = DynamoDbEncryptionTransforms.builder()
 .DynamoDbTablesEncryptionConfig(encryptionConfig).build();

// Verify configuration
final ResolveAttributesInput resolveInput = ResolveAttributesInput.builder()
 .TableName(ddbTableName)
 .Item(item)
 .Version(1)
 .build();

final ResolveAttributesOutput resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that CompoundBeacons has the expected value
Map<String, String> cbs = new HashMap<>();
cbs.put("last4UnitCompound", "L-5678.U-011899988199");

Testen der Beacon-Ausgaben 199

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/CompoundBeaconSearchableEncryptionExample.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/searchableencryption/CompoundBeaconSearchableEncryptionExample.java

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

assert resolveOutput.CompoundBeacons().equals(cbs);
// Note : the compound beacon actually stored in the table is not
 "L-5678.U-011899988199"
// but rather something like "L-abc.U-123", as both parts are EncryptedParts
// and therefore the text is replaced by the associated beacon

C# / .NET

Sehen Sie sich das vollständige Codebeispiel an: .cs
CompoundBeaconSearchableEncryptionExample

// Create an item with both attributes used in the compound beacon
var item = new Dictionary<String, AttributeValue>
{
 ["work_id"] = new AttributeValue("9ce39272-8068-4efd-a211-cd162ad65d4c"),
 ["inspection_date"] = new AttributeValue("2023-06-13"),
 ["inspector_id_last4"] = new AttributeValue("5678"),
 ["unit"] = new AttributeValue("011899988199")
};

// Define the DynamoDbEncryptionTransforms service
var trans = new DynamoDbEncryptionTransforms(encryptionConfig);

// Verify configuration
var resolveInput = new ResolveAttributesInput
{
 TableName = ddbTableName,
 Item = item,
 Version = 1
};
var resolveOutput = trans.ResolveAttributes(resolveInput);

// Verify that CompoundBeacons has the expected value
Debug.Assert(resolveOutput.CompoundBeacons.Count == 1);
Debug.Assert(resolveOutput.CompoundBeacons["last4UnitCompound"] ==
 "L-5678.U-011899988199");
// Note : the compound beacon actually stored in the table is not
 "L-5678.U-011899988199"
// but rather something like "L-abc.U-123", as both parts are EncryptedParts
// and therefore the text is replaced by the associated beacon

Testen der Beacon-Ausgaben 200

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/CompoundBeaconSearchableEncryptionExample.cs
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/searchableencryption/CompoundBeaconSearchableEncryptionExample.cs

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Rust

Sehen Sie sich das vollständige Codebeispiel an: compound_beacon_searchable_encryption.rs

// Create an item with both attributes used in the compound beacon
let item = HashMap::from([
 (
 "work_id".to_string(),
 AttributeValue::S("9ce39272-8068-4efd-a211-cd162ad65d4c".to_string()),
),
 (
 "inspection_date".to_string(),
 AttributeValue::S("2023-06-13".to_string()),
),
 (
 "inspector_id_last4".to_string(),
 AttributeValue::S("5678".to_string()),
),
 (
 "unit".to_string(),
 AttributeValue::S("011899988199".to_string()),
),
]);

// Define the transforms service
let trans = transform_client::Client::from_conf(encryption_config.clone())?;

// Verify configuration
let resolve_output = trans
 .resolve_attributes()
 .table_name(ddb_table_name)
 .item(item.clone())
 .version(1)
 .send()
 .await?;

// Verify that CompoundBeacons has the expected value
Dlet compound_beacons = resolve_output.compound_beacons.unwrap();
assert_eq!(compound_beacons.len(), 1);
assert_eq!(
 compound_beacons["last4UnitCompound"],
 "L-5678.U-011899988199"
);
// but rather something like "L-abc.U-123", as both parts are EncryptedParts

Testen der Beacon-Ausgaben 201

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/searchableencryption/compound_beacon_searchable_encryption.rs

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

// and therefore the text is replaced by the associated beacon

Aktualisierung Ihres Datenmodells

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK umbenannt
. AWS Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB Encryption
Client.

Wenn Sie das AWS Database Encryption SDK für DynamoDB konfigurieren, geben Sie
Attributaktionen an. Beim Verschlüsseln identifiziert das AWS Database Encryption SDK anhand
der Attributaktionen, welche Attribute verschlüsselt und signiert, welche Attribute signiert (aber nicht
verschlüsselt) und welche ignoriert werden sollen. Sie definieren auch zulässige unsignierte Attribute,
um dem Client explizit mitzuteilen, welche Attribute von den Signaturen ausgeschlossen sind. Beim
Entschlüsseln verwendet das AWS Database Encryption SDK die erlaubten unsignierten Attribute,
die Sie definiert haben, um zu identifizieren, welche Attribute nicht in den Signaturen enthalten sind.
Attributaktionen werden nicht im verschlüsselten Element gespeichert und das AWS Database
Encryption SDK aktualisiert Ihre Attributaktionen nicht automatisch.

Wählen Sie Ihre Attributaktionen sorgfältig aus. Verwenden Sie im Zweifelsfall Verschlüsseln
und signieren. Nachdem Sie das AWS Database Encryption SDK zum Schutz Ihrer
Elemente verwendet haben, können Sie ein ENCRYPT_AND_SIGN vorhandenes oder
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT -Attribut nicht mehr in ändernDO_NOTHING.
SIGN_ONLY Sie können jedoch ohne Bedenken die folgenden Änderungen vornehmen.

• Fügen Sie neue ENCRYPT_AND_SIGNSIGN_ONLY, und
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribute hinzu

• Entfernen Sie vorhandene Attribute

• Ändern Sie ein vorhandenes ENCRYPT_AND_SIGN Attribut in SIGN_ONLY oder
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

• Ändern Sie ein vorhandenes SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribut
SIGN_ONLY oder ENCRYPT_AND_SIGN

• Fügen Sie ein neues DO_NOTHING Attribut hinzu

• Ändern Sie ein vorhandenes SIGN_ONLY Attribut in
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Aktualisierung Ihres Datenmodells 202

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Ändern Sie ein vorhandenes SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribut in
SIGN_ONLY

Überlegungen zur durchsuchbaren Verschlüsselung

Bevor Sie Ihr Datenmodell aktualisieren, sollten Sie sorgfältig überlegen, wie sich Ihre
Aktualisierungen auf Beacons auswirken könnten, die Sie anhand der Attribute erstellt haben.
Nachdem Sie mit einem Beacon neue Datensätze geschrieben haben, können Sie die Konfiguration
des Beacons nicht mehr aktualisieren. Sie können die Attributaktionen, die den Attributen zugeordnet
sind, die Sie zum Aufbau von Beacons verwendet haben, nicht aktualisieren. Wenn Sie ein
vorhandenes Attribut und den zugehörigen Beacon entfernen, können Sie mit diesem Beacon keine
vorhandenen Datensätze abfragen. Sie können neue Beacons für neue Felder erstellen, die Sie
Ihrem Datensatz hinzufügen, aber Sie können bestehende Beacons nicht so aktualisieren, dass sie
das neue Feld aufnehmen.

Überlegungen zu Attributen SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Standardmäßig sind die Partitions- und Sortierschlüssel das einzige Attribut, das im
Verschlüsselungskontext enthalten ist. Sie könnten erwägen, zusätzliche Felder zu
definieren, SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT damit der Anbieter der
Branch-Schlüssel-ID für Ihren AWS KMS hierarchischen Schlüsselbund ermitteln kann,
welcher Filialschlüssel für die Entschlüsselung aus dem Verschlüsselungskontext erforderlich
ist. Weitere Informationen finden Sie unter Lieferant für die Filialschlüssel-ID. Wenn Sie
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribute angeben, müssen auch die Partitions-
und Sortierattribute angegeben werdenSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Note

Um die SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT kryptografische
Aktion verwenden zu können, müssen Sie Version 3.3 oder höher des AWS
Database Encryption SDK verwenden. Stellen Sie die neue Version für alle
Lesegeräte bereit, bevor Sie Ihr Datenmodell so aktualisieren, dass es diese
enthältSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Aktualisierung Ihres Datenmodells 203

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Fügen Sie neue ENCRYPT_AND_SIGNSIGN_ONLY, und
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribute hinzu

Um ein neues ENCRYPT_AND_SIGNSIGN_ONLY, oder
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribut hinzuzufügen, definieren Sie das neue
Attribut in Ihren Attributaktionen.

Sie können ein vorhandenes DO_NOTHING Attribut nicht entfernen und es
alsENCRYPT_AND_SIGN,SIGN_ONLY, SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT -Attribut
wieder hinzufügen.

Verwenden einer Datenklasse mit Anmerkungen

Wenn Sie Ihre Attributaktionen mit a definiert habenTableSchema, fügen Sie das neue Attribut Ihrer
annotierten Datenklasse hinzu. Wenn Sie keine Attributaktions-Anmerkung für das neue Attribut
angeben, verschlüsselt und signiert der Client das neue Attribut standardmäßig (es sei denn, das
Attribut ist Teil des Primärschlüssels). Wenn Sie nur das neue Attribut signieren möchten, müssen
Sie das neue Attribut mit der @DynamoDBEncryptionSignAndIncludeInEncryptionContext
Anmerkung @DynamoDBEncryptionSignOnly oder hinzufügen.

Verwenden Sie ein Objektmodell

Wenn Sie Ihre Attributaktionen manuell definiert haben, fügen Sie das neue Attribut zu den
Attributaktionen in Ihrem Objektmodell hinzu und geben Sie ENCRYPT_AND_SIGNSIGN_ONLY, oder
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT als Attributaktion an.

Entfernen Sie vorhandene Attribute

Wenn Sie entscheiden, dass Sie ein Attribut nicht mehr benötigen, können Sie das Schreiben von
Daten in dieses Attribut beenden oder es formell aus Ihren Attributaktionen entfernen. Wenn Sie
aufhören, neue Daten in ein Attribut zu schreiben, wird das Attribut weiterhin in Ihren Attributaktionen
angezeigt. Dies kann hilfreich sein, wenn Sie das Attribut in future erneut verwenden müssen. Wenn
Sie das Attribut formal aus Ihren Attributaktionen entfernen, wird es nicht aus Ihrem Datensatz
entfernt. Ihr Datensatz wird weiterhin Elemente enthalten, die dieses Attribut enthalten.

Um ein vorhandenesENCRYPT_AND_SIGN,
SIGN_ONLYSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, oder DO_NOTHING Attribut formell
zu entfernen, aktualisieren Sie Ihre Attributaktionen.

Fügen Sie neue ENCRYPT_AND_SIGNSIGN_ONLY, und
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribute hinzu

204

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Wenn Sie ein DO_NOTHING Attribut entfernen, dürfen Sie dieses Attribut nicht aus Ihren zulässigen
Attributen ohne Vorzeichen entfernen. Auch wenn Sie keine neuen Werte mehr in dieses Attribut
schreiben, muss der Client trotzdem wissen, dass das Attribut vorzeichenlos ist, um vorhandene
Elemente lesen zu können, die das Attribut enthalten.

Verwenden einer Datenklasse mit Anmerkungen

Wenn Sie Ihre Attributaktionen mit a definiert habenTableSchema, entfernen Sie das Attribut aus
Ihrer annotierten Datenklasse.

Verwenden Sie ein Objektmodell

Wenn Sie Ihre Attributaktionen manuell definiert haben, entfernen Sie das Attribut aus den
Attributaktionen in Ihrem Objektmodell.

Ändern Sie ein vorhandenes ENCRYPT_AND_SIGN Attribut in SIGN_ONLY
oder SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Um ein vorhandenes ENCRYPT_AND_SIGN Attribut in SIGN_ONLY oder zu
ändernSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, müssen Sie Ihre Attributaktionen
aktualisieren. Nachdem Sie das Update bereitgestellt haben, kann der Client vorhandene Werte, die
in das Attribut geschrieben wurden, verifizieren und entschlüsseln, signiert jedoch nur neue Werte,
die in das Attribut geschrieben wurden.

Note

Überlegen Sie sich sorgfältig Ihre Sicherheitsanforderungen, bevor Sie
ein vorhandenes ENCRYPT_AND_SIGN Attribut in SIGN_ONLY oder
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT ändern. Jedes Attribut, das vertrauliche
Daten speichern kann, sollte verschlüsselt werden.

Verwendung einer annotierten Datenklasse

Wenn Sie Ihre Attributaktionen mit einem definiert habenTableSchema, aktualisieren Sie das
vorhandene Attribut, sodass die
@DynamoDBEncryptionSignAndIncludeInEncryptionContext Anmerkung
@DynamoDBEncryptionSignOnly oder in Ihre annotierte Datenklasse aufgenommen wird.

Ändern Sie ein vorhandenes ENCRYPT_AND_SIGN Attribut in SIGN_ONLY oder
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

205

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verwenden Sie ein Objektmodell

Wenn Sie Ihre Attributaktionen manuell definiert haben, aktualisieren Sie die dem vorhandenen
Attribut zugeordnete Attributaktion von ENCRYPT_AND_SIGN bis SIGN_ONLY oder
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT in Ihrem Objektmodell.

Ändern Sie ein vorhandenes
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribut SIGN_ONLY
oder ENCRYPT_AND_SIGN

Um ein vorhandenes SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribut SIGN_ONLY
oder ein Attribut in zu ändernENCRYPT_AND_SIGN, müssen Sie Ihre Attributaktionen aktualisieren.
Nachdem Sie das Update bereitgestellt haben, kann der Client die vorhandenen Werte überprüfen,
die in das Attribut geschrieben wurden, und verschlüsselt und signiert neue Werte, die in das Attribut
geschrieben wurden.

Verwenden einer Datenklasse mit Anmerkungen

Wenn Sie Ihre Attributaktionen mit einem definiert habenTableSchema, entfernen Sie
die @DynamoDBEncryptionSignAndIncludeInEncryptionContext Anmerkung
@DynamoDBEncryptionSignOnly oder aus dem vorhandenen Attribut.

Verwenden eines Objektmodells

Wenn Sie Ihre Attributaktionen manuell definiert haben, aktualisieren Sie die Attributaktion, die dem
Attribut von SIGN_ONLY oder SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT nach zugeordnet
ist, ENCRYPT_AND_SIGN in Ihrem Objektmodell.

Fügen Sie ein neues DO_NOTHING Attribut hinzu

Um das Fehlerrisiko beim Hinzufügen eines neuen DO_NOTHING Attributs zu verringern, empfehlen
wir, bei der Benennung Ihrer DO_NOTHING Attribute ein eindeutiges Präfix anzugeben und dieses
Präfix dann zu verwenden, um Ihre zulässigen Attribute ohne Vorzeichen zu definieren.

Sie können kein ENCRYPT_AND_SIGN vorhandenes
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribut oder aus Ihrer annotierten Datenklasse
entfernen und das Attribut dann wieder als DO_NOTHING Attribut hinzufügen. SIGN_ONLY Sie können
nur völlig neue DO_NOTHING Attribute hinzufügen.

Ändern Sie ein vorhandenes SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribut SIGN_ONLY
oder ENCRYPT_AND_SIGN

206

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Die Schritte, die Sie unternehmen, um ein neues DO_NOTHING Attribut hinzuzufügen, hängen davon
ab, ob Sie Ihre zulässigen Attribute ohne Vorzeichen explizit in einer Liste oder mit einem Präfix
definiert haben.

Verwenden Sie ein zulässiges Präfix für vorzeichenlose Attribute

Wenn Sie Ihre Attributaktionen mit einem definiert habenTableSchema, fügen Sie das
neue DO_NOTHING Attribut mit der Anmerkung zu Ihrer annotierten Datenklasse hinzu.
@DynamoDBEncryptionDoNothing Wenn Sie Ihre Attributaktionen manuell definiert haben,
aktualisieren Sie Ihre Attributaktionen, sodass sie das neue Attribut enthalten. Achten Sie darauf,
das neue Attribut explizit mit der DO_NOTHING Attributaktion zu konfigurieren. Sie müssen dasselbe
eindeutige Präfix in den Namen des neuen Attributs aufnehmen.

Verwenden Sie eine Liste mit zulässigen Attributen ohne Vorzeichen

1. Fügen Sie das neue DO_NOTHING Attribut zu Ihrer Liste der zulässigen unsignierten Attribute
hinzu und stellen Sie die aktualisierte Liste bereit.

2. Stellen Sie die Änderung aus Schritt 1 bereit.

Sie können erst mit Schritt 3 fortfahren, wenn die Änderung auf alle Hosts übertragen wurde, die
diese Daten lesen müssen.

3. Fügen Sie das neue DO_NOTHING Attribut zu Ihren Attributaktionen hinzu.

a. Wenn Sie Ihre Attributaktionen mit einem definiert habenTableSchema, fügen Sie das neue
DO_NOTHING Attribut mit der @DynamoDBEncryptionDoNothing Anmerkung zu Ihrer
annotierten Datenklasse hinzu.

b. Wenn Sie Ihre Attributaktionen manuell definiert haben, aktualisieren Sie Ihre
Attributaktionen, sodass sie das neue Attribut enthalten. Achten Sie darauf, das neue
Attribut explizit mit der DO_NOTHING Attributaktion zu konfigurieren.

4. Stellen Sie die Änderung aus Schritt 3 bereit.

Ändern Sie ein vorhandenes SIGN_ONLY Attribut in
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT

Um ein vorhandenes SIGN_ONLY Attribut in zu
ändernSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, müssen Sie Ihre Attributaktionen
aktualisieren. Nachdem Sie das Update bereitgestellt haben, kann der Client die vorhandenen Werte

Ändern Sie ein vorhandenes SIGN_ONLY Attribut in SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT 207

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

überprüfen, die in das Attribut geschrieben wurden, und signiert weiterhin neue Werte, die in das
Attribut geschrieben wurden. Neue Werte, die in das Attribut geschrieben werden, werden in den
Verschlüsselungskontext aufgenommen.

Wenn Sie SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribute
angeben, müssen auch die Partitions- und Sortierattribute angegeben
werdenSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Verwenden Sie eine annotierte Datenklasse

Wenn Sie Ihre Attributaktionen mit a definiert habenTableSchema, aktualisieren Sie
die dem Attribut zugeordnete Attributaktion von @DynamoDBEncryptionSignOnly
bis@DynamoDBEncryptionSignAndIncludeInEncryptionContext.

Verwenden Sie ein Objektmodell

Wenn Sie Ihre Attributaktionen manuell definiert haben, aktualisieren Sie die dem Attribut
zugeordnete Attributaktion von SIGN_ONLY bis SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT in
Ihrem Objektmodell.

Ändern Sie ein vorhandenes
SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribut in SIGN_ONLY

Um ein vorhandenes SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribut in zu
ändernSIGN_ONLY, müssen Sie Ihre Attributaktionen aktualisieren. Nachdem Sie das Update
bereitgestellt haben, kann der Client die vorhandenen Werte überprüfen, die in das Attribut
geschrieben wurden, und signiert weiterhin neue Werte, die in das Attribut geschrieben wurden.
Neue Werte, die in das Attribut geschrieben werden, werden nicht in den Verschlüsselungskontext
aufgenommen.

Bevor Sie ein vorhandenes SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribut in
ändernSIGN_ONLY, sollten Sie sorgfältig abwägen, wie sich Ihre Aktualisierungen auf die
Funktionalität Ihres Branch Key ID-Anbieters auswirken könnten.

Verwenden einer Datenklasse mit Anmerkungen

Wenn Sie Ihre Attributaktionen mit a definiert habenTableSchema,
aktualisieren Sie die dem Attribut zugeordnete Attributaktion von
@DynamoDBEncryptionSignAndIncludeInEncryptionContext
bis@DynamoDBEncryptionSignOnly.

Ändern Sie ein vorhandenes SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribut in SIGN_ONLY 208

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verwenden Sie ein Objektmodell

Wenn Sie Ihre Attributaktionen manuell definiert haben, aktualisieren Sie die dem Attribut
zugeordnete Attributaktion von SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT bis SIGN_ONLY in
Ihrem Objektmodell.

AWS Database Encryption SDK für DynamoDB, verfügbare
Programmiersprachen

Das AWS Database Encryption SDK für DynamoDB ist für die folgenden Programmiersprachen
verfügbar. Die sprachspezifischen Bibliotheken sind unterschiedlich, aber die daraus
resultierenden Implementierungen sind interoperabel. Sie können mit einer Sprachimplementierung
verschlüsseln und mit einer anderen entschlüsseln. Die Interoperabilität ist möglicherweise von
Spracheinschränkungen abhängig. Wenn dies der Fall ist, werden diese Einschränkungen im Thema
zur Sprachimplementierung beschrieben.

Themen

• Java

• .NET

• Rust

Java

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK umbenannt
. AWS Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB Encryption
Client.

In diesem Thema wird erklärt, wie Version 3 installiert und verwendet wird. x der clientseitigen
Java-Verschlüsselungsbibliothek für DynamoDB. Einzelheiten zur Programmierung mit dem AWS
Database Encryption SDK für DynamoDB finden Sie in den Java-Beispielen im aws-database-
encryption-sdk -dynamodb-Repository unter. GitHub

Programmiersprachen 209

https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Note

Die folgenden Themen konzentrieren sich auf Version 3. x der clientseitigen Java-
Verschlüsselungsbibliothek für DynamoDB.
Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das AWS Database Encryption SDK unterstützt weiterhin ältere Versionen
des DynamoDB Encryption Client.

Themen

• Voraussetzungen

• Installation

• Verwendung der clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB

• Java-Beispiele

• Konfigurieren Sie eine bestehende DynamoDB-Tabelle für die Verwendung des AWS Database
Encryption SDK für DynamoDB

• Migrieren Sie auf Version 3.x der clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB

Voraussetzungen

Bevor Sie Version 3 installieren. x der clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB,
stellen Sie sicher, dass Sie die folgenden Voraussetzungen erfüllen.

Eine Java-Entwicklungsumgebung

Sie benötigen Java 8 oder höher. Klicken Sie auf der Oracle-Website auf Java SE Downloads und
laden und installieren Sie anschließend das Java SE Development Kit (JDK).

Wenn Sie das Oracle JDK verwenden, müssen Sie auch die Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy Files herunterladen und installieren.

AWS SDK for Java 2.x

Das AWS Database Encryption SDK für DynamoDB erfordert das DynamoDB Enhanced
Client-Modul von. AWS SDK for Java 2.x Sie können das gesamte SDK oder nur dieses Modul
installieren.

Java 210

https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Informationen zur Aktualisierung Ihrer Version von finden Sie unter Migration von Version 1.x auf
2.x von. AWS SDK für Java AWS SDK für Java

Das AWS SDK für Java ist über Apache Maven verfügbar. Sie können eine Abhängigkeit für das
gesamte AWS SDK für Java Modul oder nur für das dynamodb-enhanced Modul deklarieren.

Installieren Sie das AWS SDK für Java mit Apache Maven

• Um das gesamte AWS SDK für Java als Abhängigkeit zu importieren, deklarieren Sie es in Ihrer
pom.xml-Datei.

• Um eine Abhängigkeit nur für das Amazon DynamoDB DynamoDB-Modul in der zu erstellen
AWS SDK für Java, folgen Sie den Anweisungen zur Angabe bestimmter Module. Stellen
Sie „groupIdbis“ software.amazon.awssdk und „Bis“ ein. artifactID dynamodb-
enhanced

Note

Wenn Sie den AWS KMS Schlüsselbund oder den AWS KMS hierarchischen
Schlüsselbund verwenden, müssen Sie auch eine Abhängigkeit für das Modul erstellen.
AWS KMS Stellen Sie „bis“ software.amazon.awssdk und „groupIdBis“ ein.
artifactID kms

Installation

Sie können Version 3 installieren. x der clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB
auf folgende Weise.

Verwenden von Apache Maven

Der Amazon DynamoDB Encryption Client für Java ist über Apache Maven mit der folgenden
Abhängigkeitsdefinition verfügbar.

<dependency>
 <groupId>software.amazon.cryptography</groupId>
 <artifactId>aws-database-encryption-sdk-dynamodb</artifactId>
 <version>version-number</version>
</dependency>

Java 211

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#build-the-entire-sdk-into-your-project
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup-project-maven.html#modules-dependencies
https://maven.apache.org/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verwenden von Gradle Kotlin

Sie können Gradle verwenden, um eine Abhängigkeit vom Amazon DynamoDB Encryption Client
for Java zu deklarieren, indem Sie Folgendes zum Abschnitt mit den Abhängigkeiten Ihres Gradle-
Projekts hinzufügen.

implementation("software.amazon.cryptography:aws-database-encryption-sdk-
dynamodb:version-number")

manuell

Um die clientseitige Java-Verschlüsselungsbibliothek für DynamoDB zu installieren, klonen Sie
das -dynamodb-Repository oder laden Sie es herunter. aws-database-encryption-sdk GitHub

Nachdem Sie das SDK installiert haben, schauen Sie sich zunächst den Beispielcode in diesem
Handbuch und die Java-Beispiele im -dynamodb-Repository an. aws-database-encryption-sdk
GitHub

Verwendung der clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK umbenannt
. AWS Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB Encryption
Client.

In diesem Thema werden einige der Funktionen und Hilfsklassen in Version 3 erklärt. x der
clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB.

Einzelheiten zur Programmierung mit der clientseitigen Java-Verschlüsselungsbibliothek für
DynamoDB finden Sie in den Java-Beispielen, in den Java-Beispielen im -dynamodb-Repository
unter. aws-database-encryption-sdk GitHub

Themen

• Elementverschlüssler

• Attributaktionen im AWS Database Encryption SDK für DynamoDB

• Verschlüsselungskonfiguration im AWS Database Encryption SDK für DynamoDB

• Elemente mit dem Database Encryption SDK aktualisieren AWS

Java 212

https://gradle.org/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Signierte Sets entschlüsseln

Elementverschlüssler

Im Kern ist das AWS Database Encryption SDK für DynamoDB ein Elementverschlüsseler. Sie
können Version 3 verwenden. x der clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB,
um Ihre DynamoDB-Tabellenelemente auf folgende Weise zu verschlüsseln, zu signieren, zu
verifizieren und zu entschlüsseln.

Der erweiterte DynamoDB-Client

Sie können den DynamoDB Enhanced Client so konfigurieren,
DynamoDbEncryptionInterceptor dass er Elemente automatisch clientseitig mit Ihren
DynamoDB-Anfragen verschlüsselt und signiert. PutItem Mit dem DynamoDB Enhanced Client
können Sie Ihre Attributaktionen mithilfe einer annotierten Datenklasse definieren. Wir empfehlen,
wann immer möglich den DynamoDB Enhanced Client zu verwenden.

Der DynamoDB Enhanced Client unterstützt keine durchsuchbare Verschlüsselung.

Note

Das AWS Database Encryption SDK unterstützt keine Anmerkungen zu verschachtelten
Attributen.

Die DynamoDB-API auf niedriger Ebene

Sie können die Low-Level-DynamoDB-API so konfigurieren,
DynamoDbEncryptionInterceptor dass Elemente automatisch clientseitig mit Ihren
DynamoDB-Anfragen verschlüsselt und signiert werden. PutItem

Sie müssen die Low-Level-DynamoDB-API verwenden, um durchsuchbare Verschlüsselung zu
verwenden.

Die untergeordnete Ebene DynamoDbItemEncryptor

Die untergeordnete Ebene verschlüsselt und signiert oder entschlüsselt und verifiziert Ihre
Tabellenelemente DynamoDbItemEncryptor direkt, ohne DynamoDB aufzurufen. Es stellt keine
DynamoDB PutItem oder GetItem Anfragen. Sie können beispielsweise die untergeordnete

Java 213

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Ebene verwenden, DynamoDbItemEncryptor um ein DynamoDB-Element, das Sie bereits
abgerufen haben, direkt zu entschlüsseln und zu verifizieren.

Die untergeordnete Ebene unterstützt keine durchsuchbare
VerschlüsselungDynamoDbItemEncryptor.

Attributaktionen im AWS Database Encryption SDK für DynamoDB

Attributaktionen bestimmen, welche Attributwerte verschlüsselt und signiert werden, welche nur
signiert sind, welche signiert und in den Verschlüsselungskontext aufgenommen werden und welche
ignoriert werden.

Note

Um die SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT kryptografische
Aktion verwenden zu können, müssen Sie Version 3.3 oder höher des AWS
Database Encryption SDK verwenden. Stellen Sie die neue Version für alle
Lesegeräte bereit, bevor Sie Ihr Datenmodell so aktualisieren, dass es diese
enthältSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Wenn Sie die Low-Level-DynamoDB-API oder die Low-Level-API
verwendenDynamoDbItemEncryptor, müssen Sie Ihre Attributaktionen manuell definieren.
Wenn Sie den DynamoDB Enhanced Client verwenden, können Sie Ihre Attributaktionen entweder
manuell definieren oder Sie können eine annotierte Datenklasse verwenden, um eine zu generieren.
TableSchema Um den Konfigurationsprozess zu vereinfachen, empfehlen wir die Verwendung einer
annotierten Datenklasse. Wenn Sie eine annotierte Datenklasse verwenden, müssen Sie Ihr Objekt
nur einmal modellieren.

Note

Nachdem Sie Ihre Attributaktionen definiert haben, müssen Sie definieren, welche Attribute
von den Signaturen ausgeschlossen werden. Um das future Hinzufügen neuer Attribute
ohne Vorzeichen zu vereinfachen, empfehlen wir, ein eindeutiges Präfix (wie ":„) zu wählen,
um Ihre vorzeichenlosen Attribute zu identifizieren. Nehmen Sie dieses Präfix in den
Attributnamen für alle Attribute auf, die Sie bei der Definition Ihres DynamoDB-Schemas und
Ihrer Attributaktionen markiert DO_NOTHING haben.

Java 214

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verwenden Sie eine Datenklasse mit Anmerkungen

Verwenden Sie eine annotierte Datenklasse, um Ihre Attributaktionen mit dem DynamoDB Enhanced
Client und zu spezifizieren. DynamoDbEncryptionInterceptor Das AWS Database Encryption
SDK für DynamoDB verwendet die standardmäßigen DynamoDB-Attributanmerkungen, die den
Attributtyp definieren, um zu bestimmen, wie ein Attribut geschützt werden soll. Standardmäßig sind
alle Attribute verschlüsselt und signiert, mit Ausnahme der Primärschlüssel, die zwar signiert, aber
nicht verschlüsselt sind.

Note

Um die SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT kryptografische
Aktion verwenden zu können, müssen Sie Version 3.3 oder höher des Database
Encryption SDK verwenden. AWS Stellen Sie die neue Version für alle
Lesegeräte bereit, bevor Sie Ihr Datenmodell so aktualisieren, dass es diese
enthältSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Weitere Hinweise zu den aws-database-encryption-sdk DynamoDB Enhanced Client-Anmerkungen
finden Sie unter SimpleClass GitHub .java im -dynamodb-Repository unter.

Standardmäßig sind Primärschlüsselattribute signiert, aber nicht verschlüsselt (SIGN_ONLY),
und alle anderen Attribute sind verschlüsselt und signiert (). ENCRYPT_AND_SIGN Wenn Sie
Attribute als definierenSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, müssen dies auch
die Partitions- und Sortierattribute seinSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.
Um Ausnahmen anzugeben, verwenden Sie die Verschlüsselungsanmerkungen, die in
der clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB definiert sind. Wenn Sie
beispielsweise möchten, dass ein bestimmtes Attribut nur signiert wird, verwenden Sie die
Anmerkung. @DynamoDbEncryptionSignOnly Wenn Sie möchten, dass ein bestimmtes
Attribut signiert und in den Verschlüsselungskontext aufgenommen wird, verwenden Sie
die@DynamoDbEncryptionSignAndIncludeInEncryptionContext. Wenn Sie möchten, dass
ein bestimmtes Attribut weder signiert noch verschlüsselt (DO_NOTHING) wird, verwenden Sie die
@DynamoDbEncryptionDoNothing Anmerkung.

Note

Das AWS Database Encryption SDK unterstützt keine Anmerkungen zu verschachtelten
Attributen.

Java 215

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/enhanced/dynamodb/mapper/annotations/package-summary.html
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/enhanced/dynamodb/mapper/annotations/package-summary.html
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Das folgende Beispiel zeigt die Anmerkungen, die zur Definition von
ENCRYPT_AND_SIGNSIGN_ONLY, und DO_NOTHING Attributaktionen verwendet
werden. Ein Beispiel, das die zur Definition verwendeten Anmerkungen
zeigtSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, finden Sie unter SimpleClass 4.java.

@DynamoDbBean
public class SimpleClass {

 private String partitionKey;
 private int sortKey;
 private String attribute1;
 private String attribute2;
 private String attribute3;

 @DynamoDbPartitionKey
 @DynamoDbAttribute(value = "partition_key")
 public String getPartitionKey() {
 return this.partitionKey;
 }

 public void setPartitionKey(String partitionKey) {
 this.partitionKey = partitionKey;
 }

 @DynamoDbSortKey
 @DynamoDbAttribute(value = "sort_key")
 public int getSortKey() {
 return this.sortKey;
 }

 public void setSortKey(int sortKey) {
 this.sortKey = sortKey;
 }

 public String getAttribute1() {
 return this.attribute1;
 }

 public void setAttribute1(String attribute1) {
 this.attribute1 = attribute1;
 }

 @DynamoDbEncryptionSignOnly

Java 216

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 public String getAttribute2() {
 return this.attribute2;
 }

 public void setAttribute2(String attribute2) {
 this.attribute2 = attribute2;
 }

 @DynamoDbEncryptionDoNothing
 public String getAttribute3() {
 return this.attribute3;
 }

 @DynamoDbAttribute(value = ":attribute3")
 public void setAttribute3(String attribute3) {
 this.attribute3 = attribute3;
 }

}

Verwenden Sie Ihre annotierte Datenklasse, um die zu erstellen, TableSchema wie im folgenden
Codeausschnitt gezeigt.

final TableSchema<SimpleClass> tableSchema = TableSchema.fromBean(SimpleClass.class);

Definieren Sie Ihre Attributaktionen manuell

Um Attributaktionen manuell zu spezifizieren, erstellen Sie ein Map Objekt, in dem die Name-Wert-
Paare für Attributnamen und die angegebenen Aktionen stehen.

Geben Sie ENCRYPT_AND_SIGN an, dass ein Attribut verschlüsselt und signiert werden soll.
Geben Sie SIGN_ONLY an, dass ein Attribut signiert, aber nicht verschlüsselt werden soll. Geben
Sie SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT an, dass ein Attribut signiert und in den
Verschlüsselungskontext aufgenommen werden soll. Sie können ein Attribut nicht verschlüsseln,
ohne es auch zu signieren. Geben Sie DO_NOTHING an, ob ein Attribut ignoriert werden soll.

Die Partitions- und Sortierattribute müssen entweder SIGN_ONLY oder
lautenSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Wenn Sie Attribute als
definierenSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, müssen dies auch die Partitions- und
Sortierattribute seinSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Java 217

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Note

Um die SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT kryptografische
Aktion verwenden zu können, müssen Sie Version 3.3 oder höher des AWS
Database Encryption SDK verwenden. Stellen Sie die neue Version für alle
Lesegeräte bereit, bevor Sie Ihr Datenmodell so aktualisieren, dass es diese
enthältSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be signed
attributeActionsOnEncrypt.put("partition_key",
 CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
// The sort attribute must be signed
attributeActionsOnEncrypt.put("sort_key",
 CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
attributeActionsOnEncrypt.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute3",
 CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT);
attributeActionsOnEncrypt.put(":attribute4", CryptoAction.DO_NOTHING);

Verschlüsselungskonfiguration im AWS Database Encryption SDK für DynamoDB

Wenn Sie das AWS Database Encryption SDK verwenden, müssen Sie explizit eine
Verschlüsselungskonfiguration für Ihre DynamoDB-Tabelle definieren. Die in Ihrer
Verschlüsselungskonfiguration erforderlichen Werte hängen davon ab, ob Sie Ihre Attributaktionen
manuell oder mit einer annotierten Datenklasse definiert haben.

Der folgende Ausschnitt definiert eine DynamoDB-Tabellenverschlüsselungskonfiguration unter
Verwendung des DynamoDB Enhanced Client und erlaubte unsignierte Attribute TableSchema, die
durch ein eindeutiges Präfix definiert sind.

final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)

Java 218

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .schemaOnEncrypt(tableSchema)
 // Optional: only required if you use beacons
 .search(SearchConfig.builder()
 .writeVersion(1) // MUST be 1
 .versions(beaconVersions)
 .build())
 .build());

Logischer Tabellenname

Ein logischer Tabellenname für Ihre DynamoDB-Tabelle.

Der logische Tabellenname ist kryptografisch an alle in der Tabelle gespeicherten Daten
gebunden, um DynamoDB-Wiederherstellungsvorgänge zu vereinfachen. Es wird dringend
empfohlen, Ihren DynamoDB-Tabellennamen als logischen Tabellennamen anzugeben,
wenn Sie Ihre Verschlüsselungskonfiguration zum ersten Mal definieren. Sie müssen immer
denselben logischen Tabellennamen angeben. Damit die Entschlüsselung erfolgreich ist, muss
der Name der logischen Tabelle mit dem Namen übereinstimmen, der bei der Verschlüsselung
angegeben wurde. Falls sich Ihr DynamoDB-Tabellenname nach dem Wiederherstellen Ihrer
DynamoDB-Tabelle aus einer Sicherung ändert, stellt der logische Tabellenname sicher, dass der
Entschlüsselungsvorgang die Tabelle weiterhin erkennt.

Zulässige Attribute ohne Vorzeichen

Die DO_NOTHING in Ihren Attributaktionen markierten Attribute.

Die zulässigen Attribute ohne Vorzeichen teilen dem Client mit, welche Attribute von den
Signaturen ausgeschlossen sind. Der Client geht davon aus, dass alle anderen Attribute in der
Signatur enthalten sind. Beim Entschlüsseln eines Datensatzes bestimmt der Client dann aus
den von Ihnen angegebenen zulässigen unsignierten Attributen, welche er überprüfen muss und
welche ignoriert werden sollen. Sie können kein Attribut aus Ihren zulässigen Attributen ohne
Vorzeichen entfernen.

Sie können die zulässigen Attribute ohne Vorzeichen explizit definieren, indem Sie ein Array
erstellen, das alle Ihre DO_NOTHING Attribute auflistet. Sie können bei der Benennung Ihrer
DO_NOTHING Attribute auch ein eindeutiges Präfix angeben und das Präfix verwenden, um dem
Client mitzuteilen, welche Attribute vorzeichenlos sind. Wir empfehlen dringend, ein eindeutiges
Präfix anzugeben, da dies das Hinzufügen eines neuen DO_NOTHING Attributs in der future
vereinfacht. Weitere Informationen finden Sie unter Aktualisierung Ihres Datenmodells.

Java 219

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Wenn Sie kein Präfix für alle DO_NOTHING Attribute angeben, können Sie ein
allowedUnsignedAttributes Array konfigurieren, das explizit alle Attribute auflistet, von
denen der Client erwarten sollte, dass sie nicht signiert sind, wenn er sie bei der Entschlüsselung
findet. Sie sollten Ihre erlaubten vorzeichenlosen Attribute nur dann explizit definieren, wenn dies
unbedingt erforderlich ist.

Suchkonfiguration (optional)

Das SearchConfig definiert die Beacon-Version.

Der SearchConfig muss angegeben werden, um durchsuchbare Verschlüsselung oder signierte
Beacons verwenden zu können.

Algorithm Suite (optional)

Die algorithmSuiteId definiert, welche Algorithmus-Suite das AWS Database Encryption SDK
verwendet.

Sofern Sie nicht explizit eine alternative Algorithmussuite angeben, verwendet das AWS Database
Encryption SDK die Standard-Algorithmussuite. Die Standard-Algorithmussuite verwendet den
AES-GCM-Algorithmus mit Schlüsselableitung, digitalen Signaturen und Schlüsselzusage.
Obwohl die Standard-Algorithmus-Suite wahrscheinlich für die meisten Anwendungen geeignet
ist, können Sie auch eine alternative Algorithmussuite wählen. Einige Vertrauensmodelle
würden beispielsweise durch eine Algorithmus-Suite ohne digitale Signaturen erfüllt. Hinweise
zu den Algorithmus-Suites, die das AWS Database Encryption SDK unterstützt, finden Sie
unterUnterstützte Algorithmus-Suiten im AWS Database Encryption SDK.

Um die AES-GCM-Algorithmussuite ohne digitale ECDSA-Signaturen auszuwählen, nehmen Sie
den folgenden Ausschnitt in Ihre Tabellenverschlüsselungskonfiguration auf.

.algorithmSuiteId(
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384)

Elemente mit dem Database Encryption SDK aktualisieren AWS

Das AWS Database Encryption SDK unterstützt ddb: nicht UpdateItem für Elemente, die
verschlüsselt oder signiert wurden. Um ein verschlüsseltes oder signiertes Element zu
aktualisieren, müssen Sie ddb: verwenden. PutItem Wenn Sie in Ihrer PutItem Anfrage denselben
Primärschlüssel wie ein vorhandenes Element angeben, ersetzt das neue Element das vorhandene

Java 220

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Element vollständig. Sie können CLOBBER auch verwenden, um alle Attribute beim Speichern zu
löschen und zu ersetzen, nachdem Sie Ihre Artikel aktualisiert haben.

Signierte Sets entschlüsseln

Wenn Sie in den Versionen 3.0.0 und 3.1.0 des AWS Database Encryption SDK ein Set-Typ-Attribut
als definierenSIGN_ONLY, werden die Werte des Satzes in der Reihenfolge kanonisiert, in der
sie bereitgestellt werden. DynamoDB behält die Reihenfolge der Sätze nicht bei. Daher besteht
die Möglichkeit, dass die Signaturvalidierung des Elements, das den Satz enthält, fehlschlägt.
Die Signaturvalidierung schlägt fehl, wenn die Werte des Satzes in einer anderen Reihenfolge
zurückgegeben werden, als sie dem AWS Database Encryption SDK zur Verfügung gestellt wurden,
auch wenn die Satzattribute dieselben Werte enthalten.

Note

Versionen 3.1.1 und höher des AWS Database Encryption SDK kanonisieren die Werte aller
festgelegten Typattribute, sodass die Werte in derselben Reihenfolge gelesen werden, in der
sie in DynamoDB geschrieben wurden.

Wenn die Signaturvalidierung fehlschlägt, schlägt der Entschlüsselungsvorgang fehl und es wird die
folgende Fehlermeldung zurückgegeben.

software.amazon.cryptography.dbencryptionsdk.structuredencryption.model. StructuredEncrypti
onException: Es wurde kein Empfänger-Tag gefunden.

Wenn Sie die obige Fehlermeldung erhalten und glauben, dass das Element, das Sie zu
entschlüsseln versuchen, einen Satz enthält, der mit Version 3.0.0 oder 3.1.0 signiert wurde,
finden Sie im DecryptWithPermuteVerzeichnis des aws-database-encryption-sdk -dynamodb-java-
Repositorys weitere Informationen GitHub zur erfolgreichen Validierung des Satzes.

Java-Beispiele

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK umbenannt
. AWS Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB Encryption
Client.

Java 221

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapperConfig.SaveBehavior.html#CLOBBER
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.NamingRulesDataTypes.html#HowItWorks.DataTypes.SetTypes
https://github.com/aws/aws-database-encryption-sdk-dynamodb-java/tree/v3.1.1/DecryptWithPermute

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Die folgenden Beispiele zeigen Ihnen, wie Sie die clientseitige Java-Verschlüsselungsbibliothek
für DynamoDB verwenden, um die Tabellenelemente in Ihrer Anwendung zu schützen. Weitere
Beispiele (und eigene Beispiele) finden Sie in den Java-Beispielen im -dynamodb-Repository unter
aws-database-encryption-sdk. GitHub

Die folgenden Beispiele zeigen, wie die clientseitige Java-Verschlüsselungsbibliothek für DynamoDB
in einer neuen, nicht aufgefüllten Amazon DynamoDB-Tabelle konfiguriert wird. Wenn Sie Ihre
vorhandenen Amazon DynamoDB-Tabellen für die clientseitige Verschlüsselung konfigurieren
möchten, finden Sie weitere Informationen unter. Fügen Sie Version 3.x zu einer vorhandenen
Tabelle hinzu

Themen

• Verwenden des erweiterten DynamoDB-Clients

• Verwenden der Low-Level-DynamoDB-API

• Verwenden Sie die untergeordnete Ebene DynamoDbItemEncryptor

Verwenden des erweiterten DynamoDB-Clients

Das folgende Beispiel zeigt, wie Sie den DynamoDB Enhanced Client und
DynamoDbEncryptionInterceptor mit einem AWS KMS Schlüsselbund verwenden, um
DynamoDB-Tabellenelemente als Teil Ihrer DynamoDB-API-Aufrufe zu verschlüsseln.

Sie können jeden unterstützten Schlüsselbund mit dem DynamoDB Enhanced Client verwenden, wir
empfehlen jedoch, wann immer möglich, einen der AWS KMS Schlüsselringe zu verwenden.

Note

Der DynamoDB Enhanced Client unterstützt keine durchsuchbare Verschlüsselung.
Verwenden Sie die DynamoDbEncryptionInterceptor zusammen mit der Low-Level-
DynamoDB-API, um eine durchsuchbare Verschlüsselung zu verwenden.

Sehen Sie sich das vollständige Codebeispiel an: .java EnhancedPutGetExample

Schritt 1: Erstellen Sie den Schlüsselbund AWS KMS

Das folgende Beispiel verwendetCreateAwsKmsMrkMultiKeyring, um einen AWS KMS
Schlüsselbund mit einem symmetrischen Verschlüsselungs-KMS-Schlüssel zu erstellen. Die

Java 222

https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/EnhancedPutGetExample.java

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

CreateAwsKmsMrkMultiKeyring Methode stellt sicher, dass der Schlüsselbund sowohl
Schlüssel mit einer Region als auch Schlüssel mit mehreren Regionen korrekt verarbeitet.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Schritt 2: Erstellen Sie ein Tabellenschema aus der annotierten Datenklasse

Im folgenden Beispiel wird die annotierte Datenklasse verwendet, um die zu erstellen.
TableSchema

In diesem Beispiel wird davon ausgegangen, dass die mit Anmerkungen versehenen
Datenklassen- und Attributaktionen mithilfe der SimpleClass Datei .java definiert wurden. Weitere
Hinweise zum Kommentieren Ihrer Attributaktionen finden Sie unter. Verwenden Sie eine
Datenklasse mit Anmerkungen

Note

Das AWS Database Encryption SDK unterstützt keine Anmerkungen zu verschachtelten
Attributen.

final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

Schritt 3: Definieren Sie, welche Attribute von den Signaturen ausgeschlossen werden

Im folgenden Beispiel wird davon ausgegangen, dass alle DO_NOTHING Attribute das eindeutige
Präfix ":" haben, und verwendet dieses Präfix, um die zulässigen Attribute ohne Vorzeichen
zu definieren. Der Client geht davon aus, dass alle Attributnamen mit dem Präfix ":" von den
Signaturen ausgeschlossen sind. Weitere Informationen finden Sie unter Allowed unsigned
attributes.

final String unsignedAttrPrefix = ":";

Java 223

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-adv-features-nested.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schritt 4: Erstellen Sie die Verschlüsselungskonfiguration

Das folgende Beispiel definiert eine tableConfigs Map, die die Verschlüsselungskonfiguration
für die DynamoDB-Tabelle darstellt.

In diesem Beispiel wird der DynamoDB-Tabellenname als logischer Tabellenname angegeben.
Es wird dringend empfohlen, Ihren DynamoDB-Tabellennamen als logischen Tabellennamen
anzugeben, wenn Sie Ihre Verschlüsselungskonfiguration zum ersten Mal definieren. Weitere
Informationen finden Sie unter Verschlüsselungskonfiguration im AWS Database Encryption SDK
für DynamoDB.

Note

Um durchsuchbare Verschlüsselung oder signierte Beacons zu verwenden, müssen Sie
die auch SearchConfigin Ihre Verschlüsselungskonfiguration aufnehmen.

final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .schemaOnEncrypt(tableSchema)
 .build());

Schritt 5: Erstellt das DynamoDbEncryptionInterceptor

Im folgenden Beispiel wird DynamoDbEncryptionInterceptor mit dem tableConfigs aus
Schritt 4 ein neues erstellt.

final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

Java 224

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schritt 6: Einen neuen AWS SDK-DynamoDB-Client erstellen

Im folgenden Beispiel wird ein neuer AWS SDK-DynamoDB-Client mit dem interceptor aus
Schritt 5 erstellt.

final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

Schritt 7: DynamoDB Enhanced Client erstellen und eine Tabelle erstellen

Im folgenden Beispiel wird der DynamoDB Enhanced Client mithilfe des AWS SDK-DynamoDB-
Clients erstellt, der in Schritt 6 erstellt wurde, und es wird eine Tabelle mit der annotierten
Datenklasse erstellt.

final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);

Schritt 8: Verschlüsseln und signieren Sie ein Tabellenelement

Im folgenden Beispiel wird mithilfe des DynamoDB Enhanced Client ein Element in die
DynamoDB-Tabelle eingefügt. Das Element wird clientseitig verschlüsselt und signiert, bevor es
an DynamoDB gesendet wird.

final SimpleClass item = new SimpleClass();
item.setPartitionKey("EnhancedPutGetExample");
item.setSortKey(0);
item.setAttribute1("encrypt and sign me!");
item.setAttribute2("sign me!");
item.setAttribute3("ignore me!");

table.putItem(item);

Java 225

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verwenden der Low-Level-DynamoDB-API

Das folgende Beispiel zeigt, wie Sie die Low-Level-DynamoDB-API mit einem AWS KMS
Schlüsselbund verwenden, um Elemente automatisch clientseitig mit Ihren DynamoDB-Anfragen zu
verschlüsseln und zu signieren. PutItem

Sie können jeden unterstützten Schlüsselbund verwenden, wir empfehlen jedoch, wann immer
möglich, einen der Schlüsselbunde zu verwenden. AWS KMS

Sehen Sie sich das vollständige Codebeispiel an: .java BasicPutGetExample

Schritt 1: Erstellen Sie den Schlüsselbund AWS KMS

Das folgende Beispiel verwendetCreateAwsKmsMrkMultiKeyring, um einen AWS KMS
Schlüsselbund mit einem symmetrischen Verschlüsselungs-KMS-Schlüssel zu erstellen. Die
CreateAwsKmsMrkMultiKeyring Methode stellt sicher, dass der Schlüsselbund sowohl
Schlüssel mit einer Region als auch Schlüssel mit mehreren Regionen korrekt verarbeitet.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Schritt 2: Konfigurieren Sie Ihre Attributaktionen

Das folgende Beispiel definiert eine attributeActionsOnEncrypt Map, die Beispiel-
Attributaktionen für ein Tabellenelement darstellt.

Note

Das folgende Beispiel definiert keine Attribute
alsSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Wenn
Sie SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribute
angeben, müssen auch die Partitions- und Sortierattribute angegeben
werdenSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Java 226

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/BasicPutGetExample.java

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("partition_key", CryptoAction.SIGN_ONLY);
// The sort attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("sort_key", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put(":attribute3", CryptoAction.DO_NOTHING);

Schritt 3: Definieren Sie, welche Attribute von den Signaturen ausgeschlossen werden

Im folgenden Beispiel wird davon ausgegangen, dass alle DO_NOTHING Attribute das eindeutige
Präfix ":" haben, und verwendet dieses Präfix, um die zulässigen Attribute ohne Vorzeichen
zu definieren. Der Client geht davon aus, dass alle Attributnamen mit dem Präfix ":" von den
Signaturen ausgeschlossen sind. Weitere Informationen finden Sie unter Allowed unsigned
attributes.

final String unsignedAttrPrefix = ":";

Schritt 4: Definieren Sie die Konfiguration der DynamoDB-Tabellenverschlüsselung

Das folgende Beispiel definiert eine tableConfigs Map, die die Verschlüsselungskonfiguration
für diese DynamoDB-Tabelle darstellt.

In diesem Beispiel wird der DynamoDB-Tabellenname als logischer Tabellenname angegeben.
Es wird dringend empfohlen, Ihren DynamoDB-Tabellennamen als logischen Tabellennamen
anzugeben, wenn Sie Ihre Verschlüsselungskonfiguration zum ersten Mal definieren. Weitere
Informationen finden Sie unter Verschlüsselungskonfiguration im AWS Database Encryption SDK
für DynamoDB.

Note

Um durchsuchbare Verschlüsselung oder signierte Beacons zu verwenden, müssen Sie
die auch SearchConfigin Ihre Verschlüsselungskonfiguration aufnehmen.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)

Java 227

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .attributeActionsOnEncrypt(attributeActionsOnEncrypt)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .build();
tableConfigs.put(ddbTableName, config);

Schritt 5: Erstellen Sie das DynamoDbEncryptionInterceptor

Im folgenden Beispiel wird das DynamoDbEncryptionInterceptor mit dem tableConfigs
aus Schritt 4 erstellt.

DynamoDbEncryptionInterceptor interceptor = DynamoDbEncryptionInterceptor.builder()
 .config(DynamoDbTablesEncryptionConfig.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build())
 .build();

Schritt 6: Einen neuen AWS SDK-DynamoDB-Client erstellen

Im folgenden Beispiel wird ein neuer AWS SDK-DynamoDB-Client mit dem interceptor aus
Schritt 5 erstellt.

final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

Schritt 7: Verschlüsseln und Signieren eines DynamoDB-Tabellenelements

Das folgende Beispiel definiert eine item Map, die ein Beispieltabellenelement darstellt, und
platziert das Element in der DynamoDB-Tabelle. Das Element wird clientseitig verschlüsselt und
signiert, bevor es an DynamoDB gesendet wird.

final HashMap<String, AttributeValue> item = new HashMap<>();
item.put("partition_key", AttributeValue.builder().s("BasicPutGetExample").build());
item.put("sort_key", AttributeValue.builder().n("0").build());
item.put("attribute1", AttributeValue.builder().s("encrypt and sign me!").build());
item.put("attribute2", AttributeValue.builder().s("sign me!").build());

Java 228

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

item.put(":attribute3", AttributeValue.builder().s("ignore me!").build());

final PutItemRequest putRequest = PutItemRequest.builder()
 .tableName(ddbTableName)
 .item(item)
 .build();

final PutItemResponse putResponse = ddb.putItem(putRequest);

Verwenden Sie die untergeordnete Ebene DynamoDbItemEncryptor

Das folgende Beispiel zeigt, wie Sie die untergeordnete Ebene DynamoDbItemEncryptor mit
einem AWS KMS Schlüsselbund verwenden, um Tabellenelemente direkt zu verschlüsseln und zu
signieren. Das DynamoDbItemEncryptor fügt das Element nicht in Ihre DynamoDB-Tabelle ein.

Sie können jeden unterstützten Schlüsselbund mit dem DynamoDB Enhanced Client verwenden, wir
empfehlen jedoch, wann immer möglich, einen der AWS KMS Schlüsselringe zu verwenden.

Note

Die untergeordnete Ebene unterstützt keine durchsuchbare Verschlüsselung.
DynamoDbItemEncryptor Verwenden Sie die DynamoDbEncryptionInterceptor
zusammen mit der Low-Level-DynamoDB-API, um eine durchsuchbare Verschlüsselung zu
verwenden.

Sehen Sie sich das vollständige Codebeispiel an: .java ItemEncryptDecryptExample

Schritt 1: Erstellen Sie den Schlüsselbund AWS KMS

Das folgende Beispiel verwendetCreateAwsKmsMrkMultiKeyring, um einen AWS KMS
Schlüsselbund mit einem symmetrischen Verschlüsselungs-KMS-Schlüssel zu erstellen. Die
CreateAwsKmsMrkMultiKeyring Methode stellt sicher, dass der Schlüsselbund sowohl
Schlüssel mit einer Region als auch Schlüssel mit mehreren Regionen korrekt verarbeitet.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()

Java 229

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/itemencryptor/ItemEncryptDecryptExample.java

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Schritt 2: Konfigurieren Sie Ihre Attributaktionen

Das folgende Beispiel definiert eine attributeActionsOnEncrypt Map, die Beispiel-
Attributaktionen für ein Tabellenelement darstellt.

Note

Das folgende Beispiel definiert keine Attribute
alsSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Wenn
Sie SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribute
angeben, müssen auch die Partitions- und Sortierattribute angegeben
werdenSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

final Map<String, CryptoAction> attributeActionsOnEncrypt = new HashMap<>();
// The partition attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("partition_key", CryptoAction.SIGN_ONLY);
// The sort attribute must be SIGN_ONLY
attributeActionsOnEncrypt.put("sort_key", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
attributeActionsOnEncrypt.put("attribute2", CryptoAction.SIGN_ONLY);
attributeActionsOnEncrypt.put(":attribute3", CryptoAction.DO_NOTHING);

Schritt 3: Definieren Sie, welche Attribute von den Signaturen ausgeschlossen werden

Im folgenden Beispiel wird davon ausgegangen, dass alle DO_NOTHING Attribute das eindeutige
Präfix ":" haben, und verwendet dieses Präfix, um die zulässigen Attribute ohne Vorzeichen
zu definieren. Der Client geht davon aus, dass alle Attributnamen mit dem Präfix ":" von den
Signaturen ausgeschlossen sind. Weitere Informationen finden Sie unter Allowed unsigned
attributes.

final String unsignedAttrPrefix = ":";

Schritt 4: Definieren Sie die DynamoDbItemEncryptor Konfiguration

Das folgende Beispiel definiert die Konfiguration für dieDynamoDbItemEncryptor.

Java 230

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

In diesem Beispiel wird der DynamoDB-Tabellenname als logischer Tabellenname angegeben.
Es wird dringend empfohlen, Ihren DynamoDB-Tabellennamen als logischen Tabellennamen
anzugeben, wenn Sie Ihre Verschlüsselungskonfiguration zum ersten Mal definieren. Weitere
Informationen finden Sie unter Verschlüsselungskonfiguration im AWS Database Encryption SDK
für DynamoDB.

final DynamoDbItemEncryptorConfig config = DynamoDbItemEncryptorConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .attributeActionsOnEncrypt(attributeActionsOnEncrypt)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 .build();

Schritt 5: Erstellen Sie das DynamoDbItemEncryptor

Im folgenden Beispiel wird DynamoDbItemEncryptor mit dem config aus Schritt 4 ein neues
erstellt.

final DynamoDbItemEncryptor itemEncryptor = DynamoDbItemEncryptor.builder()
 .DynamoDbItemEncryptorConfig(config)
 .build();

Schritt 6: Verschlüsseln und signieren Sie ein Tabellenelement direkt

Im folgenden Beispiel wird ein Element direkt verschlüsselt und signiert mit dem.
DynamoDbItemEncryptor Das DynamoDbItemEncryptor fügt das Element nicht in Ihre
DynamoDB-Tabelle ein.

final Map<String, AttributeValue> originalItem = new HashMap<>();
originalItem.put("partition_key",
 AttributeValue.builder().s("ItemEncryptDecryptExample").build());
originalItem.put("sort_key", AttributeValue.builder().n("0").build());
originalItem.put("attribute1", AttributeValue.builder().s("encrypt and sign
 me!").build());
originalItem.put("attribute2", AttributeValue.builder().s("sign me!").build());
originalItem.put(":attribute3", AttributeValue.builder().s("ignore me!").build());

final Map<String, AttributeValue> encryptedItem = itemEncryptor.EncryptItem(
 EncryptItemInput.builder()

Java 231

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .plaintextItem(originalItem)
 .build()
).encryptedItem();

Konfigurieren Sie eine bestehende DynamoDB-Tabelle für die Verwendung des AWS
Database Encryption SDK für DynamoDB

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK umbenannt
. AWS Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB Encryption
Client.

Mit Version 3. x der clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB können Sie Ihre
vorhandenen Amazon DynamoDB-Tabellen für die clientseitige Verschlüsselung konfigurieren.
Dieses Thema enthält Anleitungen zu den drei Schritten, die Sie ausführen müssen, um Version 3
hinzuzufügen. x zu einer vorhandenen, gefüllten DynamoDB-Tabelle.

Voraussetzungen

Version 3. x der clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB erfordert den
DynamoDB Enhanced Client, der unter bereitgestellt wird. AWS SDK for Java 2.x Wenn Sie Dynamo
weiterhin verwendenDBMapper, müssen Sie auf den DynamoDB AWS SDK for Java 2.x Enhanced
Client migrieren.

Folgen Sie den Anweisungen für die Migration von Version 1.x auf 2.x von. AWS SDK für Java

Folgen Sie dann den Anweisungen unter Erste Schritte mit der DynamoDB Enhanced Client API.

Bevor Sie Ihre Tabelle für die Verwendung der clientseitigen Java-Verschlüsselungsbibliothek für
DynamoDB konfigurieren, müssen Sie eine Datenklasse TableSchema mit Anmerkungen generieren
und einen erweiterten Client erstellen.

Schritt 1: Bereiten Sie das Lesen und Schreiben verschlüsselter Elemente vor

Gehen Sie wie folgt vor, um Ihren AWS Database Encryption SDK-Client auf das Lesen und
Schreiben verschlüsselter Elemente vorzubereiten. Nachdem Sie die folgenden Änderungen
vorgenommen haben, liest und schreibt Ihr Client weiterhin Klartext-Elemente. Neue Elemente,
die in die Tabelle geschrieben werden, werden nicht verschlüsselt oder signiert, aber es kann
verschlüsselte Elemente entschlüsseln, sobald sie erscheinen. Diese Änderungen bereiten den

Java 232

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html#ddb-en-client-gs-tableschema-anno-bean
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Client darauf vor, mit der Verschlüsselung neuer Elemente zu beginnen. Die folgenden Änderungen
müssen auf jedem Lesegerät installiert werden, bevor Sie mit dem nächsten Schritt fortfahren.

1. Definieren Sie Ihre Attributaktionen

Aktualisieren Sie Ihre Datenklasse mit Anmerkungen, sodass sie Attributaktionen enthält, die
definieren, welche Attributwerte verschlüsselt und signiert werden, welche nur signiert und welche
ignoriert werden.

Weitere Hinweise zu den aws-database-encryption-sdk DynamoDB Enhanced Client-
Anmerkungen finden Sie unter SimpleClass GitHub.java im -dynamodb-Repository unter.

Standardmäßig sind Primärschlüsselattribute signiert, aber nicht verschlüsselt (SIGN_ONLY),
und alle anderen Attribute sind verschlüsselt und signiert (). ENCRYPT_AND_SIGN Um
Ausnahmen anzugeben, verwenden Sie die Verschlüsselungsanmerkungen, die in der
clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB definiert sind. Wenn Sie
beispielsweise möchten, dass ein bestimmtes Attribut nur ein Zeichen sein soll, verwenden Sie
die Anmerkung. @DynamoDbEncryptionSignOnly Wenn Sie möchten, dass ein bestimmtes
Attribut signiert und in den Verschlüsselungskontext aufgenommen wird, verwenden Sie die
@DynamoDbEncryptionSignAndIncludeInEncryptionContext Anmerkung. Wenn Sie
möchten, dass ein bestimmtes Attribut weder signiert noch verschlüsselt (DO_NOTHING) wird,
verwenden Sie die @DynamoDbEncryptionDoNothing Anmerkung.

Note

Wenn Sie SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribute
angeben, müssen dies auch die Partitions- und Sortierattribute
seinSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Ein
Beispiel, das die zur Definition verwendeten Anmerkungen
zeigtSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, finden Sie unter
SimpleClass4.java.

Ein Beispiel für Anmerkungen finden Sie unter. Verwenden Sie eine Datenklasse mit
Anmerkungen

2. Definieren Sie, welche Attribute von den Signaturen ausgeschlossen werden

Das folgende Beispiel geht davon aus, dass alle DO_NOTHING Attribute das eindeutige Präfix ":"
haben, und verwendet dieses Präfix, um die zulässigen Attribute ohne Vorzeichen zu definieren.

Java 233

https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass.java
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Der Client geht davon aus, dass alle Attributnamen mit dem Präfix ":" von den Signaturen
ausgeschlossen sind. Weitere Informationen finden Sie unter Allowed unsigned attributes.

final String unsignedAttrPrefix = ":";

3. Erstellen Sie einen Schlüsselbund

Im folgenden Beispiel wird ein AWS KMS Schlüsselbund erstellt. Der AWS KMS Schlüsselbund
verwendet symmetrische Verschlüsselung oder asymmetrisches RSA, um Datenschlüssel AWS
KMS keys zu generieren, zu verschlüsseln und zu entschlüsseln.

In diesem Beispiel wird ein AWS KMS Schlüsselbund CreateMrkMultiKeyring
mit einem KMS-Schlüssel mit symmetrischer Verschlüsselung erstellt. Die
CreateAwsKmsMrkMultiKeyring Methode stellt sicher, dass der Schlüsselbund sowohl
Schlüssel mit einer Region als auch Schlüssel mit mehreren Regionen korrekt verarbeitet.

final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

4. Definieren Sie die Konfiguration der DynamoDB-Tabellenverschlüsselung

Das folgende Beispiel definiert eine tableConfigs Map, die die Verschlüsselungskonfiguration
für diese DynamoDB-Tabelle darstellt.

In diesem Beispiel wird der DynamoDB-Tabellenname als logischer Tabellenname angegeben.
Es wird dringend empfohlen, Ihren DynamoDB-Tabellennamen als logischen Tabellennamen
anzugeben, wenn Sie Ihre Verschlüsselungskonfiguration zum ersten Mal definieren. Weitere
Informationen finden Sie unter Verschlüsselungskonfiguration im AWS Database Encryption SDK
für DynamoDB.

Sie müssen FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT als Klartext-Override
angeben. Diese Richtlinie liest und schreibt weiterhin Klartext-Elemente, liest verschlüsselte
Elemente und bereitet den Client darauf vor, verschlüsselte Elemente zu schreiben.

Java 234

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .schemaOnEncrypt(tableSchema)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)

 .plaintextOverride(PlaintextOverride.FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT)
 .build();
tableConfigs.put(ddbTableName, config);

5. Erstellen der DynamoDbEncryptionInterceptor

Im folgenden Beispiel wird das DynamoDbEncryptionInterceptor mit dem tableConfigs
aus Schritt 3 erstellten erstellt.

DynamoDbEncryptionInterceptor interceptor = DynamoDbEncryptionInterceptor.builder()
 .config(DynamoDbTablesEncryptionConfig.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build())
 .build();

Schritt 2: Schreiben Sie verschlüsselte und signierte Elemente

Aktualisieren Sie die Klartext-Richtlinie in Ihrer DynamoDbEncryptionInterceptor Konfiguration,
damit der Client verschlüsselte und signierte Elemente schreiben kann. Nachdem Sie die folgende
Änderung implementiert haben, verschlüsselt und signiert der Client neue Elemente auf der
Grundlage der Attributaktionen, die Sie in Schritt 1 konfiguriert haben. Der Client kann Klartext-
Elemente sowie verschlüsselte und signierte Elemente lesen.

Bevor Sie mit Schritt 3 fortfahren, müssen Sie alle vorhandenen Klartextelemente in Ihrer Tabelle
verschlüsseln und signieren. Es gibt keine einzelne Metrik oder Abfrage, die Sie ausführen können,
um Ihre vorhandenen Klartextelemente schnell zu verschlüsseln. Verwenden Sie den Prozess,
der für Ihr System am sinnvollsten ist. Sie könnten beispielsweise einen asynchronen Prozess
verwenden, der die Tabelle langsam scannt und dann die Elemente mithilfe der von Ihnen definierten
Attributaktionen und der Verschlüsselungskonfiguration neu schreibt. Um die Klartext-Elemente
in Ihrer Tabelle zu identifizieren, empfehlen wir, nach allen Elementen zu suchen, die nicht die

Java 235

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

aws_dbe_foot Attribute aws_dbe_head und enthalten, die das AWS Database Encryption SDK
Elementen hinzufügt, wenn sie verschlüsselt und signiert sind.

Im folgenden Beispiel wird die Konfiguration der Tabellenverschlüsselung aus Schritt 1 aktualisiert.
Sie müssen die Klartext-Override mit FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT
aktualisieren. Diese Richtlinie liest weiterhin Klartext-Elemente, liest und schreibt aber auch
verschlüsselte Elemente. Erstellen Sie ein neues DynamoDbEncryptionInterceptor mit dem
aktualisiertentableConfigs.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .schemaOnEncrypt(tableSchema)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)

 .plaintextOverride(PlaintextOverride.FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT)
 .build();
tableConfigs.put(ddbTableName, config);

Schritt 3: Nur verschlüsselte und signierte Elemente lesen

Nachdem Sie alle Ihre Elemente verschlüsselt und signiert haben, aktualisieren Sie die Klartext-
Überschreibung in Ihrer DynamoDbEncryptionInterceptor Konfiguration, sodass der
Client nur verschlüsselte und signierte Elemente lesen und schreiben kann. Nachdem Sie die
folgende Änderung implementiert haben, verschlüsselt und signiert der Client neue Elemente auf
der Grundlage der Attributaktionen, die Sie in Schritt 1 konfiguriert haben. Der Client kann nur
verschlüsselte und signierte Elemente lesen.

Im folgenden Beispiel wird die Konfiguration der Tabellenverschlüsselung aus Schritt 2
aktualisiert. Sie können entweder die Klartext-Override mit der Klartext-Richtlinie aktualisieren
FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT oder die Klartext-Richtlinie aus Ihrer
Konfiguration entfernen. Der Client liest und schreibt standardmäßig nur verschlüsselte und
signierte Elemente. Erstellen Sie ein neues DynamoDbEncryptionInterceptor mit dem
aktualisiertentableConfigs.

final Map<String, DynamoDbTableEncryptionConfig> tableConfigs = new HashMap<>();
final DynamoDbTableEncryptionConfig config = DynamoDbTableEncryptionConfig.builder()

Java 236

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .logicalTableName(ddbTableName)
 .partitionKeyName("partition_key")
 .sortKeyName("sort_key")
 .schemaOnEncrypt(tableSchema)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributePrefix(unsignedAttrPrefix)
 // Optional: you can also remove the plaintext policy from your configuration

 .plaintextOverride(PlaintextOverride.FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT)
 .build();
tableConfigs.put(ddbTableName, config);

Migrieren Sie auf Version 3.x der clientseitigen Java-Verschlüsselungsbibliothek für
DynamoDB

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Version 3. x der clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB ist eine grundlegende
Neufassung der 2. x-Codebasis. Es enthält viele Updates, wie z. B. ein neues strukturiertes
Datenformat, verbesserte Mehrmandantenunterstützung, nahtlose Schemaänderungen und
Unterstützung für durchsuchbare Verschlüsselung. Dieses Thema enthält Anleitungen zur Migration
Ihres Codes auf Version 3. x.

Migration von Version 1.x auf 2.x

Migrieren Sie auf Version 2. x bevor Sie auf Version 3 migrieren. x. Ausführung
2. x hat das Symbol für den neuesten Anbieter von MostRecentProvider zu
geändertCachingMostRecentProvider. Wenn Sie derzeit Version 1 verwenden. x der
clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB mit dem MostRecentProvider
Symbol, auf das Sie den Symbolnamen in Ihrem Code aktualisieren müssen.
CachingMostRecentProvider Weitere Informationen finden Sie unter Updates für den neuesten
Anbieter.

Migration von Version 2.x auf 3.x

Die folgenden Verfahren beschreiben, wie Sie Ihren Code von Version 2 migrieren. x auf Version 3. x
der clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB.

Java 237

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schritt 1. Bereiten Sie sich darauf vor, Elemente im neuen Format zu lesen

Gehen Sie wie folgt vor, um Ihren AWS Database Encryption SDK-Client darauf vorzubereiten,
Elemente im neuen Format zu lesen. Nachdem Sie die folgenden Änderungen implementiert
haben, wird sich Ihr Client weiterhin genauso verhalten wie in Version 2. x. Ihr Kunde wird weiterhin
Elemente in der Version 2 lesen und schreiben. X-Format, aber diese Änderungen bereiten den
Client darauf vor, Elemente im neuen Format zu lesen.

Aktualisieren Sie Ihre Version AWS SDK für Java auf Version 2.x

Version 3. x der clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB erfordert den
DynamoDB Enhanced Client. Der DynamoDB Enhanced Client ersetzt den in früheren Versionen
DBMapper verwendeten Dynamo. Um den erweiterten Client zu verwenden, müssen Sie den
verwenden. AWS SDK for Java 2.x

Folgen Sie den Anweisungen für die Migration von Version 1.x auf 2.x von. AWS SDK für Java

Weitere Informationen darüber, welche AWS SDK for Java 2.x Module erforderlich sind, finden Sie
unter. Voraussetzungen

Konfigurieren Sie Ihren Client so, dass er Elemente liest, die mit älteren Versionen verschlüsselt
wurden

Die folgenden Verfahren bieten einen Überblick über die Schritte, die im folgenden Codebeispiel
demonstriert werden.

1. Erstellen Sie einen Schlüsselbund.

Keyrings und Cryptographic Materials Manager ersetzen die Anbieter für kryptografisches
Material, die in früheren Versionen der clientseitigen Java-Verschlüsselungsbibliothek für
DynamoDB verwendet wurden.

Important

Die Umschließungsschlüssel, die Sie bei der Erstellung eines Schlüsselbunds
angeben, müssen dieselben Wickelschlüssel sein, die Sie in Version 2 mit Ihrem
Anbieter für kryptografisches Material verwendet haben. x.

2. Erstellen Sie ein Tabellenschema über Ihrer annotierten Klasse.

Java 238

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/dynamodb-enhanced-client.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

In diesem Schritt werden die Attributaktionen definiert, die verwendet werden, wenn Sie mit
dem Schreiben von Elementen im neuen Format beginnen.

Anleitungen zur Verwendung des neuen DynamoDB Enhanced Client finden Sie unter
Generate a TableSchema im AWS SDK für Java Developer Guide.

Im folgenden Beispiel wird davon ausgegangen, dass Sie Ihre annotierte Klasse aus Version
2 aktualisiert haben. x verwendet die neuen Anmerkungen zu Attributaktionen. Weitere
Hinweise zum Kommentieren Ihrer Attributaktionen finden Sie unter. Verwenden Sie eine
Datenklasse mit Anmerkungen

Note

Wenn Sie SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
Attribute angeben, müssen auch die Partitions- und Sortierattribute
angegeben werdenSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.
Ein Beispiel, das die zur Definition verwendeten Anmerkungen
zeigtSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, finden Sie unter
SimpleClass4.java.

3. Definieren Sie, welche Attribute von der Signatur ausgeschlossen werden.

4. Konfigurieren Sie eine explizite Zuordnung der Attributaktionen, die in Ihrer modellierten
Klasse von Version 2.x konfiguriert sind.

In diesem Schritt werden die Attributaktionen definiert, die zum Schreiben von Elementen im
alten Format verwendet wurden.

5. Konfigurieren DynamoDBEncryptor Sie die, die Sie in Version 2 verwendet haben. x der
clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB.

6. Konfigurieren Sie das ältere Verhalten.

7. Erstellen Sie einen DynamoDbEncryptionInterceptor.

8. Erstellen Sie einen neuen AWS SDK-DynamoDB-Client.

9. Erstellen Sie die DynamoDBEnhancedClient und erstellen Sie eine Tabelle mit Ihrer
modellierten Klasse.

Weitere Informationen zum DynamoDB Enhanced Client finden Sie unter Erstellen eines
erweiterten Clients.

Java 239

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-gs-tableschema.html
https://github.com/aws/aws-database-encryption-sdk-dynamodb//blob/main/Examples/runtimes/java/DynamoDbEncryption/src/main/java/software/amazon/cryptography/examples/enhanced/SimpleClass4.java
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

public class MigrationExampleStep1 {

 public static void MigrationStep1(String kmsKeyId, String ddbTableName, int
 sortReadValue) {
 // 1. Create a Keyring.
 // This example creates an AWS KMS Keyring that specifies the
 // same kmsKeyId previously used in the version 2.x configuration.
 // It uses the 'CreateMrkMultiKeyring' method to create the
 // keyring, so that the keyring can correctly handle both single
 // region and Multi-Region KMS Keys.
 // Note that this example uses the AWS SDK for Java v2 KMS client.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
 final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

 // 2. Create a Table Schema over your annotated class.
 // For guidance on using the new attribute actions
 // annotations, see SimpleClass.java in the
 // aws-database-encryption-sdk-dynamodb GitHub repository.
 // All primary key attributes must be signed but not encrypted
 // and by default all non-primary key attributes
 // are encrypted and signed (ENCRYPT_AND_SIGN).
 // If you want a particular non-primary key attribute to be signed but
 // not encrypted, use the 'DynamoDbEncryptionSignOnly' annotation.
 // If you want a particular attribute to be neither signed nor encrypted
 // (DO_NOTHING), use the 'DynamoDbEncryptionDoNothing' annotation.
 final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

 // 3. Define which attributes the client should expect to be excluded
 // from the signature when reading items.
 // This value represents all unsigned attributes across the entire
 // dataset.
 final List<String> allowedUnsignedAttributes = Arrays.asList("attribute3");

 // 4. Configure an explicit map of the attribute actions configured
 // in your version 2.x modeled class.
 final Map<String, CryptoAction> legacyActions = new HashMap<>();

Java 240

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 legacyActions.put("partition_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("sort_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
 legacyActions.put("attribute2", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute3", CryptoAction.DO_NOTHING);

 // 5. Configure the DynamoDBEncryptor that you used in version 2.x.
 final AWSKMS kmsClient = AWSKMSClientBuilder.defaultClient();
 final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kmsClient,
 kmsKeyId);
 final DynamoDBEncryptor oldEncryptor = DynamoDBEncryptor.getInstance(cmp);

 // 6. Configure the legacy behavior.
 // Input the DynamoDBEncryptor and attribute actions created in
 // the previous steps. For Legacy Policy, use
 // 'FORCE_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT'. This policy continues to
 read
 // and write items using the old format, but will be able to read
 // items written in the new format as soon as they appear.
 final LegacyOverride legacyOverride = LegacyOverride
 .builder()
 .encryptor(oldEncryptor)
 .policy(LegacyPolicy.FORCE_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT)
 .attributeActionsOnEncrypt(legacyActions)
 .build();

 // 7. Create a DynamoDbEncryptionInterceptor with the above configuration.
 final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
 tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributes(allowedUnsignedAttributes)
 .schemaOnEncrypt(tableSchema)
 .legacyOverride(legacyOverride)
 .build());
 final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

Java 241

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 // 8. Create a new AWS SDK DynamoDb client using the
 // interceptor from Step 7.
 final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

 // 9. Create the DynamoDbEnhancedClient using the AWS SDK DynamoDb client
 // created in Step 8, and create a table with your modeled class.
 final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
 final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);
 }
}

Schritt 2. Schreiben Sie Elemente im neuen Format

Nachdem Sie die Änderungen aus Schritt 1 für alle Leser bereitgestellt haben, führen Sie die
folgenden Schritte aus, um Ihren AWS Database Encryption SDK-Client so zu konfigurieren, dass
er Elemente im neuen Format schreibt. Nachdem Sie die folgenden Änderungen implementiert
haben, liest Ihr Client weiterhin Elemente im alten Format und beginnt, Elemente im neuen Format zu
schreiben und zu lesen.

Die folgenden Verfahren bieten einen Überblick über die Schritte, die im folgenden Codebeispiel
demonstriert werden.

1. Fahren Sie mit der Konfiguration Ihres Schlüsselbundes, des
TabellenschemasallowedUnsignedAttributes, der veralteten Attributaktionen und
DynamoDBEncryptor wie in Schritt 1 fort.

2. Aktualisieren Sie Ihr bisheriges Verhalten, sodass nur neue Elemente mit dem neuen Format
geschrieben werden.

3. Erstellen eines DynamoDbEncryptionInterceptor

4. Erstellen Sie einen neuen AWS SDK-DynamoDB-Client.

5. Erstellen Sie die DynamoDBEnhancedClient und erstellen Sie eine Tabelle mit Ihrer
modellierten Klasse.

Java 242

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Weitere Informationen zum DynamoDB Enhanced Client finden Sie unter Erstellen eines
erweiterten Clients.

public class MigrationExampleStep2 {

 public static void MigrationStep2(String kmsKeyId, String ddbTableName, int
 sortReadValue) {
 // 1. Continue to configure your keyring, table schema, legacy
 // attribute actions, allowedUnsignedAttributes, and
 // DynamoDBEncryptor as you did in Step 1.
 final MaterialProviders matProv = MaterialProviders.builder()
 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
 final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

 final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

 final List<String> allowedUnsignedAttributes = Arrays.asList("attribute3");

 final Map<String, CryptoAction> legacyActions = new HashMap<>();
 legacyActions.put("partition_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("sort_key", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute1", CryptoAction.ENCRYPT_AND_SIGN);
 legacyActions.put("attribute2", CryptoAction.SIGN_ONLY);
 legacyActions.put("attribute3", CryptoAction.DO_NOTHING);

 final AWSKMS kmsClient = AWSKMSClientBuilder.defaultClient();
 final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kmsClient,
 kmsKeyId);
 final DynamoDBEncryptor oldEncryptor = DynamoDBEncryptor.getInstance(cmp);

 // 2. Update your legacy behavior to only write new items using the new
 // format.
 // For Legacy Policy, use 'FORBID_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT'. This
 policy
 // continues to read items in both formats, but will only write items
 // using the new format.

Java 243

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 final LegacyOverride legacyOverride = LegacyOverride
 .builder()
 .encryptor(oldEncryptor)
 .policy(LegacyPolicy.FORBID_LEGACY_ENCRYPT_ALLOW_LEGACY_DECRYPT)
 .attributeActionsOnEncrypt(legacyActions)
 .build();

 // 3. Create a DynamoDbEncryptionInterceptor with the above configuration.
 final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
 tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributes(allowedUnsignedAttributes)
 .schemaOnEncrypt(tableSchema)
 .legacyOverride(legacyOverride)
 .build());
 final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

 // 4. Create a new AWS SDK DynamoDb client using the
 // interceptor from Step 3.
 final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

 // 5. Create the DynamoDbEnhancedClient using the AWS SDK DynamoDb Client
 created
 // in Step 4, and create a table with your modeled class.
 final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()
 .dynamoDbClient(ddb)
 .build();
 final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);
 }

Java 244

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

}

Nach der Bereitstellung der Änderungen in Schritt 2 müssen Sie alle alten Elemente in Ihrer Tabelle
erneut mit dem neuen Format verschlüsseln, bevor Sie mit Schritt 3 fortfahren können. Es gibt keine
einzelne Metrik oder Abfrage, die Sie ausführen können, um Ihre vorhandenen Elemente schnell
zu verschlüsseln. Verwenden Sie den Prozess, der für Ihr System am sinnvollsten ist. Sie könnten
beispielsweise einen asynchronen Prozess verwenden, der die Tabelle langsam scannt und dann die
Elemente mithilfe der neuen Attributaktionen und der Verschlüsselungskonfiguration, die Sie definiert
haben, neu schreibt.

Schritt 3. Nur Elemente im neuen Format lesen und schreiben

Nachdem Sie alle Elemente in Ihrer Tabelle mit dem neuen Format erneut verschlüsselt haben,
können Sie das alte Verhalten aus Ihrer Konfiguration entfernen. Gehen Sie wie folgt vor, um Ihren
Client so zu konfigurieren, dass er nur Elemente im neuen Format liest und schreibt.

Die folgenden Verfahren bieten einen Überblick über die Schritte, die im folgenden Codebeispiel
demonstriert werden.

1. Fahren Sie mit der Konfiguration Ihres Schlüsselbundes und des
allowedUnsignedAttributes Tabellenschemas wie in Schritt 1 fort. Entfernen Sie die
veralteten Attributaktionen und DynamoDBEncryptor aus Ihrer Konfiguration.

2. Erstellen Sie einen DynamoDbEncryptionInterceptor.

3. Erstellen Sie einen neuen AWS SDK-DynamoDB-Client.

4. Erstellen Sie die DynamoDBEnhancedClient und erstellen Sie eine Tabelle mit Ihrer
modellierten Klasse.

Weitere Informationen zum DynamoDB Enhanced Client finden Sie unter Erstellen eines
erweiterten Clients.

public class MigrationExampleStep3 {

 public static void MigrationStep3(String kmsKeyId, String ddbTableName, int
 sortReadValue) {
 // 1. Continue to configure your keyring, table schema,
 // and allowedUnsignedAttributes as you did in Step 1.
 // Do not include the configurations for the DynamoDBEncryptor or
 // the legacy attribute actions.
 final MaterialProviders matProv = MaterialProviders.builder()

Java 245

https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/ddb-en-client-getting-started-dynamodbTable.html#ddb-en-client-getting-started-dynamodbTable-eclient

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .MaterialProvidersConfig(MaterialProvidersConfig.builder().build())
 .build();
 final CreateAwsKmsMrkMultiKeyringInput keyringInput =
 CreateAwsKmsMrkMultiKeyringInput.builder()
 .generator(kmsKeyId)
 .build();
 final IKeyring kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

 final TableSchema<SimpleClass> schemaOnEncrypt =
 TableSchema.fromBean(SimpleClass.class);

 final List<String> allowedUnsignedAttributes = Arrays.asList("attribute3");

 // 3. Create a DynamoDbEncryptionInterceptor with the above configuration.
 // Do not configure any legacy behavior.
 final Map<String, DynamoDbEnhancedTableEncryptionConfig> tableConfigs = new
 HashMap<>();
 tableConfigs.put(ddbTableName,
 DynamoDbEnhancedTableEncryptionConfig.builder()
 .logicalTableName(ddbTableName)
 .keyring(kmsKeyring)
 .allowedUnsignedAttributes(allowedUnsignedAttributes)
 .schemaOnEncrypt(tableSchema)
 .build());
 final DynamoDbEncryptionInterceptor interceptor =
 DynamoDbEnhancedClientEncryption.CreateDynamoDbEncryptionInterceptor(
 CreateDynamoDbEncryptionInterceptorInput.builder()
 .tableEncryptionConfigs(tableConfigs)
 .build()
);

 // 4. Create a new AWS SDK DynamoDb client using the
 // interceptor from Step 3.
 final DynamoDbClient ddb = DynamoDbClient.builder()
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(interceptor)
 .build())
 .build();

 // 5. Create the DynamoDbEnhancedClient using the AWS SDK Client
 // created in Step 4, and create a table with your modeled class.
 final DynamoDbEnhancedClient enhancedClient = DynamoDbEnhancedClient.builder()

Java 246

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .dynamoDbClient(ddb)
 .build();
 final DynamoDbTable<SimpleClass> table = enhancedClient.table(ddbTableName,
 tableSchema);
 }
}

.NET

In diesem Thema wird erklärt, wie Version 3 installiert und verwendet wird. x der clientseitigen .NET-
Verschlüsselungsbibliothek für DynamoDB. Einzelheiten zur Programmierung mit dem AWS
Database Encryption SDK für DynamoDB finden Sie in den.NET-Beispielen im aws-database-
encryption-sdk -dynamodb-Repository unter. GitHub

Die clientseitige .NET-Verschlüsselungsbibliothek für DynamoDB richtet sich an Entwickler, die
Anwendungen in C# und anderen .NET-Programmiersprachen schreiben. Sie wird unter Windows,
macOS und Linux unterstützt.

Alle Programmiersprachenimplementierungen des AWS Database Encryption SDK für DynamoDB
sind interoperabel. Leere Werte für Listen- oder Zuordnungsdatentypen werden jedoch SDK
für .NET nicht unterstützt. Das heißt, wenn Sie die clientseitige Java-Verschlüsselungsbibliothek
für DynamoDB verwenden, um ein Element zu schreiben, das leere Werte für einen Listen-
oder Zuordnungsdatentyp enthält, können Sie dieses Element nicht mit der clientseitigen .NET-
Verschlüsselungsbibliothek für DynamoDB entschlüsseln und lesen.

Themen

• Installation der clientseitigen .NET-Verschlüsselungsbibliothek für DynamoDB

• Debuggen mit.NET

• Verwenden der clientseitigen .NET-Verschlüsselungsbibliothek für DynamoDB

• .NET-Beispiele

• Konfigurieren Sie eine bestehende DynamoDB-Tabelle für die Verwendung des AWS Database
Encryption SDK für DynamoDB

Installation der clientseitigen .NET-Verschlüsselungsbibliothek für DynamoDB

Die.NET-clientseitige Verschlüsselungsbibliothek für DynamoDB ist als AWS.Cryptography verfügbar.
DbEncryptionSDK. DynamoDbverpacken in NuGet. Einzelheiten zur Installation und Erstellung der
Bibliothek finden Sie in der.NET-README.md-Datei im -dynamodb-Repository. aws-database-

.NET 247

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/
https://www.nuget.org/packages/AWS.Cryptography.DbEncryptionSDK.DynamoDb/
https://www.nuget.org/packages/AWS.Cryptography.DbEncryptionSDK.DynamoDb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/DynamoDbEncryption/runtimes/net/README.md

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

encryption-sdk Die.NET-clientseitige Verschlüsselungsbibliothek für DynamoDB erfordert die
Schlüssel, SDK für .NET auch wenn Sie keine () verwenden AWS Key Management Service .AWS
KMS Die SDK für .NET wird mit dem Paket installiert. NuGet

Version 3. x der clientseitigen .NET-Verschlüsselungsbibliothek für DynamoDB unterstützt .NET 6.0
und .NET Framework net48 und höher.

Debuggen mit.NET

Die.NET-clientseitige Verschlüsselungsbibliothek für DynamoDB generiert keine Protokolle.
Ausnahmen in der clientseitigen .NET-Verschlüsselungsbibliothek für DynamoDB generieren eine
Ausnahmemeldung, aber keine Stack-Traces.

Um Ihnen beim Debuggen zu helfen, stellen Sie sicher, dass Sie die Anmeldung bei aktivieren.
SDK für .NET Mithilfe der Protokolle und Fehlermeldungen von SDK für .NET können Sie Fehler,
die in der auftreten, SDK für .NET von denen in der clientseitigen .NET-Verschlüsselungsbibliothek
für DynamoDB unterscheiden. Hilfe zur SDK für .NET Protokollierung finden Sie AWSLoggingim
Entwicklerhandbuch.AWS SDK für .NET (Um das Thema zu lesen, erweitern Sie den Abschnitt
Öffnen, um .NET Framework-Inhalte anzuzeigen.)

Verwenden der clientseitigen .NET-Verschlüsselungsbibliothek für DynamoDB

In diesem Thema werden einige der Funktionen und Hilfsklassen in Version 3 erklärt. x der
clientseitigen .NET-Verschlüsselungsbibliothek für DynamoDB.

Einzelheiten zur Programmierung mit der clientseitigen .NET-Verschlüsselungsbibliothek für
DynamoDB finden Sie in den.NET-Beispielen im -dynamodb-Repository unter. aws-database-
encryption-sdk GitHub

Themen

• Elementverschlüssler

• Attributaktionen im AWS Database Encryption SDK für DynamoDB

• Verschlüsselungskonfiguration im AWS Database Encryption SDK für DynamoDB

• Elemente mit dem Database Encryption SDK aktualisieren AWS

Elementverschlüssler

Im Kern ist das AWS Database Encryption SDK für DynamoDB ein Elementverschlüsseler. Sie
können Version 3 verwenden. x der clientseitigen .NET-Verschlüsselungsbibliothek für DynamoDB,

.NET 248

https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-config-other.html#config-setting-awslogging
https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

um Ihre DynamoDB-Tabellenelemente auf folgende Weise zu verschlüsseln, zu signieren, zu
verifizieren und zu entschlüsseln.

Das AWS Low-Level-Datenbankverschlüsselungs-SDK für die DynamoDB-API

Sie können Ihre Tabellenverschlüsselungskonfiguration verwenden, um einen DynamoDB-
Client zu erstellen, der Elemente automatisch clientseitig mit Ihren DynamoDB-Anfragen
verschlüsselt und signiert. PutItem Sie können diesen Client direkt verwenden, oder Sie können
ein Dokumentmodell oder ein Objektpersistenzmodell erstellen.

Sie müssen das AWS Low-Level-Datenbankverschlüsselungs-SDK für DynamoDB-API
verwenden, um durchsuchbare Verschlüsselung verwenden zu können.

Die untergeordnete Ebene DynamoDbItemEncryptor

Die untergeordnete Ebene verschlüsselt und signiert oder entschlüsselt und verifiziert Ihre
Tabellenelemente DynamoDbItemEncryptor direkt, ohne DynamoDB aufzurufen. Es stellt keine
DynamoDB PutItem oder GetItem Anfragen. Sie können beispielsweise die untergeordnete
Ebene verwenden, DynamoDbItemEncryptor um ein DynamoDB-Element, das Sie bereits
abgerufen haben, direkt zu entschlüsseln und zu verifizieren. Wenn Sie die untergeordnete
Ebene verwendenDynamoDbItemEncryptor, empfehlen wir die Verwendung des Low-Level-
Programmiermodells, das für die Kommunikation mit SDK für .NET DynamoDB vorgesehen ist.

Die untergeordnete Ebene unterstützt keine durchsuchbare
VerschlüsselungDynamoDbItemEncryptor.

Attributaktionen im AWS Database Encryption SDK für DynamoDB

Attributaktionen bestimmen, welche Attributwerte verschlüsselt und signiert werden, welche nur
signiert sind, welche signiert und in den Verschlüsselungskontext aufgenommen werden und welche
ignoriert werden.

Um Attributaktionen mit dem .NET-Client anzugeben, definieren Sie Attributaktionen manuell mithilfe
eines Objektmodells. Geben Sie Ihre Attributaktionen an, indem Sie ein Dictionary Objekt
erstellen, in dem die Name-Wert-Paare für Attributnamen und die angegebenen Aktionen stehen.

Geben Sie ENCRYPT_AND_SIGN an, dass ein Attribut verschlüsselt und signiert werden soll.
Geben Sie SIGN_ONLY an, dass ein Attribut signiert, aber nicht verschlüsselt werden soll. Geben
Sie SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT an, dass ein Attribut signiert und in den

.NET 249

https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-object-persistence
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-document
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-object-persistence
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-document
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-low-level
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/dynamodb-intro.html#dynamodb-intro-apis-low-level

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verschlüsselungskontext aufgenommen werden soll. Sie können ein Attribut nicht verschlüsseln,
ohne es auch zu signieren. Geben Sie DO_NOTHING an, ob ein Attribut ignoriert werden soll.

Die Partitions- und Sortierattribute müssen entweder SIGN_ONLY oder
lautenSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Wenn Sie Attribute als
definierenSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, müssen dies auch die Partitions- und
Sortierattribute seinSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Note

Nachdem Sie Ihre Attributaktionen definiert haben, müssen Sie definieren, welche Attribute
von den Signaturen ausgeschlossen werden. Um das future Hinzufügen neuer Attribute
ohne Vorzeichen zu vereinfachen, empfehlen wir, ein eindeutiges Präfix (wie ":„) zu wählen,
um Ihre vorzeichenlosen Attribute zu identifizieren. Nehmen Sie dieses Präfix in den
Attributnamen für alle Attribute auf, die Sie bei der Definition Ihres DynamoDB-Schemas und
Ihrer Attributaktionen markiert DO_NOTHING haben.

Das folgende Objektmodell zeigt, wie SieENCRYPT_AND_SIGN,
SIGN_ONLYSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, und DO_NOTHING Attributaktionen
mit dem .NET-Client angeben. In diesem Beispiel wird das Präfix ":" verwendet, um DO_NOTHING
Attribute zu identifizieren.

Note

Um die SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT kryptografische Aktion
verwenden zu können, müssen Sie Version 3.3 oder höher des AWS Database Encryption
SDK verwenden. Stellen Sie die neue Version für alle Leser bereit, bevor Sie Ihr Datenmodell
so aktualisieren, dass es diese enthältSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, // The
 partition attribute must be signed
 ["sort_key"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, // The sort
 attribute must be signed
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,

.NET 250

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 ["attribute3"] = CryptoAction.SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT,
 [":attribute4"] = CryptoAction.DO_NOTHING
};

Verschlüsselungskonfiguration im AWS Database Encryption SDK für DynamoDB

Wenn Sie das AWS Database Encryption SDK verwenden, müssen Sie explizit eine
Verschlüsselungskonfiguration für Ihre DynamoDB-Tabelle definieren. Die in Ihrer
Verschlüsselungskonfiguration erforderlichen Werte hängen davon ab, ob Sie Ihre Attributaktionen
manuell oder mit einer annotierten Datenklasse definiert haben.

Der folgende Ausschnitt definiert eine DynamoDB-Tabellenverschlüsselungskonfiguration unter
Verwendung des AWS Low-Level-Datenbankverschlüsselungs-SDK für DynamoDB-API und
zulässige unsignierte Attribute, die durch ein eindeutiges Präfix definiert sind.

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 // Optional: SearchConfig only required if you use beacons
 Search = new SearchConfig
 {
 WriteVersion = 1, // MUST be 1
 Versions = beaconVersions
 }
};
tableConfigs.Add(ddbTableName, config);

Logischer Tabellenname

Ein logischer Tabellenname für Ihre DynamoDB-Tabelle.

Der logische Tabellenname ist kryptografisch an alle in der Tabelle gespeicherten Daten
gebunden, um DynamoDB-Wiederherstellungsvorgänge zu vereinfachen. Es wird dringend
empfohlen, Ihren DynamoDB-Tabellennamen als logischen Tabellennamen anzugeben,
wenn Sie Ihre Verschlüsselungskonfiguration zum ersten Mal definieren. Sie müssen immer

.NET 251

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

denselben logischen Tabellennamen angeben. Damit die Entschlüsselung erfolgreich ist, muss
der Name der logischen Tabelle mit dem Namen übereinstimmen, der bei der Verschlüsselung
angegeben wurde. Falls sich Ihr DynamoDB-Tabellenname nach dem Wiederherstellen Ihrer
DynamoDB-Tabelle aus einer Sicherung ändert, stellt der logische Tabellenname sicher, dass der
Entschlüsselungsvorgang die Tabelle weiterhin erkennt.

Zulässige Attribute ohne Vorzeichen

Die DO_NOTHING in Ihren Attributaktionen markierten Attribute.

Die zulässigen Attribute ohne Vorzeichen teilen dem Client mit, welche Attribute von den
Signaturen ausgeschlossen sind. Der Client geht davon aus, dass alle anderen Attribute in der
Signatur enthalten sind. Beim Entschlüsseln eines Datensatzes bestimmt der Client dann anhand
der von Ihnen angegebenen zulässigen Attribute ohne Vorzeichen, welche er überprüfen muss
und welche ignoriert werden sollen. Sie können kein Attribut aus Ihren zulässigen Attributen ohne
Vorzeichen entfernen.

Sie können die zulässigen Attribute ohne Vorzeichen explizit definieren, indem Sie ein Array
erstellen, das alle Ihre DO_NOTHING Attribute auflistet. Sie können bei der Benennung Ihrer
DO_NOTHING Attribute auch ein eindeutiges Präfix angeben und das Präfix verwenden, um dem
Client mitzuteilen, welche Attribute vorzeichenlos sind. Wir empfehlen dringend, ein eindeutiges
Präfix anzugeben, da dies das Hinzufügen eines neuen DO_NOTHING Attributs in der future
vereinfacht. Weitere Informationen finden Sie unter Aktualisierung Ihres Datenmodells.

Wenn Sie kein Präfix für alle DO_NOTHING Attribute angeben, können Sie ein
allowedUnsignedAttributes Array konfigurieren, das explizit alle Attribute auflistet, von
denen der Client erwarten sollte, dass sie nicht signiert sind, wenn er sie bei der Entschlüsselung
findet. Sie sollten Ihre erlaubten vorzeichenlosen Attribute nur dann explizit definieren, wenn dies
unbedingt erforderlich ist.

Suchkonfiguration (optional)

Das SearchConfig definiert die Beacon-Version.

Der SearchConfig muss angegeben werden, um durchsuchbare Verschlüsselung oder signierte
Beacons verwenden zu können.

Algorithm Suite (optional)

Die algorithmSuiteId definiert, welche Algorithmus-Suite das AWS Database Encryption SDK
verwendet.

.NET 252

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Sofern Sie nicht explizit eine alternative Algorithmussuite angeben, verwendet das AWS Database
Encryption SDK die Standard-Algorithmussuite. Die Standard-Algorithmussuite verwendet den
AES-GCM-Algorithmus mit Schlüsselableitung, digitalen Signaturen und Schlüsselzusage.
Obwohl die Standard-Algorithmus-Suite wahrscheinlich für die meisten Anwendungen geeignet
ist, können Sie auch eine alternative Algorithmussuite wählen. Einige Vertrauensmodelle
würden beispielsweise durch eine Algorithmus-Suite ohne digitale Signaturen erfüllt. Hinweise
zu den Algorithmus-Suites, die das AWS Database Encryption SDK unterstützt, finden Sie
unterUnterstützte Algorithmus-Suiten im AWS Database Encryption SDK.

Um die AES-GCM-Algorithmussuite ohne digitale ECDSA-Signaturen auszuwählen, nehmen Sie
den folgenden Ausschnitt in Ihre Tabellenverschlüsselungskonfiguration auf.

AlgorithmSuiteId =
 DBEAlgorithmSuiteId.ALG_AES_256_GCM_HKDF_SHA512_COMMIT_KEY_SYMSIG_HMAC_SHA384

Elemente mit dem Database Encryption SDK aktualisieren AWS

Das AWS Database Encryption SDK unterstützt ddb: nicht UpdateItem für Elemente, die
verschlüsselte oder signierte Attribute enthalten. Um ein verschlüsseltes oder signiertes Attribut zu
aktualisieren, müssen Sie ddb: verwenden. PutItem Wenn Sie in Ihrer PutItem Anfrage denselben
Primärschlüssel wie ein vorhandenes Element angeben, ersetzt das neue Element das vorhandene
Element vollständig. Sie können CLOBBER auch verwenden, um alle Attribute beim Speichern zu
löschen und zu ersetzen, nachdem Sie Ihre Artikel aktualisiert haben.

.NET-Beispiele

Die folgenden Beispiele zeigen, wie Sie die clientseitige .NET-Verschlüsselungsbibliothek für
DynamoDB verwenden, um die Tabellenelemente in Ihrer Anwendung zu schützen. Weitere Beispiele
(und eigene Beispiele) finden Sie in den .NET-Beispielen im -dynamodb-Repository unter. aws-
database-encryption-sdk GitHub

Die folgenden Beispiele zeigen, wie die clientseitige .NET-Verschlüsselungsbibliothek für DynamoDB
in einer neuen, nicht aufgefüllten Amazon DynamoDB-Tabelle konfiguriert wird. Wenn Sie Ihre
vorhandenen Amazon DynamoDB-Tabellen für die clientseitige Verschlüsselung konfigurieren
möchten, finden Sie weitere Informationen unter. Fügen Sie Version 3.x zu einer vorhandenen
Tabelle hinzu

Themen

.NET 253

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/dynamodbv2/datamodeling/DynamoDBMapperConfig.SaveBehavior.html#CLOBBER
https://github.com/aws/aws-database-encryption-sdk-dynamodb//tree/main/Examples/runtimes/net/src

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Verwenden des AWS Low-Level-Datenbankverschlüsselungs-SDK für DynamoDB-API

• Verwenden Sie die untergeordnete Ebene DynamoDbItemEncryptor

Verwenden des AWS Low-Level-Datenbankverschlüsselungs-SDK für DynamoDB-API

Das folgende Beispiel zeigt, wie Sie das AWS Low-Level-Datenbankverschlüsselungs-SDK für
die DynamoDB-API mit einem AWS KMS Schlüsselbund verwenden, um Elemente automatisch
clientseitig mit Ihren DynamoDB-Anfragen zu verschlüsseln und zu signieren. PutItem

Sie können jeden unterstützten Schlüsselbund verwenden, wir empfehlen jedoch, wann immer
möglich, einen der Schlüsselringe zu verwenden. AWS KMS

Sehen Sie sich das vollständige Codebeispiel an: .cs BasicPutGetExample

Schritt 1: Erstellen Sie den Schlüsselbund AWS KMS

Das folgende Beispiel verwendetCreateAwsKmsMrkMultiKeyring, um einen AWS KMS
Schlüsselbund mit einem symmetrischen Verschlüsselungs-KMS-Schlüssel zu erstellen. Die
CreateAwsKmsMrkMultiKeyring Methode stellt sicher, dass der Schlüsselbund sowohl
Schlüssel mit einer Region als auch Schlüssel mit mehreren Regionen korrekt verarbeitet.

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Schritt 2: Konfigurieren Sie Ihre Attributaktionen

Das folgende Beispiel definiert ein attributeActionsOnEncrypt Wörterbuch, das Beispiele
für Attributaktionen für ein Tabellenelement darstellt.

Note

Das folgende Beispiel definiert keine Attribute
alsSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Wenn
Sie SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribute
angeben, müssen auch die Partitions- und Sortierattribute angegeben
werdenSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>

.NET 254

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/BasicPutGetExample.cs

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

{
 ["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
 SIGN_ONLY
 ["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 [":attribute3"] = CryptoAction.DO_NOTHING
};

Schritt 3: Definieren Sie, welche Attribute von den Signaturen ausgeschlossen werden

Im folgenden Beispiel wird davon ausgegangen, dass alle DO_NOTHING Attribute das eindeutige
Präfix ":" haben, und verwendet dieses Präfix, um die zulässigen Attribute ohne Vorzeichen
zu definieren. Der Client geht davon aus, dass alle Attributnamen mit dem Präfix ":" von den
Signaturen ausgeschlossen sind. Weitere Informationen finden Sie unter Allowed unsigned
attributes.

const String unsignAttrPrefix = ":";

Schritt 4: Definieren Sie die Konfiguration der DynamoDB-Tabellenverschlüsselung

Das folgende Beispiel definiert eine tableConfigs Map, die die Verschlüsselungskonfiguration
für diese DynamoDB-Tabelle darstellt.

In diesem Beispiel wird der DynamoDB-Tabellenname als logischer Tabellenname angegeben.
Es wird dringend empfohlen, Ihren DynamoDB-Tabellennamen als logischen Tabellennamen
anzugeben, wenn Sie Ihre Verschlüsselungskonfiguration zum ersten Mal definieren. Weitere
Informationen finden Sie unter Verschlüsselungskonfiguration im AWS Database Encryption SDK
für DynamoDB.

Note

Um durchsuchbare Verschlüsselung oder signierte Beacons zu verwenden, müssen Sie
die auch SearchConfigin Ihre Verschlüsselungskonfiguration aufnehmen.

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig

.NET 255

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix
};
tableConfigs.Add(ddbTableName, config);

Schritt 5: Einen neuen AWS SDK-DynamoDB-Client erstellen

Im folgenden Beispiel wird ein neuer AWS SDK-DynamoDB-Client mit dem
TableEncryptionConfigs aus Schritt 4 erstellt.

var ddb = new Client.DynamoDbClient(
 new DynamoDbTablesEncryptionConfig { TableEncryptionConfigs = tableConfigs });

Schritt 6: Verschlüsseln und Signieren eines DynamoDB-Tabellenelements

Das folgende Beispiel definiert ein item Dictionary, das ein Beispieltabellenelement darstellt und
das Element in die DynamoDB-Tabelle einfügt. Das Element wird clientseitig verschlüsselt und
signiert, bevor es an DynamoDB gesendet wird.

var item = new Dictionary<String, AttributeValue>
{
 ["partition_key"] = new AttributeValue("BasicPutGetExample"),
 ["sort_key"] = new AttributeValue { N = "0" },
 ["attribute1"] = new AttributeValue("encrypt and sign me!"),
 ["attribute2"] = new AttributeValue("sign me!"),
 [":attribute3"] = new AttributeValue("ignore me!")
};

PutItemRequest putRequest = new PutItemRequest
{
 TableName = ddbTableName,
 Item = item
};

PutItemResponse putResponse = await ddb.PutItemAsync(putRequest);

.NET 256

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verwenden Sie die untergeordnete Ebene DynamoDbItemEncryptor

Das folgende Beispiel zeigt, wie Sie die untergeordnete Ebene DynamoDbItemEncryptor mit
einem AWS KMS Schlüsselbund verwenden, um Tabellenelemente direkt zu verschlüsseln und zu
signieren. Das DynamoDbItemEncryptor fügt das Element nicht in Ihre DynamoDB-Tabelle ein.

Sie können jeden unterstützten Schlüsselbund mit dem DynamoDB Enhanced Client verwenden, wir
empfehlen jedoch, wann immer möglich, einen der AWS KMS Schlüsselringe zu verwenden.

Note

Die untergeordnete Ebene unterstützt keine durchsuchbare Verschlüsselung.
DynamoDbItemEncryptor Verwenden Sie das AWS Low-Level-
Datenbankverschlüsselungs-SDK für DynamoDB-API, um durchsuchbare Verschlüsselung zu
verwenden.

Sehen Sie sich das vollständige Codebeispiel an: .cs ItemEncryptDecryptExample

Schritt 1: Erstellen Sie den Schlüsselbund AWS KMS

Das folgende Beispiel verwendetCreateAwsKmsMrkMultiKeyring, um einen AWS KMS
Schlüsselbund mit einem symmetrischen Verschlüsselungs-KMS-Schlüssel zu erstellen. Die
CreateAwsKmsMrkMultiKeyring Methode stellt sicher, dass der Schlüsselbund sowohl
Schlüssel mit einer Region als auch Schlüssel mit mehreren Regionen korrekt verarbeitet.

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

Schritt 2: Konfigurieren Sie Ihre Attributaktionen

Das folgende Beispiel definiert ein attributeActionsOnEncrypt Wörterbuch, das Beispiele
für Attributaktionen für ein Tabellenelement darstellt.

Note

Das folgende Beispiel definiert keine Attribute
alsSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Wenn

.NET 257

https://github.com/aws/aws-database-encryption-sdk-dynamodb/tree/main/Examples/runtimes/net/src/itemencryptor/ItemEncryptDecryptExample.cs

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Sie SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribute
angeben, müssen auch die Partitions- und Sortierattribute angegeben
werdenSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<String, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
 SIGN_ONLY
 ["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,
 [":attribute3"] = CryptoAction.DO_NOTHING
};

Schritt 3: Definieren Sie, welche Attribute von den Signaturen ausgeschlossen werden

Im folgenden Beispiel wird davon ausgegangen, dass alle DO_NOTHING Attribute das eindeutige
Präfix ":" haben, und verwendet dieses Präfix, um die zulässigen Attribute ohne Vorzeichen
zu definieren. Der Client geht davon aus, dass alle Attributnamen mit dem Präfix ":" von den
Signaturen ausgeschlossen sind. Weitere Informationen finden Sie unter Allowed unsigned
attributes.

String unsignAttrPrefix = ":";

Schritt 4: Definieren Sie die DynamoDbItemEncryptor Konfiguration

Das folgende Beispiel definiert die Konfiguration für dieDynamoDbItemEncryptor.

In diesem Beispiel wird der DynamoDB-Tabellenname als logischer Tabellenname angegeben.
Es wird dringend empfohlen, Ihren DynamoDB-Tabellennamen als logischen Tabellennamen
anzugeben, wenn Sie Ihre Verschlüsselungskonfiguration zum ersten Mal definieren. Weitere
Informationen finden Sie unter Verschlüsselungskonfiguration im AWS Database Encryption SDK
für DynamoDB.

var config = new DynamoDbItemEncryptorConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",

.NET 258

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix
};

Schritt 5: Erstellen Sie das DynamoDbItemEncryptor

Im folgenden Beispiel wird DynamoDbItemEncryptor mit dem config aus Schritt 4 ein neues
erstellt.

var itemEncryptor = new DynamoDbItemEncryptor(config);

Schritt 6: Verschlüsseln und signieren Sie ein Tabellenelement direkt

Im folgenden Beispiel wird ein Element direkt verschlüsselt und signiert mit dem.
DynamoDbItemEncryptor Das DynamoDbItemEncryptor fügt das Element nicht in Ihre
DynamoDB-Tabelle ein.

var originalItem = new Dictionary<String, AttributeValue>
{
 ["partition_key"] = new AttributeValue("ItemEncryptDecryptExample"),
 ["sort_key"] = new AttributeValue { N = "0" },
 ["attribute1"] = new AttributeValue("encrypt and sign me!"),
 ["attribute2"] = new AttributeValue("sign me!"),
 [":attribute3"] = new AttributeValue("ignore me!")
};

var encryptedItem = itemEncryptor.EncryptItem(
 new EncryptItemInput { PlaintextItem = originalItem }
).EncryptedItem;

Konfigurieren Sie eine bestehende DynamoDB-Tabelle für die Verwendung des AWS
Database Encryption SDK für DynamoDB

Mit Version 3. x der clientseitigen .NET-Verschlüsselungsbibliothek für DynamoDB können Sie Ihre
vorhandenen Amazon DynamoDB-Tabellen für die clientseitige Verschlüsselung konfigurieren.
Dieses Thema enthält Anleitungen zu den drei Schritten, die Sie ausführen müssen, um Version 3
hinzuzufügen. x zu einer vorhandenen, gefüllten DynamoDB-Tabelle.

.NET 259

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schritt 1: Bereiten Sie das Lesen und Schreiben verschlüsselter Elemente vor

Gehen Sie wie folgt vor, um Ihren AWS Database Encryption SDK-Client auf das Lesen und
Schreiben verschlüsselter Elemente vorzubereiten. Nachdem Sie die folgenden Änderungen
vorgenommen haben, liest und schreibt Ihr Client weiterhin Klartext-Elemente. Neue Elemente,
die in die Tabelle geschrieben werden, werden nicht verschlüsselt oder signiert, aber es kann
verschlüsselte Elemente entschlüsseln, sobald sie erscheinen. Diese Änderungen bereiten den
Client darauf vor, mit der Verschlüsselung neuer Elemente zu beginnen. Die folgenden Änderungen
müssen auf jedem Lesegerät installiert werden, bevor Sie mit dem nächsten Schritt fortfahren.

1. Definieren Sie Ihre Attributaktionen

Erstellen Sie ein Objektmodell, um zu definieren, welche Attributwerte verschlüsselt und signiert
werden, welche nur signiert und welche ignoriert werden.

Standardmäßig sind Primärschlüsselattribute signiert, aber nicht verschlüsselt (SIGN_ONLY), und
alle anderen Attribute sind verschlüsselt und signiert (ENCRYPT_AND_SIGN).

Geben Sie ENCRYPT_AND_SIGN an, dass ein Attribut verschlüsselt und signiert werden soll.
Geben Sie SIGN_ONLY an, dass ein Attribut signiert, aber nicht verschlüsselt werden soll. Geben
Sie SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT an, dass das Attribut signiert und in den
Verschlüsselungskontext aufgenommen werden soll. Sie können ein Attribut nicht verschlüsseln,
ohne es auch zu signieren. Geben Sie DO_NOTHING an, ob ein Attribut ignoriert werden soll.
Weitere Informationen finden Sie unter Attributaktionen im AWS Database Encryption SDK für
DynamoDB.

Note

Wenn Sie SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribute
angeben, müssen auch die Partitions- und Sortierattribute angegeben
werdenSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

var attributeActionsOnEncrypt = new Dictionary<string, CryptoAction>
{
 ["partition_key"] = CryptoAction.SIGN_ONLY, // The partition attribute must be
 SIGN_ONLY
 ["sort_key"] = CryptoAction.SIGN_ONLY, // The sort attribute must be SIGN_ONLY
 ["attribute1"] = CryptoAction.ENCRYPT_AND_SIGN,
 ["attribute2"] = CryptoAction.SIGN_ONLY,

.NET 260

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 [":attribute3"] = CryptoAction.DO_NOTHING
};

2. Definieren Sie, welche Attribute von den Signaturen ausgeschlossen werden

Im folgenden Beispiel wird davon ausgegangen, dass alle DO_NOTHING Attribute das eindeutige
Präfix ":" haben, und verwendet dieses Präfix, um die zulässigen Attribute ohne Vorzeichen
zu definieren. Der Client geht davon aus, dass alle Attributnamen mit dem Präfix ":" von den
Signaturen ausgeschlossen sind. Weitere Informationen finden Sie unter Allowed unsigned
attributes.

const String unsignAttrPrefix = ":";

3. Erstellen Sie einen Schlüsselbund

Im folgenden Beispiel wird ein AWS KMS Schlüsselbund erstellt. Der AWS KMS Schlüsselbund
verwendet symmetrische Verschlüsselung oder asymmetrisches RSA, um Datenschlüssel AWS
KMS keys zu generieren, zu verschlüsseln und zu entschlüsseln.

In diesem Beispiel wird ein AWS KMS Schlüsselbund CreateMrkMultiKeyring
mit einem KMS-Schlüssel mit symmetrischer Verschlüsselung erstellt. Die
CreateAwsKmsMrkMultiKeyring Methode stellt sicher, dass der Schlüsselbund sowohl
Schlüssel mit einer Region als auch Schlüssel mit mehreren Regionen korrekt verarbeitet.

var matProv = new MaterialProviders(new MaterialProvidersConfig());
var keyringInput = new CreateAwsKmsMrkMultiKeyringInput { Generator = kmsKeyId };
var kmsKeyring = matProv.CreateAwsKmsMrkMultiKeyring(keyringInput);

4. Definieren Sie die Konfiguration der DynamoDB-Tabellenverschlüsselung

Das folgende Beispiel definiert eine tableConfigs Map, die die Verschlüsselungskonfiguration
für diese DynamoDB-Tabelle darstellt.

In diesem Beispiel wird der DynamoDB-Tabellenname als logischer Tabellenname angegeben.
Es wird dringend empfohlen, Ihren DynamoDB-Tabellennamen als logischen Tabellennamen
anzugeben, wenn Sie Ihre Verschlüsselungskonfiguration zum ersten Mal definieren.

Sie müssen FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT als Klartext-Override
angeben. Diese Richtlinie liest und schreibt weiterhin Klartext-Elemente, liest verschlüsselte
Elemente und bereitet den Client darauf vor, verschlüsselte Elemente zu schreiben.

.NET 261

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Weitere Hinweise zu den Werten, die in der Konfiguration der Tabellenverschlüsselung enthalten
sind, finden Sie unterVerschlüsselungskonfiguration im AWS Database Encryption SDK für
DynamoDB.

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 PlaintextOverride = FORCE_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT
};
tableConfigs.Add(ddbTableName, config);

5. Einen neuen AWS SDK-DynamoDB-Client erstellen

Im folgenden Beispiel wird ein neuer AWS SDK-DynamoDB-Client mit dem
TableEncryptionConfigs aus Schritt 4 erstellt.

var ddb = new Client.DynamoDbClient(
 new DynamoDbTablesEncryptionConfig { TableEncryptionConfigs = tableConfigs });

Schritt 2: Schreiben Sie verschlüsselte und signierte Elemente

Aktualisieren Sie die Klartext-Richtlinie in Ihrer Tabellenverschlüsselungskonfiguration, damit der
Client verschlüsselte und signierte Elemente schreiben kann. Nachdem Sie die folgende Änderung
implementiert haben, verschlüsselt und signiert der Client neue Elemente auf der Grundlage der
Attributaktionen, die Sie in Schritt 1 konfiguriert haben. Der Client kann Klartext-Elemente sowie
verschlüsselte und signierte Elemente lesen.

Bevor Sie mit Schritt 3 fortfahren, müssen Sie alle vorhandenen Klartextelemente in Ihrer Tabelle
verschlüsseln und signieren. Es gibt keine einzelne Metrik oder Abfrage, die Sie ausführen können,
um Ihre vorhandenen Klartextelemente schnell zu verschlüsseln. Verwenden Sie den Prozess,
der für Ihr System am sinnvollsten ist. Sie könnten beispielsweise einen asynchronen Prozess
verwenden, der die Tabelle langsam scannt und dann die Elemente mithilfe der von Ihnen definierten

.NET 262

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Attributaktionen und der Verschlüsselungskonfiguration neu schreibt. Um die Klartext-Elemente
in Ihrer Tabelle zu identifizieren, empfehlen wir, nach allen Elementen zu suchen, die nicht die
aws_dbe_foot Attribute aws_dbe_head und enthalten, die das AWS Database Encryption SDK
Elementen hinzufügt, wenn sie verschlüsselt und signiert sind.

Im folgenden Beispiel wird die Konfiguration der Tabellenverschlüsselung aus Schritt 1 aktualisiert.
Sie müssen die Klartext-Override mit FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT
aktualisieren. Diese Richtlinie liest weiterhin Klartext-Elemente, liest und schreibt aber auch
verschlüsselte Elemente. Erstellen Sie einen neuen AWS SDK-DynamoDB-Client mit dem
aktualisierten. TableEncryptionConfigs

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 PlaintextOverride = FORBID_WRITE_PLAINTEXT_ALLOW_READ_PLAINTEXT
};
tableConfigs.Add(ddbTableName, config);

Schritt 3: Nur verschlüsselte und signierte Elemente lesen

Nachdem Sie alle Ihre Elemente verschlüsselt und signiert haben, aktualisieren Sie die Klartext-
Überschreibung in Ihrer Tabellenverschlüsselungskonfiguration, sodass der Client nur verschlüsselte
und signierte Elemente lesen und schreiben kann. Nachdem Sie die folgende Änderung
implementiert haben, verschlüsselt und signiert der Client neue Elemente auf der Grundlage der
Attributaktionen, die Sie in Schritt 1 konfiguriert haben. Der Client kann nur verschlüsselte und
signierte Elemente lesen.

Im folgenden Beispiel wird die Konfiguration der Tabellenverschlüsselung aus Schritt 2
aktualisiert. Sie können entweder die Klartext-Override mit der Klartext-Richtlinie aktualisieren
FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT oder die Klartext-Richtlinie aus Ihrer
Konfiguration entfernen. Der Client liest und schreibt standardmäßig nur verschlüsselte und
signierte Elemente. Erstellen Sie einen neuen AWS SDK-DynamoDB-Client mit dem aktualisierten.
TableEncryptionConfigs

.NET 263

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Dictionary<String, DynamoDbTableEncryptionConfig> tableConfigs =
 new Dictionary<String, DynamoDbTableEncryptionConfig>();
DynamoDbTableEncryptionConfig config = new DynamoDbTableEncryptionConfig
{
 LogicalTableName = ddbTableName,
 PartitionKeyName = "partition_key",
 SortKeyName = "sort_key",
 AttributeActionsOnEncrypt = attributeActionsOnEncrypt,
 Keyring = kmsKeyring,
 AllowedUnsignedAttributePrefix = unsignAttrPrefix,
 // Optional: you can also remove the plaintext policy from your configuration
 PlaintextOverride = FORBID_WRITE_PLAINTEXT_FORBID_READ_PLAINTEXT
};
tableConfigs.Add(ddbTableName, config);

Rust

In diesem Thema wird erklärt, wie Version 1 installiert und verwendet wird. x der clientseitigen
Rust-Verschlüsselungsbibliothek für DynamoDB. Einzelheiten zur Programmierung mit dem AWS
Database Encryption SDK für DynamoDB finden Sie in den Rust-Beispielen im aws-database-
encryption-sdk -dynamodb-Repository unter. GitHub

Alle Programmiersprachenimplementierungen des AWS Database Encryption SDK für DynamoDB
sind interoperabel.

Themen

• Voraussetzungen

• Installation

• Verwendung der clientseitigen Rust-Verschlüsselungsbibliothek für DynamoDB

Voraussetzungen

Bevor Sie die clientseitige Rust-Verschlüsselungsbibliothek für DynamoDB installieren, stellen Sie
sicher, dass Sie die folgenden Voraussetzungen erfüllen.

Installieren Sie Rust und Cargo

Installieren Sie die aktuelle stabile Version von Rust mit Rustup.

Rust 264

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/
https://www.rust-lang.org/
https://rustup.rs/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Weitere Informationen zum Herunterladen und Installieren von Rustup finden Sie in den
Installationsverfahren in The Cargo Book.

Installation

Die clientseitige Rust-Verschlüsselungsbibliothek für DynamoDB ist als Crate auf Crates.io verfügbar.
aws-db-esdk Einzelheiten zur Installation und Erstellung der Bibliothek finden Sie in der Datei
README.md im Repository -dynamodb. aws-database-encryption-sdk GitHub

manuell

Um die clientseitige Rust-Verschlüsselungsbibliothek für DynamoDB zu installieren, klonen Sie
das -dynamodb-Repository oder laden Sie es herunter. aws-database-encryption-sdk GitHub

Installieren der neuesten Version

Führen Sie den folgenden Cargo-Befehl in Ihrem Projektverzeichnis aus:

cargo add aws-db-esdk

Oder fügen Sie Ihrer Cargo.toml die folgende Zeile hinzu:

aws-db-esdk = "<version>"

Verwendung der clientseitigen Rust-Verschlüsselungsbibliothek für DynamoDB

In diesem Thema werden einige der Funktionen und Hilfsklassen in Version 1 erklärt. x der
clientseitigen Rust-Verschlüsselungsbibliothek für DynamoDB.

Einzelheiten zur Programmierung mit der clientseitigen Rust-Verschlüsselungsbibliothek für
DynamoDB finden Sie in den Rust-Beispielen im -dynamodb-Repository unter. aws-database-
encryption-sdk GitHub

Themen

• Elementverschlüssler

• Attributaktionen im AWS Database Encryption SDK für DynamoDB

• Verschlüsselungskonfiguration im AWS Database Encryption SDK für DynamoDB

• Elemente mit dem Database Encryption SDK aktualisieren AWS

Rust 265

https://doc.rust-lang.org/cargo/getting-started/installation.html
https://crates.io/crates/aws-db-esdk
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Elementverschlüssler

Im Kern ist das AWS Database Encryption SDK für DynamoDB ein Elementverschlüsseler. Sie
können Version 1 verwenden. x der clientseitigen Rust-Verschlüsselungsbibliothek für DynamoDB,
um Ihre DynamoDB-Tabellenelemente auf folgende Weise zu verschlüsseln, zu signieren, zu
verifizieren und zu entschlüsseln.

Das AWS Low-Level-Datenbankverschlüsselungs-SDK für die DynamoDB-API

Sie können Ihre Tabellenverschlüsselungskonfiguration verwenden, um einen DynamoDB-Client
zu erstellen, der Elemente automatisch clientseitig mit Ihren DynamoDB-Anfragen verschlüsselt
und signiert. PutItem

Sie müssen das AWS Low-Level-Datenbankverschlüsselungs-SDK für DynamoDB-API
verwenden, um durchsuchbare Verschlüsselung verwenden zu können.

Ein Beispiel, das zeigt, wie das AWS Low-Level-Datenbankverschlüsselungs-SDK für die
DynamoDB-API verwendet wird, finden Sie unter basic_get_put_example.rs im -dynamodb-
Repository unter. aws-database-encryption-sdk GitHub

Die untergeordnete Ebene DynamoDbItemEncryptor

Die untergeordnete Ebene verschlüsselt und signiert oder entschlüsselt und verifiziert Ihre
Tabellenelemente DynamoDbItemEncryptor direkt, ohne DynamoDB aufzurufen. Es stellt keine
DynamoDB PutItem oder GetItem Anfragen. Sie können beispielsweise die untergeordnete
Ebene verwenden, DynamoDbItemEncryptor um ein DynamoDB-Element, das Sie bereits
abgerufen haben, direkt zu entschlüsseln und zu verifizieren.

Die untergeordnete Ebene unterstützt keine durchsuchbare
VerschlüsselungDynamoDbItemEncryptor.

Ein Beispiel, das zeigt, wie die untergeordnete Ebene verwendet wird, finden Sie unter
item_encrypt_decrypt.rs im DynamoDbItemEncryptor -dynamodb-Repository unter. aws-
database-encryption-sdk GitHub

Attributaktionen im AWS Database Encryption SDK für DynamoDB

Attributaktionen bestimmen, welche Attributwerte verschlüsselt und signiert werden, welche nur
signiert sind, welche signiert und in den Verschlüsselungskontext aufgenommen werden und welche
ignoriert werden.

Rust 266

https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/basic_get_put_example.rs
https://github.com/aws/aws-database-encryption-sdk-dynamodb/blob/main/releases/rust/db_esdk/examples/itemencryptor/item_encrypt_decrypt.rs

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Um Attributaktionen mit dem Rust-Client zu spezifizieren, definieren Sie Attributaktionen manuell
mithilfe eines Objektmodells. Spezifizieren Sie Ihre Attributaktionen, indem Sie ein HashMap Objekt
erstellen, in dem die Name-Wert-Paare für Attributnamen und die angegebenen Aktionen stehen.

Geben Sie ENCRYPT_AND_SIGN an, dass ein Attribut verschlüsselt und signiert werden soll.
Geben Sie SIGN_ONLY an, dass ein Attribut signiert, aber nicht verschlüsselt werden soll. Geben
Sie SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT an, dass ein Attribut signiert und in den
Verschlüsselungskontext aufgenommen werden soll. Sie können ein Attribut nicht verschlüsseln,
ohne es auch zu signieren. Geben Sie DO_NOTHING an, ob ein Attribut ignoriert werden soll.

Die Partitions- und Sortierattribute müssen entweder SIGN_ONLY oder
lautenSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT. Wenn Sie Attribute als
definierenSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, müssen dies auch die Partitions- und
Sortierattribute seinSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT.

Note

Nachdem Sie Ihre Attributaktionen definiert haben, müssen Sie definieren, welche Attribute
von den Signaturen ausgeschlossen werden. Um das future Hinzufügen neuer Attribute
ohne Vorzeichen zu vereinfachen, empfehlen wir, ein eindeutiges Präfix (wie ":„) zu wählen,
um Ihre vorzeichenlosen Attribute zu identifizieren. Nehmen Sie dieses Präfix in den
Attributnamen für alle Attribute auf, die Sie bei der Definition Ihres DynamoDB-Schemas und
Ihrer Attributaktionen markiert DO_NOTHING haben.

Das folgende Objektmodell zeigt, wie SieENCRYPT_AND_SIGN,
SIGN_ONLYSIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT, und DO_NOTHING Attributaktionen
mit dem Rust-Client angeben. In diesem Beispiel wird das Präfix ":" verwendet, um DO_NOTHING
Attribute zu identifizieren.

let attribute_actions_on_encrypt = HashMap::from([
 ("partition_key".to_string(), CryptoAction::SignOnly),
 ("sort_key".to_string(), CryptoAction::SignOnly),
 ("attribute1".to_string(), CryptoAction::EncryptAndSign),
 ("attribute2".to_string(), CryptoAction::SignOnly),
 (":attribute3".to_string(), CryptoAction::DoNothing),
]);

Rust 267

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verschlüsselungskonfiguration im AWS Database Encryption SDK für DynamoDB

Wenn Sie das AWS Database Encryption SDK verwenden, müssen Sie explizit eine
Verschlüsselungskonfiguration für Ihre DynamoDB-Tabelle definieren. Die in Ihrer
Verschlüsselungskonfiguration erforderlichen Werte hängen davon ab, ob Sie Ihre Attributaktionen
manuell oder mit einer annotierten Datenklasse definiert haben.

Der folgende Ausschnitt definiert eine DynamoDB-Tabellenverschlüsselungskonfiguration unter
Verwendung des AWS Low-Level-Datenbankverschlüsselungs-SDK für DynamoDB-API und
zulässige unsignierte Attribute, die durch ein eindeutiges Präfix definiert sind.

let table_config = DynamoDbTableEncryptionConfig::builder()
 .logical_table_name(ddb_table_name)
 .partition_key_name("partition_key")
 .sort_key_name("sort_key")
 .attribute_actions_on_encrypt(attribute_actions_on_encrypt)
 .keyring(kms_keyring)
 .allowed_unsigned_attribute_prefix(UNSIGNED_ATTR_PREFIX)
 // Specifying an algorithm suite is optional
 .algorithm_suite_id(
 DbeAlgorithmSuiteId::AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)
 .build()?;

let table_configs = DynamoDbTablesEncryptionConfig::builder()
 .table_encryption_configs(HashMap::from([(ddb_table_name.to_string(),
 table_config)]))
 .build()?;

Logischer Tabellenname

Ein logischer Tabellenname für Ihre DynamoDB-Tabelle.

Der logische Tabellenname ist kryptografisch an alle in der Tabelle gespeicherten Daten
gebunden, um DynamoDB-Wiederherstellungsvorgänge zu vereinfachen. Es wird dringend
empfohlen, Ihren DynamoDB-Tabellennamen als logischen Tabellennamen anzugeben,
wenn Sie Ihre Verschlüsselungskonfiguration zum ersten Mal definieren. Sie müssen immer
denselben logischen Tabellennamen angeben. Damit die Entschlüsselung erfolgreich ist, muss
der Name der logischen Tabelle mit dem Namen übereinstimmen, der bei der Verschlüsselung
angegeben wurde. Falls sich Ihr DynamoDB-Tabellenname nach dem Wiederherstellen Ihrer

Rust 268

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

DynamoDB-Tabelle aus einer Sicherung ändert, stellt der logische Tabellenname sicher, dass der
Entschlüsselungsvorgang die Tabelle weiterhin erkennt.

Zulässige Attribute ohne Vorzeichen

Die DO_NOTHING in Ihren Attributaktionen markierten Attribute.

Die zulässigen Attribute ohne Vorzeichen teilen dem Client mit, welche Attribute von den
Signaturen ausgeschlossen sind. Der Client geht davon aus, dass alle anderen Attribute in der
Signatur enthalten sind. Beim Entschlüsseln eines Datensatzes bestimmt der Client dann aus
den von Ihnen angegebenen zulässigen unsignierten Attributen, welche er überprüfen muss und
welche ignoriert werden sollen. Sie können kein Attribut aus Ihren zulässigen Attributen ohne
Vorzeichen entfernen.

Sie können die zulässigen Attribute ohne Vorzeichen explizit definieren, indem Sie ein Array
erstellen, das alle Ihre DO_NOTHING Attribute auflistet. Sie können bei der Benennung Ihrer
DO_NOTHING Attribute auch ein eindeutiges Präfix angeben und das Präfix verwenden, um dem
Client mitzuteilen, welche Attribute vorzeichenlos sind. Wir empfehlen dringend, ein eindeutiges
Präfix anzugeben, da dies das Hinzufügen eines neuen DO_NOTHING Attributs in der future
vereinfacht. Weitere Informationen finden Sie unter Aktualisierung Ihres Datenmodells.

Wenn Sie kein Präfix für alle DO_NOTHING Attribute angeben, können Sie ein
allowedUnsignedAttributes Array konfigurieren, das explizit alle Attribute auflistet, von
denen der Client erwarten sollte, dass sie nicht signiert sind, wenn er sie bei der Entschlüsselung
findet. Sie sollten Ihre erlaubten vorzeichenlosen Attribute nur dann explizit definieren, wenn dies
unbedingt erforderlich ist.

Suchkonfiguration (optional)

Das SearchConfig definiert die Beacon-Version.

Der SearchConfig muss angegeben werden, um durchsuchbare Verschlüsselung oder signierte
Beacons verwenden zu können.

Algorithm Suite (optional)

Die algorithmSuiteId definiert, welche Algorithmus-Suite das AWS Database Encryption SDK
verwendet.

Sofern Sie nicht explizit eine alternative Algorithmussuite angeben, verwendet das AWS Database
Encryption SDK die Standard-Algorithmussuite. Die Standard-Algorithmussuite verwendet den

Rust 269

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Restore.Tutorial.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

AES-GCM-Algorithmus mit Schlüsselableitung, digitalen Signaturen und Schlüsselzusage.
Obwohl die Standard-Algorithmus-Suite wahrscheinlich für die meisten Anwendungen geeignet
ist, können Sie auch eine alternative Algorithmussuite wählen. Einige Vertrauensmodelle
würden beispielsweise durch eine Algorithmus-Suite ohne digitale Signaturen erfüllt. Hinweise
zu den Algorithmus-Suites, die das AWS Database Encryption SDK unterstützt, finden Sie
unterUnterstützte Algorithmus-Suiten im AWS Database Encryption SDK.

Um die AES-GCM-Algorithmussuite ohne digitale ECDSA-Signaturen auszuwählen, nehmen Sie
den folgenden Ausschnitt in Ihre Tabellenverschlüsselungskonfiguration auf.

.algorithm_suite_id(
 DbeAlgorithmSuiteId::AlgAes256GcmHkdfSha512CommitKeyEcdsaP384SymsigHmacSha384,
)

Elemente mit dem Database Encryption SDK aktualisieren AWS

Das AWS Database Encryption SDK unterstützt ddb: nicht UpdateItem für Elemente, die
verschlüsselte oder signierte Attribute enthalten. Um ein verschlüsseltes oder signiertes Attribut zu
aktualisieren, müssen Sie ddb: verwenden. PutItem Wenn Sie in Ihrer PutItem Anfrage denselben
Primärschlüssel wie ein vorhandenes Element angeben, ersetzt das neue Element das vorhandene
Element vollständig.

Legacy-DynamoDB-Verschlüsselungsclient

Am 9. Juni 2023 wurde unsere clientseitige Verschlüsselungsbibliothek in Database Encryption SDK
umbenannt. AWS Das AWS Database Encryption SDK unterstützt weiterhin ältere Versionen des
DynamoDB Encryption Client. Weitere Informationen zu den verschiedenen Teilen der clientseitigen
Verschlüsselungsbibliothek, die sich mit der Umbenennung geändert haben, finden Sie unter.
Amazon DynamoDB Encryption Client umbenennen

Informationen zur Migration zur neuesten Version der clientseitigen Java-Verschlüsselungsbibliothek
für DynamoDB finden Sie unter. Migrieren Sie auf Version 3.x

Themen

• AWS Database Encryption SDK für DynamoDB-Versionsunterstützung

• So funktioniert der DynamoDB Encryption Client

• Konzepte des Amazon DynamoDB DynamoDB-Verschlüsselungsclients

Veraltet 270

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Anbieter von kryptografischem Material

• Verfügbare Programmiersprachen für Amazon DynamoDB Encryption Client

• Ändern Ihres Datenmodells

• Behebung von Problemen in Ihrer DynamoDB Encryption Client-Anwendung

AWS Database Encryption SDK für DynamoDB-Versionsunterstützung

Die Themen im Kapitel Legacy enthalten Informationen zu Versionen 1. x —2. x des DynamoDB
Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption Client für Python.

In der folgenden Tabelle sind die Sprachen und Versionen aufgeführt, die die clientseitige
Verschlüsselung in Amazon DynamoDB unterstützen.

Programmiersprache Version Lebenszyklusphase der SDK-
Hauptversion

Java Versionen 1. x End-of-Support Phase, gültig
ab Juli 2022

Java Versionen 2. x Allgemeine Verfügbarkeit (GA)

Java Ausführung 3. x Allgemeine Verfügbarkeit (GA)

Python Versionen 1. x End-of-Support Phase, gültig
ab Juli 2022

Python Versionen 2. x End-of-Support Phase, gültig
ab Juli 2022

Python Versionen 3. x Allgemeine Verfügbarkeit (GA)

So funktioniert der DynamoDB Encryption Client

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des

AWS Database Encryption SDK für DynamoDB-Versionsunterstützung 271

https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html#version-life-cycle

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

Der DynamoDB Encryption Client wurde speziell für den Schutz der Daten entwickelt, die Sie in
DynamoDB speichern. Die Bibliotheken enthalten sichere Implementierungen, die Sie erweitern
oder unverändert verwenden können. Und die meisten Elemente werden durch abstrakte Elemente
dargestellt, sodass Sie kompatible benutzerdefinierte Komponenten erstellen und verwenden können.

Verschlüsselung und Signieren von Tabellenelementen

Das Herzstück des DynamoDB Encryption Client ist ein Elementverschlüsseler, der
Tabellenelemente verschlüsselt, signiert, verifiziert und entschlüsselt. Er nimmt Informationen über
Ihre Tabellenelemente entgegen, sowie Anweisungen, welche Elemente zu verschlüsseln und zu
signieren sind. Er ruft von einem Anbieter für kryptographisches Material, den Sie auswählen und
konfigurieren, die Verschlüsselungsmaterialien ab, ebenso wie Anweisungen, wie man sie verwendet.

Das folgende Diagramm zeigt einen allgemeinen Überblick über dieses Verfahren.

Funktionsweise 272

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Um ein Tabellenelement zu verschlüsseln und zu signieren, benötigt der DynamoDB Encryption
Client:

• Informationen über die Tabelle. Es ruft Informationen über die Tabelle aus einem DynamoDB-
Verschlüsselungskontext ab, den Sie angeben. Einige Helfer rufen die erforderlichen Informationen
von DynamoDB ab und erstellen den DynamoDB-Verschlüsselungskontext für Sie.

Note

Der DynamoDB-Verschlüsselungskontext im DynamoDB Encryption Client hat nichts mit
dem Verschlüsselungskontext in AWS Key Management Service ()AWS KMS und dem zu
tun. AWS Encryption SDK

• Welche Attribute zu verschlüsseln und zu signieren sind. Er erhält diese Informationen über die
Tabelle von den Attribut-Aktionen, die Sie bereitstellen.

• Verschlüsselungsmaterialien, einschließlich Verschlüsselungs- und Signaturschlüssel. Er erhält
diese von einem Anbieter kryptographischer Materialien (Cryptographic Materials Provider, CMP),
den Sie auswählen und konfigurieren.

• Anweisungen für die Verschlüsselung und das Signieren des Elementes. Der CMP
fügt der tatsächlichen Materialbeschreibung Anweisungen zur Verwendung der
Verschlüsselungsmaterialien hinzu, einschließlich Verschlüsselungs- und Signaturalgorithmen.

Der Elementverschlüssler verwendet alle diese Dinge, um das Element zu verschlüsseln und
zu signieren. Der Elementverschlüssler fügt dem Element außerdem zwei Attribute hinzu:
ein Materialbeschreibungsattribut, das die Verschlüsselungs- und Signaturanweisungen (die
tatsächliche Materialbeschreibung) enthält, und ein Attribut, das die Signatur enthält. Sie können
direkt mit dem Elementverschlüsseler interagieren oder Helferfunktionen verwenden, die mit dem
Elementverschlüssler interagieren, um ein sicheres Standardverhalten zu implementieren.

Das Ergebnis ist ein DynamoDB-Element mit verschlüsselten und signierten Daten.

Verifizieren und Entschlüsseln von Tabellenelementen

Diese Komponenten arbeiten auch zusammen, um Ihr Element zu verifizieren und zu entschlüsseln,
wie in der folgenden Abbildung gezeigt.

Funktionsweise 273

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Um ein Element zu verifizieren und zu entschlüsseln, benötigt der DynamoDB Encryption Client
dieselben Komponenten, Komponenten mit derselben Konfiguration oder Komponenten, die speziell
für die Entschlüsselung der Elemente entwickelt wurden, und zwar wie folgt:

• Informationen über die Tabelle aus dem DynamoDB-Verschlüsselungskontext.

• Welche Attribute zu überprüfen und zu entschlüsseln sind. Diese erhält er von den Attribut-
Aktionen.

• Entschlüsselungsmaterialien, einschließlich Verifikations- und Entschlüsselungsschlüssel, von
dem Anbieter kryptographischer Materialien (Cryptographic Materials Provider, CMP), den Sie
auswählen und konfigurieren.

Das verschlüsselte Element enthält keine Aufzeichnung des CMP, mit dem es verschlüsselt wurde.
Sie müssen den gleichen CMP, einen CMP mit der gleichen Konfiguration oder einen CMP, der
zum Entschlüsseln von Elementen vorgesehen ist, bereitstellen.

• Informationen darüber, wie das Element verschlüsselt und signiert wurde, einschließlich
der Verschlüsselungs- und Signierungsalgorithmen. Der Client erhält sie vom
Materialbeschreibungsattribut im Element.

Funktionsweise 274

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Der Elementverschlüssler verwendet alle diese Dinge, um das Element zu verifizieren und zu
entschlüsseln. Außerdem entfernt er die Materialbezeichnung und die Signaturattribute. Das Ergebnis
ist ein DynamoDB-Element im Klartext-Format.

Konzepte des Amazon DynamoDB DynamoDB-Verschlüsselungsclients

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des
DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

In diesem Thema werden die Konzepte und die Terminologie erklärt, die im Amazon DynamoDB
Encryption Client verwendet werden.

Informationen zum Zusammenspiel der Komponenten des DynamoDB Encryption Client finden Sie
unter. So funktioniert der DynamoDB Encryption Client

Themen

• Anbieter von kryptographischen Materialien (Cryptographic Materials Provider (CMP))

• Elementverschlüssler

• Attributaktionen

• Materialbeschreibung

• DynamoDB-Verschlüsselungsclient

• Provider-Store

Anbieter von kryptographischen Materialien (Cryptographic Materials Provider (CMP))

Bei der Implementierung des DynamoDB Encryption Client besteht eine Ihrer ersten Aufgaben
darin, einen Anbieter für kryptografisches Material (CMP) (auch bekannt als Anbieter von
Verschlüsselungsmaterialien) auszuwählen. Ihre Wahl bestimmt einen Großteil der restlichen
Implementierung.

Konzepte 275

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Ein Anbieter von kryptographischem Material (Cryptographic Materials Provider, CMP) erfasst
und erstellt die kryptographischen Materialien und gibt sie zurück, die der Elementverschlüssler
verwendet, um Ihre Tabellenelemente zu verschlüsseln und zu signieren. Der CMP bestimmt die
zu verwendenden Verschlüsselungsalgorithmen, und wie Verschlüsselungs- und Signierschlüssel
erzeugt und geschützt werden.

Der CMP interagiert mit dem Elementverschlüssler. Der Elementverschlüssler fordert vom CMP Ver-
oder Entschlüsselungsmaterialien an, und der CMP gibt sie an den Elementverschlüsseler zurück.
Dann verwendet der Elementverschlüssler die kryptographischen Materialien, um das Element zu
verschlüsseln und zu signieren oder zu überprüfen und zu entschlüsseln.

Den CMP geben Sie bei der Konfiguration des Clients an. Sie können ein kompatibles
benutzerdefiniertes CMP erstellen oder eines der vielen in der Bibliothek enthaltenen verwenden.
CMPs Die meisten CMPs sind für mehrere Programmiersprachen verfügbar.

Elementverschlüssler

Der Elementverschlüsseler ist eine untergeordnete Komponente, die kryptografische Operationen für
den DynamoDB Encryption Client ausführt. Er fordert kryptographisches Material von einem Anbieter
von kryptographischem Material (Cryptographic Materials Provider, CMP) an und verwendet dann die
vom CMP zurückgegebenen Materialien, um Ihr Tabellenelement zu verschlüsseln und zu signieren
oder zu verifizieren und zu entschlüsseln.

Sie können direkt mit dem Elementverschlüsseler interagieren oder die Helferklassen verwenden, die
Ihre Bibliothek zur Verfügung stellt. Der DynamoDB Encryption Client für Java enthält beispielsweise
eine AttributeEncryptor Hilfsklasse, die Sie mit dem verwenden könnenDynamoDBMapper,
anstatt direkt mit dem DynamoDBEncryptor Elementverschlüsseler zu interagieren. Die
Python-Bibliothek enthält die Helferklassen EncryptedTable, EncryptedClient und
EncryptedResource, die für Sie mit dem Elementverschlüssler interagieren.

Attributaktionen

Attribut-Aktionen teilen dem Elementverschlüsseler mit, welche Aktionen er auf jedes Attribut des
Elements anwenden soll.

Das Attribut-Aktionswerte können einer der folgenden sein:

• Verschlüsseln und signieren — Verschlüsselt den Attributwert. Nehmen Sie das Attribut (Name und
Wert) in die Elementsignatur auf.

Konzepte 276

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Nur signieren — Schließt das Attribut in die Artikelsignatur ein.

• Nichts tun — Verschlüsseln oder signieren Sie das Attribut nicht.

Verwenden Sie für jedes Attribut, das vertrauliche Daten speichern kann, Verschlüsseln und
signieren. Für Primärschlüsselattribute (Partitionsschlüssel und Sortierschlüssel) verwenden Sie
Nur signieren. Das Materialverschlüsselungsattribut und das Signaturattribut werden wird nicht
verschlüsselt oder signiert. Sie müssen für diese Attribute keine Attribut-Aktionen angeben.

Wählen Sie Ihre Attributaktionen sorgfältig aus. Verwenden Sie im Zweifelsfall Verschlüsseln
und signieren. Sobald Sie den DynamoDB Encryption Client zum Schutz Ihrer Tabellenelemente
verwendet haben, können Sie die Aktion für ein Attribut nicht mehr ändern, ohne einen
Signaturvalidierungsfehler zu riskieren. Details hierzu finden Sie unter Ändern Ihres Datenmodells.

Warning

Verschlüsseln Sie die primären Schlüsselattribute nicht. Sie müssen im Klartext bleiben,
damit DynamoDB das Element finden kann, ohne einen vollständigen Tabellenscan
ausführen zu müssen.

Wenn der DynamoDB-Verschlüsselungskontext Ihre Primärschlüsselattribute identifiziert, gibt der
Client einen Fehler aus, wenn Sie versuchen, sie zu verschlüsseln.

Die Technik, mit der Sie die Attribut-Aktionen festlegen, ist für jede Programmiersprache
unterschiedlich. Sie kann auch spezifisch für Helferklassen sein, die Sie verwenden.

Weitere Informationen finden Sie in der Dokumentation Ihrer Programmiersprache.

• Python

• Java

Materialbeschreibung

Die Materialbeschreibung für ein verschlüsseltes Tabellenelement besteht aus Informationen, wie
z. B. Verschlüsselungsalgorithmen, wie das Tabellenelement verschlüsselt und signiert wird. Ein
Anbieter von kryptographischem Material (Cryptographic Materials Provider, CMP) zeichnet die
Materialbeschreibung auf, wenn er die kryptographischen Materialien für die Verschlüsselung und die

Konzepte 277

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Signatur zusammenstellt. Später, wenn er kryptographische Materialien zusammenstellen muss, um
das Element zu verifizieren und zu entschlüsseln, verwendet er die Materialbeschreibung als seinen
Leitfaden.

Im DynamoDB Encryption Client bezieht sich die Materialbeschreibung auf drei verwandte Elemente:

Angeforderte Materialbeschreibung

Bei einigen Anbietern von kryptografischem Material (CMPs) können Sie erweiterte Optionen
angeben, z. B. einen Verschlüsselungsalgorithmus. Um Ihre Auswahlmöglichkeiten anzugeben,
fügen Sie der Materialbeschreibungseigenschaft des DynamoDB-Verschlüsselungskontextes in
Ihrer Anforderung zur Verschlüsselung eines Tabellenelements Name-Wert-Paare hinzu. Dieses
Element wird als die angeforderte Materialbeschreibung bezeichnet. Die gültigen Werte in der
angeforderten Materialbeschreibung werden durch den von Ihnen gewählten CMP definiert.

Note

Da die Materialbeschreibung sichere Standardwerte überschreiben kann, empfehlen wir
Ihnen, die angeforderte Materialbeschreibung wegzulassen, es sei denn, Sie haben einen
zwingenden Grund, sie zu verwenden.

Tatsächliche Materialbeschreibung

Die Materialbeschreibung, die von den Anbietern kryptografischer Materialien (CMPs)
zurückgegeben wird, wird als eigentliche Materialbeschreibung bezeichnet. Sie beschreibt die
tatsächlichen Werte, die der CMP bei der Zusammenstellung der kryptographischen Materialien
verwendet hat. Sie besteht in der Regel aus der angeforderten Materialbeschreibung, falls
vorhanden, mit Ergänzungen und Änderungen.

Materialbeschreibungsattribut

Der Client speichert die tatsächliche Materialbeschreibung in dem Materialbeschreibungsattribut
des verschlüsselten Elements. Der Name des Materialbeschreibungsattributs ist amzn-ddb-
map-desc, der Wert ist die tatsächliche Materialbeschreibung. Der Client verwendet die Werte im
Materialbeschreibungsattribut, um das Element zu überprüfen und zu entschlüsseln.

Konzepte 278

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

DynamoDB-Verschlüsselungsclient

Der DynamoDB-Verschlüsselungskontext liefert Informationen über die Tabelle und das Element
an den Cryptographic Materials Provider (CMP). In fortgeschrittenen Implementierungen kann der
DynamoDB-Verschlüsselungskontext eine angeforderte Materialbeschreibung enthalten.

Wenn Sie Tabellenelemente verschlüsseln, ist der DynamoDB-Verschlüsselungskontext
kryptografisch an die verschlüsselten Attributwerte gebunden. Wenn beim Entschlüsseln der
DynamoDB-Verschlüsselungskontext nicht exakt und unter Berücksichtigung der Groß- und
Kleinschreibung mit dem DynamoDB-Verschlüsselungskontext übereinstimmt, der für die
Verschlüsselung verwendet wurde, schlägt der Entschlüsselungsvorgang fehl. Wenn Sie direkt mit
dem Elementverschlüsseler interagieren, müssen Sie beim Aufrufen einer Verschlüsselungs- oder
Entschlüsselungsmethode einen DynamoDB-Verschlüsselungskontext angeben. Die meisten Helfer
erstellen den DynamoDB-Verschlüsselungskontext für Sie.

Note

Der DynamoDB-Verschlüsselungskontext im DynamoDB Encryption Client hat nichts mit dem
Verschlüsselungskontext in AWS Key Management Service ()AWS KMS und dem zu tun.
AWS Encryption SDK

Der DynamoDB-Verschlüsselungskontext kann die folgenden Felder enthalten. Alle Felder und Werte
sind optional.

• Tabellenname

• Partitionsschlüsselname

• Sortierschlüsselname

• Attribut-Namen-Wert-Paare

• Angeforderte Materialbeschreibung

Provider-Store

Ein Provider-Store ist eine Komponente, die Anbieter von kryptografischem Material () zurückgibt.
CMPs Der Anbieterspeicher kann sie aus einer anderen Quelle erstellen CMPs oder aus einer
anderen Quelle abrufen, z. B. aus einem anderen Anbieterspeicher. Der Provider-Speicher speichert

Konzepte 279

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Versionen von CMPs , die er erstellt, im persistenten Speicher, in dem jede gespeicherte CMP durch
den Materialnamen des Anforderers und die Versionsnummer identifiziert wird.

Der neueste Anbieter im DynamoDB Encryption Client bezieht seine Daten CMPs aus einem
Provider-Store, aber Sie können den Provider-Speicher für die Bereitstellung CMPs an jede
Komponente verwenden. Jeder aktuelle Anbieter ist einem Provider-Store zugeordnet, aber ein
Provider-Store kann viele Anforderer CMPs auf mehreren Hosts beliefern.

Der Provider-Store erstellt neue Versionen von CMPs On Demand und gibt neue und bestehende
Versionen zurück. Außerdem gibt er die neueste Versionsnummer für einen bestimmten
Materialnamen zurück. Daran erkennt der Anforderer, dass der Provider-Store eine neue Version
seines CMP hat, die er anfordern kann.

Der DynamoDB Encryption Client umfasst einen MetaStore, bei dem es sich um einen Provider-
Speicher handelt, der Wrapped CMPs mit Schlüsseln erstellt, die in DynamoDB gespeichert und mit
einem internen DynamoDB Encryption Client verschlüsselt werden.

Weitere Informationen:

• Provider-Store: Java, Python

• MetaStore: Java, Python

Anbieter von kryptografischem Material

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des
DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

Eine der wichtigsten Entscheidungen, die Sie bei der Verwendung des DynamoDB Encryption
Client treffen, ist die Auswahl eines Anbieters für kryptografisches Material (CMP). Das CMP stellt
kryptographisches Material zusammen und gibt es an den Elementverschlüssler zurück. Außerdem
legt er fest, wie Verschlüsselungs- und Signierschlüssel generiert werden, ob für jedes Element neue

Anbieter von kryptografischem Material 280

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/store/ProviderStore.html
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/src/dynamodb_encryption_sdk/material_providers/store/__init__.py
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/store/MetaStore.html
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/materials_providers/metastore.html#module-dynamodb_encryption_sdk.material_providers.store.meta

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schlüsselmaterialien generiert oder wiederverwendet werden und welche Verschlüsselungs- und
Signierungsalgorithmen verwendet werden.

Sie können eine CMP aus den Implementierungen auswählen, die in den DynamoDB Encryption
Client-Bibliotheken bereitgestellt werden, oder eine kompatible benutzerdefinierte CMP
erstellen. Welchen CMP Sie auswählen, hängt möglicherweise auch von der verwendeten
Programmiersprache ab.

Dieses Thema beschreibt die gängigsten CMPs und bietet einige Ratschläge, die Ihnen bei der
Auswahl der für Ihre Anwendung am besten geeigneten Lösung helfen sollen.

Direct KMS Materials Provider

Der Direct KMS Materials Provider schützt Ihre Tabellenelemente unter einem AWS KMS keyThat
Never Leaves AWS Key Management Service(AWS KMS) unverschlüsselt. Ihre Anwendung muss
kein kryptographisches Material erzeugen oder verwalten. Da er die verwendet AWS KMS key ,
um eindeutige Verschlüsselungs- und Signaturschlüssel für jedes Element zu generieren, ruft
dieser Anbieter AWS KMS jedes Mal auf, wenn er ein Element ver- oder entschlüsselt.

Wenn Sie verwenden AWS KMS und ein AWS KMS Aufruf pro Transaktion für Ihre Anwendung
praktikabel ist, ist dieser Anbieter eine gute Wahl.

Details hierzu finden Sie unter Direct KMS Materials Provider.

Wrapped Materials Provider (Wrapped CMP)

Mit dem Wrapped Materials Provider (Wrapped CMP) können Sie Ihre Verpackungs- und
Signaturschlüssel außerhalb des DynamoDB Encryption Client generieren und verwalten.

Der Wrapped CMP generiert einen eindeutigen Verschlüsselungsschlüssel für jedes Element.
Dann verwendet er die von Ihnen bereitgestellten Wrapping- (oder Unwrapping-) und
Signierschlüssel. Damit bestimmen Sie, wie die Wrapping- und Signierschlüssel erzeugt werden
und ob sie für jedes Element eindeutig sind oder wiederverwendet werden. Der Wrapped CMP
ist eine sichere Alternative zum Direct KMS Provider für Anwendungen, die kein kryptografisches
Material verwenden AWS KMS und dieses sicher verwalten können.

Details hierzu finden Sie unter Wrapped Materials Provider.

Most Recent Provider

Der Most Recent Provider ist ein Anbieter kryptographischer Materialien (Cryptographic Materials
Provider (CMP)), der auf die Arbeit mit einem Provider-Store ausgelegt ist. Es bezieht sich CMPs

Anbieter von kryptografischem Material 281

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

aus dem Provider-Store und ruft die kryptografischen Materialien ab, die es von dem zurückgibt.
CMPs Der Most Recent Provider verwendet in der Regel jeden CMP, um mehrere Anfragen nach
kryptographischem Material zu erfüllen, aber Sie können die Funktionen des Provider-Stores
verwenden, um zu steuern, wie oft Materialien wiederverwendet werden, um zu bestimmen, wie
oft ein CMP rotiert wird, und sogar, um den Typ des CMP zu ändern, der verwendet wird, ohne
den Most Recent Provider zu ändern.

Sie können den Most Recent Provider mit jedem kompatiblen Provider-Store verwenden. Der
DynamoDB Encryption Client enthält einen MetaStore, bei dem es sich um einen Provider-Store
handelt, der Wrapped zurückgibt. CMPs

Der Most Recent Provider ist eine gute Wahl für Anwendungen, die Aufrufe ihrer
kryptographischen Quelle minimieren müssen, sowie für Anwendungen, die bestimmte
kryptographische Materialien wiederverwenden können, ohne ihre Sicherheitsanforderungen zu
verletzen. So können Sie beispielsweise Ihre kryptografischen Materialien mit einem AWS KMS
keyin AWS Key Management Service(AWS KMS) schützen, ohne AWS KMS jedes Mal, wenn Sie
ein Element ver- oder entschlüsseln, erneut aufrufen zu müssen.

Details hierzu finden Sie unter Most Recent Provider.

Static Materials Provider

Der Static Materials Provider wurde für Tests, proof-of-concept Demonstrationen und
Kompatibilität mit älteren Versionen konzipiert. Er generiert keine eindeutigen kryptographischen
Materialien für jedes Element. Er gibt dieselben von Ihnen gelieferten Verschlüsselungs- und
Signierschlüssel zurück, die direkt zum Verschlüsseln und Signieren Ihrer Tabellenelemente
verwendet werden.

Note

Der Asymmetric Static Provider in der Java-Bibliothek ist kein statischer Anbieter. Er liefert
nur alternative Konstruktoren für den Wrapped CMP. Er ist sicher für die Produktion, aber
Sie sollten den Wrapped CMP nach Möglichkeit direkt verwenden.

Themen

• Direct KMS Materials Provider

• Wrapped Materials Provider

Anbieter von kryptografischem Material 282

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/AsymmetricStaticProvider.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Most Recent Provider

• Static Materials Provider

Direct KMS Materials Provider

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des
DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

Der Direct KMS Materials Provider (Direct KMS Provider) schützt Ihre Tabellenelemente unter einem
AWS KMS keyThat Never Leaves AWS Key Management Service(AWS KMS) unverschlüsselt.
Dieser Anbieter kryptographischer Materialien (Cryptographic Materials Provider) gibt einen
eindeutigen Verschlüsselungsschlüssel und einen Signierschlüssel für jedes Tabellenelement zurück.
Zu diesem Zweck ruft er AWS KMS jedes Mal auf, wenn Sie ein Element ver- oder entschlüsseln.

Wenn Sie DynamoDB-Elemente mit hoher Frequenz und in großem Umfang verarbeiten,
überschreiten Sie möglicherweise die AWS KMS requests-per-secondGrenzwerte, was zu
Verarbeitungsverzögerungen führen kann. Wenn Sie ein Limit überschreiten müssen, erstellen Sie
einen Fall im AWS Support Center. Sie könnten auch erwägen, einen Anbieter für kryptografisches
Material mit begrenzter Schlüsselwiederverwendung zu verwenden, z. B. den neuesten Anbieter.

Um den Direct KMS Provider verwenden zu können, benötigt der Anrufer mindestens einen AWS-
Konto und die Berechtigung AWS KMS key, die Operationen GenerateDataKeyund Decrypt auf dem
aufzurufen. AWS KMS key Das AWS KMS key muss ein symmetrischer Verschlüsselungsschlüssel
sein. Der DynamoDB Encryption Client unterstützt keine asymmetrische Verschlüsselung. Wenn Sie
eine globale DynamoDB-Tabelle verwenden, möchten Sie möglicherweise einen Schlüssel für AWS
KMS mehrere Regionen angeben. Details hierzu finden Sie unter Verwendung.

Note

Wenn Sie den Direct KMS-Anbieter verwenden, werden die Namen und Werte Ihrer
Primärschlüsselattribute im AWS KMS Verschlüsselungskontext und in den AWS CloudTrail

Anbieter von kryptografischem Material 283

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
https://console.aws.amazon.com/support/home
https://console.aws.amazon.com/support/home
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Protokollen verwandter Operationen im Klartext angezeigt. AWS KMS Der DynamoDB
Encryption Client macht jedoch niemals den Klartext verschlüsselter Attributwerte verfügbar.

Der Direct KMS Provider ist einer von mehreren Anbietern von kryptografischem Material (CMPs), die
der DynamoDB Encryption Client unterstützt. Hinweise zum anderen CMPs finden Sie unter. Anbieter
von kryptografischem Material

Beispielcode finden Sie unter:

• Java: AwsKmsEncryptedItem

• Python: aws-kms-encrypted-table, aws-kms-encrypted-item

Themen

• Verwendung

• Funktionsweise

Verwendung

Um einen Direct KMS-Anbieter zu erstellen, verwenden Sie den Schlüssel-ID-Parameter, um
einen KMS-Schlüssel mit symmetrischer Verschlüsselung in Ihrem Konto anzugeben. Der Wert
des Schlüssel-ID-Parameters kann die Schlüssel-ID, der Schlüssel-ARN, der Aliasname oder der
Alias-ARN von sein AWS KMS key. Einzelheiten zu den Schlüsselkennungen finden Sie unter
Schlüsselkennungen im AWS Key Management Service Entwicklerhandbuch.

Der Direct KMS Provider benötigt einen KMS-Schlüssel mit symmetrischer Verschlüsselung.
Sie können keinen asymmetrischen KMS-Schlüssel verwenden. Sie können jedoch einen KMS-
Schlüssel für mehrere Regionen, einen KMS-Schlüssel mit importiertem Schlüsselmaterial oder
einen KMS-Schlüssel in einem benutzerdefinierten Schlüsselspeicher verwenden. Sie benötigen die
Berechtigungen kms: GenerateDataKey und kms:Decrypt für den KMS-Schlüssel. Daher müssen Sie
einen vom Kunden verwalteten Schlüssel verwenden, keinen verwalteten oder AWS eigenen AWS
KMS-Schlüssel.

Der DynamoDB Encryption Client für Python bestimmt die Region für den Aufruf AWS KMS aus
der Region im Schlüssel-ID-Parameterwert, falls dieser einen enthält. Andernfalls verwendet er die
Region im AWS KMS Client, falls Sie eine angeben, oder die Region, die Sie in der konfigurieren.

Anbieter von kryptografischem Material 284

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_table.py
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_item.py
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

AWS SDK für Python (Boto3) Informationen zur Regionsauswahl in Python finden Sie unter
Konfiguration in der AWS API-Referenz zum SDK for Python (Boto3).

Der DynamoDB Encryption Client für Java bestimmt die Region für Anrufe AWS KMS von der Region
im AWS KMS Client, wenn der von Ihnen angegebene Client eine Region enthält. Andernfalls
verwendet er die Region, die Sie in der konfigurieren. AWS SDK für Java Informationen zur
Regionsauswahl finden Sie unter AWS-Region Auswahl im AWS SDK für Java Developer Guide.
AWS SDK für Java

Java

// Replace the example key ARN and Region with valid values for your application
final String keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
final String region = 'us-west-2'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Python

Im folgenden Beispiel wird der Schlüssel ARN verwendet, um den zu spezifizieren AWS KMS
key. Wenn Ihre Schlüssel-ID keine enthält AWS-Region, ruft der DynamoDB Encryption Client
die Region aus der konfigurierten Botocore-Sitzung, falls vorhanden, oder aus den Boto-
Standardwerten ab.

Replace the example key ID with a valid value
kms_key = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key)

Wenn Sie globale Amazon DynamoDB-Tabellen verwenden, empfehlen wir Ihnen, Ihre Daten
mit einem AWS KMS Schlüssel für mehrere Regionen zu verschlüsseln. Schlüssel mit mehreren
Regionen sind AWS KMS keys unterschiedlich und können synonym verwendet werden AWS-
Regionen , da sie dieselbe Schlüssel-ID und dasselbe Schlüsselmaterial haben. Einzelheiten finden
Sie unter Verwenden von Schlüsseln für mehrere Regionen im Entwicklerhandbuch.AWS Key
Management Service

Anbieter von kryptografischem Material 285

https://boto3.amazonaws.com/v1/documentation/api/latest/guide/configuration.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/java-dg-region-selection.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Note

Wenn Sie die Version 2017.11.29 für globale Tabellen verwenden, müssen Sie
Attributaktionen so einrichten, dass die reservierten Replikationsfelder nicht verschlüsselt
oder signiert werden. Details hierzu finden Sie unter Probleme mit globalen Tabellen älterer
Versionen.

Um einen Schlüssel für mehrere Regionen mit dem DynamoDB Encryption Client zu verwenden,
erstellen Sie einen Schlüssel für mehrere Regionen und replizieren Sie ihn in die Regionen, in denen
Ihre Anwendung ausgeführt wird. Konfigurieren Sie dann den Direct KMS Provider so, dass er den
Schlüssel für mehrere Regionen in der Region verwendet, in der der DynamoDB Encryption Client
anruft. AWS KMS

Im folgenden Beispiel wird der DynamoDB Encryption Client so konfiguriert, dass er Daten in der
Region USA Ost (Nord-Virginia) (us-east-1) verschlüsselt und in der Region USA West (Oregon) (us-
west-2) mit einem Schlüssel für mehrere Regionen entschlüsselt.

Java

In diesem Beispiel ruft der DynamoDB Encryption Client die Region für Anrufe AWS KMS von
der Region im AWS KMS Client ab. Der keyArn Wert identifiziert einen Schlüssel mit mehreren
Regionen in derselben Region.

// Encrypt in us-east-1

// Replace the example key ARN and Region with valid values for your application
final String usEastKey = 'arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
final String region = 'us-east-1'

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, usEastKey);

// Decrypt in us-west-2

// Replace the example key ARN and Region with valid values for your application
final String usWestKey = 'arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
final String region = 'us-west-2'

Anbieter von kryptografischem Material 286

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V1.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, usWestKey);

Python

In diesem Beispiel ruft der DynamoDB Encryption Client die Region für Anrufe AWS KMS aus der
Region im Schlüssel-ARN ab.

Encrypt in us-east-1

Replace the example key ID with a valid value
us_east_key = 'arn:aws:kms:us-east-1:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=us_east_key)

Decrypt in us-west-2

Replace the example key ID with a valid value
us_west_key = 'arn:aws:kms:us-west-2:111122223333:key/
mrk-1234abcd12ab34cd56ef1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=us_west_key)

Funktionsweise

Der Direct KMS Provider gibt Verschlüsselungs- und Signaturschlüssel zurück, die durch einen AWS
KMS key von Ihnen angegebenen Wert geschützt sind, wie in der folgenden Abbildung dargestellt.

Anbieter von kryptografischem Material 287

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Um Verschlüsselungsmaterial zu generieren, fordert der Direct KMS Provider AWS KMS auf,
mithilfe eines von Ihnen angegebenen Datenschlüssels für jedes Element einen eindeutigen
Datenschlüssel AWS KMS key zu generieren. Er leitet Verschlüsselungs- und Signierschlüssel für
das Element aus der Klartextkopie des Datenschlüssels ab und gibt dann die Verschlüsselungs-
und Signierschlüssel zusammen mit dem verschlüsselten Datenschlüssel zurück, der im
Materialbeschreibungsattribut des Elements gespeichert wird.

Der Elementverschlüssler verwendet die Verschlüsselungs- und Signierschlüssel und entfernt sie
so schnell wie möglich aus dem Speicher. Nur die verschlüsselte Kopie des Datenschlüssels, von
dem sie abgeleitet wurden, wird im verschlüsselten Element gespeichert.

• Um Entschlüsselungsmaterialien zu generieren, bittet der Direct KMS-Anbieter darum
AWS KMS , den verschlüsselten Datenschlüssel zu entschlüsseln. Dann leitet es aus
dem Klartextdatenschlüssel Verifizierungs- und Signierschlüssel ab und gibt sie an den
Elementverschlüssler zurück.

Der Elementverschlüssler verifiziert das Element und entschlüsselt bei erfolgreicher Verifikation
die verschlüsselten Werte. Anschließend entfernt er die Schlüssel so schnell wie möglich aus dem
Speicher.

Anbieter von kryptografischem Material 288

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verschlüsselungsmaterialien abrufen

Dieser Abschnitt beschreibt detailliert die Ein- und Ausgänge und die Verarbeitung des Direct KMS
Providers, wenn er eine Anfrage für Verschlüsselungsmaterialien vom Elementverschlüssler erhält.

Eingabe (von der Anwendung)

• Die Schlüssel-ID eines. AWS KMS key

Eingabe (vom Elementverschlüssler)

• DynamoDB-Verschlüsselungskontext

Ausgabe (an den Elementverschlüssler)

• Verschlüsselungsschlüssel (Klartext)

• Signierschlüssel

• In der tatsächlichen Materialbeschreibung: Diese Werte werden im Materialbeschreibungsattribut
gespeichert, das der Client dem Element hinzufügt.

• amzn-ddb-env-key: Base64-codierter Datenschlüssel, verschlüsselt durch AWS KMS key

• amzn-ddb-env-alg: Verschlüsselungsalgorithmus, standardmäßig AES/256

• amzn-ddb-sig-alg: Signierungsalgorithmus, standardmäßig Hmac /256 SHA256

• amzn-ddb-wrap-alg: km

Verarbeitung

1. Der Direct KMS-Anbieter sendet AWS KMS eine Anfrage, um mithilfe der angegebenen Daten
einen eindeutigen Datenschlüssel für das Element AWS KMS key zu generieren. Die Operation
gibt einen Klartextschlüssel und eine Kopie zurück, die unter dem AWS KMS key verschlüsselt ist.
Dies wird als anfängliches Schlüsselmaterial bezeichnet.

Die Anforderung enthält die folgenden Werte im Klartext im AWS KMS -Verschlüsselungskontext.
Diese nicht geheimen Werte sind kryptographisch an das verschlüsselte Objekt gebunden, sodass
beim Entschlüsseln der gleiche Verschlüsselungskontext benötigt wird. Sie können diese Werte
verwenden, um den Anruf AWS KMS in AWS CloudTrail Protokollen zu identifizieren.

• amzn-ddb-env-alg — Verschlüsselungsalgorithmus, standardmäßig AES/256

Anbieter von kryptografischem Material 289

https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/archived-crypto-projects/aes-development
https://en.wikipedia.org/wiki/HMAC
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/kms/latest/developerguide/monitoring-overview.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• amzn-ddb-sig-alg — Signaturalgorithmus, standardmäßig Hmac /256 SHA256

• (Fakultativ) — aws-kms-table table name

• (Optional) partition key name — partition key value (Binärwerte sind Base64-
kodiert)

• (Optional) sort key name — sort key value (Binärwerte sind Base64-kodiert)

Der Direct KMS-Anbieter ruft die Werte für den AWS KMS Verschlüsselungskontext aus
dem DynamoDB-Verschlüsselungskontext für das Element ab. Wenn der DynamoDB-
Verschlüsselungskontext keinen Wert enthält, z. B. den Tabellennamen, wird dieses Name-Wert-
Paar aus dem Verschlüsselungskontext weggelassen. AWS KMS

2. Der Direct KMS Provider leitet aus dem Datenschlüssel einen symmetrischen
Verschlüsselungsschlüssel und einen Signierschlüssel ab. Standardmäßig verwendet es den
Secure Hash Algorithm (SHA) 256 und die RFC5869 HMAC-basierte Schlüsselableitungsfunktion,
um einen symmetrischen 256-Bit-AES-Verschlüsselungsschlüssel und einen 256-Bit-HMAC-
SHA-256-Signaturschlüssel abzuleiten.

3. Der Direct KMS Provider gibt die Ausgabe an den Elementverschlüssler zurück.

4. Der Elementverschlüssler verwendet den Verschlüsselungsschlüssel, um die angegebenen
Attribute zu verschlüsseln, und den Signierschlüssel, um sie mit den in der tatsächlichen
Materialbeschreibung angegebenen Algorithmen zu signieren. Er entfernt die Klartextschlüssel so
schnell wie möglich aus dem Speicher.

Entschlüsselungsmaterialien abrufen

Dieser Abschnitt beschreibt detailliert die Ein- und Ausgänge und die Verarbeitung des Direct KMS
Providers, wenn er eine Anfrage für Entschlüsselungsmaterialien vom Elementverschlüssler erhält.

Eingabe (von der Anwendung)

• Die Schlüssel-ID eines. AWS KMS key

Der Wert der Schlüssel-ID kann die Schlüssel-ID, der Schlüssel-ARN, der Aliasname oder der
Alias-ARN von sein AWS KMS key. Alle Werte, die nicht in der Schlüssel-ID enthalten sind, z. B.
die Region, müssen im AWS benannten Profil verfügbar sein. Der Schlüssel ARN liefert alle Werte,
die AWS KMS benötigt werden.

Eingabe (vom Elementverschlüssler)

Anbieter von kryptografischem Material 290

https://en.wikipedia.org/wiki/SHA-2
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-using-profiles

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Eine Kopie des DynamoDB-Verschlüsselungskontextes, der den Inhalt des
Materialbeschreibungsattributs enthält.

Ausgabe (an den Elementverschlüssler)

• Verschlüsselungsschlüssel (Klartext)

• Signierschlüssel

Verarbeitung

1. Der Direct KMS-Anbieter ruft den verschlüsselten Datenschlüssel aus dem
Materialbeschreibungsattribut im verschlüsselten Element ab.

2. Er fordert Sie AWS KMS auf, den angegebenen Schlüssel AWS KMS key zum Entschlüsseln des
verschlüsselten Datenschlüssels zu verwenden. Die Operation gibt einen Klartextschlüssel zurück.

Diese Anforderung muss denselben AWS KMS -Verschlüsselungskontext verwenden, in dem der
Datenschlüssel generiert und verschlüsselt wurde.

• aws-kms-table – table name

• partition key name— partition key value (Binärwerte sind Base64-kodiert)

• (Optional) sort key name — sort key value (Binärwerte sind Base64-kodiert)

• amzn-ddb-env-alg — Verschlüsselungsalgorithmus, standardmäßig AES/256

• amzn-ddb-sig-alg — Signaturalgorithmus, standardmäßig Hmac /256 SHA256

3. Der Direct KMS Provider verwendet den Secure Hash Algorithm (SHA) 256 und die RFC5869
HMAC-basierte Schlüsselableitungsfunktion, um einen symmetrischen 256-Bit-AES-
Verschlüsselungsschlüssel und einen 256-Bit-HMAC-SHA-256-Signaturschlüssel aus dem
Datenschlüssel abzuleiten.

4. Der Direct KMS Provider gibt die Ausgabe an den Elementverschlüssler zurück.

5. Der Elementverschlüssler verwendet den Signierschlüssel, um das Element zu verifizieren.
Wenn er erfolgreich ist, verwendet er den symmetrischen Verschlüsselungsschlüssel, um
die verschlüsselten Attributwerte zu entschlüsseln. Diese Operationen verwenden die in der
tatsächlichen Materialbeschreibung angegebenen Verschlüsselungs- und Signieralgorithmen. Der
Elementverschlüssler entfernt die Klartextschlüssel so schnell wie möglich aus dem Speicher.

Anbieter von kryptografischem Material 291

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://en.wikipedia.org/wiki/SHA-2
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Wrapped Materials Provider

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des
DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

Mit dem Wrapped Materials Provider (Wrapped CMP) können Sie Schlüssel aus beliebigen Quellen
mit dem DynamoDB Encryption Client verpacken und signieren. Das Wrapped CMP ist von keinem
Dienst abhängig. AWS Sie müssen jedoch Ihre Wrapping- und Signierschlüssel außerhalb des
Clients generieren und verwalten, einschließlich der Bereitstellung der richtigen Schlüssel zur
Verifizierung und Entschlüsselung des Elements.

Der Wrapped CMP generiert einen eindeutigen Verschlüsselungsschlüssel für jedes Element.
Er verpackt den Verschlüsselungsschlüssel des Elements mit dem von Ihnen bereitgestellten
Wrapping-Schlüssel und speichert den verpackten Elementverschlüsselungsschlüssel im
Materialbeschreibungsattribut des Elements. Da Sie die Wrapping- und Signierschlüssel bereitstellen,
bestimmen Sie, wie die Wrapping- und Signierschlüssel erzeugt werden und ob sie für jedes Element
eindeutig sind oder wiederverwendet werden.

Der Wrapped CMP ist eine sichere Implementierung und eine gute Wahl für Anwendungen, die
kryptographische Materialien verwalten können.

Der Wrapped CMP ist einer von mehreren Anbietern von kryptografischem Material (CMPs), die der
DynamoDB Encryption Client unterstützt. Hinweise zum anderen finden Sie unter. CMPs Anbieter
von kryptografischem Material

Beispielcode finden Sie unter:

• Java: AsymmetricEncryptedItem

• Python: wrapped-rsa-encrypted-table, wrapped-symmetric-encrypted-table

Themen

• Verwendung

Anbieter von kryptografischem Material 292

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AsymmetricEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/wrapped_rsa_encrypted_table.py
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/wrapped_symmetric_encrypted_table.py

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Funktionsweise

Verwendung

Um einen Wrapped CMP zu erstellen, geben Sie einen Wrapping-Schlüssel (beim Verschlüsseln
erforderlich), einen Unwrapping-Schlüssel (beim Entschlüsseln erforderlich) und einen
Signierschlüssel an. Sie müssen beim Ver- und Entschlüsseln von Elementen Schlüssel bereitstellen.

Die Wrapping-, Unwrapping- und Signierschlüssel können symmetrische Schlüssel oder
asymmetrische Schlüsselpaare sein.

Java

// This example uses asymmetric wrapping and signing key pairs
final KeyPair wrappingKeys = ...
final KeyPair signingKeys = ...

final WrappedMaterialsProvider cmp =
 new WrappedMaterialsProvider(wrappingKeys.getPublic(),
 wrappingKeys.getPrivate(),
 signingKeys);

Python

This example uses symmetric wrapping and signing keys
wrapping_key = ...
signing_key = ...

wrapped_cmp = WrappedCryptographicMaterialsProvider(
 wrapping_key=wrapping_key,
 unwrapping_key=wrapping_key,
 signing_key=signing_key
)

Funktionsweise

Der Wrapped CMP generiert einen neuen Verschlüsselungsschlüssel für jedes Element. Es
verwendet die von Ihnen bereitgestellten Wrapping-, Unwrapping- und Signierschlüssel, wie in der
folgenden Abbildung gezeigt.

Anbieter von kryptografischem Material 293

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verschlüsselungsmaterialien abrufen

Dieser Abschnitt beschreibt detailliert die Ein- und Ausgänge und die Verarbeitung des Wrapped
Materials Providers (Wrapped CMP), wenn er eine Anfrage für Verschlüsselungsmaterialien erhält.

Eingabe (von der Anwendung)

• Wrapping-Schlüssel: Ein symmetrischer Advanced Encryption Standard (AES)-Schlüssel oder ein
öffentlicher RSA-Schlüssel. Erforderlich, wenn Attributwerte verschlüsselt sind. Andernfalls ist er
optional und wird ignoriert.

• Unwrapping-Schlüssel: Optional und wird ignoriert.

• Signierschlüssel

Eingabe (vom Elementverschlüssler)

• DynamoDB-Verschlüsselungskontext

Ausgabe (an den Elementverschlüssler):

• Klartext-Element-Verschlüsselungsschlüssel

• Signierschlüssel (unverändert)

• Tatsächliche Materialbeschreibung: Diese Werte werden im Materialbeschreibungsattribut
gespeichert, das der Client dem Element hinzufügt.

• amzn-ddb-env-key: Base64-codierter Wrapped-Element-Verschlüsselungsschlüssel

• amzn-ddb-env-alg: Verschlüsselungsalgorithmus, der zur Verschlüsselung des Elements
verwendet wird. Der Standardwert ist AES-256-CBC.

Anbieter von kryptografischem Material 294

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• amzn-ddb-wrap-alg: Der Wrapping-Algorithmus, den der Wrapped CMP verwendet hat,
um den Elementverschlüsselungsschlüssel zu verpacken. Wenn es sich bei dem Wrapping-
Schlüssel um einen AES-Schlüssel handelt, wird der Schlüssel mit nicht aufgefülltem AES-
Keywrap verpackt, wie in RFC 3394 definiert. Wenn der Wrapping-Schlüssel ein RSA-Schlüssel
ist, wird der Schlüssel mithilfe von RSA OAEP mit Auffüllung verschlüsselt. MGF1

Verarbeitung

Wenn Sie ein Element verschlüsseln, übergeben Sie einen Wrapping-Schlüssel und einen
Signierschlüssel. Ein Unwrapping-Schlüssel ist optional und wird ignoriert.

1. Der Wrapped CMP generiert einen symmetrischen Elementverschlüsselungsschlüssel für das
Tabellenelement.

2. Er verwendet den Wrapping-Schlüssel, den Sie angeben, um den
Elementverschlüsselungsschlüssel zu verpacken. Anschließend entfernt er ihn so schnell wie
möglich aus dem Speicher.

3. Es gibt den Klartextelementverschlüsselungsschlüssel zurück, den von Ihnen angegebenen
Signierschlüssel und eine tatsächliche Materialbeschreibung, die den Verschlüsselungsschlüssel
des verpackten Elements und die Verschlüsselungs- und Wrapping-Algorithmen enthält.

4. Der Elementverschlüssler verwendet den Klartext-Verschlüsselungsschlüssel, um das Element zu
verschlüsseln. Es verwendet den von Ihnen bereitgestellten Signierschlüssel, um das Element zu
signieren. Anschließend entfernt er die Klartextschlüssel so schnell wie möglich aus dem Speicher.
Es kopiert die Felder in der tatsächlichen Materialbeschreibung, einschließlich des verpackten
Verschlüsselungsschlüssels (amzn-ddb-env-key), in das Materialbeschreibungsattribut des
Elements.

Entschlüsselungsmaterialien abrufen

Dieser Abschnitt beschreibt detailliert die Ein- und Ausgänge und die Verarbeitung des Wrapped
Materials Providers (Wrapped CMP), wenn er eine Anfrage für Entschlüsselungsmaterialien erhält.

Eingabe (von der Anwendung)

• Wrapping-Schlüssel: Optional und wird ignoriert.

• Unwrapping-Schlüssel: Derselbe symmetrische Advanced Encryption Standard (AES)-Schlüssel
oder private RSA-Schlüssel, der dem zum Verschlüsseln verwendeten öffentlichen RSA-Schlüssel

Anbieter von kryptografischem Material 295

https://tools.ietf.org/html/rfc3394.html
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

entspricht. Erforderlich, wenn Attributwerte verschlüsselt sind. Andernfalls ist er optional und wird
ignoriert.

• Signierschlüssel

Eingabe (vom Elementverschlüssler)

• Eine Kopie des DynamoDB-Verschlüsselungskontextes, der den Inhalt des
Materialbeschreibungsattributs enthält.

Ausgabe (an den Elementverschlüssler)

• Klartext-Element-Verschlüsselungsschlüssel

• Signierschlüssel (unverändert)

Verarbeitung

Wenn Sie ein Element entschlüsseln, übergeben Sie einen Unwrapping-Schlüssel und einen
Signierschlüssel. Ein Wrapping-Schlüssel ist optional und wird ignoriert.

1. Der Wrapped CMP erhält den Verschlüsselungsschlüssel des verpackten Elements aus dem
Materialbeschreibungsattribut des Elements.

2. Er verwendet den Unwrapping-Schlüssel und den Algorithmus, um den Verschlüsselungsschlüssel
des Elements zu entpacken.

3. Es gibt den Klartextelementverschlüsselungsschlüssel, den Signierschlüssel sowie
Verschlüsselungs- und Signieralgorithmen an den Elementverschlüsseler zurück.

4. Der Elementverschlüssler verwendet den Signierschlüssel, um das Element zu verifizieren. Wenn
dies erfolgreich ist, verwendet er den Verschlüsselungsschlüssel des Elements, um das Element
zu entschlüsseln. Anschließend entfernt er die Klartextschlüssel so schnell wie möglich aus dem
Speicher.

Most Recent Provider

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des

Anbieter von kryptografischem Material 296

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

Der Most Recent Provider ist ein Anbieter kryptographischer Materialien (Cryptographic Materials
Provider (CMP)), der auf die Arbeit mit einem Provider-Store ausgelegt ist. Es wird CMPs aus dem
Anbieterspeicher abgerufen und ruft die kryptografischen Materialien ab, die es vom zurückgibt.
CMPs Typischerweise wird jeder CMP verwendet, um mehrere Anfragen nach kryptographischem
Material zu befriedigen. Sie können jedoch mit den Funktionen des Provider-Stores steuern, inwieweit
Materialien wiederverwendet werden, wie oft der CMP gewechselt wird und sogar den Typ des CMP
ändern, ohne den Most Recent Provider zu ändern.

Note

Der Code, der dem MostRecentProvider Symbol für den neuesten Anbieter zugeordnet
ist, speichert möglicherweise kryptografisches Material für die gesamte Lebensdauer des
Prozesses im Speicher. Es könnte einem Anrufer ermöglichen, Schlüssel zu verwenden, zu
deren Verwendung er nicht mehr berechtigt ist.
Das MostRecentProvider Symbol ist in älteren unterstützten Versionen des DynamoDB
Encryption Client veraltet und wurde aus Version 2.0.0 entfernt. Es wird durch das Symbol
ersetzt. CachingMostRecentProvider Details hierzu finden Sie unter Aktualisierungen für
den neuesten Anbieter.

Der Most Recent Provider ist eine gute Wahl für Anwendungen, die Aufrufe des Provider-Stores
und seiner kryptographischen Quelle minimieren müssen, sowie für Anwendungen, die bestimmte
kryptographische Materialien wiederverwenden können, ohne ihre Sicherheitsanforderungen zu
verletzen. So können Sie beispielsweise Ihr kryptografisches Material mit einem AWS KMS keyin
AWS Key Management Service(AWS KMS) schützen, ohne AWS KMS jedes Mal, wenn Sie ein
Objekt ver- oder entschlüsseln, erneut aufrufen zu müssen.

Der von Ihnen gewählte Anbieterspeicher bestimmt CMPs , welchen Typ der neueste Anbieter
verwendet und wie oft er eine neue CMP erhält. Sie können jeden kompatiblen Provider-Store für
den Most Recent Provider verwenden, einschließlich benutzerdefinierter Provider-Stores, die Sie
entwerfen.

Anbieter von kryptografischem Material 297

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Der DynamoDB Encryption Client enthält einen MetaStore, der Wrapped Materials Providers
(Wrapped) erstellt und zurückgibt. CMPs Das MetaStore speichert mehrere Versionen von Wrapped
CMPs , die es generiert, in einer internen DynamoDB-Tabelle und schützt sie mit clientseitiger
Verschlüsselung durch eine interne Instanz des DynamoDB Encryption Client.

Sie können den MetaStore so konfigurieren, dass er jede Art von internem CMP verwendet, um
die Materialien in der Tabelle zu schützen, einschließlich eines direkten KMS-Anbieters, der von
Ihnen geschütztes kryptografisches Material generiert AWS KMS key, eines Wrapped CMP, das
von Ihnen bereitgestellte Wrapping- und Signierschlüssel verwendet, oder eines kompatiblen
benutzerdefinierten CMP, das Sie entwerfen.

Beispielcode finden Sie unter:

• Java: MostRecentEncryptedItem

• Python: most_recent_provider_encrypted_table

Themen

• Verwendung

• Funktionsweise

• Aktualisierungen für den neuesten Anbieter

Verwendung

Um einen Most Recent Provider zu erstellen, müssen Sie einen Provider-Store erstellen und
konfigurieren und dann einen Most Recent Provider erstellen, der den Provider-Store verwendet.

Die folgenden Beispiele zeigen, wie Sie einen Aktuellsten Anbieter erstellen, der einen verwendet
MetaStore und die Versionen in seiner internen DynamoDB-Tabelle mit kryptografischem Material
von einem Direct KMS-Anbieter schützt. In diesen Beispielen wird das Symbol verwendet.
CachingMostRecentProvider

Jeder aktuelle Anbieter hat einen Namen, der ihn CMPs in der MetaStore Tabelle identifiziert,
eine Einstellung time-to-live(TTL) und eine Einstellung für die Cachegröße, die bestimmt, wie viele
Einträge der Cache aufnehmen kann. In diesen Beispielen wird die Cachegröße auf 1000 Einträge
und eine TTL von 60 Sekunden festgelegt.

Anbieter von kryptografischem Material 298

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/MostRecentEncryptedItem.java
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/most_recent_provider_encrypted_table.py

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Java

// Set the name for MetaStore's internal table
final String keyTableName = 'metaStoreTable'

// Set the Region and AWS KMS key
final String region = 'us-west-2'
final String keyArn = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

// Set the TTL and cache size
final long ttlInMillis = 60000;
final long cacheSize = 1000;

// Name that identifies the MetaStore's CMPs in the provider store
final String materialName = 'testMRP'

// Create an internal DynamoDB client for the MetaStore
final AmazonDynamoDB ddb =
 AmazonDynamoDBClientBuilder.standard().withRegion(region).build();

// Create an internal Direct KMS Provider for the MetaStore
final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider kmsProv = new DirectKmsMaterialProvider(kms,
 keyArn);

// Create an item encryptor for the MetaStore,
// including the Direct KMS Provider
final DynamoDBEncryptor keyEncryptor = DynamoDBEncryptor.getInstance(kmsProv);

// Create the MetaStore
final MetaStore metaStore = new MetaStore(ddb, keyTableName, keyEncryptor);

//Create the Most Recent Provider
final CachingMostRecentProvider cmp = new CachingMostRecentProvider(metaStore,
 materialName, ttlInMillis, cacheSize);

Python

Designate an AWS KMS key
kms_key_id = 'arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'

Anbieter von kryptografischem Material 299

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Set the name for MetaStore's internal table
meta_table_name = 'metaStoreTable'

Name that identifies the MetaStore's CMPs in the provider store
material_name = 'testMRP'

Create an internal DynamoDB table resource for the MetaStore
meta_table = boto3.resource('dynamodb').Table(meta_table_name)

Create an internal Direct KMS Provider for the MetaStore
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

Create the MetaStore with the Direct KMS Provider
meta_store = MetaStore(
 table=meta_table,
 materials_provider=kms_cmp
)

Create a Most Recent Provider using the MetaStore
Sets the TTL (in seconds) and cache size (# entries)
most_recent_cmp = MostRecentProvider(
 provider_store=meta_store,
 material_name=material_name,
 version_ttl=60.0,
 cache_size=1000
)

Funktionsweise

Der neueste Anbieter wird CMPs aus einem Anbieterspeicher abgerufen. Dann verwendet er den
CMP, um die kryptographischen Materialien zu generieren, die er an den Elementverschlüssler
zurückgibt.

Informationen über den Most Recent Provider

Der Most Recent Provider erhält einen Anbieter kryptographischer Materialien (Cryptographic
Materials Provider (CMP) aus einem Provider-Store. Dann verwendet er den CMP, um die
kryptographischen Materialien zu generieren, die er zurückgibt. Jeder aktuelle Anbieter ist einem
Anbieterspeicher zugeordnet, aber ein Anbieterspeicher kann mehrere Anbieter auf mehreren Hosts
beliefern CMPs .

Anbieter von kryptografischem Material 300

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Der Most Recent Provider kann mit jedem kompatiblen CMP aus einem beliebigen Provider-Store
arbeiten. Es fordert Verschlüsselungs- oder Entschlüsselungsmaterial vom CMP an und gibt die
Ausgabe an den Elementverschlüsseler zurück. Er führt keine kryptografischen Operationen durch.

Um einen CMP von seinem Provider-Store anzufordern, gibt der Most Recent Provider seinen
Materialnamen und die Version eines bestehenden CMP an, den er verwenden möchte. Bei
Verschlüsselungsmaterialien fordert der Most Recent Provider immer die maximale („neueste“)
Version an. Bei Entschlüsselungsmaterialien wird die Version des CMP angefordert, die für die
Erstellung der Verschlüsselungsmaterialien verwendet wurde, wie in der folgenden Abbildung
dargestellt.

Der neueste Anbieter speichert Versionen von CMPs , die der Anbieter zurückgibt, in einem lokalen
LRU-Cache (Least Recently Used) im Arbeitsspeicher. Der Cache ermöglicht es dem neuesten
Anbieter, die benötigten Daten abzurufen CMPs , ohne für jedes Element den Anbieterspeicher
aufrufen zu müssen. Sie können den Cache bei Bedarf leeren.

Der neueste Anbieter verwendet einen konfigurierbaren time-to-liveWert, den Sie an die
Eigenschaften Ihrer Anwendung anpassen können.

Über den MetaStore

Sie können einen Most Recent Provider mit einem beliebigen Provider-Store verwenden,
einschließlich eines kompatiblen benutzerdefinierten Provider-Stores. Der DynamoDB Encryption
Client umfasst eine MetaStore, eine sichere Implementierung, die Sie konfigurieren und anpassen
können.

Anbieter von kryptografischem Material 301

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

A MetaStoreist ein Provider-Store, der Wrapped erstellt und zurückgibt CMPs, die mit dem Wrapped
Key, dem Unwrapping Key und dem Signaturschlüssel konfiguriert sind, die Wrapped benötigen.
CMPs A MetaStore ist eine sichere Option für den neuesten Anbieter, da Wrapped CMPs immer
eindeutige Verschlüsselungsschlüssel für jedes Element generiert. Nur der Wrapping-Schlüssel, der
den Elementverschlüsselungsschlüssel und die Signierschlüssel schützt, wird wiederverwendet.

Das folgende Diagramm zeigt die Komponenten von MetaStore und wie es mit dem neuesten
Anbieter interagiert.

Der MetaStore generiert das Wrapped CMPs und speichert es dann (in verschlüsselter Form) in
einer internen DynamoDB-Tabelle. Der Partitionsschlüssel ist der Name des aktuellsten Provider-
Materials, der Sortierschlüssel die Versionsnummer. Die Materialien in der Tabelle sind durch einen
internen DynamoDB Encryption Client geschützt, einschließlich eines Elementverschlüsselers und
eines internen Anbieters für kryptografische Materialien (CMP).

Sie können jede Art von internem CMP in Ihrem verwenden MetaStore, einschließlich eines
direkten KMS-Anbieters, eines verpackten CMP mit von Ihnen bereitgestellten kryptografischen
Materialien oder eines kompatiblen benutzerdefinierten CMP. Wenn es sich bei Ihrem internen CMP
um einen Direct KMS-Anbieter MetaStore handelt, sind Ihre wiederverwendbaren Wrapping- und
Signaturschlüssel mit einem in () geschützt. AWS KMS keyAWS Key Management ServiceAWS KMS

Anbieter von kryptografischem Material 302

https://docs.aws.amazon.com/kms/latest/developerguide/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Der MetaStore ruft AWS KMS jedes Mal auf, wenn er seiner internen Tabelle eine neue CMP-Version
hinzufügt oder eine CMP-Version aus seiner internen Tabelle abruft.

Einen Wert setzen time-to-live

Sie können für jeden neuesten Anbieter, den Sie erstellen, einen Wert time-to-live (TTL) festlegen.
Verwenden Sie im Allgemeinen den niedrigsten TTL-Wert, der für Ihre Anwendung praktikabel ist.

Die Verwendung des TTL-Werts wird im CachingMostRecentProvider Symbol für den neuesten
Anbieter geändert.

Note

Das MostRecentProvider Symbol für den neuesten Anbieter ist in älteren unterstützten
Versionen des DynamoDB Encryption Client veraltet und wurde aus Version 2.0.0 entfernt.
Es wird durch das Symbol ersetzt. CachingMostRecentProvider Wir empfehlen
Ihnen, Ihren Code so schnell wie möglich zu aktualisieren. Details hierzu finden Sie unter
Aktualisierungen für den neuesten Anbieter.

CachingMostRecentProvider

Der CachingMostRecentProvider verwendet den TTL-Wert auf zwei verschiedene Arten.

• Die TTL bestimmt, wie oft der neueste Anbieter im Anbieterspeicher nach einer neuen Version
der CMP sucht. Wenn eine neue Version verfügbar ist, ersetzt der neueste Anbieter seinen
CMP und aktualisiert sein kryptografisches Material. Andernfalls verwendet er weiterhin seine
aktuellen CMP- und kryptografischen Materialien.

• Die TTL bestimmt, wie lange CMPs der Cache verwendet werden kann. Bevor er eine
zwischengespeicherte CMP für die Verschlüsselung verwendet, bewertet der aktuelle Anbieter
die Zeit, die er im Cache verbracht hat. Wenn die CMP-Cachezeit die TTL überschreitet, wird
die CMP aus dem Cache entfernt und der neueste Anbieter erhält eine neue CMP der neuesten
Version aus seinem Provider-Speicher.

MostRecentProvider

In der bestimmt die TTLMostRecentProvider, wie oft der neueste Anbieter im Anbieterspeicher
nach einer neuen Version des CMP sucht. Wenn eine neue Version verfügbar ist, ersetzt der
neueste Anbieter seinen CMP und aktualisiert sein kryptografisches Material. Andernfalls
verwendet er weiterhin seine aktuellen CMP- und kryptografischen Materialien.

Anbieter von kryptografischem Material 303

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Die TTL bestimmt nicht, wie oft eine neue CMP-Version erstellt wird. Sie erstellen neue CMP-
Versionen, indem Sie die kryptografischen Materialien rotieren.

Ein idealer TTL-Wert hängt von der Anwendung und ihren Latenz- und Verfügbarkeitszielen ab.
Eine niedrigere TTL verbessert Ihr Sicherheitsprofil, da sie die Zeit reduziert, in der kryptografisches
Material im Speicher gespeichert wird. Eine niedrigere TTL aktualisiert außerdem wichtige
Informationen häufiger. Wenn es sich bei Ihrem internen CMP beispielsweise um einen Direct KMS-
Anbieter handelt, überprüft er häufiger, ob der Anrufer weiterhin berechtigt ist, einen zu verwenden.
AWS KMS key

Wenn die TTL jedoch zu kurz ist, können die häufigen Anrufe beim Provider-Store Ihre Kosten in die
Höhe treiben und dazu führen, dass Ihr Provider-Store Anfragen von Ihrer Anwendung und anderen
Anwendungen, die Ihr Dienstkonto gemeinsam nutzen, drosselt. Sie könnten auch davon profitieren,
die TTL mit der Geschwindigkeit zu koordinieren, mit der Sie kryptografisches Material wechseln.

Variieren Sie beim Testen die TTL und die Cachegröße je nach Arbeitslast, bis Sie eine Konfiguration
gefunden haben, die für Ihre Anwendung und Ihre Sicherheits- und Leistungsstandards geeignet ist.

Rotieren von kryptografischen Materialien

Wenn ein neuester Anbieter Verschlüsselungsmaterial benötigt, verwendet er immer die neueste
Version seiner CMP, die ihm bekannt ist. Die Häufigkeit, mit der nach einer neueren Version gesucht
wird, wird durch den time-to-live(TTL) -Wert bestimmt, den Sie bei der Konfiguration des neuesten
Anbieters festgelegt haben.

Wenn die TTL abläuft, sucht der neueste Anbieter im Anbieterspeicher nach einer neueren Version
der CMP. Wenn eine verfügbar ist, wird sie vom neuesten Anbieter abgerufen und die CMP in seinem
Cache ersetzt. Er verwendet dieses CMP und seine kryptografischen Materialien, bis es feststellt,
dass es im Provider-Store eine neuere Version gibt.

Um den Provider-Store anzuweisen, eine neue Version eines CMP für einen Most Recent Provider
zu erstellen, rufen Sie die Operation „Create New Provider“ (Neuen Provider erstellen) des Provider-
Stores mit dem Materialnamen des Most Recent Providers auf. Der Provider-Store erstellt einen
neuen CMP und speichert eine verschlüsselte Kopie in seinem internen Speicher mit einer höheren
Versionsnummer. (Es gibt auch einen CMP zurück, aber Sie können ihn verwerfen.) Wenn der
neueste Anbieter das nächste Mal die maximale Versionsnummer des Provider-Speichers abfragt
CMPs, ruft er die neue höhere Versionsnummer ab und verwendet sie in nachfolgenden Anfragen an
den Speicher, um festzustellen, ob eine neue Version des CMP erstellt wurde.

Anbieter von kryptografischem Material 304

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Sie können Ihre „Create New Provider“-Aufrufe (Neuen Provider erstellen) abhängig von der Zeit, der
Anzahl der verarbeiteten Elemente oder Attribute oder einer anderen für Ihre Anwendung sinnvollen
Kennzahl planen.

Verschlüsselungsmaterialien abrufen

Der Most Recent Provider verwendet den folgenden Prozess, wie in dieser Abbildung gezeigt, um
die Verschlüsselungsmaterialien zu erhalten, die er an den Elementverschlüssler zurückgibt. Die
Ausgabe hängt vom Typ des CMP ab, den der Provider-Store zurückgibt. Der neueste Anbieter kann
jeden kompatiblen Anbieterspeicher verwenden, einschließlich des Speichers MetaStore , der im
DynamoDB Encryption Client enthalten ist.

Wenn Sie mithilfe des CachingMostRecentProviderSymbols einen aktuellen Anbieter erstellen,
geben Sie einen Anbieterspeicher, einen Namen für den neuesten Anbieter und einen time-to-
live(TTL) -Wert an. Sie können optional auch eine Cachegröße angeben, die die maximale Anzahl
kryptografischer Materialien bestimmt, die im Cache vorhanden sein können.

Anbieter von kryptografischem Material 305

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Wenn der Elementverschlüssler den Most Recent Provider nach Verschlüsselungsmaterialien fragt,
sucht der Most Recent Provider zunächst in seinem Cache nach der neuesten Version seines CMP.

• Wenn er die neueste Version von CMP in seinem Cache findet und der CMP den TTL-Wert nicht
überschritten hat, verwendet der neueste Anbieter den CMP, um Verschlüsselungsmaterial zu
generieren. Anschließend gibt er die Verschlüsselungsmaterialien an den Elementverschlüssler
zurück. Für diese Operation muss der Provider-Store nicht aufgerufen werden.

• Wenn sich die neueste Version der CMP nicht in seinem Cache befindet oder wenn sie sich im
Cache befindet, aber ihren TTL-Wert überschritten hat, fordert der neueste Anbieter eine CMP aus
seinem Provider-Speicher an. Die Anfrage enthält den Materialnamen des Most Recent Providers
und die maximale Versionsnummer, die ihm bekannt ist.

1. Der Provider-Store gibt einen CMP aus seinem persistenten Speicher zurück. Wenn es sich
bei dem Provider-Speicher um einen handelt MetaStore, ruft er eine verschlüsselte Wrapped
CMP aus seiner internen DynamoDB-Tabelle ab, indem er den Materialnamen des neuesten
Anbieters als Partitionsschlüssel und die Versionsnummer als Sortierschlüssel verwendet. Der
MetaStore verwendet seinen internen Elementverschlüsseler und sein internes CMP, um das
Wrapped CMP zu entschlüsseln. Dann gibt er den Klartext-CMP an den Most Recent Provider
zurück. Wenn der interne CMP ein Direct KMS Provider ist, beinhaltet dieser Schritt einen Aufruf
von AWS Key Management Service (AWS KMS).

2. Der CMP fügt das amzn-ddb-meta-id-Feld der aktuellen Materialbeschreibung hinzu. Sein
Wert sind der Materialname und die Version des CMP in seiner internen Tabelle. Der Provider-
Store gibt den CMP an den Most Recent Provider zurück.

3. Der Most Recent Provider speichert den CMP im Speicher zwischen.

4. Der Most Recent Provider verwendet den CMP, um Verschlüsselungsmaterialien zu generieren.
Anschließend gibt er die Verschlüsselungsmaterialien an den Elementverschlüssler zurück.

Entschlüsselungsmaterialien abrufen

Wenn der Elementverschlüssler den Most Recent Provider nach Entschlüsselungsmaterialien
abfragt, verwendet der Most Recent Provider den folgenden Prozess, um diese abzurufen und
zurückzugeben.

1. Der Most Recent Provider fragt den Provider-Store nach der Versionsnummer des
kryptographischen Materials, das zur Verschlüsselung des Elements verwendet wurde. Er übergibt
die aktuelle Materialbeschreibung aus dem Materialbeschreibungsattribut des Elements.

Anbieter von kryptografischem Material 306

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

2. Der Provider Store ruft die verschlüsselnde CMP-Versionsnummer aus dem Feld amzn-ddb-
meta-id in der aktuellen Materialbeschreibung ab und gibt sie an den Most Recent Provider
zurück.

3. Der Most Recent Provider durchsucht seinen Cache nach der Version des CMP, mit der das
Element verschlüsselt und signiert wurde.

• Wenn er feststellt, dass sich die passende Version des CMP in seinem Cache befindet
und der CMP den time-to-live (TTL) -Wert nicht überschritten hat, verwendet der neueste
Anbieter den CMP, um Entschlüsselungsmaterialien zu generieren. Anschließend gibt er die
Entschlüsselungsmaterialien an den Elementverschlüssler zurück. Für diese Operation muss der
Provider-Store nicht aufgerufen werden, und auch kein anderer CMP.

• Wenn sich die passende Version der CMP nicht in ihrem Cache befindet oder wenn die
zwischengespeicherte Version ihren TTL-Wert überschritten AWS KMS key hat, fordert der
neueste Anbieter eine CMP von seinem Provider-Speicher an. Er sendet seinen Materialnamen
und die Versionsnummer des verschlüsselnden CMP in der Anfrage.

1. Der Provider-Store durchsucht seinen persistenten Speicher nach dem CMP, indem er den
Namen des Most Recent Providers als Partitionsschlüssel und die Versionsnummer als
Sortierschlüssel verwendet.

• Wenn sich der Name und die Versionsnummer nicht in seinem persistenten Speicher
befinden, wirft der Provider-Store eine Ausnahme auf. Wenn der Provider-Store zur
Generierung des CMP verwendet wurde, sollte der CMP in seinem persistenten Speicher
abgelegt sein, es sei denn, er wurde absichtlich gelöscht.

• Wenn sich der CMP mit dem übereinstimmenden Namen und der Versionsnummer im
persistenten Speicher des Provider-Stores befindet, gibt der Provider-Store den angegebenen
CMP an den Most Recent Provider zurück.

Wenn es sich bei dem Provider-Speicher um einen handelt MetaStore, ruft er die
verschlüsselte CMP aus seiner DynamoDB-Tabelle ab. Dann verwendet er kryptografische
Materialien aus seinem internen CMP, um den verschlüsselten CMP zu entschlüsseln, bevor
es den CMP an den Most Recent Provider zurückgibt. Wenn der interne CMP ein Direct KMS
Provider ist, beinhaltet dieser Schritt einen Aufruf von AWS Key Management Service (AWS
KMS).

2. Der Most Recent Provider speichert den CMP im Speicher zwischen.

3. Der Most Recent Provider verwendet den CMP, um Entschlüsselungsmaterialien zu generieren.
Anschließend gibt er die Entschlüsselungsmaterialien an den Elementverschlüssler zurück.

Anbieter von kryptografischem Material 307

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Aktualisierungen für den neuesten Anbieter

Das Symbol für den neuesten Anbieter wurde von MostRecentProvider zu
geändertCachingMostRecentProvider.

Note

Das MostRecentProvider Symbol, das den neuesten Anbieter darstellt, ist in Version
1.15 des DynamoDB Encryption Client für Java und Version 1.3 des DynamoDB Encryption
Client für Python veraltet und wurde aus den Versionen 2.0.0 des DynamoDB Encryption
Client in beiden Sprachimplementierungen entfernt. Verwenden Sie stattdessen die.
CachingMostRecentProvider

Der CachingMostRecentProvider implementiert die folgenden Änderungen:

• Die entfernt in CachingMostRecentProvider regelmäßigen Abständen kryptografisches
Material aus dem Speicher, wenn ihre Speicherdauer den konfigurierten Wert time-to-live (TTL)
überschreitet.

Sie speichern MostRecentProvider möglicherweise kryptografisches Material für die
gesamte Lebensdauer des Prozesses im Speicher. Dies hat zur Folge, dass der neueste
Anbieter von Autorisierungsänderungen möglicherweise nichts weiß. Möglicherweise werden
Verschlüsselungsschlüssel verwendet, nachdem dem Anrufer die Berechtigungen zu deren
Verwendung entzogen wurden.

Wenn Sie nicht auf diese neue Version aktualisieren können, können Sie einen ähnlichen Effekt
erzielen, indem Sie die clear() Methode regelmäßig im Cache aufrufen. Diese Methode löscht
den Cache-Inhalt manuell und erfordert, dass der neueste Anbieter eine neue CMP und neue
kryptografische Materialien anfordert.

• Dazu gehört CachingMostRecentProvider auch eine Einstellung für die Cachegröße, mit der
Sie mehr Kontrolle über den Cache haben.

Um auf die zu aktualisierenCachingMostRecentProvider, müssen Sie den Symbolnamen in
Ihrem Code ändern. In jeder anderen Hinsicht CachingMostRecentProvider ist das vollständig
abwärtskompatibel mit demMostRecentProvider. Sie müssen keine Tabellenelemente erneut
verschlüsseln.

Anbieter von kryptografischem Material 308

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Das CachingMostRecentProvider generiert jedoch mehr Aufrufe an die zugrunde liegende
Schlüsselinfrastruktur. Es ruft den Provider-Speicher mindestens einmal in jedem time-to-live
(TTL-) Intervall auf. Anwendungen mit zahlreichen aktiven Anwendungen CMPs (aufgrund häufiger
Rotation) oder Anwendungen mit großen Flotten reagieren höchstwahrscheinlich empfindlich auf
diese Änderung.

Bevor Sie Ihren aktualisierten Code veröffentlichen, testen Sie ihn gründlich, um sicherzustellen, dass
die häufigeren Aufrufe Ihre Anwendung nicht beeinträchtigen oder zu Drosselungen durch Dienste
führen, von denen Ihr Anbieter abhängig ist, wie AWS Key Management Service (AWS KMS) oder
Amazon DynamoDB. Um Leistungsprobleme zu vermeiden, passen Sie die Cachegröße und die
Größe des Caches an die time-to-live von Ihnen beobachteten CachingMostRecentProvider
Leistungsmerkmale an. Anleitungen finden Sie unter Einen Wert setzen time-to-live.

Static Materials Provider

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des
DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

Der Static Materials Provider (Static CMP) ist ein sehr einfacher Anbieter für kryptografische
Materialien (CMP), der für Tests, proof-of-concept Demonstrationen und zur Kompatibilität mit älteren
Versionen vorgesehen ist.

Um mit dem Static CMP ein Tabellenelement zu verschlüsseln, geben Sie einen symmetrischen
Advanced Encryption Standard (AES)-Verschlüsselungsschlüssel und einen Signierschlüssel
oder ein Schlüsselpaar an. Sie müssen die gleichen Schlüssel angeben, um das verschlüsselte
Element zu entschlüsseln. Der Static CMP führt keine kryptografischen Vorgänge durch. Stattdessen
übergibt es die Verschlüsselungsschlüssel, die Sie dem Elementverschlüssler zur Verfügung
stellen, unverändert. Der Elementverschlüsseler verschlüsselt die Elemente direkt unter dem
Verschlüsselungsschlüssel. Anschließend verwendet er den Signierschlüssel, um sie direkt zu
signieren.

Da der Static CMP keine eindeutigen kryptographischen Materialien erzeugt, werden alle
Tabellenelemente, die Sie verarbeiten, mit demselben Verschlüsselungsschlüssel verschlüsselt

Anbieter von kryptografischem Material 309

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

und mit demselben Signierschlüssel signiert. Wenn Sie den gleichen Schlüssel verwenden, um die
Attributwerte in verschiedenen Elementen zu verschlüsseln, oder wenn Sie den gleichen Schlüssel
oder das gleiche Schlüsselpaar verwenden, um alle Elemente zu signieren, laufen Sie Gefahr, die
kryptographischen Grenzen der Schlüssel zu überschreiten.

Note

Der Asymmetric Static Provider in der Java-Bibliothek ist kein statischer Anbieter. Er liefert
nur alternative Konstruktoren für den Wrapped CMP. Er ist sicher für die Produktion, aber Sie
sollten den Wrapped CMP nach Möglichkeit direkt verwenden.

Der statische CMP ist einer von mehreren Anbietern für kryptografisches Material (CMPs), die der
DynamoDB Encryption Client unterstützt. Hinweise zum anderen finden Sie unter. CMPs Anbieter
von kryptografischem Material

Beispielcode finden Sie unter:

• Java: SymmetricEncryptedItem

Themen

• Verwendung

• Funktionsweise

Verwendung

Um einen statischen Anbieter zu erstellen, geben Sie einen Verschlüsselungsschlüssel oder ein
Schlüsselpaar und einen Signierschlüssel oder ein Schlüsselpaar an. Sie müssen Schlüsselmaterial
zum Ver- und Entschlüsseln von Tabellenelementen bereitstellen.

Java

// To encrypt
SecretKey cek = ...; // Encryption key
SecretKey macKey = ...; // Signing key
EncryptionMaterialsProvider provider = new SymmetricStaticProvider(cek, macKey);

// To decrypt
SecretKey cek = ...; // Encryption key

Anbieter von kryptografischem Material 310

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/providers/AsymmetricStaticProvider.html
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/SymmetricEncryptedItem.java

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

SecretKey macKey = ...; // Verification key
EncryptionMaterialsProvider provider = new SymmetricStaticProvider(cek, macKey);

Python

You can provide encryption materials, decryption materials, or both
encrypt_keys = EncryptionMaterials(
 encryption_key = ...,
 signing_key = ...
)

decrypt_keys = DecryptionMaterials(
 decryption_key = ...,
 verification_key = ...
)

static_cmp = StaticCryptographicMaterialsProvider(
 encryption_materials=encrypt_keys
 decryption_materials=decrypt_keys
)

Funktionsweise

Der Statische Provider übergibt die von Ihnen gelieferten Verschlüsselungs- und Signierschlüssel an
den Elementverschlüssler, wo sie direkt zum Verschlüsseln und Signieren Ihrer Tabellenelemente
verwendet werden. Wenn Sie nicht für jedes Element unterschiedliche Schlüssel angeben, werden für
jedes Element die gleichen Schlüssel verwendet.

Verschlüsselungsmaterialien abrufen

Dieser Abschnitt beschreibt detailliert die Ein- und Ausgänge und die Verarbeitung des Static
Materials Providers (Static CMP), wenn er eine Anfrage für Verschlüsselungsmaterialien erhält.

Anbieter von kryptografischem Material 311

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Eingabe (von der Anwendung)

• Ein Verschlüsselungsschlüssel — Dies muss ein symmetrischer Schlüssel sein, z. B. ein AES-
Schlüssel (Advanced Encryption Standard).

• Ein Signaturschlüssel — Dies kann ein symmetrischer Schlüssel oder ein asymmetrisches key pair
sein.

Eingabe (vom Elementverschlüssler)

• DynamoDB-Verschlüsselungskontext

Ausgabe (an den Elementverschlüssler)

• Der als Eingabe übergebene Verschlüsselungsschlüssel.

• Der als Eingabe übergebene Signierschlüssel.

• Tatsächliche Materialbeschreibung: Die angeforderte Materialbeschreibung, falls vorhanden,
unverändert.

Entschlüsselungsmaterialien abrufen

Dieser Abschnitt beschreibt detailliert die Ein- und Ausgänge und die Verarbeitung des Static
Materials Providers (Static CMP), wenn er eine Anfrage für Entschlüsselungsmaterialien erhält.

Obwohl er getrennte Methoden zum Abrufen von Verschlüsselungsmaterialien und
Entschlüsselungsmaterialien enthält, ist das Verhalten das gleiche.

Eingabe (von der Anwendung)

• Ein Verschlüsselungsschlüssel — Dies muss ein symmetrischer Schlüssel sein, z. B. ein AES-
Schlüssel (Advanced Encryption Standard).

• Ein Signaturschlüssel — Dies kann ein symmetrischer Schlüssel oder ein asymmetrisches key pair
sein.

Eingabe (vom Elementverschlüssler)

• DynamoDB-Verschlüsselungskontext (nicht verwendet)

Anbieter von kryptografischem Material 312

https://tools.ietf.org/html/rfc3394.html
https://tools.ietf.org/html/rfc3394.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Ausgabe (an den Elementverschlüssler)

• Der als Eingabe übergebene Verschlüsselungsschlüssel.

• Der als Eingabe übergebene Signierschlüssel.

Verfügbare Programmiersprachen für Amazon DynamoDB Encryption Client

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des
DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

Der Amazon DynamoDB Encryption Client ist für die folgenden Programmiersprachen verfügbar.
Die sprachspezifischen Bibliotheken sind unterschiedlich, aber die daraus resultierenden
Implementierungen sind interoperabel. Beispielsweise können Sie ein Element mit dem Java-Client
verschlüsseln (und signieren) und das Element mit dem Python-Client entschlüsseln.

Weitere Informationen finden Sie unter den entsprechenden Themen.

Themen

• Amazon DynamoDB DynamoDB-Verschlüsselungsclient für Java

• DynamoDB-Verschlüsselungsclient für Python

Amazon DynamoDB DynamoDB-Verschlüsselungsclient für Java

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des
DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

Programmiersprachen 313

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

In diesem Thema wird erklärt, wie Sie den Amazon DynamoDB Encryption Client für Java installieren
und verwenden. Einzelheiten zur Programmierung mit dem DynamoDB Encryption Client finden Sie
in den Java-Beispielen, den Beispielen im aws-dynamodb-encryption-java Repository auf GitHub und
im Javadoc für den DynamoDB Encryption Client.

Note

Versionen 1. x. x des DynamoDB Encryption Client für Java sind ab Juli 2022 in der end-of-
support Phase. Führen Sie so bald wie möglich ein Upgrade auf eine neuere Version durch.

Themen

• Voraussetzungen

• Installation

• Verwenden des DynamoDB Encryption Client für Java

• Beispielcode für den DynamoDB Encryption Client für Java

Voraussetzungen

Bevor Sie den Amazon DynamoDB Encryption Client für Java installieren, stellen Sie sicher, dass Sie
die folgenden Voraussetzungen erfüllen.

Eine Java-Entwicklungsumgebung

Sie benötigen Java 8 oder höher. Klicken Sie auf der Oracle-Website auf Java SE Downloads und
laden und installieren Sie anschließend das Java SE Development Kit (JDK).

Wenn Sie das Oracle JDK verwenden, müssen Sie auch die Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy Files herunterladen und installieren.

AWS SDK für Java

Der DynamoDB Encryption Client benötigt das DynamoDB-Modul von, AWS SDK für Java auch
wenn Ihre Anwendung nicht mit DynamoDB interagiert. Sie können das gesamte SDK oder nur
dieses Modul installieren. Wenn Sie Maven verwenden, fügen Sie aws-java-sdk-dynamodb
Ihrer pom.xml-Datei hinzu.

Weitere Informationen zur Installation und Konfiguration von finden Sie unter. AWS SDK für
JavaAWS SDK für Java

Programmiersprachen 314

https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/
https://www.oracle.com/java/technologies/downloads/
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
http://www.oracle.com/java/technologies/javase-jce8-downloads.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/getting-started.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Installation

Sie können den Amazon DynamoDB Encryption Client für Java auf folgende Weise installieren.

manuell

Um den Amazon DynamoDB Encryption Client für Java zu installieren, klonen Sie das aws-
dynamodb-encryption-java GitHub Repository oder laden Sie es herunter.

Verwenden von Apache Maven

Der Amazon DynamoDB Encryption Client für Java ist über Apache Maven mit der folgenden
Abhängigkeitsdefinition verfügbar.

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-dynamodb-encryption-java</artifactId>
 <version>version-number</version>
</dependency>

Nachdem Sie das SDK installiert haben, schauen Sie sich zunächst den Beispielcode in diesem
Handbuch und den DynamoDB Encryption Client Javadoc an. GitHub

Verwenden des DynamoDB Encryption Client für Java

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des
DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

In diesem Thema werden einige Funktionen des DynamoDB Encryption Client in Java erklärt, die in
anderen Programmiersprachenimplementierungen möglicherweise nicht zu finden sind.

Einzelheiten zur Programmierung mit dem DynamoDB Encryption Client finden Sie in den Java-
Beispielen, den Beispielen im aws-dynamodb-encryption-java repository on GitHub und im
Javadoc für den DynamoDB Encryption Client.

Programmiersprachen 315

https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/
https://maven.apache.org/
https://aws.github.io/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://aws.github.io/aws-dynamodb-encryption-java/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Themen

• Elementverschlüsseler: und Dynamo AttributeEncryptor DBEncryptor

• Konfigurieren des Speicherverhaltens

• Attributaktionen in Java

• Überschreiben von Tabellennamen

Elementverschlüsseler: und Dynamo AttributeEncryptor DBEncryptor

Der DynamoDB Encryption Client in Java hat zwei Elementverschlüsseler: den Dynamo auf
niedrigerer Ebene und den. DBEncryptor AttributeEncryptor

Das AttributeEncryptor ist eine Hilfsklasse, die Ihnen hilft, Dynamo AWS SDK für Java
zusammen mit dem DBMapper DynamoDB Encryptor im DynamoDB Encryption Client zu
verwenden. Wenn Sie den AttributeEncryptor mit dem DynamoDBMapper verwenden,
verschlüsselt und signiert er Ihre Elemente transparent, wenn Sie sie speichern. Außerdem werden
Ihre Elemente transparent überprüft und entschlüsselt, wenn Sie sie laden.

Konfigurieren des Speicherverhaltens

Sie können das AttributeEncryptor und verwendenDynamoDBMapper, um Tabellenelemente
durch Attribute hinzuzufügen oder zu ersetzen, die nur signiert oder verschlüsselt und signiert sind.
Für diese Aufgaben wird empfohlen, dass Sie sie so konfigurieren, dass das PUT-Speicherverhalten
verwendet wird, wie im folgenden Beispiel gezeigt. Andernfalls können Sie Ihre Daten möglicherweise
nicht entschlüsseln.

DynamoDBMapperConfig mapperConfig =
 DynamoDBMapperConfig.builder().withSaveBehavior(SaveBehavior.PUT).build();
DynamoDBMapper mapper = new DynamoDBMapper(ddb, mapperConfig, new
 AttributeEncryptor(encryptor));

Wenn Sie das standardmäßige Speicherverhalten verwenden, bei dem nur die Attribute aktualisiert
werden, die im Tabellenelement modelliert sind, sind Attribute, die nicht modelliert sind, nicht in der
Signatur enthalten und werden auch nicht durch Tabellenschreibvorgänge geändert. Daher wird die
Signatur bei späteren Lesevorgängen aller Attribute nicht validiert, da sie keine nicht modellierten
Attribute enthält.

Programmiersprachen 316

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Methods.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Sie können auch das CLOBBER-Speicherverhalten verwenden. Dieses Verhalten stimmt mit dem PUT-
Speicherverhalten überein, mit der Ausnahme, dass es die optimistische Sperre deaktiviert und das
Element in der Tabelle überschreibt.

Um Signaturfehler zu vermeiden, löst der DynamoDB Encryption Client eine Laufzeitausnahme aus,
wenn ein mit einem verwendet AttributeEncryptor wirdDynamoDBMapper, das nicht mit dem
Speicherverhalten oder konfiguriert ist. CLOBBER PUT

Um zu sehen, wie dieser Code in einem Beispiel verwendet wird, siehe Verwenden von Dynamo
DBMapper und das AwsKmsEncryptedObject.java-Beispiel im Repository unter. aws-dynamodb-
encryption-java GitHub

Attributaktionen in Java

Attribut-Aktionen bestimmen, welche Attributwerte verschlüsselt und signiert, welche nur signiert
und welche ignoriert werden. Die Methode, mit der Sie Attributaktionen angeben, hängt davon
abAttributeEncryptor, ob Sie das DynamoDBMapper und oder Dynamo auf niedrigerer Ebene
verwenden. DBEncryptor

Important

Nachdem Sie die Attributaktionen zum Verschlüsseln der Tabellenelemente verwendet
haben, kann das Hinzufügen oder Entfernen von Attributen zu oder aus Ihrem Datenmodell
einen Signaturvalidierungsfehler verursachen, der ein Entschlüsseln Ihrer Daten verhindert.
Eine detaillierte Beschreibung finden Sie unter Ändern Ihres Datenmodells.

Attributaktionen für den Dynamo DBMapper

Bei Einsatz des DynamoDBMapper und AttributeEncryptor verwenden Sie Annotationen zum
Angeben der Attributaktionen. Der DynamoDB Encryption Client verwendet die standardmäßigen
DynamoDB-Attributanmerkungen, die den Attributtyp definieren, um zu bestimmen, wie ein Attribut
geschützt werden soll. Standardmäßig sind alle Attribute verschlüsselt und signiert, mit Ausnahme
der Primärschlüssel, die zwar signiert, aber nicht verschlüsselt sind.

Programmiersprachen 317

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedObject.java
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Annotations.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.Annotations.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Note

Verschlüsseln Sie den Wert von Attributen nicht mit der @Dynamo DBVersion Attribut-
Annotation, obwohl Sie sie signieren können (und sollten). Andernfalls haben Bedingungen,
die ihren Wert verwenden, unbeabsichtigte Auswirkungen.

// Attributes are encrypted and signed
@DynamoDBAttribute(attributeName="Description")

// Partition keys are signed but not encrypted
@DynamoDBHashKey(attributeName="Title")

// Sort keys are signed but not encrypted
@DynamoDBRangeKey(attributeName="Author")

Um Ausnahmen anzugeben, verwenden Sie die Verschlüsselungsanmerkungen, die im DynamoDB
Encryption Client für Java definiert sind. Wenn Sie sie auf Klassenebene angeben, werden sie zum
Standardwert für die Klasse.

// Sign only
@DoNotEncrypt

// Do nothing; not encrypted or signed
@DoNotTouch

Beispielsweise signieren diese Annotationen das PublicationYear-Attribut, verschlüsseln es aber
nicht, und sie verschlüsseln und signieren den ISBN-Attributwert nicht.

// Sign only (override the default)
@DoNotEncrypt
@DynamoDBAttribute(attributeName="PublicationYear")

// Do nothing (override the default)
@DoNotTouch
@DynamoDBAttribute(attributeName="ISBN")

Programmiersprachen 318

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.OptimisticLocking.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DynamoDBMapper.OptimisticLocking.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Attributaktionen für den Dynamo DBEncryptor

Um Attributaktionen anzugeben, wenn Sie Dynamo DBEncryptor direkt verwenden, erstellen Sie ein
HashMap Objekt, in dem die Name-Wert-Paare für Attributnamen und die angegebenen Aktionen
stehen.

Die gültigen Werte für die Attribut-Aktionen sind unter im Aufzählungstyp EncryptionFlags
definiert. Sie können ENCRYPT und SIGN gemeinsam oder SIGN alleine verwenden, oder beides
weglassen. Wenn Sie den DynamoDB Encryption Client jedoch ENCRYPT alleine verwenden, gibt er
einen Fehler aus. Ein Attribut, das Sie nicht signieren, können Sie nicht verschlüsseln.

ENCRYPT
SIGN

Warning

Verschlüsseln Sie die primären Schlüsselattribute nicht. Sie müssen im Klartext bleiben,
damit DynamoDB das Element finden kann, ohne einen vollständigen Tabellenscan
ausführen zu müssen.

Wenn Sie einen Primärschlüssel im Verschlüsselungskontext angeben und dann ENCRYPT in der
Attributaktion für eines der Primärschlüsselattribute angeben, löst der DynamoDB Encryption Client
eine Ausnahme aus.

Der folgende Java-Code erstellt beispielsweise eine actions HashMap , die alle Attribute
im Element verschlüsselt und signiert. record Ausnahmen sind die Partitionsschlüssel- und
Sortierschlüsselattribute, die zwar signiert, aber nicht verschlüsselt sind, sowie das test-Attribut, das
weder signiert noch verschlüsselt ist.

final EnumSet<EncryptionFlags> signOnly = EnumSet.of(EncryptionFlags.SIGN);
final EnumSet<EncryptionFlags> encryptAndSign = EnumSet.of(EncryptionFlags.ENCRYPT,
 EncryptionFlags.SIGN);
final Map<String, Set<EncryptionFlags>> actions = new HashMap<>();

for (final String attributeName : record.keySet()) {
 switch (attributeName) {
 case partitionKeyName: // no break; falls through to next case
 case sortKeyName:

Programmiersprachen 319

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 // Partition and sort keys must not be encrypted, but should be signed
 actions.put(attributeName, signOnly);
 break;
 case "test":
 // Don't encrypt or sign
 break;
 default:
 // Encrypt and sign everything else
 actions.put(attributeName, encryptAndSign);
 break;
 }
}

Wenn Sie dann die encryptRecord-Methode des DynamoDBEncryptor aufrufen, geben Sie die
Map als Wert des Parameters attributeFlags an. Der folgende Aufruf von encryptRecord
beispielsweise verwendet die actions-Map.

// Encrypt the plaintext record
final Map<String, AttributeValue> encrypted_record = encryptor.encryptRecord(record,
 actions, encryptionContext);

Überschreiben von Tabellennamen

Im DynamoDB Encryption Client ist der Name der DynamoDB-Tabelle ein Element des DynamoDB-
Verschlüsselungskontextes, das an die Verschlüsselungs - und Entschlüsselungsmethoden
übergeben wird. Wenn Sie Tabellenelemente verschlüsseln oder signieren, ist der DynamoDB-
Verschlüsselungskontext, einschließlich des Tabellennamens, kryptografisch an den Chiffretext
gebunden. Wenn der DynamoDB-Verschlüsselungskontext, der an die Entschlüsselungsmethode
übergeben wird, nicht mit dem DynamoDB-Verschlüsselungskontext übereinstimmt, der an die
Verschlüsselungsmethode übergeben wurde, schlägt der Entschlüsselungsvorgang fehl.

Gelegentlich ändert sich der Name einer Tabelle, z. B. wenn Sie eine Tabelle sichern oder eine
Wiederherstellung durchführen. point-in-time Wenn Sie die Signatur dieser Elemente entschlüsseln
oder überprüfen, müssen Sie denselben DynamoDB-Verschlüsselungskontext übergeben, der zum
Verschlüsseln und Signieren der Elemente verwendet wurde, einschließlich des ursprünglichen
Tabellennamens. Der aktuelle Tabellenname wird nicht benötigt.

Wenn Sie den verwendenDynamoDBEncryptor, stellen Sie den DynamoDB-
Verschlüsselungskontext manuell zusammen. Wenn Sie jedoch den verwenden,
AttributeEncryptor erstellt der den DynamoDBMapper DynamoDB-Verschlüsselungskontext

Programmiersprachen 320

https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html#encryptRecord-java.util.Map-java.util.Map-com.amazonaws.services.dynamodbv2.datamodeling.encryption.EncryptionContext-
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/PointInTimeRecovery.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/PointInTimeRecovery.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

für Sie, einschließlich des aktuellen Tabellennamens. Um dem AttributeEncryptor mitzuteilen,
einen Verschlüsselungskontext mit einem anderen Tabellennamen zu erstellen, verwenden Sie den
EncryptionContextOverrideOperator.

Der folgende Code erstellt beispielsweise Instances des Anbieters von kryptographischen Materialien
(Cryptographic Materials Provider (CMP)) und des DynamoDBEncryptor. Dann ruft er die Methode
setEncryptionContextOverrideOperator des DynamoDBEncryptor auf. Er verwendet den
Operator overrideEncryptionContextTableName, der einen Tabellennamen überschreibt.
Wenn es auf diese Weise konfiguriert ist, AttributeEncryptor erstellt das einen DynamoDB-
Verschlüsselungskontext, der anstelle von Folgendes umfasstnewTableName. oldTableName Ein
vollständiges Beispiel finden Sie unter EncryptionContextOverridesWithDynamo DBMapper .java.

final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);
final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp);

encryptor.setEncryptionContextOverrideOperator(EncryptionContextOperators.overrideEncryptionContextTableName(
 oldTableName, newTableName));

Wenn Sie die Load-Methode von DynamoDBMapper aufrufen, die das Element entschlüsselt und
überprüft, geben Sie den ursprünglichen Tabellennamen an.

mapper.load(itemClass, DynamoDBMapperConfig.builder()

 .withTableNameOverride(DynamoDBMapperConfig.TableNameOverride.withTableNameReplacement(oldTableName))
 .build());

Sie können auch den Operator overrideEncryptionContextTableNameUsingMap verwenden,
der mehrere Tabellennamen überschreibt.

Beim Entschlüsseln von Daten und beim Überprüfen von Signaturen werden in der Regel Operatoren
zum Überschreiben des Tabellennamens verwendet. Sie können sie jedoch verwenden, um den
Tabellennamen im DynamoDB-Verschlüsselungskontext beim Verschlüsseln und Signieren auf einen
anderen Wert festzulegen.

Setzen Sie nicht die Operatoren zum Überschreiben des Tabellennamens ein, wenn Sie den
DynamoDBEncryptor verwenden. Erstellen Sie stattdessen einen Verschlüsselungskontext mit dem
ursprünglichen Tabellennamen und senden Sie ihn an die Entschlüsselungsmethode.

Programmiersprachen 321

https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/EncryptionContextOverridesWithDynamoDBMapper.java
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/EncryptionContextOverridesWithDynamoDBMapper.java

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Beispielcode für den DynamoDB Encryption Client für Java

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des
DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

Die folgenden Beispiele zeigen Ihnen, wie Sie den DynamoDB Encryption Client für Java verwenden,
um DynamoDB-Tabellenelemente in Ihrer Anwendung zu schützen. Weitere Beispiele (und eigene
Beispiele) finden Sie im Beispielverzeichnis des Repositorys unter. aws-dynamodb-encryption-java
GitHub

Themen

• Verwenden von Dynamo DBEncryptor

• Verwenden von Dynamo DBMapper

Verwenden von Dynamo DBEncryptor

Dieses Beispiel zeigt, wie Dynamo auf niedrigerer Ebene DBEncryptor mit dem Direct KMS Provider
verwendet wird. Der Direct KMS-Anbieter generiert und schützt seine kryptografischen Materialien
unter einem von Ihnen angegebenen Wert AWS KMS keyin AWS Key Management Service (AWS
KMS).

Sie können jeden kompatiblen Anbieter für kryptografisches Material (CMP) mit dem
verwendenDynamoDBEncryptor, und Sie können den Direct KMS-Anbieter mit und verwenden.
DynamoDBMapper AttributeEncryptor

Sehen Sie sich das vollständige Codebeispiel an: .java AwsKmsEncryptedItem

Schritt 1: Erstellen Sie den Direct KMS Provider

Erstellen Sie eine Instanz des AWS KMS Clients mit der angegebenen Region. Verwenden Sie
dann die Client-Instanz, um eine Instanz des Direct KMS Providers mit Ihrem bevorzugten zu
erstellen AWS KMS key.

Programmiersprachen 322

https://github.com/aws/aws-dynamodb-encryption-java/tree/master/examples
https://github.com/aws/aws-dynamodb-encryption-java/
https://aws.github.io/aws-dynamodb-encryption-java/com/amazonaws/services/dynamodbv2/datamodeling/encryption/DynamoDBEncryptor.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedItem.java

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

In diesem Beispiel wird der Amazon-Ressourcenname (ARN) verwendet, um den zu identifizieren
AWS KMS key, aber Sie können jeden gültigen Schlüsselbezeichner verwenden.

final String keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
final String region = "us-west-2";

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Schritt 2: Erstellen Sie ein Element

In diesem Beispiel wird a definiert record HashMap , das ein Beispieltabellenelement darstellt.

final String partitionKeyName = "partition_attribute";
final String sortKeyName = "sort_attribute";

final Map<String, AttributeValue> record = new HashMap<>();
record.put(partitionKeyName, new AttributeValue().withS("value1"));
record.put(sortKeyName, new AttributeValue().withN("55"));
record.put("example", new AttributeValue().withS("data"));
record.put("numbers", new AttributeValue().withN("99"));
record.put("binary", new AttributeValue().withB(ByteBuffer.wrap(new byte[]{0x00,
 0x01, 0x02})));
record.put("test", new AttributeValue().withS("test-value"));

Schritt 3: Erstellen Sie einen Dynamo DBEncryptor

Erstellen Sie eine Instance von DynamoDBEncryptor mit dem Direct KMS Provider.

final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp);

Schritt 4: Erstellen Sie einen DynamoDB-Verschlüsselungskontext

Der DynamoDB-Verschlüsselungskontext enthält Informationen über die Tabellenstruktur und
wie sie verschlüsselt und signiert ist. Wenn Sie den DynamoDBMapperverwenden, erstellt der
AttributeEncryptor den Verschlüsselungskontext für Sie.

final String tableName = "testTable";

final EncryptionContext encryptionContext = new EncryptionContext.Builder()
 .withTableName(tableName)

Programmiersprachen 323

https://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html#find-cmk-id-arn

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 .withHashKeyName(partitionKeyName)
 .withRangeKeyName(sortKeyName)
 .build();

Schritt 5: Erstellen Sie das Attribut-Aktionen-Objekt

Attribut-Aktionen bestimmen, welche Attribute des Elements verschlüsselt und signiert sind,
welche nur signiert und welche nicht verschlüsselt oder signiert sind.

In Java erstellen Sie zur Angabe von Attributaktionen eine Kombination HashMap aus
Attributnamen und EncryptionFlags Wertepaaren.

Der folgende Java-Code erstellt beispielsweise eine, actions HashMap die alle Attribute
im record Element verschlüsselt und signiert, mit Ausnahme der Partitionsschlüssel- und
Sortierschlüsselattribute, die signiert, aber nicht verschlüsselt sind, und des test Attributs, das
nicht signiert oder verschlüsselt ist.

final EnumSet<EncryptionFlags> signOnly = EnumSet.of(EncryptionFlags.SIGN);
final EnumSet<EncryptionFlags> encryptAndSign = EnumSet.of(EncryptionFlags.ENCRYPT,
 EncryptionFlags.SIGN);
final Map<String, Set<EncryptionFlags>> actions = new HashMap<>();

for (final String attributeName : record.keySet()) {
 switch (attributeName) {
 case partitionKeyName: // fall through to the next case
 case sortKeyName:
 // Partition and sort keys must not be encrypted, but should be signed
 actions.put(attributeName, signOnly);
 break;
 case "test":
 // Neither encrypted nor signed
 break;
 default:
 // Encrypt and sign all other attributes
 actions.put(attributeName, encryptAndSign);
 break;
 }
}

Schritt 6: Verschlüsseln und signieren Sie das Element

Um das Tabellenelement zu verschlüsseln und zu signieren, rufen Sie die Methode
encryptRecord für die Instance des DynamoDBEncryptor auf. Geben Sie das

Programmiersprachen 324

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Tabellenelement (record), die Attribut-Aktionen (actions) und den Verschlüsselungskontext
(encryptionContext) an.

final Map<String, AttributeValue> encrypted_record = encryptor.encryptRecord(record,
 actions, encryptionContext);

Schritt 7: Fügen Sie das Element in die DynamoDB-Tabelle ein

Fügen Sie abschließend das verschlüsselte und signierte Element in die DynamoDB-Tabelle ein.

final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.defaultClient();
ddb.putItem(tableName, encrypted_record);

Verwenden von Dynamo DBMapper

Das folgende Beispiel zeigt Ihnen, wie Sie die DynamoDB-Mapper-Hilfsklasse mit dem Direct
KMS Provider verwenden. Der Direct KMS-Anbieter generiert und schützt seine kryptografischen
Materialien unter einem von Ihnen angegebenen Wert AWS KMS keyin AWS Key Management
Service (AWS KMS).

Sie können jeden kompatiblen Cryptographic Materials Provider (CMP) mit dem DynamoDBMapper
und den Direct KMS Provider mit dem untergeordneten DynamoDBEncryptor verwenden.

Sehen Sie sich das vollständige Codebeispiel an: .java AwsKmsEncryptedObject

Schritt 1: Erstellen Sie den Direct KMS Provider

Erstellen Sie eine Instanz des AWS KMS Clients mit der angegebenen Region. Verwenden Sie
dann die Client-Instanz, um eine Instanz des Direct KMS Providers mit Ihrem bevorzugten zu
erstellen AWS KMS key.

In diesem Beispiel wird der Amazon-Ressourcenname (ARN) verwendet, um den zu identifizieren
AWS KMS key, aber Sie können jeden gültigen Schlüsselbezeichner verwenden.

final String keyArn = "arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab";
final String region = "us-west-2";

final AWSKMS kms = AWSKMSClientBuilder.standard().withRegion(region).build();
final DirectKmsMaterialProvider cmp = new DirectKmsMaterialProvider(kms, keyArn);

Programmiersprachen 325

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://github.com/aws/aws-dynamodb-encryption-java/blob/master/examples/src/main/java/com/amazonaws/examples/AwsKmsEncryptedObject.java
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-id

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schritt 2: DynamoDB Encryptor und Dynamo erstellen DBMapper

Verwenden Sie den Direct KMS Provider, den Sie im vorherigen Schritt erstellt haben, um eine
Instanz von DynamoDB Encryptor zu erstellen. Sie müssen den DynamoDB Encryptor auf
niedrigerer Ebene instanziieren, um den DynamoDB Mapper verwenden zu können.

Erstellen Sie als Nächstes eine Instanz Ihrer DynamoDB-Datenbank und eine Mapper-
Konfiguration und verwenden Sie diese, um eine Instanz des DynamoDB-Mappers zu erstellen.

Important

Wenn Sie den DynamoDBMapper zum Hinzufügen oder Bearbeiten signierter (oder
verschlüsselter und signierter) Elemente verwenden, konfigurieren Sie ihn für die Nutzung
eines Speicherverhaltens, z. B. PUT, das alle Attribute enthält, wie im folgenden Beispiel
gezeigt. Andernfalls können Sie Ihre Daten möglicherweise nicht entschlüsseln.

final DynamoDBEncryptor encryptor = DynamoDBEncryptor.getInstance(cmp)
final AmazonDynamoDB ddb =
 AmazonDynamoDBClientBuilder.standard().withRegion(region).build();

DynamoDBMapperConfig mapperConfig =
 DynamoDBMapperConfig.builder().withSaveBehavior(SaveBehavior.PUT).build();
DynamoDBMapper mapper = new DynamoDBMapper(ddb, mapperConfig, new
 AttributeEncryptor(encryptor));

Schritt 3: Definieren Sie Ihre DynamoDB-Tabelle

Definieren Sie als Nächstes Ihre DynamoDB-Tabelle. Verwenden Sie Anmerkungen zum
Angeben der Attributaktionen. In diesem Beispiel werden eine DynamoDB-Tabelle und eine
DataPoJo Klasse erstelltExampleTable, die Tabellenelemente darstellt.

In dieser Beispiel-Tabelle werden die primären Schlüsselattribute signiert, aber nicht
verschlüsselt. Dies gilt für das partition_attribute, das mit @DynamoDBHashKey und dem
sort_attribute versehen ist, das mit @DynamoDBRangeKey versehen ist.

Attribute, die mit @DynamoDBAttribute versehen sind, z. B. some numbers, werden
verschlüsselt und signiert. Ausnahmen sind Attribute, die die vom @DoNotEncrypt DynamoDB
Encryption Client definierten Verschlüsselungsanmerkungen @DoNotTouch (nur signieren)

Programmiersprachen 326

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

oder (nicht verschlüsseln oder signieren) verwenden. Beispiel: Da das leave me-Attribut eine
@DoNotTouch-Anmerkung hat, wird es nicht verschlüsselt oder signiert.

@DynamoDBTable(tableName = "ExampleTable")
public static final class DataPoJo {
 private String partitionAttribute;
 private int sortAttribute;
 private String example;
 private long someNumbers;
 private byte[] someBinary;
 private String leaveMe;

 @DynamoDBHashKey(attributeName = "partition_attribute")
 public String getPartitionAttribute() {
 return partitionAttribute;
 }

 public void setPartitionAttribute(String partitionAttribute) {
 this.partitionAttribute = partitionAttribute;
 }

 @DynamoDBRangeKey(attributeName = "sort_attribute")
 public int getSortAttribute() {
 return sortAttribute;
 }

 public void setSortAttribute(int sortAttribute) {
 this.sortAttribute = sortAttribute;
 }

 @DynamoDBAttribute(attributeName = "example")
 public String getExample() {
 return example;
 }

 public void setExample(String example) {
 this.example = example;
 }

 @DynamoDBAttribute(attributeName = "some numbers")
 public long getSomeNumbers() {
 return someNumbers;
 }

Programmiersprachen 327

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 public void setSomeNumbers(long someNumbers) {
 this.someNumbers = someNumbers;
 }

 @DynamoDBAttribute(attributeName = "and some binary")
 public byte[] getSomeBinary() {
 return someBinary;
 }

 public void setSomeBinary(byte[] someBinary) {
 this.someBinary = someBinary;
 }

 @DynamoDBAttribute(attributeName = "leave me")
 @DoNotTouch
 public String getLeaveMe() {
 return leaveMe;
 }

 public void setLeaveMe(String leaveMe) {
 this.leaveMe = leaveMe;
 }

 @Override
 public String toString() {
 return "DataPoJo [partitionAttribute=" + partitionAttribute + ", sortAttribute="
 + sortAttribute + ", example=" + example + ", someNumbers=" + someNumbers
 + ", someBinary=" + Arrays.toString(someBinary) + ", leaveMe=" + leaveMe +
 "]";
 }
}

Schritt 4: Ein Tabellenelement verschlüsseln und speichern

Wenn Sie jetzt ein Tabellenelement erstellen und es mit dem DynamoDB-Mapper speichern, wird
das Element automatisch verschlüsselt und signiert, bevor es der Tabelle hinzugefügt wird.

In diesem Beispiel wird ein Tabellenelement mit der Bezeichnung record definiert. Bevor
es in der Tabelle gespeichert wird, werden seine Attribute verschlüsselt und basierend auf
den Anmerkungen in der DataPoJo-Klasse signiert. In diesem Fall werden alle Attribute mit
Ausnahme von PartitionAttribute, SortAttribute und LeaveMe verschlüsselt und

Programmiersprachen 328

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

signiert. PartitionAttribute und SortAttributes werden nur signiert. Das LeaveMe-
Attribut ist nicht verschlüsselt oder signiert.

Rufen Sie die save-Methode der DynamoDBMapper-Klasse auf, um das record-Element
zu verschlüsseln und zu signieren und es dann zur ExampleTable hinzuzufügen. Da Ihr
DynamoDB-Mapper für die Verwendung des PUT Speicherverhaltens konfiguriert ist, ersetzt das
Element jedes Element mit denselben Primärschlüsseln, anstatt es zu aktualisieren. Auf diese
Weise wird sichergestellt, dass die Signaturen übereinstimmen, und Sie können das Element
entschlüsseln, wenn Sie es aus der Tabelle abrufen.

DataPoJo record = new DataPoJo();
record.setPartitionAttribute("is this");
record.setSortAttribute(55);
record.setExample("data");
record.setSomeNumbers(99);
record.setSomeBinary(new byte[]{0x00, 0x01, 0x02});
record.setLeaveMe("alone");

mapper.save(record);

DynamoDB-Verschlüsselungsclient für Python

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des
DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

In diesem Thema wird erklärt, wie Sie den DynamoDB Encryption Client für Python installieren und
verwenden. Sie finden den Code im aws-dynamodb-encryption-pythonRepository unter GitHub,
einschließlich des vollständigen und getesteten Beispielcodes, der Ihnen den Einstieg erleichtert.

Programmiersprachen 329

https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Note

Versionen 1. x. x und 2. x. x des DynamoDB Encryption Client für Python sind ab Juli 2022
in der end-of-support Phase. Führen Sie so bald wie möglich ein Upgrade auf eine neuere
Version durch.

Themen

• Voraussetzungen

• Installation

• Den DynamoDB Encryption Client für Python verwenden

• Beispielcode für den DynamoDB Encryption Client für Python

Voraussetzungen

Bevor Sie den Amazon DynamoDB Encryption Client für Python installieren, stellen Sie sicher, dass
Sie die folgenden Voraussetzungen erfüllen.

Eine unterstützte Version von Python

Python 3.8 oder höher ist für den Amazon DynamoDB Encryption Client für Python-Versionen
3.3.0 und höher erforderlich. Weitere Informationen zum Download von Python finden Sie unter
Python-Downloads.

Frühere Versionen des Amazon DynamoDB Encryption Client für Python unterstützen Python 2.7
und Python 3.4 und höher, wir empfehlen jedoch, die neueste Version des DynamoDB Encryption
Client zu verwenden.

Das pip-Installationstool for Python

Python 3.6 und höher enthalten Pip, obwohl Sie es möglicherweise aktualisieren möchten.
Weitere Informationen zum Aktualisieren oder Installieren von pip finden Sie unter Installation in
der Dokumentation zu pip.

Installation

Verwenden Sie pip, um den Amazon DynamoDB Encryption Client für Python zu installieren, wie in
den folgenden Beispielen gezeigt.

Programmiersprachen 330

https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installation/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Installieren der neuesten Version

pip install dynamodb-encryption-sdk

Weitere Informationen zur Verwendung von pip für die Installation und die Aktualisierung von Paketen
finden Sie unter Pakete installieren.

Der DynamoDB Encryption Client benötigt die Kryptografiebibliothek auf allen Plattformen. Alle
Versionen von pip installieren und erstellen die Kryptographie-Bibliothek unter Windows. pip
8.1 und höher installiert und erstellt cryptography auf Linux. Wenn Sie eine frühere Version von
pip verwenden und Ihre Linux-Umgebung nicht über die erforderlichen Tools zum Erstellen der
Kryptographie-Bibliothek verfügt, müssen Sie sie installieren. Weitere Informationen finden Sie unter
Kryptographie unter Linux.

Sie können die neueste Entwicklungsversion des DynamoDB Encryption Client am aus dem aws-
dynamodb-encryption-pythonRepository herunterladen. GitHub

Nachdem Sie den DynamoDB Encryption Client installiert haben, schauen Sie sich zunächst den
Python-Beispielcode in diesem Handbuch an.

Den DynamoDB Encryption Client für Python verwenden

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des
DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

In diesem Thema werden einige Funktionen des DynamoDB Encryption Client für Python erläutert,
die in anderen Programmiersprachenimplementierungen möglicherweise nicht zu finden sind. Diese
Funktionen sollen es einfacher machen, den DynamoDB Encryption Client auf die sicherste Art und
Weise zu verwenden. Wenn Sie keinen ungewöhnlichen Anwendungsfall haben, empfehlen wir
Ihnen, sie zu verwenden.

Programmiersprachen 331

https://packaging.python.org/tutorials/installing-packages/
https://cryptography.io/en/latest/
https://cryptography.io/en/latest/installation/#building-cryptography-on-linux
https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-python/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Einzelheiten zur Programmierung mit dem DynamoDB Encryption Client finden Sie in den Python-
Beispielen in diesem Handbuch, in den Beispielen im aws-dynamodb-encryption-python Repository
auf GitHub und in der Python-Dokumentation für den DynamoDB Encryption Client.

Themen

• Client-Helferklassen

• TableInfo Klasse

• Attributaktionen in Python

Client-Helferklassen

Der DynamoDB Encryption Client für Python umfasst mehrere Client-Hilfsklassen, die die
Boto 3-Klassen für DynamoDB widerspiegeln. Diese Hilfsklassen sollen das Hinzufügen von
Verschlüsselung und Signierung zu Ihrer vorhandenen DynamoDB-Anwendung vereinfachen und die
häufigsten Probleme wie folgt vermeiden:

• Verhindern Sie, dass Sie den Primärschlüssel in Ihrem Element verschlüsseln, indem Sie dem
AttributeActionsObjekt entweder eine Aktion zum Überschreiben des Primärschlüssels hinzufügen
oder indem Sie eine Ausnahme auslösen, wenn Ihr AttributeActions Objekt den Client
ausdrücklich auffordert, den Primärschlüssel zu verschlüsseln. Wenn die Standardaktion in Ihrem
AttributeActions-Objekt DO_NOTHING ist, verwenden die Client-Helferklassen diese Aktion für
den Primärschlüssel. Andernfalls verwenden sie SIGN_ONLY.

• Erstellen Sie ein TableInfo Objekt und füllen Sie den DynamoDB-Verschlüsselungskontext auf
der Grundlage eines DynamoDB-Aufrufs auf. Auf diese Weise können Sie sicherstellen, dass Ihr
DynamoDB-Verschlüsselungskontext korrekt ist und der Client den Primärschlüssel identifizieren
kann.

• Support Methoden wie put_item undget_item, die Ihre Tabellenelemente transparent ver- und
entschlüsseln, wenn Sie in eine DynamoDB-Tabelle schreiben oder aus einer DynamoDB-Tabelle
lesen. Nur die Methode update_item wird nicht unterstützt.

Sie können die Client-Helferklassen verwenden, anstatt direkt mit dem untergeordneten
Elementverschlüssler zu interagieren. Verwenden Sie diese Klassen, es sei denn, Sie müssen
erweiterte Optionen im Elementverschlüssler festlegen.

Zu den Client-Helferklassen gehören:

Programmiersprachen 332

https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• EncryptedTablefür Anwendungen, die die Tabellenressource in DynamoDB verwenden, um jeweils
eine Tabelle zu verarbeiten.

• EncryptedResourcefür Anwendungen, die die Service Resource-Klasse in DynamoDB für die
Stapelverarbeitung verwenden.

• EncryptedClientfür Anwendungen, die den Lower-Level-Client in DynamoDB verwenden.

Um die Client-Hilfsklassen verwenden zu können, muss der Aufrufer die Berechtigung haben, den
DescribeTableDynamoDB-Vorgang in der Zieltabelle aufzurufen.

TableInfo Klasse

Die TableInfoKlasse ist eine Hilfsklasse, die eine DynamoDB-Tabelle darstellt, komplett mit Feldern
für den Primärschlüssel und die Sekundärindizes. Sie hilft Ihnen, genaue Informationen über die
Tabelle in Echtzeit zu erhalten.

Wenn Sie eine Client-Helferklasse verwenden, erstellt und verwendet sie ein TableInfo-Objekt für
Sie. Ansonsten können Sie explizit ein solches anlegen. Ein Beispiel finden Sie unter Verwendung
des Elementverschlüsslers.

Wenn Sie die refresh_indexed_attributes Methode für ein TableInfo Objekt aufrufen, füllt
sie die Eigenschaftswerte des Objekts auf, indem sie den DescribeTableDynamoDB-Vorgang aufruft.
Die Abfrage der Tabelle ist wesentlich zuverlässiger als eine feste Codierung von Indexnamen.
Die TableInfo Klasse enthält auch eine encryption_context_values Eigenschaft, die die
erforderlichen Werte für den DynamoDB-Verschlüsselungskontext bereitstellt.

Um die refresh_indexed_attributes Methode verwenden zu können, muss der Aufrufer die
Berechtigung haben, den DescribeTableDynamoDB-Vorgang in der Zieltabelle aufzurufen.

Attributaktionen in Python

Attribut-Aktionen teilen dem Elementverschlüsseler mit, welche Aktionen er auf jedes Attribut
des Elements anwenden soll. Um Attribut-Aktionen in Python anzugeben, legen Sie ein
AttributeActions-Objekt mit einer Standardaktion und Ausnahmen für bestimmte Attribute an.
Die gültigen Werte sind im Aufzählungstyp CryptoAction definiert.

Important

Nachdem Sie die Attributaktionen zum Verschlüsseln der Tabellenelemente verwendet
haben, kann das Hinzufügen oder Entfernen von Attributen zu oder aus Ihrem Datenmodell

Programmiersprachen 333

https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/table.html#module-dynamodb_encryption_sdk.encrypted.table
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#table
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/resource.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#service-resource
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/client.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/dynamodb.html#client
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/tools/structures.html#dynamodb_encryption_sdk.structures.TableInfo
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

einen Signaturvalidierungsfehler verursachen, der ein Entschlüsseln Ihrer Daten verhindert.
Eine detaillierte Beschreibung finden Sie unter Ändern Ihres Datenmodells.

DO_NOTHING = 0
SIGN_ONLY = 1
ENCRYPT_AND_SIGN = 2

Beispielsweise richtet dieses AttributeActions-Objekt ENCRYPT_AND_SIGN als Standard für alle
Attribute ein und gibt Ausnahmen für die Attribute ISBN und PublicationYear an.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={
 'ISBN': CryptoAction.DO_NOTHING,
 'PublicationYear': CryptoAction.SIGN_ONLY
 }
)

Wenn Sie eine Client-Helferklasse verwenden, müssen Sie keine Attribut-Aktion für die
Primärschlüsselattribute angeben. Die Client-Helferklassen verhindern, dass Sie Ihren
Primärschlüssel verschlüsseln.

Wenn Sie keine Client-Helferklasse verwenden und die Standardaktion ENCRYPT_AND_SIGN ist,
müssen Sie eine Aktion für den Primärschlüssel angeben. Die empfohlene Aktion für Primärschlüssel
ist SIGN_ONLY. Um dies zu vereinfachen, verwenden Sie die Methode set_index_keys, die
SIGN_ONLY für Primärschlüssel verwendet, oder DO_NOTHING, wenn dies die Standardaktion ist.

Warning

Verschlüsseln Sie die primären Schlüsselattribute nicht. Sie müssen im Klartext bleiben,
damit DynamoDB das Element finden kann, ohne einen vollständigen Tabellenscan
ausführen zu müssen.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
)

Programmiersprachen 334

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

actions.set_index_keys(*table_info.protected_index_keys())

Beispielcode für den DynamoDB Encryption Client für Python

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des
DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

Die folgenden Beispiele zeigen Ihnen, wie Sie den DynamoDB Encryption Client für Python
verwenden, um DynamoDB-Daten in Ihrer Anwendung zu schützen. Weitere Beispiele (und eigene
Beispiele) finden Sie im Beispielverzeichnis des Repositorys unter. aws-dynamodb-encryption-python
GitHub

Themen

• Verwenden Sie die EncryptedTable Client-Helper-Klasse

• Verwendung des Elementverschlüsslers

Verwenden Sie die EncryptedTable Client-Helper-Klasse

Das folgende Beispiel zeigt Ihnen, wie Sie den Direct KMS Provider mit der EncryptedTable-
Client-Helferklasse verwenden. Dieses Beispiel verwendet denselben Anbieter von
Verschlüsselungsdaten wie das nachfolgende Beispiel Verwendung des Elementverschlüsslers.
Es verwendet jedoch die Klasse EncryptedTable, statt direkt mit dem untergeordneten
Elementverschlüssler zusammenzuarbeiten.

Durch den Vergleich dieser Beispiele erkennen Sie, was die Client-Helferklasse für Sie erledigt.
Dazu gehört die Erstellung des DynamoDB-Verschlüsselungskontextes und die Sicherstellung,
dass die Primärschlüsselattribute immer signiert, aber niemals verschlüsselt sind. Um den
Verschlüsselungskontext zu erstellen und den Primärschlüssel zu ermitteln, rufen die Client-
Hilfsklassen den DynamoDB-Vorgang DescribeTableauf. Um diesen Code ausführen zu können,
müssen Sie die Berechtigung haben, diese Operation aufzurufen.

Das vollständige Codebeispiel finden Sie unter: aws_kms_encrypted_table.py

Programmiersprachen 335

https://github.com/aws/aws-dynamodb-encryption-python/tree/master/examples
https://github.com/aws/aws-dynamodb-encryption-python/
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_table.py

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schritt 1: Erstellen der Tabelle

Erstellen Sie zunächst eine Instanz einer DynamoDB-Standardtabelle mit dem Tabellennamen.

table_name='test-table'
table = boto3.resource('dynamodb').Table(table_name)

Schritt 2: Erstellen Sie einen Anbieter für Verschlüsselungsdaten

Erstellen Sie eine Instance des Anbieters für Verschlüsselungsdaten (CMP, Cryptographic
Materials Provider), den Sie ausgewählt haben.

Dieses Beispiel verwendet den Direct KMS Provider, Sie können aber jeden beliebigen
kompatiblen CMP verwenden. Um einen Direct KMS-Anbieter zu erstellen, geben Sie einen an.
AWS KMS key In diesem Beispiel wird der Amazon-Ressourcenname (ARN) von verwendet AWS
KMS key, Sie können jedoch jeden gültigen Schlüsselbezeichner verwenden.

kms_key_id='arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

Schritt 3: Erstellen Sie das Attribut-Aktionen-Objekt

Attribut-Aktionen teilen dem Elementverschlüsseler mit, welche Aktionen er auf jedes Attribut des
Elements anwenden soll. Das AttributeActions-Objekt in diesem Beispiel verschlüsselt und
signiert alle Elemente außer dem Attribut test, das ignoriert wird.

Geben Sie keine Attribut-Aktionen für die Primärschlüsselattribute an, wenn Sie eine Client-
Helferklasse verwenden. Die EncryptedTable-Klassen signiert die Primärschlüsselattribute,
verschlüsselt sie aber nie.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={'test': CryptoAction.DO_NOTHING}
)

Schritt 4: Erstellen Sie die verschlüsselte Tabelle

Legen Sie die verschlüsselte Tabelle mit der Standardtabelle, dem Direct KMS Provider und den
Attribut-Aktionen an. Dieser Schritt schließt die Konfiguration ab.

encrypted_table = EncryptedTable(

Programmiersprachen 336

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 table=table,
 materials_provider=kms_cmp,
 attribute_actions=actions
)

Schritt 5: Legen Sie das Klartext-Element in der Tabelle ab

Wenn Sie die put_item Methode für aufrufenencrypted_table, werden Ihre
Tabellenelemente transparent verschlüsselt, signiert und zu Ihrer DynamoDB-Tabelle hinzugefügt.

Definieren Sie zunächst das Tabellenelement.

plaintext_item = {
 'partition_attribute': 'value1',
 'sort_attribute': 55
 'example': 'data',
 'numbers': 99,
 'binary': Binary(b'\x00\x01\x02'),
 'test': 'test-value'
}

Anschließend legen Sie es in der Tabelle ab.

encrypted_table.put_item(Item=plaintext_item)

Um das Element in verschlüsselter Form aus der DynamoDB-Tabelle abzurufen, rufen Sie die
get_item Methode für das Objekt auf. table Um das verschlüsselte Element abzurufen, rufen Sie
die Methode get_item für das Objekt encrypted_table auf.

Verwendung des Elementverschlüsslers

Dieses Beispiel zeigt Ihnen, wie Sie beim Verschlüsseln von Tabellenelementen direkt mit dem
Elementverschlüsseler im DynamoDB Encryption Client interagieren können, anstatt die Client-
Hilfsklassen zu verwenden, die für Sie mit dem Elementverschlüsseler interagieren.

Wenn Sie diese Technik verwenden, erstellen Sie den DynamoDB-Verschlüsselungskontext und das
Konfigurationsobjekt (CryptoConfig) manuell. Außerdem verschlüsseln Sie die Elemente in einem
Aufruf und fügen sie in einem separaten Aufruf in Ihre DynamoDB-Tabelle ein. Auf diese Weise
können Sie Ihre put_item Aufrufe anpassen und den DynamoDB Encryption Client verwenden, um
strukturierte Daten zu verschlüsseln und zu signieren, die niemals an DynamoDB gesendet werden.

Programmiersprachen 337

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Dieses Beispiel verwendet den Direct KMS Provider, Sie können aber jeden beliebigen kompatiblen
CMP verwenden.

Das vollständige Codebeispiel finden Sie unter: aws_kms_encrypted_item.py

Schritt 1: Erstellen der Tabelle

Erstellen Sie zunächst eine Instanz einer standardmäßigen DynamoDB-Tabellenressource mit
dem Tabellennamen.

table_name='test-table'
table = boto3.resource('dynamodb').Table(table_name)

Schritt 2: Erstellen Sie einen Anbieter für Verschlüsselungsdaten

Erstellen Sie eine Instance des Anbieters für Verschlüsselungsdaten (CMP, Cryptographic
Materials Provider), den Sie ausgewählt haben.

Dieses Beispiel verwendet den Direct KMS Provider, Sie können aber jeden beliebigen
kompatiblen CMP verwenden. Um einen Direct KMS-Anbieter zu erstellen, geben Sie einen an.
AWS KMS key In diesem Beispiel wird der Amazon-Ressourcenname (ARN) von verwendet AWS
KMS key, Sie können jedoch jeden gültigen Schlüsselbezeichner verwenden.

kms_key_id='arn:aws:kms:us-
west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab'
kms_cmp = AwsKmsCryptographicMaterialsProvider(key_id=kms_key_id)

Schritt 3: Verwenden Sie die TableInfo Helper-Klasse

Um Informationen über die Tabelle von DynamoDB zu erhalten, erstellen Sie eine Instanz der
TableInfoHelper-Klasse. Wenn Sie direkt mit dem Elementverschlüssler arbeiten, müssen Sie eine
TableInfo-Instance erstellen und deren Methoden aufrufen. Dies erledigt die Client-Helferklasse
für Sie.

Die refresh_indexed_attributes Methode von TableInfo verwendet den
DescribeTableDynamoDB-Vorgang, um in Echtzeit genaue Informationen über die Tabelle
abzurufen. Dazu gehören ihre Primärschlüssel und ihre lokalen und globalen Sekundärindizes.
Der Aufrufer benötigt die Berechtigung, DescribeTable aufzurufen.

table_info = TableInfo(name=table_name)
table_info.refresh_indexed_attributes(table.meta.client)

Programmiersprachen 338

https://github.com/aws/aws-dynamodb-encryption-python/blob/master/examples/src/dynamodb_encryption_sdk_examples/aws_kms_encrypted_item.py
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schritt 4: DynamoDB-Verschlüsselungskontext erstellen

Der DynamoDB-Verschlüsselungskontext enthält Informationen über die Tabellenstruktur
und wie sie verschlüsselt und signiert ist. In diesem Beispiel wird explizit ein DynamoDB-
Verschlüsselungskontext erstellt, da er mit dem Elementverschlüsseler interagiert. Die Client-
Hilfsklassen erstellen den DynamoDB-Verschlüsselungskontext für Sie.

Um den Partitionsschlüssel und den Sortierschlüssel abzurufen, können Sie die Eigenschaften der
TableInfoHilfsklasse verwenden.

index_key = {
 'partition_attribute': 'value1',
 'sort_attribute': 55
}

encryption_context = EncryptionContext(
 table_name=table_name,
 partition_key_name=table_info.primary_index.partition,
 sort_key_name=table_info.primary_index.sort,
 attributes=dict_to_ddb(index_key)
)

Schritt 5: Erstellen Sie das Attribut-Aktionen-Objekt

Attribut-Aktionen teilen dem Elementverschlüsseler mit, welche Aktionen er auf jedes Attribut
des Elements anwenden soll. Das AttributeActions-Objekt in diesem Beispiel verschlüsselt
und signiert alle Elemente mit Ausnahme der Primärschlüsselattribute, die signiert, aber nicht
verschlüsselt sind, und des Attributs test, das ignoriert wird.

Wenn Sie direkt mit dem Elementverschlüsseler interagieren und Ihre Standardaktion
ENCRYPT_AND_SIGN ist, müssen Sie eine alternative Aktion für den Primärschlüssel angeben.
Sie können die set_index_keys-Methode verwenden, die SIGN_ONLY für den Primärschlüssel
verwendet, oder DO_NOTHING, wenn es die Standardaktion ist.

Um den Primärschlüssel anzugeben, verwendet dieses Beispiel die Indexschlüssel im
TableInfoObjekt, das durch einen Aufruf von DynamoDB aufgefüllt wird. Diese Technik ist sicherer
als die Verwendung fest codierter Primärschlüsselnamen.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={'test': CryptoAction.DO_NOTHING}

Programmiersprachen 339

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

)
actions.set_index_keys(*table_info.protected_index_keys())

Schritt 6: Erstellen Sie die Konfiguration für das Element

Um den DynamoDB Encryption Client zu konfigurieren, verwenden Sie die Objekte, die Sie
gerade in einer CryptoConfigKonfiguration für das Tabellenelement erstellt haben. Die Client-
Hilfsklassen erstellen das CryptoConfig für Sie.

crypto_config = CryptoConfig(
 materials_provider=kms_cmp,
 encryption_context=encryption_context,
 attribute_actions=actions
)

Schritt 7: Verschlüsseln Sie das Element

In diesem Schritt wird das Element verschlüsselt und signiert, es wird jedoch nicht in die
DynamoDB-Tabelle aufgenommen.

Wenn Sie eine Client-Hilfsklasse verwenden, werden Ihre Elemente transparent verschlüsselt
und signiert und dann zu Ihrer DynamoDB-Tabelle hinzugefügt, wenn Sie die put_item Methode
der Hilfsklasse aufrufen. Wenn Sie den Elementverschlüsseler direkt verwenden, sind die
Verschlüsselungs- und Put-Aktionen voneinander unabhängig.

Erstellen Sie zunächst ein Klartext-Element.

plaintext_item = {
 'partition_attribute': 'value1',
 'sort_key': 55,
 'example': 'data',
 'numbers': 99,
 'binary': Binary(b'\x00\x01\x02'),
 'test': 'test-value'
}

Anschließend verschlüsseln und signieren Sie es. Für die encrypt_python_item-Methode ist
das CryptoConfig-Konfigurationsobjekt erforderlich.

encrypted_item = encrypt_python_item(plaintext_item, crypto_config)

Programmiersprachen 340

https://aws-dynamodb-encryption-python.readthedocs.io/en/latest/lib/encrypted/config.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schritt 8: Legen Sie das Element in der Tabelle ab

In diesem Schritt wird das verschlüsselte und signierte Element in die DynamoDB-Tabelle
eingefügt.

table.put_item(Item=encrypted_item)

Um das verschlüsselte Element anzuzeigen, rufen Sie die get_item-Methode für das
ursprünglichen table-Objekt statt für das encrypted_table-Objekt auf. Sie ruft das Element aus
der DynamoDB-Tabelle ab, ohne es zu verifizieren und zu entschlüsseln.

encrypted_item = table.get_item(Key=partition_key)['Item']

Das folgende Bild zeigt einen Teil eines verschlüsselten und signierten Beispiel-Tabellenelements.

Die verschlüsselten Attributwerte sind Binärdaten. Die Namen und Werte der Primärschlüsselattribute
(partition_attribute und sort_attribute) und das test-Attribut verbleiben im Klartext.
Die Ausgabe zeigt auch das Attribut, das die Signatur (*amzn-ddb-map-sig*) und das
Materialbeschreibungsattribut (*amzn-ddb-map-desc*) enthält.

Ändern Ihres Datenmodells

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des

Ändern Ihres Datenmodells 341

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

Jedes Mal, wenn Sie ein Element ver- oder entschlüsseln, müssen Sie Attributaktionen angeben,
die dem DynamoDB Encryption Client mitteilen, welche Attribute verschlüsselt und signiert, welche
Attribute signiert (aber nicht verschlüsselt) und welche ignoriert werden sollen. Attributaktionen
werden nicht im verschlüsselten Element gespeichert und der DynamoDB Encryption Client
aktualisiert Ihre Attributaktionen nicht automatisch.

Important

Der DynamoDB Encryption Client unterstützt nicht die Verschlüsselung vorhandener,
unverschlüsselter DynamoDB-Tabellendaten.

Wenn Sie Ihr Datenmodell ändern, d. h. wenn Sie Attribute zu Ihren Tabellenelementen hinzufügen
oder von ihnen entfernen, riskieren Sie einen Fehler. Wenn die von Ihnen angegebenen Attribut-
Aktionen nicht alle Attribute im Element berücksichtigen, wird das Element möglicherweise
nicht so verschlüsselt und signiert, wie Sie es beabsichtigen. Wenn die Attributaktionen, die Sie
beim Entschlüsseln eines Elements angeben, von den Attributaktionen abweichen, die Sie beim
Verschlüsseln des Elements angegeben haben, kann zudem die Signaturprüfung fehlschlagen.

Wenn zum Beispiel die Attribut-Aktionen, die zum Verschlüsseln des Elements verwendet werden, es
anweisen, das Attribut test zu signieren, wird die Signatur im Element das Attribut test enthalten.
Aber wenn die Attribut-Aktionen, die zum Entschlüsseln des Elements verwendet werden, das Attribut
test nicht berücksichtigen, schlägt die Überprüfung fehl, weil der Client versucht, eine Signatur zu
verifizieren, die das Attribut test nicht enthält.

Dies ist ein besonderes Problem, wenn mehrere Anwendungen dieselben DynamoDB-Elemente
lesen und schreiben, da der DynamoDB Encryption Client dieselbe Signatur für Elemente in allen
Anwendungen berechnen muss. Dies ist auch ein Problem für jede verteilte Anwendung, da
Änderungen an Attributaktionen auf alle Hosts übertragen werden müssen. Selbst wenn ein Host
in einem Prozess auf Ihre DynamoDB-Tabellen zugreift, hilft die Einrichtung eines Best-Practice-
Prozesses dabei, Fehler zu vermeiden, falls das Projekt einmal komplexer wird.

Verwenden Sie die folgenden Anleitungen, um Signaturvalidierungsfehler zu vermeiden, die das
Lesen der Tabellenelemente verhindern.

Ändern Ihres Datenmodells 342

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

• Hinzufügen eines Attributs — Wenn das neue Attribut Ihre Attributaktionen ändert, implementieren
Sie die Änderung der Attributaktion vollständig, bevor Sie das neue Attribut in ein Element
aufnehmen.

• Ein Attribut entfernen — Wenn Sie ein Attribut nicht mehr in Ihren Artikeln verwenden, ändern Sie
Ihre Attributaktionen nicht.

• Aktion ändern — Nachdem Sie eine Konfiguration für Attributaktionen zum Verschlüsseln
Ihrer Tabellenelemente verwendet haben, können Sie die Standardaktion oder die Aktion für
ein vorhandenes Attribut nicht sicher ändern, ohne jedes Element in Ihrer Tabelle erneut zu
verschlüsseln.

Signaturvalidierungsfehler können extrem schwierig zu beheben sein. Daher ist es am besten, diese
zu verhindern.

Themen

• Hinzufügen eines Attributs

• Entfernen eines Attributs

Hinzufügen eines Attributs

Wenn Sie ein neues Attribut zu Tabellenelementen hinzufügen, müssen Sie möglicherweise
die Attributaktionen ändern. Um Signaturvalidierungsfehler zu vermeiden, empfehlen wir, diese
Änderung in einem zweistufigen Prozess zu implementieren. Stellen Sie sicher, dass die erste Stufe
abgeschlossen ist, bevor Sie mit der zweiten Stufe beginnen.

1. Ändern Sie die Attributaktionen in allen Anwendungen, die aus der Tabelle lesen oder in sie
schreiben. Stellen Sie diese Änderungen bereit und bestätigen Sie, dass das Update an alle
Zielhosts weitergegeben wurde.

2. Schreiben Sie Werte in das neue Attribut in Ihren Tabellenelementen.

Dieser zweistufige Ansatz stellt sicher, dass alle Anwendungen und Hosts dieselben Attributaktionen
haben, und berechnet die gleiche Signatur, bevor das neue Attribut auftritt. Dies ist auch dann
wichtig, wenn die Aktion für das Attribut Nichts tun (nicht verschlüsseln oder signieren) lautet, da die
Standardeinstellung für einige Verschlüssler das Verschlüsseln und Signieren ist.

Die folgenden Beispiele zeigen den Code für die erste Stufe in diesem Prozess. Sie fügen ein neues
Elementattribut, link, hinzu, das einen Link zu einem anderen Tabellenelement speichert. Da dieser

Ändern Ihres Datenmodells 343

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Link als Klartext verbleiben muss, wird ihm im Beispiel die Aktion nur zum Signieren zugewiesen.
Nachdem Sie diese Änderung vollständig bereitgestellt und anschließend überprüft haben, ob alle
Anwendungen und Hosts über die neuen Attributaktionen verfügen, können Sie mit der Verwendung
des link-Attributs in Ihren Tabellenelementen beginnen.

Java DynamoDB Mapper

Wenn der DynamoDB Mapper und AttributeEncryptor verwendet werden, sind
standardmäßig alle Attribute verschlüsselt und signiert, mit Ausnahme der Primärschlüssel, die
zwar signiert, aber nicht verschlüsselt sind. Verwenden Sie die Annotation @DoNotEncrypt, um
eine Aktion nur mit Signierung anzugeben.

In diesem Beispiel wird die Annotation @DoNotEncrypt für das neue link-Attribut verwendet.

@DynamoDBTable(tableName = "ExampleTable")
public static final class DataPoJo {
 private String partitionAttribute;
 private int sortAttribute;
 private String link;

 @DynamoDBHashKey(attributeName = "partition_attribute")
 public String getPartitionAttribute() {
 return partitionAttribute;
 }

 public void setPartitionAttribute(String partitionAttribute) {
 this.partitionAttribute = partitionAttribute;
 }

 @DynamoDBRangeKey(attributeName = "sort_attribute")
 public int getSortAttribute() {
 return sortAttribute;
 }

 public void setSortAttribute(int sortAttribute) {
 this.sortAttribute = sortAttribute;
 }

 @DynamoDBAttribute(attributeName = "link")
 @DoNotEncrypt
 public String getLink() {
 return link;
 }

Ändern Ihres Datenmodells 344

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

 public void setLink(String link) {
 this.link = link;
 }

 @Override
 public String toString() {
 return "DataPoJo [partitionAttribute=" + partitionAttribute + ",
 sortAttribute=" + sortAttribute + ",
 link=" + link + "]";
 }
}

Java DynamoDB encryptor

Im DynamoDB-Verschlüsseler auf niedrigerer Ebene müssen Sie Aktionen für jedes Attribut
festlegen. In diesem Beispiel wird eine Switch-Anweisung verwendet, bei der der Standardwert
encryptAndSign lautet und Ausnahmen für den Partitionsschlüssel, den Sortierschlüssel
und das neue link-Attribut angegeben werden. Wenn in diesem Beispiel der Linkattributcode
nicht vollständig bereitgestellt wurde, bevor er verwendet wird, wird das Linkattribut von einigen
Anwendungen verschlüsselt und signiert, von anderen aber nur signiert.

for (final String attributeName : record.keySet()) {
 switch (attributeName) {
 case partitionKeyName:
 // fall through to the next case
 case sortKeyName:
 // partition and sort keys must be signed, but not encrypted
 actions.put(attributeName, signOnly);
 break;
 case "link":
 // only signed
 actions.put(attributeName, signOnly);
 break;
 default:
 // Encrypt and sign all other attributes
 actions.put(attributeName, encryptAndSign);
 break;
 }
}

Ändern Ihres Datenmodells 345

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Python

Im DynamoDB Encryption Client für Python können Sie eine Standardaktion für alle Attribute und
dann Ausnahmen angeben.

Wenn Sie eine Python-Client-Helferklasse verwenden, müssen Sie keine Attributaktion für
die Primärschlüsselattribute angeben. Die Client-Helferklassen verhindern, dass Sie Ihren
Primärschlüssel verschlüsseln. Wenn Sie jedoch keine Client-Hilfsklasse verwenden, müssen
Sie die Aktion SIGN_ONLY für Ihren Partitions- und Sortierschlüssel festlegen. Wenn Sie
versehentlich Ihren Partitions- oder Sortierschlüssel verschlüsseln, können Sie Ihre Daten nur mit
einem vollständigen Tabellenscan wiederherstellen.

In diesem Beispiel wird eine Ausnahme für das neue link-Attribut angegeben, das die Aktion
SIGN_ONLY abruft.

actions = AttributeActions(
 default_action=CryptoAction.ENCRYPT_AND_SIGN,
 attribute_actions={
 'example': CryptoAction.DO_NOTHING,
 'link': CryptoAction.SIGN_ONLY
 }
)

Entfernen eines Attributs

Wenn Sie ein Attribut in Elementen, die mit dem DynamoDB Encryption Client verschlüsselt wurden,
nicht mehr benötigen, können Sie die Verwendung des Attributs beenden. Löschen oder ändern
Sie die Aktion für dieses Attribut jedoch nicht. Wenn Sie in diesem Fall auf ein Element mit diesem
Attribut stoßen, stimmt die für das Element berechnete Signatur nicht mit der ursprünglichen Signatur
überein, und die Signaturvalidierung schlägt fehl.

Obwohl Sie möglicherweise versucht sind, alle Spuren des Attributs aus Ihrem Code zu entfernen,
fügen Sie einen Kommentar hinzu, dass das Element nicht mehr verwendet wird, anstatt es
zu löschen. Selbst wenn Sie einen vollständigen Tabellenscan durchführen, um alle Instances
des Attributs zu löschen, wird möglicherweise ein verschlüsseltes Element mit diesem Attribut
zwischengespeichert oder befindet sich irgendwo in Ihrer Konfiguration in Bearbeitung.

Ändern Ihres Datenmodells 346

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Behebung von Problemen in Ihrer DynamoDB Encryption Client-
Anwendung

Note

Unsere clientseitige Verschlüsselungsbibliothek wurde in Database Encryption SDK
umbenannt. AWS Das folgende Thema enthält Informationen zu Versionen 1. x —2. x des
DynamoDB Encryption Client für Java und Versionen 1. x —3. x des DynamoDB Encryption
Client für Python. Weitere Informationen finden Sie unter AWS Database Encryption SDK für
DynamoDB-Versionsunterstützung.

In diesem Abschnitt werden Probleme beschrieben, die bei der Verwendung des DynamoDB
Encryption Client auftreten können, und es werden Lösungsvorschläge gegeben.

Um Feedback zum DynamoDB Encryption Client zu geben, melden Sie ein Problem im aws-
dynamodb-encryption-javaaws-dynamodb-encryption-python GitHub OR-Repository.

Über den auf jeder Seite angezeigten Feedback-Link können Sie Feedback zu dieser Dokumentation
bereitstellen.

Themen

• Zugriff verweigert

• Signaturverifizierung schlägt fehl

• Probleme mit globalen Tabellen älterer Versionen

• Schlechte Leistung des neuesten Anbieters

Zugriff verweigert

Problem: Ihrer Anwendung wird der Zugriff auf eine benötigte Ressource verweigert.

Vorschlag: Informieren Sie sich über die erforderlichen Berechtigungen und fügen Sie sie dem
Sicherheitskontext hinzu, in dem Ihre Anwendung ausgeführt wird.

Details

Fehlerbehebung 347

https://github.com/aws/aws-dynamodb-encryption-java/
https://github.com/aws/aws-dynamodb-encryption-python/
https://github.com/aws/aws-dynamodb-encryption-java/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Um eine Anwendung auszuführen, die die DynamoDB Encryption Client-Bibliothek verwendet, muss
der Aufrufer berechtigt sein, ihre Komponenten zu verwenden. Andernfalls wird ihnen der Zugriff auf
die benötigten Elemente verweigert.

• Der DynamoDB Encryption Client benötigt kein Amazon Web Services (AWS) -Konto und ist auch
nicht von einem Service abhängig. AWS Wenn Ihre Anwendung jedoch verwendet AWS, benötigen
Sie ein AWS-Konto und Benutzer, die berechtigt sind, das Konto zu verwenden.

• Der DynamoDB Encryption Client benötigt Amazon DynamoDB nicht. Wenn die Anwendung,
die den Client verwendet, jedoch DynamoDB-Tabellen erstellt, Elemente in eine Tabelle einfügt
oder Elemente aus einer Tabelle abruft, muss der Aufrufer über die Berechtigung verfügen, die
erforderlichen DynamoDB-Operationen in Ihrer zu verwenden. AWS-Konto Einzelheiten finden Sie
in den Themen zur Zugriffskontrolle im Amazon DynamoDB Developer Guide.

• Wenn Ihre Anwendung eine Client-Hilfsklasse im DynamoDB Encryption Client für Python
verwendet, muss der Aufrufer berechtigt sein, den DynamoDB-Vorgang aufzurufen. DescribeTable

• Der DynamoDB Encryption Client benötigt AWS Key Management Service ()AWS KMS nicht.
Wenn Ihre Anwendung jedoch einen Direct KMS Materials Provider oder einen Aktuellsten Anbieter
mit einem Provider-Store verwendet, der diese verwendet AWS KMS, benötigt der Aufrufer die
Erlaubnis, die Operationen AWS KMSGenerateDataKeyund Decrypt zu verwenden.

Signaturverifizierung schlägt fehl

Problem: Ein Element kann nicht entschlüsselt werden, da die Signaturprüfung fehlschlägt. Das
Element ist möglicherweise auch nicht so verschlüsselt und signiert, wie von Ihnen beabsichtigt.

Vorschlag: Stellen Sie sicher, dass die Attribut-Aktionen, die Sie zur Verfügung stellen, alle Attribute
des Elements berücksichtigen. Wenn Sie ein Element entschlüsseln, stellen Sie sicher, dass die
Attributaktionen mit den Aktionen übereinstimmen, die zum Verschlüsseln des Elements verwendet
wurden.

Details

Die von Ihnen bereitgestellten Attributaktionen teilen dem DynamoDB Encryption Client mit, welche
Attribute verschlüsselt und signiert, welche Attribute signiert (aber nicht verschlüsselt) und welche
ignoriert werden sollen.

Wenn die von Ihnen angegebenen Attribut-Aktionen nicht alle Attribute im Element berücksichtigen,
wird das Element möglicherweise nicht so verschlüsselt und signiert, wie Sie es beabsichtigen. Wenn

Fehlerbehebung 348

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/access-control-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DescribeTable.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

die Attribut-Aktionen, die Sie beim Entschlüsseln eines Elements angeben, von den Attribut-Aktionen
abweichen, die Sie beim Verschlüsseln des Elements angegeben haben, kann die Signaturprüfung
fehlschlagen. Dies ist speziell ein Problem für verteilte Anwendungen, bei denen sich neue Attribut-
Aktionen nicht auf alle Hosts ausgebreitet haben.

Signaturvalidierungsfehler sind schwer zu beheben. Um sie zu verhindern, sollten Sie zusätzliche
Vorsichtsmaßnahmen ergreifen, wenn Sie Ihr Datenmodell ändern. Details hierzu finden Sie unter
Ändern Ihres Datenmodells.

Probleme mit globalen Tabellen älterer Versionen

Problem: Elemente in einer älteren Version der globalen Amazon DynamoDB-Tabelle können nicht
entschlüsselt werden, da die Signaturüberprüfung fehlschlägt.

Vorschlag: Richten Sie Attributaktionen so ein, dass die reservierten Replikationsfelder nicht
verschlüsselt oder signiert werden.

Details

Sie können den DynamoDB Encryption Client mit globalen DynamoDB-Tabellen verwenden. Wir
empfehlen, globale Tabellen mit einem KMS-Schlüssel für mehrere Regionen zu verwenden und den
KMS-Schlüssel in alle Bereiche zu replizieren, in AWS-Regionen denen die globale Tabelle repliziert
wird.

Ab Version 2019.11.21 für globale Tabellen können Sie globale Tabellen mit dem DynamoDB
Encryption Client ohne spezielle Konfiguration verwenden. Wenn Sie jedoch die Version 2017.11.29
für globale Tabellen verwenden, müssen Sie sicherstellen, dass reservierte Replikationsfelder nicht
verschlüsselt oder signiert sind.

Wenn Sie die globale Tabellenversion 2017.11.29 verwenden, müssen Sie die Attributaktionen für die
folgenden Attribute DO_NOTHING in Java oder @DoNotTouch Python auf setzen.

• aws:rep:deleting

• aws:rep:updatetime

• aws:rep:updateregion

Wenn Sie eine andere Version von globalen Tabellen verwenden, ist keine Aktion erforderlich.

Fehlerbehebung 349

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GlobalTables.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/multi-region-keys-overview.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V2.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/globaltables.V1.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Schlechte Leistung des neuesten Anbieters

Problem: Ihre Anwendung reagiert weniger, insbesondere nach einem Update auf eine neuere
Version des DynamoDB Encryption Client.

Vorschlag: Passen Sie den time-to-live Wert und die Cachegröße an.

Details

The Most Recent Provider wurde entwickelt, um die Leistung von Anwendungen zu verbessern, die
den DynamoDB Encryption Client verwenden, indem eine eingeschränkte Wiederverwendung von
kryptografischem Material ermöglicht wird. Wenn Sie den neuesten Anbieter für Ihre Anwendung
konfigurieren, müssen Sie die verbesserte Leistung mit den Sicherheitsbedenken abwägen, die sich
aus dem Zwischenspeichern und der Wiederverwendung ergeben.

In neueren Versionen des DynamoDB Encryption Client bestimmt der time-to-live (TTL) -Wert, wie
lange Anbieter von zwischengespeichertem kryptografischem Material (CMPs) verwendet werden
können. Die TTL bestimmt auch, wie oft der neueste Anbieter nach einer neuen Version der CMP
sucht.

Wenn Ihre TTL zu lang ist, verstößt Ihre Anwendung möglicherweise gegen Ihre Geschäftsregeln
oder Sicherheitsstandards. Wenn Ihre TTL zu kurz ist, können häufige Anrufe beim Provider Store
dazu führen, dass Ihr Provider Store Anfragen von Ihrer Anwendung und anderen Anwendungen,
die Ihr Dienstkonto gemeinsam nutzen, drosselt. Um dieses Problem zu beheben, passen Sie TTL
und Cachegröße auf einen Wert an, der Ihren Latenz- und Verfügbarkeitszielen entspricht und Ihren
Sicherheitsstandards entspricht. Details hierzu finden Sie unter Einen Wert setzen time-to-live.

Fehlerbehebung 350

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Amazon DynamoDB Encryption Client umbenennen

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Am 9. Juni 2023 wurde unsere clientseitige Verschlüsselungsbibliothek in Database Encryption
SDK umbenannt. AWS Das AWS Database Encryption SDK ist mit Amazon DynamoDB kompatibel.
Es kann Elemente entschlüsseln und lesen, die mit dem älteren DynamoDB Encryption Client
verschlüsselt wurden. Weitere Informationen zu den älteren Versionen des DynamoDB Encryption
Client finden Sie unter. AWS Database Encryption SDK für DynamoDB-Versionsunterstützung

Das AWS Database Encryption SDK stellt Version 3 bereit. x der clientseitigen Java-
Verschlüsselungsbibliothek für DynamoDB, bei der es sich um eine grundlegende Neufassung des
DynamoDB Encryption Client für Java handelt. Sie umfasst zahlreiche Updates, wie z. B. ein neues
strukturiertes Datenformat, verbesserte Mehrmandantenunterstützung, nahtlose Schemaänderungen
und Unterstützung für durchsuchbare Verschlüsselung.

Weitere Informationen zu den neuen Funktionen, die mit dem AWS Database Encryption SDK
eingeführt wurden, finden Sie in den folgenden Themen.

Durchsuchbare Verschlüsselung

Sie können Datenbanken entwerfen, die verschlüsselte Datensätze durchsuchen können, ohne
die gesamte Datenbank zu entschlüsseln. Abhängig von Ihrem Bedrohungsmodell und Ihren
Abfrageanforderungen können Sie eine durchsuchbare Verschlüsselung verwenden, um nach
exakten Treffern oder individuellere komplexe Abfragen in Ihren verschlüsselten Datensätzen
durchzuführen.

Schlüsselanhänger

Das AWS Database Encryption SDK verwendet Schlüsselringe, um die Envelope-
Verschlüsselung durchzuführen. Schlüsselringe generieren, verschlüsseln und entschlüsseln
die Datenschlüssel, die Ihre Daten schützen. Das AWS Database Encryption SDK unterstützt
AWS KMS Schlüsselbunde, die symmetrische Verschlüsselung oder asymmetrische RSA
verwenden, um Ihre Datenschlüssel AWS KMS keyszu schützen, sowie AWS KMS hierarchische
Schlüsselringe, mit denen Sie Ihre kryptografischen Materialien mit einem symmetrischen

351

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Verschlüsselungs-KMS-Schlüssel schützen können, ohne jedes Mal, wenn Sie einen Datensatz
verschlüsseln oder entschlüsseln, erneut aufrufen zu müssen. AWS KMS Sie können mit Raw
AES Keyrings und Raw RSA Keyrings auch Ihr eigenes Schlüsselmaterial angeben.

Reibungslose Schemaänderungen

Wenn Sie das AWS Database Encryption SDK konfigurieren, stellen Sie kryptografische Aktionen
bereit, die dem Client mitteilen, welche Felder verschlüsselt und signiert, welche Felder signiert
(aber nicht verschlüsselt) und welche ignoriert werden sollen. Nachdem Sie das AWS Database
Encryption SDK zum Schutz Ihrer Datensätze verwendet haben, können Sie immer noch
Änderungen an Ihrem Datenmodell vornehmen. Sie können Ihre kryptografischen Aktionen,
wie das Hinzufügen oder Entfernen verschlüsselter Felder, in einer einzigen Bereitstellung
aktualisieren.

Konfiguration vorhandener DynamoDB-Tabellen für clientseitige Verschlüsselung

Ältere Versionen des DynamoDB Encryption Client wurden für die Implementierung in neuen,
nicht aufgefüllten Tabellen konzipiert. Mit dem AWS Database Encryption SDK für DynamoDB
können Sie Ihre vorhandenen Amazon DynamoDB-Tabellen auf Version 3 migrieren. x der
clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB.

352

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Referenz

Unsere clientseitige Verschlüsselungsbibliothek wurde in AWS Database Encryption SDK
umbenannt. Dieses Entwicklerhandbuch enthält weiterhin Informationen zum DynamoDB
Encryption Client.

Die folgenden Themen enthalten technische Details zum AWS Database Encryption SDK.

Format der Materialbeschreibung
Die Materialbeschreibung dient als Header für einen verschlüsselten Datensatz. Wenn Sie Felder
mit dem AWS Database Encryption SDK verschlüsseln und signieren, zeichnet der Verschlüsseler
die Materialbeschreibung auf, während er die kryptografischen Materialien zusammenstellt, und
speichert die Materialbeschreibung in einem neuen Feld (aws_dbe_head), das der Verschlüsseler
Ihrem Datensatz hinzufügt. Die Materialbeschreibung ist eine übertragbare, formatierte Datenstruktur,
die den verschlüsselten Datenschlüssel und Informationen darüber enthält, wie der Datensatz
verschlüsselt und signiert wurde. In der folgenden Tabelle werden die Werte beschrieben, aus denen
sich die Materialbeschreibung zusammensetzt. Die Byte werden in der angegebenen Reihenfolge
angehängt.

Wert Länge in Byte

Version 1

Signatures Enabled 1

Record ID 32

Encrypt Legend Variable

Encryption Context Length 2

??? Variable

Encrypted Data Key Count 1

Encrypted Data Keys Variable

Format der Materialbeschreibung 353

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Wert Länge in Byte

Record Commitment 1

Version

Die Version des Formats dieses aws_dbe_head Felds.

Signaturen aktiviert

Kodiert, ob digitale ECDSA-Signaturen für diesen Datensatz aktiviert sind.

Byte-Wert Bedeutung

0x01 Digitale ECDSA-Signaturen sind aktiviert
(Standard)

0x00 Digitale ECDSA-Signaturen sind deaktiviert

Datensatz-ID

Ein zufällig generierter 256-Bit-Wert, der den Datensatz identifiziert. Die Datensatz-ID:

• Identifiziert den verschlüsselten Datensatz eindeutig.

• Bindet die Materialbeschreibung an den verschlüsselten Datensatz.

Legende verschlüsseln

Eine serialisierte Beschreibung, welche authentifizierten Felder verschlüsselt wurden.
Die Verschlüsselungslegende wird verwendet, um zu bestimmen, welche Felder die
Entschlüsselungsmethode zu entschlüsseln versuchen soll.

Byte-Wert Bedeutung

0x65 ENCRYPT_AND_SIGN

0x73 SIGN_ONLY

Die Encrypt-Legende ist wie folgt serialisiert:

Format der Materialbeschreibung 354

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

1. Lexikographisch nach der Bytefolge, die ihren kanonischen Pfad darstellt.

2. Hängen Sie für jedes Feld der Reihe nach einen der oben angegebenen Bytewerte an, um
anzugeben, ob das Feld verschlüsselt werden soll.

Länge des Verschlüsselungskontextes

Die Länge des Verschlüsselungskontextes. Dies ist ein 2-Byte-Wert, interpretiert als
vorzeichenlose 16-Bit-Ganzzahl. Die maximale Länge beträgt 65.535 Byte.

Verschlüsselungskontext

Ein Satz von Name-Wert-Paaren, die beliebige, nicht geheime zusätzliche authentifizierte Daten
enthalten.

Wenn digitale ECDSA-Signaturen aktiviert sind, enthält der Verschlüsselungskontext das
Schlüssel-Wert-Paar. {"aws-crypto-footer-ecdsa-key": Qtxt} Qtxtstellt den
elliptischen Kurvenpunkt dar, der gemäß SEC 1 Version Q 2.0 komprimiert und dann Base64-
kodiert wurde.

Anzahl verschlüsselter Datenschlüssel

Die Anzahl der verschlüsselten Datenschlüssel. Es handelt sich um einen 1-Byte-Wert, der
als 8-Bit-Ganzzahl ohne Vorzeichen interpretiert wird und die Anzahl der verschlüsselten
Datenschlüssel angibt. Die maximale Anzahl verschlüsselter Datenschlüssel in jedem Datensatz
beträgt 255.

Verschlüsselte Datenschlüssel

Eine Folge von verschlüsselten Datenschlüsseln. Die Länge der Folge wird durch die Anzahl der
verschlüsselten Datenschlüssel und ihre jeweilige Länge bestimmt. Die Folge enthält mindestens
einen verschlüsselten Datenschlüssel.

In der folgenden Tabelle sind die Felder beschrieben, die die verschlüsselten Datenschlüssel
bilden. Die Byte werden in der angegebenen Reihenfolge angehängt.

Struktur der verschlüsselten Datenschlüssel

Feld Länge in Byte

Key Provider ID Length 2

Format der Materialbeschreibung 355

https://www.secg.org/sec1-v2.pdf

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Feld Länge in Byte

Key Provider ID Variable. Gleich dem Wert, der in den
vorherigen 2 Bytes angegeben ist (Länge der
Schlüsselanbieter-ID).

Key Provider Information Length 2

Key Provider Information Variable. Gleich dem Wert, der in den
vorherigen 2 Bytes angegeben ist (Länge der
Schlüsselanbieterinformation).

Encrypted Data Key Length 2

Encrypted Data Key Variable. Gleich dem Wert, der in den
vorherigen 2 Bytes angegeben ist (Länge des
verschlüsselten Datenschlüssels).

Länge der Schlüsselanbieter-ID

Die Länge der Schlüsselanbieter-ID. Es handelt sich um einen 2-Byte-Wert, interpretiert als
vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die die Schlüsselanbieter-ID
enthalten.

ID des Schlüsselanbieters

Die Schlüsselanbieter-ID. Wird verwendet, um den Anbieter des verschlüsselten
Datenschlüssels anzugeben, und ist auf Erweiterbarkeit ausgelegt.

Länge der Informationen zum Schlüsselanbieter

Die Länge der Schlüsselanbieterinformation. Es handelt sich um einen 2-Byte-Wert,
interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die die
Schlüsselanbieterinformation enthalten.

Informationen zu den wichtigsten Anbietern

Die Schlüsselanbieterinformation. Wird durch den Schlüsselanbieter bestimmt.

Wenn Sie einen AWS KMS Schlüsselbund verwenden, enthält dieser Wert den Amazon-
Ressourcennamen (ARN) von. AWS KMS key

Format der Materialbeschreibung 356

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Länge des verschlüsselten Datenschlüssels

Die Länge des verschlüsselten Datenschlüssels. Es handelt sich um einen 2-Byte-Wert,
interpretiert als vorzeichenlose 16-Bit-Ganzzahl, die die Anzahl der Bytes angibt, die den
verschlüsselten Datenschlüssel enthalten.

Verschlüsselter Datenschlüssel

Der verschlüsselte Datenschlüssel. Es ist der vom Schlüsselanbieter verschlüsselte
Datenschlüssel.

Engagement in Rekordhöhe

Ein eindeutiger 256-Bit-HMAC-Hash (Hash-Based Message Authentication Code), der mithilfe des
Commit-Schlüssels für alle vorherigen Materialbeschreibungs-Bytes berechnet wurde.

AWS KMS Technische Details zum hierarchischen Schlüsselbund

Der AWS KMS hierarchische Schlüsselbund verwendet einen eindeutigen Datenschlüssel, um
jedes Feld zu verschlüsseln, und verschlüsselt jeden Datenschlüssel mit einem eindeutigen
Umschließungsschlüssel, der von einem aktiven Zweigschlüssel abgeleitet wird. Er verwendet eine
Schlüsselableitung im Zählermodus mit einer Pseudozufallsfunktion mit HMAC SHA-256, um den 32-
Byte-Wrapping-Schlüssel mit den folgenden Eingaben abzuleiten.

• Ein zufälliges 16-Byte-Salz

• Der aktive Zweigschlüssel

• Der UTF-8-kodierte Wert für die Schlüsselanbieter-ID "“ aws-kms-hierarchy

Der hierarchische Schlüsselbund verwendet den abgeleiteten Wrapping-Schlüssel, um eine Kopie
des Klartext-Datenschlüssels mithilfe von AES-GCM-256 mit einem 16-Byte-Authentifizierungs-Tag
und den folgenden Eingaben zu verschlüsseln.

• Der abgeleitete Wrapping-Schlüssel wird als AES-GCM-Verschlüsselungsschlüssel verwendet

• Der Datenschlüssel wird als AES-GCM-Nachricht verwendet

• Ein zufälliger 12-Byte-Initialisierungsvektor (IV) wird als AES-GCM IV verwendet

• Zusätzliche authentifizierte Daten (AAD), die die folgenden serialisierten Werte enthalten.

AWS KMS Technische Details zum hierarchischen Schlüsselbund 357

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-108r1.pdf
https://en.wikipedia.org/wiki/UTF-8

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Wert Länge in Byte Interpretiert als

"aws-kms-hierarchy" 17 UTF-8-kodiert

Die Kennung des Zweigschl
üssels

Variable UTF-8-kodiert

Die Version des Zweigschl
üssels

16 UTF-8-kodiert

Verschlüsselungskontext Variable UTF-8-kodierte Schlüssel-
Wert-Paare

AWS KMS Technische Details zum hierarchischen Schlüsselbund 358

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Dokumentenverlauf für das AWS Database Encryption SDK
Developer Guide

In der folgenden Tabelle werden wichtige Änderungen an dieser Dokumentation beschrieben. Neben
diesen hier aufgelisteten größeren Änderungen aktualisieren wir die Dokumentation regelmäßig
überarbeitet, um Beschreibungen und Beispiele zu verbessern und Ihre Rückmeldungen zu
berücksichtigen. Wenn Sie über wichtige Änderungen benachrichtigt werden möchten, abonnieren
Sie den RSS-Feed.

Änderung Beschreibung Datum

Neues Feature Dokumentation für den AWS
KMS ECDH-Schlüsselbund
und den Raw ECDH-Schl
üsselbund hinzugefügt.

17. Juni 2024

Version für allgemeine
Verfügbarkeit (GA)

Einführung in die Unterstüt
zung der clientseitigen .NET-
Verschlüsselungsbibliothek für
DynamoDB.

17. Januar 2024

Version für allgemeine
Verfügbarkeit (GA)

Die Dokumentation für die GA-
Version von Version 3 wurde
aktualisiert. x der clientseitigen
Java-Verschlüsselungsbiblio
thek für DynamoDB.

Warning

Verzweigungsschlüs
sel, die während der
Developer Preview-V
ersion erstellt wurden,
werden nicht mehr
unterstützt.

24. Juli 2023

359

https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-raw-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/use-kms-ecdh-keyring.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-net.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-net.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-java.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/ddb-java.html

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Umbenennung von
DynamoDB Encryption Client

Die clientseitige Verschlüs
selungsbibliothek wurde in
Database Encryption SDK
umbenannt. AWS

9. Juni 2023

Vorschauversion Dokumentation für Version
3 hinzugefügt und aktualisi
ert. x der clientseitigen Java-
Verschlüsselungsbibliothek
für DynamoDB, die ein neues
strukturiertes Datenformat,
verbesserte Mehrmanda
ntenunterstützung, nahtlose
Schemaänderungen und
Unterstützung für durchsuch
bare Verschlüsselung umfasst.

9. Juni 2023

Änderung der Dokumentation Ersetzen Sie den AWS Key
Management Service Begriff
Customer Master Key (CMK)
durch einen KMS-Schlüssel.
AWS KMS key

30. August 2021

Neue Funktion Unterstützung für AWS
Key Management Service
(AWS KMS) Schlüssel mit
mehreren Regionen hinzugefü
gt. Schlüssel mit mehreren
Regionen sind unterschi
edliche AWS KMS Schlüssel
AWS-Regionen , die synonym
verwendet werden können, da
sie dieselbe Schlüssel-ID und
dasselbe Schlüsselmaterial
haben.

8. Juni 2021

360

https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html
https://docs.aws.amazon.com/database-encryption-sdk/latest/devguide/DDBEC-rename.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/direct-kms-provider.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/direct-kms-provider.html#provider-kms-how-to-use

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Neues Beispiel Beispiel für die Verwendun
g von Dynamo DBMapper in
Java hinzugefügt.

6. September 2018

Python-Unterstützung Unterstützung für Python
zusätzlich zu Java hinzugefü
gt.

2. Mai 2018

Erstversion Erste Veröffentlichung dieser
Dokumentation.

2. Mai 2018

361

https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/java-examples.html#java-example-dynamodb-mapper
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/python.html
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/

AWS SDK für Datenbankverschlüsselung Entwicklerhandbuch

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines
Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich
infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

ccclxii

	AWS SDK für Datenbankverschlüsselung
	Table of Contents
	Was ist das AWS Database Encryption SDK?
	Entwickelt in Open-Source-Repositorien
	Support und Wartung
	Senden von Feedback
	AWS SDK-Konzepte für Datenbankverschlüsselung
	Umschlagverschlüsselung
	Datenschlüssel
	Schlüssel zum Umschließen
	Schlüsselanhänger
	Kryptografische Aktionen
	Materialbeschreibung
	Verschlüsselungskontext
	Manager von kryptographischen Materialien
	Symmetrische und asymmetrische Verschlüsselung
	Wichtiges Engagement
	Digitale Signaturen

	So funktioniert das AWS Database Encryption SDK
	Verschlüsseln und signieren
	Entschlüsseln und verifizieren

	Unterstützte Algorithmus-Suiten im AWS Database Encryption SDK
	Standard-Algorithmus-Suite
	AES-GCM ohne digitale ECDSA-Signaturen

	Verwenden des AWS Database Encryption SDK mit AWS KMS
	Konfiguration des Database Encryption SDK AWS
	Auswahl einer Programmiersprache
	Auswahl von Wraping-Schlüsseln
	Einen Discovery-Filter erstellen
	Arbeiten mit Mehrmandantendatenbanken
	Signierte Beacons erstellen

	Schlüsselspeicher im AWS Database Encryption SDK
	Terminologie und Konzepte von Key Stores
	Implementieren der geringsten Berechtigungen
	Einen Schlüsselspeicher erstellen
	Schlüsselspeicheraktionen konfigurieren
	Konfigurieren Sie Ihre Schlüsselspeicher-Aktionen
	Statische Konfiguration
	Discovery-Konfiguration

	Erstellen Sie einen aktiven Filialschlüssel
	Drehe deinen aktiven Filialschlüssel

	Schlüsselringe
	Funktionsweise von Schlüsselbunden
	AWS KMS Schlüsselringe
	AWS KMS Erforderliche Berechtigungen für Schlüsselanhänger
	Identifizierung AWS KMS keys in einem AWS KMS Schlüsselbund
	Einen Schlüsselbund erstellen AWS KMS
	Multi-Region verwenden AWS KMS keys
	Verwenden Sie einen Discovery-Schlüsselbund AWS KMS
	Verwenden Sie einen AWS KMS Regional Discovery-Schlüsselbund

	AWS KMS Hierarchische Schlüsselanhänger
	Funktionsweise
	Voraussetzungen
	Erforderliche Berechtigungen
	Wählen Sie einen Cache
	Standard-Cache
	MultiThreaded Cache
	StormTracking Zwischenspeicher
	Gemeinsam genutzter Cache

	Erstellen Sie einen hierarchischen Schlüsselbund
	Erstellen Sie einen hierarchischen Schlüsselbund mit einer statischen Zweigschlüssel-ID
	Erstellen Sie einen hierarchischen Schlüsselbund mit einem Lieferanten für die Zweigschlüssel-ID

	Verwendung des hierarchischen Schlüsselbunds für durchsuchbare Verschlüsselung
	Definieren Sie Ihre Beacon-Schlüsselquelle

	AWS KMS ECDH-Schlüsselanhänger
	AWS KMS Erforderliche Berechtigungen für ECDH-Schlüsselanhänger
	Einen ECDH-Schlüsselbund AWS KMS erstellen
	Einen AWS KMS ECDH-Discovery-Schlüsselbund erstellen

	Unformatierte AES-Schlüsselbunde
	Unformatierte RSA-Schlüsselbunde
	Raw ECDH Schlüsselanhänger
	Einen RAW-ECDH-Schlüsselbund erstellen
	RawPrivateKeyToStaticPublicKey
	EphemeralPrivateKeyToStaticPublicKey
	PublicKeyDiscovery

	Multi-Schlüsselbunde

	Durchsuchbare Verschlüsselung
	Sind Beacons das Richtige für meinen Datensatz?
	Durchsuchbares Verschlüsselungsszenario
	Leuchtfeuer
	Standard-Beacons
	Zusammengesetzte Beacons

	Leuchtfeuer planen
	Überlegungen zu Mehrmandantendatenbanken
	Auswahl eines Beacon-Typs
	Standard-Beacons
	Fragen Sie ein einzelnes verschlüsseltes Feld ab
	Beispiele

	Fragen Sie ein virtuelles Feld ab
	Beispiele

	Zusammengesetzte Beacons
	Fragen Sie eine Kombination verschlüsselter Felder in einem einzelnen Index ab
	Beispiele

	Fragen Sie eine Kombination aus verschlüsselten Feldern und Klartextfeldern in einem einzigen Index ab
	Beispiele

	Wahl einer Beacon-Länge
	Berechnung der Beacon-Länge
	Beispiel

	Einen Beacon-Namen wählen

	Konfiguration von Beacons
	Konfiguration von Standard-Beacons
	Beispiel für eine Konfigurationssyntax
	Ein virtuelles Feld erstellen
	Sicherheitsüberlegungen für virtuelle Felder

	Definition von Beacon-Stilen

	Konfiguration von Compound-Beacons
	Beispiel für eine Konfigurationssyntax

	Beispielkonfigurationen
	Standard-Beacons
	Zusammengesetzte Beacons

	Verwendung von Beacons
	Beacons abfragen

	Durchsuchbare Verschlüsselung für Multitenant-Datenbanken
	Abfragen von Beacons in einer mandantenfähigen Datenbank

	AWS Datenbankverschlüsselungs-SDK für DynamoDB
	Clientseitige und serverseitige Verschlüsselung
	Welche Felder sind verschlüsselt und signiert?
	Verschlüsseln von Attributwerten
	Signieren des Elements

	Durchsuchbare Verschlüsselung in DynamoDB
	Konfiguration sekundärer Indizes mit Beacons
	Testen der Beacon-Ausgaben
	Testen virtueller Felder
	Testen von Compound-Beacons

	Aktualisierung Ihres Datenmodells
	Fügen Sie neue ENCRYPT_AND_SIGNSIGN_ONLY, und SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribute hinzu
	Entfernen Sie vorhandene Attribute
	Ändern Sie ein vorhandenes ENCRYPT_AND_SIGN Attribut in SIGN_ONLY oder SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
	Ändern Sie ein vorhandenes SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribut SIGN_ONLY oder ENCRYPT_AND_SIGN
	Fügen Sie ein neues DO_NOTHING Attribut hinzu
	Ändern Sie ein vorhandenes SIGN_ONLY Attribut in SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT
	Ändern Sie ein vorhandenes SIGN_AND_INCLUDE_IN_ENCRYPTION_CONTEXT Attribut in SIGN_ONLY

	AWS Database Encryption SDK für DynamoDB, verfügbare Programmiersprachen
	Java
	Voraussetzungen
	Installation
	Verwendung der clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB
	Elementverschlüssler
	Attributaktionen im AWS Database Encryption SDK für DynamoDB
	Verwenden Sie eine Datenklasse mit Anmerkungen
	Definieren Sie Ihre Attributaktionen manuell

	Verschlüsselungskonfiguration im AWS Database Encryption SDK für DynamoDB
	Elemente mit dem Database Encryption SDK aktualisieren AWS
	Signierte Sets entschlüsseln

	Java-Beispiele
	Verwenden des erweiterten DynamoDB-Clients
	Verwenden der Low-Level-DynamoDB-API
	Verwenden Sie die untergeordnete Ebene DynamoDbItemEncryptor

	Konfigurieren Sie eine bestehende DynamoDB-Tabelle für die Verwendung des AWS Database Encryption SDK für DynamoDB
	Schritt 1: Bereiten Sie das Lesen und Schreiben verschlüsselter Elemente vor
	Schritt 2: Schreiben Sie verschlüsselte und signierte Elemente
	Schritt 3: Nur verschlüsselte und signierte Elemente lesen

	Migrieren Sie auf Version 3.x der clientseitigen Java-Verschlüsselungsbibliothek für DynamoDB
	Migration von Version 1.x auf 2.x
	Migration von Version 2.x auf 3.x
	Schritt 1. Bereiten Sie sich darauf vor, Elemente im neuen Format zu lesen
	Schritt 2. Schreiben Sie Elemente im neuen Format
	Schritt 3. Nur Elemente im neuen Format lesen und schreiben

	.NET
	Installation der clientseitigen .NET-Verschlüsselungsbibliothek für DynamoDB
	Debuggen mit.NET
	Verwenden der clientseitigen .NET-Verschlüsselungsbibliothek für DynamoDB
	Elementverschlüssler
	Attributaktionen im AWS Database Encryption SDK für DynamoDB
	Verschlüsselungskonfiguration im AWS Database Encryption SDK für DynamoDB
	Elemente mit dem Database Encryption SDK aktualisieren AWS

	.NET-Beispiele
	Verwenden des AWS Low-Level-Datenbankverschlüsselungs-SDK für DynamoDB-API
	Verwenden Sie die untergeordnete Ebene DynamoDbItemEncryptor

	Konfigurieren Sie eine bestehende DynamoDB-Tabelle für die Verwendung des AWS Database Encryption SDK für DynamoDB
	Schritt 1: Bereiten Sie das Lesen und Schreiben verschlüsselter Elemente vor
	Schritt 2: Schreiben Sie verschlüsselte und signierte Elemente
	Schritt 3: Nur verschlüsselte und signierte Elemente lesen

	Rust
	Voraussetzungen
	Installation
	Verwendung der clientseitigen Rust-Verschlüsselungsbibliothek für DynamoDB
	Elementverschlüssler
	Attributaktionen im AWS Database Encryption SDK für DynamoDB
	Verschlüsselungskonfiguration im AWS Database Encryption SDK für DynamoDB
	Elemente mit dem Database Encryption SDK aktualisieren AWS

	Legacy-DynamoDB-Verschlüsselungsclient
	AWS Database Encryption SDK für DynamoDB-Versionsunterstützung
	So funktioniert der DynamoDB Encryption Client
	Konzepte des Amazon DynamoDB DynamoDB-Verschlüsselungsclients
	Anbieter von kryptographischen Materialien (Cryptographic Materials Provider (CMP))
	Elementverschlüssler
	Attributaktionen
	Materialbeschreibung
	DynamoDB-Verschlüsselungsclient
	Provider-Store

	Anbieter von kryptografischem Material
	Direct KMS Materials Provider
	Verwendung
	Funktionsweise
	Verschlüsselungsmaterialien abrufen
	Entschlüsselungsmaterialien abrufen

	Wrapped Materials Provider
	Verwendung
	Funktionsweise
	Verschlüsselungsmaterialien abrufen
	Entschlüsselungsmaterialien abrufen

	Most Recent Provider
	Verwendung
	Funktionsweise
	Informationen über den Most Recent Provider
	Über den MetaStore
	Einen Wert setzen time-to-live
	Rotieren von kryptografischen Materialien
	Verschlüsselungsmaterialien abrufen
	Entschlüsselungsmaterialien abrufen

	Aktualisierungen für den neuesten Anbieter

	Static Materials Provider
	Verwendung
	Funktionsweise
	Verschlüsselungsmaterialien abrufen
	Entschlüsselungsmaterialien abrufen

	Verfügbare Programmiersprachen für Amazon DynamoDB Encryption Client
	Amazon DynamoDB DynamoDB-Verschlüsselungsclient für Java
	Voraussetzungen
	Installation
	Verwenden des DynamoDB Encryption Client für Java
	Elementverschlüsseler: und Dynamo AttributeEncryptor DBEncryptor
	Konfigurieren des Speicherverhaltens
	Attributaktionen in Java
	Attributaktionen für den Dynamo DBMapper
	Attributaktionen für den Dynamo DBEncryptor

	Überschreiben von Tabellennamen

	Beispielcode für den DynamoDB Encryption Client für Java
	Verwenden von Dynamo DBEncryptor
	Verwenden von Dynamo DBMapper

	DynamoDB-Verschlüsselungsclient für Python
	Voraussetzungen
	Installation
	Den DynamoDB Encryption Client für Python verwenden
	Client-Helferklassen
	TableInfo Klasse
	Attributaktionen in Python

	Beispielcode für den DynamoDB Encryption Client für Python
	Verwenden Sie die EncryptedTable Client-Helper-Klasse
	Verwendung des Elementverschlüsslers

	Ändern Ihres Datenmodells
	Hinzufügen eines Attributs
	Entfernen eines Attributs

	Behebung von Problemen in Ihrer DynamoDB Encryption Client-Anwendung
	Zugriff verweigert
	Signaturverifizierung schlägt fehl
	Probleme mit globalen Tabellen älterer Versionen
	Schlechte Leistung des neuesten Anbieters

	Amazon DynamoDB Encryption Client umbenennen
	Referenz
	Format der Materialbeschreibung
	AWS KMS Technische Details zum hierarchischen Schlüsselbund

	Dokumentenverlauf für das AWS Database Encryption SDK Developer Guide
	

