Beispiele für Amazon Transcribe unter Verwendung von AWS CLI - AWS Command Line Interface

Beispiele für Amazon Transcribe unter Verwendung von AWS CLI

Die folgenden Codebeispiele zeigen, wie Sie Aktionen durchführen und gängige Szenarien implementieren, indem Sie die AWS Command Line Interface mit Amazon Transcribe verwenden.

Aktionen sind Codeauszüge aus größeren Programmen und müssen im Kontext ausgeführt werden. Während Aktionen Ihnen zeigen, wie Sie einzelne Service-Funktionen aufrufen, können Sie Aktionen im Kontext der zugehörigen Szenarien anzeigen.

Jedes Beispiel enthält einen Link zum vollständigen Quellcode, wo Sie Anleitungen zum Einrichten und Ausführen des Codes im Kontext finden.

Themen

Aktionen

Das folgende Codebeispiel zeigt, wie create-language-model verwendet wird.

AWS CLI

Beispiel 1: So erstellen Sie ein benutzerdefiniertes Sprachmodell mit Trainings- und Optimierungsdaten.

Im folgenden Beispiel für create-language-model wird ein benutzerdefiniertes Sprachmodell erstellt. Sie können ein benutzerdefiniertes Sprachmodell verwenden, um die Transkriptionsleistung für Domänen wie Recht, Gastgewerbe, Finanzen und Versicherungen zu verbessern. Geben Sie unter language-code einen gültigen Sprachcode ein. Geben Sie unter base-model-name ein Basismodell an, das sich am besten für die Samplerate des Audios eignet, das Sie mit Ihrem benutzerdefinierten Sprachmodell transkribieren möchten. Geben Sie unter model-name den Namen an, den Sie dem benutzerdefinierten Sprachmodell geben möchten.

aws transcribe create-language-model \ --language-code language-code \ --base-model-name base-model-name \ --model-name cli-clm-example \ --input-data-config S3Uri="s3://amzn-s3-demo-bucket/Amazon-S3-Prefix-for-training-data",TuningDataS3Uri="s3://amzn-s3-demo-bucket/Amazon-S3-Prefix-for-tuning-data",DataAccessRoleArn="arn:aws:iam::AWS-account-number:role/IAM-role-with-permissions-to-create-a-custom-language-model"

Ausgabe:

{ "LanguageCode": "language-code", "BaseModelName": "base-model-name", "ModelName": "cli-clm-example", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/Amazon-S3-Prefix/", "TuningDataS3Uri": "s3://amzn-s3-demo-bucket/Amazon-S3-Prefix/", "DataAccessRoleArn": "arn:aws:iam::AWS-account-number:role/IAM-role-with-permissions-create-a-custom-language-model" }, "ModelStatus": "IN_PROGRESS" }

Weitere Informationen finden Sie unter Verbessern der domänenspezifischen Transkriptionsgenauigkeit mit benutzerdefinierten Sprachmodellen im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 2: So erstellen Sie ein benutzerdefiniertes Sprachmodell mit nur Trainingsdaten.

Im folgenden Beispiel für create-language-model wird Ihre Audiodatei transkribiert. Sie können ein benutzerdefiniertes Sprachmodell verwenden, um die Transkriptionsleistung für Domänen wie Recht, Gastgewerbe, Finanzen und Versicherungen zu verbessern. Geben Sie unter language-code einen gültigen Sprachcode ein. Geben Sie unter base-model-name ein Basismodell an, das sich am besten für die Samplerate des Audios eignet, das Sie mit Ihrem benutzerdefinierten Sprachmodell transkribieren möchten. Geben Sie unter model-name den Namen an, den Sie dem benutzerdefinierten Sprachmodell geben möchten.

aws transcribe create-language-model \ --language-code en-US \ --base-model-name base-model-name \ --model-name cli-clm-example \ --input-data-config S3Uri="s3://amzn-s3-demo-bucket/Amazon-S3-Prefix-For-Training-Data",DataAccessRoleArn="arn:aws:iam::AWS-account-number:role/IAM-role-with-permissions-to-create-a-custom-language-model"

Ausgabe:

{ "LanguageCode": "en-US", "BaseModelName": "base-model-name", "ModelName": "cli-clm-example", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/Amazon-S3-Prefix-For-Training-Data/", "DataAccessRoleArn": "arn:aws:iam::your-AWS-account-number:role/IAM-role-with-permissions-to-create-a-custom-language-model" }, "ModelStatus": "IN_PROGRESS" }

Weitere Informationen finden Sie unter Verbessern der domänenspezifischen Transkriptionsgenauigkeit mit benutzerdefinierten Sprachmodellen im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie create-medical-vocabulary verwendet wird.

AWS CLI

So erstellen Sie ein benutzerdefiniertes medizinisches Vokabular

Im folgenden Beispiel für create-medical-vocabulary wird ein benutzerdefiniertes Vokabular erstellt. Um ein benutzerdefiniertes Vokabular zu erstellen, müssen Sie eine Textdatei mit allen Begriffen erstellt haben, die Sie genauer transkribieren möchten. Geben Sie für „vocabulary-file-uri“ den Amazon Simple Storage Service (Amazon S3)-URI der betreffenden Textdatei an. Geben Sie für „language-code“ den der Sprache Ihres benutzerdefinierten Vokabulars entsprechenden Sprachcode an. Geben Sie für „vocabulary-name“ die gewünschte Bezeichnung für Ihr benutzerdefiniertes Vokabular an.

aws transcribe create-medical-vocabulary \ --vocabulary-name cli-medical-vocab-example \ --language-code language-code \ --vocabulary-file-uri https://amzn-s3-demo-bucket.AWS-Region.amazonaws.com/the-text-file-for-the-medical-custom-vocabulary.txt

Ausgabe:

{ "VocabularyName": "cli-medical-vocab-example", "LanguageCode": "language-code", "VocabularyState": "PENDING" }

Weitere Informationen finden Sie unter Benutzerdefinierte medizinische Vokabulare im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie create-vocabulary-filter verwendet wird.

AWS CLI

So erstellen Sie einen Vokabelfilter

Im folgenden Beispiel für create-vocabulary-filter wird ein Vokabelfilter erstellt, der eine Textdatei mit einer Liste von Wörtern verwendet, die in einer Transkription nicht vorkommen sollen. Für language-code geben Sie den Code an, der der Sprache Ihres Vokabelfilters entspricht. Geben Sie für vocabulary-filter-file-uri den Amazon Simple Storage Service (Amazon S3)-URI der Textdatei an. Geben Sie für vocabulary-filter-name den Namen Ihres Vokabelfilters an.

aws transcribe create-vocabulary-filter \ --language-code language-code \ --vocabulary-filter-file-uri s3://amzn-s3-demo-bucket/vocabulary-filter.txt \ --vocabulary-filter-name cli-vocabulary-filter-example

Ausgabe:

{ "VocabularyFilterName": "cli-vocabulary-filter-example", "LanguageCode": "language-code" }

Weitere Informationen finden Sie unter Filtern unerwünschter Wörter im Amazon Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie create-vocabulary verwendet wird.

AWS CLI

Erstellen eines benutzerdefinierten Vokabulars

Im folgenden Beispiel für create-vocabulary wird ein benutzerdefiniertes Vokabular erstellt. Um ein benutzerdefiniertes Vokabular zu erstellen, müssen Sie eine Textdatei mit allen Begriffen erstellt haben, die Sie genauer transkribieren möchten. Geben Sie für „vocabulary-file-uri“ den Amazon Simple Storage Service (Amazon S3)-URI der betreffenden Textdatei an. Geben Sie für „language-code“ den der Sprache Ihres benutzerdefinierten Vokabulars entsprechenden Sprachcode an. Geben Sie für „vocabulary-name“ die gewünschte Bezeichnung für Ihr benutzerdefiniertes Vokabular an.

aws transcribe create-vocabulary \ --language-code language-code \ --vocabulary-name cli-vocab-example \ --vocabulary-file-uri s3://amzn-s3-demo-bucket/Amazon-S3-prefix/the-text-file-for-the-custom-vocabulary.txt

Ausgabe:

{ "VocabularyName": "cli-vocab-example", "LanguageCode": "language-code", "VocabularyState": "PENDING" }

Weitere Informationen finden Sie unter Benutzerdefinierte Vokabulare im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie delete-language-model verwendet wird.

AWS CLI

So löschen Sie ein benutzerdefiniertes Sprachmodell

Im folgenden Beispiel für delete-language-model wird ein benutzerdefiniertes Sprachmodell gelöscht.

aws transcribe delete-language-model \ --model-name model-name

Mit diesem Befehl wird keine Ausgabe zurückgegeben.

Weitere Informationen finden Sie unter Verbessern der domänenspezifischen Transkriptionsgenauigkeit mit benutzerdefinierten Sprachmodellen im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie delete-medical-transcription-job verwendet wird.

AWS CLI

Löschen eines medizinischen Transkriptionsauftrags

Im folgenden Beispiel für delete-medical-transcription-job wird ein medizinischer Transkriptionsauftrag gelöscht.

aws transcribe delete-medical-transcription-job \ --medical-transcription-job-name medical-transcription-job-name

Mit diesem Befehl wird keine Ausgabe zurückgegeben.

Weitere Informationen finden Sie unter DeleteMedicalTranscriptionJob im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie delete-medical-vocabulary verwendet wird.

AWS CLI

So löschen Sie ein benutzerdefiniertes medizinisches Vokabular

Im folgenden Beispiel für delete-medical-vocabulary wird ein benutzerdefiniertes medizinisches Vokabular gelöscht. Geben Sie für vocabulary-name den Namen des benutzerdefinierten medizinischen Vokabulars an.

aws transcribe delete-vocabulary \ --vocabulary-name medical-custom-vocabulary-name

Mit diesem Befehl wird keine Ausgabe zurückgegeben.

Weitere Informationen finden Sie unter Benutzerdefinierte medizinische Vokabulare im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie delete-transcription-job verwendet wird.

AWS CLI

Löschen eines Ihrer Transkriptionsaufträge

Im folgenden Beispiel für delete-transcription-job wird einer Ihrer Transkriptionsaufträge gelöscht.

aws transcribe delete-transcription-job \ --transcription-job-name your-transcription-job

Mit diesem Befehl wird keine Ausgabe zurückgegeben.

Weitere Informationen finden Sie unter DeleteTranscriptionJob im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie delete-vocabulary-filter verwendet wird.

AWS CLI

So löschen Sie einen Vokabelfilter

Im folgenden Beispiel für delete-vocabulary-filter wird ein Vokabelfilter gelöscht.

aws transcribe delete-vocabulary-filter \ --vocabulary-filter-name vocabulary-filter-name

Mit diesem Befehl wird keine Ausgabe zurückgegeben.

Weitere Informationen finden Sie unter Filtern unerwünschter Wörter im Amazon Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie delete-vocabulary verwendet wird.

AWS CLI

Löschen eines benutzerdefinierten Vokabulars

Im folgenden Beispiel für delete-vocabulary wird ein benutzerdefiniertes Vokabular gelöscht.

aws transcribe delete-vocabulary \ --vocabulary-name vocabulary-name

Mit diesem Befehl wird keine Ausgabe zurückgegeben.

Weitere Informationen finden Sie unter Benutzerdefinierte Vokabulare im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie describe-language-model verwendet wird.

AWS CLI

So rufen Sie Informationen zu einem bestimmten benutzerdefinierten Sprachmodell ab

Im folgenden Beispiel für describe-language-model werden Informationen zu einem bestimmten benutzerdefinierten Sprachmodell abgerufen. Unter BaseModelName können Sie beispielsweise sehen, ob Ihr Modell mit einem NarrowBand- oder WideBand-Modell trainiert wurde. Benutzerdefinierte Sprachmodelle mit einem NarrowBand-Basismodell können Audio mit einer Samplerate von weniger als 16 kHz transkribieren. Sprachmodelle, die ein WideBand-Basismodell verwenden, können Audio mit einer Samplerate von mehr als 16 kHz transkribieren. Der Parameter S3Uri gibt das Amazon-S3-Präfix an, mit dem Sie auf die Trainingsdaten zugegriffen haben, um das benutzerdefinierte Sprachmodell zu erstellen.

aws transcribe describe-language-model \ --model-name cli-clm-example

Ausgabe:

{ "LanguageModel": { "ModelName": "cli-clm-example", "CreateTime": "2020-09-25T17:57:38.504000+00:00", "LastModifiedTime": "2020-09-25T17:57:48.585000+00:00", "LanguageCode": "language-code", "BaseModelName": "base-model-name", "ModelStatus": "IN_PROGRESS", "UpgradeAvailability": false, "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/Amazon-S3-Prefix/", "TuningDataS3Uri": "s3://amzn-s3-demo-bucket/Amazon-S3-Prefix/", "DataAccessRoleArn": "arn:aws:iam::AWS-account-number:role/IAM-role-with-permissions-to-create-a-custom-language-model" } } }

Weitere Informationen finden Sie unter Verbessern der domänenspezifischen Transkriptionsgenauigkeit mit benutzerdefinierten Sprachmodellen im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie get-medical-transcription-job verwendet wird.

AWS CLI

So rufen Sie Informationen zu einem bestimmten medizinischen Transkriptionsauftrag ab

Im folgenden Beispiel für get-medical-transcription-job werden Informationen zu einem bestimmten medizinischen Transkriptionsauftrag abgerufen. Verwenden Sie den Parameter TranscriptFileUri, um auf die Transkriptionsergebnisse zuzugreifen. Falls Sie weitere Features für den Transkriptionsauftrag aktiviert haben, können Sie diese im Einstellungen-Objekt sehen. Der Parameter Specialty zeigt das medizinische Fachgebiet des Anbieters. Der Type Parameter gibt an, ob es sich bei der gesprochenen Sprache im Transkriptionsjob um ein medizinisches Gespräch oder um ein medizinisches Diktat handelt.

aws transcribe get-medical-transcription-job \ --medical-transcription-job-name vocabulary-dictation-medical-transcription-job

Ausgabe:

{ "MedicalTranscriptionJob": { "MedicalTranscriptionJobName": "vocabulary-dictation-medical-transcription-job", "TranscriptionJobStatus": "COMPLETED", "LanguageCode": "en-US", "MediaSampleRateHertz": 48000, "MediaFormat": "mp4", "Media": { "MediaFileUri": "s3://Amazon-S3-Prefix/your-audio-file.file-extension" }, "Transcript": { "TranscriptFileUri": "https://s3.Region.amazonaws.com/Amazon-S3-Prefix/vocabulary-dictation-medical-transcription-job.json" }, "StartTime": "2020-09-21T21:17:27.045000+00:00", "CreationTime": "2020-09-21T21:17:27.016000+00:00", "CompletionTime": "2020-09-21T21:17:59.561000+00:00", "Settings": { "ChannelIdentification": false, "ShowAlternatives": false, "VocabularyName": "cli-medical-vocab-example" }, "Specialty": "PRIMARYCARE", "Type": "DICTATION" } }

Weitere Informationen finden Sie unter Batch-Transkription im Amazon Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie get-medical-vocabulary verwendet wird.

AWS CLI

So rufen Sie Informationen zu einem benutzerdefinierten medizinischen Vokabular ab

Im folgenden Beispiel für get-medical-vocabulary werden Informationen zu einem benutzerdefinierten medizinischen Vokabular abgerufen. Sie können den Parameter VocabularyState verwenden, um den Verarbeitungsstatus des Vokabulars zu prüfen. Wenn der Parameter READY zurückgibt, können Sie das Vokabular in der Operation StartMedicalTranscriptionJob verwenden:

aws transcribe get-medical-vocabulary \ --vocabulary-name medical-vocab-example

Ausgabe:

{ "VocabularyName": "medical-vocab-example", "LanguageCode": "en-US", "VocabularyState": "READY", "LastModifiedTime": "2020-09-19T23:59:04.349000+00:00", "DownloadUri": "https://link-to-download-the-text-file-used-to-create-your-medical-custom-vocabulary" }

Weitere Informationen finden Sie unter Benutzerdefinierte medizinische Vokabulare im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie get-transcription-job verwendet wird.

AWS CLI

Abrufen von Informationen zu einem bestimmten Transkriptionsauftrag

Im folgenden Beispiel für get-transcription-job werden Informationen zu einem bestimmten Transkriptionsauftrag abgerufen. Verwenden Sie den Parameter TranscriptFileUri, um auf die Transkriptionsergebnisse zuzugreifen. Verwenden Sie den Parameter MediaFileUri, um festzustellen, welche Audiodatei Sie mit diesem Auftrag transkribiert haben. Sie können das Objekt „Settings“ verwenden, um die optionalen Features zu sehen, die Sie im Transkriptionsauftrag aktiviert haben.

aws transcribe get-transcription-job \ --transcription-job-name your-transcription-job

Ausgabe:

{ "TranscriptionJob": { "TranscriptionJobName": "your-transcription-job", "TranscriptionJobStatus": "COMPLETED", "LanguageCode": "language-code", "MediaSampleRateHertz": 48000, "MediaFormat": "mp4", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.file-extension" }, "Transcript": { "TranscriptFileUri": "https://Amazon-S3-file-location-of-transcription-output" }, "StartTime": "2020-09-18T22:27:23.970000+00:00", "CreationTime": "2020-09-18T22:27:23.948000+00:00", "CompletionTime": "2020-09-18T22:28:21.197000+00:00", "Settings": { "ChannelIdentification": false, "ShowAlternatives": false }, "IdentifyLanguage": true, "IdentifiedLanguageScore": 0.8672199249267578 } }

Weitere Informationen finden Sie unter Erste Schritte (AWS-Befehlszeilenschnittstelle) im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie get-vocabulary-filter verwendet wird.

AWS CLI

So rufen Sie Informationen über einen Wortschatzfilter ab

Im folgenden Beispiel für get-vocabulary-filter werden Informationen zu einem Vokabularfilter abgerufen. Sie können den Parameter DownloadUri verwenden, um die Liste der Wörter abzurufen, mit denen Sie den Vokabelfilter erstellt haben.

aws transcribe get-vocabulary-filter \ --vocabulary-filter-name testFilter

Ausgabe:

{ "VocabularyFilterName": "testFilter", "LanguageCode": "language-code", "LastModifiedTime": "2020-05-07T22:39:32.147000+00:00", "DownloadUri": "https://Amazon-S3-location-to-download-your-vocabulary-filter" }

Weitere Informationen finden Sie unter Filtern unerwünschter Wörter im Amazon Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie get-vocabulary verwendet wird.

AWS CLI

Abrufen von Informationen zu einem benutzerdefinierten Vokabular

Im folgenden Beispiel für get-vocabulary werden Informationen zu einem zuvor erstellten benutzerdefinierten Vokabular abgerufen.

aws transcribe get-vocabulary \ --vocabulary-name cli-vocab-1

Ausgabe:

{ "VocabularyName": "cli-vocab-1", "LanguageCode": "language-code", "VocabularyState": "READY", "LastModifiedTime": "2020-09-19T23:22:32.836000+00:00", "DownloadUri": "https://link-to-download-the-text-file-used-to-create-your-custom-vocabulary" }

Weitere Informationen finden Sie unter Benutzerdefinierte Vokabulare im Amazon-Transcribe-Entwicklerhandbuch.

  • API-Details finden Sie unter GetVocabulary in der AWS CLI-Befehlsreferenz.

Das folgende Codebeispiel zeigt, wie list-language-models verwendet wird.

AWS CLI

So listen Sie Ihre benutzerdefinierten Sprachmodelle auf

Im folgenden Beispiel für list-language-models werden die mit Ihrem AWS-Konto und Ihrer Region verknüpften benutzerdefinierten Vokabulare aufgelistet. Sie können die Parameter TuningDataS3Uri und S3Uri verwenden, um die Amazon-S3-Präfixe zu finden, die Sie als Ihre Trainingsdaten oder Ihre Tuningdaten verwendet haben. BaseModelName gibt an, ob Sie ein NarrowBand- oder WideBand-Modell verwendet haben, um ein benutzerdefiniertes Sprachmodell zu erstellen. Sie können Audio mit einer Samplerate von weniger als 16 kHz mit einem benutzerdefinierten Sprachmodell transkribieren, das ein NarrowBand-Basismodell verwendet. Sie können Audio mit 16 kHz oder höher mit einem benutzerdefinierten Sprachmodell transkribieren, das ein WideBand-Basismodell verwendet. Der Parameter ModelStatus zeigt an, ob Sie das benutzerdefinierte Sprachmodell in einem Transkriptionsauftrag verwenden können. Wenn der Wert COMPLETED lautet, können Sie ihn in einem Transkriptionsauftrag verwenden.

aws transcribe list-language-models

Ausgabe:

{ "Models": [ { "ModelName": "cli-clm-2", "CreateTime": "2020-09-25T17:57:38.504000+00:00", "LastModifiedTime": "2020-09-25T17:57:48.585000+00:00", "LanguageCode": "language-code", "BaseModelName": "WideBand", "ModelStatus": "IN_PROGRESS", "UpgradeAvailability": false, "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/clm-training-data/", "TuningDataS3Uri": "s3://amzn-s3-demo-bucket/clm-tuning-data/", "DataAccessRoleArn": "arn:aws:iam::AWS-account-number:role/IAM-role-used-to-create-the-custom-language-model" } }, { "ModelName": "cli-clm-1", "CreateTime": "2020-09-25T17:16:01.835000+00:00", "LastModifiedTime": "2020-09-25T17:16:15.555000+00:00", "LanguageCode": "language-code", "BaseModelName": "WideBand", "ModelStatus": "IN_PROGRESS", "UpgradeAvailability": false, "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/clm-training-data/", "DataAccessRoleArn": "arn:aws:iam::AWS-account-number:role/IAM-role-used-to-create-the-custom-language-model" } }, { "ModelName": "clm-console-1", "CreateTime": "2020-09-24T19:26:28.076000+00:00", "LastModifiedTime": "2020-09-25T04:25:22.271000+00:00", "LanguageCode": "language-code", "BaseModelName": "NarrowBand", "ModelStatus": "COMPLETED", "UpgradeAvailability": false, "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/clm-training-data/", "DataAccessRoleArn": "arn:aws:iam::AWS-account-number:role/IAM-role-used-to-create-the-custom-language-model" } } ] }

Weitere Informationen finden Sie unter Verbessern der domänenspezifischen Transkriptionsgenauigkeit mit benutzerdefinierten Sprachmodellen im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie list-medical-transcription-jobs verwendet wird.

AWS CLI

Auflisten von medizinischen Transkriptionsaufträgen

Im folgenden Beispiel für list-medical-transcription-jobs werden die mit Ihrem AWS-Konto und Ihrer Region verknüpften medizinischen Transkriptionsaufträge aufgelistet. Um weitere Informationen zu einem bestimmten Transkriptionsauftrag zu erhalten, kopieren Sie den Wert eines Parameters MedicalTranscriptionJobName in die Transkriptionsausgabe und geben Sie diesen Wert für die Option MedicalTranscriptionJobName des Befehls get-medical-transcription-job an. Um weitere Transkriptionsaufträge zu sehen, kopieren Sie den Wert des Parameters NextToken, führen Sie den Befehl list-medical-transcription-jobs erneut aus und geben Sie diesen Wert in der Option --next-token an.

aws transcribe list-medical-transcription-jobs

Ausgabe:

{ "NextToken": "3/PblzkiGhzjER3KHuQt2fmbPLF7cDYafjFMEoGn44ON/gsuUSTIkGyanvRE6WMXFd/ZTEc2EZj+P9eii/z1O2FDYli6RLI0WoRX4RwMisVrh9G0Kie0Y8ikBCdtqlZB10Wa9McC+ebOl+LaDtZPC4u6ttoHLRlEfzqstHXSgapXg3tEBtm9piIaPB6MOM5BB6t86+qtmocTR/qrteHZBBudhTfbCwhsxaqujHiiUvFdm3BQbKKWIW06yV9b+4f38oD2lVIan+vfUs3gBYAl5VTDmXXzQPBQOHPjtwmFI+IWX15nSUjWuN3TUylHgPWzDaYT8qBtu0Z+3UG4V6b+K2CC0XszXg5rBq9hYgNzy4XoFh/6s5DoSnzq49Q9xHgHdT2yBADFmvFK7myZBsj75+2vQZOSVpWUPy3WT/32zFAcoELHR4unuWhXPwjbKU+mFYfUjtTZ8n/jq7aQEjQ42A+X/7K6JgOcdVPtEg8PlDr5kgYYG3q3OmYXX37U3FZuJmnTI63VtIXsNnOU5eGoYObtpk00Nq9UkzgSJxqj84ZD5n+S0EGy9ZUYBJRRcGeYUM3Q4DbSJfUwSAqcFdLIWZdp8qIREMQIBWy7BLwSdyqsQo2vRrd53hm5aWM7SVf6pPq6X/IXR5+1eUOOD8/coaTT4ES2DerbV6RkV4o0VT1d0SdVX/MmtkNG8nYj8PqU07w7988quh1ZP6D80veJS1q73tUUR9MjnGernW2tAnvnLNhdefBcD+sZVfYq3iBMFY7wTy1P1G6NqW9GrYDYoX3tTPWlD7phpbVSyKrh/PdYrps5UxnsGoA1b7L/FfAXDfUoGrGUB4N3JsPYXX9D++g+6gV1qBBs/WfF934aKqfD6UTggm/zV3GAOWiBpfvAZRvEb924i6yGHyMC7y54O1ZAwSBupmI+FFd13CaPO4kN1vJlth6aM5vUPXg4BpyUhtbRhwD/KxCvf9K0tLJGyL1A==", "MedicalTranscriptionJobSummaries": [ { "MedicalTranscriptionJobName": "vocabulary-dictation-medical-transcription-job", "CreationTime": "2020-09-21T21:17:27.016000+00:00", "StartTime": "2020-09-21T21:17:27.045000+00:00", "CompletionTime": "2020-09-21T21:17:59.561000+00:00", "LanguageCode": "en-US", "TranscriptionJobStatus": "COMPLETED", "OutputLocationType": "CUSTOMER_BUCKET", "Specialty": "PRIMARYCARE", "Type": "DICTATION" }, { "MedicalTranscriptionJobName": "alternatives-dictation-medical-transcription-job", "CreationTime": "2020-09-21T21:01:14.569000+00:00", "StartTime": "2020-09-21T21:01:14.592000+00:00", "CompletionTime": "2020-09-21T21:01:43.606000+00:00", "LanguageCode": "en-US", "TranscriptionJobStatus": "COMPLETED", "OutputLocationType": "CUSTOMER_BUCKET", "Specialty": "PRIMARYCARE", "Type": "DICTATION" }, { "MedicalTranscriptionJobName": "alternatives-conversation-medical-transcription-job", "CreationTime": "2020-09-21T19:09:18.171000+00:00", "StartTime": "2020-09-21T19:09:18.199000+00:00", "CompletionTime": "2020-09-21T19:10:22.516000+00:00", "LanguageCode": "en-US", "TranscriptionJobStatus": "COMPLETED", "OutputLocationType": "CUSTOMER_BUCKET", "Specialty": "PRIMARYCARE", "Type": "CONVERSATION" }, { "MedicalTranscriptionJobName": "speaker-id-conversation-medical-transcription-job", "CreationTime": "2020-09-21T18:43:37.157000+00:00", "StartTime": "2020-09-21T18:43:37.265000+00:00", "CompletionTime": "2020-09-21T18:44:21.192000+00:00", "LanguageCode": "en-US", "TranscriptionJobStatus": "COMPLETED", "OutputLocationType": "CUSTOMER_BUCKET", "Specialty": "PRIMARYCARE", "Type": "CONVERSATION" }, { "MedicalTranscriptionJobName": "multichannel-conversation-medical-transcription-job", "CreationTime": "2020-09-20T23:46:44.053000+00:00", "StartTime": "2020-09-20T23:46:44.081000+00:00", "CompletionTime": "2020-09-20T23:47:35.851000+00:00", "LanguageCode": "en-US", "TranscriptionJobStatus": "COMPLETED", "OutputLocationType": "CUSTOMER_BUCKET", "Specialty": "PRIMARYCARE", "Type": "CONVERSATION" } ] }

Weitere Informationen finden Sie unter https://docs.aws.amazon.com/transcribe/latest/dg/batch-med-transcription.html im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie list-medical-vocabularies verwendet wird.

AWS CLI

So listen Sie Ihrer benutzerdefinierten medizinischen Vokabulare auf

Im folgenden Beispiel für list-medical-vocabularies werden die mit Ihrem AWS-Konto und Ihrer Region verknüpften benutzerdefinierten medizinischen Vokabulare aufgelistet. Für weitere Informationen zu einem bestimmten Transkriptionsauftrag kopieren Sie den Wert eines MedicalTranscriptionJobName-Parameters in die Transkriptionsausgabe und geben diesen Wert für die MedicalTranscriptionJobName-Option des get-medical-transcription-job-Befehls an. Für eine Ansicht weiterer Transkriptionsaufträge kopieren Sie den Wert des Parameters NextToken, führen den Befehl list-medical-transcription-jobs erneut aus und geben diesen Wert in der Option --next-token an.

aws transcribe list-medical-vocabularies

Ausgabe:

{ "Vocabularies": [ { "VocabularyName": "cli-medical-vocab-2", "LanguageCode": "en-US", "LastModifiedTime": "2020-09-21T21:44:59.521000+00:00", "VocabularyState": "READY" }, { "VocabularyName": "cli-medical-vocab-1", "LanguageCode": "en-US", "LastModifiedTime": "2020-09-19T23:59:04.349000+00:00", "VocabularyState": "READY" } ] }

Weitere Informationen finden Sie unter Benutzerdefinierte medizinische Vokabulare im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie list-transcription-jobs verwendet wird.

AWS CLI

Auflisten Ihrer Transkriptionsaufträge

Im folgenden Beispiel für list-transcription-jobs werden die mit Ihrem AWS-Konto und Ihrer Region verknüpften Transkriptionsaufträge aufgelistet.

aws transcribe list-transcription-jobs

Ausgabe:

{ "NextToken": "NextToken", "TranscriptionJobSummaries": [ { "TranscriptionJobName": "speak-id-job-1", "CreationTime": "2020-08-17T21:06:15.391000+00:00", "StartTime": "2020-08-17T21:06:15.416000+00:00", "CompletionTime": "2020-08-17T21:07:05.098000+00:00", "LanguageCode": "language-code", "TranscriptionJobStatus": "COMPLETED", "OutputLocationType": "SERVICE_BUCKET" }, { "TranscriptionJobName": "job-1", "CreationTime": "2020-08-17T20:50:24.207000+00:00", "StartTime": "2020-08-17T20:50:24.230000+00:00", "CompletionTime": "2020-08-17T20:52:18.737000+00:00", "LanguageCode": "language-code", "TranscriptionJobStatus": "COMPLETED", "OutputLocationType": "SERVICE_BUCKET" }, { "TranscriptionJobName": "sdk-test-job-4", "CreationTime": "2020-08-17T20:32:27.917000+00:00", "StartTime": "2020-08-17T20:32:27.956000+00:00", "CompletionTime": "2020-08-17T20:33:15.126000+00:00", "LanguageCode": "language-code", "TranscriptionJobStatus": "COMPLETED", "OutputLocationType": "SERVICE_BUCKET" }, { "TranscriptionJobName": "Diarization-speak-id", "CreationTime": "2020-08-10T22:10:09.066000+00:00", "StartTime": "2020-08-10T22:10:09.116000+00:00", "CompletionTime": "2020-08-10T22:26:48.172000+00:00", "LanguageCode": "language-code", "TranscriptionJobStatus": "COMPLETED", "OutputLocationType": "SERVICE_BUCKET" }, { "TranscriptionJobName": "your-transcription-job-name", "CreationTime": "2020-07-29T17:45:09.791000+00:00", "StartTime": "2020-07-29T17:45:09.826000+00:00", "CompletionTime": "2020-07-29T17:46:20.831000+00:00", "LanguageCode": "language-code", "TranscriptionJobStatus": "COMPLETED", "OutputLocationType": "SERVICE_BUCKET" } ] }

Weitere Informationen finden Sie unter Erste Schritte (AWS-Befehlszeilenschnittstelle) im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie list-vocabularies verwendet wird.

AWS CLI

Auflisten Ihrer benutzerdefinierten Vokabulare

Im folgenden Beispiel für list-vocabularies werden die mit Ihrem AWS-Konto und Ihrer Region verknüpften benutzerdefinierten Vokabulare aufgelistet.

aws transcribe list-vocabularies

Ausgabe:

{ "NextToken": "NextToken", "Vocabularies": [ { "VocabularyName": "ards-test-1", "LanguageCode": "language-code", "LastModifiedTime": "2020-04-27T22:00:27.330000+00:00", "VocabularyState": "READY" }, { "VocabularyName": "sample-test", "LanguageCode": "language-code", "LastModifiedTime": "2020-04-24T23:04:11.044000+00:00", "VocabularyState": "READY" }, { "VocabularyName": "CRLF-to-LF-test-3-1", "LanguageCode": "language-code", "LastModifiedTime": "2020-04-24T22:12:22.277000+00:00", "VocabularyState": "READY" }, { "VocabularyName": "CRLF-to-LF-test-2", "LanguageCode": "language-code", "LastModifiedTime": "2020-04-24T21:53:50.455000+00:00", "VocabularyState": "READY" }, { "VocabularyName": "CRLF-to-LF-1-1", "LanguageCode": "language-code", "LastModifiedTime": "2020-04-24T21:39:33.356000+00:00", "VocabularyState": "READY" } ] }

Weitere Informationen finden Sie unter Benutzerdefinierte Vokabulare im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie list-vocabulary-filters verwendet wird.

AWS CLI

So listen Sie Ihre Vokabelfilter auf

Im folgenden Beispiel für list-vocabulary-filters werden die mit Ihrem AWS-Konto und Ihrer Region verknüpften benutzerdefinierten Vokabelfilter aufgelistet.

aws transcribe list-vocabulary-filters

Ausgabe:

{ "NextToken": "NextToken": [ { "VocabularyFilterName": "testFilter", "LanguageCode": "language-code", "LastModifiedTime": "2020-05-07T22:39:32.147000+00:00" }, { "VocabularyFilterName": "testFilter2", "LanguageCode": "language-code", "LastModifiedTime": "2020-05-21T23:29:35.174000+00:00" }, { "VocabularyFilterName": "filter2", "LanguageCode": "language-code", "LastModifiedTime": "2020-05-08T20:18:26.426000+00:00" }, { "VocabularyFilterName": "filter-review", "LanguageCode": "language-code", "LastModifiedTime": "2020-06-03T18:52:30.448000+00:00" }, { "VocabularyFilterName": "crlf-filt", "LanguageCode": "language-code", "LastModifiedTime": "2020-05-22T19:42:42.737000+00:00" } ] }

Weitere Informationen finden Sie unter Filtern unerwünschter Wörter im Amazon Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie start-medical-transcription-job verwendet wird.

AWS CLI

Beispiel 1: Transkribieren eines als Audiodatei gespeicherten medizinischen Diktats

Im folgenden Beispiel für start-medical-transcription-job wird eine Audiodatei transkribiert. Sie geben den Speicherort der Transkriptionsausgabe im Parameter OutputBucketName an.

aws transcribe start-medical-transcription-job \ --cli-input-json file://myfile.json

Inhalt von myfile.json:

{ "MedicalTranscriptionJobName": "simple-dictation-medical-transcription-job", "LanguageCode": "language-code", "Specialty": "PRIMARYCARE", "Type": "DICTATION", "OutputBucketName":"amzn-s3-demo-bucket", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.extension" } }

Ausgabe:

{ "MedicalTranscriptionJob": { "MedicalTranscriptionJobName": "simple-dictation-medical-transcription-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.extension" }, "StartTime": "2020-09-20T00:35:22.256000+00:00", "CreationTime": "2020-09-20T00:35:22.218000+00:00", "Specialty": "PRIMARYCARE", "Type": "DICTATION" } }

Weitere Informationen finden Sie unter Übersicht über die Batch-Transkription im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 2: Transkribieren eines als Audiodatei gespeicherten Dialogs zwischen Arzt und Patient

Im folgenden Beispiel für start-medical-transcription-job wird eine Audiodatei mit einem Dialog zwischen Arzt und Patient transkribiert. Sie geben den Speicherort der Transkriptionsausgabe im Parameter OutputBucketName an.

aws transcribe start-medical-transcription-job \ --cli-input-json file://mysecondfile.json

Inhalt von mysecondfile.json:

{ "MedicalTranscriptionJobName": "simple-dictation-medical-transcription-job", "LanguageCode": "language-code", "Specialty": "PRIMARYCARE", "Type": "CONVERSATION", "OutputBucketName":"amzn-s3-demo-bucket", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.extension" } }

Ausgabe:

{ "MedicalTranscriptionJob": { "MedicalTranscriptionJobName": "simple-conversation-medical-transcription-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.extension" }, "StartTime": "2020-09-20T23:19:49.965000+00:00", "CreationTime": "2020-09-20T23:19:49.941000+00:00", "Specialty": "PRIMARYCARE", "Type": "CONVERSATION" } }

Weitere Informationen finden Sie unter Übersicht über die Batch-Transkription im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 3: Transkribieren einer Mehrkanal-Audiodatei eines Dialogs zwischen Arzt und Patient

Im folgenden Beispiel für start-medical-transcription-job werden die Audiodaten aus jedem Kanal in der Audiodatei transkribiert und die einzelnen Transkriptionen von jedem Kanal zu einer einzigen Transkriptionsausgabe zusammengeführt. Sie geben den Speicherort der Transkriptionsausgabe im Parameter OutputBucketName an.

aws transcribe start-medical-transcription-job \ --cli-input-json file://mythirdfile.json

Inhalt von mythirdfile.json:

{ "MedicalTranscriptionJobName": "multichannel-conversation-medical-transcription-job", "LanguageCode": "language-code", "Specialty": "PRIMARYCARE", "Type": "CONVERSATION", "OutputBucketName":"amzn-s3-demo-bucket", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.extension" }, "Settings":{ "ChannelIdentification": true } }

Ausgabe:

{ "MedicalTranscriptionJob": { "MedicalTranscriptionJobName": "multichannel-conversation-medical-transcription-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.extension" }, "StartTime": "2020-09-20T23:46:44.081000+00:00", "CreationTime": "2020-09-20T23:46:44.053000+00:00", "Settings": { "ChannelIdentification": true }, "Specialty": "PRIMARYCARE", "Type": "CONVERSATION" } }

Weitere Informationen finden Sie unter Kanalidentifizierung im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 4: Transkribieren einer Audiodatei eines Dialogs zwischen Arzt und Patient und Identifizieren der Sprecher in der Transkriptionsausgabe

Im folgenden Beispiel für start-medical-transcription-job wird eine Audiodatei transkribiert und die Sprache der einzelnen Sprecher wird in der Transkriptionsausgabe gekennzeichnet. Sie geben den Speicherort der Transkriptionsausgabe im Parameter OutputBucketName an.

aws transcribe start-medical-transcription-job \ --cli-input-json file://myfourthfile.json

Inhalt von myfourthfile.json:

{ "MedicalTranscriptionJobName": "speaker-id-conversation-medical-transcription-job", "LanguageCode": "language-code", "Specialty": "PRIMARYCARE", "Type": "CONVERSATION", "OutputBucketName":"amzn-s3-demo-bucket", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.extension" }, "Settings":{ "ShowSpeakerLabels": true, "MaxSpeakerLabels": 2 } }

Ausgabe:

{ "MedicalTranscriptionJob": { "MedicalTranscriptionJobName": "speaker-id-conversation-medical-transcription-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.extension" }, "StartTime": "2020-09-21T18:43:37.265000+00:00", "CreationTime": "2020-09-21T18:43:37.157000+00:00", "Settings": { "ShowSpeakerLabels": true, "MaxSpeakerLabels": 2 }, "Specialty": "PRIMARYCARE", "Type": "CONVERSATION" } }

Weitere Informationen finden Sie unter Identifizieren von Sprechern im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 5: Transkribieren eines als Audiodatei gespeicherten medizinischen Gesprächs mit bis zu zwei Transkriptionsalternativen

Im folgenden Beispiel für start-medical-transcription-job werden bis zu zwei alternative Transkriptionen aus einer einzigen Audiodatei erstellt. Jeder Transkription ist ein gewisses Konfidenzniveau zugeordnet. Standardmäßig gibt Amazon Transcribe die Transkription mit dem höchsten Konfidenzniveau zurück. Sie können angeben, dass Amazon Transcribe zusätzliche Transkriptionen mit niedrigerem Konfidenzniveau zurückgeben soll. Sie geben den Speicherort der Transkriptionsausgabe im Parameter OutputBucketName an.

aws transcribe start-medical-transcription-job \ --cli-input-json file://myfifthfile.json

Inhalt von myfifthfile.json:

{ "MedicalTranscriptionJobName": "alternatives-conversation-medical-transcription-job", "LanguageCode": "language-code", "Specialty": "PRIMARYCARE", "Type": "CONVERSATION", "OutputBucketName":"amzn-s3-demo-bucket", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.extension" }, "Settings":{ "ShowAlternatives": true, "MaxAlternatives": 2 } }

Ausgabe:

{ "MedicalTranscriptionJob": { "MedicalTranscriptionJobName": "alternatives-conversation-medical-transcription-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.extension" }, "StartTime": "2020-09-21T19:09:18.199000+00:00", "CreationTime": "2020-09-21T19:09:18.171000+00:00", "Settings": { "ShowAlternatives": true, "MaxAlternatives": 2 }, "Specialty": "PRIMARYCARE", "Type": "CONVERSATION" } }

Weitere Informationen finden Sie unter Alternative Transkriptionen im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 6: Transkribieren einer Audiodatei eines medizinischen Diktats mit bis zu zwei alternativen Transkriptionen

Im folgenden Beispiel für start-medical-transcription-job wird eine Audiodatei transkribiert und zum Maskieren von unerwünschten Wörtern wird ein Vokabularfilter verwendet. Sie geben den Speicherort der Transkriptionsausgabe im Parameter OutputBucketName an.

aws transcribe start-medical-transcription-job \ --cli-input-json file://mysixthfile.json

Inhalt von mysixthfile.json:

{ "MedicalTranscriptionJobName": "alternatives-conversation-medical-transcription-job", "LanguageCode": "language-code", "Specialty": "PRIMARYCARE", "Type": "DICTATION", "OutputBucketName":"amzn-s3-demo-bucket", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.extension" }, "Settings":{ "ShowAlternatives": true, "MaxAlternatives": 2 } }

Ausgabe:

{ "MedicalTranscriptionJob": { "MedicalTranscriptionJobName": "alternatives-dictation-medical-transcription-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.extension" }, "StartTime": "2020-09-21T21:01:14.592000+00:00", "CreationTime": "2020-09-21T21:01:14.569000+00:00", "Settings": { "ShowAlternatives": true, "MaxAlternatives": 2 }, "Specialty": "PRIMARYCARE", "Type": "DICTATION" } }

Weitere Informationen finden Sie unter Alternative Transkriptionen im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 7: Transkribieren einer Audiodatei eines medizinischen Diktats mit höherer Genauigkeit durch Verwendung eines benutzerdefinierten Vokabulars

Im folgenden Beispiel für start-medical-transcription-job wird eine Audiodatei transkribiert und zur Verbesserung der Transkriptionsgenauigkeit wird ein zuvor von Ihnen erstelltes benutzerdefiniertes medizinisches Vokabular verwendet. Sie geben den Speicherort der Transkriptionsausgabe im Parameter OutputBucketName an.

aws transcribe start-transcription-job \ --cli-input-json file://myseventhfile.json

Inhalt von mysixthfile.json:

{ "MedicalTranscriptionJobName": "vocabulary-dictation-medical-transcription-job", "LanguageCode": "language-code", "Specialty": "PRIMARYCARE", "Type": "DICTATION", "OutputBucketName":"amzn-s3-demo-bucket", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.extension" }, "Settings":{ "VocabularyName": "cli-medical-vocab-1" } }

Ausgabe:

{ "MedicalTranscriptionJob": { "MedicalTranscriptionJobName": "vocabulary-dictation-medical-transcription-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.extension" }, "StartTime": "2020-09-21T21:17:27.045000+00:00", "CreationTime": "2020-09-21T21:17:27.016000+00:00", "Settings": { "VocabularyName": "cli-medical-vocab-1" }, "Specialty": "PRIMARYCARE", "Type": "DICTATION" } }

Weitere Informationen finden Sie unter Benutzerdefinierte medizinische Vokabulare im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie start-transcription-job verwendet wird.

AWS CLI

Beispiel 1: Transkribieren einer Audiodatei

Im folgenden Beispiel für start-transcription-job wird Ihre Audiodatei transkribiert.

aws transcribe start-transcription-job \ --cli-input-json file://myfile.json

Inhalt von myfile.json:

{ "TranscriptionJobName": "cli-simple-transcription-job", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/Amazon-S3-prefix/your-media-file-name.file-extension" } }

Weitere Informationen finden Sie unter Erste Schritte (AWS-Befehlszeilenschnittstelle) im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 2: Transkribieren einer Mehrkanal-Audiodatei

Im folgenden Beispiel für start-transcription-job wird Ihre Mehrkanal-Audiodatei transkribiert.

aws transcribe start-transcription-job \ --cli-input-json file://mysecondfile.json

Inhalt von mysecondfile.json:

{ "TranscriptionJobName": "cli-channelid-job", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/Amazon-S3-prefix/your-media-file-name.file-extension" }, "Settings":{ "ChannelIdentification":true } }

Ausgabe:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-channelid-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/Amazon-S3-prefix/your-media-file-name.file-extension" }, "StartTime": "2020-09-17T16:07:56.817000+00:00", "CreationTime": "2020-09-17T16:07:56.784000+00:00", "Settings": { "ChannelIdentification": true } } }

Weitere Informationen finden Sie unter Transkribieren von Mehrkanal-Audio im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 3: Transkribieren einer Audiodatei und Identifizieren der verschiedenen Sprecher

Im folgenden Beispiel für start-transcription-job wird Ihre Audiodatei transkribiert und die Sprecher werden in der Transkriptionsausgabe identifiziert.

aws transcribe start-transcription-job \ --cli-input-json file://mythirdfile.json

Inhalt von mythirdfile.json:

{ "TranscriptionJobName": "cli-speakerid-job", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/Amazon-S3-prefix/your-media-file-name.file-extension" }, "Settings":{ "ShowSpeakerLabels": true, "MaxSpeakerLabels": 2 } }

Ausgabe:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-speakerid-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/Amazon-S3-prefix/your-media-file-name.file-extension" }, "StartTime": "2020-09-17T16:22:59.696000+00:00", "CreationTime": "2020-09-17T16:22:59.676000+00:00", "Settings": { "ShowSpeakerLabels": true, "MaxSpeakerLabels": 2 } } }

Weitere Informationen finden Sie unter Identifizieren von Sprechern im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 4: Transkribieren einer Audiodatei und Maskieren aller unerwünschten Wörter in der Transkriptionsausgabe

Im folgenden Beispiel für start-transcription-job wird Ihrer Audiodatei transkribiert und zum Maskieren von unerwünschten Wörtern wird ein zuvor von Ihnen erstellter Vokabularfilter verwendet.

aws transcribe start-transcription-job \ --cli-input-json file://myfourthfile.json

Inhalt von myfourthfile.json:

{ "TranscriptionJobName": "cli-filter-mask-job", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/Amazon-S3-prefix/your-media-file-name.file-extension" }, "Settings":{ "VocabularyFilterName": "your-vocabulary-filter", "VocabularyFilterMethod": "mask" } }

Ausgabe:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-filter-mask-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://Amazon-S3-Prefix/your-media-file.file-extension" }, "StartTime": "2020-09-18T16:36:18.568000+00:00", "CreationTime": "2020-09-18T16:36:18.547000+00:00", "Settings": { "VocabularyFilterName": "your-vocabulary-filter", "VocabularyFilterMethod": "mask" } } }

Weitere Informationen finden Sie unter Filtern von Transkriptionen im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 5: Transkribieren einer Audiodatei und Entfernen aller unerwünschten Wörter aus der Transkriptionsausgabe

Im folgenden Beispiel für start-transcription-job wird Ihrer Audiodatei transkribiert und zum Maskieren von unerwünschten Wörtern wird ein zuvor von Ihnen erstellter Vokabularfilter verwendet.

aws transcribe start-transcription-job \ --cli-input-json file://myfifthfile.json

Inhalt von myfifthfile.json:

{ "TranscriptionJobName": "cli-filter-remove-job", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/Amazon-S3-prefix/your-media-file-name.file-extension" }, "Settings":{ "VocabularyFilterName": "your-vocabulary-filter", "VocabularyFilterMethod": "remove" } }

Ausgabe:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-filter-remove-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/Amazon-S3-prefix/your-media-file-name.file-extension" }, "StartTime": "2020-09-18T16:36:18.568000+00:00", "CreationTime": "2020-09-18T16:36:18.547000+00:00", "Settings": { "VocabularyFilterName": "your-vocabulary-filter", "VocabularyFilterMethod": "remove" } } }

Weitere Informationen finden Sie unter Filtern von Transkriptionen im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 6: Transkribieren einer Audiodatei mit höherer Genauigkeit durch Verwendung eines benutzerdefinierten Vokabulars

Im folgenden Beispiel für start-transcription-job wird Ihrer Audiodatei transkribiert und zum Maskieren von unerwünschten Wörtern wird ein zuvor von Ihnen erstellter Vokabularfilter verwendet.

aws transcribe start-transcription-job \ --cli-input-json file://mysixthfile.json

Inhalt von mysixthfile.json:

{ "TranscriptionJobName": "cli-vocab-job", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/Amazon-S3-prefix/your-media-file-name.file-extension" }, "Settings":{ "VocabularyName": "your-vocabulary" } }

Ausgabe:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-vocab-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "the-language-of-your-transcription-job", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/Amazon-S3-prefix/your-media-file-name.file-extension" }, "StartTime": "2020-09-18T16:36:18.568000+00:00", "CreationTime": "2020-09-18T16:36:18.547000+00:00", "Settings": { "VocabularyName": "your-vocabulary" } } }

Weitere Informationen finden Sie unter Filtern von Transkriptionen im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 7: Identifizieren der Sprache einer Audiodatei und Transkribieren der Datei

Im folgenden Beispiel für start-transcription-job wird Ihrer Audiodatei transkribiert und zum Maskieren von unerwünschten Wörtern wird ein zuvor von Ihnen erstellter Vokabularfilter verwendet.

aws transcribe start-transcription-job \ --cli-input-json file://myseventhfile.json

Inhalt von myseventhfile.json:

{ "TranscriptionJobName": "cli-identify-language-transcription-job", "IdentifyLanguage": true, "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/Amazon-S3-prefix/your-media-file-name.file-extension" } }

Ausgabe:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-identify-language-transcription-job", "TranscriptionJobStatus": "IN_PROGRESS", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/Amazon-S3-prefix/your-media-file-name.file-extension" }, "StartTime": "2020-09-18T22:27:23.970000+00:00", "CreationTime": "2020-09-18T22:27:23.948000+00:00", "IdentifyLanguage": true } }

Weitere Informationen finden Sie unter Identifizieren der Sprache im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 8: Transkribieren einer Audiodatei mit unkenntlich gemachten persönlich identifizierbaren Informationen

Im folgenden Beispiel für start-transcription-job wird Ihre Audiodatei transkribiert und die persönlich identifizierbaren Informationen werden in der Transkriptionsausgabe unkenntlich gemacht.

aws transcribe start-transcription-job \ --cli-input-json file://myeighthfile.json

Inhalt von myeigthfile.json:

{ "TranscriptionJobName": "cli-redaction-job", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://Amazon-S3-Prefix/your-media-file.file-extension" }, "ContentRedaction": { "RedactionOutput":"redacted", "RedactionType":"PII" } }

Ausgabe:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-redaction-job", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://Amazon-S3-Prefix/your-media-file.file-extension" }, "StartTime": "2020-09-25T23:49:13.195000+00:00", "CreationTime": "2020-09-25T23:49:13.176000+00:00", "ContentRedaction": { "RedactionType": "PII", "RedactionOutput": "redacted" } } }

Weitere Informationen finden Sie unter Automatische Inhaltsschwärzung im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 9: Generieren eines Transkripts mit unkenntlich gemachten persönlich identifizierbaren Informationen (PII) und eines ungeschwärzten Transkripts

Im folgenden Beispiel für start-transcription-job werden zwei Transkriptionen Ihrer Audiodatei generiert, eine mit unkenntlich gemachten persönlich identifizierbaren Informationen und die andere ohne Schwärzungen.

aws transcribe start-transcription-job \ --cli-input-json file://myninthfile.json

Inhalt von myninthfile.json:

{ "TranscriptionJobName": "cli-redaction-job-with-unredacted-transcript", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://Amazon-S3-Prefix/your-media-file.file-extension" }, "ContentRedaction": { "RedactionOutput":"redacted_and_unredacted", "RedactionType":"PII" } }

Ausgabe:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-redaction-job-with-unredacted-transcript", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://Amazon-S3-Prefix/your-media-file.file-extension" }, "StartTime": "2020-09-25T23:59:47.677000+00:00", "CreationTime": "2020-09-25T23:59:47.653000+00:00", "ContentRedaction": { "RedactionType": "PII", "RedactionOutput": "redacted_and_unredacted" } } }

Weitere Informationen finden Sie unter Automatische Inhaltsschwärzung im Amazon-Transcribe-Entwicklerhandbuch.

Beispiel 10: Verwenden eines benutzerdefinierten Sprachmodells, das Sie zuvor erstellt haben, um eine Audiodatei zu transkribieren

Im folgenden Beispiel für start-transcription-job wird Ihre Audiodatei mit einem benutzerdefinierten Sprachmodell transkribiert, das Sie zuvor erstellt haben.

aws transcribe start-transcription-job \ --cli-input-json file://mytenthfile.json

Inhalt von mytenthfile.json:

{ "TranscriptionJobName": "cli-clm-2-job-1", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.file-extension" }, "ModelSettings": { "LanguageModelName":"cli-clm-2" } }

Ausgabe:

{ "TranscriptionJob": { "TranscriptionJobName": "cli-clm-2-job-1", "TranscriptionJobStatus": "IN_PROGRESS", "LanguageCode": "language-code", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket/your-audio-file.file-extension" }, "StartTime": "2020-09-28T17:56:01.835000+00:00", "CreationTime": "2020-09-28T17:56:01.801000+00:00", "ModelSettings": { "LanguageModelName": "cli-clm-2" } } }

Weitere Informationen finden Sie unter Verbessern der domänenspezifischen Transkriptionsgenauigkeit mit benutzerdefinierten Sprachmodellen im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie update-medical-vocabulary verwendet wird.

AWS CLI

So aktualisieren Sie ein benutzerdefiniertes Vokabular mit neuen Begriffen.

Im folgenden Beispiel für update-medical-vocabulary werden Begriffe durch neue Begriffe in einem benutzerdefinierten medizinischen Vokabular ersetzt. Voraussetzung: Sie benötigen eine Datei mit neuen Begriffen, um die Begriffe in einem benutzerdefinierten Vokabular zu ersetzen.

aws transcribe update-medical-vocabulary \ --vocabulary-file-uri s3://amzn-s3-demo-bucket/Amazon-S3-Prefix/medical-custom-vocabulary.txt \ --vocabulary-name medical-custom-vocabulary \ --language-code language

Ausgabe:

{ "VocabularyName": "medical-custom-vocabulary", "LanguageCode": "en-US", "VocabularyState": "PENDING" }

Weitere Informationen finden Sie unter Benutzerdefinierte medizinische Vokabulare im Amazon-Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie update-vocabulary-filter verwendet wird.

AWS CLI

So ersetzen Sie Wörter in einem Vokabelfilter

Im folgenden Beispiel für update-vocabulary-filter werden die Wörter in einem Vokabelfilter durch neue Wörter ersetzt. Voraussetzung: Sie müssen die neuen Wörter als Textdatei gespeichert haben, um einen Vokabelfilter zu aktualisieren.

aws transcribe update-vocabulary-filter \ --vocabulary-filter-file-uri s3://amzn-s3-demo-bucket/Amazon-S3-Prefix/your-text-file-to-update-your-vocabulary-filter.txt \ --vocabulary-filter-name vocabulary-filter-name

Ausgabe:

{ "VocabularyFilterName": "vocabulary-filter-name", "LanguageCode": "language-code", "LastModifiedTime": "2020-09-23T18:40:35.139000+00:00" }

Weitere Informationen finden Sie unter Filtern unerwünschter Wörter im Amazon Transcribe-Entwicklerhandbuch.

Das folgende Codebeispiel zeigt, wie update-vocabulary verwendet wird.

AWS CLI

Aktualisieren eines benutzerdefinierten Vokabular mit neuen Begriffen

Im folgenden Beispiel für update-vocabulary werden die Begriffe, die zur Erstellung eines benutzerdefinierten Vokabulars verwendet wurden, mit den von Ihnen angegebenen neuen Begriffen überschrieben. Voraussetzung: Um die Begriffe in einem benutzerdefinierten Wortschatz zu ersetzen, benötigen Sie eine Datei mit neuen Begriffen.

aws transcribe update-vocabulary \ --vocabulary-file-uri s3://amzn-s3-demo-bucket/Amazon-S3-Prefix/custom-vocabulary.txt \ --vocabulary-name custom-vocabulary \ --language-code language-code

Ausgabe:

{ "VocabularyName": "custom-vocabulary", "LanguageCode": "language", "VocabularyState": "PENDING" }

Weitere Informationen finden Sie unter Benutzerdefinierte Vokabulare im Amazon-Transcribe-Entwicklerhandbuch.