adws

SQL-Referenz

AWS Clean Rooms

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Clean Rooms SQL-Referenz

AWS Clean Rooms: SQL-Referenz

Copyright © 2026 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Die Handelsmarken und Handelsaufmachung von Amazon dirfen nicht in einer Weise in Verbindung
mit nicht von Amazon stammenden Produkten oder Services verwendet werden, durch die Kunden
irregeflhrt werden kénnten oder Amazon in schlechtem Licht dargestellt oder diskreditiert werden
konnte. Alle anderen Handelsmarken, die nicht Eigentum von Amazon sind, gehdren den jeweiligen

Besitzern, die moglicherweise zu Amazon gehdren oder nicht, mit Amazon verbunden sind oder von
Amazon gesponsert werden.

AWS Clean Rooms SQL-Referenz

Table of Contents

o T=Y 2T Tel o R 1
(0T 1YY o1 (T =T o 1P 1
(22T a1 T oL U] e [T =T o =] [o RSP R 2

Namen und Spalten fir konfigurierte Tabellenzuordnungencccoooiiiiiiiiiicccccee e, 3
RESEIVIEIE WOIEKottt e e e e e e e e e e e e e e e e eeeeeeeeeeeeennees 4
Datentypunterstitzung durch SQL ENGINEuuuiiiiiiiiiiiiiieee e 6
NUMENSChEe DatentyPEN ..o e e e e e e e e e e e e e e e esaa s 6
B0O0IESChE DatentyPene e 9
Datums- und Uhrzeit-Datentypeniiiiiiiii e 9
WA =T (od a1 gL F= (=T 0] 4] 01T o PSP SPPRRPN 11
Strukturierte DatentyPen ... —————————— 12
AWS Clean Rooms Spark-SQILccooiiiiiiiiii et e e e e e e e e e e s s e e e e e neaaeeeeas 14
I (=T = [P 14
Operator + (VErkettUNg)oooeveieiiiiii eee e 15
D F= 1 =] 117/ 0 1= o [P 16
Y U] @)Y (=T =Y o o U= o 1R 18
N[0T =T TS Yo g T I8/ oY= o PSP 19
= (o] 01T 0117/ 01T o PRSPPI 26
Datum-/URNIZEITLYPEN ... e e e e e e e e e e e e e e et eae b s 29
I3/ = 10 L@ I PSSR 47
T g =Y N 1Y/ o RSP 50
VLT = Ted b=Ted o1 (=11 (Y N 1Y o TSP 51
Kompatibilitat von Typen und Umwandlung zwischen Typencooviiiiiiiiiiiiiiie e, 53
SQL-BEFENIE ...ttt e e e e e e e e e et rraaaaaaaeaaeaaaaanas 58
(@7 O o | 1Y = e I I PR 58
L LT L= L PP 61
STt I SRR 68
T @ | I U] 1o =Y o P PSESERRRRR 118
AggregationSfuNKLONENcccoooiiiiii e ———————— 118
AN = 12 U] 4o = o P 143
Bedingte AUSAIUCKEuei it e e e e e et e e e e e e et et e e e e e e eessnaeeeaeennes 153
KoNStruKtor-FUNKLIONEN ...t 166
Funktionen flr die Datentypformatierungoooorrmiiiiiiicccce e 170
Datums- und ZetfunNKtONENoeiiiiiiiiiee e e e e e e e e e e e e e e e e e annnes 199

AWS Clean Rooms SQL-Referenz

Verschlisselungs- und Entschlisselungsfunktionencooooriicciiiii e 229
HaSh-FUNKLONEN ... e e e e e e e e e s 233
Hyperloglog-FUNKLONEN ...t e e e e e eeenes 237
JSON-FUNKLONEN ...ttt e e e e e et e e e e e e e e e e e e e e e s s nnnnnnsneeeeeeaaeens 245
Mathematische FUNKLONEN e e eeeeenenees 249
SKalarfUNKLONEN ...ttt e e e e e e e e e e e e e e e e e e eaaeaeeeeeeaaanns 281
ZeichenfolgenfunKtionNen ... 283
Funktionen im Zusammenhang mit dem Datenschutzc.cccooviiii i 330
FensterfuNKLONEN ... e e e e e e e e e e e e 336

ST @]I 7= [o U] o =T o PP 370
VT o | (=T Ted gTsTo] 01T =1 (0] =Y o S 371

(I oTo I<Tod gT= TN = 1Yo 10T 0T e =T o SR 378
Patternmatching-BediNnQUNGENcooooiiiiiii e e e et e e e e e 381
BETWEEN-BereichsSbediNnQUNGcoi oot e e e e e e e e e e e e aeees 386
wNUI“-BEAINGUNG ...t e e e e e e e e e aaaeaaes 389
EXISTS-BEAINQUINGot e et e e e e e e e e e e e e e e e e e et e e e e e e et a e e e e e e e e eeaaaaaaaens 389

1N B ==Y [T U o Ve PRSP 390
Verschachtelte Daten abfragen oo 393
AN E= V7T =4[] o PR 393
Aufheben der Verschachtelung von ABfragenccooooi i, 394
LaX=-SEMIANTIK ...t e e e e e e e e e e e e e e e b r e e e eaaaaaaeaaeeaaans 396
Arten der INrOSPEKLIONooeeei e e e e e e e e e e e e e e e e aaa e e aeaeee 397
Do) (0 41T 01 AT =T = T RSOSSN 399
... cdii

AWS Clean Rooms SQL-Referenz

Uberblick ber SQL in AWS Clean Rooms

Willkommen bei der AWS Clean RoomsSQL-Referenz.

AWS Clean Roomsbasiert auf dem Industriestandard Structured Query Language (SQL), einer
Abfragesprache, die aus Befehlen und Funktionen besteht, die Sie fur die Arbeit mit Datenbanken
und Datenbankobjekten verwenden. SQL setzt auch Regeln fur die Verwendung von Datentypen,
Ausdricken und Literalen durch.

Die folgenden Themen enthalten allgemeine Informationen zu den Konventionen und
Benennungsregeln, die in dieser SQL-Referenz verwendet werden.

Topics

« Konventionen fur die SQL-Referenz

» SQL-Namensregeln

» Datentypunterstitzung durch SQL Engine

Die folgenden Abschnitte enthalten Informationen zu den Literalen, Datentypen, SQL-Befehlen,
Typen von SQL-Funktionen und SQL-Bedingungen, die Sie in AWS Clean Rooms verwenden
koénnen.

« AWS Clean Rooms Spark-SQL

Weitere Informationen AWS Clean Rooms dazu finden Sie im AWS Clean RoomsBenutzerhandbuch
und in der AWS Clean RoomsAPI-Referenz.

Konventionen fur die SQL-Referenz

In diesem Abschnitt werden die Konventionen erklart, die zum Schreiben der Syntax fur die SQL-
Ausdrlcke, -Befehle und -Funktionen verwendet werden.

Zeichen Beschreibung

GROSSBUCH Worter in GroRbuchstaben sind Schlisselworter.
STABEN

Konventionen 1

https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/apireference/Welcome.html

AWS Clean Rooms

SQL-Referenz

Zeichen

[]

{}

Kursivschrift

Beschreibung

Eckige Klammern bezeichnen optionale Argumente

. Mehrere Argumente in eckigen Klammern zeigen

an, dass Sie eine beliebige Anzahl der Argumente
verwenden konnen. Argumente in eckigen Klammern,
die jeweils in einer eigenen Zeile stehen, zeigen
aulRerdem an, dass der -Parser die Argumente in der
Reihenfolge erwartet, in der sie in der Syntax aufgelist
et sind.

Geschweifte Klammern zeigen an, dass Sie nur eines
der Argumente verwenden kdnnen, die innerhalb der
Klammern stehen.

Pipe-Zeichen zeigen an, dass Sie zwischen den
Argumenten wahlen kdnnen.

Worter in Kursivschrift zeigen Platzhalter an. Sie
mussen das kursiv formatierte Wort durch den
entsprechenden Wert ersetzen.

Auslassungspunkte zeigen an, dass Sie das Element
davor wiederholen kdnnen.

Woérter in einfachen Anflhrungszeichen missen
zusammen mit den Anfuihrungszeichen verwendet
werden.

SQL-Namensregeln

In den folgenden Abschnitten werden die SQL-Benennungsregeln unter erklart AWS Clean Rooms.

Themen

« Namen und Spalten fur konfigurierte Tabellenzuordnungen

» Reservierte Worter

Benennungsregeln

AWS Clean Rooms SQL-Referenz

Namen und Spalten fur konfigurierte Tabellenzuordnungen

Mitglieder, die Abfragen durchfliihren kénnen, verwenden konfigurierte Tabellenzuordnungsnamen
als Tabellennamen in Abfragen. Konfigurierte Tabellenzuordnungsnamen und konfigurierte
Tabellenspalten kénnen in Abfragen mit Aliasnamen versehen werden.

Die folgenden Benennungsregeln gelten fur konfigurierte Tabellenzuordnungsnamen, konfigurierte
Tabellenspaltennamen und Aliase:

Sie durfen nur alphanumerische Zeichen, Unterstriche (_) oder Bindestriche (-) enthalten, dirfen
jedoch nicht mit einem Bindestrich beginnen oder enden.

* (Nur benutzerdefinierte Analyseregel) Sie kdnnen das Dollarzeichen ($) verwenden, aber kein
Muster, das einer Zeichenkettenkonstante in Dollaranfihrungszeichen folgt.

Eine Zeichenkettenkonstante in Dollaranfihrungszeichen besteht aus:
« ein Dollarzeichen ($)

* ein optionales ,Tag“ mit null oder mehr Zeichen

+ ein weiteres Dollarzeichen

* beliebige Zeichenfolge, aus der der Zeichenketteninhalt besteht

« ein Dollarzeichen ($)

+ das gleiche Etikett, mit dem der Dollarkurs begann

» ein Dollarzeichen

Zum Beispiel: $$invalid$$
Sie durfen keine aufeinanderfolgenden Bindestriche (-) enthalten.

Sie durfen mit keinem der folgenden Prafixe beginnen:

padb_, pg_, stcs_,stl_,stll_, stv_,svcs_,svl_, svv_, sys_, systable_

Sie durfen keine umgekehrten Schragstriche (\), Anfihrungszeichen (') oder Leerzeichen ohne
doppelte Anfihrungszeichen enthalten.

Wenn sie mit einem nicht alphabetischen Zeichen beginnen, missen sie in doppelten
Anfuhrungszeichen (“,) stehen.

Wenn sie einen Bindestrich (-) enthalten, missen sie in doppelten Anflihrungszeichen (“,) stehen.
Sie missen zwischen 1 und 127 Zeichen lang sein.

Reservierte Worter missen in doppelten Anfliihrungszeichen (“,) stehen.

Namen und Spalten fiir konfigurierte Tabellenzuordnungen 3

AWS Clean Rooms

SQL-Referenz

 Die folgenden Spaltennamen sind reserviert und kénnen nicht verwendet werden AWS Clean
Rooms (auch nicht mit Anflihrungszeichen):

« OID

» Tableoid
e Xmin

e cmin

e Xmax

e cmax

» ctid

Reservierte Worter

Im Folgenden finden Sie eine Liste der reservierten Worter in AWS Clean Rooms.

AES128

AES256ALL

ALLOWOVER
WRITEANALYSE

ANALYZE

AND

ANY

ARRAY

AS

ASC

AUTHORIZATION

DELTA32KDESC

DISTINCT

DO

DISABLE

ELSE

EMPTYASNU
LLENABLE

ENCODE

ENCRYPT

ENCRYPTIONEND

EXCEPT

LEADING

LEFTLIKE

LIMIT

LOCALTIME

LOCALTIMESTAMP

LUN

LUNS

LZO

LZOP

MINUS

PRIMARY
RAW

READRATIO

RECOVERRE
FERENCES

REJECTLOG

RESORT

RESPECT
RESTORE
RIGHTSELECT

SESSION_USER

Reservierte Worter

AWS Clean Rooms

SQL-Referenz

AZ64

BACKUPBETWEEN

BINARY

BLANKSASN
ULLBOTH

BYTEDICT
BZIP2CASE
CAST

CHECK

COLLATE
COLUMN
CONSTRAINT
CREATE

CREDENTIA
LSCROSS

CURRENT_DATE

CURRENT_TIME

CURRENT_T
IMESTAMP

CURRENT_USER

CURRENT_U
SER_IDDEFAULT

EXPLICITFALSE

FOR

FOREIGN

FREEZE

FROM

FULL

GLOBALDICT256

GLOBALDIC
T64KGRANT

GROUP

GZIPHAVING

IDENTITY

IGNOREILIKE

IN

INITIALLY

INNER

INTERSECT

INTERVAL

INTO

MOSTLY16

MOSTLY32

MOSTLY8SNATURAL

NEW

NOT

NOTNULL

NULL

NULLSOFF

OFFLINEOFFSET

OID

OLD

ON

ONLY

OPEN

OR

ORDER

OUTER

OVERLAPS

SIMILAR

SNAPSHOT

SOME

SYSDATESYSTEM

TABLE

TAG

TDES

TEXT255

TEXT32KTHEN

TIMESTAMP

TO

TOPTRAILING

TRUE

TRUNCATEC
OLUMNSUNION

UNIQUE

UNNEST

USING

VERBOSE

Reservierte Worter

AWS Clean Rooms SQL-Referenz

DEFERRABLE IS PARALLELP WALLETWHEN
ARTITION

DEFLATE ISNULL PERCENT WHERE

DEFRAG JOIN PERMISSIONS WITH

DELTA LANGUAGE PIVOTPLACING WITHOUT

Datentypunterstitzung durch SQL Engine

AWS Clean Rooms unterstitzt mehrere SQL-Engines und Dialekte. Das Verstéandnis

der Datentypsysteme in diesen Implementierungen ist entscheidend fir eine erfolgreiche
Zusammenarbeit und Analyse von Daten. Die folgenden Tabellen zeigen die entsprechenden
Datentypen in AWS Clean Rooms SQL, Snowflake SQL und Spark SQL.

Numerische Datentypen

Numerische Typen stehen fir verschiedene Arten von Zahlen, von genauen ganzen Zahlen bis
hin zu ungefahren Gleitkommawerten. Die Wahl des numerischen Typs wirkt sich sowohl auf
die Speicheranforderungen als auch auf die Rechengenauigkeit aus. Integer-Typen variieren je
nach Bytegrole, wahrend Dezimal- und Gleitkommatypen unterschiedliche Genauigkeits- und
Skalierungsoptionen bieten.

Datentyp AWS Clean Rooms Snowflake- Spark-SQL Description
SQL SQL

8-Byte-Ganzzahl BIGINT Nicht unterstit = GROSSER Ganzzahlen
zt GANZZAHL, mit Vorzeichen
LANG von -9.223.37

2.036.854
.775.808 bis
9.223.372
.036.854.
775.807.

Datentypunterstiitzung durch SQL Engine 6

AWS Clean Rooms SQL-Referenz
Datentyp AWS Clean Rooms Snowflake- Spark-SQL Description
SQL SQL
4-Byte-Ganzzahl INT Nicht unterstit INT, INTEGER Ganzzahlen
zt mit Vorzeichen
von -2.147.48
3.648 bis
2.147.483.647
2-Byte-Ganzzahl SMALLINT Nicht unterstit ~ SMALLINT, Ganzzahlen
zt KURZ mit Vorzeichen
von -32.768 bis
32.767
1-Byte-Ganzzahl Nicht unterstutzt Nicht unterstut ~ WINZIGE Ganzzahlen
zt GANZZAHL, mit Vorzeiche
BYTE n von -128 bis
127
Float mit doppelter =~ DOPPELTE, FLOAT, DOUBLE 8-Byte-Gl
Genauigkeit DOPPELTE FLOAT4, eitkommaz
PRAZISION FLOATS, ahlen mit
DOPPELT, doppelter
DOPPELTE Genauigkeit
GENAUIGKE
IT, REAL
Gleitkommazahl ECHT, SCHWEBEN Nicht unterstit ~ FLOAT 4-Byte-FlI
mit einfacher zt ieBkommaz
Genauigkeit ahlen mit
einfacher
Genauigkeit

Numerische Datentypen

AWS Clean Rooms

SQL-Referenz

AWS Clean Rooms
SQL

Datentyp

Dezimal (feste DECIMAL

Genauigkeit)

Dezimalzahl (mit
Genauigkeit)

DEZIMAL (p)

Snowflake-
SQL

DEZIMAL,
NUMERISCH,
ZAHL

(® Note

Snowflake
ordnet
exakte
numerisch
e

Typen

mit
kleinerer
Breite
(INT,
BIGINT,

SMALLINT

usw.)
automatis
ch als
Alias

fur
NUMBER
Zu.

DEZIMAL (p),
ZAHL (p)

Spark-SQL

DEZIMAL,
NUMERISCH,

DEZIMAL (p)

Description

Vorzeiche
nbehaftete
Dezimalzahlen
mit beliebiger
Genauigkeit

Dezimalza
hlen mit fester
Genauigkeit

Numerische Datentypen

AWS Clean Rooms SQL-Referenz

Datentyp AWS Clean Rooms Snowflake- Spark-SQL Description
SQL SQL
Dezimalzahl (mit DECIMAL (p,s) DEZIMAL (p, DECIMAL (p,s) Dezimalza
Skala) s), ZAHL (p, s) hlen mit fester
Genauigkeit
und Skala

Boolesche Datentypen

Boolesche Typen stehen fiir einfache logische Werte. true/false Diese Typen sind in allen SQL-
Engines konsistent und werden haufig fur Flags, Bedingungen und logische Operationen verwendet.

Datentyp AWS Clean Rooms Snowflake- Spark-SQL Description
SQL SQL
Boolesch BOOLEAN BOOLEAN BOOLEAN Stellt Werte

dar true/false

Datums- und Uhrzeit-Datentypen

Datums- und Uhrzeittypen verarbeiten Zeitdaten mit unterschiedlicher Genauigkeit und
Zeitzonenerkennung. Diese Typen unterstitzen verschiedene Formate zum Speichern
von Daten, Uhrzeiten und Zeitstempeln sowie Optionen zum Ein- oder Ausschliel3en von
Zeitzoneninformationen.

Datentyp AWS Clean Rooms Snowflake- Spark-SQL Description
SQL SQL
Date DATUM DATUM DATUM Datumswerte
(Jahr, Monat,
Tag) ohne
Zeitzone

Boolesche Datentypen

AWS Clean Rooms

SQL-Referenz

Datentyp AWS Clean Rooms
SQL

Zeit TIME

Zeit mit TZ TIMETZ

Zeitstempel TIMESTAMP
(ZEITSTEMPEL)

Zeitstempel mit TZ TIMESTAMPTZ

Snowflake-
SQL

Nicht unterstit
zt

Nicht unterstit
zt

ZEITSTEMP
EL,
ZEITSTEMP
EL_NTZ

TIMESTAMP
_LTZ

Spark-SQL

Nicht unterstut
zt

Nicht unterstit
zt

TIMESTAMP
_NTZ

ZEITSTEMP
EL,
TIMESTAMP
_LTZ

Description

Tageszeit in
UTC, ohne
Zeitzone

Tageszeit
in UTC, mit
Zeitzone

Zeitstempel
ohne Zeitzone

@ Note

NTZ
steht

fur
.Keine
Zeitzone*

Zeitstempel
mit lokaler
Zeitzone

(@ Note

LTZ
steht

far
,Lokale
Zeitzone*

Datums- und Uhrzeit-Datentypen

AWS Clean Rooms

SQL-Referenz

Zeichendatentypen

Zeichentypen speichern Textdaten und bieten sowohl Optionen mit fester Lange als auch mit
variabler Lange. Diese Typen verarbeiten Textzeichenfolgen und Binardaten mit optionalen
Langenangaben zur Steuerung der Speicherzuweisung.

Datentyp

Zeichen mit fester

Lange

Zeichen fester

Lange mit Lange

Zeichen mit
variabler Lange

Zeichen mit
variabler Lange
und Lange

Binar

Binar mit Lange

AWS Clean Rooms

SQL

CHAR

CHAR(n)

VARCHAR

VARCHAR (n)

VARBYTE

VARBYTE(n)

Snowflake-
SQL

CHAR,
CHARACTER

CHAR(n),
CHARACTER

(n)

VARCHAR,
STRING,
TEXT

VARCHAR (n),
ZEICHENFO
LGE (n), TEXT

(n)
BINARY,
VARBINARY

Nicht unterstit
zt

Spark-SQL

CHAR,
CHARACTER

CHAR(n),
CHARACTER

(n)

VARCHAR,
ZEICHENFO
LGE

VARCHAR (n)

BINARY

Nicht unterstut
zt

Description

Zeichenfo
Ige mit fester
Lange

Zeichenfo

Ige mit fester
Lange und
angegebener
Lange

Zeichenfolge
mit variabler
Lange

Zeichenfolge
mit variabler
Lange und
Langenbes
chrankung

Binare
Bytefolge

Binare
Bytefolge mit
Langenbeg
renzung

Zeichendatentypen

AWS Clean Rooms

SQL-Referenz

Strukturierte Datentypen

Strukturierte Typen ermdglichen eine komplexe Datenorganisation, indem mehrere Werte in
einzelnen Feldern kombiniert werden. Dazu gehdren Arrays flr geordnete Sammlungen, Maps
fur Schlussel-Wert-Paare und Strukturen zur Erstellung benutzerdefinierter Datenstrukturen mit

benannten Feldern.

Datentyp

Array

Zuordnung

AWS Clean Rooms

SQL

ARRAY <type>

LANDKARTE<key,

value>

Snowflake-
SQL

ARRAY (Typ)

MAP (Schlisse

|, Wert)

Spark-SQL

ARRAY <type>

LANDKARTE
<key, value>

Description

Geordnete
Reihenfolge
von Elementen
desselben

(® Note

Array-
Typen
mussen
Elemente
desselben
Typs
enthalten

Sammlung
von Schlissel-
Wert-Paaren

(® Note

Kartentyp
en
mussen
Elemente
desselben

Strukturierte Datentypen

AWS Clean Rooms

SQL-Referenz

Datentyp

Struct

Super

AWS Clean Rooms
SQL

STRUKTURK field1:
type1, field2: type2>

SUPER

Snowflake-
SQL

OBJEKT
(Feld1 Typ1,
Feld2 Typ2)

Nicht unterstit
zt

Spark-SQL

STRUKTUR<
field1: type1,
field2: type2 >

Nicht unterstut
zt

Description

Typs
enthalten

Struktur mit
benannten
Feldern
bestimmter
Typen

(@ Note
Die
Syntax
strukturi
erter
Typen
kann
zwischen
den
Implement
ierungen
leicht
variieren

Flexibler

Typ, der alle
Datentypen
unterstutzt,
auch komplexe
Typen

Strukturierte Datentypen

AWS Clean Rooms SQL-Referenz

AWS Clean Rooms Spark-SQL

AWS Clean Rooms Spark SQL setzt Regeln in Bezug auf die Verwendung von Datentypen,
Ausdricken und Literalen durch.

Weitere Informationen zu AWS Clean Rooms Spark SQL finden Sie im AWS Clean Rooms
Benutzerhandbuch und in der AWS Clean Rooms API-Referenz.

Die folgenden Themen enthalten Informationen zu den Literalen, Datentypen, Befehlen, Funktionen
und Bedingungen, die in AWS Clean Rooms Spark SQL unterstitzt werden.

Themen

- Literale

- Datentypen

« AWS Clean Rooms Spark-SQL-Befehle

« AWS Clean Rooms Spark SQL-Funktionen
 AWS Clean Rooms Spark-SQL-Bedingungen

Literale

Ein Literal oder eine Konstante ist ein fester Datenwert, bestehend aus einer Zeichenfolge oder einer
numerischen Konstante.

AWS Clean Rooms Spark SQL unterstutzt verschiedene Arten von Literalen, darunter:

* Numerische Literale fur Ganzzahlen, Dezimalzahlen und Gleitkommazahlen.

» Zeichenliterale, auch als Zeichenketten, Zeichenketten oder Zeichenkonstanten bezeichnet,
werden zur Angabe eines Zeichenkettenwerts verwendet.

« Datums-, Uhrzeit- und Zeitstempelliterale, die mit Datentypen vom Typ Datetime verwendet
werden. Weitere Informationen finden Sie unter Datums-, Zeit- und Zeitstempelliterale.

» Intervallliterale. Weitere Informationen finden Sie unter Intervallliterale.

* Boolesche Literale. Weitere Informationen finden Sie unter Boolesche Literale.

* Null-Literale, die zur Angabe eines Nullwerts verwendet werden.

* Nur TAB, CARRIAGE RETURN (CR) und LINE FEED (LF) Unicode-Steuerzeichen aus der
allgemeinen Unicode-Kategorie (Cc) werden unterstitzt.

Literale 14

https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/userguide/what-is.html
https://docs.aws.amazon.com/clean-rooms/latest/apireference/Welcome.html

AWS Clean Rooms SQL-Referenz

AWS Clean Rooms Spark SQL unterstitzt keine direkten Verweise auf Zeichenkettenliterale in der
SELECT-Klausel, sie kbnnen jedoch in Funktionen wie CAST verwendet werden.

Operator + (Verkettung)

Verkettet numerische Literale, Zeichenkettenliterale und/oder Datetime- und Intervallliterale. Sie
befinden sich auf beiden Seiten des +-Symbols und geben basierend auf den Eingaben auf beiden
Seiten des +-Symbols unterschiedliche Typen zurick.

Syntax

numeric + string
date + time

date + timetz

Die Reihenfolge der Argumente kann umgekehrt werden.
Argumente
numeric literals

Literale oder Konstanten, die Zahlen darstellen, kbnnen Ganzzahlen oder Gleitkommazahlen sein.

string literals

Zeichenketten, Zeichenketten oder Zeichenkonstanten

date

A DATE Spalte oder ein Ausdruck, der implizit in eine umgewandelt wird DATE.

time

A TIME Spalte oder ein Ausdruck, der implizit in eine TIME.

timetz

A TIMETZ Spalte oder ein Ausdruck, der implizit in eine TIMETZ.

Operator + (Verkettung) 15

AWS Clean Rooms

SQL-Referenz

Beispiel

Die folgende Beispieltabelle TIME_TEST hat eine Spalte TIME_VAL (Typ TIME) mit drei eingefligten

Werten.

select date '2000-01-02' + time_val as ts from time_test;

Datentypen

Jeder Wert, den AWS Clean Rooms Spark SQL speichert oder abruft, hat einen Datentyp mit einem
festen Satz von zugehorigen Eigenschaften. Datentypen werden deklariert, wenn Tabellen erstellt
werden. Eine Datentyp beschrankt die Gruppe von Werten, den eine Spalte oder ein Argument

enthalten kann.

In der folgenden Tabelle sind die Datentypen aufgefuhrt, die Sie in AWS Clean Rooms Spark SQL

verwenden kénnen.

Name des Datentyps

ARRAY

BIGINT

BINARY

BOOLEAN

BYTE

CHAR

Datentyp

the section called

“Verschachtelter Typ”

the section called

“‘Numerische Typen’

the section called
“‘Binarer Typ”

the section called
“Typ BOOLEAN”

the section called

‘Numerische Typen’

the section called

“Zeichentypen”

Aliasnamen

Nicht zutreffend

Nicht zutreffend

Nicht zutreffend

BOOL

Nicht zutreffend

CHARACTER

Description

Verschachtelter Array-
Datentyp

8-Byte-Ganzzahl mit
Vorzeichen

Werte der Byte-Sequ
enz

Logischer/Boolescher
Wert (wahr/falsch)

1-Byte-Ganzzahlen
mit Vorzeichen, von
-128 bis 127

Zeichenfolge mit
fester Lange

Datentypen

AWS Clean Rooms

SQL-Referenz

Name des Datentyps

DATE

DECIMAL

FLOAT

INTEGER

INTERVAL

LONG

MAP

REAL

SHORT

SMALLINT

STRUCT

Datentyp

the section called
‘Datum-/Uhrzeittypen’

3

the section called

“‘Numerische Typen”

the section called

“‘Numerische Typen”

the section called

“‘Numerische Typen”

the section called

H

‘Datum-/Uhrzeittypen’

the section called

“‘Numerische Typen”

the section called

“Verschachtelter Typ”

the section called

“‘Numerische Typen”

the section called

“‘Numerische Typen”

the section called
“‘Numerische Typen”

the section called
“Verschachtelter Typ”

Aliasnamen

Nicht zutreffend

NUMERIC

FLOATS8, DOPPELTE
GENAUIGKEIT

INT

Nicht zutreffend

Nicht zutreffend

Nicht zutreffend

FLOAT4

Nicht zutreffend

Nicht zutreffend

Nicht zutreffend

Description

Kalenderdatum (Jahr,
Monat, Tag)

Genauer Zahlenwer
t mit wahlbarer
Genauigkeit

Double (Gleitkom
mazahl mit doppelter
Genauigkeit)

4-Byte-Ganzzahl mit
Vorzeichen

Zeitdauer in der
Reihenfolge von Tag
zu Uhrzeit oder von
Jahr zu Monat

8-Byte-Ganzzahlen
mit Vorzeichen

Ordnen Sie den
verschachtelten
Datentyp zu

Gleitkommazahl mit
einfacher Genauigkeit

2-Byte-Ganzzahlen
mit Vorzeichen.

2-Byte-Ganzzahl mit
Vorzeichen

Verschachtelter
Struct-Datentyp

Datentypen

AWS Clean Rooms SQL-Referenz

Name des Datentyps Datentyp Aliasnamen Description

TIMESTAMP_LTZ the section called Nicht zutreffend Tageszeit mit lokaler
‘Datum-/Uhrzeittypen” Zeitzone

TIMESTAMP_NTZ the section called Nicht zutreffend Tageszeit ohne
‘Datum-/Uhrzeittypen” Zeitzone

TINYINT the section called Nicht zutreffend 1-Byte-Ganzzahlen
‘Numerische Typen” mit Vorzeichen, von

-128 bis 127

VARCHAR the section called ZEICHEN Zeichenfolge mit

“Zeichentypen” VARIIEREND variabler Lange und

benutzerdefiniertem
Grenzwert

@ Note

Die verschachtelten Datentypen ARRAY, STRUCT und MAP sind derzeit nur fur die
benutzerdefinierte Analyseregel aktiviert. Weitere Informationen finden Sie unter
Verschachtelter Typ.

Multibyte-Zeichen

Der Datentyp VARCHAR unterstiitzt Multibyte-UTF-8-Zeichen mit einer Lange von bis zu vier Bytes.
Zeichen mit einer Lange von flinf Bytes oder mehr werden nicht unterstitzt. Sie berechnen die Grolie
einer VARCHAR-Spalte, die Multibyte-Zeichen enthalt, indem Sie die Anzahl der Zeichen mit der
Anzahl der Bytes pro Zeichen multiplizieren. Wenn eine Zeichenfolge z. B. vier chinesischen Zeichen
enthalt und jedes Zeichen drei Bytes lang ist, dann ist eine VARCHAR(12)-Spalte erforderlich, um die
Zeichenfolge zu speichern.

Der Datentyp VARCHAR bietet keine Unterstutzung fur die folgenden ungultigen UTF-8-Codepunkte:
O0xD800 - OxDFFF (Bytesequenzen: ED AQ@ 80-ED BF BF)

Der Datentyp CHAR bietet keine Unterstutzung fur Multibyte-Zeichen.

Multibyte-Zeichen 18

AWS Clean Rooms SQL-Referenz

Numerische Typen

Numerische Datentypen sind Ganzzahlen, Dezimalzahlen und Gleitkommazahlen.

Themen
« Ganzzahl-Typen
« Typ DECIMAL oder NUMERIC

» Gleitkommazahl-Typen

» Berechnungen mit numerischen Werten

Ganzzahl-Typen

Verwenden Sie die folgenden Datentypen, um ganze Zahlen verschiedener Bereiche zu speichern.
Sie konnen keine Werte aulderhalb des zulassigen Bereichs fir jeden Typ speichern.

Name Speicher Bereich

SMALLINT 2 Bytes -32768 bis +32767

SHORT 2 Bytes -32768 bis +32767

INTEGER oder INT 4 Bytes -2147483648 bis
+2147483647

BIGINT 8 Bytes -92233720368547758
08 bis +92233720
36854775807

LONG 8 Bytes -92233720368547758
08 bis +92233720
36854775807

Typ DECIMAL oder NUMERIC

Verwenden Sie den Datentyp DECIMAL oder NUMERIC, um Werte mit benutzerdefinierter
Genauigkeit zu speichern. Die Schltusselwdrter DECIMAL und NUMERIC kénnen synonym verwendet
werden. In diesem Dokument wird der Begriff dezimal fur diesen Datentyp bevorzugt. Der Begriff

Numerische Typen 19

AWS Clean Rooms SQL-Referenz

numerisch wird in der Regel als Oberbegriff fir Ganzzahl-, Dezimalzahl- und Gleitkommazahl-
Datentypen verwendet.

Speicher Bereich
Variabel, bis zu 128 Bits fir unkomprimierte 128-Bit-Ganzzahlen mit Vorzeichen und einer
DECIMAL-Typen Genauigkeit von bis zu 38 Stellen

Definieren Sie eine DECIMAL-Spalte in einer Tabelle, indem Sie ein precision und
angebenscale:

decimal(precision, scale)

precision

Die Anzahl aller signifikanten Stellen im gesamten Wert: die Anzahl der Stellen auf beiden
Seiten des Dezimaltrennzeichens. Die Zahl 48.2891 hat z. B. eine Genauigkeit von 6 und
4 Dezimalstellen. Wenn Sie nichts angeben, wird standardmalig eine Genauigkeit von 18
verwendet. Die maximale Genauigkeit ist 38.

Wenn die Anzahl der Ziffern links vom Dezimaltrennzeichen in einem Eingabewert die
Genauigkeit der Spalte abzuglich ihrer Skala Uberschreitet, kann der Wert nicht in die Spalte
kopiert (oder eingefugt oder aktualisiert) werden. Diese Regel qilt fur alle Werte, die nicht
innerhalb des Bereichs der Spaltendefinition liegen. Der zulassige Wertebereich fir eine
numeric(5, 2)-Spalte erstreckt sich z. B. von -999. 99 bis 999.99.

scale

Die Anzahl aller Dezimalstellen im Nachkommabereich des Wertes bzw. die Anzahl der Stellen
auf der rechten Seite des Dezimaltrennzeichens. Ganzzahlen haben keine Dezimalstellen. In
einer Spaltenspezifikation muss der Wert fur die Dezimalstellen kleiner oder gleich dem Wert
fur die Genauigkeit sein. Wenn Sie nichts angeben, werden standardmafig 0 Dezimalstellen
verwendet. Es sind maximal 37 Dezimalstellen zulassig.

Wenn ein Eingabewert, der in eine Tabelle geladen wird, mehr Dezimalstellen aufweist, als fur
die Spalte zulassig sind, wird der Wert auf die angegebene Dezimalstelle gerundet. Die Spalte
PRICEPAID in der Tabelle SALES ist z. B. eine DECIMAL(8,2)-Spalte. Wenn ein DECIMAL(8,4)-
Wert in die Spalte PRICEPAID eingefugt wird, wird der Wert auf 2 Dezimalstellen gerundet.

Numerische Typen 20

AWS Clean Rooms SQL-Referenz

insert into sales
values (0, 8, 1, 1, 2000, 14, 5, 4323.8951, 11.00, null);

select pricepaid, salesid from sales where salesid=0;

pricepaid | salesid
___________ F o=
4323.90 |]

(1 row)

Die Ergebnisse expliziter Umwandlungen von Werten, aus der Tabelle ausgewahlt wurden,
werden jedoch nicht gerundet.

@ Note

Der maximale positive Wert, der in eine DECIMAL(19,0)-Spalte eingefligt werden

kann, ist 9223372036854775807 (263 -1). Die maximale negative Wert ist
-9223372036854775807. Wenn versucht wird, den Wert 9999999999999999999

(19 mal die Ziffer Neun) einzufiigen, wird ein Uberlauffehler verursacht. Unabhangig von der
Position des Dezimaltrennzeichens ist 9223372036854775807 die langste Zeichenkette,
die AWS Clean Rooms als DECIMAL-Zahl darstellen kann. Der grof3te Wert, der in eine
DECIMAL(19,18)-Spalte geladen werden kann, ist z. B. 9.223372036854775807.

Diese Regeln haben folgenden Grund:

+ DEZIMALWERTE mit einer Genauigkeit von 19 oder weniger signifikanten Stellen werden
intern als 8-Byte-Ganzzahlen gespeichert.

+ DEZIMALWERTE mit einer Genauigkeit von 20 bis 38 signifikanten Stellen werden als 16-
Byte-Ganzzahlen gespeichert.

Hinweise zur Verwendung von 128-Bit-DECIMAL- oder -NUMERIC-Spalten

Weisen Sie DECIMAL-Spalten nur dann maximale Genauigkeit zu, wenn Sie sicher sind, dass lhre
Anwendung diese Prazision erfordert. 128-Bit-Werte belegen doppelt so viel Speicherplatz wie 64-Bit-
Werte und kénnen zu langsameren Ausfuhrungszeiten von Abfragen fuhren.

Numerische Typen 21

AWS Clean Rooms SQL-Referenz

Gleitkommazahl-Typen

Verwenden Sie die Datentypen REAL oder DOUBLE PRECISION, um numerische Werte mit
variabler Genauigkeit zu speichern. Diese Typen sind ungenaue Typen, d. h. manche Werte werden
als Annahrungen gespeichert, so dass bei der Speicherung und Rickgabe eines bestimmten Wertes
leichte Abweichungen auftreten kdnnen. Wenn Sie auf genaue Speicherungen und Berechnungen
zuruckgreifen massen (z. B. bei Geldbetragen), verwenden Sie den Datentyp DECIMAL.

REAL steht fur das Gleitkommaformat mit einfacher Genauigkeit gemafy dem IEEE-Standard 754
fur Gleitkomma-Arithmetik. Es hat eine Genauigkeit von etwa 6 Ziffern und einen Bereich von etwa
1E-37 bis 1E+37. Sie kdnnen diesen Datentyp auch als angeben. FLOAT4

DOUBLE PRECISION steht fur das Gleitkommaformat mit doppelter Genauigkeit gemal dem IEEE-
Standard 754 fur binare Gleitkommaarithmetik. Es hat eine Genauigkeit von etwa 15 Ziffern und
einen Bereich von etwa 1E-307 bis 1E+308. Sie kdnnen diesen Datentyp auch als FLOAT oder
angeben FLOATS.

Berechnungen mit numerischen Werten

In bezieht AWS Clean Rooms sich Berechnung auf bindre mathematische Operationen: Addition,
Subtraktion, Multiplikation und Division. In diesem Abschnitt werden die erwarteten Ausgabetypen
dieser Operationen beschrieben sowie die spezielle Formel, die verwendet wird, um die Genauigkeit
und die Dezimalstellen zu ermitteln, wenn DECIMAL-Datentypen involviert sind.

Wenn bei der Verarbeitung von Abfragen numerische Werte berechnet werden, kann es vorkommen,
dass eine Berechnung nicht méglich ist und die Abfrage einen numerischen Uberlauffehler
zurlckgibt. Aufierdem kénnen Félle auftreten, in denen die Dezimalstellen berechneter Werte
variieren bzw. nicht den Erwartungen entsprechen. Bei manchen Operationen ist es mdglich,

diese Probleme durch explizite Umwandlungen (Typerweiterung) oder AWS Clean Rooms-
Konfigurationsparameter zu umgehen.

Weitere Informationen zu den Ergebnissen dhnlicher Berechnungen mit SQL-Funktionen finden Sie
unter AWS Clean Rooms Spark SQL-Funktionen.

Ausgabetypen flr Berechnungen

Angesichts der Anzahl der in AWS Clean Rooms unterstitzten numerischen Datentypen zeigt die
folgende Tabelle die erwarteten Rickgabetypen flr Additions-, Subtraktions-, Multiplikations- und
Divisionsoperationen. Die erste Spalte links in der Tabelle enthalt dabei den ersten Operanden und
die oberste Zeile den zweiten Operanden der Berechnung.

Numerische Typen 22

AWS Clean Rooms

SQL-Referenz

Operand 1

SMALLINT oder SHORT
SMALLINT oder SHORT
SMALLINT oder SHORT
SMALLINT oder SHORT
SMALLINT oder SHORT
SMALLINT oder SHORT
INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

BIGINT oder LONG
BIGINT oder LONG
BIGINT oder LONG
BIGINT oder LONG
DECIMAL

DECIMAL

DECIMAL

FLOAT4

FLOATS8

Operand 2
SMALLINT oder SHORT
INTEGER

BIGINT

DECIMAL

FLOAT4

FLOATS

INTEGER

BIGINT oder LONG
DECIMAL

FLOAT4

FLOATS8

BIGINT oder LONG
DECIMAL

FLOAT4

FLOATS

DECIMAL

FLOAT4

FLOATS

FLOATS

FLOATS

Ruckgabetyp
SMALLINT oder SHORT
INTEGER

BIGINT

DECIMAL

FLOATS

FLOATS

INTEGER

BIGINT oder LONG
DECIMAL

FLOATS8

FLOATS8

BIGINT oder LONG
DECIMAL

FLOATS

FLOATS

DECIMAL

FLOATS

FLOATS

FLOATS

FLOATS

Numerische Typen

23

AWS Clean Rooms SQL-Referenz

Genauigkeit und Dezimalstellen der berechneten DECIMAL-Ergebnisse

In der folgenden Tabelle werden die Regeln fir die Berechnung der Genauigkeit und der
Dezimalstellen zusammengefasst, wenn mathematische Operationen DECIMAL-Ergebnisse
ausgeben. In dieser Tabelle p1 und s1 stellen die Genauigkeit und Skalierung des ersten Operanden
in einer Berechnung dar. p2und s2 stellen die Genauigkeit und den Mal3stab des zweiten Operanden
dar. (Unabhangig von diesen Berechnungen ist die maximale Genauigkeit eines Ergebnisses 38 und
der maximale Wert fur die Dezimalstellen 38.)

Operation Genauigkeit und Dezimalstellen in Ergebnissen
+ oder - Skalieren =max(sl,s2)

Genauigkeit = max(pl-sl,p2-s2)+1+scale
Skalieren = s1+s2

Genauigkeit = p1l+p2+1

/ Skalieren = max(4,sl+p2-s2+1)

Genauigkeit = pl-s1+ s2+scale

Die Spalten PRICEPAID und COMMISSION in der Tabelle SALES sind z. B. DECIMAL(8,2)-Spalten.
Wenn Sie PRICEPAID durch COMMISSION dividieren (oder umgekehrt), sieht die Formel wie folgt
aus:

Precision = 8-2 + 2 + max(4,2+8-2+1)
=6+ 2+ 9 =17

Scale = max(4,2+8-2+1) = 9

Result = DECIMAL(17,9)

Die folgende Berechnung stellt die allgemeine Regel fir die Berechnung der Genauigkeit und
der Dezimalstellen in Ergebnissen von Operationen dar, die mit DECIMAL-Werten sowie mit
Satzoperatoren wie UNION, INTERSECT und EXCEPT oder Funktionen wie COALESCE und
DECODE durchgefihrt werden:

Numerische Typen 24

AWS Clean Rooms SQL-Referenz

Scale = max(sl,s2)
Precision = min(max(pl-sl,p2-s2)+scale,19)

Beispielsweise wird eine DEC1 Tabelle mit einer DECIMAL (7,2) -Spalte mit einer DEC2 Tabelle mit
einer DECIMAL (15,3) -Spalte verkntipft, um eine Tabelle zu erstellen. DEC3 Das Schema von DEC3
zeigt, dass die Spalte zu einer NUMERIC-Spalte (15,3) wird.

select * from decl union select * from dec2;

Im Beispiel oben wird die Formel wie folgt angewendet:

Precision = min(max(7-2,15-3) + max(2,3), 19)
=12 + 3 = 15

Scale = max(2,3) = 3

Result = DECIMAL(15,3)

Hinweise flr Divisionsoperationen
Bei Divisionsoperationen geben divide-by-zero Bedingungen Fehler zurtck.

Fir Dezimalstellen gilt ein Grenzwert von 100, nachdem die Genauigkeit und die Dezimalstellen
berechnet wurden. Wenn im Ergebnis mehr als 100 Dezimalstellen berechnet wurden, wird das
Ergebnis der Division wie folgt skaliert:

* Genauigkeit= precision - (scale - max_scale)

» Skalieren = max_scale

Wenn die berechnete Genauigkeit Uber dem maximalen Wert fir die Genauigkeit (38) liegt, wird
die Genauigkeit auf 38 reduziert, und fur die Dezimalstellen wird die folgende Formel angewendet:
max(38 + scale - precision), min(4, 100))

Uberlaufbedingungen

Der Uberlauf wird bei allen numerischen Berechnungen gepriift. DECIMAL-Daten mit einer
Genauigkeit von 19 oder weniger werden als 64-Bit-Ganzzahlen gespeichert. DECIMAL-Daten
mit einer Genauigkeit groRer als 19 werden als 128-Bit-Ganzzahlen gespeichert. Die maximale
Genauigkeit fur alle DECIMAL-Werte betragt 38, und es sind maximal 37 Dezimalstellen zulassig.

Numerische Typen 25

AWS Clean Rooms SQL-Referenz

Uberlauffehler treten auf, wenn ein Wert diese Grenzwerte {iberschreitet; diese gelten sowohl fiir
Zwischenergebnissatze als auch fir Endergebnissatze:

» Explizites Casting fuhrt zu Laufzeitliberlauffehlern, wenn bestimmte Datenwerte nicht der in der
Cast-Funktion angegebenen Genauigkeit oder Skala entsprechen. Sie kdnnen beispielsweise
nicht alle Werte aus der Spalte PRICEPAID in der SALES-Tabelle (eine Spalte DECIMAL (8,2))
umwandeln und ein DECIMAL-Ergebnis (7,3) zurlickgeben:

select pricepaid::decimal(7,3) from sales;
ERROR: Numeric data overflow (result precision)

Dieser Fehler tritt auf, weil einige der gro3eren Werte in der PRICEPAID-Spalte nicht umgewandelt
werden konnen.

« Multiplikationsoperationen produzieren Ergebnisse, bei denen sich die Anzahl der Dezimalstellen
aus der Summe der Dezimalstellen der einzelnen Operanden ergeben. Wenn beide Operanden
z. B. 4 Dezimalstellen haben, hat das Ergebnis 8 Dezimalstellen, d. h. es bleiben nur 10 Stellen
auf der linken Seite des Dezimaltrennzeichens Ubrig. Es kann daher relativ schnell passieren, dass
Uberlaufbedingungen bei der Multiplikation zweier groRer Zahlen auftreten, die jeweils eine nicht
unerheblich Anzahl von Dezimalstellen aufweisen.

Numerische Berechnungen mit den Typen INTEGER und DECIMAL

Wenn einer der Operanden in einer Berechnung den INTEGER-Datentyp hat und der andere
Operand DECIMAL ist, wird der INTEGER-Operand implizit in DECIMAL umgewandelt.

* SMALLINT oder SHORT werden in DECIMAL (5,0) umgewandelt
* INTEGER wird in DECIMAL (10,0) umgewandelt
* BIGINT oder LONG wird als DECIMAL (19,0) umgewandelt

Wenn Sie z. B. SALES.COMMISSION, eine DECIMAL(8,2)-Spalte, mit SALES.QTYSOLD, einer
SMALLINT-Spalte multiplizieren, wird diese Berechnung umgewandelt in:

DECIMAL(8,2) * DECIMAL(5,0)

Zeichentypen

Zu den Zeichendatentypen gehoren die Typen CHAR (character) und VARCHAR (character varying).

Zeichentypen 26

AWS Clean Rooms SQL-Referenz

Themen
+ CHAR oder CHARACTER
* VARCHAR oder CHARACTER VARYING

» Die Bedeutung von Leerzeichen am Ende

CHAR oder CHARACTER

Verwenden Sie eine CHAR- oder CHARACTER-Spalte, um Zeichenfolgen mit einer festen Lange zu
speichern. Diese Zeichenfolgen werden mit Leerzeichen aufgefullt, sodass eine CHAR(10)-Spalte
immer 10 Bytes im Speicher belegt.

char(10)

Eine CHAR-Spalte ohne Langenangabe wird als CHAR(1)-Spalte umgesetzt.

Die Datentypen CHAR und VARCHAR werden in Bezug auf ihre Bytes definiert, nicht Gber die
Zeichen. Eine CHAR-Spalte kann nur Einzelbyte-Zeichen enthalten, d. h. eine CHAR(10)-Spalte kann
eine Zeichenfolge mit einer maximalen Lange von 10 Bytes enthalten.

Name Speicher Bereich (Breite der Spalte)

CHAR oder CHARACTER Lange der 4096 Bytes
Zeichenfolge
einschlieBlich
der Leerzeichen
am Ende (falls
vorhanden)

VARCHAR oder CHARACTER VARYING

Verwenden Sie eine VARCHAR- oder CHARACTER VARYING-Spalte, um Zeichenfolgen mit

einer variablen Lange und einem festen Grenzwert zu speichern. Diese Zeichenfolgen werden mit
Leerzeichen aufgeflllt, d. h. eine VARCHAR(120)-Spalte besteht aus jeweils maximal 120 Einzelbyte-
Zeichen, 60 Zeichen mit einer Lange von je 2 Bytes, 40 Zeichen mit einer Lange von je 3 Bytes oder
30 Zeichen mit einer Lange von je 4 Bytes.

Zeichentypen 27

AWS Clean Rooms SQL-Referenz

varchar(120)

VARCHAR-Datentypen werden in Byte und nicht in Zeichen definiert. Eine VARCHAR-Spalte
kann Multibyte-Zeichen bis zu einer maximalen Lange von vier Bytes pro Zeichen enthalten. Eine
VARCHAR(12)-Spalte kann z. B. 12 Einzelbyte-Zeichen, 6 Zeichen mit einer Lange von je 2 Bytes,
4 Zeichen mit einer Lange von je 3 Bytes oder 3 Zeichen mit einer Lange von je 4 Bytes enthalten.

Name Speicher Bereich (Breite der Spalte)
VARCHAR oder CHARACTER 4 Bytes + 65535 Bytes (64 K -1)
VARYING alle Bytes fur

Zeichen, wobei
jedes Zeichen

zwischen 1 und
4 Bytes lang ist.

Die Bedeutung von Leerzeichen am Ende

Die Datentypen CHAR und VARCHAR speichern Zeichenfolgen mit einer Lange von bis zu

n Bytes. Der Versuch, eine langere Zeichenfolge in einer Spalte dieser Typen zu speichern, flhrt zu
einem Fehler. Wenn es sich bei den zusatzlichen Zeichen jedoch ausschliellich um Leerzeichen
(Leerzeichen) handelt, wird die Zeichenfolge auf die maximale Lange gekirzt. Wenn die Zeichenfolge
kirzer als die maximal zulassige Lange ist, werden CHAR-Werte mit Leerzeichen aufgefiillt;
VARCHAR-Werte speichern die Zeichenfolge dagegen ohne Leerzeichen.

Leerzeichen am Ende von CHAR-Werten sind semantisch immer ohne Bedeutung. Sie werden beim
Vergleich zweier CHAR-Werte ignoriert, werden bei LENGTH-Berechnungen nicht berticksichtigt und
werden entfernt, wenn Sie einen CHAR-Wert in einen anderen Zeichenfolgetyp konvertieren.

Leerzeichen am Ende von VARCHAR- und CHAR- Werten werden beim Vergleich von Werten als
semantisch ohne Bedeutung behandelt.

Langenberechnungen geben die Lange von VARCHAR-Zeichenfolgen einschliellich der Leerzeichen
am Ende zurilck. Leerzeichen am Ende werden im Fall von Zeichenfolgen mit fester Lange nicht zu
der Lange gezahlt.

Zeichentypen 28

AWS Clean Rooms SQL-Referenz

Datum-/Uhrzeittypen

Zu den Datetime-Datentypen gehéren DATE, TIME, TIMESTAMP_LTZ und TIMESTAMP_NTZ.

Themen
« DATE
e TIMESTAMP_LTZ

« TIMESTAMP_NTZ

» Beispiele mit Datum-/Uhrzeittypen

« Datums-, Zeit- und Zeitstempelliterale

* Intervallliterale

« Intervalldatentypen und -literale

DATE

Verwenden sie den Datentyp DATE, um einfache Kalenderdaten ohne Zeitstempel zu speichern.

Name Speicher Bereich Behebung

DATE 4 Bytes 4713 v. Chr. bis 294276 n. Chr. 1 Tag

TIMESTAMP_LTZ

Verwenden Sie den TIMESTAMP_LTZ-Datentyp, um vollstandige Zeitstempelwerte zu speichern, die
das Datum, die Uhrzeit und die lokale Zeitzone enthalten.

TIMESTAMP steht fir Werte, die aus Werten der Felderyear,,, und second bestehen month day
hourminute, mit der lokalen Zeitzone der Sitzung. Der timestamp Wert steht fur einen absoluten
Zeitpunkt.

TIMESTAMP in Spark ist ein benutzerdefinierter Alias, der einer der Varianten TIMESTAMP_LTZ
und TIMESTAMP_NTZ zugeordnet ist. Sie kdnnen den Standard-Zeitstempeltyp Uber die
Konfiguration auf TIMESTAMP_LTZ (Standardwert) oder TIMESTAMP_NTZ festlegen.
spark.sql.timestampType

Datum-/Uhrzeittypen 29

AWS Clean Rooms SQL-Referenz

TIMESTAMP_NTZ

Verwenden Sie den TIMESTAMP_NTZ-Datentyp, um vollstandige Zeitstempelwerte zu speichern, die
das Datum und die Uhrzeit ohne die lokale Zeitzone enthalten.

TIMESTAMP steht fir Werte, die Werte der Felderyear,,, und enthalten. month day hour minute
second Alle Operationen werden ohne Bertcksichtigung einer Zeitzone ausgefihrt.

TIMESTAMP in Spark ist ein benutzerdefinierter Alias, der einer der Varianten TIMESTAMP_LTZ
und TIMESTAMP_NTZ zugeordnet ist. Sie kdnnen den Standard-Zeitstempeltyp Uber die
Konfiguration auf TIMESTAMP_LTZ (Standardwert) oder TIMESTAMP_NTZ festlegen.
spark.sql.timestampType

Beispiele mit Datum-/Uhrzeittypen

Die folgenden Beispiele zeigen Ihnen, wie Sie mit Datetime-Typen arbeiten, die von unterstitzt
werden. AWS Clean Rooms

Datumsbeispiele

Die folgenden Beispiele fligen Datumsangaben in verschiedenen Formaten ein und zeigen die
Ausgabe an.

select * from datetable order by 1;

start_date | end_date

2008-06-01 | 2008-12-31
2008-06-01 | 2008-12-31

Wenn Sie einen Zeitstempel in eine DATE-Spalte eingeben, wird die Uhrzeit ignoriert, und nur das
Datum wird geladen.

Zeit-Beispiele

Die folgenden Beispiele figen TIME- und TIMETZ-Werte in verschiedenen Formaten ein und zeigen
die Ausgabe an.

select * from timetable order by 1;
start_time | end_time

Datum-/Uhrzeittypen 30

AWS Clean Rooms SQL-Referenz

19:11:19 | 20:41:19+00
19:11:19 | 20:41:19+00

Datums-, Zeit- und Zeitstempelliterale

Im Folgenden finden Sie Regeln fur die Arbeit mit Datums-, Uhrzeit- und Zeitstempelliteralen, die von
Spark SQL unterstitzt werden. AWS Clean Rooms

Datumsangaben

Die folgende Tabelle zeigt Eingabedaten, die gultige Beispiele fir literale Datumswerte sind,

die Sie in Tabellen laden kénnen. AWS Clean Rooms Es wird davon ausgegangen, dass der
standardmafige MDY DateStyle-Modus aktiviert ist. Dieser Modus bedeutet, dass der Monatswert
vor dem Tageswert steht, zum Beispiel in Zeichenfolgen wie 1999-01-08 und 01/02/00.

® Note

Datums- bzw. Zeitstempelliterale missen in Anfihrungszeichen stehen, wenn Sie sie in eine
Tabelle laden.

Eingegebenes Datum Vollstandiges Datum
January 8, 1999 January 8, 1999
1999-01-08 January 8, 1999
1/8/1999 January 8, 1999
01/02/00 January 2, 2000
2000-Jan-31 January 31, 2000
Jan-31-2000 January 31, 2000
31-Jan-2000 January 31, 2000
20080215 February 15, 2008
080215 February 15, 2008

Datum-/Uhrzeittypen 31

AWS Clean Rooms SQL-Referenz

Eingegebenes Datum Vollstandiges Datum

2008.366 December 31, 2008 (dreistellige Datumskom
ponente muss zwischen 001 und 366 liegen)

Times

Die folgende Tabelle zeigt Eingabezeiten, die gultige Beispiele fur literale Zeitwerte sind, die Sie in
AWS Clean Rooms Tabellen laden konnen.

Eingegebene Zeiten Beschreibung (der Uhrzeitkomponente)

04:05:06.789 4.05 Uhr und 6,789 Sekunden

04:05:06 4.05 Uhr und 6 Sekunden

04:05 Genau 4.05 Uhr

040506 4.05 Uhr und 6 Sekunden

04:05 AM Genau 4.05 Uhr, AM ist optional

04:05 PM Genau 16.05 Uhr, Stundenwert muss kleiner
als 12 sein

16:05 Genau 16.05 Uhr

Besondere Datums-/Uhrzeitwerte

Die folgende Tabelle zeigt spezielle Werte, die als Datetime-Literale und als Argumente fr
Datumsfunktionen verwendet werden kénnen. Sie missen in einfachen Anflihrungszeichen (')
angegeben werden und werden bei der Verarbeitung der Abfrage in regulare Zeitstempelwerte
umgewandelt.

Sonderwert Beschreibung

now Wird zu der Startzeit der aktuellen Transaktion
ausgewertet und gibt einen Zeitstempel mit auf

Datum-/Uhrzeittypen 32

AWS Clean Rooms

SQL-Refere

nz

Sonderwert

today

tomorrow

yesterday

Beschreibung

Mikrosekunden genauer Uhrzeitkomponente
zuruck.

Wird zu dem entsprechenden Datum ausgewert
et und gibt einen Zeitstempel mit Nullen fir die
Uhrzeitkomponente zurtck.

Wird zu dem entsprechenden Datum ausgewert
et und gibt einen Zeitstempel mit Nullen fur die
Uhrzeitkomponente zurtck.

Wird zu dem entsprechenden Datum ausgewert
et und gibt einen Zeitstempel mit Nullen fur die
Uhrzeitkomponente zurtck.

Die folgenden Beispiele zeigen, wie now und wie die Funktion DATE_ADD today funktioniert.

select date_add('today', 1);

date_add

2009-11-17 00:00:00
(1 row)

select date_add('now', 1);
date_add

2009-11-17 10:45:32.021394
(1 row)

Intervallliterale

Im Folgenden finden Sie Regeln fir die Arbeit mit Intervallliteralen, die von AWS Clean Rooms Spark

SQL unterstitzt werden.

Datum-/Uhrzeittypen

33

AWS Clean Rooms SQL-Referenz

Mit Intervallliteralen kbnnen Zeitraume angegeben werden, beispielsweise 12 hours oder 6 weeks.
Die Intervallliterale kbnnen in Bedingungen und Berechnungen verwendet werden, die Datums-/
Uhrzeitausdrucke enthalten.

(® Note

Sie kdnnen den INTERVAL-Datentyp nicht fir Spalten in AWS Clean Rooms Tabellen
verwenden.

Ein Intervall wird als Kombination des Schlisselworts INTERVAL mit einer Zahlenangabe und einer
unterstiitzten Datumskomponente ausgedriickt, zum Beispiel INTERVAL '7 days' oder INTERVAL
'59 minutes'. Sie kdnnen Mengenangaben und Einheiten kombinieren und auf diese Weise das
Intervall prazisieren. Beispiel: INTERVAL '7 days, 3 hours, 59 minutes'. Die Einheiten
kénnen abgekirzt und in ihren Pluralformen verwendet werden. Beispiele: 5 s, 5 second und 5
seconds dricken dasselbe Intervall aus.

Wenn keine Datumskomponente angegeben wird, gibt der Intervallwert Sekunden an. Die
Mengenangabe kann auch ein Dezimalwert sein. Beispiel: .: 0.5 days).

Beispiele
Die folgenden Beispiele stellen eine Reihe von Berechnungen mit verschiedenen Intervallwerten dar.

Im folgenden Beispiel wird dem angegebenen Datum 1 Sekunde hinzugefugt.

select caldate + interval 'l second' as dateplus from date
where caldate='12-31-2008";
dateplus

2008-12-31 00:00:01
(1 row)

Im folgenden Beispiel wird dem angegebenen Datum 1 Minute hinzugefigt.

select caldate + interval 'l minute' as dateplus from date
where caldate='12-31-2008";
dateplus

2008-12-31 00:01:00

Datum-/Uhrzeittypen 34

AWS Clean Rooms SQL-Referenz

(1 row)
Im folgenden Beispiel werden dem angegebenen Datum 3 Stunden und 35 Minuten hinzugeftigt.

select caldate + interval '3 hours, 35 minutes' as dateplus from date
where caldate='12-31-2008";
dateplus

2008-12-31 ©03:35:00
(1 row)

Im folgenden Beispiel werden dem angegebenen Datum 52 Wochen hinzugefugt.

select caldate + interval '52 weeks' as dateplus from date
where caldate='12-31-2008"';
dateplus

2009-12-30 00:00:00
(1 row)

Im folgenden Beispiel werden dem angegebenen Datum 1 Woche, 1 Stunde, 1 Minute und 1
Sekunde hinzugeflugt.

select caldate + interval 'lw, 1lh, 1m, 1ls' as dateplus from date
where caldate='12-31-2008";
dateplus

2009-01-07 01:01:01
(1 row)

Im folgenden Beispiel werden dem angegebenen Datum 12 Stunden (ein halber Tag) hinzugefugt.

select caldate + interval '0.5 days' as dateplus from date
where caldate='12-31-2008";
dateplus

2008-12-31 12:00:00
(1 row)

Im folgenden Beispiel werden 4 Monate vom 31. Marz 2023 abgezogen und das Ergebnis ist der 30.
November 2022. Die Berechnung berlcksichtigt die Anzahl der Tage in einem Monat.

Datum-/Uhrzeittypen 35

AWS Clean Rooms SQL-Referenz

select date '2023-03-31' - interval '4 months';

?column?

2022-11-30 00:00:00

Intervalldatentypen und -literale

Sie kénnen einen Intervalldatentyp verwenden, um Zeitdauern in Einheiten wie seconds, minutes,
hours, days, months und years zu speichern. Intervalldatentypen und -literale kénnen in
Berechnungen von Datum und Uhrzeit verwendet werden, beispielsweise beim Hinzufligen von
Intervallen zu Datumsangaben und Zeitstempeln, beim Summieren von Intervallen und beim
Subtrahieren eines Intervalls von einem Datum oder Zeitstempel. Intervallliterale kénnen als
Eingabewerte flr Spalten des Intervalldatentyps in einer Tabelle verwendet werden.

Syntax des Intervalldatentyps

So geben Sie einen Intervalldatentyp zum Speichern einer Zeitdauer in Jahren und Monaten an:

INTERVAL year_to_month_qualifier

So geben Sie einen Intervalldatentyp zum Speichern einer Zeitdauer in Tagen, Stunden, Minuten und
Sekunden an:

INTERVAL day_to_second_qualifier [(fractional_precision)]

Syntax des Intervallliterals

So geben Sie ein Intervallliteral zum Festlegen einer Zeitdauer in Jahren und Monaten an:

INTERVAL quoted-string year_to_month_qualifier

So geben Sie ein Intervallliteral zum Festlegen einer Zeitdauer in Tagen, Stunden, Minuten und
Sekunden an:

INTERVAL quoted-string day_to_second_qualifier [(fractional_precision)]

Datum-/Uhrzeittypen 36

AWS Clean Rooms SQL-Referenz

Argumente

quoted-string

Gibt einen positiven oder negativen numerischen Wert an, der eine Menge und die Datums-/
Uhrzeiteinheit als Eingabezeichenfolge angibt. Wenn die Zeichenfolge in Anfliihrungszeichen nur
eine Zahl enthalt, werden die Einheiten anhand von year_to_month_qualifier oder AWS Clean
Rooms day_to_second_qualifier bestimmt. '23"' MONTH beispielsweise steht fir 1 year 11
months, '-2"' DAY fir -2 days @ hours © minutes 0.0 seconds, '1-2' MONTH fur

1 year 2 monthsund '13 day 1 hour 1 minute 1.123 seconds' SECOND fir 13
days 1 hour 1 minute 1.123 seconds. Weitere Informationen zu Ausgabeformaten eines
Intervalls finden Sie unter Intervallstile.

year_to_month_qualifier

Gibt den Bereich des Intervalls an. Wenn Sie einen Qualifier verwenden und ein Intervall mit
Zeiteinheiten erstellen, die kleiner als der Qualifier sind, werden die kleineren Teile des Intervalls
gekdurzt und verworfen. AWS Clean Rooms Glltige Werte fir year_to_month_qualifier sind:

* YEAR
¢ MONTH
* YEAR TO MONTH

day_to_second_qualifier

Gibt den Bereich des Intervalls an. Wenn Sie einen Qualifier verwenden und ein Intervall mit
Zeiteinheiten erstellen, die kleiner als der Qualifier sind, werden die kleineren Teile des Intervalls
AWS Clean Rooms gekurzt und verworfen. Gultige Werte flr day_to_second_qualifier sind:

* DAY

* HOUR

 MINUTE

« SECOND

DAY TO HOUR
DAY TO MINUTE
« DAY TO SECOND
« HOUR TO MINUTE
« HOUR TO SECOND

Datum-/Uhrzeittypen 37

AWS Clean Rooms SQL-Referenz

« MINUTE TO SECOND

Die Ausgabe des INTERVAL-Literals wird auf die kleinste angegebene INTERVAL-Komponente
gekurzt. Wenn Sie beispielsweise einen MINUTE-Qualifier verwenden, werden die Zeiteinheiten,
die kleiner als MINUTE sind, AWS Clean Rooms verworfen.

select INTERVAL 'l day 1 hour 1 minute 1.123 seconds' MINUTE

Der resultierende Wert wird auf '1 day 01:01:00' gekirzt.

fractional_precision

Optionaler Parameter, der die zulassige Anzahl an Nachkommastellen im Intervall angibt. Das
Argument fractional_precision sollte nur angegeben werden, wenn lhr Intervall SECOND enthalt.
SECOND(3) erzeugt beispielsweise ein Intervall, das nur drei Nachkommastellen erlaubt, z. B.
1,234 Sekunden. Die maximale Anzahl von Nachkommastellen ist sechs.

Die Sitzungskonfiguration interval_forbid_composite_literals bestimmt, ob ein Fehler
zuruckgegeben wird, wenn ein Intervall mit den Teilen YEAR TO MONTH und DAY TO SECOND
angegeben wird.

Intervallarithmetik

Sie kénnen Intervallwerte zusammen mit anderen Datums-/Uhrzeitwerten verwenden, um
arithmetische Operationen durchzufihren. In den folgenden Tabellen werden die verfugbaren
Operationen und die aus den einzelnen Optionen resultierenden Datentypen beschrieben.

(® Note

Operationen, die sowohl date- als auch timestamp-Ergebnisse liefern kdnnen, tun

dies basierend auf der kleinsten Zeiteinheit, die in der Gleichung enthalten ist. Wenn Sie
beispielsweise ein interval zu einem date hinzufligen, ist das Ergebnis ein date, wenn
es sich um ein YEAR TO MONTH-Intervall handelt, und ein Zeitstempel bei einem DAY TO
SECOND-Intervall.

Operationen, bei denen der erste Operand ein interval ist, fihren zu den folgenden Ergebnissen
fur den angegebenen zweiten Operanden:

Datum-/Uhrzeittypen 38

AWS Clean Rooms SQL-Referenz

Operator Date Zeitstempel Intervall Numerischer
Wert
- - - Intervall -
+ Date Datum/Zei Intervall -
tstempel
* - - - Intervall
/ - - - Intervall

Operationen, bei denen der erste Operand ein date ist, fhren zu den folgenden Ergebnissen fir den

angegebenen zweiten Operanden:

Operator Date Zeitstempel Intervall Numerischer
Wert
- Numerischer Intervall Datum/Zei Date
Wert tstempel
+ — — — —

Operationen, bei denen der erste Operand ein timestamp ist, fihren zu den folgenden Ergebnissen
fur den angegebenen zweiten Operanden:

Operator Date Zeitstempel Intervall Numerischer
Wert
- Numerischer Intervall Zeitstempel Zeitstempel
Wert
+ — — — —

Datum-/Uhrzeittypen 39

AWS Clean Rooms SQL-Referenz

Intervallstile

+ postgres - folgt dem PostgreSQL-Stil. Dies ist die Standardeinstellung.
* postgres_verbose - folgt dem ausfuhrlichen PostgreSQL-Stil.

* sql_standard - folgt dem SQL-Standardstil fur Intervallliterale.

Der folgende Befehl legt fur den Intervallstil sql_standaxrd fest.

SET IntervalStyle to 'sql_standard';

postgres-Ausgabeformat

Im Folgenden sehen Sie das Ausgabeformat flr den postgres-Intervallstil. Jeder numerische Wert
kann negativ sein.

'<numeric> <unit> [, <numeric> <unit> ...]'

select INTERVAL '1-2' YEAR TO MONTH: :text
varchar

1 year 2 mons

select INTERVAL 'l 2:3:4.5678' DAY TO SECOND::text
varchar

1 day 02:03:04.5678

postgres_verbose-Ausgabeformat

Die postgres_verbose-Syntax ahnelt der postgres-Syntax, die Ausgaben von postgres_verbose
enthalten jedoch auch die Zeiteinheit.

'[@] <numeric> <unit> [, <numeric> <unit> ...] [direction]'

select INTERVAL '1-2' YEAR TO MONTH::text

Datum-/Uhrzeittypen 40

AWS Clean Rooms SQL-Referenz

varchar

@ 1 year 2 mons

select INTERVAL 'l 2:3:4.5678' DAY TO SECOND::text
varchar

@ 1 day 2 hours 3 mins 4.56 secs

sql_standard-Ausgabeformat

Die Werte fir Intervalle vom Typ ,Year to month“ werden wie folgt formatiert. Bei Angabe eines
negativen Vorzeichens vor dem Intervall hat das Intervall einen negativen Wert. Das Vorzeichen gilt
fur das gesamte Intervall.

1 [_]yy_mml
Die Werte fir Intervalle vom Typ ,Day to second“ werden wie folgt formatiert.

'[-1dd hh:mm:ss.ffffff:

SELECT INTERVAL '1-2' YEAR TO MONTH::text

varchar

select INTERVAL 'l 2:3:4.5678' DAY TO SECOND::text

varchar

1 2:03:04.5678

Beispiele fiur den Intervalldatentyp

Die folgenden Beispiele zeigen, wie INTERVAL-Datentypen mit Tabellen verwendet werden.

create table sample_intervals (y2m intexrval month, h2m interval hour to minute);

Datum-/Uhrzeittypen 41

AWS Clean Rooms SQL-Referenz

insert into sample_intervals values (interval '20' month, intexrval '2 days
1:1:1.123456' day to second);
select y2m::text, h2m::text from sample_intervals;

1 year 8 mons | 2 days 01:01:00

update sample_intervals set y2m = interval '2' year where y2m = interval '1-8' year to
month;

select * from sample_intervals;

2 years | 2 days 01:01:00

delete from sample_intervals where h2m = interval '2 1:1:0' day to second;
select * from sample_intervals;

Beispiele fir Intervallliterale

Die folgenden Beispiele werden mit dem Intervallstil postgres ausgefihrt.

Das folgende Beispiel zeigt, wie ein INTERVAL-Literal von einem Jahr erstellt wird.

select INTERVAL '1' YEAR

intervaly2m

1 years @ mons

Wenn Sie eine quoted-string angeben, die den Qualifier Uberschreitet, werden die verbleibenden
Zeiteinheiten aus dem Intervall gekirzt. Im folgenden Beispiel wird aus einem Intervall von 13

Monaten 1 Jahr und 1 Monat, doch der verbleibende Monat wird aufgrund des Qualifiers YEAR
weggelassen.

Datum-/Uhrzeittypen 42

AWS Clean Rooms

SQL-Referenz

select INTERVAL '13 months' YEAR

intervaly2m

1 years @ mons

Wenn Sie einen Qualifier verwenden, der kleiner als Ihre Intervallzeichenfolge ist, werden die

verbleibenden Einheiten eingeschlossen.

select INTERVAL '13 months' MONTH

intervaly2m

1 years 1 mons

Wenn Sie eine Genauigkeit in Ihrem Intervall angeben, wird die Anzahl der Nachkommastellen auf

die angegebene Genauigkeit gekirzt.

select INTERVAL '1.234567' SECOND (3)

intervald2s

@ days @ hours @ mins 1.235 secs

Wenn Sie keine Genauigkeit angeben, AWS Clean Rooms wird die maximale Genauigkeit von 6

verwendet.

select INTERVAL '1.23456789' SECOND

intervald2s

@ days @ hours @ mins 1.234567 secs

Das folgende Beispiel zeigt, wie ein Bereichsintervall erstellt wird.

select INTERVAL '2:2' MINUTE TO SECOND

intervald2s

@ days @ hours 2 mins 2.0 secs

Datum-/Uhrzeittypen

43

AWS Clean Rooms SQL-Referenz

Qualifier bestimmen die Einheiten, die Sie angeben. Das folgende Beispiel verwendet zwar dieselbe
Zeichenfolge in Anfliihrungszeichen von '2:2' wie im vorherigen Beispiel, AWS Clean Rooms erkennt
jedoch, dass aufgrund des Qualifizierers unterschiedliche Zeiteinheiten verwendet werden.

select INTERVAL '2:2' HOUR TO MINUTE

intervald2s

@ days 2 hours 2 mins 0.0 secs

Abklrzungen und Pluralformen der einzelnen Einheiten werden ebenfalls unterstltzt. So sind
beispielsweise 5s, 5 second und 5 seconds aquivalente Intervalle. Unterstiitzte Einheiten sind
Jahre, Monate, Stunden, Minuten und Sekunden.

select INTERVAL '5s' SECOND

intervald2s

@ days @ hours @ mins 5.0 secs

select INTERVAL '5 HOURS' HOUR

intervald2s

@ days 5 hours @ mins 0.0 secs

select INTERVAL '5 h' HOUR

intervald2s

@ days 5 hours @ mins 0.0 secs

Beispiele fur Intervallliterale ohne Qualifier-Syntax

@ Note

Die folgenden Beispiele zeigen die Verwendung eines Intervallliterals ohne einen YEAR TO
MONTH- oder DAY TO SECOND-Qualifier. Informationen zur Verwendung des empfohlenen
Intervallliterals mit einem Qualifier finden Sie unter Intervalldatentypen und -literale.

Datum-/Uhrzeittypen 44

AWS Clean Rooms SQL-Referenz

Mit Intervallliteralen kénnen Zeitrdume angegeben werden, beispielsweise 12 hours oder 6
months. Die Intervallliterale kbnnen in Bedingungen und Berechnungen verwendet werden, die
Datums-/Uhrzeitausdriicke enthalten.

Ein Intervallliteral wird als Kombination des Schlisselworts INTERVAL mit einer Zahlenangabe und
einer unterstutzten Datumskomponente ausgedrtickt, zum Beispiel INTERVAL '7 days' oder
INTERVAL '59 minutes'. Sie kdnnen Mengenangaben und Einheiten kombinieren und auf diese
Weise das Intervall prazisieren. Beispiel: INTERVAL '7 days, 3 hours, 59 minutes'. Die
Einheiten kdnnen abgekurzt und in ihren Pluralformen verwendet werden. Beispiele: 5 s, 5 second
und 5 seconds dricken dasselbe Intervall aus.

Wenn keine Datumskomponente angegeben wird, gibt der Intervallwert Sekunden an. Die
Mengenangabe kann auch ein Dezimalwert sein. Beispiel: .: 0.5 days).

Die folgenden Beispiele stellen eine Reihe von Berechnungen mit verschiedenen Intervallwerten dar.

Im Folgenden wird dem angegebenen Datum 1 Sekunde hinzugefiigt.

select caldate + interval 'l second' as dateplus from date
where caldate='12-31-2008"';
dateplus

2008-12-31 00:00:01
(1 row)

Im Folgenden wird dem angegebenen Datum 1 Minute hinzugeflgt.

select caldate + interval 'l minute' as dateplus from date
where caldate='12-31-2008";
dateplus

2008-12-31 00:01:00
(1 row)

Im Folgenden werden dem angegebenen Datum 3 Stunden und 35 Minuten hinzugeflugt.

select caldate + interval '3 hours, 35 minutes' as dateplus from date
where caldate='12-31-2008";
dateplus

2008-12-31 03:35:00

Datum-/Uhrzeittypen 45

AWS Clean Rooms SQL-Referenz

(1 row)

Im Folgenden werden dem angegebenen Datum 52 Wochen hinzugefugt.

select caldate + interval '52 weeks' as dateplus from date
where caldate='12-31-2008";
dateplus

2009-12-30 00:00:00
(1 row)

Im Folgenden werden dem angegebenen Datum 1 Woche, 1 Stunde, 1 Minute und 1 Sekunde
hinzugeflgt.

select caldate + interval 'lw, 1h, 1m, 1ls' as dateplus from date
where caldate='12-31-2008";
dateplus

2009-01-07 01:01:01
(1 row)

Im Folgenden werden dem angegebenen Datum 12 Stunden (ein halber Tag) hinzugefigt.

select caldate + interval '@.5 days' as dateplus from date
where caldate='12-31-2008";
dateplus

2008-12-31 12:00:00
(1 row)

Im Folgenden werden 4 Monate vom 15. Februar 2023 abgezogen und das Ergebnis ist der
15. Oktober 2022.

select date '2023-02-15' - interval '4 months';

?column?

2022-10-15 00:00:00

Im Folgenden werden 4 Monate vom 31. Marz 2023 abgezogen und das Ergebnis ist der
30. November 2022. Die Berechnung berucksichtigt die Anzahl der Tage in einem Monat.

Datum-/Uhrzeittypen 46

AWS Clean Rooms SQL-Referenz

select date '2023-03-31' - interval '4 months';

?column?

2022-11-30 00:00:00

Typ BOOLEAN

Verwenden Sie den Typ BOOLEAN, um die Wahrheitswerte ,wahr“ bzw. ,falsch” in einer
Einzelbytespalte zu speichern. Die folgende Tabelle enthalt Beschreibungen der drei moglichen
Zustande der Booleschen Werte und deren entsprechenden Literale. Unabhangig von der
eingegebenen Zeichenfolge werden Werte in Booleschen Spalten mit ,t“ fir den Wahrheitswert
~wahr“ und ,f fir den Wahrheitswert ,falsch” gespeichert und angezeigt.

Status Zuldssige Speicher
Literalwerte

Wahr TRUE 't 1 Byte
'y
yeSl lll

'"true'

Falsch FALSE 'f' 1 Byte
'false' 'n'
lnol l@l

Unbekannt NULL 1 Byte

Sie kénnen einen IS-Vergleich nur verwenden, um einen booleschen Wert als Pradikat in der
WHERE-Klausel zu prifen. Sie kdnnen den I1S-Vergleich nicht mit einem booleschen Wert in der
SELECT-Liste verwenden.

Beispiele

Sie kénnen eine Spalte vom Typ BOOLEAN verwenden, um den Status ,Aktiv/Inaktiv® fur jeden
Kunden in einer CUSTOMER-Tabelle zu speichern.

select * from customer;
custid | active_flag

Typ BOOLEAN 47

AWS Clean Rooms SQL-Referenz

In diesem Beispiel wahlt die folgende Abfrage Benutzer aus der USERS-Tabelle aus, die Sport
mogen, Theater aber nicht mogen:

select firstname, lastname, likesports, liketheatre
from users

where likesports is true and liketheatre is false
order by userid limit 10;

firstname | lastname | likesports | liketheatre
---------- R e e e e
Alejandro | Rosalez | t | f

Akua | Mansa | t | f

Arnav | Desai | t | f

Carlos | Salazar | t | f

Diego | Ramirez | t | £

Efua | Owusu | t | f

John | Stiles | t | f

Jorge | Souza | t | f

Kwaku | Mensah | t | f

Kwesi | Manu | t | £

(10 rows)

Im folgenden Beispiel werden diejenigen Benutzer aus der Tabelle USERS ausgewahlt, von denen
nicht bekannt ist, ob sie Rockmusik mogen.

select firstname, lastname, likerock
from users

where likerock is unknown

order by userid limit 10;

firstname | lastname | likerock
__________ S E
Alejandro | Rosalez |
Carlos | Salazar |
Diego | Ramirez |
John | Stiles |
Kwaku | Mensah |
Martha | Rivera |
Mateo | Jackson |

Typ BOOLEAN 48

AWS Clean Rooms SQL-Referenz

Paulo | Santos |
Richard | Roe |
Saanvi | Sarkar |
(10 rows)

Im folgenden Beispiel wird ein Fehler zurtickgegeben, weil ein IS-Vergleich in der SELECT-Liste
verwendet wird.

select firstname, lastname, likerock is true as "check"
from users
order by userid limit 10;

[Amazon](500310) Invalid operation: Not implemented

Das folgende Beispiel ist erfolgreich, weil statt des Vergleichs ein Gleichheitsvergleich (=) in der
SELECT-Liste verwendet wirdlS.

select firstname, lastname, likerock = true as "check"
from users
order by userid limit 10;

firstname | lastname | check
__________ S S
Alejandro | Rosalez |
Carlos | Salazar |

Diego | Ramirez | true
John | Stiles |

Kwaku | Mensah | true
Martha | Rivera | true
Mateo | Jackson |

Paulo | Santos | false
Richard | Roe |
Saanvi | Sarkar |

Boolesche Literale

Die folgenden Regeln beziehen sich auf die Arbeit mit booleschen Literalen, die von Spark SQL
unterstutzt werden. AWS Clean Rooms

Verwenden Sie ein boolesches Literal, um einen booleschen Wert anzugeben, z. B. oder. TRUE
FALSE

Typ BOOLEAN 49

AWS Clean Rooms SQL-Referenz

Syntax

TRUE | FALSE

Beispiel

Das folgende Beispiel zeigt eine Spalte mit dem angegebenen Wert von. TRUE

SELECT TRUE AS col;

+----+

| col]

+----+

| true]
F---=+

Binarer Typ

Verwenden Sie den BINARY-Datentyp, um nicht interpretierte Binardaten fester Lange zu
speichern und zu verwalten und so effiziente Speicher- und Vergleichsmaoglichkeiten fir bestimmte
Anwendungsfalle bereitzustellen.

Der BINARY-Datentyp speichert eine feste Anzahl von Byte, unabhangig von der tatsachlichen Lange
der gespeicherten Daten. Die maximale Lange betragt in der Regel 255 Byte.

BINARY wird verwendet, um rohe, nicht interpretierte Binardaten wie Bilder, Dokumente oder andere
Dateitypen zu speichern. Die Daten werden genau so gespeichert, wie sie bereitgestellt werden, ohne
jegliche Zeichenkodierung oder Interpretation. Bindrdaten, die in BINARY-Spalten gespeichert sind,
werden verglichen und sortiert byte-by-byte, und zwar auf der Grundlage der tatsachlichen Binarwerte
und nicht auf der Grundlage von Zeichenkodierungs- oder Sortierungsregeln.

Die folgende Beispielabfrage zeigt die binare Darstellung der Zeichenfolge"abc". Jedes Zeichen
in der Zeichenfolge wird durch seinen ASCII-Code im Hexadezimalformat dargestellt: ,a“ ist 0x61,
,b“ ist 0x62 und ,c“ ist 0x63. In Kombination bilden diese Hexadezimalwerte die binare Darstellung.
"616263"

SELECT 'abc'::binary;
binary

616263

Binarer Typ 50

AWS Clean Rooms SQL-Referenz

Verschachtelter Typ

AWS Clean Roomsunterstitzt Abfragen mit Daten mit verschachtelten Datentypen, insbesondere
den Spaltentypen AWS Glue STRUCT, ARRAY und MAP. Nur die benutzerdefinierte Analyseregel
unterstitzt verschachtelte Datentypen.

Insbesondere entsprechen verschachtelte Datentypen nicht der starren, tabellarischen Struktur des
relationalen Datenmodells von SQL-Datenbanken.

Verschachtelte Datentypen enthalten Tags, die auf unterschiedliche Entitaten innerhalb der

Daten verweisen. Sie kbnnen komplexe Werte wie Arrays, verschachtelte Strukturen und

andere komplexe Strukturen enthalten, die Serialisierungsformaten wie JSON zugeordnet sind.
Verschachtelte Datentypen unterstiitzen bis zu 1 MB an Daten fir ein einzelnes Feld oder Objekt des
verschachtelten Datentyps.

Themen

« Typ ARRAY

« MAP-Typ

« Typ STRUCT

» Beispiele flr verschachtelte Datentypen

Typ ARRAY

Verwenden Sie den Typ ARRAY, um Werte darzustellen, die aus einer Folge von Elementen des
Typs bestehenelementType.

array(elementType, containsNull)

Wird verwendetcontainsNull, um anzugeben, ob Elemente in einem ARRAY-Typ null Werte
haben kénnen.

MAP-Typ

Verwenden Sie den MAP-Typ, um Werte darzustellen, die aus einer Reihe von Schlussel-Wert-
Paaren bestehen.

map(keyType, valueType, valueContainsNull)

Verschachtelter Typ 51

AWS Clean Rooms SQL-Referenz

keyType: der Datentyp von Schliisseln
valueType: der Datentyp der Werte

Schlissel durfen keine null Werte haben. Wird verwendetvalueContainsNull, um anzugeben,
ob Werte eines MAP-Werts null Werte haben konnen.

Typ STRUCT

Verwenden Sie den Typ STRUCT, um Werte mit der Struktur darzustellen, die durch eine Folge von
StructFields (Feldern) beschrieben wird.

struct(name, dataType, nullable)

StructField(Name, DataType, Nullwert): Stellt ein Feld in einem dar. StructType
dataType: der Datentyp eines Feldes
name: der Name eines Feldes

Wird verwendetnullable, um anzugeben, ob die Werte dieser Felder null Werte haben kénnen.
Beispiele fur verschachtelte Datentypen

Fir den struct<given:varchar, family:varchar> Typ gibt es zwei Attributnamen:given,
undfamily, die jeweils einem varchar Wert entsprechen.

Fir den array<varchar> Typ wird das Array als eine Liste von angegebenvarchar.

Der array<struct<shipdate:timestamp, price:double>> Typ bezieht sich auf eine Liste
von Elementen mit struct<shipdate:timestamp, price:double> Typ.

Der map Datentyp verhalt sich wie ein array vonstructs, wobei der Attributname fir jedes Element
im Array mit a bezeichnet wird key und ihm zugeordnet wird. value

Example

Der map<varchar(20), varchar(20)> Typ wird beispielsweise als
array<struct<key:varchar(20), value:varchar(20)>> ,where*behandelt key und
value bezieht sich auf die Attribute der Map in den zugrunde liegenden Daten.

Verschachtelter Typ 52

AWS Clean Rooms SQL-Referenz

Hinweise dazu, wie die Navigation in Arrays und Strukturen AWS Clean Rooms ermdoglicht wird,
finden Sie unterNavigation.

Hinweise dazu, wie die lteration Uber Arrays AWS Clean Rooms ermdglicht wird, indem das
Array mithilfe der FROM-Klausel einer Abfrage navigiert wird, finden Sie unter. Aufheben der
Verschachtelung von Abfragen

Kompatibilitat von Typen und Umwandlung zwischen Typen

In den folgenden Themen wird beschrieben, wie Typkonvertierungsregeln und Datentypkompatibilitat
in AWS Clean Rooms Spark SQL funktionieren.

Themen

« Kompatibilitat

» Allgemeine Regeln zur Kompatibilitat und zur Umwandlung

 Arten von impliziter Umwandlung

Kompatibilitat

Es gibt verschiedene Datenbankoperationen, bei denen die Datentypen passend gemacht und den
Literalwerten und Konstanten Datentypen zugewiesen werden. Hierzu gehdren die folgenden:

* DML- (Data Manipulation Language-)Operationen Uber Tabellen

« UNION-, INTERSECT- und EXCEPT-Abfragen

» CASE-Ausdricke

* Auswertung von Pradikaten wie LIKE oder IN

» Auswertung von SQL-Funktionen, bei denen Vergleiche durchgeflhrt oder Daten extrahiert werden

+ Vergleiche mit mathematischen Operatoren

Die Ergebnisse dieser Operationen hangen von den Regeln zur Umwandlung von Typen und der
Kompatibilitdt zwischen Datentypen ab. Kompatibilitdt bedeutet, dass ein one-to-one Abgleich
eines bestimmten Werts und eines bestimmten Datentyps nicht immer erforderlich ist. Da einige
Datentypen kompatibel sind, ist eine implizite Konvertierung oder ein Zwang moglich. Weitere
Informationen finden Sie unter Arten von impliziter Umwandlung. Wenn Datentypen inkompatibel

sind, kdnnen Sie manchmal einen Wert in einen anderen Datentyp umwandeln, indem Sie eine
explizite Typumwandlungsfunktion verwenden.

Kompatibilitdt von Typen und Umwandlung zwischen Typen 53

AWS Clean Rooms SQL-Referenz

Allgemeine Regeln zur Kompatibilitat und zur Umwandlung

Beachten Sie die folgenden Regeln zur Kompatibilitdt und zur Typumwandlung:

« Datentypen aus derselben Kategorie sind i. d. R. miteinander kompatibel und kénnen implizit
ineinander konvertiert werden. Ein Beispiel hierfur sind numerische Datentypen.

Sie kénnen beispielsweise mit einer impliziten Umwandlung einen Dezimalwert in eine Spalte mit
Ganzzahlen einfigen. Dabei werden Dezimalwerte auf eine Ganzzahl gerundet. Sie kdnnen auch
einen Zahlenwert wie 2008 aus einem Datum extrahieren und den Wert in eine ganzzahlige Spalte
einfligen.

« Numerische Datentypen erzwingen Uberlaufbedingungen, die auftreten, wenn Sie versuchen,
Werte einzufligen. out-of-range Beispielsweise passt ein Dezimalwert mit einer Genauigkeit von
5 Stellen nicht in eine Dezimalspalte mit einer Genauigkeit von 4 Stellen. Eine Ganzzahl oder
der gesamte Teil einer Dezimalzahl wird niemals gekirzt. Der Bruchteil einer Dezimalzahl kann
jedoch je nach Bedarf auf- oder abgerundet werden. Die Ergebnisse expliziter Umwandlungen von
Werten, aus der Tabelle ausgewahlt wurden, werden jedoch nicht gerundet.

» Verschiedene Arten von Zeichenketten sind kompatibel. VARCHAR-Spaltenzeichenfolgen, die
Einzelbyte-Daten enthalten, und CHAR-Spaltenzeichenfolgen sind vergleichbar und implizit
konvertierbar. VARCHAR-Zeichenfolgen mit Multibytedaten kénnen nicht mit CHAR-Spalten
verglichen werden. Sie kdnnen eine Zeichenfolge auch in einen Datums-, Zeit-, Zeitstempel-
oder numerischen Wert konvertieren, wenn es sich bei der Zeichenfolge um einen geeigneten
Literalwert handelt. Alle fihrenden oder nachfolgenden Leerzeichen werden ignoriert. Umgekehrt
kénnen Sie auch ein Datum, eine Uhrzeit, einen Zeitstempel oder einen Zahlenwert in eine
Zeichenfolge mit fester oder variabler Lange konvertieren.

® Note

Wenn Sie eine Zeichenfolge in einen numerischen Typ umwandeln méchten, muss die
Zeichenfolge die Zeichendarstellung einer Zahl sein. Sie kénnen die Zeichenketten '1.0"
beispielsweise in Dezimalwerte '5.9' umwandeln, aber Sie kénnen die Zeichenfolge
"ABC"' nicht in einen beliebigen numerischen Typ umwandeln.

» Wenn Sie DEZIMAL-Werte mit Zeichenketten vergleichen, AWS Clean Rooms versucht es, die
Zeichenfolge in einen DEZIMALWERT zu konvertieren. Wenn Sie alle anderen numerischen
Werte mit Zeichenfolgen vergleichen, werden die numerischen Werte in Zeichenfolgen konvertiert.
Um eine Konvertierung in der Gegenrichtung zu erreichen (beispielsweise Zeichenfolgen in

Kompatibilitdt von Typen und Umwandlung zwischen Typen 54

AWS Clean Rooms SQL-Referenz

Ganzzahlen oder DECIMAL-Werte in Zahlenfolgen umzuwandeln), missen Sie eine explizite
Funktion wie beispielsweise CAST-Funktion verwenden.

* Wenn Sie einen 64-Bit-Wert vom Typ DECIMAL oder NUMERIC in einen Typ mit einer hoheren
Genauigkeit umwandeln mdchten, missen Sie eine explizite Funktion verwenden, beispielsweise
CAST oder CONVERT.

Arten von impliziter Umwandlung

Es gibt zwei Arten von impliziten Typumwandlungen:

» Implizite Konvertierungen bei Aufgaben, z. B. beim Einstellen von Werten in den Befehlen INSERT
oder UPDATE

 Implizite Konvertierungen in Ausdricken, wie z. B. das Durchfuhren von Vergleichen in der
WHERE-Klausel

In der folgenden Tabelle sind die Datentypen aufgefihrt, die implizit in Zuweisungen oder
Ausdrucken konvertiert werden kénnen. Sie kdnnen diese Konvertierungen auch mit expliziten
Umwandlungsfunktionen durchfthren.

Von Typ Zu Typ
BIGINT BOOLEAN
CHAR

DECIMAL (NUMERIC)

DOPPELTE GENAUIGKEIT () FLOATS
INTEGER

ECHT (FLOAT4)

SMALLINT oder SHORT

VARCHAR

CHAR VARCHAR

Kompatibilitdt von Typen und Umwandlung zwischen Typen 55

AWS Clean Rooms SQL-Referenz

Von Typ Zu Typ

DATUM CHAR
VARCHAR
TIMESTAMP
TIMESTAMPTZ

DECIMAL (NUMERIC) BIGINT oder LONG
CHAR
DOPPELTE GENAUIGKEIT () FLOATS8
GANZZAHL (INT)
ECHT (FLOAT4)
SMALLINT oder SHORT
VARCHAR

DOPPELTE PRAZISION () FLOAT8 BIGINT oder LONG
CHAR
DECIMAL (NUMERIC)
GANZZAHL (INT)
ECHT (FLOAT4)
SMALLINT oder SHORT
VARCHAR

GANZZAHL (INT) BIGINT oder LONG

BOOLEAN

Kompatibilitdt von Typen und Umwandlung zwischen Typen 56

AWS Clean Rooms

SQL-Referenz

Von Typ

ECHT () FLOAT4

SMALLINT

Zu Typ

CHAR

DECIMAL (NUMERIC)

DOPPELTE GENAUIGKEIT () FLOATS8
ECHT (FLOAT4)

SMALLINT oder SHORT

VARCHAR

BIGINT oder LONG

CHAR

DECIMAL (NUMERIC)

GANZZAHL (INT)

SMALLINT oder SHORT

VARCHAR

BIGINT oder LONG

BOOLEAN

CHAR

DECIMAL (NUMERIC)

DOPPELTE GENAUIGKEIT () FLOATS8
GANZZAHL (INT)

ECHT (FLOAT4)

VARCHAR

Kompatibilitdt von Typen und Umwandlung zwischen Typen

57

AWS Clean Rooms SQL-Referenz

Von Typ Zu Typ
TIME VARCHAR

TIMETZ
@ Note

Implizite Konvertierungen zwischen DATE, TIME, TIMESTAMP_LTZ, TIMESTAMP_NTZ oder
Zeichenketten verwenden die aktuelle Sitzungszeitzone.

Der Datentyp VARBYTE kann nicht implizit in einen anderen Datentyp umgewandelt werden.
Weitere Informationen finden Sie unter CAST-Funktion.

AWS Clean Rooms Spark-SQL-Befehle

Die folgenden SQL-Befehle werden in AWS Clean Rooms Spark SQL unterstutzt:

Themen

« CACHE-TABELLE

* Hinweise

« SELECT

CACHE-TABELLE

Mit dem Befehl CACHE TABLE werden die Daten einer vorhandenen Tabelle zwischengespeichert
oder eine neue Tabelle mit Abfrageergebnissen erstellt und zwischengespeichert.

(® Note

Die zwischengespeicherten Daten bleiben fir die gesamte Abfrage bestehen.

Die Syntax, die Argumente und einige Beispiele stammen aus der Apache Spark-SQL-Referenz.

SQL-Befehle 58

https://spark.apache.org/docs/latest/api/sql/

AWS Clean Rooms SQL-Referenz

Syntax
Der Befehl CACHE TABLE unterstitzt drei Syntaxmuster:

Mit AS (ohne Klammern): Erstellt eine neue Tabelle auf der Grundlage der Abfrageergebnisse und
speichert sie im Cache.

CACHE TABLE cache_table_identifier AS query;

Mit AS und Klammern: Funktioniert ahnlich wie die erste Syntax, verwendet jedoch Klammern, um die
Abfrage explizit zu gruppieren.

CACHE TABLE cache_table_identifier AS (query);

Ohne AS: Speichert eine bestehende Tabelle im Cache und verwendet die SELECT-Anweisung, um
zu filtern, welche Zeilen zwischengespeichert werden sollen.

CACHE TABLE cache_table_identifier query;

Wobei Folgendes qilt:

 Alle Anweisungen sollten mit einem Semikolon (;) enden
* queryist normalerweise eine SELECT-Anweisung
» Klammern um die Abfrage sind bei AS optional

» Das Schllsselwort AS ist optional

Parameter
cache_table_identifier

Der Name flr die zwischengespeicherte Tabelle. Kann einen optionalen Qualifizierer fir den
Datenbanknamen enthalten.

ALS

Ein Schllsselwort, das beim Erstellen und Zwischenspeichern einer neuen Tabelle aus
Abfrageergebnissen verwendet wird.

CACHE-TABELLE 59

AWS Clean Rooms SQL-Referenz

query

Eine SELECT-Anweisung oder eine andere Abfrage, die die Daten definiert, die
zwischengespeichert werden sollen.

Beispiele

In den folgenden Beispielen bleibt die zwischengespeicherte Tabelle fir die gesamte Abfrage
bestehen. Nach dem Zwischenspeichern lesen nachfolgende Abfragen, auf die verwiesen
cache_table_identifier wird, aus der zwischengespeicherten Version, anstatt sie erneut zu
berechnen oder aus ihr zu lesen. sourceTable Dadurch kann die Abfrageleistung fir Daten, auf die
haufig zugegriffen wird, verbessert werden.

Erstellen Sie eine gefilterte Tabelle aus Abfrageergebnissen und speichern Sie sie im Cache

Das erste Beispiel zeigt, wie eine neue Tabelle aus Abfrageergebnissen erstellt und
zwischengespeichert wird. In diesem Befehl wird das AS Schllisselwort ohne Klammern um

die SELECT Anweisung herum verwendet. Es erstellt eine neue Tabelle mit dem Namen
'cache_table_identifier', die nur die Zeilen von 'sourceTable' enthalt, deren Status 'ist.
active' Es fuhrt die Abfrage aus, speichert die Ergebnisse in der neuen Tabelle und speichert
den Inhalt der neuen Tabelle im Cache. Das urspriingliche 'sourceTable' bleibt unverandert,
und nachfolgende Abfragen miissen auf 'cache_table_identifiexr' verweisen, um die
zwischengespeicherten Daten verwenden zu kdnnen.

CACHE TABLE cache_table_identifier AS
SELECT * FROM sourceTable
WHERE status = 'active';

Zwischenspeichern Sie Abfrageergebnisse mit SELECT-Anweisungen in Klammern

Das zweite Beispiel zeigt, wie die Ergebnisse einer Abfrage als neue Tabelle mit einem bestimmten
Namen (cache_table_identifier) zwischengespeichert werden, wobei Klammern um die
Anweisung herum verwendet werden. SELECT Dieser Befehl erstellt eine neue Tabelle mit dem
Namen 'cache_table_identifiex’, die nur die Zeilen von 'sourceTable' enthalt, deren

Status 'ist. active' Er fuhrt die Abfrage aus, speichert die Ergebnisse in der neuen Tabelle

und speichert den Inhalt der neuen Tabelle im Cache. Das Original 'sourceTable' bleibt
unverandert. Nachfolgende Abfragen missen auf 'cache_table_identifier' verweisen, um die
zwischengespeicherten Daten verwenden zu kdnnen.

CACHE-TABELLE 60

AWS Clean Rooms SQL-Referenz

CACHE TABLE cache_table_identifier AS (
SELECT * FROM sourceTable
WHERE status = 'active'

);

Eine vorhandene Tabelle mit Filterbedingungen zwischenspeichern

Das dritte Beispiel zeigt, wie eine vorhandene Tabelle mit einer anderen Syntax zwischengespeichert
wird. Bei dieser Syntax, bei der das Schlisselwort 'AS' und Klammern weggelassen werden,

werden in der Regel die angegebenen Zeilen aus einer vorhandenen Tabelle mit dem Namen
'cache_table_identifier' zwischengespeichert, anstatt eine neue Tabelle zu erstellen. Die
SELECT Anweisung dient als Filter, um zu bestimmen, welche Zeilen zwischengespeichert werden
sollen.

(® Note

Das genaue Verhalten dieser Syntax ist je nach Datenbanksystem unterschiedlich.
Uberpriifen Sie immer die richtige Syntax fiir lhren spezifischen AWS Dienst.

CACHE TABLE cache_table_identifier
SELECT * FROM sourceTable
WHERE status = 'active';

Hinweise

Hinweise fur SQL-Analysen enthalten Optimierungsrichtlinien, die als Leitfaden fur Strategien zur
Abfrageausfihrung AWS Clean Rooms dienen. So kdnnen Sie die Abfrageleistung verbessern und
die Rechenkosten senken. Hinweise geben an, wie die Spark-Analyse-Engine ihren Ausfihrungsplan
generieren sollte.

Syntax

SELECT /*+ hint_name(parameters), hint_name(parameters) */ column_list
FROM table_name;

Hinweise werden mithilfe einer Syntax im Kommentarstil in SQL-Abfragen eingebettet und missen
direkt nach dem SELECT-Schlisselwort platziert werden.

Hinweise 61

AWS Clean Rooms SQL-Referenz

Unterstitzte Hinweistypen

AWS Clean Rooms unterstitzt zwei Kategorien von Hinweisen: Join-Hinweise und
Partitionierungshinweise.

Themen

* Hinweise zusammenfihren

» Hinweise zur Partitionierung

Hinweise zusammenfihren

Verbindungshinweise schlagen Verbindungsstrategien fur die Abfrageausfihrung vor. Die Syntax,
die Argumente und einige Beispiele stammen aus der Apache Spark-SQL-Referenz mit weiteren
Informationen

UBERTRAGUNG

Schlagt vor, Broadcast Join zu AWS Clean Rooms verwenden. Die Join-Seite mit dem Hinweis
wird unabhangig von autoBroadcastJoin Threshold Gbertragen. Wenn beide Seiten des Joins die
Broadcast-Hinweise haben, wird die Seite mit der kleineren GroRRe (basierend auf Statistiken)
Ubertragen.

Aliase: BROADCASTJOIN, MAPJOIN
Parameter: Tabellenbezeichner (optional)

Beispiele:

-- Broadcast a specific table
SELECT /*+ BROADCAST(students) */ e.name, s.course
FROM employees e JOIN students s ON e.id = s.id;

-- Broadcast multiple tables

SELECT /*+ BROADCASTJOIN(s, d) */ *
FROM employees e

JOIN students s ON e.id = s.id

JOIN departments d ON e.dept_id = d.id;

MERGE

Schlagt vor, Shuffle Sort Merge Join zu AWS Clean Rooms verwenden.

Hinweise 62

https://spark.apache.org/docs/latest/sql-ref-syntax-qry-select-hints.html#join-hints

AWS Clean Rooms SQL-Referenz

Aliase: SHUFFLE_MERGE, MERGEJOIN
Parameter: Tabellenbezeichner (optional)

Beispiele:

-- Use merge join for a specific table
SELECT /*+ MERGE(employees) */ *
FROM employees e JOIN students s ON e.id = s.id;

-- Use merge join for multiple tables
SELECT /*+ MERGEJOIN(e, s, d) */ *
FROM employees e

JOIN students s ON e.id = s.id
JOIN departments d ON e.dept_id = d.id;

SHUFFLE_HASH

Schlagt vor, Shuffle Hash Join AWS Clean Rooms zu verwenden. Wenn beide Seiten die Shuffle-
Hash-Hinweise haben, wahlt der Abfrageoptimierer die kleinere Seite (basierend auf Statistiken) als
Build-Seite.

Parameter: Tabellenbezeichner (optional)

Beispiele:

-- Use shuffle hash join
SELECT /*+ SHUFFLE_HASH(students) */ *
FROM employees e JOIN students s ON e.id = s.id;

SHUFFLE_REPLICATE_NL
Schlagt vor, Nested Loop Join zu verwenden. AWS Clean Rooms shuffle-and-replicate
Parameter: Tabellenbezeichner (optional)

Beispiele:

-- Use shuffle-replicate nested loop join
SELECT /*+ SHUFFLE_REPLICATE_NL(students) */ *
FROM employees e JOIN students s ON e.id = s.id;

Hinweise 63

AWS Clean Rooms SQL-Referenz

Hinweise zur Fehlerbehebung in Spark SQL

Die folgende Tabelle zeigt allgemeine Szenarien, in denen Hinweise in SparkSQL nicht
angewendet werden. Weitere Informationen finden Sie unter the section called “Uberlegungen und
Einschrankungen”.

Anwendungsfall Beispielabfrage

D.|e Tabellenreferenz wurde SELECT /*+ BROADCAST(fake_table) */ *
nicht gefunden FROM employees e

INNER JOIN students s ON e.eid = s.sid;

Die Tabelle nimmt nicht am SELECT /*+ BROADCAST(s) */ *

Zusammenflhrungsvorgang FROM students s
teil WHERE s.age > 25;

Tabellenverweis in einer SELECT /*+ BROADCAST(s) */ *

verschachtelten Unterabfrage FROM employees e
INNER JOIN (SELECT * FROM students s WHERE s.age > 20)
sub
ON e.eid = sub.sid;

Spaltenname statt Tabellenv SELECT /*+ BROADCAST(e.eid) */ *

erweis FROM employees e

INNER JOIN students s ON e.eid = s.sid;
Hinweis ohne erforderliche SELECT /*+ BROADCAST */ *
Parameter FROM employees e

INNER JOIN students s ON e.eid = s.sid;

Basistabellenname statt SELECT /*+ BROADCAST(employees) */ *

Tabellenalias FROM employees e
INNER JOIN students s ON e.eid = s.sid;

Hinweise 64

AWS Clean Rooms SQL-Referenz

Hinweise zur Partitionierung

Partitionierungshinweise steuern die Datenverteilung zwischen den Executor-Knoten. Wenn mehrere

Partitionierungshinweise angegeben sind, werden mehrere Knoten in den logischen Plan eingefigt,
aber der Hinweis ganz links wird vom Optimierer ausgewahlt.

COALESCE
Reduziert die Anzahl der Partitionen auf die angegebene Anzahl von Partitionen.

Parameter: Numerischer Wert (erforderlich) — muss eine positive Ganzzahl zwischen 1 und
2147483647 sein

Beispiele:

-- Reduce to 5 partitions
SELECT /*+ COALESCE(5) */ employee_id, salary
FROM employees;

VERTEILUNG

Partitioniert Daten mithilfe der angegebenen Partitionierungsausdricke auf die angegebene Anzahl
von Partitionen neu. Verwendet die Round-Robin-Verteilung.

Parameter:
* Numerischer Wert (optional) — Anzahl der Partitionen; muss eine positive Ganzzahl zwischen 1
und 2147483647 sein

» Spaltenbezeichner (optional) — Spalten, nach denen partitioniert werden soll; Diese Spalten
mussen im Eingabeschema vorhanden sein.

» Wenn beide angegeben sind, muss der numerische Wert an erster Stelle stehen

Beispiele:

-- Repartition to 10 partitions
SELECT /*+ REPARTITION(1Q) */ *
FROM employees;

-- Repartition by column

Hinweise

65

AWS Clean Rooms SQL-Referenz

SELECT /*+ REPARTITION(department) */ *
FROM employees;

-- Repartition to 8 partitions by department
SELECT /*+ REPARTITION(8, department) */ *
FROM employees;

-- Repartition by multiple columns
SELECT /*+ REPARTITION(8, department, location) */ *
FROM employees;

REPARTITION_BY_RANGE

Partitioniert Daten mithilfe der Bereichspartitionierung der angegebenen Spalten auf die angegebene
Anzahl von Partitionen neu.

Parameter:

* Numerischer Wert (optional) — Anzahl der Partitionen; muss eine positive Ganzzahl zwischen 1
und 2147483647 sein

» Spaltenbezeichner (optional) — Spalten, nach denen partitioniert werden soll; Diese Spalten
mussen im Eingabeschema vorhanden sein.

+ Wenn beide angegeben sind, muss der numerische Wert an erster Stelle stehen

Beispiele:

SELECT /*+ REPARTITION_BY_RANGE(10) */ *
FROM employees;

-- Repartition by range on age column
SELECT /*+ REPARTITION_BY_RANGE(age) */ *
FROM employees;

-- Repartition to 5 partitions by range on age
SELECT /*+ REPARTITION_BY_RANGE(5, age) */ *
FROM employees;

-- Repartition by range on multiple columns
SELECT /*+ REPARTITION_BY_RANGE(5, age, salary) */ *
FROM employees;

Hinweise 66

AWS Clean Rooms SQL-Referenz

NEU AUSBALANCIEREN

Die Ausgabepartitionen der Abfrageergebnisse werden neu verteilt, sodass jede Partition eine
angemessene Gréle hat (nicht zu klein und nicht zu grof3). Dabei handelt es sich um ein Verfahren
nach bestem Bemuhen: Wenn schiefe Partitionen vorhanden sind, AWS Clean Rooms werden die
schiefen Partitionen aufgeteilt, damit sie nicht zu grol3 werden. Dieser Hinweis ist nitzlich, wenn Sie
das Ergebnis einer Abfrage in eine Tabelle schreiben mussen, um zu kleine oder zu grof3e Dateien zu
vermeiden.

Parameter:

* Numerischer Wert (optional) — Anzahl der Partitionen; muss eine positive Ganzzahl zwischen 1
und 2147483647 sein

» Spaltenbezeichner (optional) — Spalten mussen in der SELECT-Ausgabeliste erscheinen

* Wenn beide angegeben sind, muss der numerische Wert an erster Stelle stehen

Beispiele:

-- Rebalance to 10 partitions
SELECT /*+ REBALANCE(1Q) */ employee_id, name
FROM employees;

-- Rebalance by specific columns in output
SELECT /*+ REBALANCE(employee_id, name) */ employee_id, name
FROM employees;

-- Rebalance to 8 partitions by specific columns

SELECT /*+ REBALANCE(8, employee_id, name) */ employee_id, name, department
FROM employees;

Kombinieren mehrerer Hinweise

Sie kbnnen mehrere Hinweise in einer einzigen Abfrage angeben, indem Sie sie durch Kommas
trennen:

-- Combine join and partitioning hints
SELECT /*+ BROADCAST(d), REPARTITION(8) */ e.name, d.dept_name
FROM employees e JOIN departments d ON e.dept_id = d.id;

-- Multiple join hints

Hinweise 67

AWS Clean Rooms SQL-Referenz

SELECT /*+ BROADCAST(s), MERGE(d) */ *
FROM employees e

JOIN students s ON e.id = s.id

JOIN departments d ON e.dept_id = d.id;

-- Hints within separate hint blocks within the same query
SELECT /*+ REPARTITION(1@@) */ /*+ COALESCE(500) */ /*+ REPARTITION_BY_RANGE(3, c) */ *
FROM t;

Uberlegungen und Einschrankungen

+ Hinweise sind Optimierungsvorschlage, keine Befehle. Der Abfrageoptimierer ignoriert
moglicherweise Hinweise, die auf Ressourcenbeschrankungen oder Ausfihrungsbedingungen
basieren.

» Hinweise werden sowohl fir als auch CreateAnalysisTemplate direkt in SQL-Abfragezeichenfolgen
eingebettet. StartProtectedQuery APls

* Hinweise mussen direkt nach dem SELECT-Schlisselwort stehen.
 Benannte Parameter werden bei Hinweisen nicht unterstitzt und I6sen eine Ausnahme aus.

» Spaltennamen in den Hinweisen REPARTITION und REPARTITION_BY_RANGE missen im
Eingabeschema vorhanden sein.

» Die Spaltennamen in den REBALANCE-Hinweisen missen in der SELECT-Ausgabeliste
erscheinen.

» Numerische Parameter mussen positive Ganzzahlen zwischen 1 und 2147483647 sein.
Wissenschaftliche Schreibweisen wie 1e1 werden nicht unterstitzt

» Hinweise werden in Differential Privacy SQL-Abfragen nicht unterstitzt.

* Hinweise fur SQL-Abfragen werden in PySpark Jobs nicht unterstitzt. Verwenden Sie die
Datenrahmen-API, um Anweisungen fur Ausfihrungsplane in einem PySpark Job bereitzustellen.
Weitere Informationen finden Sie in den Apache DataFrame Spark-APIl-Dokumenten.

SELECT

Der SELECT-Befehl gibt Zeilen aus Tabellen und benutzerdefinierten Funktionen zurick.

Die folgenden SELECT-SQL-Befehle, -Klauseln und Mengenoperatoren werden in AWS Clean
Rooms Spark SQL unterstutzt:

Themen

SELECT 68

https://spark.apache.org/docs/latest/api/python/reference/pyspark.sql/api/pyspark.sql.DataFrame.hint.html

AWS Clean Rooms SQL-Referenz

» SELECT list

* WITH-Klausel

+ FROM-Klausel

» JOIN-Klausel

+ WHERE-Klausel

» VALUES-Klausel

+ GROUP BY-Klausel
+ HAVING-Klausel

+ Satzoperatoren
+ ORDER BY-Klausel

» Beispiele flr Unterabfragen

» Korrelierte Unterabfragen

Die Syntax, die Argumente und einige Beispiele stammen aus der Apache Spark SQL-Referenz.

SELECT list

Die SELECT list Namen der Spalten, Funktionen und Ausdricke, die die Abfrage zurlickgeben soll.
Der Liste stellt die Ausgabe der Abfrage dar.

Syntax

SELECT
[DISTINCT] | expression [AS column_alias] [, ...]

Parameters
DISTINCT

Eine Option, die duplizierte Zeilen aus dem Ergebnissatz entfernt, basierend auf
Ubereinstimmenden Werten in einer oder mehreren Spalten.

expression

Ein Ausdruck, der aus einer oder mehreren Spalten gebildet wird, die in den Tabellen vorhanden
sind, die von der Abfrage referenziert werden. Ein Ausdruck kann SQL-Funktionen enthalten.
Beispiel:

SELECT 69

https://spark.apache.org/docs/latest/api/sql/

AWS Clean Rooms SQL-Referenz

coalesce(dimension, 'stringifnull') AS column_alias

AS column_alias

Ein temporarer Name flr die Spalte, der im endgultigen Ergebnissatz verwendet wird. Das AS-
SchlUsselwort ist optional. Beispiel:

coalesce(dimension, 'stringifnull') AS dimensioncomplete

Wenn Sie keinen Alias fur einen Ausdruck angeben, bei dem es sich nicht um einen einfachen
Spaltennamen handelt, wendet der Ergebnissatz einen Standardnamen auf diese Spalte an.

(® Note

Der Alias wird sofort nach seiner Definition in der Zielliste erkannt. Sie kbnnen einen Alias
nicht in anderen Ausdriicken verwenden, die danach in derselben Zielliste definiert wurden.

WITH-Klausel

Eine WITH-Klausel ist eine optionale Klausel, die der SELECT-Liste in einer Abfrage vorangeht. Die
WITH-Klausel definiert einen oder mehrere allgemeine Tabellenausdricke (CTE). Jeder allgemeine
Tabellenausdruck (CTE) definiert eine temporare Tabelle, die einer Ansichtdefinition ahnelt. Sie
kénnen diese temporaren Tabellen in der FROM-Klausel referenzieren. Sie werden nur verwendet,
wahrend die Abfrage, zu der sie gehodren, ausgefuhrt wird. Jede CTE in der WITH-Klausel gibt einen
Tabellennamen, eine optionale Liste von Spaltennamen und einen Abfrageausdruck an, der in eine
Tabelle evaluiert wird (eine SELECT-Anweisung).

Unterabfragen mit einer WITH-Klausel sind eine effiziente Art, Tabellen zu definieren, die wahrend
der Ausfiihrung einer einzelnen Abfrage verwendet werden kénnen. In allen Fallen kdnnen dieselben
Ergebnisse erzielt werden, indem im Hauptteil der SELECT-Anweisung Unterabfragen verwendet
werden. Unterabfragen mit WITH-Klauseln kénnen jedoch leichter geschrieben und gelesen werden.
Wenn mdglich, werden Unterabfragen mit WITH-Klauseln, die mehrmals referenziert werden, als
gemeinsame Unterausdricke optimiert. Das bedeutet, dass es mdglich sein kann, eine WITH-
Unterabfrage einmal zu evaluieren und die Ergebnisse wiederzuverwenden. (Beachten Sie, dass
gemeinsame Unterausdrucke nicht auf diejenigen begrenzt sind, die in der WITH-Klausel definiert
sind.)

SELECT 70

AWS Clean Rooms SQL-Referenz

Syntax

[WITH common_table_expression [, common_table_expression , ...]]

wobei common_table_expression nicht rekursiv sein kann. Dies ist die nicht-rekursive Form:

CTE_table_name AS (query)

Parameters
common_table_expression

Definiert eine temporare Tabelle, auf die Sie in der FROM-Klausel verweisen kdnnen und die nur
wahrend der Ausflihrung der Abfrage verwendet wird, zu der sie gehort.

CTE_table_name

Ein eindeutiger Name flir eine temporare Tabelle, die die Ergebnisse einer Unterabfrage mit
WITH-Klausel definiert. Sie kdnnen in einer einzelnen WITH-Klausel keine duplizierten Namen
verwenden. Jede Unterabfrage muss einen Tabellennamen erhalten, der in der referenziert
werden kann FROM-Klausel.

query

Jede SELECT-Abfrage, die unterstitzt. AWS Clean Rooms Siehe SELECT.

Nutzungshinweise
Sie kdnnen eine WITH-Klausel in der folgenden SQL-Anweisung verwenden:

« SELECT, WITH, UNION, UNION ALL, INTERSECT, INTERSECT ALL, EXCEPT oder EXCEPT
ALL

Wenn die FROM-Klausel einer Abfrage, die eine WITH-Klausel enthalt, keine der Tabellen
referenziert, die von der WITH-Klausel definiert werden, wird die WITH-Klausel ignoriert, und die
Abfrage wird wie normal ausgefuhrt.

Eine Tabelle, die von einer Unterabfrage mit WITH-Klausel definiert ist, kann nur im Bereich der
SELECT-Abfrage referenziert werden, die die WITH-Klausel beginnt. Sie kbnnen beispielsweise
eine solche Tabelle in der FROM-Klausel einer Unterabfrage in der SELECT-Liste, in einer WHERE-
Klausel oder in einer HAVING-Klausel referenzieren. Sie kénnen eine WITH-Klausel nicht in einer

SELECT 71

AWS Clean Rooms SQL-Referenz

Unterabfrage verwenden und ihre Tabelle in der FROM-Klausel der Hauptabfrage oder einer anderen
Unterabfrage referenzieren. Dieses Abfragemuster flhrt zu einer Fehlermeldung der Art relation
table_name doesn't exist fir die Tabelle der WITH-Klausel.

Sie kdnnen innerhalb einer Unterabfrage mit WITH-Klausel keine weitere WITH-Klausel angeben.

Sie kdnnen keine Vorausreferenzen auf Tabellen erstellen, die durch Unterabfragen mit WITH-
Klauseln definiert werden. Die folgende Abfrage gibt beispielsweise aufgrund der Vorausreferenz auf
die Tabelle W2 in der Definition der Tabelle W1 einen Fehler zurlick:

with wl as (select * from w2), w2 as (select * from wl)
select * from sales;
ERROR: relation "w2" does not exist

Beispiele

Im folgenden Beispiel wird der einfachste mogliche Fall einer Abfrage gezeigt, die eine WITH-Klausel
enthalt. Die WITH-Abfrage namens VENUECOPY wahlt alle Zeilen aus der Tabelle VENUE aus.

Die Hauptabfrage wahlt anschlieRend alle Zeilen aus VENUECOPY aus. Die Tabelle VENUECOPY
besteht nur fur die Dauer dieser Abfrage.

with venuecopy as (select * from venue)
select * from venuecopy order by 1 limit 10;

venueid | venuename | venuecity | venuestate | venueseats
————————— L i e it
1 | Toyota Park | Bridgeview | IL | 0

2 | Columbus Crew Stadium | Columbus | OH | 0

3 | RFK Stadium | Washington | DC | 0

4 | CommunityAmerica Ballpark | Kansas City | KS | 0

5 | Gillette Stadium | Foxborough | MA | 68756

6 | New York Giants Stadium | East Rutherford | NJ | 80242

7 | BMO Field | Toronto | ON | 0

8 | The Home Depot Center | Carson | CA | 0

9 | Dick's Sporting Goods Park | Commerce City | CO | 0

v 10 | Pizza Hut Park | Frisco | TX | 0
(10 rows)

Im folgenden Beispiel wird eine WITH-Klausel gezeigt, die zwei Tabellen namens VENUE_SALES
und TOP_VENUES erstellt. Die zweite WITH-Abfragetabelle wahlt aus der ersten aus. Die WHERE-

SELECT 72

AWS Clean Rooms

SQL-Referenz

Klausel des Hauptabfrageblocks enthalt eine Unterabfrage, die die Tabelle TOP_VENUES

einschrankt.

with venue_sales as

(select venuename, venuecity, sum(pricepaid) as venuename_sales

from sales, venue, event
where venue.venueid=event.venueid and event.eventid=sales.eventid

group by venuename, venuecity),

top_venues as
(select venuename
from venue_sales

where venuename_sales > 800000)

select venuename, venuecity, venuestate,
sum(qtysold) as venue_qty,
sum(pricepaid) as venue_sales

from sales, venue, event
where venue.venueid=event.venueid and event.eventid=sales.eventid

and venuename in(select venuename from top_venues)
group by venuename, venuecity, venuestate

order by venuename;

venuename

August Wilson Theatre
Biltmore Theatre
Charles Playhouse

Ethel Barrymore Theatre
Eugene 0'Neill Theatre

Greek Theatre

Helen Hayes Theatre
Hilton Theatre
Imperial Theatre
Lunt-Fontanne Theatre
Majestic Theatre
Nederlander Theatre
Pasadena Playhouse
Winter Garden Theatre
(14 rows)

venuecity
New York City
New York City
Boston
New York City
New York City
Los Angeles
New York City
New York City
New York City
New York City
New York City
New York City
Pasadena
New York City

I

.

| 1032156.
| 828981.
| 857031.
| 891172.
| 828950.
| 838918.
| 978765.
| 885686.
| 877993.
| 1115182.
| 894275.
| 936312.
| 820435.
| 939257.

SELECT

73

AWS Clean Rooms SQL-Referenz

In den folgenden beiden Beispielen werden die Regeln fir den Bereich der Tabellenreferenzen

auf der Basis von Unterabfragen mit WITH-Klausel gezeigt. Die erste Abfrage wird ausgefiihrt. Die
zweite Abfrage schlagt jedoch mit einem erwarteten Fehler fehl. Die erste Abfrage enthalt eine
Unterabfrage mit WITH-Klausel innerhalb der SELECT-Liste der Hauptabfrage. Die von der WITH-
Klausel definierte Tabelle (HOLIDAYS) wird in der FROM-Klausel der Unterabfrage in der SELECT-
Liste referenziert:

select caldate, sum(pricepaid) as daysales,

(with holidays as (select * from date where holiday ='t')
select sum(pricepaid)

from sales join holidays on sales.dateid=holidays.dateid
where caldate='2008-12-25') as dec25sales

from sales join date on sales.dateid=date.dateid

where caldate in('2008-12-25','2008-12-31")

group by caldate

order by caldate;

caldate | daysales | dec25sales
___________ o
2008-12-25 | 70402.00 | 70402 .00
2008-12-31 | 12678.00 | 70402 .00
(2 rows)

Die zweite Abfrage schlagt fehl, weil sie versucht, die Tabelle HOLIDAYS in der Hauptabfrage und
in der Unterabfrage der SELECT-Liste zu referenzieren. Die Referenzen der Hauptabfrage liegen
aullerhalb des Bereichs.

select caldate, sum(pricepaid) as daysales,

(with holidays as (select * from date where holiday ='t')
select sum(pricepaid)

from sales join holidays on sales.dateid=holidays.dateid
where caldate='2008-12-25') as dec25sales

from sales join holidays on sales.dateid=holidays.dateid
where caldate in('2008-12-25','2008-12-31")

group by caldate

order by caldate;

ERROR: relation "holidays" does not exist

SELECT 74

AWS Clean Rooms SQL-Referenz

FROM-Klausel

Die -Klausel in einer Abfrage listet die Tabellenreferenzen (Tabellen, Ansichten und Unterabfragen)
auf, aus denen Daten ausgewahlt werden. Wenn mehrere Tabellenreferenzen aufgelistet werden,
muss ein Join fir die Tabellen ausgeflihrt werden, indem entweder in der FROM-Klausel oder in der
WHERE-Klausel die entsprechende Syntax verwendet wird. Wenn keine Join-Kriterien angegeben
werden, verarbeitet das System die Abfrage als Kreuz-Join (kartesisches Produkt).

Themen
+ Syntax
» Parameters

* Nutzungshinweise

Syntax

FROM table_reference [, ...]

wobei table_reference eins der folgenden ist:

with_subquery_table_name | table_name | (subquery) [[AS] alias]
table_reference [NATURAL] join_type table_reference [USING (join_column [, ...])]
table_reference [INNER] join_type table_reference ON expr

Parameters
with_subquery_table_name

Eine Tabelle, die von einer Unterabfrage in der definiert wird WITH-Klausel.

table_name

Der Name einer Tabelle oder Ansicht.

alias

Der temporare alternative Name flir eine Tabelle oder Ansicht. Fur eine Tabelle, die von einer
Unterabfrage abgeleitet wird, muss ein Alias bereitgestellt werden. In anderen Tabellenreferenzen
sind Aliasnamen optional. Das AS Schllsselwort ist immer optional. Tabellenaliasnamen stellen
eine bequeme Abkulrzung fur die Identifizierung von Tabellen in anderen Teilen einer Abfrage dar,
beispielsweise in der WHERE-Klausel.

SELECT 75

AWS Clean Rooms SQL-Referenz

Beispiel:

select * from sales s, listing 1
where s.listid=1.listid

Wenn Sie definieren, dass ein Tabellenalias definiert ist, muss der Alias verwendet werden, um in
der Abfrage auf diese Tabelle zu verweisen.

Wenn die Abfrage beispielsweise so istSELECT "tbl"."col" FROM "tbl" AS "t", wurde
die Abfrage fehlschlagen, weil der Tabellenname jetzt im Wesentlichen Gberschrieben wird. Eine
gultige Abfrage ware in diesem Fall. SELECT "t"."col" FROM "tbl" AS "t"

column_alias

Der temporare alternative Name flr eine Spalte in einer Tabelle oder Ansicht.

subquery

Ein Abfrageausdruck, der zu einer Tabelle evaluiert wird. Die Tabelle ist nur fir die Dauer der
Abfrage vorhanden und erhalt in der Regel einen Namen oder einen Alias. Ein Alias ist jedoch
nicht erforderlich. Sie kdnnen auch Spaltennamen fiir Tabellen definieren, die von Unterabfragen
abgeleitet werden. Die Vergabe von Spaltenaliasnamen ist wichtig, wenn Sie fur die Ergebnisse
von Unterabfragen einen Join mit anderen Tabellen ausfiihren méchten und wenn Sie diese
Spalten an anderer Stelle in der Abfrage auswahlen oder einschranken moéchten.

Eine Unterabfrage kann eine ORDER BY-Klausel enthalten. Diese Klausel hat jedoch keine
Auswirkungen, wenn nicht auch eine LIMIT- oder OFFSET-Klausel angegeben ist.

NATURAL

Definiert einen Join, der automatisch alle Paare identisch benannter Spalten in den beiden
Tabellen als Joining-Spalten verwendet. Es ist keine explizite Join-Bedingung erforderlich. Wenn
die Tabellen CATEGORY und EVENT beispielsweise beide Spalten namens CATID besitzen, ist
ein Join ihrer CATID-Spalten ein NATURAL-Join dieser Tabellen.

(® Note
Wenn ein NATURAL-Join angegeben ist, in den Tabellen, fir die ein Join ausgefuhrt
werden soll, jedoch keine identisch benannten Spaltenpaare vorhanden sind, wird fir die
Abfrage standardmafig ein Kreuz-Join ausgefuhrt.

SELECT 76

AWS Clean Rooms SQL-Referenz

join_type

Geben Sie eine der folgenden Join-Arten an:
« [INNER] JOIN

LEFT [OUTER] JOIN

RIGHT [OUTER] JOIN

FULL [OUTER] JOIN

CROSS JOIN

Kreuz-Joins sind nicht qualifizierte Joins. Sie geben das kartesische Produkt der beiden Tabellen
zuruck.

Interne und externe Joins sind qualifizierte Joins. Sie sind entweder implizit (in nattrlichen Joins),
mit der ON- oder USING-Syntax in der FROM-Klausel oder mit einer WHERE-Klauselbedingung
qualifiziert.

Ein interner Join gibt nur Gbereinstimmende Zeilen zurlick, basierend auf der Join-Bedingung oder
der Liste der Joining-Spalten. Ein externer Join gibt alle Zeilen zurlick, die der entsprechende
interne Join zurickgeben wurde, und zusatzlich nicht tubereinstimmende Zeilen aus der Tabelle
.links“, aus der Tabelle ,rechts“ oder aus beiden Tabellen. Die linke Tabelle wird zuerst aufgelistet.
Die rechte Tabelle wird als zweite Tabelle aufgelistet. Die nicht Gbereinstimmenden Zeilen
enthalten NULL-Werte, um die Licken in den Ausgabespalten zu flllen.

ON join_condition

Eine Join-Spezifikation, in der die Joining-Spalten als eine Bedingung angegeben werden, die
dem Schlisselwort ON folgt. Beispiel:

sales join listing
on sales.listid=listing.listid and sales.eventid=listing.eventid

USING (join_column [, ...])

Eine Join-Spezifikation, in der die Joining-Spalten in Klammern angegeben werden. Wenn
mehrere Joining-Spalten angegeben werden, werden sie durch Komma abgetrennt. Das
Schlusselwort USING muss der Liste vorangestellt werden. Zum Beispiel:

sales join listing
using (listid,eventid)

SELECT 77

AWS Clean Rooms SQL-Referenz

Nutzungshinweise
Joining-Spalten missen vergleichbare Datentypen haben.

Ein NATURAL- oder -USING-Join enthalt jeweils nur eine Spalte jedes Joining-Spaltenpaars im
Zwischenergebnissatz.

Ein Join mit der ON-Syntax enthalt beide Joining-Spalten im Zwischenergebnissatz.

Weitere Informationen finden Sie auch unter WITH-Klausel.

JOIN-Klausel

Eine SQL JOIN-Klausel wird verwendet, um die Daten aus zwei oder mehr Tabellen basierend
auf gemeinsamen Feldern zu kombinieren. Die Ergebnisse kdnnen sich je nach festgelegter Join-
Methode andern oder nicht. Externe Joins nach links und rechts behalten die Werte aus einer der
Tabellen, fiir die ein Join ausgefiihrt wurde, wenn in der anderen Tabelle keine Ubereinstimmung
gefunden wurde.

Die Kombination aus dem JOIN-Typ und der Join-Bedingung bestimmt, welche Zeilen in der
endgultigen Ergebnismenge enthalten sind. Die SELECT- und WHERE-Klauseln steuern dann,
welche Spalten zurlickgegeben werden und wie die Zeilen gefiltert werden. Das Verstandnis der
verschiedenen JOIN-Typen und deren effektive Verwendung ist eine wichtige Fahigkeit in SQL, da
Sie damit Daten aus mehreren Tabellen auf flexible und leistungsstarke Weise kombinieren kdnnen.

Syntax

SELECT columnl, column2, ..., columnn
FROM tablel

join_type table2

ON tablel.column = table2.column;

Parameters
WAHLEN SIE Spalte1, Spalte2,..., SpalteN

Die Spalten, die Sie in die Ergebnismenge aufnehmen méchten. Sie kdnnen Spalten aus einer
oder beiden der am JOIN beteiligten Tabellen auswahlen.

AUS Tabelle1

Die erste (linke) Tabelle in der JOIN-Operation.

SELECT 78

AWS Clean Rooms SQL-Referenz

[VERKNUPFEN | INNERE VERKNUPFUNG | LINKE [AUSSERE] VERKNUPFUNG | RECHTE
[AUSSERE] VERKNUPFUNG | VOLLSTANDIGE [AUSSERE] VERKNUPFUNG] Tabelle2:

Der Typ des auszufiihrenden JOINS. JOIN oder INNER JOIN gibt nur die Zeilen mit
Uubereinstimmenden Werten in beiden Tabellen zurick.

LEFT [OUTER] JOIN gibt alle Zeilen aus der linken Tabelle mit Gbereinstimmenden Zeilen aus der
rechten Tabelle zurlck.

RIGHT [OUTER] JOIN gibt alle Zeilen aus der rechten Tabelle mit den entsprechenden Zeilen aus
der linken Tabelle zurtck.

FULL [OUTER] JOIN gibt alle Zeilen aus beiden Tabellen zurlick, unabhangig davon, ob eine
Ubereinstimmung vorliegt oder nicht.

CROSS JOIN erzeugt ein kartesisches Produkt der Zeilen aus den beiden Tabellen.
ON Tabelle1.Spalte = Tabelle2.Spalte

Die Join-Bedingung, die angibt, wie die Zeilen in den beiden Tabellen abgeglichen werden. Die
Join-Bedingung kann auf einer oder mehreren Spalten basieren.

WHERE-Bedingung:

Eine optionale Klausel, mit der die Ergebnismenge anhand einer bestimmten Bedingung weiter
gefiltert werden kann.

Beispiel

Das folgende Beispiel ist ein Join zwischen zwei Tabellen mit der USING-Klausel. In diesem Fall
werden die Spalten listid und eventid als Join-Spalten verwendet. Die Ergebnisse sind auf 5 Zeilen
begrenzt.

select listid, listing.sellerid, eventid, listing.dateid, numtickets
from listing join sales

using (listid, eventid)

order by 1

limit 5;

listid | sellerid | eventid | dateid | numtickets

1 | 36861 | 7872 | 1850 | 10
4 | 8117 | 4337 | 1970 | 8

SELECT 79

AWS Clean Rooms SQL-Referenz

5 | 1616 | 8647 | 1963 | 4
5 | 1616 | 8647 | 1963 | 4
6 | 47402 | 8240 | 2053 | 18
JOIN-Typen
INNER

Dies ist der Standard-Join-Typ. Gibt die Zeilen zurtick, deren Werte in beiden Tabellenverweisen
Ubereinstimmen.

Der INNER JOIN ist der in SQL am haufigsten verwendete Join-Typ. Es ist eine leistungsstarke
Methode, um Daten aus mehreren Tabellen auf der Grundlage einer gemeinsamen Spalte oder einer
Gruppe von Spalten zu kombinieren.

Syntax:

SELECT columnl, column2, ..., columnn
FROM tablel

INNER JOIN table2

ON tablel.column = table2.column;

Die folgende Abfrage gibt alle Zeilen zurtick, in denen ein Ubereinstimmender customer_id-Wert
zwischen den Tabellen ,customers® und ,orders” vorhanden ist. Das Resultset wird die Spalten
customer_id, name, order_id und order_date enthalten.

SELECT customers.customer_id, customers.name, orders.order_id, orders.order_date
FROM customers

INNER JOIN orders

ON customers.customer_id = orders.customer_id;

Die folgende Abfrage ist ein innerer Join (ohne das Schllsselwort JOIN) zwischen den Tabellen
LISTING und SALES, wobei die LISTID aus der Tabelle LISTING zwischen 1 und 5 liegt. Diese
Abfrage gleicht LISTID-Spaltenwerte in der Tabelle LISTING (linke Tabelle) und der Tabelle SALES
(rechte Tabelle) ab. Die Ergebnisse zeigen, dass LISTID 1, 4 und 5 den Kriterien entsprechen.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing, sales

where listing.listid = sales.listid

and listing.listid between 1 and 5

group by 1

SELECT 80

AWS Clean Rooms SQL-Referenz

order by 1;

listid | price | comm

_______ S
1| 728.00 | 109.20
4| 76.00 | 11.40
5| 525.00 | 78.75

Bei dem folgenden Beispiel handelt es sich um einen inneren Join mit der ON-Klausel. In diesem Fall

werden NULL-Zeilen nicht zurlickgegeben.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from sales join listing

on sales.listid=listing.listid and sales.eventid=listing.eventid

where listing.listid between 1 and 5

group by 1

order by 1;

listid | price | comm

_______ L Y -
1| 728.00 | 109.20
4 | 76.00 | 11.40
5| 525.00 | 78.75

Die folgende Abfrage ist ein interner Join zweiter Unterabfragen in der FROM-Klausel. Die
Abfrage ermittelt die Zahl der verkauften und nicht verkauften Tickets fur verschiedene
Veranstaltungskategorien (Konzerte und Shows). Die Unterabfragen mit FROM-Klausel sind
Tabellen-Unterabfragen und kénnen mehrere Spalten und Zeilen zurtickgeben.

select catgroupl, sold, unsold

from

(select catgroup, sum(qtysold) as sold

from category c, event e, sales s

where c.catid = e.catid and e.eventid = s.eventid
group by catgroup) as a(catgroupl, sold)

join

(select catgroup, sum(numtickets)-sum(qtysold) as unsold
from category c, event e, sales s, listing 1
where c.catid = e.catid and e.eventid = s.eventid
and s.listid = 1.1listid

group by catgroup) as b(catgroup2, unsold)

SELECT

81

AWS Clean Rooms SQL-Referenz

on a.catgroupl = b.catgroup2
order by 1;

catgroupl | sold | unsold
__________ o

Concerts | 195444 |1067199
Shows | 149905 | 817736

LINKS [AUSSEN]

Gibt alle Werte aus der linken Tabellenreferenz und die Gbereinstimmenden Werte aus der rechten
Tabellenreferenz zuriick oder hangt NULL an, wenn es keine Ubereinstimmung gibt. Es wird auch als
Left Outer Join bezeichnet.

Es gibt alle Zeilen aus der linken (ersten) Tabelle und die passenden Zeilen aus der rechten
(zweiten) Tabelle zuriick. Wenn es in der rechten Tabelle keine Ubereinstimmung gibt, enthalt die
Ergebnismenge NULL-Werte fir die Spalten aus der rechten Tabelle. Das Schlisselwort OUTER
kann weggelassen werden, und der Join kann einfach als LEFT JOIN geschrieben werden. Das
Gegenteil von LEFT OUTER JOIN ist RIGHT OUTER JOIN, bei dem alle Zeilen aus der rechten
Tabelle und die passenden Zeilen aus der linken Tabelle zuriickgegeben werden.

Syntax:

SELECT columnl, column2, ..., columnn
FROM tablel

LEFT [OUTER] JOIN table2

ON tablel.column = table2.column;

Die folgende Abfrage gibt alle Zeilen aus der Kundentabelle zusammen mit den entsprechenden
Zeilen aus der Bestelltabelle zurtick. Wenn ein Kunde keine Bestellungen hat, enthalt das Resultset
dennoch die Informationen dieses Kunden mit NULL-Werten fir die Spalten order_id und order_date.

SELECT customers.customer_id, customers.name, orders.order_id, orders.order_date
FROM customers

LEFT OUTER JOIN orders

ON customers.customer_id = orders.customer_id;

Bei der folgenden Abfrage handelt es sich um einen linken, externen Join. Externe Joins nach links
und rechts behalten die Werte aus einer der Tabellen, fir die ein Join ausgefihrt wurde, wenn in
der anderen Tabelle keine Ubereinstimmung gefunden wurde. Die Tabellen links und rechts werden
in der Syntax als erste und zweite Tabelle aufgelistet. Es werden NULL-Werte verwendet, um

SELECT 82

AWS Clean Rooms SQL-Referenz

die ,Lucken® im Ergebnissatz zu flllen. Diese Abfrage gleicht LISTID-Spaltenwerte in der Tabelle
LISTING (linke Tabelle) und der Tabelle SALES (rechte Tabelle) ab. Die Ergebnisse zeigen, dass
LISTIDs 2 und 3 zu keinen Verkaufen gefiihrt haben.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing left outer join sales on sales.listid = listing.listid
where listing.listid between 1 and 5

group by 1

order by 1;

listid | price | comm

_______ e
1| 728.00 | 109.20
2 | NULL | NULL
3 | NULL | NULL
4| 76.00 | 11.40
5| 525.00 | 78.75

RECHTS [AUSSEN]

Gibt alle Werte aus der rechten Tabellenreferenz und die tUbereinstimmenden Werte aus der linken
Tabellenreferenz zuriick oder hangt NULL an, wenn es keine Ubereinstimmung gibt. Es wird auch als
rechter aulerer Join bezeichnet.

Es gibt alle Zeilen aus der rechten (zweiten) Tabelle und die passenden Zeilen aus der linken
(ersten) Tabelle zuriick. Wenn es in der linken Tabelle keine Ubereinstimmung gibt, enthalt die
Ergebnismenge NULL-Werte fur die Spalten aus der linken Tabelle. Das Schlisselwort OUTER
kann weggelassen werden, und der Join kann einfach als RIGHT JOIN geschrieben werden. Das
Gegenteil von RIGHT OUTER JOIN ist LEFT OUTER JOIN, bei dem alle Zeilen aus der linken
Tabelle und die passenden Zeilen aus der rechten Tabelle zuriickgegeben werden.

Syntax:

SELECT columnl, column2, ..., columnn
FROM tablel

RIGHT [OUTER] JOIN table2

ON tablel.column = table2.column;

Die folgende Abfrage gibt alle Zeilen aus der Kundentabelle zusammen mit den entsprechenden
Zeilen aus der Bestelltabelle zurtick. Wenn ein Kunde keine Bestellungen hat, enthalt das Resultset
dennoch die Informationen dieses Kunden mit NULL-Werten flr die Spalten order_id und order_date.

SELECT 83

AWS Clean Rooms SQL-Referenz

SELECT orders.order_id, orders.order_date, customers.customer_id, customers.name
FROM orders

RIGHT OUTER JOIN customers

ON orders.customer_id = customers.customer_id;

Bei der folgenden Abfrage handelt es sich um einen rechten, externen Join. Diese Abfrage gleicht
LISTID-Spaltenwerte in der Tabelle LISTING (linke Tabelle) und der Tabelle SALES (rechte Tabelle)
ab. Die Ergebnisse zeigen, dass LISTIDs 1, 4 und 5 den Kriterien entsprechen.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing right outer join sales on sales.listid = listing.listid
where listing.listid between 1 and 5

group by 1

order by 1;

listid | price | comm
_______ e

1| 728.00 | 109.20
4| 76.00 | 11.40
5| 525.00 | 78.75

VOLL [AUSSERLICH]

Gibt alle Werte aus beiden Beziehungen zurlick und fiigt NULL-Werte auf der Seite an, fir die es
keine Ubereinstimmung gibt. Es wird auch als vollstandiger duRerer Join bezeichnet.

Es gibt alle Zeilen sowohl aus der linken als auch aus der rechten Tabelle zurtck, unabhangig
davon, ob eine Ubereinstimmung vorliegt oder nicht. Wenn es keine Ubereinstimmung gibt, enthalt
die Ergebnismenge NULL-Werte fur die Spalten aus der Tabelle, die keine passende Zeile hat.

Das Schlusselwort OUTER kann weggelassen werden, und der Join kann einfach als FULL JOIN
geschrieben werden. Der FULL OUTER JOIN wird seltener verwendet als der LEFT OUTER JOIN
oder RIGHT OUTER JOIN, kann aber in bestimmten Szenarien nutzlich sein, in denen Sie alle Daten
aus beiden Tabellen sehen mussen, auch wenn es keine Treffer gibt.

Syntax:

SELECT columnl, column2, ..., columnn
FROM tablel

FULL [OUTER] JOIN table2

ON tablel.column = table2.column;

SELECT Y

AWS Clean Rooms SQL-Referenz

Die folgende Abfrage gibt alle Zeilen aus den Tabellen ,Kunden® und ,Bestellungen® zurtick. Wenn
ein Kunde keine Bestellungen hat, enthalt das Resultset dennoch die Informationen dieses Kunden
mit NULL-Werten flr die Spalten order_id und order_date. Wenn einer Bestellung kein Kunde
zugeordnet ist, enthalt das Resultset diese Bestellung mit NULL-Werten fir die Spalten customer_id
und name.

SELECT customers.customer_id, customers.name, orders.order_id, orders.order_date
FROM customers

FULL OUTER JOIN orders

ON customers.customer_id = orders.customer_id;

Bei der folgenden Abfrage handelt es sich um einen vollstandigen Join. Vollstandige Joins behalten
die Werte aus einer der Tabellen bei, fir die ein Join ausgeflhrt wurde, wenn in der anderen Tabelle
keine Ubereinstimmung gefunden wurde. Die Tabellen links und rechts werden in der Syntax

als erste und zweite Tabelle aufgelistet. Es werden NULL-Werte verwendet, um die ,Licken“im
Ergebnissatz zu flllen. Diese Abfrage gleicht LISTID-Spaltenwerte in der Tabelle LISTING (linke
Tabelle) und der Tabelle SALES (rechte Tabelle) ab. Die Ergebnisse zeigen, dass LISTIDs 2 und 3
zu keinen Verkaufen gefihrt haben.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing full join sales on sales.listid = listing.listid
where listing.listid between 1 and 5

group by 1

order by 1;

listid | price | comm

_______ o
1| 728.00 | 109.20
2 | NULL | NULL
3 | NULL | NULL
4 | 76.00 | 11.40
5| 525.00 | 78.75

Bei der folgenden Abfrage handelt es sich um einen vollstandigen Join. Diese Abfrage gleicht LISTID-
Spaltenwerte in der Tabelle LISTING (linke Tabelle) und der Tabelle SALES (rechte Tabelle) ab. Nur
Zeilen, die zu keinen Verkaufen fihren (LISTIDs 2 und 3), sind in den Ergebnissen enthalten.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing full join sales on sales.listid = listing.listid
where listing.listid between 1 and 5

SELECT 85

AWS Clean Rooms SQL-Referenz

and (listing.listid IS NULL or sales.listid IS NULL)

group by 1
order by 1;
listid | price | comm
_______ S
2 | NULL | NULL
3 | NULL | NULL

[LINKS] HALB

Gibt Werte von der linken Seite der Tabellenreferenz zurlick, die mit der rechten Seite
Ubereinstimmen. Es wird auch als linke Semi-Verknupfung bezeichnet.

Es werden nur die Zeilen aus der linken (ersten) Tabelle zurtickgegeben, fir die eine entsprechende
Zeile in der rechten (zweiten) Tabelle vorhanden ist. Es werden keine Spalten aus der rechten
Tabelle zurickgegeben, sondern nur die Spalten aus der linken Tabelle. Der LEFT SEMI JOIN ist
niitzlich, wenn Sie die Zeilen in einer Tabelle suchen méchten, die eine Ubereinstimmung in einer
anderen Tabelle haben, ohne Daten aus der zweiten Tabelle zurickgeben zu missen. Der LEFT
SEMI JOIN ist eine effizientere Alternative zur Verwendung einer Unterabfrage mit einer IN- oder
EXISTS-Klausel.

Syntax:

SELECT columnl, column2, ..., columnn
FROM tablel

LEFT SEMI JOIN table2

ON tablel.column = table2.column;

Die folgende Abfrage gibt nur die Spalten customer_id und name aus der Kundentabelle fir die
Kunden zurtick, die mindestens eine Bestellung in der Bestelltabelle haben. Das Resultset wird keine
Spalten aus der Bestelltabelle enthalten.

SELECT customers.customer_id, customers.name
FROM customers

LEFT SEMI JOIN orders

ON customers.customer_id = orders.customer_id;

SELECT 86

AWS Clean Rooms SQL-Referenz

CROSS JOIN

Gibt das kartesische Produkt zweier Beziehungen zurtick. Das bedeutet, dass die Ergebnismenge
alle mdglichen Kombinationen von Zeilen aus den beiden Tabellen enthalt, ohne dass eine
Bedingung oder ein Filter angewendet wird.

Der CROSS JOIN ist nutzlich, wenn Sie alle méglichen Kombinationen von Daten aus zwei
Tabellen generieren mussen, z. B. wenn Sie einen Bericht erstellen mdchten, der alle méglichen
Kombinationen von Kunden- und Produktinformationen anzeigt. Der CROSS JOIN unterscheidet
sich von anderen Join-Typen (INNER JOIN, LEFT JOIN usw.), da er in der ON-Klausel keine Join-
Bedingung enthalt. Die Join-Bedingung ist fir einen CROSS JOIN nicht erforderlich.

Syntax:

SELECT columnl, column2, ..., columnn
FROM tablel
CROSS JOIN table2;

Die folgende Abfrage gibt ein Resultset zurick, das alle moglichen Kombinationen von customer_id,
customer_name, product_id und product_name aus den Tabellen Customers und Products enthalt.
Wenn die Kundentabelle 10 Zeilen und die Produkttabelle 20 Zeilen hat, enthalt die Ergebnismenge
von CROSS JOIN 10 x 20 = 200 Zeilen.

SELECT customers.customer_id, customers.name, products.product_id,
products.product_name

FROM customers

CROSS JOIN products;

Bei der folgenden Abfrage handelt es sich um einen Cross Join oder kartesischen Join der LISTING-
und der SALES-Tabelle mit einem Pradikat zur Begrenzung der Ergebnisse. Diese Abfrage entspricht
den LISTID-Spaltenwerten in der SALES-Tabelle und der LISTING-Tabelle fur LISTIDs 1, 2, 3, 4 und
5 in beiden Tabellen. Die Ergebnisse zeigen, dass 20 Zeilen den Kriterien entsprechen.

select sales.listid as sales_listid, listing.listid as listing_listid
from sales cross join listing

where sales.listid between 1 and 5

and listing.listid between 1 and 5

order by 1,2;

sales_listid | listing_listid

SELECT 87

AWS Clean Rooms SQL-Referenz

oo ouououoouoouoounounps~spe2EPrPDPDPPRPRR PR
—_— — — — M —_ = ¥
oo PP WNWWNDNDNDNPEPPRPRPOPRRWNDNEOORSO®WNDNEPR

ANTI-JOIN

Gibt die Werte aus der linken Tabellenreferenz zuriick, die nicht mit der rechten Tabellenreferenz
Ubereinstimmen. Es wird auch als Left Anti Join bezeichnet.

Der ANTI JOIN ist eine nutzliche Operation, wenn Sie die Zeilen in einer Tabelle suchen méchten, fir
die es in einer anderen Tabelle keine Ubereinstimmung gibt.

Syntax:

SELECT columnl, column2, ..., columnn
FROM tablel

LEFT ANTI JOIN table2

ON tablel.column = table2.column;

Die folgende Abfrage gibt alle Kunden zuriick, die keine Bestellungen aufgegeben haben.

SELECT customers.customer_id, customers.name
FROM customers
LEFT ANTI JOIN orders

SELECT 88

AWS Clean Rooms SQL-Referenz

ON customers.customer_id = orders.customer_id
WHERE orders.order_id IS NULL;

NATURAL

Gibt an, dass die Zeilen aus den beiden Beziehungen implizit auf Gleichheit fur alle Spalten mit
Ubereinstimmenden Namen abgeglichen werden.

Es ordnet automatisch Spalten mit demselben Namen und Datentyp zwischen den beiden Tabellen
zu. Sie mussen die Join-Bedingung nicht explizit in der ON-Klausel angeben. Sie kombiniert alle
Ubereinstimmenden Spalten zwischen den beiden Tabellen in der Ergebnismenge.

NATURAL JOIN ist eine praktische Abkurzung, wenn die Tabellen, die Sie verknupfen, Spalten mit
denselben Namen und Datentypen haben. Es wird jedoch generell empfohlen, das explizitere INNER
JOIN... zu verwenden ON-Syntax, um die Join-Bedingungen expliziter und verstandlicher zu machen.

Syntax:

SELECT columnl, column2, ..., columnn
FROM tablel
NATURAL JOIN table2;

Das folgende Beispiel ist eine natlrliche Verknlpfung zwischen zwei Tabellen mit den folgenden
Spalten: employees departments

« employeesTabelle: employee_idfirst_name,last_name, department_id

* departmentstabelle:department_id, department_name

Die folgende Abfrage gibt eine Ergebnismenge zurlick, die den Vornamen, den Nachnamen und
den Abteilungsnamen fiir alle Gbereinstimmenden Zeilen zwischen den beiden Tabellen enthalt,
basierend auf der department_id Spalte.

SELECT e.first_name, e.last_name, d.department_name
FROM employees e
NATURAL JOIN departments d;

Das folgende Beispiel ist ein NATURAL-Join zwischen zwei Tabellen. In diesem Fall haben die
Spalten listid, sellerid, eventid und dateid identische Namen und Datentypen in beiden Tabellen und
werden daher als Join-Spalten verwendet. Die Ergebnisse sind auf 5 Zeilen begrenzt.

SELECT 89

AWS Clean Rooms SQL-Referenz

select listid, sellerid, eventid, dateid, numtickets
from listing natural join sales

order by 1

limit 5;

listid | sellerid | eventid | dateid | numtickets
——————— L e e i e
113 | 29704 | 4699 | 2075 | 22

115 | 39115 | 3513 | 2062 | 14

116 | 43314 | 8675 | 1910 | 28

118 | 6079 | 1611 | 1862 | 9

163 | 24880 | 8253 | 1888 | 14

WHERE-Klausel

Die WHERE-KIlausel enthalt Bedingungen, die entweder einen Join fur Tabellen ausfihren oder
Pradikate auf Spalten in Tabellen anwenden. Fur Tabellen kdnnen interne Joins ausgefiuhrt werden,
indem entweder in der WHERE-KIlausel oder in der FROM-Klausel die entsprechende Syntax
verwendet wird. Die Kriterien fur externe Joins missen in der FROM-Klausel angegeben werden.

Syntax

[WHERE condition]

Bedingung

Jede Suchbedingung mit einem Booleschen Ergebnis, wie eine Join-Bedingung oder ein Pradikat fur
eine Tabellenspalte. In den folgenden Beispielen werden glltige Join-Bedingungen gezeigt:

sales.listid=1isting.listid
sales.listid<>listing.listid

In den folgenden Beispielen werden gultige Bedingungen fur Spalten in Tabellen gezeigt:

catgroup like 'S%'

venueseats between 20000 and 50000
eventname in('Jersey Boys', 'Spamalot')
year=2008

length(catdesc)>25

date_part(month, caldate)=6

SELECT 90

AWS Clean Rooms SQL-Referenz

Bedingungen kénnen einfach oder komplex sein. Im Fall komplexer Bedingungen kénnen Sie
Klammern verwenden, um logische Einheiten zu isolieren. Im folgenden Beispiel wird die Join-
Bedingung durch Klammern umschlossen.

where (category.catid=event.catid) and category.catid in(6,7,8)

Nutzungshinweise
Sie konnen in der WHERE-Klausel Aliase verwenden, um Auswabhllistenausdriicke zu referenzieren.

Sie konnen die Ergebnisse aggregierter Funktionen in der WHERE-KIlausel nicht einschranken.
Verwenden Sie fur diesen Zweck die HAVING-Klausel.

Spalten, die in der WHERE-KIlausel eingeschrankt sind, missen von Tabellenreferenzen in der
FROM-Klausel abgeleitet werden.

Beispiel

Die folgende Abfrage verwendet eine Kombination aus verschiedenen WHERE-
Klauseleinschrankungen, einschlieBlich einer Join-Bedingung fur die Tabellen SALES und EVENT,
eines Pradikats fur die EVENTNAME-Spalte und zweier Pradikate fir die STARTTIME-Spalte.

select eventname, starttime, pricepaid/qtysold as costperticket, qtysold
from sales, event

where sales.eventid = event.eventid

and eventname='Hannah Montana'

and date_part(quarter, starttime) in(1,2)

and date_part(year, starttime) = 2008

order by 3 desc, 4, 2, 1 limit 10;

eventname | starttime | costperticket | gtysold

2008-06-07 14:00:00
2008-05-01 19:00:00
Hannah Montana 2008-06-07 14:00:00 1479.00000000
Hannah Montana 2008-06-07 14:00:00 1479.00000000

| | 1706.00000000 |
| | |
I I I
| | |
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 |
| | |
I I I
| | |
I I I

1658.00000000

Hannah Montana
Hannah Montana

Hannah Montana 2008-06-07 14:00:00 1163.00000000
Hannah Montana 2008-06-07 14:00:00 1163.00000000
2008-05-01 19:00:00 497 .00000000
2008-05-01 19:00:00 497 .00000000

Hannah Montana
Hannah Montana

NP MNP WNEFEPNDN

SELECT o1

AWS Clean Rooms SQL-Referenz

Hannah Montana | 2008-05-01 19:00:00 | 497 .00000000 | 4
(10 rows)

VALUES-Klausel

Die VALUES-KIausel wird verwendet, um eine Reihe von Zeilenwerten direkt in der Abfrage
bereitzustellen, ohne dass auf eine Tabelle verwiesen werden muss.

Die VALUES-Klausel kann in den folgenden Szenarien verwendet werden:
» Sie kdénnen die VALUES-KIausel in einer INSERT INTO-Anweisung verwenden, um die Werte flr
die neuen Zeilen anzugeben, die in eine Tabelle eingeflgt werden.

» Sie kdénnen die VALUES-Klausel alleine verwenden, um eine temporare Ergebnismenge oder eine
Inline-Tabelle zu erstellen, ohne auf eine Tabelle verweisen zu missen.

+ Sie kénnen die VALUES-Klausel mit anderen SQL-Klauseln wie WHERE, ORDER BY oder LIMIT
kombinieren, um die Zeilen in der Ergebnismenge zu filtern, zu sortieren oder einzuschranken.

Diese Klausel ist besonders nitzlich, wenn Sie einen kleinen Datensatz direkt in Ihre SQL-Anweisung
einflgen, abfragen oder bearbeiten missen, ohne eine permanente Tabelle erstellen oder darauf
verweisen zu mussen. Sie ermdglicht es lhnen, die Spaltennamen und die entsprechenden Werte flr
jede Zeile zu definieren, sodass Sie die Flexibilitdt haben, temporare Ergebnismengen zu erstellen
oder Daten im laufenden Betrieb einzufligen, ohne den Aufwand, eine separate Tabelle verwalten zu
mussen.

Syntax

VALUES (expression [, ...]) [table_alias]

Parameter

expression

Ein Ausdruck, der eine Kombination aus einem oder mehreren Werten, Operatoren und SQL-
Funktionen angibt, die zu einem Wert flhrt.

table_alias

Ein Alias, der einen temporaren Namen mit einer optionalen Spaltennamenliste angibt.

SELECT 92

AWS Clean Rooms SQL-Referenz

Beispiel

Im folgenden Beispiel wird eine Inline-Tabelle erstellt, eine temporare tabellenahnliche
Ergebnismenge mit zwei Spalten, undcoll. col2 Die einzelne Zeile in der Ergebnismenge enthalt
jeweils die Werte "one" undl. Der SELECT * FROM Teil der Abfrage ruft einfach alle Spalten

und Zeilen aus dieser temporaren Ergebnismenge ab. Die Spaltennamen (collundcol2) werden
automatisch vom Datenbanksystem generiert, da die VALUES-Klausel die Spaltennamen nicht
explizit spezifiziert.

SELECT * FROM VALUES ("one", 1);

o cocothoooodr
|coll|col2|
o cocothoooodr
| one] 1]
o cocothoooodr

Wenn Sie benutzerdefinierte Spaltennamen definieren méchten, kbnnen Sie dies tun, indem Sie nach
der VALUES-Klausel eine AS-Klausel verwenden, etwa so:

SELECT * FROM (VALUES ("one", 1)) AS my_table (name, id);

Fem——— F+---=+
| name | id |
Fem——— F+---=+
| one | 1 |
Fem——— F+---=+

Dadurch wirde eine temporare Ergebnismenge mit den Spaltennamen name und id anstelle der
Standardwerte coll und erstelltcol?2.

GROUP BY-Klausel

Die GROUP BY-Klausel identifiziert die Gruppierungsspalten fir die Abfrage. Gruppierungsspalten
mussen deklariert werden, wenn die Abfrage aggregierte Werte mit Standardfunktionen wie SUM,
AVG und COUNT berechnet. Wenn der SELECT-Ausdruck eine Aggregatfunktion enthalt, muss jede
Spalte im SELECT-Ausdruck, die sich nicht in einer Aggregatfunktion befindet, in der GROUP BY-
Klausel enthalten sein.

Weitere Informationen finden Sie unter AWS Clean Rooms Spark SQL-Funktionen.

SELECT 93

AWS Clean Rooms SQL-Referenz

Syntax

GROUP BY group_by _clause [, ...]

group_by_clause := {
expr |
ROLLUP (expr [, ...1) |
}

Parameter
expr

Der Liste der Spalten oder Ausdriicke muss der Liste der nicht aggregierten Ausdricke in der
Auswahlliste der Abfrage entsprechen. Betrachten Sie beispielsweise die folgende einfache
Abfrage.

select listid, eventid, sum(pricepaid) as revenue,
count(qtysold) as numtix

from sales

group by listid, eventid

order by 3, 4, 2, 1

limit 5;

listid | eventid | revenue | numtix
——————— B s s R
89397 | 47 | 20.00 | 1
106590 | 76 | 20.00 | 1
124683 | 393 | 20.00 | 1
103037 | 403 | 20.00 | 1
147685 | 429 | 20.00 | 1
(5 rows)

In dieser Abfrage besteht die Auswahlliste aus zwei aggregierten Ausdriicken. Der erste
verwendet die SUM-Funktion und der zweite verwendet die COUNT-Funktion. Die tibrigen beiden
Spalten, LISTID und EVENTID, missen als Gruppierungsspalten deklariert werden.

Ausdrucke in der -Klausel kdnnen ebenfalls die Auswahlliste durch Verwendung von
Ordinalzahlen referenzieren. Das vorherige Beispiel konnte beispielsweise wie folgt abgekurzt
werden.

select listid, eventid, sum(pricepaid) as revenue,

SELECT Y

AWS Clean Rooms SQL-Referenz

count(qtysold) as numtix
from sales

group by 1,2
order by 3, 4, 2, 1
limit 5;
listid | eventid | revenue | numtix
——————— R e e P P
89397 | 47 | 20.00 | 1
106590 | 76 | 20.00 | 1
124683 | 393 | 20.00 | 1
103037 | 403 | 20.00 | 1
147685 | 429 | 20.00 | 1
(5 rows)

ROLLUP

Sie kénnen die Aggregationserweiterung ROLLUP verwenden, um die Arbeit

mehrerer GROUP BY-Operationen in einer einzigen Anweisung auszuftihren. Weitere
Informationen zu Aggregationserweiterungen und verwandten Funktionen finden Sie unter
Aggregationserweiterungen.

Aggregationserweiterungen

AWS Clean Roomsunterstitzt Aggregationserweiterungen, um die Arbeit mehrerer GROUP BY-
Operationen in einer einzigen Anweisung zu erledigen.

GROUPING SETS

Berechnet einen oder mehrere Gruppierungssatze in einer einzigen Anweisung. Ein
Gruppierungssatz ist die Menge einer einzelnen GROUP BY-Klausel, eine Menge von 0 oder
mehr Spalten, nach denen Sie die Ergebnismenge einer Abfrage gruppieren kénnen. GROUP BY
GROUPING SETS entspricht der Ausflihrung einer UNION ALL-Abfrage fiir eine Ergebnismenge,
die nach verschiedenen Spalten gruppiert ist. Beispielsweise entspricht GROUP BY GROUPING
SETS((a), (b)) GROUP BY a UNION ALL GROUP BY b.

Das folgende Beispiel gibt die Kosten der Produkte der Bestelltabelle zurtick, gruppiert sowohl nach
den Produktkategorien als auch nach der Art der verkauften Produkte.

SELECT 95

AWS Clean Rooms SQL-Referenz

SELECT category, product, sum(cost) as total
FROM orders
GROUP BY GROUPING SETS(category, product);

category | product | total
______________________ S SO
computers | | 2100
cellphones | | 1610
| laptop | 2050
| smartphone | 1610
| mouse | 50

(5 rows)

ROLLUP

Geht von einer Hierarchie aus, bei der vorangehende Spalten als Gbergeordnete Spalten der
nachfolgenden Spalten betrachtet werden. ROLLUP gruppiert Daten nach den bereitgestellten
Spalten und gibt zusatzlich zu den gruppierten Zeilen weitere Zwischensummenzeilen zurlck, die die
Summen auf allen Ebenen der Gruppierungsspalten darstellen. Beispielsweise kdnnen Sie GROUP
BY ROLLUP((a), (b)) verwenden, um eine Ergebnismenge zurlickzugeben, die zuerst nach a und
dann nach b gruppiert ist, wobei angenommen wird, dass b ein Unterabschnitt von a ist. ROLLUP gibt
auch eine Zeile mit der gesamten Ergebnismenge ohne Gruppierungsspalten zurtick.

GROUP BY ROLLUP((a), (b)) entspricht GROUP BY GROUPING SETS((a,b), (a), ()).

Im folgenden Beispiel werden die Kosten der Produkte der Bestelltabelle zurlickgegeben, zuerst
nach Kategorie und dann nach Produkt gruppiert, wobei ,product® (Produkt) eine Unterteilung von
.category“ (Kategorie) darstellt.

SELECT category, product, sum(cost) as total
FROM orders
GROUP BY ROLLUP(category, product) ORDER BY 1,2;

category | product | total
______________________ o
cellphones | smartphone | 1610
cellphones | | 1610
computers | laptop | 2050
computers | mouse | 50
computers | | 2100
| | 3710

SELECT 96

AWS Clean Rooms SQL-Referenz

(6 rows)

CUBE

Gruppiert Daten nach den bereitgestellten Spalten und gibt zusatzlich zu den gruppierten

Zeilen weitere Zwischensummenzeilen zurlck, die die Summen auf allen Ebenen der
Gruppierungsspalten darstellen. CUBE gibt dieselben Zeilen wie ROLLUP zuriick und fagt
zusatzliche Zwischensummenzeilen fir jede Kombination von Gruppierungsspalten hinzu, die nicht
von ROLLUP abgedeckt wird. Beispielsweise kdnnen Sie GROUP BY CUBE ((a), (b)) verwenden, um
eine Ergebnismenge zurlickzugeben, die zuerst nach a und dann nach b — unter der Annahme, dass
b ein Unterabschnitt von a ist — und dann nur nach b gruppiert ist. CUBE gibt auch eine Zeile mit der
gesamten Ergebnismenge ohne Gruppierungsspalten zurlck.

GROUP BY CUBE((a), (b)) entspricht GROUP BY GROUPING SETS((a, b), (a), (b), ()).

Im folgenden Beispiel werden die Kosten der Produkte der Bestelltabelle zurlickgegeben, zuerst
nach Kategorie und dann nach Produkt gruppiert, wobei ,product” (Produkt) eine Unterteilung
von ,category“ (Kategorie) darstellt. Im Gegensatz zum vorherigen Beispiel fiir ROLLUP gibt die
Anweisung Ergebnisse flir jede Kombination von Gruppierungsspalten zurtick.

SELECT category, product, sum(cost) as total
FROM orders
GROUP BY CUBE(category, product) ORDER BY 1,2;

category | product | total
______________________ S S
cellphones | smartphone | 1610
cellphones | | 1610
computers | laptop | 2050
computers | mouse | 50
computers | | 2100
| laptop | 2050
| mouse | 50
| smartphone | 1610
| | 3710

(9 rows)

HAVING-Klausel

Die HAVING-Klausel wendet eine Bedingung auf den gruppierten Zwischenergebnissatz an, den eine
Abfrage zurickgibt.

SELECT 97

AWS Clean Rooms SQL-Referenz

Syntax

[HAVING condition]

Sie kdnnen beispielsweise die Ergebnisse einer SUM-Funktion einschranken:
having sum(pricepaid) >10000

Die HAVING-Bedingung wird angewendet, nachdem alle WHERE-Klauselbedingungen angewendet
wurden und die GROUP BY-Operationen abgeschlossen sind.

Die Bedingung selbst hat das gleiche Format wie eine WHERE-Klauselbedingung.
Nutzungshinweise

 Bei jeder, in einer -Klauselbedingung referenzierten Spalte muss es sich entweder um eine
Gruppierungsspalte handeln oder um eine Spalte, die sich auf das Ergebnis einer aggregierten
Funktion bezieht.

* In einer HAVING-Klausel kénnen Sie Folgendes nicht angeben:

* Eine Ordinalzahl, die ein Auswabhllistenelement referenziert. Nur die Klauseln GROUP BY und
ORDER BY akzeptieren Ordinalzahlen.

Beispiele

Die folgende Abfrage berechnet den Ticket-Gesamtverkauf fur alle Veranstaltungen nach Namen.
AnschlieRend werden Veranstaltungen entfernt, deren Gesamtverkauf weniger als 800.000 USD
betrug. Die HAVING-Bedingung wird auf die Ergebnisse der Aggregierungsfunktion in der
Auswabhlliste angewendet: sum(pricepaid).

select eventname, sum(pricepaid)

from sales join event on sales.eventid = event.eventid
group by 1

having sum(pricepaid) > 800000

order by 2 desc, 1;

eventname | sum

__________________ e e
Mamma Mia! | 1135454.00
Spring Awakening | 972855.00

SELECT

98

AWS Clean Rooms

SQL-Referenz

The Country Girl |
Macbeth |
Jersey Boys |
Legally Blonde |
(6 rows)

910563.00
862580.00
811877.00
804583.00

Die folgende Abfrage berechnet einen dhnlichen Ergebnissatz. In diesem Fall wird die HAVING-
Bedingung jedoch auf ein Aggregat angewendet, das nicht in der Auswahlliste angegeben ist:
sum(qgtysold). Veranstaltungen, fiir weniger als 2.000 Tickets verkauft wurden, werden aus dem

Endergebnis entfernt.

select eventname, sum(pricepaid)
from sales join event on sales.eventid = event.eventid

group by 1
having sum(qgtysold) >2000
order by 2 desc, 1;
eventname | sum
__________________ R
Mamma Mia! | 1135454.00
Spring Awakening | 972855.00
The Country Girl | 910563.00
Macbeth | 862580.00
Jersey Boys | 811877.00
Legally Blonde | 804583.00
Chicago | 790993.00
Spamalot | 714307.00
(8 rows)

Satzoperatoren

Die Mengenoperatoren werden verwendet, um die Ergebnisse zweier separater Abfrageausdriicke zu

vergleichen und zusammenzufihren.

AWS Clean RoomsSpark SQL unterstitzt die folgenden Mengenoperatoren, die in der folgenden

Tabelle aufgeflihrt sind.

Set-Operator

INTERSECT

SELECT

99

AWS Clean Rooms SQL-Referenz

Set-Operator

ALLES UBERSCHNEIDEN
EXCEPT

AUSSER ALLEN

UNION

UNION ALL

Wenn Sie beispielsweise wissen mochten, welche Benutzer einer Website sowohl Kaufer als auch
Verkaufer sind, die Namen jedoch in getrennten Spalten oder Tabellen gespeichert sind, kdnnen Sie
die Uberschneidung zwischen diesen beiden Arten von Benutzern finden. Wenn Sie wissen mdchten,
welche Benutzer einer Website Kaufer, jedoch nicht Verkaufer sind, kbnnen Sie den Operator
EXCEPT verwenden, um den Unterschied zwischen diesen beiden Listen von Benutzern zu finden.
Wenn Sie eine Liste aller Benutzer unabhéngig von der Rolle erstellen méchten, kdnnen Sie den
Operator UNION verwenden.

® Note

Die Klauseln ORDER BY, LIMIT, SELECT TOP und OFFSET kdénnen nicht in den
Abfrageausdriicken verwendet werden, die durch die Mengenoperatoren UNION, UNION
ALL, INTERSECT und EXCEPT zusammengeflihrt werden.

Themen
+ Syntax
» Parameters

» Reihenfolge der Evaluierung flr Satzoperatoren

* Nutzungshinweise

» Beispiel fir UNION-Abfragen
 Beispiel fur die UNION ALL-Abfrage
» Beispiel fur INTERSECT-Abfragen
 Beispiel fur die EXCEPT-Abfrage

SELECT 100

AWS Clean Rooms SQL-Referenz

Syntax

subqueryl
{ { UNION [ALL | DISTINCT 7 |
INTERSECT [ALL | DISTINCT] |
EXCEPT [ALL | DISTINCT] } subquery2 } [...] }

Parameters

Unterabfrage1, Unterabfrage2

Ein Abfrageausdruck, der in Form seiner Auswahlliste einem zweiten Abfrageausdruck entspricht,
der auf den Operator UNION, UNION ALL, INTERSECT, INTERSECT ALL, EXCEPT oder
EXCEPT ALL folgt. Die beiden Ausdriicke missen die gleiche Zahl von Ausgabespalten mit
kompatiblen Datentypen enthalten. Andernfalls kdnnen die beiden Ergebnissatze nicht verglichen
und zusammengefihrt werden. Mengenoperationen ermdglichen keine implizite Konvertierung
zwischen verschiedenen Kategorien von Datentypen. Weitere Informationen finden Sie unter
Kompatibilitat von Typen und Umwandlung zwischen Typen.

Sie kbnnen Abfragen erstellen, die eine unbegrenzte Anzahl von Abfrageausdriicken enthalten,
und sie mithilfe der Operatoren UNION, INTERSECT und EXCEPT in beliebigen Kombinationen
verbinden. Beispielsweise ist die folgende Abfragestruktur gultig, wenn die Tabellen T1, T2 und T3
kompatible Satze von Spalten enthalten:

select * from tl
union
select * from t2
except
select * from t3

VEREINIGUNG [ALLE | UNTERSCHIEDLICH]

Satzoperation, die Zeilen aus zwei Abfrageausdrticken zuriickgibt, unabhangig davon, ob die
Zeilen von einem oder von beiden Ausdriucken abgeleitet werden.

SICH UBERSCHNEIDEN [ALLE | UNTERSCHIEDLICH]

Satzoperation, die Zeilen zurickgibt, die von zwei Abfrageausdriicken abgeleitet werden. Zeilen,
die nicht von beiden Ausdrticken zuriickgegeben werden, werden verworfen.

SELECT 101

AWS Clean Rooms SQL-Referenz

AUSSER [ALLE | UNTERSCHIEDLICH]

Satzoperation, die Zeilen zurickgibt, die von einem von zwei Abfrageausdricken abgeleitet
werden. Um sich fur das Ergebnis zu qualifizieren, durfen Zeilen zwar in der ersten
Ergebnistabelle, nicht jedoch in der zweiten vorhanden sein.

EXCEPT ALL entfernt keine Duplikate aus den Ergebniszeilen.

MINUS und EXCEPT sind exakte Synonyme.

Reihenfolge der Evaluierung fir Satzoperatoren

Die Satzoperatoren UNION und EXCEPT sind links-assoziativ. Wenn keine Klammern angegeben
werden, um die Reihenfolge zu beeinflussen, wird eine Kombination dieser Satzoperatoren von links
nach rechts ausgewertet. Beispielsweise wird in der folgenden Abfrage der Operator UNION von

T1 und T2 zuerst ausgewertet. AnschlielRend wird die Operation EXCEPT flir das UNION-Ergebnis
ausgefihrt:

select * from tl
union
select * from t2
except
select * from t3

Der Operator INTERSECT hat Vorrang vor den Operatoren UNION und EXCEPT, wenn in derselben
Abfrage eine Kombination von Operatoren verwendet wird. Beispielsweise wird in der folgenden
Abfrage die Schnittmenge von T2 und T3 ausgewertet und anschlielfiend mit T1 vereinigt:

select * from tl
union

select * from t2
intersect

select * from t3

Durch die Hinzufigung von Klammern kénnen Sie eine andere Reihenfolge fir die Auswertung
erzwingen. Im folgenden Fall wird fiir das Ergebnis von UNION fiir T1 und T2 eine Uberschneidung
mit T3 ausgewertet. Die Abfrage flhrt wahrscheinlich zu einem anderen Ergebnis.

(select * from tl

SELECT 102

AWS Clean Rooms SQL-Referenz

union

select * from t2)
intersect

(select * from t3)

Nutzungshinweise

» Die Spaltennamen, die im Ergebnis einer Satzoperationsabfrage zuriickgegeben werden, sind
die Spaltennamen (Spaltenaliase) aus den Tabellen im ersten Abfrageausdruck. Da diese
Spaltennamen potenziell irrefihrend sein kdnnen, da die Werte in der Spalte aus Tabellen auf
beiden Seiten des Satzoperators abgeleitet werden, sollten Sie mdglicherweise sinnvolle Aliase fur
den Ergebnissatz bereitstellen.

« Wenn Abfragen mit Satzoperatoren Dezimalergebnisse zurtickgeben, geben die entsprechenden
Ergebnisspalten Werte mit derselben Genauigkeit und Skalierung zurtick. In der folgenden Abfrage,
in der T1.REVENUE eine DECIMAL(10,2)-Spalte ist und T2.REVENUE eine DECIMAL(8,4)-Spalte
ist, ist das Dezimalergebnis DECIMAL(12,4):

select tl.revenue union select t2.revenue;

Die Skalierung ist 4, da dies die maximale Skalierung der beiden Spalten ist. Die Genauigkeit ist
12, da T1.REVENUE 8 Stellen links vom Dezimalkomma erfordert (12 — 4 = 8). Dieser Vorgang
stellt sicher, dass alle Werte aus beiden Seiten der UNION-Operation in das Ergebnis passen. Fur
64-Bit-Werte ist die maximale Ergebnisgenauigkeit 19 und die maximale Ergebnisskalierung 18.
Fur 128-Bit-Werte ist die maximale Ergebnisgenauigkeit 38 und die maximale Ergebnisskalierung
37.

Wenn der resultierende Datentyp die AWS Clean Rooms Genauigkeits- und Skalierungsgrenzen
Uberschreitet, gibt die Abfrage einen Fehler zurlck.

» Bei Satzoperationen werden zwei Zeilen als identisch behandelt, wenn fir jedes
korrespondierendes Spaltenpaar die beiden Datenwerte beide gleich oder beide NULL sind. Wenn
beispielsweise die Tabellen T1 und T2 beide nur eine Spalte und eine Zeile enthalten und diese
Zeile in beiden Tabellen NULL ist, gibt eine INTERSECT-Operation fur diese Tabellen diese Zeile
zuruck.

SELECT 103

AWS Clean Rooms SQL-Referenz

Beispiel fur UNION-Abfragen

In der folgenden UNION-Abfrage werden Zeilen in der Tabelle SALES mit Zeilen in der Tabelle
LISTING zusammengefiihrt. Aus jeder Tabelle werden drei kompatible Spalten ausgewahlt. In diesem
Fall haben die korrespondierenden Spalten die gleichen Namen und Datentypen.

select listid, sellerid, eventid from listing
union select listid, sellerid, eventid from sales

listid | sellerid | eventid

________ s
1] 36861 | 7872
2 | 16002 | 4806
3| 21461 | 4256
4 | 8117 | 4337
5 | 1616 | 8647

Das folgende Beispiel zeigt, wie Sie der Ausgabe einer UNION-Abfrage einen Literalwert hinzufligen
kénnen, um zu sehen, durch welche Abfrageausdricke die einzelnen Zeilen im Ergebnissatz jeweils
generiert wurden. Die Abfrage identifiziert Zeilen aus dem ersten Abfrageausdruck als ,B“ (fir Kaufer)
und Zeilen aus dem zweiten Abfrageausdruck als ,S* (fur Verkaufer).

Die Abfrage identifiziert Kaufer und Verkaufer fur Tickettransaktionen, die einen Wert von mindestens
10.000 USD haben. Der einzige Unterschied zwischen den beiden Abfrageausdriicken auf beiden
Seiten des UNION-Operators besteht in der Joining-Spalte fur die Tabelle SALES.

select listid, lastname, firstname, username,
pricepaid as price, 'S' as buyorsell

from sales, users

where sales.sellerid=users.userid

and pricepaid >=10000

union

select listid, lastname, firstname, username, pricepaid,
'B' as buyorsell

from sales, users

where sales.buyerid=users.userid

and pricepaid >=10000

listid | lastname | firstname | username | price | buyorsell
———————— L e e e e e et N e

209658 | Lamb | Colette | VORISLYI | 10000.00 | B

SELECT 104

AWS Clean Rooms SQL-Referenz

209658 | West | Kato | ELUSIXAA | 10000.00 | S
212395 | Greer | Harlan | GX071KOC | 12624.00 | S
212395 | Perry | Cora | YWR73YNZ | 12624.00 | B
215156 | Banks | Patrick | ZNQ69CLT | 10000.00 | S
215156 | Hayden | Malachi | BBG56AKU | 10000.00 | B

Das folgende Beispiel verwendet einen UNION ALL-Operator, da duplizierte Zeilen im Ergebnis
beibehalten werden missen, wenn gefunden. Fir eine bestimmte Reihe von Ereignissen IDs gibt
die Abfrage 0 oder mehr Zeilen fiur jeden Verkauf zurtick, der mit jedem Ereignis verknupft ist, und O
oder 1 Zeile fur jede Auflistung dieses Ereignisses. Ereignisse IDs sind flr jede Zeile in den Tabellen
LISTING und EVENT eindeutig, aber es kann mehrere Verkaufe flir dieselbe Kombination aus
Ereignis und Angebot IDs in der Tabelle SALES geben.

Die dritte Spalte im Ergebnissatz identifiziert die Quelle der Zeile. Wenn sie aus der Tabelle

SALES stammt, wird sie in der Spalte SALESROW mit ,,Ja“ markiert. (SALESROW ist ein Alias fur
SALES.LISTID.) Wenn sie aus der Tabelle LISTING stammt, wird sie in der Spalte SALESROW mit
,Nein“ markiert.

In diesem Fall besteht der Ergebnissatz aus drei Verkaufszeilen fur Auflistung 500, Ereignis 7787.
Mit anderen Worten, flr diese Kombination von Auflistung und Ereignis fanden drei verschiedene
Transaktionen statt. Bei den anderen beiden Auflistungen, 501 und 502, wurden keine Verkaufe
erzielt. Daher IDs stammt die einzige Zeile, die die Abfrage flr diese Listen generiert, aus der Tabelle
LISTING (SALESROW = 'No").

select eventid, listid, 'Yes' as salesrow
from sales

where listid in(500,501,502)

union all

select eventid, listid, 'No'

from listing

where listid in(500,501,502)

eventid | listid | salesrow

_________ [ISR S
7787 | 500 | No
7787 | 500 | Yes
7787 | 500 | Yes
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

SELECT 105

AWS Clean Rooms SQL-Referenz

Wenn Sie die gleiche Abfrage ohne das Schllisselwort ALL ausflihren, gibt das Ergebnis nur eine der
Verkaufstransaktionen zurlck.

select eventid, listid, 'Yes' as salesrow
from sales

where listid in(500,501,502)

union

select eventid, listid, 'No'

from listing

where listid in(500,501,502)

eventid | listid | salesrow

_________ o
7787 | 500 | No
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Beispiel fir die UNION ALL-Abfrage

Das folgende Beispiel verwendet einen UNION ALL-Operator, da duplizierte Zeilen im Ergebnis
beibehalten werden missen, wenn gefunden. Fir eine bestimmte Reihe von Ereignissen IDs gibt
die Abfrage 0 oder mehr Zeilen fiir jeden Verkauf zurlick, der mit jeder Veranstaltung verknupft ist,
und 0 oder 1 Zeile fir jede Auflistung dieser Veranstaltung. Ereignisse IDs sind fur jede Zeile in den
Tabellen LISTING und EVENT eindeutig, aber es kann mehrere Verkaufe fir dieselbe Kombination
aus Ereignis und Angebot IDs in der Tabelle SALES geben.

Die dritte Spalte im Ergebnissatz identifiziert die Quelle der Zeile. Wenn sie aus der Tabelle

SALES stammt, wird sie in der Spalte SALESROW mit ,,Ja“ markiert. (SALESROW ist ein Alias fur
SALES.LISTID.) Wenn sie aus der Tabelle LISTING stammt, wird sie in der Spalte SALESROW mit
,Nein“ markiert.

In diesem Fall besteht der Ergebnissatz aus drei Verkaufszeilen fur Auflistung 500, Ereignis 7787.
Mit anderen Worten, flr diese Kombination von Auflistung und Ereignis fanden drei verschiedene
Transaktionen statt. Bei den anderen beiden Auflistungen, 501 und 502, wurden keine Verkaufe
erzielt. Daher IDs stammt die einzige Zeile, die die Abfrage flir diese Listen generiert, aus der Tabelle
LISTING (SALESROW = 'No").

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)

SELECT 106

AWS Clean Rooms SQL-Referenz

union all

select eventid, listid, 'No'
from listing

where listid in(500,501,502)

eventid | listid | salesrow

_________ S T
7787 | 500 | No
7787 | 500 | Yes
7787 | 500 | Yes
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Wenn Sie die gleiche Abfrage ohne das Schlisselwort ALL ausfiihren, gibt das Ergebnis nur eine der
Verkaufstransaktionen zurtick.

select eventid, listid, 'Yes' as salesrow
from sales

where listid in(500,501,502)

union

select eventid, listid, 'No'

from listing

where listid in(500,501,502)

eventid | listid | salesrow

_________ S
7787 | 500 | No
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No

Beispiel fir INTERSECT-Abfragen

Vergleichen Sie das folgende Beispiel mit dem ersten UNION-Beispiel. Der einzige Unterschied
zwischen den beiden Beispielen besteht im verwendeten Satzoperator. Die Ergebnisse
unterscheiden sich jedoch stark. Nur eine Zeile ist identisch:

235494 | 23875 | 8771

Dies ist die einzige Zeile im begrenzten Ergebnis von 5 Zeilen, die in beiden Tabellen gefunden
wurde.

SELECT 107

AWS Clean Rooms SQL-Referenz

select listid, sellerid, eventid from listing
intersect
select listid, sellerid, eventid from sales

listid | sellerid | eventid

________ B B
235494 | 23875 | 8771
235482 | 1067 | 2667
235479 | 1589 | 7303
235476 | 15550 | 793
235475 | 22306 | 7848

Die folgende Abfrage sucht Veranstaltungen (fur die Tickets verkauft wurden), die im Marz sowohl
in New York City als auch in Los Angeles stattfanden. Der Unterschied zwischen den beiden
Abfrageausdrucken auf beiden Seiten des UNION-Operators besteht in der Einschrankung fur die
Spalte VENUECITY.

select distinct eventname from event, sales, venue

where event.eventid=sales.eventid and event.venueid=venue.venueid
and date_part(month,starttime)=3 and venuecity='Los Angeles'
intersect

select distinct eventname from event, sales, venue

where event.eventid=sales.eventid and event.venueid=venue.venueid
and date_part(month,starttime)=3 and venuecity='New York City';

eventname

A Streetcar Named Desire
Dirty Dancing

Electra

Running with Annalise
Hairspray

Mary Poppins

November

Oliver!

Return To Forever
Rhinoceros

South Pacific

The 39 Steps

The Bacchae

The Caucasian Chalk Circle
The Country Girl

SELECT 108

AWS Clean Rooms SQL-Referenz

Wicked
Woyzeck

Beispiel fur die EXCEPT-Abfrage

Die CATEGORY-Tabelle in der Datenbank enthalt die folgenden 11 Zeilen:

catid | catgroup | catname | catdesc
——————— e e
1 | Sports | MLB | Major League Baseball
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association
5 | Sports | MLS | Major League Soccer
6 | Shows | Musicals | Musical theatre
7 | Shows | Plays | A1l non-musical theatre
8 | Shows | Opera | A1l opera and light opera
9 | Concerts | Pop | All rock and pop music concerts
10 | Concerts | Jazz | A1l jazz singers and bands
11 | Concerts | Classical | All symphony, concerto, and choir concerts
(11 rows)

Angenommen, eine Tabelle namens CATEGORY_STAGE (eine Staging-Tabelle) enthalt eine einzige
zusatzliche Zeile:

catid | catgroup | catname | catdesc
——————— R et it etttk ittt
1 | Sports | MLB | Major League Baseball
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association
5 | Sports | MLS | Major League Soccer
6 | Shows | Musicals | Musical theatre
7 | Shows | Plays | A1l non-musical theatre
8 | Shows | Opera | All opera and light opera
9 | Concerts | Pop | All rock and pop music concerts
10 | Concerts | Jazz | A1l jazz singers and bands
11 | Concerts | Classical | All symphony, concerto, and choir concerts
12 | Concerts | Comedy | A1l stand up comedy performances
(12 rows)

SELECT 109

AWS Clean Rooms SQL-Referenz

Gibt den Unterschied zwischen den beiden Tabellen zurlick. Mit anderen Worten, gibt Zeilen zurtck,
die in der Tabelle CATEGORY_STAGE, jedoch nicht in der Tabelle CATEGORY enthalten sind:

select * from category_stage
except
select * from category;

catid | catgroup | catname | catdesc

——————— R i ittt ittt
12 | Concerts | Comedy | All stand up comedy performances

(1 row)

Die folgende gleichwertige Abfrage verwendet das Synonym MINUS.

select * from category_stage
minus
select * from category;

catid | catgroup | catname | catdesc

——————— R i ittt ittt
12 | Concerts | Comedy | All stand up comedy performances

(1 row)

Wenn Sie die Reihenfolge der SELECT-Ausdriicke umkehren, gibt die Abfrage keine Zeilen zurtick.
ORDER BY-Klausel

Die ORDER BY-Klausel sortiert den Ergebnissatz einer Abfrage.

(® Note

Der duRerste ORDER BY-Ausdruck darf nur Spalten enthalten, die sich in der Auswabhlliste
befinden.

Themen
+ Syntax
* Parameters

* Nutzungshinweise

SELECT 110

AWS Clean Rooms SQL-Referenz

» Beispiele mit ORDER BY

Syntax

[ORDER BY expression [ASC | DESC]]
[NULLS FIRST | NULLS LAST]

[LIMIT { count | ALL }]

[OFFSET start]

Parameters

expression

Ausdruck, der die Sortierreihenfolge des Abfrageergebnisses definiert. Er besteht aus einer oder
mehreren Spalten in der Auswahlliste. Die Ergebnisse werden auf der Basis einer binaren UTF-8-
Reihenfolge zurlickgegeben. Sie kénnen auch Folgendes angeben:

* Ordinalzahlen, die die Position der Auswabhllisteneintrage darstellen (oder die Position der
Spalten in der Tabelle, wenn keine Auswahlliste vorhanden ist)

 Aliase, die Auswabhllisteneintrage definieren

Wenn die -Klausel mehrere Ausdricke enthalt, wird der Ergebnissatz nach dem ersten Ausdruck
sortiert. Anschlie®end wird der zweite Ausdruck auf Zeilen mit Gbereinstimmenden Werten aus
dem ersten Ausdruck angewendet usw.

ASC | DESC

Eine Option, die die Sortierreihenfolge fir den Ausdruck wie folgt definiert:

» ASC: aufsteigend (beispielsweise niedrig nach hoch fir numerische Werte und A bis Z flir
Zeichenfolgen). Wenn keine Option angegeben wird, werden die Daten standardmalig in
aufsteigender Reihenfolge sortiert.

+ DESC: absteigend (beispielsweise hoch nach niedrig fur numerische Werte und Z bis A flr
Zeichenfolgen).

NULLS FIRST | NULLS LAST

Option, die angibt, ob NULL-Werte vor Nicht-Null-Werten oder nach Nicht-Null-Werten aufgelistet
werden sollen. Standardmafig werden NULL-Werte in einer ASC-Reihenfolge an letzter Stelle
sortiert und aufgefihrt und in einer DESC-Reihenfolge an erster Stelle sortiert und aufgefthrt.

SELECT 111

AWS Clean Rooms SQL-Referenz

LIMIT number | ALL

Option, die die Anzahl der sortierten Zeilen steuert, die von der Abfrage zurtickgegeben werden.
Bei der LIMIT-Zahl muss es sich um eine positive Ganzzahl handeln. Der maximal zulassige Wert
ist 2147483647.

LIMIT O gibt keine Zeilen zurlick. Sie kdnnen diese Syntax flir Testzwecke verwenden: um zu
prufen, ob eine Abfrage ausgefiihrt wird (ohne Zeilen anzuzeigen) oder um eine Spaltenliste aus
einer Tabelle zurlickzugeben. Eine -Klausel ist redundant, wenn Sie LIMIT 0 verwenden, um eine
Spaltenliste zurtickzugeben. Der Standardwert ist LIMIT ALL.

OFFSET start

Option, die die Anzahl der Zeilen vor start angibt, die Gbersprungen werden sollen, bevor

Zeilen zurlickgegeben werden. Bei der OFFSET-Zahl muss es sich um eine positive Ganzzahl
handeln. Der maximal zulassige Wert ist 2147483647. Bei der Verwendung mit der Option
LIMIT werden OFFSET-Zeilen Ubersprungen, bevor die Zahl der LIMIT-Zeilen gezahlt werden,
die zurickgegeben werden. Wenn die LIMIT-Option nicht verwendet wird, wird die Zahl der
Zeilen im Ergebnissatz um die Zahl der Ubersprungenen Zeilen reduziert. Die von einer OFFSET-
Klausel Ubersprungenen Zeilen missen dennoch gescannt werden. Daher ist es mdglicherweise
ineffizient, einen groRen OFFSET-Wert zu verwenden.

Nutzungshinweise
Beachten Sie das folgende erwartete Verhalten bei Verwendung von ORDER BY-Klauseln:

* NULL-Werte gelten als ,héher” als alle anderen Werte. Bei Verwendung der standardmafigen
aufsteigenden Sortierfolge befinden sich NULL-Werte am Ende. Um dieses Verhalten zu andern,
wahlen Sie die Option NULLS FIRST.

» Wenn eine Anfrage keine ORDER BY-Klausel enthalt, gibt das System Ergebnissatze ohne
vorhersagbare Anordnung der Zeilen zuriick. Wenn dieselbe Abfrage zweimal ausgeftihrt wird, wird
der Ergebnissatz mdglicherweise in einer anderen Reihenfolge zurlickgegeben.

» Die Optionen LIMIT und OFFSET kénnen ohne ORDER BY-Klausel verwendet werden. Um jedoch
einen konsistenten Satz von Zeilen zurlickzugeben, verwenden Sie diese Optionen in Verbindung
mit ORDER BY.

* In jedem parallel SystemAWS Clean Rooms, wenn ORDER BY keine eindeutige Reihenfolge
erzeugt, ist die Reihenfolge der Zeilen nicht deterministisch. Das heil3t, wenn der ORDER BY-

SELECT 112

AWS Clean Rooms SQL-Referenz

Ausdruck doppelte Werte erzeugt, kann die Reihenfolge, in der diese Zeilen zurliickgegeben
werden, von anderen Systemen oder von einem Lauf AWS Clean Rooms zum néachsten variieren.

 AWS Clean Roomsunterstitzt keine Zeichenkettenliterale in ORDER BY-Klauseln.

Beispiele mit ORDER BY

Gibt alle 11 Zeilen aus der Tabelle CATEGORY geordnet nach der zweiten Spalte, CATGROUP,
zurlck. Ergebnisse, die denselben CATGROUP-Wert haben, ordnen die CATDESC-Spaltenwerte
nach der Lange der Zeichenfolge. Dann wird nach Spalten CATID und CATNAME geordnet.

select * from category order by 2, 1, 3;

catid | catgroup | catname | catdesc

——————— e e e e e e e e
10 | Concerts | Jazz | A1l jazz singers and bands

9 | Concerts | Pop | All rock and pop music concerts

11 | Concerts | Classical | All symphony, concerto, and choir conce

6 | Shows | Musicals | Musical theatre

7 | Shows | Plays | A1l non-musical theatre

8 | Shows | Opera | All opera and light opera

5 | Sports | MLS | Major League Soccer

1 | Sports | MLB | Major League Baseball

2 | Sports | NHL | National Hockey League

3 | Sports | NFL | National Football League

4 | Sports | NBA | National Basketball Association
(11 rows)

Gibt ausgewahlte Spalten aus der Tabelle SALES zurtick, geordnet nach den héchsten QTYSOLD-
Werten. Begrenzt das Ergebnis auf die obersten 10 Zeilen:

select salesid, qtysold, pricepaid, commission, saletime from sales
order by qtysold, pricepaid, commission, salesid, saletime desc

salesid | qtysold | pricepaid | commission | saletime
————————— et ittt e etttk
15401 | 8 | 272.00 | 40.80 | 2008-03-18 06:54:56
61683 | 8 | 296.00 | 44.40 | 2008-11-26 04:00:23
90528 | 8 | 328.00 | 49.20 | 2008-06-11 02:38:09
74549 | 8 | 336.00 | 50.40 | 2008-01-19 12:01:21
130232 | 8 | 352.00 | 52.80 | 2008-05-02 05:52:31
55243 | 8 | 384.00 | 57.60 | 2008-07-12 02:19:53

SELECT 113

AWS Clean Rooms SQL-Referenz

16004 | 8 | 440.00 | 66.00 | 2008-11-04 07:22:31
489 | 8 | 496.00 | 74.40 | 2008-08-03 05:48:55

4197 | 8 | 512.00 | 76.80 | 2008-03-23 11:35:33
16929 | 8 | 568.00 | 85.20 | 2008-12-19 02:59:33

Gibt unter Verwendung der LIMIT 0-Syntax eine Spaltenliste, aber keine Zeilen zurtick:

select * from venue limit 0;
venueid | venuename | venuecity | venuestate | venueseats
————————— e e e R e e

(@ rows)

Beispiele fur Unterabfragen

In den folgenden Beispielen zeigen verschiedene Mdglichkeiten, wie Unterabfragen in SELECT-
Abfragen integriert werden kénnen. Ein weiteres Beispiel flr die Verwendung von Unterabfragen
finden Sie unter Beispiel.

Unterabfragen in der SELECT-Liste

Das folgende Beispiel enthalt eine Unterabfrage in der SELECT-Liste. Diese Unterabfrage ist skalar:
Sie gibt nur eine Spalte und einen Wert zurlick. Dies wird im Ergebnis fir jede Zeile wiederholt,

die von der umschlielienden Abfrage zurlickgegeben wird. Die Abfrage vergleicht den von der
Unterabfrage berechneten Q1SALES-Wert mit den Verkaufswerten fir zwei andere Quartale (2 und
3) im Jahr 2008 wie von der umschlieRenden Abfrage definiert.

select qtr, sum(pricepaid) as qtrsales,

(select sum(pricepaid)

from sales join date on sales.dateid=date.dateid
where qtr='1' and year=2008) as qlsales

from sales join date on sales.dateid=date.dateid
where qtr in('2','3') and year=2008

group by qtr

order by qtr;

gtr | gtrsales | glsales
_______ o
2 | 30560050.00 | 24742065.00

3 | 31170237.00 | 24742065.00
(2 rows)

SELECT 114

AWS Clean Rooms SQL-Referenz

Unterabfragen in der WHERE-Klausel

Das folgende Beispiel enthalt eine Tabellenunterabfrage in der WHERE-Klausel. Diese Unterabfrage
produziert mehrere Zeilen. In diesem Fall enthalten die Zeilen nur eine Spalte. Tabellenunterabfragen
kénnen jedoch mehrere Spalten und Zeilen enthalten, genau wie jede andere Tabelle.

Die Abfrage sucht die 10 Top-Verkaufer in Bezug die meisten verkauften Tickets. Die Liste der

Top 10 wird durch die Unterabfrage eingeschrankt, die Benutzer entfernt, die in Stadten mit
Ticketverkaufsstellen leben. Diese Abfrage kann auf verschiedene Arten geschrieben werden.
Beispielsweise konnte die Unterabfrage als ein Join innerhalb der Hauptabfrage geschrieben werden.

select firstname, lastname, city, max(qtysold) as maxsold
from users join sales on users.userid=sales.sellerid
where users.city not in(select venuecity from venue)
group by firstname, lastname, city

order by maxsold desc, city desc

limit 10;

firstname | lastname | city | maxsold
——————————— B e el e
Noah | Guerrero | Worcester | 8
Isadora | Moss | Winooski | 8
Kieran | Harrison | Westminster | 8
Heidi | Davis | Warwick | 8
Sara | Anthony | Waco | 8
Bree | Buck | Valdez | 8
Evangeline | Sampson | Trenton | 8
Kendall | Keith | Stillwater | 8
Bertha | Bishop | Stevens Point | 8
Patricia | Anderson | South Portland | 8
(10 rows)

Unterabfragen in der WITH-Klausel

Siehe WITH-Klausel.

Korrelierte Unterabfragen

Das folgende Beispiel enthélt eine korrelierte Unterabfrage in der WHERE-Klausel. Diese Art
von Unterabfrage enthalt mindestens eine Korrelation zwischen ihren Spalten und den Spalten,
die von der umschlieRenden Abfrage produziert werden. In diesem Fall ist die Korrelation where

SELECT 115

AWS Clean Rooms SQL-Referenz

s.listid=1.1istid. Die Unterabfrage wird flr jede Zeile ausgeflhrt, die die umschlieRende
Abfrage produziert, um die Zeile zu qualifizieren oder zu disqualifizieren.

select salesid, listid, sum(pricepaid) from sales s
where qtysold=

(select max(numtickets) from listing 1

where s.listid=1.listid)

group by 1,2

order by 1,2

limit 5;

salesid | listid | sum
________ S
27 | 28 | 111.00
81 | 103 | 181.00
142 | 149 | 240.00
146 | 152 | 231.00
194 | 210 | 144.00
(5 rows)

Muster flr korrelierte Unterabfragen, die nicht unterstitzt werden

Der Abfrageplaner verwendet eine Methode fur das Neuschreiben von Abfragen, die als
Entkorrelierung von Unterabfragen bezeichnet wird, um verschiedene Muster korrelierter
Unterabfragen flur die Ausfuhrung in einer MPP-Umgebung zu optimieren. Einige Typen von
korrelierten Unterabfragen folgen Mustern, die nicht korreliert AWS Clean Rooms werden kénnen und
auch nicht unterstutzt werden. Abfragen, die die folgenden Korrelierungsreferenzen enthalten, geben
Fehler zurick:

» Korrelierungsreferenzen, die einen Abfrageblock Uberspringen, auch als ,Uberspringende
Korrelierungsreferenzen® bekannt. Beispielsweise sind in der folgenden Abfrage der Block mit der
Korrelierungsreferenz und der tUbersprungene Block durch ein NOT EXISTS-Pradikat verbunden:

select event.eventname from event

where not exists

(select * from listing

where not exists

(select * from sales where event.eventid=sales.eventid));

Der Ubersprungende Block ist in diesem Fall die Unterabfrage fir die LISTING-Tabelle. Die
Korrelierungsreferenz korreliert die Tabellen EVENT und SALES.

SELECT 116

AWS Clean Rooms SQL-Referenz

» Korrelierungsreferenzen aus einer Unterabfrage, die Teil einer ON-Klausel in einer externen
Abfrage ist:

select * from category

left join event

on category.catid=event.catid and eventid =

(select max(eventid) from sales where sales.eventid=event.eventid);

Die ON-Klausel enthalt eine Korrelierungsreferenz aus SALES in der Unterabfrage fir EVENT in
der umschliellenden Abfrage.

 Korrelationsreferenzen, die auf Null reagieren, auf eine Systemtabelle. AWS Clean Rooms
Beispiel:

select attrelid

from my_locks sl, my_attribute

where sl.table_id=my_attribute.attrelid and 1 not in
(select 1 from my_opclass where sl.lock_owner = opcowner);

+ Korrelierungsreferenzen aus einer Unterabfrage, die eine Fensterfunktion enthalt.

select listid, qtysold

from sales s

where gtysold not in

(select sum(numtickets) over() from listing 1 where s.listid=1.listid);

* Referenzen in einer GROUP BY-Spalte zu den Ergebnissen einer korrelierten Unterabfrage.
Beispiel:

select listing.listid,
(select count (sales.listid) from sales where sales.listid=listing.listid) as list

from listing
group by list, listing.listid;

» Korrelierungsreferenzen aus einer Unterabfrage mit einer Aggregationsfunktion und einer GROUP
BY-Klausel, die durch ein IN-Pradikat mit der umschlie3enden Abfrage verbunden sind. (Diese
Einschrankung gilt nicht fir die Aggregationsfunktionen MIN und MAX.) Beispiel:

select * from listing where listid in
(select sum(qtysold)
from sales

SELECT 117

AWS Clean Rooms

SQL-Referenz

where numtickets>4
group by salesid);

AWS Clean Rooms Spark SQL-Funktionen

AWS Clean Rooms Spark SQL unterstitzt die folgenden SQL-Funktionen:

Themen

Aggregationsfunktionen

Array-Funktionen

Bedingte Ausdricke

Konstruktor-Funktionen

Funktionen fur die Datentypformatierung

Datums- und Zeitfunktionen

Verschlisselungs- und Entschliisselungsfunktionen

Hash-Funktionen

Hyperloglog-Funktionen
JSON-Funktionen

Mathematische Funktionen

Skalarfunktionen

Zeichenfolgenfunktionen

Funktionen im Zusammenhang mit dem Datenschutz

Fensterfunktionen

Aggregationsfunktionen

Aggregatfunktionen in AWS Clean Rooms Spark SQL werden verwendet, um Berechnungen oder
Operationen fur eine Gruppe von Zeilen durchzufihren und einen einzelnen Wert zuriickzugeben. Sie
sind fur Datenanalyse- und Zusammenfassungsaufgaben unerlasslich.

AWS Clean Rooms Spark SQL unterstutzt die folgenden Aggregatfunktionen:

Themen

Funktion ANY_VALUE

SQL-Funktionen

118

AWS Clean Rooms

SQL-Referenz

APPROX COUNT_DISTINCT-Funktion
Funktion ,UNGEFAHRES PERZENTIL*
AVG Funktion

Die Funktion BOOL_AND

Die Funktion BOOL_OR
CARDINALITY-Funktion

Funktion COLLECT_LIST

Funktion COLLECT_SET

COUNTund COUNT DISTINCT Funktionen
Die Funktion COUNT

Die Funktion MAX

Die Funktion MEDIAN

Die Funktion MIN
PERZENTILE-Funktion
SKEWNESS-Funktion

Die Funktionen STDDEV_SAMP und STDDEV_POP

SUMund SUM DISTINCT Funktionen
Die Funktionen VAR_SAMP und VAR_POP

Funktion ANY_VALUE

Die Funktion ANY_VALUE gibt einen beliebigen Wert aus den Eingabeausdruckswerten nicht
deterministisch zurtck. Diese Funktion kann NULL zurtickgeben, wenn der Eingabeausdruck nicht

dazu fuhrt, dass Zeilen zurlickgegeben werden.

Syntax

ANY_VALUE (expression[, isIgnoreNull])

Argumente

Ausdruck

Die Zielspalte oder der Ausdruck, fur die/den die Funktion ausgefuhrt wird. Der Ausdruck ist einer

der folgenden Datentypen:

Aggregationsfunktionen

119

AWS Clean Rooms SQL-Referenz

islgnoreNull
Ein boolescher Wert, der bestimmt, ob die Funktion nur Werte zurtickgeben soll, die ungleich Null
sind.

Ruckgabewert

Gibt denselben Datentyp wie expression zurlck.

Nutzungshinweise

Wenn eine Anweisung, die die Funktion ANY_VALUE flir eine Spalte angibt, auch einen Verweis
auf eine zweite Spalte enthalt, muss die zweite Spalte in einer GROUP-BY-Klausel oder in einer
Aggregationsfunktion enthalten sein.

Beispiele

Das folgende Beispiel gibt eine Instanz von any zurlick, dateid wo der ist. eventname Eagles

select any_value(dateid) as dateid, eventname from event where eventname ='Eagles'
group by eventname;

Die Ergebnisse sehen wie folgt aus.

dateid | eventname
_______ o e =

1878 | Eagles

Im folgenden Beispiel wird eine Instanz von any zurlickgegebendateid, wobei der Wert Eagles
oder eventname istCold War Kids.

select any_value(dateid) as dateid, eventname from event where eventname in('Eagles',
'Cold War Kids') group by eventname;

Die Ergebnisse sehen wie folgt aus.

dateid | eventname
_______ e e e ———————
1922 | Cold War Kids
1878 | Eagles

Aggregationsfunktionen 120

AWS Clean Rooms SQL-Referenz

APPROX COUNT_DISTINCT-Funktion

APPROX COUNT_DISTINCT bietet eine effiziente Methode, um die Anzahl der Einzelwerte in einer
Spalte oder einem Datensatz zu schatzen.

Syntax

approx_count_distinct(expr[, relativeSD])

Argumente
expr
Der Ausdruck oder die Spalte, fir die Sie die Anzahl der Einzelwerte schatzen mochten.

Dabei kann es sich um eine einzelne Spalte, einen komplexen Ausdruck oder eine Kombination
von Spalten handeln.

Verwandte D
Ein optionaler Parameter, der die gewtiinschte relative Standardabweichung der Schatzung angibt.

Es handelt sich um einen Wert zwischen 0 und 1, der den maximal akzeptablen relativen
Fehler der Schatzung darstellt. Ein kleinerer RelativeSD-Wert flhrt zu einer genaueren, aber
langsameren Schatzung.

Wenn dieser Parameter nicht angegeben wird, wird ein Standardwert (normalerweise etwa 0,05
oder 5%) verwendet.

Ruckgabewert

Gibt die geschatzte Kardinalitat von HyperLoglLog ++ zuriick. RelativeSD definiert die maximal
zulassige relative Standardabweichung.

Beispiel

Die folgende Abfrage schatzt die Anzahl der Einzelwerte in der col1 Spalte mit einer relativen
Standardabweichung von 1% (0,01).

SELECT approx_count_distinct(coll, 0.01)

Aggregationsfunktionen 121

AWS Clean Rooms SQL-Referenz

Die folgende Abfrage schatzt, dass die coll Spalte 3 Einzelwerte enthalt (die Werte 1, 2 und 3).

SELECT approx_count_distinct(coll) FROM VALUES (1), (1), (2), (2), (3) tab(coll)

Funktion ,UNGEFAHRES PERZENTIL*

APPROX PERCENTILE wird verwendet, um den Perzentilwert eines bestimmten Ausdrucks oder
einer bestimmten Spalte zu schatzen, ohne den gesamten Datensatz sortieren zu mussen. Diese
Funktion ist in Szenarien nitzlich, in denen Sie schnell die Verteilung eines grof3en Datensatzes
verstehen oder auf Perzentilen basierende Metriken verfolgen missen, ohne den Rechenaufwand
fur die Durchfihrung einer exakten Perzentilberechnung aufwenden zu mussen. Es ist jedoch
wichtig, die Kompromisse zwischen Geschwindigkeit und Genauigkeit zu verstehen und die
richtige Fehlertoleranz auf der Grundlage der spezifischen Anforderungen Ihres Anwendungsfalls
auszuwahlen.

Syntax
APPROX_PERCENTILE(expr, percentile [, accuracy])
Argumente

expr

Der Ausdruck oder die Spalte, fir die Sie den Perzentilwert schatzen mochten.

Dabei kann es sich um eine einzelne Spalte, einen komplexen Ausdruck oder eine Kombination

von Spalten handeln.

percentile
Der Perzentilwert, den Sie schatzen mdchten, ausgedrickt als Wert zwischen 0 und 1.

Beispielsweise wirde 0,5 dem 50. Perzentil (Median) entsprechen.

Genauigkeit

Ein optionaler Parameter, der die gewlinschte Genauigkeit der Perzentilschatzung angibt. Es

handelt sich um einen Wert zwischen 0 und 1, der den maximal akzeptablen relativen Fehler der

Schatzung darstellt. Ein kleinerer accuracy Wert fuhrt zu einer genaueren, aber langsameren

Schatzung. Wenn dieser Parameter nicht angegeben wird, wird ein Standardwert (normalerweise

etwa 0,05 oder 5%) verwendet.

Aggregationsfunktionen

122

AWS Clean Rooms SQL-Referenz

Ruckgabewert

Gibt das ungefahre Perzentil der numerischen oder ANSI-Intervallspalte col zurtick, das der kleinste
Wert in den geordneten COL-Werten ist (sortiert vom kleinsten zum groRten), sodass nicht mehr als
ein Prozentsatz der COL-Werte kleiner als der Wert oder gleich diesem Wert ist.

Der Prozentwert muss zwischen 0,0 und 1,0 liegen. Der Genauigkeitsparameter (Standard: 10000) ist
ein positives numerisches Literal, das die Naherungsgenauigkeit auf Kosten des Speichers steuert.

Ein héherer Genauigkeitswert flhrt zu einer besseren Genauigkeit. Dies 1.0/accuracy ist der
relative Fehler der Naherung.

Wenn es sich bei Prozent um eine Matrix handelt, muss jeder Wert der Prozentmatrix zwischen 0,0
und 1,0 liegen. Gibt in diesem Fall das ungefahre Perzentil-Array der Spalte col bei der angegebenen
Prozentzahl zurick.

Beispiele

Die folgende Abfrage schatzt das 95. Perzentil der response_time Spalte mit einem maximalen
relativen Fehler von 1% (0,01).

SELECT APPROX_PERCENTILE(response_time, ©0.95, 0.01) AS p95_response_time
FROM my_table;

Mit der folgenden Abfrage werden die Werte fiir das 50., 40. und 10. Perzentil der Spalte in der
Tabelle geschatzt. col tab

SELECT approx_percentile(col, array(@0.5, 0.4, ©0.1), 100) FROM VALUES (@), (1), (2),
(10) AS tab(col)

Mit der folgenden Abfrage wird das 50. Perzentil (Median) der Werte in der Spalte Spalte geschatzt.

SELECT approx_percentile(col, 0.5, 100) FROM VALUES (@), (6), (7), (9), (10) AS
tab(col)

AVG Funktion

Die AVG Funktion gibt den Durchschnitt (das arithmetische Mittel) der eingegebenen Ausdruckswerte
zuruck. Die AVG Funktion arbeitet mit numerischen Werten und ignoriert NULL-Werte.

Aggregationsfunktionen 123

AWS Clean Rooms SQL-Referenz

Syntax

AVG (column)

Argumente
column

Die Zielspalte, in der die Funktion ausgefthrt wird. Die Spalte ist einer der folgenden Datentypen:
« SMALLINT

« INTEGER

« BIGINT

« DECIMAL

« DOUBLE

« FLOAT

Datentypen

Die von der AVG Funktion unterstitzten Argumenttypen sind
SMALLINTINTEGER,BIGINT,DECIMAL, undDOUBLE.

Die von der AVG Funktion unterstutzten Ruckgabetypen sind:

« BIGINTfUr jedes Argument vom Typ Integer
» DOUBLEfir ein FlieRkomma-Argument

» Gibt den gleichen Datentyp wie der Ausdruck fur jeden anderen Argumenttyp zurtick

Die Standardgenauigkeit fur ein AVG Funktionsergebnis mit einem DECIMAL Argument ist 38. Die
Ergebnisskala ist die gleiche wie die Skala des Arguments. Beispielsweise gibt der Wert AVG einer
DEC(5,2) Spalte einen DEC(38,2) Datentyp zurlck.

Beispiel

Suchen Sie in der SALES Tabelle nach der durchschnittlichen Verkaufsmenge pro Transaktion.

select avg(qtysold) from sales;

Aggregationsfunktionen 124

AWS Clean Rooms SQL-Referenz

Die Funktion BOOL_AND

Die Funktion BOOL_AND wird fir eine einzige boolesche oder Ganzzahlspalte bzw. einen einzigen
booleschen oder Ganzzahlausdruck ausgefuihrt. Diese Funktion wendet ahnliche Logik auf die
Funktionen BIT_AND und BIT_OR an. Fir diese Funktion ist der Rlickgabetyp ein boolescher Wert
(true oder false).

Wenn alle Werte in einem Satz ,true” sind, gibt die Funktion BOOL_AND true (t) zurtick. Wenn ein
Wert ,false“ ist, gibt die Funktion false (f) zurlick.

Syntax

BOOL_AND ([DISTINCT | ALL] expression)

Argumente

Ausdruck

Die Zielspalte oder der Ausdruck, fur die/den die Funktion ausgefihrt wird. Dieser Ausdruck muss
einen booleschen oder Ganzzahl-Datentyp haben. Der Rickgabewert der Funktion ist BOOLEAN.

DISTINCT | ALL

Mit dem Argument DISTINCT beseitigt die Funktion alle duplizierten Werte fir den angegebenen
Ausdruck, bevor das Ergebnis berechnet wird. Mit dem Argument ALL behalt die Funktion alle
duplizierten Werte. ALL ist das Standardargument.

Beispiele

Sie konnen die booleschen Funktionen auf boolesche Ausdriicke oder Ganzzahlausdriicke
anwenden.

Beispielsweise gibt die folgende Abfrage Ergebnisse aus der Standardtabelle USERS in der
Datenbank TICKIT zurlick, die mehrere boolesche Spalten besitzt.

Die Funktion BOOL_AND gibt fiir alle finf Zeilen false zuriick. Nicht allen Benutzern in diesen
Bundesstaaten gefallt Sport.

select state, bool_and(likesports) from users
group by state order by state limit 5;

state | bool_and

Aggregationsfunktionen 125

AWS Clean Rooms SQL-Referenz

Die Funktion BOOL_OR

Die Funktion BOOL_OR wird fur eine einzige boolesche oder Ganzzahlspalte bzw. einen einzigen
booleschen oder Ganzzahlausdruck ausgefuhrt. Diese Funktion wendet ahnliche Logik auf die
Funktionen BIT_AND und BIT_OR an. Fur diese Funktion ist der Rlickgabetyp ein boolescher Wert
(true, false oder NULL).

Wenn ein Wert in einem Satz true lautet, gibt die Funktion BOOL_OR true (t) zurtck. Wenn ein
Wert in einem Satz false lautet, gibt die Funktion false (f) zurlick. NULL kann zurlickgegeben
werden, wenn der Wert unbekannt ist.

Syntax

BOOL_OR ([DISTINCT | ALL] expression)

Argumente
Ausdruck

Die Zielspalte oder der Ausdruck, fur die/den die Funktion ausgefuhrt wird. Dieser Ausdruck muss
einen booleschen oder Ganzzahl-Datentyp haben. Der Rickgabewert der Funktion ist BOOLEAN.

DISTINCT | ALL

Mit dem Argument DISTINCT beseitigt die Funktion alle duplizierten Werte fir den angegebenen
Ausdruck, bevor das Ergebnis berechnet wird. Mit dem Argument ALL behalt die Funktion alle
duplizierten Werte. ALL ist das Standardargument.

Beispiele

Sie kdnnen die booleschen Funktionen mit booleschen Ausdriicken oder Ganzzahlausdriicken
verwenden. Beispielsweise gibt die folgende Abfrage Ergebnisse aus der Standardtabelle USERS in
der Datenbank TICKIT zurtck, die mehrere boolesche Spalten besitzt.

Aggregationsfunktionen 126

AWS Clean Rooms SQL-Referenz

Die Funktion BOOL_OR gibt fir alle finf Zeilen true zurick. Mindestens einem Benutzer in diesen
Bundesstaaten gefallt Sport.

select state, bool_or(likesports) from users
group by state order by state limit 5;

bool_or

Im folgenden Beispiel wird NULL zurtickgegeben.

SELECT BOOL_OR(NULL = '123')
bool_or

CARDINALITY-Funktion
Die CARDINALITY-Funktion gibt die Grélie eines ARRAY- oder MAP-Ausdrucks (expr) zurtck.
Diese Funktion ist nitzlich, um die GroRe oder Lange eines Arrays zu ermitteln.

Syntax
cardinality(expr)
Argumente

expr

Ein ARRAY- oder MAP-Ausdruck.

Ruckgabewert

Gibt die GroRe eines Arrays oder einer Map zurtck (INTEGER).

Aggregationsfunktionen 127

AWS Clean Rooms SQL-Referenz

Die Funktion gibt NULL bei einer Null-Eingabe zurtick, ob sizeOfNull sie auf false oder gesetzt
enabled isttrue.

Andernfalls kehrt -1 die Funktion bei einer Null-Eingabe zurtick. Mit den Standardeinstellungen kehrt
die Funktion bei einer -1 Nulleingabe zurick.

Beispiel

Die folgende Abfrage berechnet die Kardinalitat oder die Anzahl der Elemente im angegebenen
Array. Das Array ('b', 'd', 'c', 'a')hat4 Elemente, also ware die Ausgabe dieser Abfrage. 4

SELECT cardinality(array('b', 'd', 'c', 'a'));
4

Funktion COLLECT_LIST

Die Funktion COLLECT_LIST sammelt eine Liste von nicht eindeutigen Elementen und gibt sie
zuruck.

Diese Art von Funktion ist nutzlich, wenn Sie mehrere Werte aus einer Reihe von Zeilen in einer
einzigen Array- oder Listendatenstruktur sammeln mochten.

@ Note

Die Funktion ist nicht deterministisch, da die Reihenfolge der gesammelten Ergebnisse von
der Reihenfolge der Zeilen abhangt, die nach einer Shuffle-Operation mdglicherweise nicht
deterministisch ist.

Syntax
collect_list(expr)

Argumente

expr

Ein Ausdruck beliebigen Typs.

Aggregationsfunktionen 128

AWS Clean Rooms SQL-Referenz

Ruckgabewert

Gibt ein ARRAY des Argumenttyps zurlick. Die Reihenfolge der Elemente im Array ist nicht
deterministisch.

NULL-Werte sind ausgeschlossen.

Wenn DISTINCT angegeben ist, sammelt die Funktion nur eindeutige Werte und ist ein Synonym fur
collect_set Aggregatfunktion.

Beispiel

Die folgende Abfrage sammelt alle Werte aus der Spalte col in einer Liste. Die VALUES Klausel

wird verwendet, um eine Inline-Tabelle mit drei Zeilen zu erstellen, wobei jede Zeile eine einzelne
Spalte col mit den Werten 1, 2 und 1 hat. Die collect_list() Funktion wird dann verwendet,
um alle Werte aus der Spalte col in einem einzigen Array zu aggregieren. Die Ausgabe dieser SQL-
Anweisung ware das Array[1, 2, 1], das alle Werte aus der Spalte col in der Reihenfolge enthalt, in
der sie in den Eingabedaten erschienen sind.

SELECT collect_list(col) FROM VALUES (1), (2), (1) AS tab(col);
[1,2,1]

Funktion COLLECT_SET
Die Funktion COLLECT_SET sammelt eine Reihe von eindeutigen Elementen und gibt sie zurtck.
Diese Funktion ist nltzlich, wenn Sie alle unterschiedlichen Werte aus einer Reihe von Zeilen in einer

einzigen Datenstruktur sammeln mochten, ohne Duplikate einzubeziehen.

(® Note

Die Funktion ist nicht deterministisch, da die Reihenfolge der gesammelten Ergebnisse von
der Reihenfolge der Zeilen abhangt, die nach einer Shuffle-Operation mdglicherweise nicht
deterministisch ist.

Syntax

collect_set(expr)

Aggregationsfunktionen 129

AWS Clean Rooms SQL-Referenz

Argumente
expr

Ein Ausdruck eines beliebigen Typs au3er MAP.

Ruckgabewert

Gibt ein ARRAY des Argumenttyps zurlick. Die Reihenfolge der Elemente im Array ist nicht
deterministisch.

NULL-Werte sind ausgeschlossen.
Beispiel

Die folgende Abfrage sammelt alle Einzelwerte aus der Spalte col in einem Satz. Die VALUES Klausel
wird verwendet, um eine Inline-Tabelle mit drei Zeilen zu erstellen, wobei jede Zeile eine einzelne
Spalte col mit den Werten 1, 2 und 1 hat. Die collect_set () Funktion wird dann verwendet, um
alle Einzelwerte aus der Spalte col zu einem einzigen Satz zusammenzufassen. Die Ausgabe dieser
SQL-Anweisung ware der Satz[1, 2], der die eindeutigen Werte aus der Spalte col enthalt. Der
doppelte Wert 1 ist nur einmal im Ergebnis enthalten.

SELECT collect_set(col) FROM VALUES (1), (2), (1) AS tab(col);
[1,2]

COUNTund COUNT DISTINCT Funktionen

Die COUNT Funktion zahlt die durch den Ausdruck definierten Zeilen. Die COUNT DISTINCT
Funktion berechnet die Anzahl der unterschiedlichen Werte, die nicht NULL sind, in einer Spalte
oder einem Ausdruck. Sie entfernt alle doppelten Werte aus dem angegebenen Ausdruck, bevor die
Zahlung durchgefihrt wird.

Syntax
COUNT (DISTINCT column)
Argumente

column

Die Zielspalte, in der die Funktion ausgefuhrt wird.

Aggregationsfunktionen 130

AWS Clean Rooms SQL-Referenz

Datentypen

Die COUNT Funktion und die COUNT DISTINCT Funktion unterstiitzen alle Argumentdatentypen.
Die COUNT DISTINCT Funktion kehrt zurlickBIGINT.

Beispiele

Zahlen Sie alle Benutzer aus dem Bundesstaat Florida.

select count (identifier) from users where state='FL';

Zahlen Sie alle einzigartigen Veranstaltungsorte IDs anhand der EVENT Tabelle.

select count (distinct venueid) as venues from event;

Die Funktion COUNT
Die Funktion COUNT zahlt die durch den Ausdruck definierten Zeilen.

Zu der Funktion COUNT gibt es folgende Varianten.

* COUNT (*) zahlt alle Zeilen in der Zieltabelle, unabhangig davon, ob sie Null-Werte enthalten oder
nicht.

* COUNT (expression) berechnet die Zahl der Zeilen mit Nicht-NULL-Werten in einer spezifischen
Spalte oder einem spezifischen Ausdruck.

* COUNT (DISTINCT expression) berechnet die Zahl der unterschiedlichen Nicht-NULL-Werte in
einer Spalte oder einem Ausdruck.

Syntax

COUNT(* | expression)

COUNT ([DISTINCT | ALL] expression)

Aggregationsfunktionen 131

AWS Clean Rooms

SQL-Referenz

Argumente

Ausdruck

Die Zielspalte oder der Ausdruck, fur die/den die Funktion ausgefihrt wird. Die Funktion COUNT

unterstutzt alle Argumentdatentypen.
DISTINCT | ALL

Mit dem Argument DISTINCT beseitigt die Funktion alle duplizierten Werte aus dem angegebenen

Ausdruck, bevor die Zahlung ausgeflihrt wird. Mit dem Argument ALL behalt die Funktion alle
duplizierten Werte aus dem angegebenen Ausdruck, um die Zahlung auszuflihren. ALL ist das

Standardargument.

Ruckgabetyp
Die Funktion COUNT gibt BIGINT zurick.
Beispiele

Zahlung aller Benutzer aus dem Bundesstaat Florida:

select count(*) from users where state='FL';

Zahlung aller Ereignisnamen aus der EVENT-Tabelle:

select count(eventname) from event;

Zahlung aller Ereignisnamen aus der EVENT-Tabelle:

select count(all eventname) from event;

Aggregationsfunktionen

132

AWS Clean Rooms SQL-Referenz

8798

Zahlen Sie alle einzigartigen Veranstaltungsorte IDs aus der EVENT-Tabelle:

select count(distinct venueid) as venues from event;

venues

Zahlung der Haufigkeit, mit der die einzelnen Verkaufer Batches von mehr als vier Tickets zum
Verkauf aufgelistet haben; Gruppierung der Ergebnisse nach Verkaufer-ID:

select count(*), sellerid from listing
where numtickets > 4

group by sellerid

oxder by 1 desc, 2;

count | sellerid

12 | 6386
11 | 17304
11 | 20123
11 | 25428

Die Funktion MAX

Die Funktion MAX gibt den maximal zulassigen Wert in einem Satz von Zeilen zurlick. DISTINCT
oder ALL kédnnten zwar verwendet werden, wirken sich jedoch nicht auf das Ergebnis aus.

Syntax

MAX ([DISTINCT | ALL] expression)

Argumente
Ausdruck

Die Zielspalte oder der Ausdruck, fur die/den die Funktion ausgefthrt wird. Der Ausdruck ist ein
beliebiger numerischer Datentyp.

Aggregationsfunktionen 133

AWS Clean Rooms SQL-Referenz

DISTINCT | ALL

Mit dem Argument DISTINCT beseitigt die Funktion alle duplizierten Werte aus dem angegebenen
Ausdruck, bevor der maximal zulassige Wert berechnet wird. Mit dem Argument ALL behalt die
Funktion alle duplizierten Werte aus dem angegebenen Ausdruck, um den maximal zulassigen
Wert zu berechnen. ALL ist das Standardargument.

Datentypen
Gibt denselben Datentyp wie expression zurlck.
Beispiele

Suche des héchsten Preises, der in allen Verkaufen gezahlt wurde:

select max(pricepaid) from sales;

12624.00
(1 row)

Suche des héchsten Preises pro Ticket, der in allen Verkaufen gezahlt wurde:

select max(pricepaid/qtysold) as max_ticket_price
from sales;

max_ticket_price

2500.00000000
(1 row)

Die Funktion MEDIAN

Syntax

MEDIAN (median_expression)

Aggregationsfunktionen 134

AWS Clean Rooms SQL-Referenz

Argumente
median_expression

Die Zielspalte oder der Ausdruck, fur die/den die Funktion ausgefuhrt wird.

Die Funktion MIN

Die Funktion MIN gibt den Mindestwert in einem Satz von Zeilen zurlick. DISTINCT oder ALL kdénnten
zwar verwendet werden, wirken sich jedoch nicht auf das Ergebnis aus.

Syntax

MIN ([DISTINCT | ALL] expression)

Argumente
Ausdruck

Die Zielspalte oder der Ausdruck, fur die/den die Funktion ausgefuhrt wird. Der Ausdruck ist ein
beliebiger numerischer Datentyp.

DISTINCT | ALL

Mit dem Argument DISTINCT beseitigt die Funktion alle duplizierten Werte aus dem angegebenen
Ausdruck, bevor der Mindestwert berechnet wird. Mit dem Argument ALL behalt die Funktion alle
duplizierten Werte aus dem angegebenen Ausdruck, um den Mindestwert zu berechnen. ALL ist
das Standardargument.

Datentypen

Gibt denselben Datentyp wie expression zurlck.

Beispiele

Suche des niedrigsten Preises, der in allen Verkaufen gezahlt wurde:

select min(pricepaid) from sales;

Aggregationsfunktionen 135

AWS Clean Rooms SQL-Referenz

20.00
(1 row)

Suche des niedrigsten Preises pro Ticket, der in allen Verkaufen gezahlt wurde:

select min(pricepaid/qtysold)as min_ticket_price
from sales;

min_ticket_price

20.00000000
(1 row)

PERZENTILE-Funktion

Die PERCENTILE-Funktion wird verwendet, um den exakten Perzentilwert zu berechnen, indem
zuerst die Werte in der Spalte sortiert und dann der Wert am angegebenen Wert ermittelt wird. col
percentage

Die PERZENTILE-Funktion ist nutzlich, wenn Sie den exakten Perzentilwert berechnen missen und
der Rechenaufwand fir Ihren Anwendungsfall akzeptabel ist. Sie liefert genauere Ergebnisse als
die APPROX_PERCENTILE-Funktion, ist aber moglicherweise langsamer, insbesondere bei grofen
Datensatzen.

Im Gegensatz dazu ist die Funktion APPROX_PERCENTILE eine effizientere Alternative, da sie eine
Schatzung des Perzentilwerts mit einer bestimmten Fehlertoleranz liefern kann. Dadurch eignet sie
sich besser flr Szenarien, in denen Geschwindigkeit eine hdhere Prioritat als absolute Genauigkeit
hat.

Syntax

percentile(col, percentage [, frequency])

Argumente

Spalte

Der Ausdruck oder die Spalte, fir die Sie den Perzentilwert berechnen mdchten.

Prozentsatz

Der Perzentilwert, den Sie berechnen mdchten, ausgedrickt als Wert zwischen 0 und 1.

Aggregationsfunktionen 136

AWS Clean Rooms SQL-Referenz

Beispielsweise wirde 0,5 dem 50. Perzentil (Median) entsprechen.

Frequenz

Ein optionaler Parameter, der die Haufigkeit oder Gewichtung der einzelnen Werte in der col
Spalte angibt. Falls angegeben, berechnet die Funktion das Perzentil auf der Grundlage der
Haufigkeit der einzelnen Werte.

Ruckgabewert

Gibt den exakten Perzentilwert der numerischen oder ANSI-Intervallspalte col zum angegebenen
Prozentsatz zurtck.

Der Prozentwert muss zwischen 0,0 und 1,0 liegen.
Der Wert der Frequenz sollte ein positives Integral sein
Beispiel

Die folgende Abfrage findet den Wert, der groRer oder gleich 30% der Werte in der col Spalte ist. Da
die Werte 0 und 10 sind, ist das 30. Perzentil 3,0, weil es der Wert ist, der groRer oder gleich 30% der
Daten ist.

SELECT percentile(col, ©.3) FROM VALUES (@), (1@) AS tab(col);
3.0

SKEWNESS-Funktion

Die Funktion SKEWNESS gibt den Wert der Schiefe zuriick, der anhand der Werte einer Gruppe
berechnet wurde.

Die Schiefe ist ein statistisches Mal}, das die Asymmetrie oder den Mangel an Symmetrie in einem
Datensatz beschreibt. Sie liefert Informationen Uber die Form der Datenverteilung.

Diese Funktion kann nitzlich sein, um die statistischen Eigenschaften eines Datensatzes zu
verstehen und als Grundlage fur weitere Analysen oder Entscheidungen zu dienen.

Syntax

skewness(expr)

Aggregationsfunktionen 137

AWS Clean Rooms SQL-Referenz

Argumente
expr

Ein Ausdruck, der zu einer Zahl ausgewertet wird.

Rickgabewert
Gibt DOUBLE zurck.

Wenn DISTINCT angegeben ist, arbeitet die Funktion nur mit einem eindeutigen Satz von
Ausdruckwerten.

Beispiele

Die folgende Abfrage berechnet die Schiefe der Werte in der Spalte. col In diesem Beispiel wird

die VALUES Klausel verwendet, um eine Inline-Tabelle mit vier Zeilen zu erstellen, wobei jede Zeile
eine einzelne Spalte col mit den Werten -10, -20, 100 und 1000 enthalt. Die skewness () Funktion
wird dann verwendet, um die Schiefe der Werte in der col Spalte zu berechnen. Das Ergebnis,
1.1135657469022011, stellt den Grad und die Richtung der Schiefe in den Daten dar. Ein positiver
Wert fur die Schiefe gibt an, dass die Daten nach rechts geneigt sind, sodass sich der Grofteil der
Werte auf der linken Seite der Verteilung konzentriert. Ein negativer Wert fur die Schiefe gibt an, dass
die Daten nach links geneigt sind und sich der Grolteil der Werte auf der rechten Seite der Verteilung
konzentriert.

SELECT skewness(col) FROM VALUES (-10), (-20), (100), (1000) AS tab(col);
1.1135657469022011

Die folgende Abfrage berechnet die Schiefe der Werte in der Spalte col. Ahnlich wie im vorherigen
Beispiel wird die VALUES Klausel verwendet, um eine Inline-Tabelle mit vier Zeilen zu erstellen, wobei
jede Zeile eine einzelne Spalte col mit den Werten -1000, -100, 10 und 20 enthalt. Die skewness()
Funktion wird dann verwendet, um die Schiefe der Werte in der Spalte zu berechnen. col Das
Ergebnis, -1,135657469022011, stellt den Grad und die Richtung der Schiefe in den Daten dar. In
diesem Fall gibt der negative Wert flir die Schiefe an, dass die Daten nach links geneigt sind, sodass
sich der Grolteil der Werte auf der rechten Seite der Verteilung konzentriert.

SELECT skewness(col) FROM VALUES (-1000), (-100), (10), (20) AS tab(col);
-1.1135657469022011

Aggregationsfunktionen 138

AWS Clean Rooms SQL-Referenz

Die Funktionen STDDEV_SAMP und STDDEV_POP

Die Funktionen STDDEV_SAMP und STDDEV_POP geben die Stichproben- und
Populationsstandardabweichungen eines Satzes numerischer Werte (integer, decimal oder floating-
point) zurtck. Das Ergebnis der Funktion STDDEV_SAMP entspricht der Quadratwurzel der
Stichprobenabweichung desselben Satzes von Werten.

STDDEV_SAMP und STDDEYV sind Synonyme fur dieselbe Funktion.

Syntax

STDDEV_SAMP | STDDEV ([DISTINCT | ALL] expression) STDDEV_POP ([DISTINCT |
ALL] expression)

Der Ausdruck muss einen numerischen Datentyp haben. Unabhangig vom Datentyp des Ausdrucks
ist der Riickgabewert dieser Funktion eine DOUBLE PRECISION-Zahl.

(@ Note

Die Standardabweichung wird mittels Gleitkommaarithmetik berechnet. Dies kann zu einer
leichten Ungenauigkeit fihren.

Nutzungshinweise

Wenn die Stichprobenstandardabweichung (STDDEV oder STDDEV_SAMP) flir einen Ausdruck
berechnet wird, der aus einem einzigen Wert besteht, ist das Ergebnis der Funktion NULL und nicht
0.

Beispiele

Die folgende Abfrage gibt den Durchschnitt der Werte in der Spalte VENUESEATS

der Tabelle VENUE zurtick, gefolgt von der Stichprobenstandardabweichung und der
Populationsstandardabweichung desselben Satzes von Werten. VENUESEATS ist eine INTEGER-
Spalte. Die Ergebnisskala ist auf 2 Ziffern reduziert.

select avg(venueseats),

cast(stddev_samp(venueseats) as dec(14,2)) stddevsamp,
cast(stddev_pop(venueseats) as dec(14,2)) stddevpop
from venue;

Aggregationsfunktionen 139

AWS Clean Rooms SQL-Referenz

avg | stddevsamp | stddevpop
_______ B

17503 | 27847 .76 | 27773.20
(1 row)

Die folgende Abfrage gibt die Stichprobenstandardabweichung fir die Spalte COMMISSION in der
Tabelle SALES zurtick. COMMISSION ist eine DECIMAL-Spalte. Die Ergebnisskala ist auf 10 Ziffern
reduziert.

select cast(stddev(commission) as dec(18,10))
from sales;

stddev

130.3912659086
(1 row)

Die folgende Abfrage gibt die Stichprobenstandardabweichung fur die Spalte COMMISSION als
Ganzzahl aus.

select cast(stddev(commission) as integer)
from sales;

stddev

Die folgende Abfrage gibt sowohl die Stichprobenstandardabweichung als auch die Quadratwurzel
der Stichprobenabweichung fur die Spalte COMMISSION zurlck. Die Ergebnisse dieser
Berechnungen sind identisch.

select

cast(stddev_samp(commission) as dec(18,10)) stddevsamp,
cast(sqrt(var_samp(commission)) as dec(18,10)) sqrtvarsamp
from sales;

stddevsamp | sqgrtvarsamp
________________ N
130.3912659086 | 130.3912659086
(1 row)

Aggregationsfunktionen 140

AWS Clean Rooms SQL-Referenz

SUMund SUM DISTINCT Funktionen

Die SUM Funktion gibt die Summe der Eingabespalten- oder Ausdruckswerte zurlick. Die SUM
Funktion arbeitet mit numerischen Werten und ignoriert NULL Werte.

Die SUM DISTINCT Funktion entfernt alle doppelten Werte aus dem angegebenen Ausdruck, bevor
die Summe berechnet wird.

Syntax

SUM (DISTINCT column)

Argumente

column

Die Zielspalte, in der die Funktion ausgefihrt wird. Bei der Spalte handelt es sich um beliebige
numerische Datentypen.
Beispiele

Ermitteln Sie die Summe aller gezahlten Provisionen anhand der SALES Tabelle.

select sum(commission) from sales

Ermitteln Sie die Summe aller einzelnen gezahlten Provisionen aus der SALES Tabelle.

select sum (distinct (commission)) from sales

Die Funktionen VAR_SAMP und VAR_POP

Die Funktionen VAR_SAMP und VAR_POP geben die Stichproben- und Populationsabweichung
eines Satzes numerischer Werte (integer, decimal oder floating-point) zurtick. Das Ergebnis der
Funktion VAR_SAMP entspricht der Quadratwurzel der Stichprobenstandardabweichung desselben
Satzes von Werten.

VAR_SAMP und VARIANCE sind Synonyme fir dieselbe Funktion.

Syntax

VAR_SAMP | VARIANCE ([DISTINCT | ALL] expression)

Aggregationsfunktionen 141

AWS Clean Rooms SQL-Referenz

VAR_POP ([DISTINCT | ALL] expression)

Der Ausdruck muss einen Ganzzahl-, Dezimal- oder Gleitkommadatentyp haben. Unabhangig vom
Datentyp des Ausdrucks ist der Rickgabewert dieser Funktion eine DOUBLE PRECISION-Zahl.

(@ Note

Die Ergebnisse dieser Funktionen sind je nach Data Warehouse-Cluster verschieden,
abhangig von der Konfiguration des jeweiligen Clusters.

Nutzungshinweise

Wenn die Stichprobenabweichung (VARIANCE oder VAR_SAMP) flir einen Ausdruck berechnet wird,
der aus einem einzigen Wert besteht, ist das Ergebnis der Funktion NULL und nicht 0.

Beispiele

Die folgende Abfrage gibt die gerundete Stichproben- und Populationsabweichung fur die Spalte
NUMTICKETS in der Tabelle LISTING zurtck.

select avg(numtickets),
round(var_samp(numtickets)) varsamp,
round(var_pop(numtickets)) varpop
from listing;

avg | varsamp | varpop

Die folgende Abfrage flhrt dieselben Berechnungen aus, gibt die Ergebnisse jedoch als
Dezimalwerte aus.

select avg(numtickets),
cast(var_samp(numtickets) as dec(10,4)) varsamp,
cast(var_pop(numtickets) as dec(10,4)) varpop
from listing;

avg | varsamp | varpop
_____ e E

10 | 53.6291 | 53.6288

Aggregationsfunktionen 142

AWS Clean Rooms SQL-Referenz

(1 row)

Array-Funktionen

In diesem Abschnitt werden die Array-Funktionen fir SQL beschrieben, die in AWS Clean Rooms
unterstutzt werden.

Themen

* ARRAY-Funktion

* Funktion ARRAY_CONTAINS
* ARRAY_DISTINCT-Funktion
* ARRAY_EXCEPT-Funktion

» Funktion ARRAY_INTERSECT
* ARRAY_JOIN-Funktion

» Funktion ARRAY_REMOVE
* ARRAY_UNION-Funktion

+ EXPLODE-Funktion

» Funktion FLATTEN

ARRAY-Funktion
Erzeugt ein Array mit den angegebenen Elementen.

Syntax

ARRAY([exprl 1 [, expr2 [, ... 1 1)

Argument

expr1, expr2
Ausdrucke aller Datentypen aufl’er Datums- und Uhrzeittypen. Die Argumente missen nicht
denselben Datentyp haben.

Ruckgabetyp

Die Array-Funktion gibt ein ARRAY mit den Elementen im Ausdruck zurlck.

Array-Funktionen 143

AWS Clean Rooms SQL-Referenz

Beispiel

Das folgende Beispiel zeigt ein Array mit numerischen Werten und ein Array mit verschiedenen
Datentypen.

--an array of numeric values
select array(1l,50,null,100);
array

[1,50,null,100]
(1 row)

--an array of different data types

select array(1l, 'abc',true,3.14);
array

[1,"abc",true,3.14]
(1 row)

Funktion ARRAY_CONTAINS

Die Funktion ARRAY_CONTAINS kann verwendet werden, um grundlegende
Mitgliedschaftsprifungen fir Array-Datenstrukturen durchzuflihren. Die Funktion ARRAY_CONTAINS
ist nutzlich, wenn Sie Uberprifen mussen, ob ein bestimmter Wert in einem Array vorhanden ist.

Syntax

array_contains(array, value)

Argumente
Array

Ein zu durchsuchendes ARRAY.
Wert

Ein Ausdruck mit einem Typ, der den Typ, der den Array-Elementen am wenigsten gemeinsam ist.

Rickgabetyp

Die Funktion ARRAY_CONTAINS gibt einen Wert vom Typ BOOLEAN zurtck.

Array-Funktionen 144

AWS Clean Rooms SQL-Referenz

Wenn der Wert NULL ist, ist das Ergebnis NULL.

Wenn ein Element im Array NULL ist, ist das Ergebnis NULL, wenn der Wert keinem anderen
Element zugeordnet ist.

Beispiele

Im folgenden Beispiel wird gepriift, ob das Array den Wert [1, 2, 3] enthalt4. Dadas [1, 2, 3
[Array] den Wert nicht enthalt4, gibt die Funktion array_contains zuriick. false

SELECT array_contains(array(l, 2, 3), 4)
false

Im folgenden Beispiel wird geprift, ob das Array den Wert [1, 2, 3] enthalt. 2 Da das Array den
Wert [1, 2, 3] enthalt2, gibt die Funktion array_contains zuriick. true

SELECT array_contains(array(l, 2, 3), 2);
true

ARRAY_DISTINCT-Funktion

Die Funktion ARRAY_DISTINCT kann verwendet werden, um doppelte Werte aus einem Array

zu entfernen. Die Funktion ARRAY_DISTINCT ist nutzlich, wenn Sie Duplikate aus einem Array
entfernen und nur mit den eindeutigen Elementen arbeiten missen. Dies kann in Szenarien hilfreich
sein, in denen Sie Operationen oder Analysen an einem Datensatz durchfihren mdchten, ohne dass
sich wiederholte Werte gegenseitig beeinflussen.

Syntax

array_distinct(array)

Argumente

Array

Ein ARRAY-Ausdruck.

Ruckgabetyp

Die Funktion ARRAY_DISTINCT gibt ein ARRAY zurtck, das nur die eindeutigen Elemente aus dem
Eingabearray enthalt.

Array-Funktionen 145

AWS Clean Rooms SQL-Referenz

Beispiele

In diesem Beispiel [1, 2, 3, null, 3] enthalt das Eingabearray einen doppelten Wert von. 3
Die array_distinct Funktion entfernt diesen doppelten Wert 3 und gibt ein neues Array mit den
eindeutigen Elementen zurtick:[1, 2, 3, null].

SELECT array_distinct(array(l, 2, 3, null, 3));
[1,2,3,null]

In diesem Beispiel [1, 2, 2, 3, 3, 3] enthalt das Eingabearray doppelte Werte von 2 und3. Die
array_distinct Funktion entfernt diese Duplikate und gibt ein neues Array mit den eindeutigen
Elementen zurtick:[1, 2, 3].

SELECT array_distinct(array(1l, 2, 2, 3, 3, 3))
[1,2,3]

ARRAY_EXCEPT-Funktion

Die Funktion ARRAY_EXCEPT verwendet zwei Arrays als Argumente und gibt ein neues Array
zuruck, das nur die Elemente enthalt, die im ersten Array vorhanden sind, aber nicht im zweiten
Array.

Die ARRAY_EXCEPT ist nutzlich, wenn Sie die Elemente finden missen, die fur ein Array im
Vergleich zu einem anderen einzigartig sind. Dies kann in Szenarien hilfreich sein, in denen Sie
mengenahnliche Operationen an Arrays ausfihren mussen, z. B. um den Unterschied zwischen zwei
Datensatzen zu ermitteln.

Syntax

array_except(arrayl, array2)

Argumente
Matrix1

Ein ARRAY beliebigen Typs mit vergleichbaren Elementen.

array2

Ein ARRAY von Elementen, deren Typ mit den Elementen von array1 am wenigsten gemeinsam
ist.

Array-Funktionen 146

AWS Clean Rooms SQL-Referenz

Ruckgabetyp

Die Funktion ARRAY_EXCEPT gibt ein ARRAY zurtick, dessen Typ mit Array1 Ubereinstimmt, ohne
Duplikate.

Beispiele

In diesem Beispiel [1, 2, 3] enthalt das erste Array die Elemente 1, 2 und 3. Das zweite Array
[2, 3, 4] enthalt die Elemente 2, 3 und 4. Die array_except Funktion entfernt die Elemente
2 und 3 aus dem ersten Array, da sie auch im zweiten Array vorhanden sind. Die resultierende
Ausgabe ist das Array[1].

SELECT array_except(array(l, 2, 3), array(2, 3, 4))
[1]

In diesem Beispiel [1, 2, 3] enthalt das erste Array die Elemente 1, 2 und 3. Das zweite Array
[1, 3, 5] enthalt die Elemente 1, 3 und 5. Die array_except Funktion entfernt die Elemente
1 und 3 aus dem ersten Array, da sie auch im zweiten Array vorhanden sind. Die resultierende
Ausgabe ist das Array[2].

SELECT array_except(array(l, 2, 3), array(l, 3, 5));
[2]

Funktion ARRAY_INTERSECT

Die Funktion ARRAY_INTERSECT verwendet zwei Arrays als Argumente und gibt ein neues Array
zuruck, das die Elemente enthalt, die in beiden Eingabearrays vorhanden sind. Diese Funktion ist
natzlich, wenn Sie die gemeinsamen Elemente zwischen zwei Arrays suchen mussen. Dies kann in
Szenarien hilfreich sein, in denen Sie mengenahnliche Operationen an Arrays ausfihren missen, z.
B. um die Schnittmenge zwischen zwei Datensatzen zu ermitteln.

Syntax

array_intersect(arrayl, array2)

Argumente
Matrix1

Ein ARRAY beliebigen Typs mit vergleichbaren Elementen.

Array-Funktionen 147

AWS Clean Rooms SQL-Referenz

array2

Ein ARRAY von Elementen, deren Typ mit den Elementen von array1 am wenigsten gemeinsam
ist.

Ruckgabetyp

Die Funktion ARRAY_INTERSECT gibt ein ARRAY zurick, dessen Typ mit Array1 Ubereinstimmit,
ohne Duplikate und ohne Elemente, die sowohl in array1 als auch array2 enthalten sind.

Beispiele

In diesem Beispiel enthalt das erste Array die Elemente 1,2 und 3. [1, 2, 3] Das zweite Array
[1, 3, 5] enthalt die Elemente 1, 3 und 5. Die Funktion ARRAY_INTERSECT identifiziert

die gemeinsamen Elemente zwischen den beiden Arrays, namlich 1 und 3. Das resultierende
Ausgabearray ist. [1, 3]

SELECT array_intersect(array(l, 2, 3), array(l, 3, 5));
[1,3]

ARRAY _JOIN-Funktion

Die ARRAY_JOIN-Funktion bendtigt zwei Argumente: Das erste Argument ist das Eingabearray, das
verknlpft werden soll. Das zweite Argument ist die Trennzeichenfolge, die verwendet wird, um die
Array-Elemente zu verketten. Diese Funktion ist nutzlich, wenn Sie ein Array von Zeichenketten (oder
einen anderen Datentyp) in eine einzelne verkettete Zeichenfolge konvertieren mussen. Dies kann

in Szenarien hilfreich sein, in denen Sie ein Array von Werten als einzelne formatierte Zeichenfolge
darstellen mochten, z. B. zu Anzeigezwecken oder zur Verwendung bei der weiteren Verarbeitung.

Syntax

array_join(array, delimiter[, nullReplacement])

Argumente

Array

Jeder ARRAY-Typ, aber seine Elemente werden als Zeichenketten interpretiert.

delimiter

Ein STRING, der verwendet wird, um die verketteten Array-Elemente zu trennen.

Array-Funktionen 148

AWS Clean Rooms SQL-Referenz

Ersatz durch Null

Ein STRING, der verwendet wird, um einen NULL-Wert im Ergebnis auszudrticken.

Ruickgabetyp

Die Funktion ARRAY_JOIN gibt einen STRING zurick, bei dem die Elemente des Arrays durch
ein Trennzeichen getrennt sind und Nullelemente ersetzt werden. nul1Replacement Wenn nicht
angegebennullReplacement, werden Elemente herausgefiltertnull. Wenn ein Argument ja
istNULL, ist das ErgebnisNULL.

Beispiele

In diesem Beispiel verwendet die Funktion ARRAY_JOIN das Array ['hello', 'world'] und
verbindet die Elemente mithilfe des Trennzeichens ' ' (eines Leerzeichens). Die resultierende
Ausgabe ist die Zeichenfolge. 'hello world'

SELECT array_join(array('hello', 'world'), ' ');
hello world

In diesem Beispiel verwendet die ARRAY_JOIN-Funktion das Array ['hello', null, 'world']
und verbindet die Elemente mithilfe des Trennzeichens ' ' (eines Leerzeichens). Der null Wert
wird durch die angegebene Ersatzzeichenfolge ', ' (ein Komma) ersetzt. Die resultierende Ausgabe
ist die Zeichenfolge'hello , world"'.

SELECT array_join(array('hello', null , 'world'), ' ', ',');
hello , world

Funktion ARRAY_REMOVE

Die Funktion ARRAY_REMOVE bendétigt zwei Argumente: Das erste Argument ist das Eingabearray,
aus dem die Elemente entfernt werden. Das zweite Argument ist der Wert, der aus dem Array
entfernt wird. Diese Funktion ist nitzlich, wenn Sie bestimmte Elemente aus einem Array

entfernen miussen. Dies kann in Szenarien hilfreich sein, in denen Sie eine Datenbereinigung oder
Vorverarbeitung fur ein Array von Werten durchfiihren missen.

Syntax

array_remove(array, element)

Array-Funktionen 149

AWS Clean Rooms SQL-Referenz

Argumente
Array

Ein ARRAY.

element
Ein Ausdruck eines Typs, der den seltensten Typ mit den Elementen eines Arrays gemeinsam
hat.

Ruckgabetyp

Die Funktion ARRAY_REMOVE gibt den Ergebnistyp zuriick, der dem Typ des Arrays entspricht.
Wenn das zu entfernende Element istNULL, ist das Ergebnis. NULL

Beispiele

In diesem Beispiel verwendet die Funktion ARRAY_REMOVE das Array [1, 2, 3, null, 3] und
entfernt alle Vorkommen des Werts 3. Die resultierende Ausgabe ist das Array. [1, 2, null]

SELECT array_remove(array(l, 2, 3, null, 3), 3);
[1,2,null]

ARRAY_UNION-Funktion

Die Funktion ARRAY_UNION verwendet zwei Arrays als Argumente und gibt ein neues Array zurck,
das die eindeutigen Elemente aus beiden Eingabearrays enthalt. Diese Funktion ist nitzlich, wenn
Sie zwei Arrays kombinieren und alle doppelten Elemente entfernen missen. Dies kann in Szenarien
hilfreich sein, in denen Sie mengenahnliche Operationen an Arrays ausfiihren mussen, z. B. um die
Verbindung zwischen zwei Datensatzen zu ermitteln.

Syntax
array_union(arrayl, array2)
Argumente

Matrix1

Ein ARRAY.

Array-Funktionen 150

AWS Clean Rooms SQL-Referenz

Array 2

Ein ARRAY desselben Typs wie array1.

Ruckgabetyp
Die Funktion ARRAY_UNION gibt ein ARRAY desselben Typs wie ein Array zurtick.
Beispiel

In diesem Beispiel [1, 2, 3] enthalt das erste Array die Elemente 1, 2 und 3. Das zweite
Array [1, 3, 5] enthalt die Elemente 1, 3 und 5. Die Funktion ARRAY_UNION kombiniert die
eindeutigen Elemente aus beiden Arrays, sodass das Ausgabe-Array entsteht. [1, 2, 3, 5] T

SELECT array_union(array(l, 2, 3), array(l, 3, 5));
[1,2,3,5]

EXPLODE-Funktion

Die EXPLODE-Funktion wird verwendet, um eine einzelne Zeile mit einem Array oder einer
Zuordnungsspalte in mehrere Zeilen umzuwandeln, wobei jede Zeile einem einzelnen Element aus
dem Array oder der Map entspricht.

Syntax
explode(expr)

Argumente
expr

Ein Array-Ausdruck oder ein Map-Ausdruck.

Ruckgabetyp

Die EXPLODE-Funktion gibt eine Reihe von Zeilen zurtick, wobei jede Zeile ein einzelnes Element
aus dem Eingabe-Array oder der Eingabe-Map darstellt.

Der Datentyp der Ausgabezeilen hangt vom Datentyp der Elemente im Eingabe-Array oder der
Eingabe-Map ab.

Array-Funktionen 151

AWS Clean Rooms SQL-Referenz

Beispiele

Im folgenden Beispiel wird das einzeilige Array [10, 20] in zwei separate Zeilen umgewandelt, die
jeweils eines der Array-Elemente (10 und 20) enthalten.

SELECT explode(array(10, 20));

Im ersten Beispiel wurde das Eingabe-Array direkt als Argument an lGbergeben. explode() In
diesem Beispiel wird das Eingabearray mithilfe der => Syntax angegeben, wobei der Spaltenname
(collection) explizit angegeben wird.

SELECT explode(array(10, 20));

Beide Anséatze sind gultig und fuhren zu demselben Ergebnis, aber die zweite Syntax kann nutzlicher
sein, wenn Sie eine Spalte aus einem gréReren Datensatz auflésen mussen, als nur ein einfaches
Array-Literal.

Funktion FLATTEN

Die FLATTEN-Funktion wird verwendet, um eine verschachtelte Array-Struktur zu einem einzigen
flachen Array zu ,glatten®.

Syntax

flatten(arrayOfArrays)

Argumente
arrayOfArrays

Ein Array von Arrays.

Ruckgabetyp
Die FLATTEN-Funktion gibt ein Array zurlck.
Beispiel

In diesem Beispiel ist die Eingabe ein verschachteltes Array mit zwei inneren Arrays, und die
Ausgabe ist ein einzelnes flaches Array, das alle Elemente aus den inneren Arrays enthalt. Die

Array-Funktionen 152

AWS Clean Rooms SQL-Referenz

FLATTEN-Funktion verwendet das verschachtelte Array [[1, 2], [3, 4]] und kombiniert alle
Elemente zu einem einzigen Array. [1, 2, 3, 4]

SELECT flatten(array(array(l, 2), array(3, 4)));
[1,2,3,4]

Bedingte Ausdricke

In SQL werden bedingte Ausdriicke verwendet, um Entscheidungen auf der Grundlage bestimmter
Bedingungen zu treffen. Sie ermdglichen es lhnen, den Fluss Ilhrer SQL-Anweisungen zu steuern
und verschiedene Werte zurlickzugeben oder verschiedene Aktionen auszuflihren, die auf der
Auswertung einer oder mehrerer Bedingungen basieren.

AWS Clean Rooms unterstitzt die folgenden bedingten Ausdrucke:

Themen

» Der bedingte Ausdruck CASE

« COALESCEAusdruck

« GROSSTER und KLEINSTER Ausdruck
 |IF-Ausdruck

* IS_NULL-Ausdruck

* IS_NOT_NULL-Ausdruck

* NVL- und COALESCE-Funktionen

* NVL2 Funktion

« NULLIF-Funktion

Der bedingte Ausdruck CASE

Der CASE-Ausdruck ist ein bedingter Ausdruck, der if/then/else Aussagen in anderen Sprachen
ahnelt. CASE wird verwendet, um ein Ergebnis anzugeben, wenn es mehrere Bedingungen gibt.
Verwenden Sie CASE, wenn ein SQL-Ausdruck gilt, z. B. in einem SELECT-Befehl.

Es gibt zwei Arten von CASE-Ausdricken: einfach und gesucht.

* In einfachen CASE-Ausdrucken wird ein Ausdruck mit einem Wert verglichen. Wenn keine
Ubereinstimmung gefunden wird, wird die in der THEN-Klausel angegebene Aktion angewendet.

Bedingte Ausdriicke 153

AWS Clean Rooms SQL-Referenz

Wenn keine Ubereinstimmung gefunden wird, wird die in der ELSE-Klausel angegebene Aktion
angewendet.

* In gesuchten CASE-Ausdrucken wird jeder CASE-Ausdruck auf der Basis eines booleschen
Ausdrucks evaluiert und die CASE-Anweisung gibt den ersten Ubereinstimmenden CASE-Ausdruck
zurtck. Wenn in den WHEN-KIauseln kein Ubereinstimmender Ausdruck gefunden wird, wird die
Aktion in der ELSE-Klausel zurtickgegeben.

Syntax

Einfache CASE-Anweisung, um Ubereinstimmende Bedingungen zu finden:

CASE expression
WHEN value THEN result

[WHEN...]
[ELSE result]
END

Gesuchte CASE-Anweisung, um jede Bedingung auszuwerten:

CASE
WHEN condition THEN result
[WHEN ...]
[ELSE result]

END

Argumente
expression

Ein Spaltenname oder ein gultiger Ausdruck.
Wert

Wert, mit dem der Ausdruck verglichen wird, wie eine numerische Konstante oder eine
Zeichenfolge.

Ergebnis

Der Zielwert oder -ausdruck, der zurlickgegeben wird, wenn ein Ausdruck oder eine boolesche
Bedingung ausgewertet werden. Die Datentypen aller Ergebnisausdriicke missen in einen
einzigen Ausgabetyp konvertierbar sein.

Bedingte Ausdriicke 154

AWS Clean Rooms SQL-Referenz

condition

Ein boolescher Ausdruck, der mit true oder false ausgewertet wird. Wenn die Bedingung mit
true ausgewertet wird, ist der Wert des CASE-Ausdrucks das Ergebnis, das auf die Bedingung
folgt, und der Rest des CASE-Ausdrucks wird nicht verarbeitet. Wenn die Bedingung mit false
ausgewertet wird, werden alle nachfolgenden WHEN-Klauseln ausgewertet. Wenn keine
Ergebnisse der WHEN-Bedingung mit true ausgewertet werden, ist der Wert des CASE-
Ausdrucks das Ergebnis der ELSE-Klausel. Wenn die ELSE-Klausel ausgelassen wurde und
keine Bedingung mit true ausgewertet wird, ist das Ergebnis null.

Beispiele

Verwenden Sie einen einfachen CASE-Ausdruck, um New York City durch Big Apple in einer
fur die Tabelle VENUE ausgefuhrten Abfrage zu ersetzen. Alle anderen Stadtenamen werden durch
ersetzt other.

select venuecity,
case venuecity
when 'New York City'
then 'Big Apple' else 'other'
end
from venue
order by venueid desc;

venuecity | case
_________________ B
Los Angeles | other

New York City | Big Apple
San Francisco | other
Baltimore | other

Verwendet einen gesuchten CASE-Ausdruck, um Gruppennummern basierend auf dem PRICEPAID-
Wert fur einzelne Ticketverkaufe zuzuweisen:

select pricepaid,
case when pricepaid <10000 then 'group 1'
when pricepaid >10000 then 'group 2'
else 'group 3'
end

Bedingte Ausdriicke 155

AWS Clean Rooms SQL-Referenz

from sales
oxrder by 1 desc;

pricepaid | case

__________ T
12624 | group 2
10000 | group 3
10000 | group 3
9996 | group 1
9988 | group 1

COALESCEAusdruck

Ein COALESCE Ausdruck gibt den Wert des ersten Ausdrucks in der Liste zurtick, der nicht Null
ist. Wenn alle Ausdriicke null sind, ist das Ergebnis null. Wenn ein Nicht-Null-Wert gefunden wird,
werden die verbleibenden Ausdrucke in der Liste nicht ausgewertet.

Diese Art von Ausdruck ist nutzlich, wenn Sie einen Sicherungswert fur etwas zuriickgeben méochten,
wenn der bevorzugte Wert fehlt oder null ist. Beispielsweise kann eine Abfrage eine von drei
Telefonnummern zuriickgeben (mobil, Festnetz oder beruflich; in dieser Reihenfolge), je nachdem,
welche Telefonnummer in der Tabelle zuerst gefunden wird (nicht null).

Syntax

COALESCE (expression, expression, ...)

Beispiele

Wendet den COALESCE Ausdruck auf zwei Spalten an.

select coalesce(start_date, end_date)
from datetable
order by 1;

Der Standardspaltenname fir einen NVL-Ausdruck lautetCOALESCE. Die folgende Abfrage gibt
dieselben Ergebnisse zurtck.

select coalesce(start_date, end_date) from datetable order by 1;

Bedingte Ausdriicke 156

AWS Clean Rooms SQL-Referenz

GROSSTER und KLEINSTER Ausdruck

Gibt den groRten oder kleinsten Wert aus einer Liste einer beliebigen Zahl von Ausdrucken zurlck.

Syntax

GREATEST (value [, ...1)
LEAST (value [, ...])

Parameter
expression_list

Eine durch Komma getrennte Liste von Ausdriicken, wie beispielsweise Spaltennamen. Die
Ausdrucke mussen alle in einen gemeinsamen Datentyp konvertierbar sein. NULL-Werte in der
Liste werden ignoriert. Wenn alle Ausdriicke zu NULL ausgewertet werden, ist das Ergebnis
NULL.

Ruckgabewert

Gibt den gréfliten Wert (bei GREATEST) oder den kleinsten Wert (bei LEAST) aus der angegebenen
Liste von Ausdrucken zurlck.

Beispiel

Im folgenden Beispiel wird der hochste Wert alphabetisch fir firstname oder l1astname
zuruckgegeben.

select firstname, lastname, greatest(firstname,lastname) from users
where userid < 10

order by 3;

firstname | lastname | greatest
___________ Y T
Alejandro | Rosalez | Ratliff
Carlos | Salazar | Carlos
Jane | Doe | Doe

John | Doe | Doe

John | Stiles | John
Shirley | Rodriguez | Rodriguez
Terry | Whitlock | Terry
Richard | Roe | Richazrd

Bedingte Ausdriicke 157

AWS Clean Rooms SQL-Referenz

Xiulan | Wang | Wang
(9 rows)

|[F-Ausdruck

Die Bedingungsfunktion IF gibt einen von zwei Werten zurtck, die auf einer Bedingung basieren.

Bei dieser Funktion handelt es sich um eine gangige Kontrollflussanweisung, die in SQL verwendet
wird, um Entscheidungen zu treffen und auf der Grundlage der Auswertung einer Bedingung
unterschiedliche Werte zurtickzugeben. Sie ist nutzlich, um einfache If-Else-Logik in einer Abfrage zu
implementieren.

Syntax

if(exprl, expr2, expr3)

Argumente
expr1

Die Bedingung oder der Ausdruck, der ausgewertet wird. Ist dies der Falltrue, gibt die Funktion
den Wert von expr2 zuriick. Wenn expr1 gleich istfalse, gibt die Funktion den Wert von expr3
zuruck.

Ausdruck2

Der Ausdruck, der ausgewertet und zurickgegeben wird, wenn expr1 true
Ausdruck3

Der Ausdruck, der ausgewertet und zurlickgegeben wird, wenn expr1 false

Ruckgabewert

Wenn als Ergebnis exprl ausgewertet wirdtrue, kehrt es zuriickexpr2; andernfalls kehrt es
zurick. expr3

Beispiel

Im folgenden Beispiel wird die if () Funktion verwendet, um basierend auf einer Bedingung einen
von zwei Werten zurickzugeben. Die ausgewertete Bedingung istl < 2, was bedeutettrue, dass
der erste Wert zurlickgegeben 'a' wird.

Bedingte Ausdriicke 158

AWS Clean Rooms SQL-Referenz

SELECT if(1 < 2, 'a', 'b');
aj

IS_NULL-Ausdruck
Der IS_NULL bedingte Ausdruck wird verwendet, um zu Uberprifen, ob ein Wert Null ist.
Dieser Ausdruck ist ein Synonym fur. IS NULL

Syntax
is_null(expr)

Argumente
expr

Ein Ausdruck beliebigen Typs.

Ruckgabewert

Der IS_NULL bedingte Ausdruck gibt einen booleschen Wert zurtick. Wenn NULL expzr1 ist, wird
zuriickgegebentrue, andernfalls wird zurlickgegeben. false

Beispiele

Das folgende Beispiel pruft, ob der Wert Null 1 ist, und gibt das boolesche Ergebnis zurtick, true da
1 ein gultiger Wert ungleich Null ist.

SELECT is not null(1l);
true

Im folgenden Beispiel wird die id Spalte aus der squirrels Tabelle ausgewahlt, jedoch nur fir die
Zeilen, in denen sich die Altersspalte befindet. null

SELECT id FROM squirrels WHERE is_null(age)

IS NOT_NULL-Ausdruck

Der IS_NOT_NULL bedingte Ausdruck wird verwendet, um zu Uberprufen, ob ein Wert nicht Null ist.

Bedingte Ausdriicke 159

AWS Clean Rooms SQL-Referenz

Dieser Ausdruck ist ein Synonym fur. IS NOT NULL

Syntax

is_not_null(expr)

Argumente
expr

Ein Ausdruck beliebigen Typs.

Ruckgabewert

Der IS_NOT_NULL bedingte Ausdruck gibt einen booleschen Wert zurlick. Wenn nicht NULL exprl
ist, wird zurlickgegebentrue, andernfalls zurlickgegeben. false

Beispiele

Das folgende Beispiel pruft, ob der Wert nicht Null 1 ist, und gibt das boolesche Ergebnis zurick,
true da 1 ein gultiger Wert ungleich Null ist.

SELECT is not null(1l);
true

Im folgenden Beispiel wird die id Spalte aus der squirrels Tabelle ausgewahlt, jedoch nur fir die
Zeilen, in denen sich die Altersspalte nicht befindet. null

SELECT id FROM squirrels WHERE is_not_null(age)

NVL- und COALESCE-Funktionen

Gibt den Wert des ersten Ausdrucks in einer Reihe von Ausdricken zurtck, der nicht null ist.
Wenn ein Nicht-Null-Wert gefunden wird, werden die verbleibenden Ausdriicke in der Liste nicht
ausgewertet.

NVL ist identisch mit COALESCE. Es sind Synonyme. Unter diesem Thema finden Sie eine
Erlauterung der Syntax sowie Beispiele fur beide.

Bedingte Ausdriicke 160

AWS Clean Rooms SQL-Referenz

Syntax

NVL(expression, expression, ...)

Die Syntax fur COALESCE ist identisch:

COALESCE(expression, expression, ...)

Wenn alle Ausdricke null sind, ist das Ergebnis null.

Diese Funktionen sind hilfreich, wenn Sie einen Sekundarwert zurtickgeben mdchten, falls ein
Primarwert fehlt oder null ist. Eine Abfrage konnte beispielsweise die erste von drei verfligbaren
Telefonnummern zurlickgeben: Mobiltelefonnummer, private oder geschaftliche Telefonnummer. Die
Reihenfolge der Ausdricke in der Funktion bestimmt die Reihenfolge der Auswertung.

Argumente

expression
Ein Ausdruck (beispielsweise ein Spaltenname), der hinsichtlich des Null-Status ausgewertet
werden soll.

Ruckgabetyp

AWS Clean Rooms bestimmt den Datentyp des zurtickgegebenen Werts auf der Grundlage der
Eingabeausdricke. Wenn die Datentypen der Eingabeausdricke keinen gemeinsamen Typ haben,
wird ein Fehler zurickgegeben.

Beispiele
Wenn die Liste Ausdriicke mit Ganzzahlen enthalt, gibt die Funktion eine Ganzzahl zurtick.
SELECT COALESCE(NULL, 12, NULL);

coalesce

Dieses Beispiel, das im Gegensatz zum vorherigen Beispiel NVL verwendet, gibt dasselbe Ergebnis
zuruck.

Bedingte Ausdriicke 161

AWS Clean Rooms SQL-Referenz

SELECT NVL(NULL, 12, NULL);

coalesce

Im folgenden Beispiel wird einen Zeichenfolgetyp zuriickgegeben.

SELECT COALESCE(NULL, 'AWS Clean Rooms', NULL);
coalesce

AWS Clean Rooms

Das folgende Beispiel fihrt zu einem Fehler, da die Datentypen in der Ausdrucksliste unterschiedlich
sind. In diesem Fall enthalt die Liste sowohl einen Zeichenfolgetyp als auch einen Zahlentyp.

SELECT COALESCE(NULL, 'AWS Clean Rooms', 12);
ERROR: invalid input syntax for integer: "AWS Clean Rooms"

NVL2 Funktion

Gibt einen von zwei Werten aus, je nachdem, ob ein angegebener Ausdruck zu NULL oder zu NOT
NULL aufgeldst wird.

Syntax

NVL2 (expression, not_null_return_value, null_return_value)

Argumente
expression

Ein Ausdruck (beispielsweise ein Spaltenname), der hinsichtlich des Null-Status ausgewertet
werden soll.

not_null_return_value

Der Wert, der zurtickgegeben wird, wenn expression zu NOT NULL ausgewertet wird. Der Wert
not_null_return_value muss entweder denselben Datentyp wie expression haben oder implizit in
diesen Datentyp konvertiert werden kdnnen.

Bedingte Ausdriicke 162

AWS Clean Rooms SQL-Referenz

null_return_value

Der Wert, der zurickgegeben wird, wenn expression zu NULL ausgewertet wird. Der Wert
null_return_value muss entweder denselben Datentyp wie expression haben oder implizit in
diesen Datentyp konvertiert werden konnen.

Ruckgabetyp

Der NVL2 Riickgabetyp wird wie folgt bestimmt:

« Wenn not_null_return_value oder null_return_value null ist, wird der Datentyp des Nicht-Null-
Ausdrucks zurtckgegeben.

Wenn sowohl not_null_return_value als auch null_return_value nicht null sind:

* Wenn not_null_return_value und null_return_value denselben Datentyp haben, wird dieser
Datentyp zurtickgegeben.

* Wenn not_null_return_value und null_return_value unterschiedliche numerische Datentypen haben,
wird der kleinste kompatible numerische Datentyp zurlckgegeben.

* Wenn not_null_return_value und null_return_value unterschiedliche Datum-/Uhrzeit-Datentypen
haben, wird ein Zeitstempeldatentyp zurickgegeben.

* Wenn not_null_return_value und null_return_value unterschiedliche Zeichendatentypen haben, wird
der Datentyp von not_null_return_value zurlckgegeben.

« Wenn not_null_return_value und null_return_value gemischte numerische und nicht numerische
Datentypen haben, wird der Datentyp von not_null_return_value zurickgegeben.

/A Important

In den letzten beiden Fallen, in denen der Datentyp von not_null_return_value zurickgegeben
wird, wird null_return_value implizit in diesen Datentyp umgewandelt. Wenn die Datentypen
nicht kompatibel sind, schlagt die Funktion fehl.

Bedingte Ausdriicke 163

AWS Clean Rooms SQL-Referenz

Nutzungshinweise

Denn NVL2 die Ruckgabe hat entweder den Wert des Parameters not_null_return_value oder
null_return_value, je nachdem, welcher Wert von der Funktion ausgewahlt wurde, hat aber den
Datentyp not_null_return_value.

Wenn beispielsweise column1 NULL ist, geben die folgenden Abfragen denselben Wert zurick.
Der DECODE-RUckgabewert-Datentyp ist jedoch NVL2 INTEGER und der Riickgabewert-Datentyp
VARCHAR.

select decode(columnl, null, 1234, '2345');
select nvl2(columnl, '2345', 1234);

Beispiel

Im folgenden Beispiel werden einige Beispieldaten modifiziert und anschlielend zwei Felder
ausgewertet, um die richtigen Kontaktinformationen flr Benutzer bereitzustellen:

update users set email = null where firstname = 'Aphrodite' and lastname = 'Acevedo';

select (firstname + ' ' + lastname) as name,
nvl2(email, email, phone) AS contact_info
from users

where state = 'WA'

and lastname 1like 'A%’

order by lastname, firstname;

name contact_info

____________________ oo e e e e e e e ———————
Aphrodite Acevedo (555) 555-0100

Caldwell Acevedo Nunc.sollicitudineexample.ca

Quinn Adams veleexample.com

Kamal Aguilar gquis@example.com

Samson Alexander hendrerit.neque@example.com

Hall Alford ac.mattis@eexample.com

Lane Allen et.netus@example.com

Xander Allison ac.facilisis.facilisiseexample.com
Amaya Alvarado dui.nec.tempus@example.com

Vera Alvarez at.arcu.Vestibulumeexample.com

Yetta Anthony enim.siteexample.com
Violet Arnold ad.litoraeexample.comm
August Ashley consectetuer.euismod@example.com

Bedingte Ausdriicke 164

AWS Clean Rooms SQL-Referenz

Karyn Austin ipsum.primis.in@example.com
Lucas Ayers at@example.com

NULLIF-Funktion

Vergleicht zwei Argumente und gibt null zurlck, wenn die Argumente gleich sind. Wenn sie nicht
gleich sind, wird das erste Argument zuriickgegeben.

Syntax

Der NULLIF-Ausdruck vergleicht zwei Argumente und gibt null zurlick, wenn die Argumente gleich
sind. Wenn sie nicht gleich sind, wird das erste Argument zurtickgegeben. Dieser Ausdruck ist die
Umkehrung des NVL- oder COALESCE-Ausdrucks.

NULLIF (expressionl, expression2)
Argumente

expression1, expression2

Die Zielspalten oder -ausdricke, die verglichen werden. Der Ruckgabetyp ist mit dem Typ des
ersten Ausdrucks identisch.

Beispiele

Im folgenden Beispiel gibt die Abfrage die Zeichenfolge first zurlick, da die Argumente nicht
identisch sind.

SELECT NULLIF('first', 'second');

Im folgenden Beispiel gibt die Abfrage NULL zurtck, da die Argumente des Zeichenfolgeliterals
identisch sind.

SELECT NULLIF('first', 'first');

Bedingte Ausdriicke 165

AWS Clean Rooms SQL-Referenz

NULL

Im folgenden Beispiel gibt die Abfrage 1 zuriick, da die Ganzzahlargumente nicht identisch sind.

SELECT NULLIF(1, 2);

Im folgenden Beispiel gibt die Abfrage NULL zurlck, da die Ganzzahlargumente identisch sind.

SELECT NULLIF(1, 1);

Im folgenden Beispiel gibt die Abfrage null zurtick, wenn die LISTID- und SALESID-Werte
Ubereinstimmen:

select nullif(listid,salesid), salesid
from sales where salesid<1@ order by 1, 2 desc;

P OO N0 OV Ul W BN

(9 rows)

Konstruktor-Funktionen

Eine SQL-Konstruktorfunktion ist eine Funktion, die verwendet wird, um neue Datenstrukturen wie
Arrays oder Maps zu erstellen.

Konstruktor-Funktionen 166

AWS Clean Rooms SQL-Referenz

Sie nehmen einige Eingabewerte und geben ein neues Datenstrukturobjekt zuriick.
Konstruktorfunktionen werden normalerweise nach dem Datentyp benannt, den sie erstellen, z. B.
ARRAY oder MAP.

Konstruktorfunktionen unterscheiden sich von Skalarfunktionen oder Aggregatfunktionen, die mit
vorhandenen Daten arbeiten und einen einzelnen Wert zurtickgeben. Konstruktorfunktionen werden
verwendet, um neue Datenstrukturen zu erstellen, die dann flir die weitere Datenverarbeitung oder
Analyse verwendet werden kdnnen.

AWS Clean Rooms unterstitzt die folgenden Konstruktorfunktionen:

Themen

* MAP-Konstruktorfunktion

+ Konstruktorfunktion NAMED_STRUCT
« STRUCT-Konstruktorfunktion

MAP-Konstruktorfunktion

Die MAP-Konstruktorfunktion erstellt eine Map mit den angegebenen Schlissel/Wert-Paaren.

Konstruktorfunktionen wie MAP sind nitzlich, wenn Sie neue Datenstrukturen programmgesteuert
in Thren SQL-Abfragen erstellen missen. Sie ermdglichen es Ihnen, komplexe Datenstrukturen zu
erstellen, die fir die weitere Datenverarbeitung oder Analyse verwendet werden kénnen.

Syntax

map(key@, value@, keyl, valuel, ...)

Argumente
Schlissel 0

Ein Ausdruck eines vergleichbaren Typs. Alle keyO mussen einen am wenigsten gemeinsamen
Typ haben.

Wert0

Ein Ausdruck beliebigen Typs. Alle ValueN missen einen Typ haben, der am wenigsten
gemeinsam ist.

Konstruktor-Funktionen 167

AWS Clean Rooms SQL-Referenz

Ruckgabewert

Die MAP-Funktion gibt ein MAP zurlick, bei dem die Schlissel als der seltenste Typ von key0 und die
Werte als der seltenste Typ von value0 eingegeben wurden.

Beispiele

Im folgenden Beispiel wird eine neue Map mit zwei Schllssel-Wert-Paaren erstellt: Der Schllssel
ist mit dem Wert verknUpft. 1.0 '2"' Der Schlissel 3.0 ist mit dem Wert verknUpft. '4' Die
resultierende Map wird dann als Ausgabe der SQL-Anweisung zurlickgegeben.

SELECT map(1.0, '2', 3.0, '4');
{1.0:"2",3.0:"4"}

Konstruktorfunktion NAMED _STRUCT

Die Konstruktorfunktion NAMED_STRUCT erstellt eine Struktur mit den angegebenen Feldnamen
und Werten.

Konstruktorfunktionen wie NAMED_STRUCT sind nitzlich, wenn Sie neue Datenstrukturen
programmgesteuert in Ihren SQL-Abfragen erstellen missen. Sie ermdglichen es Ihnen, komplexe
Datenstrukturen wie Strukturen oder Datensatze zu erstellen, die flir die weitere Datenverarbeitung
oder Analyse verwendet werden kdnnen.

Syntax

named_struct(namel, vall, name2, val2, ...)

Argumente
Name1

Ein STRING-literales Benennungsfeld 1.
Wert 1

Ein Ausdruck beliebigen Typs, der den Wert fur Feld 1 angibt.

Ruckgabewert

Die Funktion NAMED_STRUCT gibt eine Struktur zurtick, bei der Feld 1 dem Typ von Val1 entspricht.

Konstruktor-Funktionen 168

AWS Clean Rooms SQL-Referenz

Beispiele

Im folgenden Beispiel wird eine neue Struktur mit drei benannten Feldern erstellt: Dem Feld "a" wird
der Wert zugewiesen. 1 Dem Feld "b" wird der Wert zugewiesen. 2. Dem Feld "c" wird der Wert
zugewiesen3. Die resultierende Struktur wird dann als Ausgabe der SQL-Anweisung zurlickgegeben.

SELECT named_struct("a", 1, "b", 2, "c", 3);
{Ilall:l’ ||b||:2’ ||C||:3}

STRUCT-Konstruktorfunktion

Die STRUCT-Konstruktorfunktion erstellt eine Struktur mit den angegebenen Feldwerten.

Konstruktorfunktionen wie STRUCT sind nutzlich, wenn Sie neue Datenstrukturen
programmgesteuert in Ihren SQL-Abfragen erstellen mussen. Sie ermoglichen es Ihnen, komplexe
Datenstrukturen wie Strukturen oder Datenséatze zu erstellen, die fur die weitere Datenverarbeitung
oder -analyse verwendet werden konnen.

Syntax

struct(coll, col2, col3, ...)

Argumente
Spalte 1

Ein Spaltenname oder ein gultiger Ausdruck.

Ruckgabewert
Die STRUCT-Funktion gibt eine Struktur zurtck, bei der Feld1 dem Typ von expr1 entspricht.

Wenn es sich bei den Argumenten um benannte Referenzen handelt, werden die Namen zur
Benennung des Felds verwendet. Andernfalls erhalten die Felder den Namen colN, wobei N die
Position des Feldes in der Struktur ist.

Beispiele

Das folgende Beispiel erstellt eine neue Struktur mit drei Feldern: Dem ersten Feld wird der Wert
1 zugewiesen. Dem zweiten Feld wird der Wert 2 zugewiesen. Dem dritten Feld wird der Wert 3

Konstruktor-Funktionen 169

AWS Clean Rooms SQL-Referenz

zugewiesen. StandardmaRig werden die Felder in der resultierenden Struktur auf der Grundlage ihrer
Position in der Argumentliste mitcol3, und benanntcoll. col2 Die resultierende Struktur wird dann
als Ausgabe der SQL-Anweisung zuriickgegeben.

SELECT struct(1, 2, 3);
{"coll":1,"col2":2,"col3":3}

Funktionen fur die Datentypformatierung

Mithilfe einer Funktion zur Formatierung von Datentypen kénnen Sie Werte von einem Datentyp
in einen anderen konvertieren. Bei jeder dieser Funktionen ist das erste Argument immer der zu
formatierende Wert, und das zweite Argument enthalt die Vorlage fir das neue Format.

AWS Clean Rooms Spark SQL unterstitzt mehrere Funktionen zur Formatierung von Datentypen.

Themen

* BASEG4 Funktion

* CAST-Funktion

+ DECODE-Funktion
+ ENCODE-Funktion
* HEX-Funktion

+ STR_TO_MAP-Funktion
« TO_CHAR

« TO_DATE-Funktion
« TO_NUMBER

» UNBASEG64 Funktion
» UNHEX-Funktion

» Datum-/Uhrzeit-Formatzeichenfolgen

* Numerische Formatzeichenfolgen

BASEG4 Funktion

Die BASEG4 Funktion konvertiert einen Ausdruck mithilfe der RFC2045 Base64-
Ubertragungskodierung fiir MIME in eine Base64-Zeichenfolge.

Funktionen fir die Datentypformatierung 170

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2045

AWS Clean Rooms SQL-Referenz

Syntax

base64(expr)

Argumente
expr

Ein BINARY-Ausdruck oder ein STRING, den die Funktion als BINARY interpretiert.

Ruckgabetyp
STRING
Beispiel

Verwenden Sie das folgende Beispiel, um die angegebene Zeichenketteneingabe in ihre Base64-
kodierte Darstellung zu konvertieren. Das Ergebnis ist die Base64-kodierte Darstellung der
Eingabezeichenfolge 'Spark SQL', die 'u3bhcmSgU1fm' ist.

SELECT base64('Spark SQL');
U3BhcmsgU1FM

CAST-Funktion

Die CAST-Funktion konvertiert einen Datentyp in einen anderen kompatiblen Datentyp. Sie kénnen
beispielsweise eine Zeichenfolge in ein Datum oder einen numerischen Typ in eine Zeichenfolge
konvertieren. CAST flhrt eine Laufzeitkonvertierung durch, was bedeutet, dass die Konvertierung
den Datentyp eines Werts in einer Quelltabelle nicht andert. Dieser wird nur im Kontext der Abfrage
geandert.

Bestimmte Datentypen erfordern eine explizite Konvertierung in andere Datentypen mithilfe der
CAST-Funktion. Andere Datentypen kdnnen implizit als Teil eines anderen Befehls konvertiert
werden, ohne dass CAST verwendet wird. Siehe Kompatibilitat von Typen und Umwandlung

zwischen Typen.

Syntax

Verwenden Sie eine dieser beiden gleichwertigen Syntaxformate, um Ausdricke von einem Datentyp
in einen anderen umzuwandeln.

Funktionen fir die Datentypformatierung 171

AWS Clean Rooms SQL-Referenz

CAST (expression AS type)

Argumente
expression

Ein Ausdruck, der einen oder mehrere Werte auswertet, beispielsweise ein Spaltenname oder ein
Literal. Die Konvertierung von Null-Werten gibt Null-Werte zuriick. Der Ausdruck darf keine leeren
oder leeren Zeichenfolgen enthalten.

Typ
Einer der unterstutzten DatentypenDatentypen, mit Ausnahme der Datentypen BINARY und
BINARY VARYING.

Ruckgabetyp

CAST gibt den Datentyp zurtick, der durch das Argument type angegeben ist.

(@ Note

AWS Clean Rooms gibt einen Fehler zurtick, wenn Sie versuchen, eine problematische
Konvertierung durchzuflihren, z. B. eine DECIMAL-Konvertierung, die an Genauigkeit verliert,
wie die folgende:

select 123.456::decimal(2,1);
oder eine INTEGER-Konvertierung, die einen Overflow verursacht:

select 12345678::smallint;

Beispiele

Die folgenden beiden Abfragen sind gleichwertig. Beide wandeln einen Dezimalwert in eine Ganzzahl
um:

select cast(pricepaid as integer)
from sales where salesid=100;

Funktionen fir die Datentypformatierung 172

AWS Clean Rooms

SQL-Referenz

pricepaid

select pricepaid::integer
from sales where salesid=100;

pricepaid

Das Folgende flihrt zu einem ahnlichen Ergebnis. Fur die Ausfiihrung sind keine Beispieldaten

erforderlich:

select cast(162.00 as integer) as pricepaid;

pricepaid

In diesem Beispiel werden die Werte in einer Zeitstempelspalte in Datumsangaben umgewandelt,

was dazu fuhrt, dass die Uhrzeit aus jedem Ergebnis entfernt wird:

select cast(saletime as date), salesid
from sales order by salesid limit 10;

saletime
2008-02-18
2008-06-06
2008-06-06
2008-06-09
2008-08-31
2008-07-16
2008-06-26
2008-07-10
2008-07-22
2008-08-06

O 0o NO UL A WDN P

10

Funktionen fiir die Datentypformatierung

173

AWS Clean Rooms SQL-Referenz

(10 rows)

Wenn Sie CAST nicht wie im vorherigen Beispiel dargestellt verwendet haben, wirden die
Ergebnisse die Uhrzeit umfassen: 2008-02-18 02:36:48.

Die folgende Abfrage wandelt variable Zeichendaten in ein Datum um. Fur die Ausflhrung sind keine
Beispieldaten erforderlich.

select cast('2008-02-18 02:36:48' as date) as mysaletime;

mysaletime

2008-02-18
(1 row)

In diesem Beispiel werden die Werte in einer Datumsspalte in Zeitstempel umgewandelt:

select cast(caldate as timestamp), dateid
from date order by dateid limit 10;

caldate | dateid
____________________ .
2008-01-01 00:00:00 | 1827
2008-01-02 00:00:00 | 1828
2008-01-03 00:00:00 | 1829
2008-01-04 00:00:00 | 1830
2008-01-05 00:00:00 | 1831
2008-01-06 00:00:00 | 1832
2008-01-07 00:00:00 | 1833
2008-01-08 00:00:00 | 1834
2008-01-09 00:00:00 | 1835
2008-01-10 00:00:00 | 1836

(10 rows)

In einem Fall wie dem vorherigen Beispiel kbnnen Sie zusatzliche Kontrolle tiber die
Ausgabeformatierung erlangen, indem Sie TO_CHAR

In diesem Beispiel wird eine Ganzzahl in eine Zeichenfolge umgewandelt:

select cast(2008 as char(4));

Funktionen fir die Datentypformatierung 174

AWS Clean Rooms SQL-Referenz

In diesem Beispiel wird ein DECIMAL(6,3)-Wert in einen DECIMAL(4,1)-Wert umgewandelt:

select cast(109.652 as decimal(4,1));

numeric

Dieses Beispiel zeigt einen komplexeren Ausdruck. Die Spalte PRICEPAID (eine DECIMAL(8,2)-
Spalte) in der Tabelle SALES wird in eine DECIMAL(38,2)-Spalte umgewandelt und die Werte
werden mit 100000000000000000000 multipliziert:

select salesid, pricepaid::decimal(38,2)*100000000000000000000
as value from sales where salesid<1@ oxrder by salesid;

salesid

72800000000000000000000 .00
7600000000000000000000 .00
35000000000000000000000 .00
17500000000000000000000 .00
15400000000000000000000 .00
39400000000000000000000 .00
78800000000000000000000 .00
19700000000000000000000 .00
59100000000000000000000 .00

—_— e — — — — — — 4 =

O 0o NO UL A WDN P

(9 rows)

DECODE-Funktion

Die DECODE-Funktion ist das Gegenstiuck zur ENCODE-Funktion, mit der eine Zeichenfolge mithilfe
einer bestimmten Zeichenkodierung in ein Binarformat konvertiert wird. Die DECODE-Funktion nimmt
die Binardaten und konvertiert sie unter Verwendung der angegebenen Zeichenkodierung wieder in
ein lesbares Zeichenkettenformat.

Funktionen fir die Datentypformatierung 175

AWS Clean Rooms SQL-Referenz

Diese Funktion ist nitzlich, wenn Sie mit in einer Datenbank gespeicherten Binardaten arbeiten und
diese in einem flir Menschen lesbaren Format prasentieren missen oder wenn Sie Daten zwischen
verschiedenen Zeichenkodierungen konvertieren mussen.

Syntax

decode(expr, charset)

Argumente
expr

Ein BINARER Ausdruck, der im Zeichensatz codiert ist.

Zeichensatz
Ein STRING-Ausdruck.

Unterstitzte Zeichensatzkodierungen (ohne Berlcksichtigung von Grof3- und
Kleinschreibung): 'US-ASCII',,'IS0-8859-1"', 'UTF-8' '"UTF-16BE"', 'UTF-16LE"' und.
'"UTF-16"'

Ruckgabetyp
Die DECODE-Funktion gibt einen STRING zurtck.
Beispiel

Im folgenden Beispiel wird eine Tabelle messages mit einer Spalte namens
aufgerufenmessage_text, in der Nachrichtendaten in einem Binarformat unter Verwendung der
UTF-8-Zeichenkodierung gespeichert werden. Die DECODE-Funktion konvertiert die Binardaten
zurlck in ein lesbares Zeichenkettenformat. Die Ausgabe dieser Abfrage ist der lesbare Text der in
der Nachrichtentabelle gespeicherten Nachricht mit der ID123, der unter Verwendung der 'utf-8'
Kodierung vom Binarformat in eine Zeichenfolge umgewandelt wurde.

SELECT decode(message_text, 'utf-8') AS message
FROM messages
WHERE message_id = 123;

Funktionen fir die Datentypformatierung 176

AWS Clean Rooms SQL-Referenz

ENCODE-Funktion

Die ENCODE-Funktion wird verwendet, um eine Zeichenfolge unter Verwendung einer bestimmten
Zeichenkodierung in ihre binare Darstellung zu konvertieren.

Diese Funktion ist nutzlich, wenn Sie mit Binardaten arbeiten oder wenn Sie zwischen verschiedenen
Zeichenkodierungen konvertieren missen. Sie kénnen die ENCODE-Funktion beispielsweise

verwenden, wenn Sie Daten in einer Datenbank speichern, die Binarspeicher bendtigt, oder wenn Sie
Daten zwischen Systemen Ubertragen mussen, die unterschiedliche Zeichenkodierungen verwenden.

Syntax

encode(str, charset)

Argumente

str

Ein STRING-Ausdruck, der codiert werden soll.

Zeichensatz
Ein STRING-Ausdruck, der die Kodierung angibt.

Unterstitzte Zeichensatzkodierungen (ohne Berlcksichtigung von Grof3- und
Kleinschreibung):'US-ASCII',,'IS0-8859-1", 'UTF-8"''"UTF-16BE"', '"UTF-16LE" und.
'"UTF-16"

Ruckgabetyp
Die ENCODE-Funktion gibt einen BINARWERT zuriick.
Beispiel

Im folgenden Beispiel wird die Zeichenfolge 'abc' mithilfe der 'utf-8' Kodierung in ihre binare
Darstellung konvertiert, was in diesem Fall dazu fihrt, dass die urspriingliche Zeichenfolge
zurlickgegeben wird. Das liegt daran, dass es sich bei der 'utf-8"' Kodierung um eine
Zeichenkodierung mit variabler Breite handelt, die den gesamten ASCII-Zeichensatz (einschlief3lich
der Buchstaben 'a''b"', und'c') mit einem einzigen Byte pro Zeichen darstellen kann. Daher
entspricht die binare Darstellung von 'abc' using 'utf-8" der urspriinglichen Zeichenfolge.

SELECT encode('abc', 'utf-8');

Funktionen fir die Datentypformatierung 177

AWS Clean Rooms SQL-Referenz

abc

HEX-Funktion

Die HEX-Funktion konvertiert einen numerischen Wert (entweder eine Ganzzahl oder eine
Gleitkommazahl) in die entsprechende hexadezimale Zeichenkettendarstellung.

Hexadezimal ist ein Zahlensystem, das 16 verschiedene Symbole (0-9 und A-F) verwendet, um
numerische Werte darzustellen. Es wird haufig in der Informatik und Programmierung verwendet, um
Binardaten in einem kompakteren und fir Menschen lesbaren Format darzustellen.

Syntax

hex(expr)

Argumente
expr

Ein BIGINT-, BINARY- oder STRING-Ausdruck.

Ruckgabetyp

HEX gibt einen STRING zurtck. Die Funktion gibt die hexadezimale Darstellung des Arguments
zuruck.

Beispiel

Im folgenden Beispiel wird der Integer-Wert 17 als Eingabe verwendet und die Funktion HEX ()
darauf angewendet. Die Ausgabe ist11, was die hexadezimale Darstellung des Eingabewerts ist. 17

SELECT hex(17);
11

Im folgenden Beispiel wird die Zeichenfolge in ihre 'Spark_SQL' hexadezimale Darstellung
konvertiert. Die Ausgabe ist537061726B2053514C, das ist die hexadezimale Darstellung der
Eingabezeichenfolge. 'Spark_SQL'

SELECT hex('Spark_SQL');
537061726B2053514C

Funktionen fir die Datentypformatierung 178

AWS Clean Rooms SQL-Referenz

In diesem Beispiel wird die Zeichenfolge 'Spark_SQL' wie folgt konvertiert:

« 'S'->53
- 'p'->70
- 'a'->61
e r->72"
- 'k->68B
e ' '->20
« 'S'->53
« 'Q' ->51
. 'L'->4C

Die Verkettung dieser Hexadezimalwerte ergibt die endgultige Ausgabe ". 537061726B2053514C"
STR_TO_MAP-Funktion

Die STR_TO_MAP-Funktion ist eine Konvertierungsfunktion. string-to-map Sie konvertiert
eine Zeichenkettendarstellung einer Karte (oder eines Worterbuchs) in eine tatsachliche
Kartendatenstruktur.

Diese Funktion ist nutzlich, wenn Sie mit Kartendatenstrukturen in SQL arbeiten mussen, die Daten
jedoch zunachst als Zeichenfolge gespeichert werden. Indem Sie die Zeichenkettendarstellung

in eine tatsachliche Map konvertieren, kdnnen Sie dann Operationen und Manipulationen an den
Kartendaten durchfuhren.

Syntax

str_to_map(text[, pairDelim[, keyValueDelim]])

Argumente
Text

Ein STRING-Ausdruck, der die Map darstellt.

PairDelim

Ein optionales STRING-Literal, das angibt, wie Eintrage getrennt werden sollen. Es ist
standardmafig ein Komma (). ',

Funktionen fir die Datentypformatierung 179

AWS Clean Rooms SQL-Referenz

keyValueDelim

Ein optionales STRING-Literal, das angibt, wie jedes Schlussel-Wert-Paar getrennt werden soll.
StandardmaRig wird ein Doppelpunkt () verwendet. ' '

Ruckgabetyp

Die STR_TO_MAP-Funktion gibt sowohl fur Schlissel als auch fir Werte einen MAP-Wert vom
Typ STRING zurtck. Sowohl PairDelim als auch werden als regulare Ausdrucke behandelt.
keyValueDelim

Beispiel

Das folgende Beispiel verwendet die Eingabezeichenfolge und die beiden Trennzeichenargumente
und konvertiert die Zeichenfolgendarstellung in eine tatsachliche Kartendatenstruktur. In diesem
speziellen Beispiel 'a:1,b:2,c:3"' stellt die Eingabezeichenfolge eine Map mit den folgenden
Schlissel-Wert-Paaren dar: 'a' ist der Schlissel und '1' ist der Wert. 'b 'ist der Schliissel und
'2" ist der Wert. 'c'ist der Schlissel und '3"' ist der Wert. Das ', ' Trennzeichen wird verwendet,
um die Schlussel-Wert-Paare zu trennen, und das ' : ' Trennzeichen wird verwendet, um den
Schlussel und den Wert innerhalb jedes Paares zu trennen. Die Ausgabe dieser Abfrage ist:.
{"a":"1","b":"2","c":"3"} Dies ist die resultierende Kartendatenstruktur, in der die Schllssel
'a' 'b''c', und und und die entsprechenden Werte sind '1''2"',und'3".

SELECT str_to_map('a:1,b:2,c:3', ',', ':');
{Ilall:lllll’ Ilbll:llzll’ IICII:I|3II}

Das folgende Beispiel zeigt, dass die STR_TO_MAP-Funktion erwartet, dass die
Eingabezeichenfolge ein bestimmtes Format hat, wobei die Schlissel-Wert-Paare korrekt abgegrenzt
sind. Wenn die Eingabezeichenfolge nicht dem erwarteten Format entspricht, versucht die Funktion
trotzdem, eine Map zu erstellen, aber die resultierenden Werte entsprechen moglicherweise nicht den
Erwartungen.

SELECT str_to_map('a');
{"a":null}

TO_CHAR

TO_CHAR konvertiert einen Zeitstempel oder numerischen Ausdruck in ein
Zeichenfolgendatenformat.

Funktionen fir die Datentypformatierung 180

AWS Clean Rooms SQL-Referenz

Syntax

TO_CHAR (timestamp_expression numeric_expression , 'format')

Argumente
timestamp_expression

Ein Ausdruck, der einen TIMESTAMP- oder TIMESTAMPTZ-Typwert als Ergebnis hat oder einen
Wert, der implizit zu einem Zeitstempel gezwungen werden kann.

numeric_expression

Ein Ausdruck, der einen numerischen Datentypwert als Ergebnis hat oder einen Wert, der implizit
zu einem numerischen Typ gezwungen werden kann. Weitere Informationen finden Sie unter
Numerische Typen. ,TO_CHAR® fugt links von der Zahlenfolge ein Leerzeichen ein.

(@ Note
TO_CHAR unterstiutzt keine 128-Bit-DEZIMALWERTE.

format

Das Format fur den neuen Wert. Informationen zu gultigen Formaten finden Sie unter Datum-/
Uhrzeit-Formatzeichenfolgen und Numerische Formatzeichenfolgen.

Ruckgabetyp
VARCHAR
Beispiele

Im folgenden Beispiel wird ein Zeitstempel in einen Wert mit Datum und Uhrzeit konvertiert, dessen
Format den Namen des Monats auf neun Zeichen aufgeflillt, den Namen des Wochentages und die
Tagesnummer des Monats enthalt.

select to_char(timestamp '2009-12-31 23:15:59', 'MONTH-DY-DD-YYYY HH12:MIPM');
to_char

DECEMBER -THU-31-2009 11:15PM

Funktionen fir die Datentypformatierung 181

AWS Clean Rooms SQL-Referenz

Im folgenden Beispiel wird ein Zeitstempel in einen Wert mit Tageszahl des Jahres konvertiert.

select to_char(timestamp '2009-12-31 23:15:59', 'DDD');

to_char

Im folgenden Beispiel wird ein Zeitstempel in einen Wert mit ISO-Tageszahl der Woche konvertiert.

select to_char(timestamp '2022-05-16 23:15:59', 'ID');

to_char

Im folgenden Beispiel wird der Monat aus einem Datumswert extrahiert.

select to_char(date '2009-12-31', 'MONTH');
to_char

DECEMBER

Im folgenden Beispiel wird jeder STARTTIME-Wert in der Tabelle EVENT in eine Zeichenfolge
konvertiert, die aus Stunden, Minuten und Sekunden besteht.

select to_char(starttime, 'HH12:MI:SS')
from event where eventid between 1 and 5
order by eventid;

to_char

(5 rows)

Im folgenden Beispiel wird ein ganzer Zeitstempelwert in ein anderes Format konvertiert.

Funktionen fir die Datentypformatierung 182

AWS Clean Rooms SQL-Referenz

select starttime, to_char(starttime, 'MON-DD-YYYY HH12:MIPM')
from event where eventid=1;

starttime to_char

2008-01-25 14:30:00 JAN-25-2008 02:30PM

(1 row)

Im folgenden Beispiel wird ein Zeitstempelliteral in eine Zeichenfolge konvertiert.

select to_char(timestamp '2009-12-31 23:15:59', 'HH24:MI:SS');
to_char

23:15:59
(1 row)

Im folgenden Beispiel wird eine Zahl in eine Zeichenfolge mit dem Minuszeichen am Ende konvertiert.

select to_char(-125.8, '999D99S');
to_char

Im folgenden Beispiel wird eine Zahl in eine Zeichenfolge mit dem Wahrungssymbol konvertiert.

select to_char(-125.88, '$S999D99');
to_char

Im folgenden Beispiel wird eine Zahl in eine Zeichenfolge konvertiert, bei dem Eckige Klammern als
negative Zahlen verwendet werden.

select to_char(-125.88, '$999D99PR');
to_char

$<125.88>
(1 row)

Funktionen fir die Datentypformatierung 183

AWS Clean Rooms SQL-Referenz

Im folgenden Beispiel wird eine Zahl in eine Zeichenfolge rémischer Zahlen konvertiert.

select to_char(125, 'RN');
to_char

Im folgenden Beispiel wird der Wochentag angezeigt.

SELECT to_char(current_timestamp, 'FMDay, FMDD HH12:MI:SS');
to_char

Wednesday, 31 09:34:26

Im folgenden Beispiel wird das Ordnungszahlsuffix fur eine Zahl angezeigt.

SELECT to_char(482, '999th');
to_char

Im folgenden Beispiel wird in der Tabelle SALES die Provision vom gezahlten Preis abgezogen. Die
Differenz wird dann aufgerundet und in eine rémische Zahl umgewandelt, die in der folgenden Spalte
angezeigt wird: to_char

select salesid, pricepaid, commission, (pricepaid - commission)
as difference, to_char(pricepaid - commission, 'rn') from sales
group by sales.pricepaid, sales.commission, salesid

order by salesid limit 10;

salesid | pricepaid | commission | difference | to_char

————————— L e L e e e
1| 728.00 | 109.20 | 618.80 | dcxix
2 | 76.00 | 11.40 | 64.60 | Ixv
3 350.00 | 52.50 | 297.50 | ccxcviii
4 | 175.00 | 26.25 | 148.75 | cxlix
5] 154.00 | 23.10 | 130.90 | cxxxi
6 | 394.00 | 59.10 | 334.90 | CCCXXXV
7 | 788.00 | 118.20 | 669.80 | dclxx
8 | 197.00 | 29.55 | 167.45 | clxvii
9 | 591.00 | 88.65 | 502.35 | dii

Funktionen fir die Datentypformatierung 184

AWS Clean Rooms

SQL-Referenz

10
(10 rows)

65.00 |

9.75 |

55.25 |

1v

Im folgenden Beispiel wird das Wahrungssymbol zu den in der to_char Spalte angezeigten

Differenzwerten hinzugeflgt:

select salesid, pricepaid, commission,
as difference, to_char(pricepaid - commission,

group by sales.pricepaid, sales.commission, salesid
order by salesid limit 10;

salesid

O 0o NO U1 A WDN P

10
(10 rows

1

18.

| difference | to_char

R ekt R ekt
| 618.80 | $ 618.80
| 64.60 | $ 64.60
| 297.50 | $ 297.50
| 148.75 | $ 148.75
| 130.90 | $ 130.90
| 334.90 | $ 334.90
| 669.80 | $§ 669.80
| 167.45 | $ 167.45
| 502.35 | $ 502.35
| 55.25 | $ 55.25

(pricepaid - commission)
'199999D99') from sales

Im folgenden Beispiel wird das Jahrhundert aufgelistet, in dem die einzelnen Verkaufe ausgefuhrt

wurden.

select salesid,

order by

O 0o NO Ul A WWDN P

[
S

salesid limit 10;

saletime

2008-02-18
2008-06-06
2008-06-06
2008-06-09
2008-08-31
2008-07-16
2008-06-26
2008-07-10
2008-07-22
2008-08-06

saletime, to_char(saletime,

'cc') from sales

Funktionen fiir die Datentypformatierung

185

AWS Clean Rooms

SQL-Referenz

(10 rows)

Im folgenden Beispiel wird jeder STARTTIME-Wert in der Tabelle EVENT in eine Zeichenfolge
konvertiert, die aus Stunden, Minuten, Sekunden und Zeitzone besteht.

select to_char(starttime, 'HH12:MI:SS TZ')
from event where eventid between 1 and 5

order by eventid;

to_char

07:00:00 UTC
(5 rows)

(10 rows)

Im folgenden Beispiel wird die Formatierung fir Sekunden, Millisekunden und Mikrosekunden

gezeigt.

select sysdate,
to_char(sysdate,
to_char(sysdate,
to_char(sysdate,

timestamp

2015-04-10 18:45:

'HH24:MI:SS') as seconds,
'"HH24:MI:SS.MS') as milliseconds,
'"HH24:MI:SS:US') as microseconds;

seconds | milliseconds | microseconds

TO_DATE-Funktion

TO_DATE konvertiert ein Datum in einer Zeichenfolge in den Datentyp DATE.

Syntax

TO_DATE (date_str)

TO_DATE (date_str, format)

Funktionen fir die Datentypformatierung 186

AWS Clean Rooms SQL-Referenz

Argumente
date_str

Eine Datumszeichenfolge oder ein Datentyp, der in eine Datumszeichenfolge umgewandelt
werden kann.

format

Ein Zeichenkettenliteral, das den Datetime-Mustern von Spark entspricht. Giltige Datetime-Muster
finden Sie unter Datetime-Muster fUr Formatierung und Analyse.

Ruckgabetyp

TO_DATE gibt ein DATE zurick, abhéngig vom Formatwert.

Wenn die Konvertierung in das Format fehlschlagt, wird ein Fehler zurliickgegeben.
Beispiele

Die folgende SQL-Anweisung konvertiert das Datum 02 Oct 2001 in einem Datumsdatentyp.

select to_date('02 Oct 2001', 'dd MMM yyyy');

2001-10-02
(1 row)

Die folgende SQL-Anweisung konvertiert die Zeichenfolge 20010631 in ein Datum.

select to_date('20010631', 'yyyyMMdd');

Die folgende SQL-Anweisung konvertiert die Zeichenfolge 20010631 in ein Datum:

to_date('20010631', 'YYYYMMDD', TRUE);

Das Ergebnis ist ein Nullwert, da der Juni nur 30 Tage hat.

to_date

Funktionen fir die Datentypformatierung 187

https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html

AWS Clean Rooms SQL-Referenz

NULL

TO_NUMBER
TO_NUMBER konvertiert eine Zeichenfolge in einen numerischen Wert (Dezimalwert).

Syntax

to_number(string, format)

Argumente
string

Die Zeichenfolge, die konvertiert werden soll. Das Format muss ein Literalwert sein.

format

Das zweite Argument ist eine Formatzeichenfolge, die anzeigt, wie die Zeichenfolge

analysiert werden muss, um den numerischen Wert zu generieren. Beispielsweise

gibt das Format '99D999"' an, dass die Zeichenfolge, die konvertiert werden soll, aus

funf Ziffern mit dem Dezimalzeichen an dritter Position besteht. Beispielsweise gibt
to_number('12.345"','99D999"') 12.345 als einen numerischen Wert zuriick. Die Liste der
gultigen Formate finden Sie unter Numerische Formatzeichenfolgen.

Ruckgabetyp
TO_NUMBER gibt eine Dezimalzahl zurick.
Wenn die Konvertierung in das Format fehlschlagt, wird ein Fehler zurtickgegeben.
Beispiele
Im folgenden Beispiel wird die Zeichenfolge 12, 454 .8- in eine Zahl konvertiert:
select to_number('12,454.8-"', '99G999D9S');
to_number

-12454.8

Im folgenden Beispiel wird die Zeichenfolge $ 12, 454.88 in eine Zahl konvertiert:

Funktionen fir die Datentypformatierung 188

AWS Clean Rooms SQL-Referenz

select to_number('$ 12,454.88', 'L 99G999D99');

to_number

12454.88

Im folgenden Beispiel wird die Zeichenfolge $ 2,012, 454 .88 in eine Zahl konvertiert:

select to_number('$ 2,012,454.88', 'L 9,999,999.99');

to_number

2012454 .88

UNBASEG64 Funktion
Die UNBASEG64 Funktion konvertiert ein Argument von einer Base-64-Zeichenfolge in eine Binardatei.

Die Base64-Kodierung wird haufig verwendet, um Binardaten (wie Bilder, Dateien oder verschliisselte
Informationen) in einem Textformat darzustellen, das fiir die Ubertragung (iber verschiedene
Kommunikationskanale (wie E-Mail, URL-Parameter oder Datenbankspeicher) sicher ist.

Mit dieser UNBASEG4 Funktion konnen Sie diesen Vorgang riickgangig machen und die
ursprunglichen Bindrdaten wiederherstellen. Diese Art von Funktionalitat kann in Szenarien nitzlich
sein, in denen Sie mit Daten arbeiten mussen, die im Base64-Format codiert wurden, z. B. bei der
Integration mit externen Systemen oder bei APls denen Base64 als Datenubertragungsmechanismus
verwendet wird.

Syntax
unbase64(expr)
Argumente

expr

Ein STRING-Ausdruck in einem Base64-Format.

Ruckgabetyp

BINARY

Funktionen fir die Datentypformatierung 189

AWS Clean Rooms SQL-Referenz

Beispiel

Im folgenden Beispiel wird die Base64-kodierte Zeichenfolge wieder in 'U3BhcmsgU1FM' die
urspringliche Zeichenfolge konvertiert. 'Spark SQL'

SELECT unbase64('U3BhcmsgUlFM');
Spark SQL

UNHEX-Funktion

Die UNHEX-Funktion konvertiert eine hexadezimale Zeichenfolge zurlick in ihre urspriingliche
Zeichenfolgendarstellung.

Diese Funktion kann in Szenarien nitzlich sein, in denen Sie mit Daten arbeiten missen, die
in einem Hexadezimalformat gespeichert oder tibertragen wurden, und Sie die ursprlingliche
Zeichenkettendarstellung fir die weitere Verarbeitung oder Anzeige wiederherstellen missen.

Die UNHEX-Funktion ist das Gegenstlick zur HEX-Funktion.

Syntax

unhex(expr)

Argumente
expr

Ein STRING-Ausdruck mit Hexadezimalzeichen.

Ruckgabetyp
UNHEX gibt einen BINARWERT zuriick.

Wenn die Lange von expr ungerade ist, wird das erste Zeichen verworfen und das Ergebnis mit
einem Null-Byte aufgeflllt. Wenn expr Zeichen enthalt, die keine Hexadezimalzahlen sind, ist das
Ergebnis NULL.

Beispiel

Im folgenden Beispiel wird eine hexadezimale Zeichenfolge wieder in ihre urspringliche
Zeichenkettendarstellung konvertiert, indem die Funktionen UNHEX () und DECODE () zusammen
verwendet werden. Im ersten Teil der Abfrage wird die Funktion UNHEX () verwendet, um die

Funktionen fir die Datentypformatierung 190

AWS Clean Rooms SQL-Referenz

hexadezimale Zeichenfolge '537061726B2053514C" in ihre binare Darstellung zu konvertieren. Der
zweite Teil der Abfrage verwendet die Funktion DECODE (), um die mit der UNHEX () -Funktion
erhaltenen Binardaten wieder in eine Zeichenfolge zu konvertieren, wobei die Zeichenkodierung
'UTF-8' verwendet wird. Die Ausgabe der Abfrage ist die urspriingliche Zeichenfolge 'Spark_SQL', die
in eine Hexadezimalzahl und dann wieder in eine Zeichenfolge konvertiert wurde.

SELECT decode(unhex('537061726B2053514C'), 'UTF-8');
Spark SQL

Datum-/Uhrzeit-Formatzeichenfolgen
Sie kdnnen Datetime-Muster in den folgenden gangigen Szenarien verwenden:

» Bei der Arbeit mit CSV- und JSON-Datenquellen zum Analysieren und Formatieren von Datums-/
Uhrzeitinhalten

» Bei der Konvertierung zwischen Zeichenfolgentypen und Datums- oder Zeitstempeltypen mithilfe
von Funktionen wie:

* unix_timestamp

+ date_format

* to_unix_timestamp
* von_unixtime

+ to_date
 to_timestamp

» from_utc_timestamp

 to_utc_timestamp

Verwenden Sie die Musterbuchstaben in der folgenden Tabelle fir die Analyse und Formatierung von
Datum und Zeitstempel.

Datumsteil oder Zeittell Bedeutung Beispiele

a AM oder PM des Tages, PM
dargestellt als AM-PM

D Tag des Jahres, dargestelltals 189
dreistellige Zahl

Funktionen fir die Datentypformatierung 191

AWS Clean Rooms

SQL-Referenz

Datumsteil oder Zeitteil

d

Bedeutung

Tag des Monats, dargestellt
als zweistellige Zahl

Wochentag, als Text dargestel
It

Einheitlicher Wochentag im
Monat, dargestellt als einstelli
ge Zahl

Araindikator, dargestellt als
Text

Uhrzeit von AM oder PM,
dargestellt als zweistellige
Zahl

Stunde des Tages, dargestellt
als zweistellige Zahl zwischen
O und 23

Uhrzeit des Tages, dargestel
It als zweistellige Zahl von 1—
24

Uhrzeit von AM oder PM,
dargestellt als zweistellige
Zahl von 0—11

Minute der Stunde, dargestellt
als zweistellige Zahl

Beispiele

28

Di
Dienstag

3

AD
Anno Domini

12

30

Funktionen fiir die Datentypformatierung

192

AWS Clean Rooms

SQL-Referenz

Datumsteil oder Zeitteil

M/L

q/Q

Bedeutung

Monat des Jahres, dargestellt
als Monat

Lokalisierter Zonenversatz von
uTC

Quartal des Jahres, dargestellt
als Zahl (1 bis 4) oder Text

Sekunde der Minute, dargestel
It als zweistellige Zahl

Bruchteil einer Sekunde,
dargestellt als Bruchteil

Zeitzonen-ID, dargestellt als
Zonen-ID

Beispiele

7

07

Juli

Juli
GMT+8
GMT+ 8:00
UTC-08:00
3

03

Q3

3. Quartal

55

978

Amerika/Los_Angeles
Z

08:30

Funktionen fiir die Datentypformatierung

193

AWS Clean Rooms

SQL-Referenz

Datumsteil oder Zeitteil

Bedeutung

Zonenversatz von UTC
(Offset-X)

Zonenversatz von UTC; wobei
Z fur Null steht

Jahr, als Jahr dargestellt

Name der Zeitzone, als Text
dargestellt

Zonenversatz von UTC
(Offset-2)

Escape flur Text, dargestellt
als Trennzeichen

Beispiele
+0000
-08

-0830

- 08:30
-083015

- 08:30:15
z

-08

-0830

- 08:30
-083015

- 08:30:15
2020

20

Pacific Standard Time

PST

+0000

-0800

- 08:00

N/A

Funktionen fiir die Datentypformatierung

194

AWS Clean Rooms SQL-Referenz

Datumsteil oder Zeitteil Bedeutung Beispiele

" Einfaches Anfiihrungszeichen,
wortwortlich dargestellt

[Optionaler Beginn des N/A
Abschnitts

] Optionales Ende des Abschnitt N/A
s

Die Anzahl der Musterbuchstaben bestimmt den Formattyp:
Textformat

* Verwenden Sie 1—3 Buchstaben fiur die abgekurzte Form (z. B. ,Mon* fir Montag)
* Verwenden Sie genau 4 Buchstaben fur das vollstandige Formular (z. B. ,Montag®)

* Verwenden Sie nicht 5 oder mehr Buchstaben - dies fihrt zu einem Fehler

Zahlenformat (n)

* Der Wert n steht flr die maximal zuldssige Anzahl von Buchstaben
* FUr Muster mit einzelnen Buchstaben:
+ Die Ausgabe verwendet mindestens Ziffern ohne Auffillung
* FUr mehrere Buchstabenmuster:
* Die Ausgabe wird mit Nullen aufgefullt, um der Breite der Buchstabenzahl zu entsprechen

+ Beim Parsen muss die Eingabe die genaue Anzahl von Ziffern enthalten

Zahlen-/Textformat

» Folgen Sie bei 3 oder mehr Buchstaben den Regeln fir das Textformat

» Folgen Sie den Regeln fur das Zahlenformat, um weniger Buchstaben zu erhalten

Format fur Briiche

* Verwenden Sie 1—9 S-Zeichen (z. B. SSSSSS)

Funktionen fir die Datentypformatierung 195

AWS Clean Rooms SQL-Referenz

« Zum Parsen:
» Akzeptiere Briche zwischen 1 und der Anzahl der S-Zeichen
* Fir die Formatierung:
» Geben Sie Nullen ein, um der Anzahl der S-Zeichen zu entsprechen
+ Unterstitzt bis zu 6 Ziffern fur eine Genauigkeit im Mikrosekundenbereich

« Kann Nanosekunden analysieren, schneidet aber zuséatzliche Ziffern ab

Jahresformat

Die Buchstabenzahl legt die minimale Feldbreite fur den Innenabstand fest
» Fdr zwei Buchstaben:
+ Druckt die letzten beiden Ziffern
* Analysiert Jahre zwischen 2000 und 2099
» Fir weniger als vier Buchstaben (aulder zwei):
+ Zeigt das Vorzeichen nur fur negative Jahre

* Verwenden Sie nicht 7 oder mehr Buchstaben - dies fihrt zu einem Fehler

Format des Monats

« Verwenden Sie 'M' fUr das Standardformular oder 'L’ fir das eigenstandige Formular
» Einfaches 'M' oder 'L"

» Zeigt die Monatszahlen 1—12 ohne Polsterung

« 'MM' oder 'LL"
+ Zeigt die Monatszahlen 01—12 mit Polsterung
« 'MMM":
« Zeigt den abgeklrzten Monatsnamen in Standardform
* Muss Teil eines vollstandigen Datumsmusters sein
o LLL"
« Zeigt den abgekurzten Monatsnamen in eigenstandiger Form
» Wird nur fir die monatliche Formatierung verwendet

« 'MMMM':

Funktionen fir die Datentypformatierung 196

AWS Clean Rooms SQL-Referenz

» Zeigt den vollstandigen Monatsnamen in Standardform
» Wird fir Datums- und Zeitstempel verwendet
¢ 'LLLL"
+ Zeigt den vollstandigen Monatsnamen in eigenstandiger Form

* Nur fur die monatliche Formatierung verwenden

Zeitzonenformate

« am-pm: Verwenden Sie nur einen Buchstaben
« Zonen-ID (V): Verwenden Sie nur 2 Buchstaben
« Zonennamen (z):

* 1—3 Buchstaben: Zeigt den Kurznamen

» 4 Buchstaben: Zeigt den vollstandigen Namen

* Verwenden Sie nicht 5 oder mehr Buchstaben

Offset-Formate

e« Xundx:

» 1 Buchstabe: Zeigt Stunde (+01) oder Stundenminute (+0130)

2 Buchstaben: Zeigt die Stunde und Minute ohne Doppelpunkt an (+0130)

3 Buchstaben: Zeigt die Stunde und Minute mit Doppelpunkt an (+ 01:30)

4 Buchstaben: Wird hour-minute-second ohne Doppelpunkt angezeigt (+013015)

5 Buchstaben: Wird hour-minute-second mit Doppelpunkt angezeigt (+ 01:30:15)
« Xverwendet 'Z' fur einen Nullversatz
« x verwendet '+00', '+0000' oder '+ 00:00 'fir einen Nullversatz
+ O:
* 1 Buchstabe: Zeigt die Kurzform an (GMT+8)
» 4 Buchstaben: Zeigt die vollstdndige Form an (GMT+ 08:00)
. Z
* 1-3 Buchstaben: Zeigt die Stunde und Minute ohne Doppelpunkt an (+0130)
» 4 Buchstaben: Zeigt die vollstandige lokalisierte Form

« 5 Buchstaben: Wird hour-minute-second mit Doppelpunkt angezeigt

Funktionen fir die Datentypformatierung 197

AWS Clean Rooms SQL-Referenz

Optionale Abschnitte

» Verwenden Sie eckige Klammern [], um optionale Inhalte zu markieren
» Sie kdnnen optionale Abschnitte verschachteln
« Alle gultigen Daten werden in der Ausgabe angezeigt

» Bei der Eingabe kdnnen ganze optionale Abschnitte weggelassen werden

® Note

Die Symbole 'E', 'F', 'q"' und 'Q' funktionieren nur fir die Formatierung von Datum und Uhrzeit
(wie date_format). Verwenden Sie sie nicht fir die Datetime-Analyse (wie to_timestamp).

Numerische Formatzeichenfolgen

Die folgenden Zeichenketten im numerischen Format gelten fur Funktionen wie TO_NUMBER und
TO_CHAR.

+ Beispiele fur das Formatieren von Zeichenfolgen als Zahlen finden Sie unter TO_NUMBER.

+ Beispiele fur das Formatieren von Zahlen als Zeichenfolgen finden Sie unterTO_CHAR.

Format Beschreibung
9 Numerischer Wert mit der angegebenen Anzahl
von Stellen.
0 Numerischer Wert mit Nullen zu Beginn.
. (Punkt), D Dezimalpunkt.
, (Komma) Tausendertrennzeichen.
(
CC Jahrhundertcode. Das 21. Jahrhundert begann

beispielsweise am 01.01.2001 (wird nur fur
TO_CHAR unterstitzt).

Funktionen fir die Datentypformatierung 198

AWS Clean Rooms SQL-Referenz

Format Beschreibung

FM Fullmodus. Unterdriickt ausflillende Leerzeich
en und Nullen.

PR Negativer Wert in Winkelklammern.

S Vorzeichen, das mit einer Zahl fest verbunden
ist.

L Wahrungssymbol an der angegebenen
Position.

G Gruppentrennzeichen.

Mi Minuszeichen an der angegebenen Position flr

Zahlen kleiner als 0.

PL Pluszeichen an der angegebenen Position flr
Zahlen grofer als 0.

SG Plus- oder Minuszeichen an der angegebenen
Position.
RN Roémische Zahl zwischen 1 und 3999 (wird nur

fur TO_CHAR unterstitzt).

TH oder th Ordnungszahlsuffix. Konvertiert keine
Bruchzahlen oder Werte kleiner als null.

Datums- und Zeitfunktionen

Mit Datums- und Uhrzeitfunktionen kénnen Sie eine Vielzahl von Vorgangen mit Datums-

und Uhrzeitdaten ausflihren, z. B. Teile eines Datums extrahieren, Datumsberechnungen
durchfihren, Datums- und Uhrzeitdaten formatieren und mit dem aktuellen Datum und der aktuellen
Uhrzeit arbeiten. Diese Funktionen sind fur Aufgaben wie Datenanalyse, Berichterstattung und
Datenmanipulation mit Zeitdaten unerlasslich.

AWS Clean Rooms unterstitzt die folgenden Datums- und Uhrzeitfunktionen:

Datums- und Zeitfunktionen 199

AWS Clean Rooms

SQL-Referenz

Themen

Funktion ADD_MONTHS

Funktion CONVERT_TIMEZONE
Funktion CURRENT_DATE
CURRENT_TIMESTAMP-Funktion
DATE_ADD-Funktion
DATE_DIFF-Funktion

Funktion DATE_PART

Funktion DATE_TRUNC
DAY-Funktion
DAYOFMONTH-Funktion
DAYOFWEEK-Funktion
DAYOFYEAR-Funktion

Funktion EXTRACT
FROM_UTC_TIMESTAMP-Funktion

HOUR-Funktion
MINUTE-Funktion
MONTH-Funktion
SECOND-Funktion
TIMESTAMP-Funktion
Funktion TO_TIMESTAMP
YEAR-Funktion

Datumsteile fir Datums- oder Zeitstempelfunktionen

Funktion ADD_MONTHS

ADD_MONTHS fugt die angegebene Zahl von Monaten zu einem Datums- oder Zeitstempelwert bzw.

-ausdruck hinzu. Die Funktion DATE_ADD bietet eine ahnliche Funktionalitat.

Syntax

ADD_MONTHS({date | timestamp}, integer)

Datums- und Zeitfunktionen

200

AWS Clean Rooms SQL-Referenz

Argumente
date | timestamp

Eine Datums- oder Zeitstempelspalte bzw. ein entsprechender Ausdruck, die/der implizit zu
einem Datum oder Zeitstempel konvertiert wird. Wenn das Datum der letzte Tag des Monats ist,
oder wenn der resultierende Monat kirzer ist, gibt die Funktion im Ergebnis den letzten Tag des
Monats aus. Fur andere Datumsangaben enthalt das Ergebnis die gleiche Tagesnummer wie der
Datumsausdruck.

integer

Eine positive oder negative Ganzzahl. Verwenden Sie eine negative Zahl, um Monate von
Datumsangaben abzuziehen.

Ruckgabetyp
TIMESTAMP
Beispiel

Die folgende Abfrage verwendet die Funktion ADD_MONTHS innerhalb einer TRUNC-Funktion.
Die TRUNC-Funktion entfernt die Tageszeit aus dem Ergebnis von ADD_MONTHS. Die Funktion
ADD_MONTHS flugt jedem Wert aus der Spalte CALDATE 12 Monate hinzu.

select distinct trunc(add_months(caldate, 12)) as calplusl2,
trunc(caldate) as cal

from date

order by 1 asc;

calplusl2 | cal
____________ e ———

2009-01-01 | 2008-01-01
2009-01-02 | 2008-01-02
2009-01-03 | 2008-01-03

(365 rows)
Die folgenden Beispiele illustrieren die Verhaltensweise, wenn die Funktion ADD_MONTHS fur

Datumsangaben verwendet wird, die Monate mit unterschiedlichen Anzahlen von Tagen enthalten.

select add_months('2008-03-31',1);

Datums- und Zeitfunktionen 201

AWS Clean Rooms SQL-Referenz

add_months

2008-04-30 00:00:00
(1 row)

select add_months('2008-04-30',1);

add_months

2008-05-31 00:00:00
(1 row)

Funktion CONVERT_TIMEZONE

CONVERT_TIMEZONE konvertiert einen Zeitstempel von einer Zeitzone zu einer anderen. Die
Funktion passt sich automatisch an die Sommerzeit an.

Syntax

CONVERT_TIMEZONE (['source_timezone',] 'target_timezone', 'timestamp')

Argumente

source_timezone

(Optional) Die Zeitzone des aktuellen Zeitstempels. Der Standardwert ist UTC.

target_timezone

Die Zeitzone flir den neuen Zeitstempel.

timestamp

Eine Zeitstempelspalte bzw. ein entsprechender Ausdruck, die/der implizit zu einem Zeitstempel
konvertiert wird.

Ruckgabetyp

TIMESTAMP

Datums- und Zeitfunktionen 202

AWS Clean Rooms SQL-Referenz

Beispiele

Das folgende Beispiel konvertiert den Zeitstempelwert von der Standardzeitzone UTC zu PST.

select convert_timezone('PST', '2008-08-21 07:23:54');

convert_timezone

2008-08-20 23:23:54

Das folgende Beispiel konvertiert den Zeitstempelwert in der Spalte LISTTIME von der
Standardzeitzone UTC zu PST. Obwohl der Zeitstempel in der Sommerzeitzone liegt, wird er zur
Standardzeit konvertiert, da die Zielzeitzone als Abkurzung (PST) angegeben ist.

select listtime, convert_timezone('PST', listtime) from listing
where listid = 16;

listtime | convert_timezone
____________________ e e,

2008-08-24 09:36:12 2008-08-24 01:36:12

Im folgenden Beispiel wird eine LISTTIME-Spalte mit einem Zeitstempel von der Standard-UTC-
Zeitzone in eine Zeitzone konvertiert US/Pacific . Die Zielzeitzone verwendet einen Zeitzonennamen,
und der Zeitstempel liegt im Sommerzeitzeitraum, weshalb die Funktion die Sommerzeit ausgibt.

select listtime, convexrt_timezone('US/Pacific', listtime) from listing
where listid = 16;

listtime | convert_timezone

____________________ oo e e e e
2008-08-24 09:36:12 | 2008-08-24 ©02:36:12

Das folgende Beispiel konvertiert eine Zeitstempelzeichenfolge von EST zu PST:

select convert_timezone('EST', 'PST', '20080305 12:25:29');

convert_timezone

2008-03-05 ©09:25:29

Datums- und Zeitfunktionen 203

AWS Clean Rooms SQL-Referenz

Das folgende Beispiel konvertiert einen Zeitstempel zu US Eastern Standard Time, da die
Zielzeitzone einen Zeitzonennamen (America/New York) verwendet und der Zeitstempel im
Standardzeitzeitraum liegt.

select convert_timezone('America/New_York', '2013-02-01 08:00:00');

convert_timezone

2013-02-01 03:00:00
(1 row)

Das folgende Beispiel konvertiert einen Zeitstempel zu US Eastern Daylight Time, da die Zielzeitzone
einen Zeitzonennamen (America/New York) verwendet und der Zeitstempel im Sommerzeitzeitraum
liegt.

select convert_timezone('America/New_York', '2013-06-01 08:00:00');

convert_timezone

2013-06-01 04:00:00
(1 row)

Das folgende Beispiel illustriert die Verwendung von Verschiebungen.

SELECT CONVERT_TIMEZONE('GMT', 'NEWZONE +2','2014-05-17 12:00:00') as newzone_plus_2,
CONVERT_TIMEZONE('GMT', 'NEWZONE-2:15"', '2014-05-17 12:00:00') as newzone_minus_2_15,
CONVERT_TIMEZONE('GMT', 'Amexrica/Los_Angeles+2', '2014-05-17 12:00:00') as la_plus_2,
CONVERT_TIMEZONE('GMT', 'GMT+2', '2014-05-17 12:00:00') as gmt_plus_2;

newzone_plus_2 | newzone_minus_2_15 | la_plus_2 | gmt_plus_2
--------------------- L el ettt ettt

2014-05-17 10:00:00 | 2014-05-17 14:15:00 | 2014-05-17 10:00:00 | 2014-05-17 10:00:00
(1 row)

Funktion CURRENT_DATE

CURRENT_DATE gibt ein Datum in der Zeitzone der aktuellen Sitzung (standardmaflig UTC) im
Standardformat zuruck:. YYYY-MM-DD

Datums- und Zeitfunktionen 204

AWS Clean Rooms SQL-Referenz

® Note

CURRENT_DATE gibt das Startdatum fir die aktuelle Transaktion aus, nicht fir den Start
der aktuellen Anweisung. Angenommen, Sie starten eine mehrere Anweisungen umfassende
Transaktion am 01.10.08 um 23:59 Uhr und die Anweisung mit CURRENT_DATE wird am
02.10.08 um 00:00 Uhr ausgefiihrt. CURRENT_DATE gibt dann 10/01 /@8 zuriick, nicht
10/02/08.

Syntax

CURRENT_DATE

Ruckgabetyp
DATUM
Beispiel

Das folgende Beispiel gibt das aktuelle Datum zurlck (in AWS-Region dem die Funktion ausgefihrt
wird).

select current_date;

2008-10-01

CURRENT_TIMESTAMP-Funktion

CURRENT_TIMESTAMP gibt das aktuelle Datum und die aktuelle Uhrzeit zurtck, einschlieB3lich
Datum, Uhrzeit und (optional) der Millisekunden oder Mikrosekunden.

Diese Funktion ist nitzlich, wenn Sie das aktuelle Datum und die aktuelle Uhrzeit abrufen missen,
um beispielsweise den Zeitstempel eines Ereignisses aufzuzeichnen, zeitbasierte Berechnungen
durchzufliihren oder Spalten aufzuflillen. date/time

Syntax

current_timestamp()

Datums- und Zeitfunktionen 205

AWS Clean Rooms SQL-Referenz

Ruckgabetyp
Die CURRENT_TIMESTAMP-Funktion gibt ein DATUM zurtck.
Beispiel

Das folgende Beispiel gibt das aktuelle Datum und die aktuelle Uhrzeit zum Zeitpunkt der Ausflihrung
der Abfrage zurick, also am 25. April 2020 um 15:49:11.914 (15:49:11.914 Uhr).

SELECT current_timestamp();
2020-04-25 15:49:11.914

Im folgenden Beispiel werden das aktuelle Datum und die aktuelle Uhrzeit fir jede Zeile in der
Tabelle abgerufen. squirrels

SELECT current_timestamp() FROM squirrels

DATE_ADD-Funktion

Gibt das Datum zurick, das num_days nach start_date liegt.

Syntax

date_add(start_date, num_days)

Argumente

start_date

Der Wert fur das Startdatum.
Anzahl_Tage

Die Anzahl der hinzuzufiigenden Tage (Ganzzahl). Eine positive Zahl addiert Tage, eine negative
Zahl subtrahiert Tage.

Ruckgabetyp
DATUM
Beispiele

Das folgende Beispiel figt einem Datum einen Tag hinzu:

Datums- und Zeitfunktionen 206

AWS Clean Rooms SQL-Referenz

SELECT date_add('2016-07-30"', 1);

Result:
2016-07-31

Im folgenden Beispiel werden mehrere Tage hinzugeflugt.

SELECT date_add('2016-07-30', 5);

Result:
2016-08-04

Nutzungshinweise

Diese Dokumentation bezieht sich auf die DATE_ADD-Funktion von Spark SQL, die im Vergleich zu
einigen anderen SQL-Varianten eine einfachere Schnittstelle zum Hinzufligen von Tagen zu Daten
bietet. FUr das Hinzufligen anderer Intervalle wie Monate oder Jahre sind mdglicherweise andere
Funktionen erforderlich.

DATE_DIFF-Funktion

DATE_DIFF gibt die Differenz zwischen den Datumsteilen zweier Datums- oder Uhrzeitausdrucke
zurlck.

Syntax

date_diff(endDate, startDate)

Argumente
endDate

Ein DATE-Ausdruck.
startDate

Ein DATE-Ausdruck.

Ruckgabetyp

BIGINT

Datums- und Zeitfunktionen 207

AWS Clean Rooms SQL-Referenz

Beispiele mit einer DATE-Spalte

Im folgenden Beispiel wird die Differenz als Anzahl von Wochen zwischen zwei Literal-Datumswerten
berechnet.

select date_diff(week, '2009-01-01', '2009-12-31"') as numweeks;

numweeks

52
(1 row)

Im folgenden Beispiel wird die Differenz in Stunden zwischen zwei Literal-Datumswerten ermittelt.
Wenn Sie den Zeitwert fur ein Datum nicht angeben, wird standardmafig 00:00:00 verwendet.

select date_diff(hour, '2023-01-01', '2023-01-03 05:04:03"');

date_diff

53
(1 row)

Im folgenden Beispiel wird die Differenz in Tagen zwischen zwei TIMESTAMETZ-Literalwerten
ermittelt.

Select date_diff(days, 'Jun 1,2008 ©9:59:59 EST', 'Jul 4,2008 ©9:59:59 EST')

date_diff

Im folgenden Beispiel wird die Differenz in Tagen zwischen zwei Daten in derselben Zeile einer
Tabelle ermittelt.

select * from date_table;

start_date | end_date
___________ i
2009-01-01 | 2009-03-23
2023-01-04 | 2024-05-04
(2 rows)

Datums- und Zeitfunktionen 208

AWS Clean Rooms SQL-Referenz

select date_diff(day, start_date, end_date) as duration from date_table;

duration

81
486
(2 rows)

Im folgenden Beispiel wird die Differenz als Anzahl von Quartalen zwischen einem in der
Vergangenheit liegenden Literalwert und dem heutigen Datum berechnet. Bei diesem Beispiel

wird davon ausgegangen, dass das aktuelle Datum der 5. Juni 2008 ist. Sie kdnnen Datumsteile
ausschreiben oder abkiirzen. Der Standardspaltenname fir die DATE_DIFF-Funktion ist DATE_DIFF.

select date_diff(qtr, '1998-07-01', current_date);

date_diff

Das folgende Beispiel verbindet die Tabellen SALES und LISTING zur Berechnung, wie viel Tage
nach ihrer Auflistung Tickets fir die Auflistungen 1000 bis 1005 verkauft wurden. Die langste
Wartezeit flr den Verkauf dieser Auflistungen betrug 15 Tage, und die kirzeste lag unter einem Tag
(0 Tage).

select priceperticket,

date_diff(day, listtime, saletime) as wait

from sales, listing where sales.listid = listing.listid
and sales.listid between 1000 and 1005

order by wait desc, priceperticket desc;

96.00
(7 rows)

Datums- und Zeitfunktionen 209

AWS Clean Rooms SQL-Referenz

Dieses Beispiel berechnet die durchschnittliche Zahl von Stunden, fir die Verkaufer auf alle
Ticketverkaufe warteten.

select avg(date_diff(hours, listtime, saletime)) as avgwait
from sales, listing
where sales.listid = listing.listid;

avgwait

Beispiele mit einer TIME-Spalte

Die folgende Beispieltabelle TIME_TEST enthalt eine Spalte TIME_VAL (Typ TIME) mit drei
eingefugten Werten.

select time_val from time_test;
time_val

20:00:00
00:00:00.5550
00:58:00

Im folgenden Beispiel wird die Differenz als Anzahl von Stunden zwischen der TIME_VAL-Spalte und
einem Zeitliteral berechnet.

select date_diff(hour, time_val, time '15:24:45') from time_test;

date_diff

Im folgenden Beispiel wird die Differenz als Anzahl von Minuten zwischen zwei Literal-Zeitwerten
berechnet.

select date_diff(minute, time '20:00:00', time '21:00:00') as nummins;

nummins

Datums- und Zeitfunktionen 210

AWS Clean Rooms SQL-Referenz

Beispiele mit einer TIMETZ-Spalte

Die folgende Beispieltabelle TIMETZ_TEST enthalt eine Spalte TIMETZ_VAL (Typ TIMETZ) mit drei
eingefigten Werten.

select timetz_val from timetz_test;

timetz_val

04:00:00+00
00:00:00.5550+00
05:58:00+00

Im folgenden Beispiel werden die Differenzen als Anzahl von Stunden zwischen dem TIMETZ-Literal
und timetz_val berechnet.

select date_diff(hours, timetz '20:00:00 PST', timetz_val) as numhours from
timetz_test;

numhours

Im folgenden Beispiel wird die Differenz als Anzahl von Stunden zwischen zwei Literal-TIMETZ-
Werten berechnet.

select date_diff(hours, timetz '20:00:00 PST', timetz '©0:58:00 EST') as numhours;

numhours

Funktion DATE_PART

DATE_PART extrahiert Datumsteilwerte aus einem Ausdruck. DATE_PART ist synonym mit der
Funktion PGDATE_PART.

Datums- und Zeitfunktionen 211

AWS Clean Rooms SQL-Referenz

Syntax

datepart(field, source)

Argumente
field

Welcher Teil der Quelle extrahiert werden soll, und die unterstitzten Zeichenkettenwerte sind
dieselben wie die Felder der entsprechenden Funktion EXTRACT.

source

Eine DATE- oder INTERVAL-Spalte, aus der das Feld extrahiert werden soll.

Ruckgabetyp
Wenn das Feld 'SECOND' ist, eine DEZIMALZAHL (8, 6). In allen anderen Fallen eine Ganzzahl.
Beispiel

Im folgenden Beispiel wird der Tag des Jahres (DOY) aus einem Datumswert extrahiert. Die Ausgabe
zeigt, dass der Tag des Jahres fur das Datum ,2019-08-12" ist. 224 Das bedeutet, dass der 12.
August 2019 der 224. Tag des Jahres 2019 ist.

SELECT datepart('doy', DATE'2019-08-12');
224

Funktion DATE_TRUNC

Die Funktion DATE_TRUNC verkurzt alle Zeitstempelausdricke oder Literale auf der Grundlage des
angegebenen Datumsteils, beispielsweise Stunde, Tag oder Monat.

Syntax
date_trunc(format, datetime)
Argumente

format

Das Format, das die Einheit darstellt, auf die gekurzt werden soll. Giltige Formate sind folgende:

Datums- und Zeitfunktionen 212

AWS Clean Rooms SQL-Referenz

 YEARY ,YYYY* ,YY*“— kurzt auf das erste Datum des Jahres, in das das TS fallt, der Zeitteil
wird auf Null gesetzt

* ,QUARTER" — kirzt auf das erste Datum des Quartals, in das das TS fallt, der Zeitteil wird auf
Null gesetzt

« JMONTH®, ,MM*, L MON“ — kiirzen Sie den Wert auf das erste Datum des Monats, in den das
TS fallt, und der Zeitteil wird auf Null gesetzt

* ,WOCHE" — wird auf den Montag der Woche gekdrzt, in den das TS fallt, der Zeitteil wird auf
Null gesetzt

« DAY, ,DD* — setzt den Zeitteil auf Null

+ ,HOUR® — setzt die Minute und die Sekunde mit Bruchteilen auf Null
* ,MINUTE" — setzt die Sekunde mit Bruchteil auf Null

+ ,SECOND* — setzt den zweiten Bruchteil auf Null

* ,MILLISECOND" — setzt die Mikrosekunden auf Null

« ,MIKROSEKUNDE" — alles bleibt

ts

Ein Datetime-Wert

Ruckgabetyp
Gibt den Zeitstempel ts zuriick, gekirzt auf die im Formatmodell angegebene Einheit
Beispiele

Im folgenden Beispiel wird ein Datumswert auf den Jahresanfang gekurzt. Die Ausgabe zeigt,
dass das Datum ,2015-03-05" auf ,2015-01-01“ gekirzt wurde, was dem Beginn des Jahres 2015
entspricht.

SELECT date_trunc('YEAR', '2015-03-05');

date_trunc

2015-01-01

DAY-Funktion

Die DAY-Funktion gibt den Tag des Monats des Datums/Zeitstempels zurtck.

Datums- und Zeitfunktionen 213

AWS Clean Rooms SQL-Referenz

Datumsextraktionsfunktionen sind nitzlich, wenn Sie mit bestimmten Komponenten eines Datums
oder Zeitstempels arbeiten missen, z. B. wenn Sie datumsbasierte Berechnungen durchfihren,
Daten filtern oder Datumswerte formatieren.

Syntax

day(date)

Argumente
date

Ein DATE- oder TIMESTAMP-Ausdruck.

Ruckgabewert
Die DAY-Funktion gibt einen INTEGER-Wert zurtick.
Beispiele

Im folgenden Beispiel wird der Tag des Monats (30) aus dem Eingabedatum
extrahiert' 2009-07-30".

SELECT day('2009-07-30');
30

Im folgenden Beispiel wird der Tag des Monats aus der birthday squirrels Tabellenspalte
extrahiert und die Ergebnisse als Ausgabe der SELECT-Anweisung zurtickgegeben. Die Ausgabe
dieser Abfrage ist eine Liste von Tageswerten, einer fir jede Zeile in der squirrels Tabelle, die den
Tag des Monats darstellt, an dem jedes Eichhérnchen Geburtstag hat.

SELECT day(birthday) FROM squirrels

DAYOFMONTH-Funktion

Die Funktion DAYOFMONTH gibt den Tag des Monats von zurlck date/timestamp (ein Wert
zwischen 1 und 31, abhangig von Monat und Jahr).

Die DAYOFMONTH-Funktion ahnelt der DAY-Funktion, hat jedoch leicht unterschiedliche Namen
und ein leicht unterschiedliches Verhalten. Die DAY-Funktion wird haufiger verwendet, aber die

Datums- und Zeitfunktionen 214

AWS Clean Rooms SQL-Referenz

DAYOFMONTH-Funktion kann als Alternative verwendet werden. Diese Art von Abfrage kann
natzlich sein, wenn Sie eine datumsbasierte Analyse oder Filterung flr eine Tabelle durchflihren
mussen, die Datums- oder Zeitstempeldaten enthalt, z. B. wenn Sie bestimmte Komponenten eines
Datums flir die weitere Verarbeitung oder Berichterstattung extrahieren missen.

Syntax

dayofmonth(date)

Argumente
date

Ein DATE- oder TIMESTAMP-Ausdruck.

Ruckgabewert
Die Funktion DAYOFMONTH gibt einen INTEGER-Wert zurick.
Beispiel

Im folgenden Beispiel wird der Tag des Monats (30) aus dem Eingabedatum extrahiert.
'2009-07-30'

SELECT dayofmonth('2009-07-30');
30

Im folgenden Beispiel wird die Funktion DAYOFMONTH auf die birthday Spalte der squirrels
Tabelle angewendet. Fir jede Zeile in der squirrels Tabelle wird der Tag des Monats aus der
birthday Spalte extrahiert und als Ausgabe der SELECT-Anweisung zurtickgegeben. Die Ausgabe
dieser Abfrage ist eine Liste von Tageswerten, einer fir jede Zeile in der squirrels Tabelle, die den
Tag des Monats darstellt, an dem jedes Eichhérnchen Geburtstag hat.

SELECT dayofmonth(birthday) FROM squirrels

DAYOFWEEK-Funktion

Die DAYOFWEEK-Funktion verwendet ein Datum oder einen Zeitstempel als Eingabe und gibt den
Wochentag als Zahl zurick (1 fur Sonntag, 2 fir Montag,..., 7 fir Samstag).

Datums- und Zeitfunktionen 215

AWS Clean Rooms SQL-Referenz

Diese Datumsextraktionsfunktion ist nitzlich, wenn Sie mit bestimmten Komponenten eines Datums
oder Zeitstempels arbeiten missen, z. B. wenn Sie datumsbasierte Berechnungen durchfihren,
Daten filtern oder Datumswerte formatieren.

Syntax
dayofweek(date)

Argumente

date

Ein DATE- oder TIMESTAMP-Ausdruck.

Ruckgabewert

Die DAYOFWEEK-Funktion gibt einen INTEGER-Wert zurtick, wobei

1 = Sonntag
2 = Montag

3 = Dienstag
4 = Mittwoch

5 = Donnerstag

6 = Freitag
7 = Samstag
Beispiele

Im folgenden Beispiel wird der Wochentag aus diesem Datum extrahiert, das 5 ist (fir Donnerstag).

SELECT dayofweek('2009-07-30"');
5

Im folgenden Beispiel wird der Wochentag aus der birthday Spalte der squirrels Tabelle
extrahiert und die Ergebnisse als Ausgabe der SELECT-Anweisung zurlickgegeben. Die Ausgabe
dieser Abfrage ist eine Liste mit Wochentagswerten, einer fiir jede Zeile in der squirrels Tabelle,
die den Wochentag fur den Geburtstag jedes Eichhérnchens darstellt.

Datums- und Zeitfunktionen 216

AWS Clean Rooms SQL-Referenz

SELECT dayofweek(birthday) FROM squirrels

DAYOFYEAR-Funktion

Die DAYOFYEAR-Funktion ist eine Datumsextraktionsfunktion, die ein Datum oder einen Zeitstempel
als Eingabe verwendet und den Tag des Jahres zurlickgibt (ein Wert zwischen 1 und 366, abhangig
vom Jahr und davon, ob es sich um ein Schaltjahr handelt).

Diese Funktion ist nltzlich, wenn Sie mit bestimmten Komponenten eines Datums oder Zeitstempels
arbeiten mussen, z. B. wenn Sie datumsbasierte Berechnungen durchflihren, Daten filtern oder
Datumswerte formatieren.

Syntax

dayofyear(date)

Argumente
date

Ein DATE- oder TIMESTAMP-Ausdruck.

Ruckgabewert

Die DAYOFYEAR-Funktion gibt einen INTEGER-Wert zurtck (zwischen 1 und 366, abhangig vom
Jahr und davon, ob es sich um ein Schaltjahr handelt).

Beispiele

Im folgenden Beispiel wird der Tag des Jahres (100) aus dem Eingabedatum extrahiert.
'2016-04-09'

SELECT dayofyear('2016-04-09');
100

Im folgenden Beispiel wird der Tag des Jahres aus der birthday squirrels Tabellenspalte
extrahiert und die Ergebnisse als Ausgabe der SELECT-Anweisung zurickgegeben.

SELECT dayofyear(birthday) FROM squirrels

Datums- und Zeitfunktionen 217

AWS Clean Rooms SQL-Referenz

Funktion EXTRACT

Die EXTRACT-Funktion gibt einen Datums- oder Uhrzeitteil von einem TIMESTAMP-,
TIMESTAMPTZ-, TIME- oder TIMETZ-Wert zurtick. Beispiele hierfir sind ein Tag, Monat, Jahr, eine
Stunde, Minute, Sekunde, Millisekunde oder Mikrosekunde aus einem Zeitstempel.

Syntax

EXTRACT (datepart FROM source)

Argumente
datepart

Das zu extrahierende Unterfeld eines Datums- oder Uhrzeitwerts, z. B. Tag, Monat, Jahr, Stunde,
Minute, Sekunde, Millisekunde oder Mikrosekunde. Fir mogliche Werte vgl. Datumsteile flur
Datums- oder Zeitstempelfunktionen.

source
Eine Spalte oder ein Ausdruck, der zum Datentyp TIMESTAMP, TIMESTAMPTZ, TIME oder
TIMETZ ausgewertet wird.
Ruckgabetyp
INTEGER, wenn der Wert source zum Datentyp TIMESTAMP, TIME oder TIMETZ ausgewertet wird.
DOUBLE PRECISION, wenn der Wert source zum Datentyp TIMESTAMPTZ ausgewertet wird.
Beispiele mit TIME

Die folgende Beispieltabelle TIME_TEST enthalt eine Spalte TIME_VAL (Typ TIME) mit drei
eingefugten Werten.

select time_val from time_test;

time_val
20:00:00
00:00:00.5550
00:58:00

Datums- und Zeitfunktionen 218

AWS Clean Rooms SQL-Referenz

Im folgenden Beispiel werden die Minuten aus jedem time_val extrahiert.

select extract(minute from time_val) as minutes from time_test;

minutes

Im folgenden Beispiel werden die Stunden aus jedem time_val extrahiert.

select extract(hour from time_val) as hours from time_test;

FROM_UTC_TIMESTAMP-Funktion

Die Funktion FROM_UTC_TIMESTAMP konvertiert das Eingabedatum von UTC (Coordinated
Universal Time) in die angegebene Zeitzone.

Diese Funktion ist nitzlich, wenn Sie Datums- und Uhrzeitwerte von UTC in eine bestimmte Zeitzone
konvertieren missen. Dies kann wichtig sein, wenn Sie mit Daten arbeiten, die aus verschiedenen
Teilen der Welt stammen und in der entsprechenden Ortszeit prasentiert werden muissen.

Syntax

from_utc_timestamp(timestamp, timezone

Argumente

timestamp

Ein TIMESTAMP-Ausdruck mit einem UTC-Zeitstempel.

Zeitzone

Ein STRING-Ausdruck, der eine gultige Zeitzone darstellt, in die das Eingabedatum oder der
eingegebene Zeitstempel konvertiert werden soll.

Datums- und Zeitfunktionen 219

AWS Clean Rooms SQL-Referenz

Ruckgabewert
Die Funktion FROM_UTC_TIMESTAMP gibt einen TIMESTAMP zur(ck.
Beispiel

Das folgende Beispiel konvertiert das Eingabedatum von UTC in die angegebene Zeitzone ('Asia/
Seoul'), die in diesem Fall 9 Stunden vor UTC liegt. Die resultierende Ausgabe ist das Datum und
die Uhrzeit in der Zeitzone von Seoul, als02016-08-31 09:00:00.

SELECT from_utc_timestamp('2016-08-31', 'Asia/Seoul');
2016-08-31 09:00:00

HOUR-Funktion

Die HOUR-Funktion ist eine Zeitextraktionsfunktion, die eine Zeit oder einen Zeitstempel als Eingabe
verwendet und die Stundenkomponente (einen Wert zwischen 0 und 23) zurtickgibt.

Diese Zeitextraktionsfunktion ist nutzlich, wenn Sie mit bestimmten Komponenten eines Zeit- oder
Zeitstempels arbeiten mussen, z. B. wenn Sie zeitbasierte Berechnungen durchfuihren, Daten filtern
oder Zeitwerte formatieren.

Syntax

hour(timestamp)

Argumente
timestamp

Ein TIMESTAMP-Ausdruck.

Ruckgabewert
Die HOUR-Funktion gibt einen INTEGER-Wert zurlck.
Beispiel

Im folgenden Beispiel wird die Stundenkomponente (12) aus dem Eingabezeitstempel ' 2009-07-30
12:58:59' extrahiert.

Datums- und Zeitfunktionen 220

AWS Clean Rooms SQL-Referenz

SELECT hour('2009-07-30 12:58:59');
12

MINUTE-Funktion

Die MINUTE-Funktion ist eine Zeitextraktionsfunktion, die eine Zeit oder einen Zeitstempel als
Eingabe verwendet und die Minutenkomponente (einen Wert zwischen 0 und 60) zurlckgibt.

Syntax

minute(timestamp)

Argumente
timestamp

Ein TIMESTAMP-Ausdruck oder ein STRING mit einem glltigen Zeitstempelformat.

Ruckgabewert
Die MINUTE-Funktion gibt einen INTEGER-Wert zurtck.
Beispiel

Im folgenden Beispiel wird die Minutenkomponente (58) aus dem Eingabezeitstempel ' 2009-07-30
12:58:59' extrahiert.

SELECT minute('2009-07-30 12:58:59');
58

MONTH-Funktion

Die MONTH-Funktion ist eine Zeitextraktionsfunktion, die eine Zeit oder einen Zeitstempel als
Eingabe verwendet und die Monatskomponente (einen Wert zwischen 0 und 12) zurlickgibt.

Syntax

month(date)

Datums- und Zeitfunktionen 221

AWS Clean Rooms SQL-Referenz

Argumente
date

Ein TIMESTAMP-Ausdruck oder ein STRING mit einem gultigen Zeitstempelformat.

Ruckgabewert
Die MONTH-Funktion gibt einen INTEGER-Wert zurtck.
Beispiel

Im folgenden Beispiel wird die Monatskomponente (7) aus dem Eingabezeitstempel '2016-07-30'
extrahiert.

SELECT month('2016-07-30"');
7

SECOND-Funktion

Die SECOND-Funktion ist eine Zeitextraktionsfunktion, die eine Zeit oder einen Zeitstempel als
Eingabe verwendet und die zweite Komponente zurickgibt (einen Wert zwischen 0 und 60).

Syntax

second(timestamp)

Argumente
timestamp

Ein TIMESTAMP-Ausdruck.

Ruckgabewert
Die SECOND-Funktion gibt einen INTEGER-Wert zurlck.
Beispiel

Im folgenden Beispiel wird die zweite Komponente (59) aus dem Eingabezeitstempel ' 2009-07-30
12:58:59"' extrahiert.

Datums- und Zeitfunktionen 222

AWS Clean Rooms SQL-Referenz

SELECT second('2009-07-30 12:58:59');
59

TIMESTAMP-Funktion

Die TIMESTAMP-Funktion nimmt einen Wert (normalerweise eine Zahl) und konvertiert ihn in einen
Timestamp-Datentyp.

Diese Funktion ist nltzlich, wenn Sie einen numerischen Wert, der eine Uhrzeit oder ein Datum
darstellt, in einen Timestamp-Datentyp konvertieren missen. Dies kann hilfreich sein, wenn Sie
mit Daten arbeiten, die in einem numerischen Format gespeichert sind, z. B. Unix-Zeitstempel oder
Epochenzeit.

Syntax

timestamp(expr)

Argumente
expr

Jeder Ausdruck, der in TIMESTAMP umgewandelt werden kann.

Ruckgabewert
Die TIMESTAMP-Funktion gibt einen TIMESTAMP zur(ck.
Beispiel

Das folgende Beispiel konvertiert einen numerischen Unix-Zeitstempel (1632416400) in den
entsprechenden Timestamp-Datentyp: 22. September 2021 um 12:00:00 Uhr UTC.

SELECT timestamp(1632416400);
2021-09-22 12:00:00 UTC

Funktion TO_TIMESTAMP

TO_TIMESTAMP konvertiert eine TIMESTAMP-Zeichenfolge zu TIMESTAMPTZ.

Datums- und Zeitfunktionen 223

AWS Clean Rooms SQL-Referenz

Syntax

to_timestamp (timestamp)

to_timestamp (timestamp, format)

Argumente
timestamp

Eine Zeitstempelzeichenfolge oder ein Datentyp, der in eine Zeitstempelzeichenfolge
umgewandelt werden kann.

format

Ein Zeichenkettenliteral, das den Datetime-Mustern von Spark entspricht. Giltige Datetime-Muster
finden Sie unter Datetime-Muster fUr Formatierung und Analyse.

Ruckgabetyp
TIMESTAMP
Beispiele

Das folgende Beispiel zeigt die Verwendung der TO_TIMESTAMP-Funktion zur Konvertierung einer
TIMESTAMP-Zeichenfolge in eine TIMESTAMP-Zeichenfolge.

select current_timestamp() as timestamp, to_timestamp(current_timestamp(), 'YYYY-MM-DD
HH24:MI:SS') as second;

timestamp | second

2021-04-05 19:27:53.281812 | 2021-04-05 19:27:53+00

Es ist moglich, den TO_TIMESTAMP-Teil eines Datums zu Ubergeben. Die Ubrigen Datumsteile
werden auf die Standardwerte gesetzt. Die Uhrzeit ist in der Ausgabe enthalten:

SELECT TO_TIMESTAMP('2017','YYYY');

to_timestamp

Datums- und Zeitfunktionen 224

https://spark.apache.org/docs/latest/sql-ref-datetime-pattern.html

AWS Clean Rooms SQL-Referenz

2017-01-01 00:00:00+00

Die folgende SQL-Anweisung konvertiert die Zeichenfolge '2011-12-18 24:38:15 'in einen
TIMESTAMP. Das Ergebnis ist ein TIMESTAMP, der auf den néchsten Tag fallt, weil die Anzahl der
Stunden mehr als 24 Stunden betragt:

select to_timestamp('2011-12-18 24:38:15', 'YYYY-MM-DD HH24:MI:SS');
to_timestamp

2011-12-19 00:38:15+00

YEAR-Funktion

Die YEAR-Funktion ist eine Datumsextraktionsfunktion, die ein Datum oder einen Zeitstempel als
Eingabe verwendet und die Jahreskomponente (eine vierstellige Zahl) zurlickgibt.

Syntax

year(date)

Argumente

date

Ein DATE- oder TIMESTAMP-Ausdruck.

Ruckgabewert
Die YEAR-Funktion gibt einen INTEGER-Wert zurtck.
Beispiel

Im folgenden Beispiel wird die Jahreskomponente (2016) aus dem Eingabedatum
extrahiert' 2016-07-30".

SELECT year('2016-07-30');
2016

Im folgenden Beispiel wird die Jahreskomponente aus der birthday Spalte der squirrels Tabelle
extrahiert und die Ergebnisse als Ausgabe der SELECT-Anweisung zurtickgegeben. Die Ausgabe

Datums- und Zeitfunktionen 225

AWS Clean Rooms SQL-Referenz

dieser Abfrage ist eine Liste von Jahreswerten, einer fir jede Zeile in der squirrels Tabelle, die
das Geburtsjahr jedes Eichhérnchens darstellt.

SELECT year(birthday) FROM squirrels

Datumsteile flr Datums- oder Zeitstempelfunktionen

Die folgende Tabelle identifiziert die Namen und Abkurzungen von Datumsteilen und Uhrzeitteilen,
die als Argumente fur die folgenden Funktionen verwendet werden kdnnen:

« DATE_ADD
« DATE_DIFF
« DATE_PART
« EXTRACT
Datumsteil oder Uhrzeittell Abkurzungen
millennium, millennia mil, mils
century, centuries c, cent, cents
decade, decades dec, decs
Epoche epoch (unterstitzt von EXTRACT)
year, years Y, yr, yrs
quarter, quarters qtr, qtrs
month, months mon, mons
week, weeks w
Tag der Woche dayofweek, dow, dw, weekday (unterstlitzt von DATE_PART und

Funktion EXTRACT)

Gibt eine Ganzzahl von 0-6 aus, beginnend mit Sonntag.

Datums- und Zeitfunktionen 226

AWS Clean Rooms SQL-Referenz

Datumsteil oder Uhrzeitteil Abkurzungen

® Note

Der Datumsteil DOW verhalt sich anders als der
Datumsteil ,Wochentag (D) fur Datumsteilformatze
ichenfolgen. D basiert auf den Ganzzahlen 1-7, wobei die
1 fr den Sonntag steht. Weitere Informationen finden Sie
unter Datum-/Uhrzeit-Formatzeichenfolgen.

Tag des Jahres dayofyear, doy, dy, yearday (unterstitzt von EXTRACT)

day, days d

hour, hours h, hr, hrs

minute, minutes m, min, mins

second, seconds S, Sec, secs

millisecond, milliseconds ms, msec, msecs, msecond, mseconds, millisec, millisecs,
millisecon

microsecond, microseconds microsec, microsecs, microsecond, usecond, useconds, us, usec,

usecs
timezone, timezone_hour, Unterstitzt von EXTRACT nur fir Zeitstempel mit Zeitzone
timezone_minute (TIMESTAMPTZ).

Abweichungen bei den Ergebnissen mit Sekunden, Millisekunden und Mikrosekunden

Kleinere Differenzen treten auf, wenn verschiedene Datumsfunktionen Sekunden, Millisekunden oder
Mikrosekunden als Datumsteile angeben:

» Die Funktion EXTRACT gibt nur flir den angegebenen Datumsteilen Ganzzahlen aus, wobei
Datumsteile auf hdheren und niedrigeren Ebenen ignoriert werden. Wenn der angegebene
Datumsteil ,Sekunden® ist, werden Millisekunden und Mikrosekunden in dem Ergebnis nicht
berticksichtigt. Wenn der angegebene Datumsteil ,Millisekunden® ist, werden Sekunden und

Datums- und Zeitfunktionen 227

AWS Clean Rooms SQL-Referenz

Mikrosekunden in dem Ergebnis nicht berlcksichtigt. Wenn der angegebene Datumsteil
~Mikrosekunden® ist, werden Sekunden und Millisekunden in dem Ergebnis nicht berlcksichtigt.

» Die Funktion DATE_PART gibt den vollstandigen Sekundenteil des Zeitstempels aus, unabhangig
davon, welcher Datumsteil angegeben wurde; dabei wird je nach Bedarf entweder eine Dezimal-
oder eine Ganzzahl ausgegeben.

Anmerkungen zu CENTURY, EPOCH, DECADE und MIL
CENTURY oder CENTURIES

AWS Clean Rooms interpretiert ein CENTURY so, dass es mit dem Jahr ## #1 beginnt und mit
dem Jahr endet: ###0

select extract (century from timestamp '2000-12-16 12:21:13');
date_part

20
(1 row)

select extract (century from timestamp '2001-12-16 12:21:13');
date_part

21
(1 row)

EPOCHE

Die AWS Clean Rooms Implementierung von EPOCH erfolgt relativ zu 1970-01-01 00:00:00.000
000 unabhangig von der Zeitzone, in der sich der Cluster befindet. Moglicherweise missen Sie
die Ergebnisse um die Differenz in Stunden verschieben, je nach der Zeitzone, in der sich das
Cluster befindet.

DECADE oder DECADES

AWS Clean Rooms interpretiert den DATEPART DECADE oder DECADES auf der Grundlage
des gemeinsamen Kalenders. Zum Beispiel: Da der gewdhnliche Kalender mit dem Jahr 1
beginnt, ist die erste Dekade (Dekade 1) 0001-01-01 bis 0009-12-31, und die zweite Dekade
(Dekade 2) ist 0010-01-01 bis 0019-12-31. Beispielsweise reicht Dekade 201 von 2000-01-01 bis
2009-12-31:

select extract(decade from timestamp '1999-02-16 20:38:40');

Datums- und Zeitfunktionen 228

AWS Clean Rooms SQL-Referenz

date_part

select extract(decade from timestamp '2000-02-16 20:38:40');
date_part

select extract(decade from timestamp '2010-02-16 20:38:40');
date_part

MIL oder MILS

AWS Clean Rooms interpretiert eine MIL so, dass sie mit dem ersten Tag des Jahres #001
beginnt und mit dem letzten Tag des Jahres endet: #000

select extract (mil from timestamp '2000-12-16 12:21:13');
date_part

select extract (mil from timestamp '2001-12-16 12:21:13');
date_part

VerschlUsselungs- und Entschlisselungsfunktionen

Verschlusselungs- und Entschlisselungsfunktionen helfen SQL-Entwicklern, sensible Daten
vor unberechtigtem Zugriff oder Missbrauch zu schitzen, indem sie sie zwischen einer lesbaren
Klartextform und einer unlesbaren Chiffretextform konvertieren.

Verschlisselungs- und Entschliisselungsfunktionen

AWS Clean Rooms SQL-Referenz

AWS Clean Rooms Spark SQL untersttitzt die folgenden Verschlisselungs- und
Entschlisselungsfunktionen:

Themen
« AES _ENCRYPT-Funktion
« AES DECRYPT-Funktion

AES_ENCRYPT-Funktion

Die AES_ENCRYPT-Funktion wird zum Verschlisseln von Daten mit dem Advanced Encryption
Standard (AES) -Algorithmus verwendet.

Syntax
aes_encrypt(expr, key[, mode[, padding[, iv[, aad]lll])

Argumente
expr

Der zu verschlisselnde Binarwert.

key
Die Passphrase, die zum Verschlisseln der Daten verwendet werden soll.

Schlusselldngen von 16, 24 und 32 Bit werden unterstutzt.
Modus

Gibt an, welcher Blockchiffriermodus zum Verschlisseln von Nachrichten verwendet werden soll.

Gultige Modi: ECB (Electronic CodeBook), GCM (Galois/Counter Mode), CBC (Cipher-Block
Chaining).

Polsterung
Gibt an, wie Nachrichten aufgefillt werden, deren Lange kein Vielfaches der BlockgroRe ist.
Gultige Werte: PKCS, NONE, DEFAULT.

Das DEFAULT-Padding bedeutet PKCS (Public Key Cryptography Standards) fur ECB, NONE fur
GCM und PKCS fir CBC.

Verschliisselungs- und Entschliisselungsfunktionen 230

AWS Clean Rooms SQL-Referenz

Unterstitzte Kombinationen von (Mode, Padding) sind (‘ECB', 'PKCS'), (‘GCM', 'NONE') und
('CBC', 'PKCS").

iv
Optionaler Initialisierungsvektor (1V). Wird nur fir die Modi CBC und GCM unterstutzt.
Gultige Werte: 12 Byte lang fir GCM und 16 Byte fur CBC.

aad
Optionale zusatzliche authentifizierte Daten (AAD). Wird nur fir den GCM-Modus unterstiitzt. Dies
kann jede beliebige Eingabe in freier Form sein und muss sowohl fir die Verschlisselung als
auch fur die Entschlisselung bereitgestellt werden.

Ruckgabetyp

Die Funktion AES_ENCRYPT gibt unter Verwendung von AES im angegebenen Modus mit der
angegebenen Aufflllung den verschlisselten Wert expr zurlick.

Beispiele

Das folgende Beispiel zeigt, wie die Spark-SQL-Funktion AES_ENCRYPT verwendet wird, um eine
Datenfolge (in diesem Fall das Wort ,Spark“) mit einem angegebenen Verschlisselungsschlissel
sicher zu verschlisseln. Der resultierende Chiffretext wird dann Base64-kodiert, um das Speichern
oder Ubertragen zu erleichtern.

SELECT baseb4(aes_encrypt('Spark', 'abcdefghijklmnop'));
4A570Ah9FNGwoMeuJukfllrLdHEZXxA2DyuSQAWz77dfn

Das folgende Beispiel zeigt, wie die Spark-SQL-Funktion AES_ENCRYPT verwendet wird, um eine
Datenfolge (in diesem Fall das Wort ,Spark®) mit einem angegebenen Verschlisselungsschlissel
sicher zu verschlisseln. Der resultierende Chiffretext wird dann im Hexadezimalformat dargestellt,
was fiir Aufgaben wie Datenspeicherung, Ubertragung oder Debugging niitzlich sein kann.

SELECT hex(aes_encrypt('Spark', '0000111122223333'));
83F16B2AA704794132802D248E6BFD4E380078182D1544813898ACO7E709B28A9%4

Das folgende Beispiel zeigt, wie Sie mit der Funktion AES_ENCRYPT von Spark SQL eine
Datenfolge (in diesem Fall ,Spark SQL") mithilfe eines angegebenen Verschlisselungsschlissels,

Verschliisselungs- und Entschliisselungsfunktionen 231

AWS Clean Rooms SQL-Referenz

Verschlisselungsmodus und Fullmodus sicher verschlisseln kénnen. Der resultierende Chiffretext
wird dann Base64-kodiert, um das Speichern oder Ubertragen zu erleichtern.

SELECT base64(aes_encrypt('Spark SQL', '1234567890@abcdef', 'ECB', 'PKCS'));
31mwu+Mw@H3fi5NDvcu9lg==

AES_DECRYPT-Funktion

Die AES_DECRYPT-Funktion wird zum Entschlisseln von Daten mit dem Advanced Encryption
Standard (AES) -Algorithmus verwendet.

Syntax

aes_decrypt(expr, key[, mode[, padding[, aad]]l]l)

Argumente
expr

Der zu entschliisselnde Binarwert.

key
Die Passphrase, die zum Entschlisseln der Daten verwendet werden soll.

Die Passphrase muss mit dem Schlissel Ubereinstimmen, der ursprtinglich zur Erzeugung des
verschlisselten Werts verwendet wurde, und 16, 24 oder 32 Byte lang sein.

Modus
Gibt an, welcher Blockchiffriermodus zum Entschlisseln von Nachrichten verwendet werden soll.

Giltige Modi: ECB, GCM, CBC.

Polsterung
Gibt an, wie Nachrichten aufgefillt werden, deren Lange kein Vielfaches der BlockgroRe ist.
Gultige Werte: PKCS, NONE, DEFAULT.

Das DEFAULT-Padding bedeutet PKCS fur ECB, NONE fur GCM und PKCS fur CBC.

Verschliisselungs- und Entschliisselungsfunktionen 232

AWS Clean Rooms SQL-Referenz

aad

Optionale zusatzliche authentifizierte Daten (AAD). Wird nur fir den GCM-Modus unterstitzt. Dies
kann jede beliebige Eingabe in freier Form sein und muss sowohl fir die Verschlisselung als
auch fur die Entschlisselung bereitgestellt werden.

Ruckgabetyp
Gibt einen entschlisselten Wert von expr zurick, der AES im Modus mit Auffullung verwendet.
Beispiele

Das folgende Beispiel zeigt, wie die Spark-SQL-Funktion AES_ENCRYPT verwendet wird, um eine
Datenfolge (in diesem Fall das Wort ,Spark®) mit einem angegebenen Verschlisselungsschlissel
sicher zu verschlisseln. Der resultierende Chiffretext wird dann Base64-kodiert, um das Speichern
oder Ubertragen zu erleichtern.

SELECT base64(aes_encrypt('Spark', 'abcdefghijklmnop'));
4A570Ah9FNGwoMeuJukfllrLdHEZXxA2DyuSQAWz77dfn

Das folgende Beispiel zeigt, wie die Spark-SQL-Funktion AES_DECRYPT verwendet

wird, um Daten zu entschlisseln, die zuvor verschlisselt und Base64-kodiert wurden. Der
Entschllsselungsprozess erfordert den richtigen Verschlisselungsschliissel und die richtigen
Parameter (Verschllisselungsmodus und Fillmodus), um die urspriinglichen Klartextdaten erfolgreich
wiederherzustellen.

SELECT aes_decrypt(unbase64('31mwu+Mw@H3fi5NDvcu9lg=="), '1234567890abcdef', 'ECB',
'PKCS');
Spark SQL

Hash-Funktionen

Eine Hash-Funktion ist eine mathematische Funktion, mit der ein numerischer Eingabewert in einen
anderen Wert umgewandelt wird.

AWS Clean Rooms Spark SQL unterstitzt die folgenden Hash-Funktionen:

Themen
 MD5 Funktion

Hash-Funktionen 233

AWS Clean Rooms SQL-Referenz

 Die Funktion SHA

« SHA1 Funktion

« SHA2 Funktion

« HASH64 xx-Funktion

MD5 Funktion

Verwendet die MD5 kryptografische Hashfunktion, um eine Zeichenfolge variabler Lange in eine 32-
stellige Zeichenfolge zu konvertieren, die eine Textdarstellung des Hexadezimalwerts einer 128-Bit-
Prufsumme ist.

Syntax

MD5(string)

Argumente
string

Eine Zeichenfolge mit variabler Lange.

Ruckgabetyp

Die MD5 Funktion gibt eine 32-stellige Zeichenfolge zurtck, die eine Textdarstellung des
Hexadezimalwerts einer 128-Bit-Prifsumme ist.

Beispiele

Im folgenden Beispiel wird der 128-Bit-Wert fiir die Zeichenfolge ,AWS Clean Rooms* gezeigt:

select md5('AWS Clean Rooms');
md5

f7415e33f972c0@3abd4f3fed36748f7a
(1 row)

Die Funktion SHA

Synonym fur Funktion. SHA1

Hash-Funktionen 234

AWS Clean Rooms SQL-Referenz

Siehe SHA1 Funktion.

SHA1 Funktion

Die SHA1 Funktion verwendet die SHA1 kryptografische Hashfunktion, um eine Zeichenfolge
mit variabler Lange in eine 40-stellige Zeichenfolge zu konvertieren, die eine Textdarstellung des
Hexadezimalwerts einer 160-Bit-Prifsumme ist.

Syntax

SHA1 Die Funktion SHAist ein Synonym fur.

SHAl(string)

Argumente
string

Eine Zeichenfolge mit variabler Lange.

Ruckgabetyp

Die SHA1 Funktion gibt eine 40-stellige Zeichenfolge zuriick, die eine Textdarstellung des
Hexadezimalwerts einer 160-Bit-Prifsumme ist.

Beispiel

Im folgenden Beispiel wird der 160-Bit-Wert fiir das Wort ,AWS Clean Rooms* zurlickgegeben:

select shal('AWS Clean Rooms');

SHAZ2 Funktion

Die SHA2 Funktion verwendet die SHAZ2 kryptografische Hash-Funktion, um eine Zeichenfolge
variabler Lange in eine Zeichenfolge umzuwandeln. Die Zeichenkette ist eine Textdarstellung des
hexadezimalen Wertes der Prifsumme mit der angegebenen Anzahl von Bits.

Syntax

SHA2(string, bits)

Hash-Funktionen 235

AWS Clean Rooms SQL-Referenz

Argumente
string

Eine Zeichenfolge mit variabler Lange.

integer
Die Anzahl der Bits in den Hash-Funktionen. Gultige Werte sind 0 (identisch mit 256), 224, 256,
384 und 512.

Ruckgabetyp

Die SHA2 Funktion gibt eine Zeichenfolge zurlck, die eine Textdarstellung des Hexadezimalwerts der
Prufsumme ist, oder eine leere Zeichenfolge, wenn die Anzahl der Bits ungultig ist.

Beispiel

Im folgenden Beispiel wird der 256-Bit-Wert fir das Wort ,AWS Clean Rooms* zurlickgegeben:

select sha2('AWS Clean Rooms', 256);

HASHG64 xx-Funktion

Die Funktion xxhash64 gibt einen 64-Bit-Hashwert der Argumente zurtck.

Die Funktion xxhash64 () ist eine nicht-kryptografische Hash-Funktion, die darauf ausgelegt ist,
schnell und effizient zu sein. Sie wird haufig in Datenverarbeitungs- und Speicheranwendungen
verwendet, bei denen eine eindeutige Kennung flr ein Datenelement bendtigt wird, der genaue Inhalt
der Daten jedoch nicht geheim gehalten werden muss.

Im Kontext einer SQL-Abfrage kdnnte die Funktion xxhash64 () fur verschiedene Zwecke verwendet
werden, wie zum Beispiel:

» Generieren eines eindeutigen Bezeichners flr eine Zeile in einer Tabelle
* Partitionierung von Daten auf der Grundlage eines Hashwerts

» Implementierung benutzerdefinierter Indizierungs- oder Datenverteilungsstrategien

Der spezifische Anwendungsfall wirde von den Anforderungen der Anwendung und den
verarbeiteten Daten abhangen.

Hash-Funktionen 236

AWS Clean Rooms SQL-Referenz

Syntax

xxhash64(exprl, expr2, ...)

Argumente
expr1

Ein Ausdruck beliebigen Typs.
expr2

Ein Ausdruck beliebigen Typs.

Ruckgabewert
Gibt einen 64-Bit-Hashwert der Argumente zurlick (BIGINT). Der Hash-Seed ist 42.
Beispiel

Das folgende Beispiel generiert einen 64-Bit-Hashwert (5602566077635097486) auf der Grundlage
der bereitgestellten Eingabe. Das erste Argument ist ein Zeichenkettenwert, in diesem Fall das Wort
~opark®. Das zweite Argument ist ein Array, das den einzelnen Integer-Wert 123 enthalt. Das dritte
Argument ist ein Integer-Wert, der den Startwert fir die Hash-Funktion darstellt.

SELECT xxhash64('Spark', array(123), 2);
5602566077635097486

Hyperloglog-Funktionen

Die HyperLoglLog (HLL) -Funktionen in SQL bieten eine Mdglichkeit, die Anzahl der eindeutigen
Elemente (Kardinalitat) in einem gro3en Datensatz effizient zu schatzen, selbst wenn der tatsachliche
Satz eindeutiger Elemente nicht gespeichert ist.

Die Hauptvorteile der Verwendung von HLL-Funktionen sind:

» Speichereffizienz: HLL-Skizzen bendtigen viel weniger Speicherplatz als das Speichern des
gesamten Satzes einzigartiger Elemente, sodass sie fur grol3e Datensatze geeignet sind.

+ Verteiltes Rechnen: HLL-Skizzen kdnnen Gber mehrere Datenquellen oder Verarbeitungsknoten
hinweg kombiniert werden, was eine effiziente Schatzung der verteilten eindeutigen Anzahl
ermoglicht.

Hyperloglog-Funktionen 237

AWS Clean Rooms SQL-Referenz

» Ungefahre Ergebnisse: HLL bietet eine ungefahre Schatzung der individuellen Anzahl mit
einem einstellbaren Kompromiss zwischen Genauigkeit und Speicherverbrauch (iber den
Prazisionsparameter).

Diese Funktionen sind besonders nutzlich in Szenarien, in denen Sie die Anzahl der einzelnen
Elemente schatzen mussen, z. B. in Analyse-, Data Warehousing- und Echtzeit-Stream-
Verarbeitungsanwendungen.

AWS Clean Rooms unterstutzt die folgenden HLL-Funktionen.

Themen

« HLL_SKETCH_AGG-Funktion

* Funktion HLL_SKETCH_ESTIMATE
« HLL_UNION-Funktion

« HLL_UNION_AGG-Funktion

HLL_SKETCH_AGG-Funktion

Die Aggregatfunktion HLL_SKETCH_AGG erstellt eine HLL-Skizze aus den Werten in
der angegebenen Spalte. Sie gibt einen HLLSKETCH-Datentyp zurtck, der die Werte der
Eingabeausdriicke kapselt.

Die HLL_SKETCH_AGG-Agg-Aggregatfunktion funktioniert mit jedem Datentyp und ignoriert NULL-
Werte.

Wenn keine Zeilen in einer Tabelle vorhanden sind oder alle Zeilen NULL
sind, enthalt die resultierende Skizze keine Index-Wert-Paare wie zum Beispiel
{"version":1,"logm":15, "sparse":{"indices":[], "values":[]1}}.

Syntax

HLL_SKETCH_AGG (aggregate_expression[, lgConfigK])

Argument

aggregate_expression

Jeder Ausdruck vom Typ INT, BIGINT, STRING oder BINARY, flir den eine eindeutige Zahlung
erfolgt. Alle NULL Werte werden ignoriert.

Hyperloglog-Funktionen 238

AWS Clean Rooms SQL-Referenz

LgConfigK

Eine optionale INT-Konstante zwischen 4 und 21 (einschlieRlich) mit dem Standardwert 12. Die
Log-Base-2 von K, wobei K die Anzahl der Buckets oder Slots flir die Skizze ist.

Ruckgabetyp

Die Funktion HLL_SKETCH_AGG gibt einen BINARY-Puffer zuriick, der nicht NULL ist und
die Skizze enthalt, die aufgrund der Verwendung und Aggregation aller Eingabewerte in der
HyperLogLog Aggregationsgruppe berechnet wurde.

Beispiele

In den folgenden Beispielen wird der Algorithmus HyperLogLog (HLL) verwendet, um die eindeutige
Anzahl der Werte in der Spalte zu schatzen. col Die h11l_sketch_agg(col, 12) Funktion
aggregiert die Werte in der Spalte col und erstellt so eine HLL-Skizze mit einer Genauigkeit von

12. Die hl11_sketch_estimate() Funktion wird dann verwendet, um die eindeutige Anzahl von
Werten auf der Grundlage der generierten HLL-Skizze zu schatzen. Das Endergebnis der Abfrage ist
3, was der geschatzten eindeutigen Anzahl von Werten in der col Spalte entspricht. In diesem Fall
sind die unterschiedlichen Werte 1, 2 und 3.

SELECT hll_sketch_estimate(hll_sketch_agg(col, 12))
FROM VALUES (1), (1), (2), (2), (3) tab(col);
3

Im folgenden Beispiel wird auch der HLL-Algorithmus verwendet, um die eindeutige Anzahl

von Werten in der col Spalte zu schatzen, aber es wird kein Genauigkeitswert flr die

HLL-Skizze angegeben. In diesem Fall wird die Standardgenauigkeit von 14 verwendet.

Die h11_sketch_agg(col) Funktion verwendet die Werte in der col Spalte und

erstellt eine HyperLoglLog (HLL-) Skizze, bei der es sich um eine kompakte Datenstruktur

handelt, mit der die unterschiedliche Anzahl von Elementen geschatzt werden kann. Die
hll_sketch_estimate(hll_sketch_agg(col)) Funktion berechnet anhand der im vorherigen
Schritt erstellten HLL-Skizze eine Schatzung der unterschiedlichen Anzahl von Werten in der Spalte.
col Das Endergebnis der Abfrage ist 3, was der geschatzten eindeutigen Anzahl von Werten in der
col Spalte entspricht. In diesem Fall sind die unterschiedlichen Werte 1, 2 und 3.

SELECT hll_sketch_estimate(hll_sketch_agg(col))
FROM VALUES (1), (1), (2), (2), (3) tab(col);
3

Hyperloglog-Funktionen 239

AWS Clean Rooms SQL-Referenz

Funktion HLL_SKETCH_ESTIMATE

Die Funktion HLL_SKETCH_ESTIMATE verwendet eine HLL-Skizze und schéatzt die Anzahl der
eindeutigen Elemente, die durch die Skizze dargestellt werden. Sie verwendet den HyperLoglLog
(HLL) -Algorithmus, um eine probabilistische Annaherung an die Anzahl der Einzelwerte in einer
bestimmten Spalte zu zahlen. Dabei wird eine binare Darstellung, ein sogenannter Sketch-Puffer,
verwendet, der zuvor von der HLL_SKETCH_AGG-Funktion generiert wurde, und das Ergebnis als
grol’e Ganzzahl zurliickgegeben.

Der HLL-Skizzieralgorithmus bietet eine effiziente Methode zur Schatzung der Anzahl eindeutiger
Elemente, selbst bei grolRen Datensatzen, ohne dass der gesamte Satz von Einzelwerten gespeichert
werden muss.

Mit den h11l_union_agg Funktionen hll_union und kénnen Skizzen auch miteinander kombiniert
werden, indem sie diese Puffer als Eingaben verwenden und zusammenfihren.

Syntax

HLL_SKETCH_ESTIMATE (hllsketch_expression)

Argument
hllsketch_expression

Ein BINARY Ausdruck, der eine von HLL_SKETCH_AGG generierte Skizze enthalt

Ruckgabetyp

Die Funktion HLL_SKETCH_ESTIMATE gibt einen BIGINT-Wert zuriick, der der ungefahren Anzahl
unterschiedlicher Werte entspricht, die durch die Eingabeskizze dargestellt wird.

Beispiele

In den folgenden Beispielen wird der Skizzieralgorithmus HyperLoglLog (HLL) verwendet,
um die Kardinalitat (eindeutige Anzahl) der Werte in der Spalte zu schatzen. col Die
h1ll_sketch_agg(col, 12) Funktion verwendet die col Spalte und erstellt eine HLL-
Skizze mit einer Genauigkeit von 12 Bit. Die HLL-Skizze ist eine ungefahre Datenstruktur,
mit der die Anzahl der eindeutigen Elemente in einem Satz effizient geschatzt werden kann.
Die hl1_sketch_estimate() Funktion verwendet die HLL-Skizze, die von erstellt wurde,

Hyperloglog-Funktionen 240

AWS Clean Rooms SQL-Referenz

h1ll_sketch_agg und schatzt die Kardinalitat (eindeutige Anzahl) der durch die Skizze
reprasentierten Werte. Die FROM VALUES (1), (1), (2), (2), (3) tab(col); generiert
einen Testdatensatz mit 5 Zeilen, wobei die col Spalte die Werte 1, 1, 2, 2 und 3 enthalt. Das
Ergebnis dieser Abfrage ist die geschatzte eindeutige Anzahl der Werte in der col Spalte, die 3 ist.

SELECT hll_sketch_estimate(hll_sketch_agg(col, 12))
FROM VALUES (1), (1), (2), (2), (3) tab(col);
3

Der Unterschied zwischen dem folgenden und dem vorherigen Beispiel besteht darin, dass der
Prazisionsparameter (12 Bit) im hll_sketch_agg Funktionsaufruf nicht angegeben ist. In diesem
Fall wird die Standardgenauigkeit von 14 Bit verwendet, was im Vergleich zum vorherigen Beispiel,
bei dem eine Genauigkeit von 12 Bit verwendet wurde, zu einer genaueren Schatzung der Anzahl
von Einzelsticken fuhren kann.

SELECT hll_sketch_estimate(hll_sketch_agg(col))
FROM VALUES (1), (1), (2), (2), (3) tab(col);
3

HLL_UNION-Funktion

Die Funktion HLL_UNION kombiniert zwei HLL-Skizzen zu einer einzigen, einheitlichen Skizze.

Sie verwendet den HyperLogLog (HLL) -Algorithmus, um zwei Skizzen zu einer einzigen Skizze zu
kombinieren. Abfragen kdnnen die resultierenden Puffer verwenden, um mit der Funktion ungefahre
Einzelzahlen als lange Ganzzahlen zu berechnen. h1l_sketch_estimate

Syntax

HLL_UNION ((exprl, expr2 [, allowDifferentLgConfigK]))

Argument
ExprN

Ein BINARY Ausdruck, der eine von HLL_SKETCH_AGG generierte Skizze enthalt.
allowDifferentLgConfigK

Ein optionaler BOOLESCHER Ausdruck, der steuert, ob das Zusammenfihren von zwei Skizzen
mit unterschiedlichen LgConfigK-Werten zulassig ist. Der Standardwert ist false.

Hyperloglog-Funktionen 241

AWS Clean Rooms SQL-Referenz

Ruckgabetyp

Die Funktion HLL_UNION gibt einen BINARY-Puffer zurlck, der die HyperLogLog Skizze
enthalt, die als Ergebnis der Kombination der Eingabeausdricke berechnet wurde. Wenn der
allowDifferentLgConfigK Parameter gleich isttrue, verwendet die Ergebnisskizze den
kleineren der beiden angegebenen Werte. 1gConfigK

Beispiele

In den folgenden Beispielen wird der Skizzieralgorithmus HyperLoglLog (HLL) verwendet, um die
eindeutige Anzahl von Werten in zwei Spalten coll und in einem col2 Datensatz zu schatzen.

Die h11l_sketch_agg(coll) Funktion erstellt eine HLL-Skizze fiir die Einzelwerte in der Spalte.
coll

Die hl11l_sketch_agg(col2) Funktion erstellt eine HLL-Skizze flr die Einzelwerte in der Spalte
col2.

Die h11_union(...) Funktion kombiniert die beiden in den Schritten 1 und 2 erstellten HLL-
Skizzen zu einer einzigen, einheitlichen HLL-Skizze.

Die hll_sketch_estimate(...) Funktion verwendet die kombinierte HLL-Skizze und schéatzt die
eindeutige Anzahl der Werte fir sowohl als auch. coll col2

Die FROM VALUES Klausel generiert einen Testdatensatz mit 5 Zeilen, der die Werte 1, 1, 2, 2 und 3
sowie die Werte 4, 4, 5, 5und 6 col2 enthalt. coll

Das Ergebnis dieser Abfrage ist die geschatzte eindeutige Anzahl von Werten fir beide coll
undcol?2, die 6 ist. Der HLL-Skizzieralgorithmus bietet eine effiziente Methode zur Schatzung der
Anzahl einzigartiger Elemente, selbst bei groRen Datensatzen, ohne dass der gesamte Satz von
Einzelwerten gespeichert werden muss. In diesem Beispiel wird die h11_union Funktion verwendet,
um die HLL-Skizzen aus den beiden Spalten zu kombinieren, sodass die eindeutige Anzahl fir den
gesamten Datensatz geschatzt werden kann und nicht nur fur jede Spalte einzeln.

SELECT hll_sketch_estimate(
hll_union(
hll_sketch_agg(coll),
hll_sketch_agg(col2)))
FROM VALUES
(1, 4),
(1, 4),
(2, 5),

Hyperloglog-Funktionen 242

AWS Clean Rooms SQL-Referenz

(2, 5),
(3, 6) AS tab(coll, col2);
6

Der Unterschied zwischen dem folgenden und dem vorherigen Beispiel besteht darin, dass der
Prazisionsparameter (12 Bit) im hll_sketch_agg Funktionsaufruf nicht angegeben ist. In diesem
Fall wird die Standardgenauigkeit von 14 Bit verwendet, was im Vergleich zum vorherigen Beispiel,
bei dem eine Genauigkeit von 12 Bit verwendet wurde, zu einer genaueren Schatzung der Anzahl
von Einzelstlcken fuhren kann.

SELECT hll_sketch_estimate(
h1ll_union(
hll_sketch_agg(coll, 14),
hll_sketch_agg(col2, 14)))
FROM VALUES
(1, 4),
(1, 4),
(2, 5),
(2, 5),
(3, 6) AS tab(coll, col2);

HLL_UNION_AGG-Funktion

Die Funktion HLL_UNION_AGG kombiniert mehrere HLL-Skizzen zu einer einzigen, einheitlichen
Skizze. Sie verwendet den HyperLoglLog (HLL) -Algorithmus, um eine Gruppe von Skizzen zu einer
einzigen zu kombinieren. Abfragen kénnen die resultierenden Puffer verwenden, um ungefahre
Einzelzahlen mit der Funktion zu berechnen. hll_sketch_estimate

Syntax

HLL_UNION_AGG (expr [, allowDifferentLgConfigK])

Argument
expr

Ein BINARY Ausdruck, der eine von HLL_SKETCH_AGG generierte Skizze enthalt.
allowDifferentLgConfigK

Ein optionaler BOOLESCHER Ausdruck, der steuert, ob das Zusammenfihren von zwei Skizzen
mit unterschiedlichen LgConfigK-Werten zulassig ist. Der Standardwert ist false.

Hyperloglog-Funktionen 243

AWS Clean Rooms SQL-Referenz

Ruckgabetyp

Die Funktion HLL_UNION_AGG gibt einen BINARY-Puffer zuriick, der die HyperLoglLog Skizze
enthalt, die als Ergebnis der Kombination der Eingabeausdricke derselben Gruppe berechnet wurde.
Wenn der allowDifferentLgConfigK Parameter gleich isttrue, verwendet die Ergebnisskizze
den kleineren der beiden angegebenen Werte. 1gConfigK

Beispiele

In den folgenden Beispielen wird der Skizzieralgorithmus HyperLoglLog (HLL) verwendet, um die
eindeutige Anzahl von Werten in mehreren HLL-Skizzen zu schatzen.

Im ersten Beispiel wird die eindeutige Anzahl von Werten in einem Datensatz geschatzt.

SELECT hll_sketch_estimate(hll_union_agg(sketch, true))
FROM (SELECT hll_sketch_agg(col) as sketch
FROM VALUES (1) AS tab(col)
UNION ALL
SELECT hll_sketch_agg(col, 20) as sketch
FROM VALUES (1) AS tab(col));

Die innere Abfrage erstellt zwei HLL-Skizzen:

* Die erste SELECT-Anweisung erstellt eine Skizze aus einem einzelnen Wert von 1.

» Die zweite SELECT-Anweisung erstellt eine Skizze aus einem anderen Einzelwert von 1, jedoch
mit einer Genauigkeit von 20.

Die aulRere Abfrage verwendet die Funktion HLL_UNION_AGG, um die beiden Skizzen zu einer
einzigen Skizze zu kombinieren. Anschlieend wendet sie die Funktion HLL_SKETCH_ESTIMATE
auf diese kombinierte Skizze an, um die eindeutige Anzahl von Werten zu schatzen.

Das Ergebnis dieser Abfrage ist die geschatzte eindeutige Anzahl der Werte in der Spalte, d. h. col
1 Das bedeutet, dass die beiden Eingabewerte von 1 als eindeutig betrachtet werden, obwohl sie
denselben Wert haben.

Das zweite Beispiel beinhaltet einen anderen Prazisionsparameter fur die HLL_UNION_AGG-
Funktion. In diesem Fall werden beide HLL-Skizzen mit einer Genauigkeit von 14 Bit erstellt, sodass
sie erfolgreich mit dem Parameter kombiniert werden kénnen. hl1_union_agg true

Hyperloglog-Funktionen 244

AWS Clean Rooms SQL-Referenz

SELECT hll_sketch_estimate(hll_union_agg(sketch, true))
FROM (SELECT hll_sketch_agg(col, 14) as sketch
FROM VALUES (1) AS tab(col)
UNION ALL
SELECT hll_sketch_agg(col, 14) as sketch
FROM VALUES (1) AS tab(col));

Das Endergebnis der Abfrage ist die geschatzte eindeutige Anzahl, was in diesem Fall auch der Fall
ist. 1 Das bedeutet, dass die beiden Eingabewerte von 1 als eindeutig betrachtet werden, obwonhl sie
denselben Wert haben.

JSON-Funktionen

Wenn Sie einen vergleichsweise kleinen Satz von Schllissel-Wert-Paaren speichern missen, kénnen
Sie vielleicht Platz sparen, indem Sie die Daten im JSON-Format speichern. Da JSON-Zeichenfolgen
in einer einzigen Spalte gespeichert werden kénnen, kann die Verwendung von JSON effizienter als
das Speichern lhrer Daten im Tabellenformat sein.

Example

Nehmen wir zum Beispiel an, Sie haben eine Tabelle mit geringer Dichte, in der Sie viele Spalten
bendtigen, um alle moéglichen Attribute vollstédndig darzustellen. Die meisten Spaltenwerte sind jedoch
fur eine bestimmte Zeile oder Spalte NULL. Wenn Sie JSON als Speicher verwenden, kénnen Sie die
Daten fir eine Zeile méglicherweise in Schliissel-Wert-Paaren in einer einzigen JSON-Zeichenfolge
speichern und die sparlich gefillten Tabellenspalten eliminieren.

Zusatzlich konnen Sie JSON-Zeichenfolgen leicht &ndern, sodass diese weitere Schlussel:Wert-
Paare speichern, ohne einer Tabelle Spalten hinzufigen zu mussen.

Sie sollten JSON nur in bestimmten Fallen verwenden. JSON ist keine gute Wahl fur das Speichern
grolerer Datensatze, da JSON beim Speichern unterschiedlicher Daten in einer einzigen Spalte nicht
die Spaltenspeicherarchitektur verwendet. AWS Clean Rooms

JSON verwendet UTF-8-kodierte Textzeichenfolgen. Daher kdnnen JSON-Zeichenfolgen als
CHAR- oder VARCHAR-Datentypen gespeichert werden. Sie verwenden VARCHAR, wenn die
Zeichenfolgen Multibyte-Zeichen enthalten.

JSON-Zeichenfolgen mussen ein korrektes JSON-Format aufweisen, das den folgenden Regeln
entspricht:

JSON-Funktionen 245

AWS Clean Rooms SQL-Referenz

Der JSON-Wert kann auf Stammverzeichnisebene ein JSON-Objekt oder ein JSON-Array sein. Ein
JSON-Obijekt ist ein nicht geordneter Satz von durch Komma getrennten Schllssel:Wert-Paaren,
eingeschlossen in geschweiften Klammern.

Beispiel: {"one":1, "two":2}
Ein JSON-Array ist ein geordneter Satz von durch Komma getrennten Werten, eingeschlossen in
eckigen Klammern.

Ein Beispiel ist folgendes: ["first", {"one":1}, "second", 3, null]

JSON-Arrays verwenden einen nullbasierten Index. Das erste Element in einem Array befindet
sich an Position 0. In einem Schlussel:Wert-Paar in JSON ist der Schlissel eine Zeichenfolge in
doppelten Anflhrungszeichen.

Ein JSON-Wert kann jeder der folgenden Werte sein:
* JSON-Objekt
+ JSON-Array

Zeichenfolge in doppelten Anfihrungszeichen

Zahl (Ganzzahl und Gleitkommazahl)

» Boolesch

* Null

Leere Objekte und leere Arrays sind gultige JSON-Werte.
JSON-Felder unterscheiden zwischen Grof3- und Kleinschreibung.

Leerzeichen zwischen JSON-Strukturelementen (wie { }, [1) werden ignoriert.

Themen
* Funktion GET_JSON_OBJECT
e TO_JSON-Funktion

Funktion GET_JSON_OBJECT

Die Funktion GET_JSON_OBJECT extrahiert ein JSON-Objekt aus. path

Syntax

get_json_object(json_txt, path)

JSON-Funktionen 246

AWS Clean Rooms SQL-Referenz

Argumente

json_txt

Ein STRING-Ausdruck, der wohlgeformtes JSON enthalt.
path

Ein STRING-Literal mit einem wohlgeformten JSON-Pfadausdruck.

Ruckgabewert

Gibt einen STRING zurick.

Ein NULL-Wert wird zurlckgegeben, wenn das Objekt nicht gefunden werden kann.
Beispiel

Das folgende Beispiel extrahiert einen Wert aus einem JSON-Objekt. Das erste Argument ist eine
JSON-Zeichenfolge, die ein einfaches Objekt mit einem einzigen Schlissel-Wert-Paar darstellt. Das
zweite Argument ist ein JSON-Pfadausdruck. Das $ Symbol steht fiir die Wurzel des JSON-Obijekts,
und der . a Teil gibt an, dass wir den Wert extrahieren méchten, der dem Schlissel "a" zugeordnet
ist. Die Ausgabe der Funktion ist 'b’, das ist der Wert, der dem Schlissel "a" im JSON-Eingabeobjekt
zugeordnet ist.

SELECT get_json_object('{"a":"b"}', '$.a');
b

TO _JSON-Funktion

Die TO_JSON-Funktion konvertiert einen Eingabeausdruck in eine JSON-Zeichenfolgendarstellung.
Die Funktion verarbeitet die Konvertierung verschiedener Datentypen (wie Zahlen, Zeichenketten und
Boolesche Werte) in die entsprechenden JSON-Reprasentationen.

Die TO_JSON-Funktion ist nitzlich, wenn Sie strukturierte Daten (wie Datenbankzeilen oder JSON-
Objekte) in ein portableres, sich selbst beschreibendes Format wie JSON konvertieren missen. Dies
kann besonders hilfreich sein, wenn Sie mit anderen Systemen oder Diensten interagieren mussen,
die Daten im JSON-Format erwarten.

Syntax

to_json(expr[, options])

JSON-Funktionen 247

AWS Clean Rooms SQL-Referenz

Argumente
expr

Der Eingabeausdruck, den Sie in eine JSON-Zeichenfolge konvertieren mdchten. Es kann ein
Wert, eine Spalte oder ein anderer gultiger SQL-Ausdruck sein.

options

Ein optionaler Satz von Konfigurationsoptionen, mit denen der JSON-Konvertierungsprozess
angepasst werden kann. Diese Optionen kénnen Dinge wie die Behandlung von Nullwerten, die
Darstellung numerischer Werte und die Behandlung von Sonderzeichen beinhalten.

Ruckgabewert
Gibt eine JSON-Zeichenfolge mit einem bestimmten Strukturwert zurtick
Beispiele

Das folgende Beispiel konvertiert eine benannte Struktur (eine Art strukturierter Daten) in eine
JSON-Zeichenfolge. Das erste Argument (named_struct('a', 1, 'b', 2) ()istder
Eingabeausdruck, der an die to_json() Funktion Gbergeben wird. Es erstellt eine benannte
Struktur mit zwei Feldern: ,a“ mit einem Wert von 1 und ,b“ mit einem Wert von 2. Die Funktion
to_json () verwendet die benannte Struktur als Argument und konvertiert sie in eine JSON-
Zeichenkettendarstellung. Die Ausgabe ist eine glltige JSON-Zeichenfolge{"a":1,"b":2}, die die
benannte Struktur darstellt.

SELECT to_json(named_struct('a', 1, 'b', 2));
{Ilall:l’ Ilbll:z}

Das folgende Beispiel konvertiert eine benannte Struktur, die einen Zeitstempelwert enthalt, in

eine JSON-Zeichenfolge mit einem benutzerdefinierten Zeitstempelformat. Das erste Argument
(named_struct('time', to_timestamp('2015-08-26', 'yyyy-MM-dd'))) erstellt eine
benannte Struktur mit einem einzigen Feld ,time“, das den Zeitstempelwert enthalt. Das zweite
Argument (map('timestampFormat', 'dd/MM/yyyy')) erstellt eine Map (Schlissel-Wert-
Woérterbuch) mit einem einzigen Schlissel-Wert-Paar, wobei der Schlissel 'TimeStampFormat' und
der Wert " ist. dd/MM/yyyy'. This map is used to specify the desired format for the timestamp value
when converting it to JSON. The to_json() function converts the named struct into a JSON string. The
second argument, the map, is used to customize the timestamp format to 'dd/MM/yyyy Die Ausgabe

JSON-Funktionen 248

AWS Clean Rooms

SQL-Referenz

ist eine JSON-Zeichenfolge mit einem einzigen Feld ,Zeit*{"time" :"26/08/2015"}, das den
Zeitstempelwert im gewinschten Format ,“ enthalt. dd/MM/yyyy

SELECT to_json(named_struct('time', to_timestamp('2015-08-26', 'yyyy-MM-dd')),

map('timestampFormat', 'dd/MM/yyyy'));
{"time":"26/08/2015"}

Mathematische Funktionen

In diesem Abschnitt werden die mathematischen Operatoren und Funktionen beschrieben, die in
AWS Clean Rooms Spark SQL unterstitzt werden.

Themen

Symbole fur mathematische Operatoren
Funktion ABS

Die Funktion ACOS

Die Funktion ASIN

Die Funktion ATAN

ATAN2 Funktion

Die Funktion CBRT

Die Funktion CEILING (oder CEIL)
Die Funktion COS

Die Funktion COT

Die Funktion DEGREES
DIV-Funktion

Die Funktion EXP

Die Funktion FLOOR

Die Funktion LN

Die Funktion LOG

Die Funktion MOD

Die Funktion PI

Die Funktion POWER

Die Funktion RADIANS

Mathematische Funktionen

249

AWS Clean Rooms SQL-Referenz

* RAND-Funktion

* Die Funktion RANDOM
* Die Funktion ROUND

* Die Funktion SIGN

* Die Funktion SIN

* Die Funktion SQRT

* Die Funktion TRUNC

Symbole fir mathematische Operatoren
In der folgenden Tabelle werden die unterstitzten mathematischen Operatoren aufgefiihrt.

Unterstutzte Operatoren

Operator Beschreib Beispiel Ergebnis
ung

+ Addition 2+3 5

- Subtraktion 2-3 -1

* Multiplik 2*3 6
ation

/ Division 4/2 2

% Modulo 5%4 1

4 Potenzier 2,07 3,0 8
ung

Beispiele

Berechnet die gezahlte Provision zuziiglich einer Bearbeitungsgebihr von 2,009 fiir eine bestimmte
Transaktion:

select commission, (commission + 2.00) as comm

Mathematische Funktionen 250

AWS Clean Rooms SQL-Referenz

from sales where salesid=10000;

commission | comm
___________ F o
28.05 | 30.05
(1 row)

Berechnet 20 Prozent des Verkaufspreises flr eine bestimmte Transaktion:

select pricepaid, (pricepaid * .20) as twentypct
from sales where salesid=10000;

pricepaid | twentypct
__________ e e — -

187.00 | 37.400
(1 row)

Voraussichtliche Ticketverkaufe auf der Basis eines kontinuierlichen Wachstumsmusters. In diesem
Beispiel gibt die Unterabfrage die Anzahl der Tickets zurlck, die 2008 verkauft wurden. Dieses

Ergebnis wird exponentiell mit einer kontinuierlichen Wachstumsrate von 5 Prozent tber einen
Zeitraum von 10 Jahren multipliziert.

select (select sum(qgtysold) from sales, date
where sales.dateid=date.dateid and year=2008)
A ((5::float/100)*10) as qtyl@years;

gtyl@years

587.664019657491
(1 row)

Ermitteln Sie den gezahlten Gesamtpreis und die Provision fur Verkaufe mit einer Datum-ID, die

gréler oder gleich 2.000 ist. Anschliel3end wird die Gesamtprovision vom gezahlten Gesamtpreis
abgezogen.

select sum (pricepaid) as sum_price, dateid,

sum (commission) as sum_comm, (sum (pricepaid) - sum (commission)) as value
from sales where dateid >= 2000

group by dateid order by dateid limit 10;

sum_price | dateid | sum_comm | value

Mathematische Funktionen 251

AWS Clean Rooms

SQL-Referenz

+
364445.00 | 2044
349344.00 | 2112
343756.00 | 2124
378595.00 | 2116
328725.00 | 2080
349554.00 | 2028
249207.00 | 2164
285202.00 | 2064
320945.00 | 2012
321096.00 | 2016

(10 rows)

Funktion ABS

—_— e — M — — o+

—_— e — M — — o+

309778.
296942.
292192,
321805.
279416.
297120.
211825.
242421.
272803.
272931.

ABS berechnet den absoluten Wert einer Zahl, wobei diese Zahl ein Literal oder ein Ausdruck sein

kann, der zu einer Zahl ausgewertet wird.

Syntax

ABS (nhumber)

Argumente

number (Zahl

Zahl oder Ausdruck, der zu einer Zahl ausgewertet wird. Dabei kann es sich um den Typ
SMALLINT, INTEGER, BIGINT FLOAT4, DECIMAL oder FLOATS8 handeln.

Ruckgabetyp

ABS gibt denselben Datentyp wie sein Argument zurick.

Beispiele

Berechnet den absoluten Wert von -38:

select abs (-38);

abs

Mathematische Funktionen

252

AWS Clean Rooms SQL-Referenz

(1 row)

Berechnet den absoluten Wert von (14 - 76):

select abs (14-76);
abs

Die Funktion ACOS

ACOS ist eine trigonometrische Funktion, die den Arcuscosinus einer Zahl zurickgibt. Der
Ruckgabewert wird in Radianten ausgedrickt und liegt zwischen @ und PI.

Syntax
ACOS(number)
Argumente

number (Zahl

Der Eingabeparameter ist eine DOUBLE PRECISION-Zahl.

Ruckgabetyp
DOUBLE PRECISION
Beispiele

Verwenden Sie das folgende Beispiel, um den Arcuscosinus von -1 zurlickzugeben.

SELECT ACOS(-1);

B e e +
| acos |
B e e +
| 3.141592653589793 |
B e e +

Mathematische Funktionen 253

AWS Clean Rooms SQL-Referenz

Die Funktion ASIN

ASIN ist eine trigonometrische Funktion, die den Arcussinus einer Zahl zurickgibt. Der Rickgabewert
wird in Radianten ausgedriickt und liegt zwischen PI/2 und -PI/2.

Syntax

ASIN(number)

Argumente

number (Zahl

Der Eingabeparameter ist eine DOUBLE PRECISION-Zahl.

Ruckgabetyp
DOUBLE PRECISION
Beispiele

Verwenden Sie das folgende Beispiel, um den Arcussinus von 1 zurlickzugeben.

SELECT ASIN(1) AS halfpi;

R +
| halfpi |
R +
| 1.5707963267948966 |
R +

Die Funktion ATAN

ATAN ist eine trigonometrische Funktion, die den Arcustangens einer Zahl zurickgibt. Der
Ruckgabewert wird in Radianten ausgedrickt und liegt zwischen -PI und PI.

Syntax

ATAN(humber)

Mathematische Funktionen 254

AWS Clean Rooms SQL-Referenz

Argumente
number (Zahl

Der Eingabeparameter ist eine DOUBLE PRECISION-Zahl.

Ruckgabetyp
DOUBLE PRECISION
Beispiele

Verwenden Sie das folgende Beispiel, um den Arcustangens von 1 zurtickzugeben und mit 4
multipliziert.

SELECT ATAN(1) * 4 AS pi;

L +
I pi I
L +
| 3.141592653589793 |
L +

ATAN2Z2 Funktion

ATANZ ist eine trigonometrische Funktion, die den Arkustangens einer Zahl geteilt durch eine andere
Zahl zuruickgibt. Der Riickgabewert wird in Radianten ausgedriickt und liegt zwischen PI/2 und -
PI/2.

Syntax

ATAN2(numberl, number2)

Argumente
number1

Eine DOUBLE PRECISION-Zahl.

number2

Eine DOUBLE PRECISION-Zahl.

Mathematische Funktionen 255

AWS Clean Rooms SQL-Referenz

Ruckgabetyp
DOUBLE PRECISION
Beispiele

Verwenden Sie das folgende Beispiel, um den Arcustangens von 2 /2 zuriickzugeben und mit 4
multipliziert.

SELECT ATAN2(2,2) * 4 AS PI;

[R ey +
I pi I
[R ey +
| 3.141592653589793 |
[R ey +

Die Funktion CBRT
Die CBRT-Funktion ist eine mathematische Funktion, die die Kubikwurzel einer Zahl berechnet.

Syntax

CBRT (number)

Argument

CBRT hat eine DOUBLE PRECISION-Zahl als Argument.
Ruckgabetyp

CBRT gibt eine DOUBLE PRECISION-Zahl zurtick.
Beispiele

Berechnet die Kubikwurzel der Provision, die fir eine bestimmte Transaktion gezahlt wurde:

select cbrt(commission) from sales where salesid=10000;

Mathematische Funktionen 256

AWS Clean Rooms SQL-Referenz

3.03839539048843
(1 row)

Die Funktion CEILING (oder CEIL)

Die CEILING- oder CEIL-Funktion wird verwendet, um eine Zahl auf die nachste ganze Zahl
aufzurunden. (Die Die Funktion FLOOR rundet eine Zahl auf die nachste ganze Zahl ab.)

Syntax

CEIL | CEILING(number)

Argumente

number (Zahl

Die Zahl oder der Ausdruck, der zu einer Zahl ausgewertet wird. Dabei kann es sich um den Typ
SMALLINT, INTEGER, BIGINT FLOAT4, DECIMAL oder handeln. FLOATS8

Ruckgabetyp

CEILING und CEIL geben denselben Datentyp wie ihr Argument zurtck.

Beispiel

Berechnet die Decke der Provision, die fur eine bestimmte Verkaufstransaktion gezahlt wird:

select ceiling(commission) from sales
where salesid=10000;

ceiling

Die Funktion COS

COS ist eine trigonometrische Funktion, die den Cosinus einer Zahl zurtickgibt. Der Riickgabewert
wird in Radianten ausgedriickt und liegt zwischen -1 und 1, jeweils einschlieBlich.

Mathematische Funktionen 257

AWS Clean Rooms

SQL-Referenz

Syntax

COS(double_precision)

Argument
number (Zahl

Der Eingabeparameter ist eine Doppelprazisionszahl.

Ruckgabetyp
Die COS-Funktion gibt eine Doppelprazisionszahl zurtick.
Beispiele

Im folgenden Beispiel wird der Cosinus von 0 zurtickgegeben:

select cos(0);
cos

Im folgenden Beispiel wird der Cosinus von Pl zurlickgegeben:

select cos(pi());
cos

Die Funktion COT

COT ist eine trigonometrische Funktion, die den Kotangens einer Zahl zurtckgibt. Der

Eingabeparameter darf nicht null sein.

Syntax

COT(number)

Mathematische Funktionen

258

AWS Clean Rooms SQL-Referenz

Argument

number (Zahl

Der Eingabeparameter ist eine DOUBLE PRECISION-Zahl.

Rickgabetyp
DOUBLE PRECISION
Beispiele

Verwenden Sie das folgende Beispiel, um den Kotangens von 1 zurtickzugeben.

SELECT COT(1);

R e +
| cot |
R e +
| ©.6420926159343306 |
R e +

Die Funktion DEGREES
Konvertiert einen Winkel in Radianten in die Entsprechung in Grad.

Syntax

DEGREES(number)

Argument

number (Zahl

Der Eingabeparameter ist eine DOUBLE PRECISION-Zahl.

Ruckgabetyp

DOUBLE PRECISION

Mathematische Funktionen 259

AWS Clean Rooms SQL-Referenz

Beispiel

Verwenden Sie das folgende Beispiel, um die Entsprechung in Grad des Radianten 0,5
zuruckzugeben.

SELECT DEGREES(.5);

B el +
| degrees |
B el +
| 28.64788975654116 |
B el +

Verwenden Sie das folgende Beispiel, um Pl-Radianten in Grad zu konvertieren.

SELECT DEGREES(pi());

DIV-Funktion

Der DIV-Operator gibt den integralen Teil der Division der Dividende durch den Divisor zurick.

Syntax

dividend div divisor

Argumente

Dividende

Ein Ausdruck, der zu einer Zahl oder einem Intervall ausgewertet wird.

Divisor

Ein passender Intervalltyp, wenn dividend es sich um ein Intervall handelt, andernfalls um eine
Zahl.

Mathematische Funktionen 260

AWS Clean Rooms SQL-Referenz

Ruckgabetyp
BIGINT
Beispiele

Im folgenden Beispiel werden zwei Spalten aus der Eichhérnchen-Tabelle ausgewanhlt: die id

Spalte, die den eindeutigen Bezeichner fir jedes Eichhérnchen enthalt, und eine calculated
Spalteage div 2, die die ganzzahlige Division der Altersspalte durch 2 darstellt. age div 2Bei
der Berechnung wird die age Spalte durch eine Ganzzahl dividiert, wodurch das Alter auf die nachste
gerade Ganzzahl abgerundet wird. Wenn die age Spalte beispielsweise Werte wie 3, 5, 7 und 10
enthalt, wirde die age div 2 Spalte jeweils die Werte 1, 2, 3 und 5 enthalten.

SELECT id, age div 2 FROM squirrels

Diese Abfrage kann in Szenarien nitzlich sein, in denen Sie Daten nach Altersbereichen gruppieren
oder analysieren missen und Sie die Alterswerte vereinfachen méchten, indem Sie sie auf die
nachste gerade Ganzzahl abrunden. Die resultierende Ausgabe wiirde flir jedes Eichhérnchen in der
Tabelle das Alter id und das squirrels Alter geteilt durch 2 ergeben.

Die Funktion EXP

Die EXP-Funktion implementiert die Exponentialfunktion flr einen numerischen Ausdruck, oder
die Basis des natlrlichen Logarithmus, e, potenziert mit dem Ausdruck. Die EXP-Funktion ist die
Umkehrung von Die Funktion LN.

Syntax

EXP (expression)
Argument

expression

Der Ausdruck muss den Datentyp INTEGER, DECIMAL oder DOUBLE PRECISION haben.

Ruckgabetyp

EXP gibt eine DOUBLE PRECISION-Zahl zurtick.

Mathematische Funktionen 261

AWS Clean Rooms SQL-Referenz

Beispiel

Die EXP-Funktion wird verwendet, um Ticketverkdufe auf der Basis eines kontinuierlichen
Wachstumsmusters zu prognostizieren. In diesem Beispiel gibt die Unterabfrage die Anzahl der
Tickets zurilck, die 2008 verkauft wurden. Dieses Ergebnis wird mit dem Ergebnis der EXP-Funktion
multipliziert, das eine kontinuierliche Wachstumsrate von 7 % Uber 10 Jahre angibt.

select (select sum(qgtysold) from sales, date
where sales.dateid=date.dateid

and year=2008) * exp((7::float/100)*10) qty2018;
qty2018

695447 .483772222
(1 row)

Die Funktion FLOOR

Die FLOOR-Funktion rundet eine Zahl auf die nachste ganze Zahl ab.

Syntax

FLOOR (number)

Argument

number (Zahl
Die Zahl oder der Ausdruck, der zu einer Zahl ausgewertet wird. Dabei kann es sich um den Typ
SMALLINT, INTEGER, BIGINT FLOAT4, DECIMAL oder handeln. FLOAT8

Ruckgabetyp

FLOOR gibt denselben Datentyp wie sein Argument zurick.

Beispiel

Das Beispiel zeigt den Wert der Provision, die fur eine bestimmte Verkaufstransaktion vor und nach
Verwendung der FLOOR-Funktion bezahlt wurde.

select commission from sales

Mathematische Funktionen 262

AWS Clean Rooms SQL-Referenz

where salesid=10000;

select floor(commission) from sales
where salesid=10000;

Die Funktion LN

Die LN-Funktion gibt den natirlichen Logarithmus des Eingabeparameters zurick.

Syntax

LN(expression)

Argument
expression

Die Zielspalte oder der Ausdruck, fur die/den die Funktion ausgefuhrt wird.

(® Note

Diese Funktion gibt fir einige Datentypen einen Fehler zurtick, wenn der Ausdruck auf
eine AWS Clean Rooms vom Benutzer erstellte Tabelle oder eine AWS Clean Rooms
STL- oder STV-Systemtabelle verweist.

Ausdriicke mit den folgenden Datentypen flihren zu einem Fehler, wenn sie eine benutzererstellte
oder eine Systemtabelle referenzieren.

+ BOOLEAN
+ CHAR

Mathematische Funktionen 263

AWS Clean Rooms SQL-Referenz

« DATUM

« DECIMAL oder NUMERIC
+ TIMESTAMP

* VARCHAR

Ausdriicke mit den folgenden Datentypen werden flir benutzererstellte und STL- oder STV-
Systemtabellen erfolgreich ausgeflihrt:

« BIGINT

DOUBLE PRECISION
INTEGER

REAL

SMALLINT

Ruckgabetyp
Die LN-Funktion gibt denselben Typ wie der Ausdruck zurtck.
Beispiel

Im folgenden Beispiel wird der naturliche Logarithmus bzw. Basis-e-Logarithmus der Zahl
2,718281828 zurlickgegeben:

select 1n(2.718281828);
1n

0.9999999998311267
(1 row)

Beachten Sie, dass die Antwort beinahe gleich 1 ist.

In diesem Beispiel wird der natirliche Logarithmus der Werte in der Spalte USERID in der Tabelle
USERS zuruckgegeben:

select username, ln(userid) from users order by userid limit 10;

username | 1n
__________ R

Mathematische Funktionen 264

AWS Clean Rooms

SQL-Referenz

JSG99FHE
PGLOSLII
IFT66TXU
XDZ38RDD
AEB55QTM
NDQ15VBM
OowY35QYB
AZG78YIP
MSD36KVR
WKW41AIW
(10 rows)

0
0.693147180559945
1.09861228866811
1.38629436111989
1.6094379124341
1.79175946922805
1.94591014905531
2.07944154167984
2.19722457733622

I
I
I
I
I
I
I
I
I
| 2.30258509299405

Die Funktion LOG

Gibt den Logarithmus von mit zuriick. expr base

Syntax

LOG(base, expr)

Argument

expr

Der Ausdruck muss einen Ganzzahl-, Dezimal- oder Gleitkommadatentyp haben.

base

Die Basis fur die Logarithmusberechnung. Muss eine positive Zahl (ungleich 1) vom Datentyp

doppelter

Genauigkeit sein.

Ruckgabetyp

Die LOG-Funktion gibt eine Doppelprazisionszahl zuriick.

Beispiel

Im folgenden Beispiel wird der Logarithmus der Zahl 100 zur Basis 10 zurlickgegeben:

select log(10, 100);

Mathematische Funktionen

265

AWS Clean Rooms SQL-Referenz

2
(1 row)

Die Funktion MOD

Gibt den Rest von zwei Zahlen zurtick, auch bekannt als Modulo-Operation. Um das Ergebnis zu
berechnen, wird der erste Parameter durch den zweiten geteilt.

Syntax

MOD(nhumberl, number2)

Argumente
number1

Der erste Eingabeparameter ist eine INTEGER-, SMALLINT-, BIGINT- oder DECIMAL-Zahl.
Wenn es sich bei einem der beiden Parameter um einen Parameter des Typs DECIMAL handelt,
muss es sich beim anderen Parameter ebenfalls um einen Parameter des Typs DECIMAL
handeln. Wenn es sich bei einem der beiden Parameter um einen Parameter des Typs INTEGER
handelt, kann es sich beim anderen Parameter um einen Parameter des Typs INTEGER,
SMALLINT oder BIGINT handeln. Beide Parameter kdnnen auch den Typ SMALLINT oder
BIGINT haben. Wenn ein Parameter jedoch den Typ BIGINT hat, kann der andere Parameter
nicht den Typ SMALLINT haben.

number2

Der zweite Parameter ist eine INTEGER-, SMALLINT-, BIGINT- oder DECIMAL-Zahl. Die gleichen
Datentypregeln gelten flir number2 wie fir number1.

Ruckgabetyp

Gultige Rickgabetypen sind DECIMAL, INT, SMALLINT und BIGINT. Der Rickgabetyp der MOD-
Funktion ist der gleiche numerische Typ wie die Eingabeparameter, wenn beide Eingabeparameter
denselben Datentyp haben. Wenn es sich bei einem der Eingabeparameter um einen INTEGER
handelt, ist der Rickgabetyp auch ein INTEGER.

Nutzungshinweise

Sie kdnnen % als Modulo-Operator verwenden.

Mathematische Funktionen 266

AWS Clean Rooms SQL-Referenz

Beispiele

Im folgenden Beispiel wird der Rest einer Division von zwei Zahlen zurickgegeben:

SELECT MOD(10, 4);

Im folgenden Beispiel wird ein Dezimalergebnis zuriickgegeben:

SELECT MOD(10.5, 4);

Sie konnen Parameterwerte umwandeln:

SELECT MOD(CAST(16.4 as integer), 5);

Uberpriifen Sie, ob der erste Parameter gerade ist, indem Sie ihn durch 2 teilen:
SELECT mod(5,2) = @ as is_even;
is_even
Sie kdnnen % als Modulo-Operator verwenden:

SELECT 11 % 4 as remainder;

remainder

Mathematische Funktionen 267

AWS Clean Rooms SQL-Referenz

Das folgende Beispiel gibt Informationen zu Kategorien mit ungeraden Nummern in der Tabelle
CATEGORY zurick:

select catid, catname
from category
where mod(catid,2)=1
oxder by 1,2;

catid | catname
_______ i

1 | MLB

3 | NFL

5 | MLS

7 | Plays

9 | Pop

11 | Classical
(6 rows)

Die Funktion PI
Die PI-Funktion gibt den Wert von Pi auf 14 Dezimalstellen zurlck.

Syntax
PI()
Ruckgabetyp
DOUBLE PRECISION

Beispiele

Verwenden Sie das folgende Beispiel, um den Wert von Pi zurtickzugeben.

SELECT PI();

[SRy S +
I pi I
[SRy S +
| 3.141592653589793 |
[SRy S +

Mathematische Funktionen 268

AWS Clean Rooms SQL-Referenz

Die Funktion POWER

Die POWER-Funktion ist eine Exponentialfunktion, die einen numerischen Ausdruck mit der Potenz
eines zweiten numerischen Ausdrucks potenziert. Beispielsweise wird 2 in der dritten Potenz als
POWER(2, 3) berechnet. Das Ergebnis ist 8.

Syntax

{POWER(expressionl, expression2)

Argumente
expression1

Der numerische Ausdruck, der potenziert werden soll. Muss ein INTEGER-, DECIMAL- oder
FLOAT-Datentyp sein.

expression2

Potenz, mit der expression1potenziert werden soll. Muss ein INTEGER-, DECIMAL- oder FLOAT-
Datentyp sein.

Ruckgabetyp
DOUBLE PRECISION

Beispiel

SELECT (SELECT SUM(qtysold) FROM sales, date
WHERE sales.dateid=date.dateid
AND year=2008) * POW((1+7::FLOAT/100),10) qty2010;

L T T e +
| qty2010 |
L T T e +
| 679353.7540885945 |
L T T e +

Die Funktion RADIANS

Die RADIANS-Funktion konvertiert einen Winkel in Grad in die Entsprechung im Bogenmal.

Mathematische Funktionen 269

AWS Clean Rooms SQL-Referenz

Syntax

RADIANS (number)

Argument

number (Zahl

Der Eingabeparameter ist eine DOUBLE PRECISION-Zahl.

Ruckgabetyp
DOUBLE PRECISION
Beispiel

Verwenden Sie das folgende Beispiel, um die Entsprechung in 180 Grad des Radianten
zurickzugeben.

SELECT RADIANS(180);

L +
| radians |
L +
| 3.141592653589793 |
L +

RAND-Funktion

Die RAND-Funktion generiert eine zufallige Gleitkommazahl zwischen 0 und 1. Die RAND-Funktion
generiert bei jedem Aufruf eine neue Zufallszahl.

Syntax

RAND()

Ruckgabetyp

RANDOM gibt einen Wert vom Typ DOUBLE zurck.

Mathematische Funktionen 270

AWS Clean Rooms SQL-Referenz

Beispiel

Im folgenden Beispiel wird fur jede Zeile in der Tabelle eine Spalte mit zufalligen Gleitkommazahlen
zwischen 0 und 1 generiert. squirrels Die resultierende Ausgabe wére eine einzelne Spalte, die
eine Liste zufalliger Dezimalwerte mit einem Wert fur jede Zeile in der Squirrels-Tabelle enthalt.

SELECT rand() FROM squirrels

Dieser Abfragetyp ist nutzlich, wenn Sie Zufallszahlen generieren missen, um beispielsweise
zuféllige Ereignisse zu simulieren oder Zufélligkeit in Ihre Datenanalyse einzubeziehen. Im Kontext
der squirrels Tabelle kann sie verwendet werden, um jedem Eichhérnchen Zufallswerte
zuzuweisen, die dann fir die weitere Verarbeitung oder Analyse verwendet werden kdnnten.

Die Funktion RANDOM

Die RANDOM-Funktion generiert einen zuféalligen Wert zwischen 0,0 (einschliefdlich) und 1,0
(ausschlielilich).

Syntax

RANDOM()

Ruckgabetyp
RANDOM gibt eine DOUBLE PRECISION-Zahl zurick.
Beispiele

1. Berechnet einen zufalligen Wert zwischen 0 und 99. Wenn die zufallige Zahl 0 bis 1 ist, produziert
diese Abfrage eine zufallige Zahl zwischen 0 und 100:

select cast (random() * 100 as int);

INTEGER

24
(1 row)

2. Rufen Sie eine einheitliche zufallige Stichprobe von 10 Elementen ab:

select *
from sales

Mathematische Funktionen 271

AWS Clean Rooms SQL-Referenz

order by random()
limit 10;

Rufen Sie jetzt eine zufallige Stichprobe von 10 Elementen ab, wahlen Sie die Elemente jedoch
im Verhaltnis zu deren Preis aus. Beispiel: Ein Element, das doppelt so teuer wie ein anderes
Element ist, wird doppelt so wahrscheinlich in den Abfrageergebnissen angezeigt:

select *

from sales

order by log(1l - random()) / pricepaid
limit 10;

3. In diesem Beispiel wird der SET-Befehl verwendet, um einen SEED-Wert festzulegen, sodass
RANDOM eine vorhersehbare Zahlenfolge generiert.

Geben Sie zunachst drei RANDOM-Ganzzahlen zurlck, ohne zuerst den SEED-Wert festzulegen:

select cast (random() * 100 as int);
INTEGER

select cast (random() * 100 as int);
INTEGER

68

(1 row)

select cast (random() * 100 as int);
INTEGER

Legen Sie nun den SEED-Wert auf . 25 fest und geben Sie drei weitere RANDOM-Zahlen zur(ck:

set seed to .25;
select cast (random() * 100 as int);
INTEGER

Mathematische Funktionen 272

AWS Clean Rooms SQL-Referenz

(1 row)

select cast (random() * 100 as int);
INTEGER

79
(1 row)

select cast (random() * 100 as int);
INTEGER

Setzen Sie zum Schluss den SEED-Wert auf . 25 zurlick und Uberprifen Sie, ob RANDOM
dieselben Ergebnisse wie in den vorherigen drei Aufrufen zurtckgibt:

set seed to .25;

select cast (random() * 100 as int);
INTEGER

21

(1 row)

select cast (random() * 100 as int);
INTEGER

79
(1 row)

select cast (random() * 100 as int);
INTEGER

Die Funktion ROUND

Die ROUND-Funktion rundet Zahlen auf den nachsten Ganzzahl- oder Dezimalwert auf.

Mathematische Funktionen 273

AWS Clean Rooms SQL-Referenz

Die ROUND-Funktion kann optional ein zweites Argument als Ganzzahl umfassen, um die

Anzahl der Dezimalstellen fur die Rundung in beide Richtungen anzugeben. Wenn Sie das zweite
Argument nicht angeben, wird die Funktion auf die nachste ganze Zahl gerundet. Wenn das zweite
Argument >n angegeben wurde, wird die Funktion auf die nachste Zahl mit einer Genauigkeit von n
Dezimalstellen gerundet.

Syntax

ROUND (number [, integer])

Argument
number (Zahl

Eine Zahl oder ein Ausdruck, der zu einer Zahl ausgewertet wird. Dabei kann es sich um
DECIMAL oder FLOATS8 Type handeln. AWS Clean Rooms kann andere Datentypen gemal} den
impliziten Konvertierungsregeln konvertieren.

integer (optional)

Eine Ganzzahl, die die Zahl der Dezimalstellen fir das Runden in beide Richtungen angibt.

Ruckgabetyp
ROUND gibt denselben numerischen Datentyp wie das/die Eingabeargument(e) zurick.
Beispiele

Rundet die fur eine bestimmte Transaktion gezahlte Vergutung auf die ndchste ganze Zahl.

select commission, round(commission)
from sales where salesid=10000;

commission | round

Rundet die fur eine bestimmte Transaktion gezahlte Vergltung auf die erste Dezimalstelle.

select commission, round(commission, 1)

Mathematische Funktionen 274

AWS Clean Rooms SQL-Referenz

from sales where salesid=10000;

commission | round

Erweitert fur dieselbe Abfrage die Prazision in die entgegengesetzte Richtung.

select commission, round(commission, -1)
from sales where salesid=10000;

commission | round

Die Funktion SIGN

Die SIGN-Funktion gibt das Vorzeichen (positiv oder negativ) einer Zahl zurtick. Das Ergebnis der
SIGN-Funktion ist 1, -1 oder @, was das Vorzeichen des Arguments anzeigt.

Syntax

SIGN (number)

Argument

number (Zahl

Zahl oder Ausdruck, der zu einer Zahl ausgewertet wird. Es kann der DECIMALor FLOATS8 Typ
sein. AWS Clean Rooms kann andere Datentypen gemal’ den impliziten Konvertierungsregeln
konvertieren.

Ruckgabetyp

SIGN gibt denselben numerischen Datentyp wie das/die Eingabeargument(e) zurliick. Wenn die
Eingabe DECIMAL ist, ist die Ausgabe DECIMAL (1,0).

Mathematische Funktionen 275

AWS Clean Rooms SQL-Referenz

Beispiele

Verwenden Sie das folgende Beispiel, um das Vorzeichen der Decke der Provision zu bestimmten,
die fur eine bestimmte Verkaufstransaktion aus der Tabelle SALES gezahlt wird.

SELECT commission, SIGN(commission)
FROM sales WHERE salesid=10000;

- R +

| commission | sign |

Die Funktion SIN

SIN ist eine trigonometrische Funktion, die den Sinus einer Zahl zurlckgibt. Der zurtickgegebene
Wert liegt zwischen -1 und 1.

Syntax

SIN(number)

Argument
number (Zahl

Eine DOUBLE PRECISION-Zahl im Bogenmal.

Ruckgabetyp
DOUBLE PRECISION
Beispiel

Verwenden Sie das folgende Beispiel, um den Sinus von -PI zurlckzugeben.

SELECT SIN(-PI());

Mathematische Funktionen 276

AWS Clean Rooms SQL-Referenz

Die Funktion SQRT

Die SQRT-Funktion gibt die Quadratwurzel eines numerischen Werts zuriick. Die Quadratwurzel ist
eine Zahl, die mit sich selbst multipliziert den angegebenen Wert ergibt.

Syntax
SQRT (expression)
Argument

expression

Der Ausdruck muss einen Ganzzahl-, Dezimal- oder Gleitkommadatentyp haben. Der Ausdruck
kann Funktionen enthalten. Das System kdnnte implizite Typumwandlungen durchfiihren.

Rickgabetyp
SQRT gibt eine DOUBLE PRECISION-Zahl zurtck.
Beispiele

Im folgenden Beispiel wird die Quadratwurzel einer Zahl zurtickgegeben.

select sqrt(16);

Im folgenden Beispiel wird eine implizite Typumwandlung durchgefihrt.

select sqrt('16');

Mathematische Funktionen 277

AWS Clean Rooms SQL-Referenz

4

Im folgenden Beispiel werden Funktionen verschachtelt, um eine komplexere Aufgabe auszufuhren.

select sqrt(round(16.4));

Das folgende Beispiel ergibt die Lange des Radius, wenn die Flache eines Kreises gegeben ist. Der
Radius wird beispielsweise in Zoll berechnet, wenn die Flache in Quadratzoll angegeben ist. Die
Flache in dem Beispiel betragt 20.

select sqrt(20/pi());

Der Wert 5,046265044040321 wird zurlickgegeben.

Im folgenden Beispiel wird die Quadratwurzel fir COMMISSION-Werte aus der Tabelle SALES
zurtuckgegeben. Die COMMISSION-Spalte ist eine DECIMAL-Spalte. Dieses Beispiel zeigt, wie Sie
die Funktion in einer Abfrage mit komplexerer bedingter Logik verwenden kdénnen.

select sqrt(commission)
from sales where salesid < 10 order by salesid;

10.4498803820905
3.37638860322683
7.24568837309472
5.1234753829798

Die folgende Abfrage gibt die gerundete Quadratwurzel fur denselben Satz von COMMISSION-
Werten zurtck.

select salesid, commission, round(sqrt(commission))
from sales where salesid < 10 order by salesid;

salesid | commission | round
________ B

Mathematische Funktionen 278

AWS Clean Rooms SQL-Referenz

1 109.20 | 10
2 | 11.40 | 3
3 | 52.50 | 7
4 | 26.25 | 5

Weitere Informationen zu Beispieldaten finden Sie AWS Clean Rooms unter Beispieldatenbank.

Die Funktion TRUNC

Die TRUNC-Funktion verklrzt Zahlen auf die vorherige Ganz- oder Dezimalzahlen.

Die TRUNC-Funktion kann optional ein zweites Argument als Ganzzahl umfassen, um die Anzahl
der Dezimalstellen fir die Rundung in beide Richtungen anzugeben. Wenn Sie das zweite
Argument nicht angeben, wird die Funktion auf die nachste ganze Zahl gerundet. Wenn das zweite
Argument >n angegeben wurde, wird die Funktion auf die nachste Zahl mit einer Genauigkeit von >n
Dezimalstellen gerundet. Die Funktion verkirzt auch einen Zeitstempel und gibt ein Datum zurtck.

Syntax

TRUNC (number [, integer] |
timestamp)

Argumente
number (Zahl

Eine Zahl oder ein Ausdruck, der zu einer Zahl ausgewertet wird. Dabei kann es sich um
DECIMAL oder FLOATS8 Type handeln. AWS Clean Rooms kann andere Datentypen gemal} den
impliziten Konvertierungsregeln konvertieren.

integer (optional)

Eine Ganzzahl, die die Zahl der Dezimalstellen der Prazision in beide Richtungen anzeigt. Wenn
keine Ganzzahl angegeben wird, wird die Zahl zu einer ganzen Zahl abgeschnitten. Wenn eine
Ganzzahl angegeben wird, wird die Zahl an der angegebenen Dezimalstelle abgeschnitten.

timestamp

Die Funktion kann auch das Datum aus einem Zeitstempel zuriickgeben. (Um einen
Zeitstempelwert mit 00 : 00 : 00 als Uhrzeit zurickzugeben, wandeln Sie das Funktionsergebnis in
einen Zeitstempel um.)

Mathematische Funktionen 279

https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html

AWS Clean Rooms SQL-Referenz

Ruckgabetyp

TRUNC gibt denselben Datentyp wie das erste Eingabeargument zurtick. Fir Zeitstempel gibt
TRUNC ein Datum zurtck.

Beispiele

Schneidet die Provision ab, die flir eine bestimmte Verkaufstransaktion gezahlt wird.

select commission, trunc(commission)
from sales where salesid=784;

commission | trunc
___________ Fmm e =

111.15 | 111

(1 row)

Schneidet denselben Provisionswert an der ersten Dezimalstelle ab.

select commission, trunc(commission,l)
from sales where salesid=784;

commission | trunc
___________ Fmm e e

111.15 | 111.1

(1 row)

Schneidet die Provision mit einem negativen Wert fir das zweite Argument ab; 111.15 wird auf 110
abgerundet.

select commission, trunc(commission,-1)
from sales where salesid=784;

commission | trunc
___________ Fmm e =

111.15 | 110
(1 row)

Gibt den Datumsabschnitt aus dem Ergebnis der SYSDATE-Funktion zurtick (die einen Zeitstempel
zuruckgibt):

Mathematische Funktionen 280

AWS Clean Rooms SQL-Referenz

select sysdate;

timestamp

2011-07-21 10:32:38.248109
(1 row)

select trunc(sysdate);

2011-07-21
(1 row)

Wendet die TRUNC-Funktion auf eine TIMESTAMP-Spalte an. Der Ruickgabetyp ist ein Datum.

select trunc(starttime) from event
order by eventid limit 1;

2008-01-25
(1 row)

Skalarfunktionen

In diesem Abschnitt werden die in AWS Clean Rooms Spark SQL unterstltzten Skalarfunktionen
beschrieben. Eine Skalarfunktion ist eine Funktion, die einen oder mehrere Werte als Eingabe
verwendet und einen einzelnen Wert als Ausgabe zuriickgibt. Skalarfunktionen arbeiten mit einzelnen
Zeilen oder Elementen und erzeugen fir jede Eingabe ein einzelnes Ergebnis.

Skalarfunktionen wie SIZE unterscheiden sich von anderen Typen von SQL-Funktionen wie
Aggregatfunktionen (Anzahl, Summe, Durchschnitt) und Funktionen zur Tabellengenerierung
(Explode, Flatten). Diese anderen Funktionstypen arbeiten mit mehreren Zeilen oder generieren
mehrere Zeilen, wohingegen Skalarfunktionen auf einzelne Zeilen oder Elemente angewendet
werden.

Themen

» SIZE-Funktion

Skalarfunktionen 281

AWS Clean Rooms SQL-Referenz

SIZE-Funktion

Die SIZE-Funktion verwendet ein vorhandenes Array, eine Map oder eine Zeichenfolge als Argument
und gibt einen einzelnen Wert zurtck, der die GroRe oder Lange dieser Datenstruktur darstellt.

Sie erstellt keine neue Datenstruktur. Es wird zum Abfragen und Analysieren der Eigenschaften
vorhandener Datenstrukturen verwendet, anstatt neue zu erstellen.

Diese Funktion ist nutzlich, um die Anzahl der Elemente in einem Array oder die Lange einer
Zeichenfolge zu bestimmen. Sie kann besonders hilfreich sein, wenn Sie mit Arrays und anderen
Datenstrukturen in SQL arbeiten, da Sie damit Informationen Uber die GréRe oder Kardinalitat der
Daten abrufen kénnen.

Syntax

size(expr)

Argumente
expr

Ein ARRAY-, MAP- oder STRING-Ausdruck.

Ruckgabetyp
Die SIZE-Funktion gibt einen INTEGER-Wert zurlck.
Beispiel

In diesem Beispiel wird die SIZE-Funktion auf das Array ['b', 'd', 'c', 'a'] angewendetund
gibt den Wert zurlck4, der der Anzahl der Elemente im Array entspricht.

SELECT size(array('b', 'd', 'c', 'a'));
4

In diesem Beispiel wird die SIZE-Funktion auf die Map {'a': 1, 'b': 2} angewendet und sie gibt
den Wert zurtick2, der der Anzahl der Schlissel-Wert-Paare in der Map entspricht.

SELECT size(map('a', 1, 'b', 2));

Skalarfunktionen 282

AWS Clean Rooms SQL-Referenz

2

In diesem Beispiel wird die SIZE-Funktion auf die Zeichenfolge 'hello world' angewendet und
sie gibt den Wert zurlick11, der der Anzahl der Zeichen in der Zeichenfolge entspricht.

SELECT size('hello world');
11

Zeichenfolgenfunktionen

Zeichenfolgefunktionen verarbeiten und bearbeiten Zeichenfolgen oder Ausdrlicke, die zu
Zeichenfolgen ausgewertet werden. Wenn das Argument string in diesen Funktionen ein Literalwert
ist, muss es in einfache Anflihrungszeichen eingeschlossen werden. Die unterstlitzten Datentypen
sind CHAR und VARCHAR.

Im folgenden Abschnitt werden Funktionsnamen, Syntax und Beschreibungen der unterstlitzten
Funktionen bereitgestellt. Alle Offsets in Zeichenfolgen sind eins-basiert.

Themen

» Der Operator || (Verkettung)

* Die Funktion BTRIM

* Funktion CONCAT

* Funktion FORMAT_STRING

* Die Funktionen LEFT und RIGHT
* Die Funktion LENGTH

* Die Funktion LOWER

* Die Funktionen LPAD und RPAD
* Die Funktion LTRIM

* Die Funktion POSITION

» Die Funktion REGEXP_COUNT
* Die Funktion REGEXP_INSTR
 Die Funktion REGEXP_REPLACE
 Die Funktion REGEXP_SUBSTR
* Die Funktion REPEAT

Zeichenfolgenfunktionen 283

AWS Clean Rooms

SQL-Referenz

Der Operator || (Verkettung)

Die Funktion REPLACE

Die Funktion REVERSE
Die Funktion RTRIM
SPLIT-Funktion

Die Funktion SPLIT_PART
Die Funktion SUBSTRING
Die Funktion TRANSLATE
Die Funktion TRIM

Die Funktion UPPER

UUID-Funktion

Verkettet zwei Ausdriicke auf beiden Seiten des Symbols || und gibt den verketteten Ausdruck
zuruck.

Der Verkettungsoperator ist ahnlich wie. Funktion CONCAT

@ Note

Fir die Funktion CONCAT und den Verkettungsoperator gilt, dass das Ergebnis der
Verkettung null ist, wenn einer oder beide Ausdricke null sind.

Syntax

expressionl || expression2

Argumente

expression1, expression2

Bei beiden Argumenten kann es sich um Zeichenfolgen oder Ausdricke mit fester Ldnge oder mit

variabler Lange handeln.

Zeichenfolgenfunktionen

284

AWS Clean Rooms SQL-Referenz

Ruckgabetyp

Der Operator || gibt eine Zeichenfolge zurlick. Der Zeichenfolgetyp ist derselbe wie die
Eingabeargumente.

Beispiel

Im folgenden Beispiel werden die Felder FIRSTNAME und LASTNAME aus der Tabelle USERS
verkettet:

select firstname || || lastname
from users
order by 1

limit 10;

concat

Aaron Browning
Aaron Burnett
Aaron Casey
Aaron Cash
Aaron Castro
Aaron Dickerson
Aaron Dixon
Aaron Dotson
(10 rows)

Um Spalten zu verketten, die mdglicherweise Null-Werte enthalten, verwenden Sie den Ausdruck
NVL- und COALESCE-Funktionen. Im folgenden Beispiel wird NVL verwendet, um eine 0
zurlckzugeben, wenn NULL gefunden wird.

select venuename || ' seats ' || nvl(venueseats, 0)
from venue where venuestate = 'NV' or venuestate = 'NC'
order by 1

limit 10;

seating

Ballys Hotel seats 0
Bank of America Stadium seats 73298
Bellagio Hotel seats 0

Zeichenfolgenfunktionen 285

AWS Clean Rooms SQL-Referenz

Caesars Palace seats 0
Harrahs Hotel seats 0
Hilton Hotel seats 0

Luxor Hotel seats 0
Mandalay Bay Hotel seats 0
Mirage Hotel seats 0

New York New York seats 0

Die Funktion BTRIM

Die BTRIM-Funktion kurzt eine Zeichenfolge durch Entfernen von Leerzeichen am Anfang und
am Ende oder durch Entfernen von Zeichen am Anfang und am Ende, die mit einer optionalen
angegebenen Zeichenfolge Ubereinstimmen.

Syntax

BTRIM(string [, trim_chars])

Argumente
string

Die VARCHAR-Eingabezeichenfolge, die gekurzt werden soll.

trim_chars

Die VARCHAR-Zeichenfolge, die die Zeichen fiir die Ubereinstimmung enthlt.

Ruckgabetyp
Die BTRIM-Funktion gibt eine VARCHAR-Zeichenfolge zurlck.

Beispiele

Im folgenden Beispiel werden Leerzeichen am Anfang und am Ende aus der Zeichenfolge entfernt '

abc ':
select ' abc ' as untrim, btrim(' abc ') as trim;
untrim | trim
__________ e
abc | abc

Zeichenfolgenfunktionen

286

AWS Clean Rooms SQL-Referenz

Im folgenden Beispiel werden die Zeichenfolgen 'xyz' am Anfang und am Ende aus der
Zeichenfolge 'xyzaxyzbxyzcxyz' entfernt. Die Zeichenfolgen 'xyz' am Anfang und am Ende
werden entfernt, entsprechende Zeichenfolgen innerhalb dieser Zeichenfolge jedoch nicht.

select 'xyzaxyzbxyzcxyz' as untrim,
btrim('xyzaxyzbxyzcxyz', 'xyz') as trim;

untrim | trim
_________________ B

xyzaxyzbxyzcxyz | axyzbxyzc

Im folgenden Beispiel werden die Teile am Anfang und am Ende der

Zeichenfolge 'setuphistorycassettes' entfernt, die mit einem der Zeichen in der trim_chars-
Liste 'tes' Ubereinstimmen. Alle t, e oder s am Anfang oder Ende der Eingabezeichenfolge, die
vor einem anderen Zeichen stehen, das nicht in der trim_chars-Liste enthalten ist, werden entfernt.

SELECT btrim('setuphistorycassettes’', 'tes');

uphistoryca

Funktion CONCAT

Die CONCAT-Funktion verkettet zwei Ausdriicke und gibt den Ergebnisausdruck zurtick. Um
mehr als zwei Ausdricke zu verketten, verwenden Sie verschachtelte CONCAT-Funktionen. Der
Verkettungsoperator (| |) zwischen zwei Ausdriicken generiert dieselben Ergebnisse wie die
CONCAT-Funktion.

® Note

Fir die Funktion CONCAT und den Verkettungsoperator gilt, dass das Ergebnis der
Verkettung null ist, wenn einer oder beide Ausdricke null sind.

Syntax

CONCAT (expressionl, expression2)

Zeichenfolgenfunktionen 287

AWS Clean Rooms SQL-Referenz

Argumente
expression1, expression2
Beide Argumente kénnen eine Zeichenfolge mit fester Lange, eine Zeichenfolge variabler Lange,
ein bindrer Ausdruck oder ein Ausdruck sein, der fir eine dieser Eingaben ausgewertet wird.
Ruckgabetyp

CONCAT gibt einen Ausdruck zurtick. Der Datentyp des Ausdrucks ist derselbe Typ wie die
Eingabeargumente.

Wenn die Eingabeausdriicke unterschiedlichen Typs sind, wird AWS Clean Rooms versucht, einen
der Ausdricke implizit umzuwandeln. Wenn Werte nicht umgewandelt werden kdnnen, wird ein
Fehler zuriickgegeben.

Beispiele

Im folgenden Beispiel werden zwei Zeichenliterale verkettet:

select concat('December 25, ', '2008');

concat

December 25, 2008
(1 row)

Die folgende Abfrage verwendet anstelle von | | den Operator CONCAT und generiert dasselbe
Ergebnis:

select 'December 25, '|]|'2008';

concat

December 25, 2008
(1 row)

Im folgenden Beispiel werden zwei CONCAT-Funktionen verwendet, um drei Zeichenfolgen zu
verketten:

select concat('Thursday, ', concat('December 25, ', '2008'));

Zeichenfolgenfunktionen 288

AWS Clean Rooms SQL-Referenz

concat

Thursday, December 25, 2008
(1 row)

Um Spalten zu verketten, die mdglicherweise Null-Werte enthalten, verwenden Sie NVL- und
COALESCE-Funktionen. Im folgenden Beispiel wird NVL verwendet, um eine 0 zuriickzugeben, wenn
NULL gefunden wird.

select concat(venuename, concat(' seats ', nvl(venueseats, @))) as seating
from venue where venuestate = 'NV' or venuestate = 'NC'

order by 1

limit 5;

seating

Ballys Hotel seats 0

Bank of America Stadium seats 73298
Bellagio Hotel seats 0

Caesars Palace seats 0

Harrahs Hotel seats 0

(5 rows)

Die folgende Abfrage verkettet CITY- und STATE-Werte aus der Tabelle VENUE:

select concat(venuecity, venuestate)
from venue

where venueseats > 75000

order by venueseats;

concat

DenverCO

Kansas CityMO
East RutherfordNJ
LandoverMD

(4 Tows)

Die folgende Abfrage verwendet verschachtelte CONCAT-Funktionen. Die Abfrage verkettet CITY-
und STATE-Werte aus der Tabelle, trennt die Ergebniszeichenfolge jedoch durch ein Komma und ein
Leerzeichen:

Zeichenfolgenfunktionen 289

AWS Clean Rooms SQL-Referenz

select concat(concat(venuecity,', '),venuestate)
from venue

where venueseats > 75000

order by venueseats;

concat

Denver, CO

Kansas City, MO
East Rutherford, NJ]
Landover, MD

(4 rows)

Funktion FORMAT_STRING

Die FORMAT_STRING-Funktion erstellt eine formatierte Zeichenfolge, indem sie Platzhalter in
einer Vorlagenzeichenfolge durch die angegebenen Argumente ersetzt. Sie gibt eine formatierte
Zeichenfolge aus Formatzeichenfolgen im Printf-Stil zurlck.

Die Funktion FORMAT_STRING ersetzt die Platzhalter in der Vorlagenzeichenfolge

durch die entsprechenden Werte, die als Argumente Ubergeben wurden. Diese Art der
Zeichenkettenformatierung kann nutzlich sein, wenn Sie dynamisch Zeichenfolgen erstellen mussen,
die eine Mischung aus statischem Text und dynamischen Daten enthalten, z. B. beim Generieren von
Ausgabenachrichten, Berichten oder anderen Arten von informativem Text. Die FORMAT_STRING-
Funktion bietet eine prazise und lesbare Mdglichkeit, diese Arten von formatierten Zeichenfolgen

zu erstellen, wodurch es einfacher wird, den Code, der die Ausgabe generiert, zu verwalten und zu
aktualisieren.

Syntax

format_string(strfmt, obj, ...)

Argumente
strfmt

Ein STRING-Ausdruck.
obj

Ein STRING- oder numerischer Ausdruck.

Zeichenfolgenfunktionen 290

AWS Clean Rooms SQL-Referenz

Ruckgabetyp
FORMAT_STRING gibt einen STRING zurlck.
Beispiel

Das folgende Beispiel enthalt eine Vorlagenzeichenfolge, die zwei Platzhalter enthalt: %d fur einen
Dezimalwert (Ganzzahl) und %s fiir einen Zeichenkettenwert. Der %d Platzhalter wird durch den
Dezimalwert (Ganzzahl) (100) ersetzt, und der Platzhalter %s wird durch den Zeichenfolgenwert
() ersetzt. "days" Die Ausgabe ist eine Vorlagenzeichenfolge, bei der die Platzhalter durch die
angegebenen Argumente ersetzt wurden:. "Hello World 100 days"

SELECT format_string("Hello World %d %s'", 100, "days");
Hello World 100 days

Die Funktionen LEFT und RIGHT

Diese Funktionen geben die angegebene Zahl der Zeichen am weitesten links oder am weitesten
rechts in einer Zeichenfolge zurlck.

Die Zahl basiert auf der Anzahl der Zeichen, nicht der Bytes. Daher werden Zeichen mit mehreren
Bytes als einzelne Zeichen gezahlt.

Syntax

LEFT (string, integer)

RIGHT (string, integer)

Argumente
string

Jede Zeichenfolge oder jeder Ausdruck, der zu einer Zeichenfolge ausgewertet wird.

integer

Eine positive Ganzzahl.

Ruckgabetyp

LEFT und RIGHT geben eine VARCHAR-Zeichenfolge zurick.

Zeichenfolgenfunktionen 291

AWS Clean Rooms SQL-Referenz

Beispiel

Das folgende Beispiel gibt die 5 Zeichen ganz links und die 5 ganz rechts von Ereignisnamen zurtick,
die IDs zwischen 1000 und 1005 liegen:

select eventid, eventname,
left(eventname,5) as left_5,
right(eventname,5) as right_5

from event

where eventid between 1000 and 1005

order by 1;

eventid | eventname | left_5 | right_5

———————— L e e e
1000 | Gypsy | Gypsy | Gypsy
1001 | Chicago | Chica | icago
1002 | The King and I | The K | and I
1003 | Pal Joey | Pal J | Joey
1004 | Grease | Greas | rease
1005 | Chicago | Chica | icago

(6 rows)

Die Funktion LENGTH

Die Funktion LOWER

Konvertiert eine Zeichenfolge in Kleinbuchstaben. LOWER unterstitzt UTF-8-Multibyte-Zeichen bis
zu einer maximalen Lange von vier Bytes pro Zeichen.

Syntax

LOWER(string)

Argument
string

Der Eingabeparameter ist eine VARCHAR-Zeichenfolge (oder ein anderer Datentyp wie CHAR,
der implizit in VARCHAR konvertiert werden kann).

Zeichenfolgenfunktionen 292

AWS Clean Rooms

SQL-Referenz

Ruckgabetyp

Die LOWER-Funktion gibt eine Zeichenfolge zurlick, die den gleichen Datentyp wie die
Eingabezeichenfolge hat.

Beispiele

Im folgenden Beispiel wird das Feld ,CATNAME® in Kleinbuchstaben konvertiert:

select catname, lower(catname) from category order by 1,2;

Classical
Jazz

MLB

MLS
Musicals
NBA

NFL

NHL

Opera
Plays

Pop

(11 rows)

classical
jazz

mlb

mls
musicals
nba

nfl

nhl
opera
plays
pop

Die Funktionen LPAD und RPAD

Diese Funktionen fugen vor oder nach einer Zeichenfolge Zeichen an, basierend auf einer

angegebenen Lange.

Syntax

LPAD (stringl,

RPAD (stringl, length,

length,

[string2 1)

[string2 1])

Zeichenfolgenfunktionen

293

AWS Clean Rooms SQL-Referenz

Argumente
string1

Eine Zeichenfolge oder ein Ausdruck, der zu einer Zeichenfolge ausgewertet wird, beispielsweise
der Name einer Zeichenspalte.

length

Eine Ganzzahl, die die Lange des Ergebnisses der Funktion definiert. Die Lange einer
Zeichenfolge basiert auf der Anzahl der Zeichen, nicht der Bytes. Daher werden Zeichen mit
mehreren Bytes als einzelne Zeichen gezahlt. Wenn string1 langer als die angegebene Lange ist,
wird sie abgeschnitten (rechts). Wenn length eine negative Zahl ist, ist das Ergebnis der Funktion
eine leere Zeichenfolge.

string2

Ein oder mehrere Zeichen, die vor oder nach string1 angefligt werden. Dieses Argument ist
optional. Wenn es nicht angegeben wird, werden Leerzeichen verwendet.

Ruckgabetyp
Diese Funktionen geben einen VARCHAR-Datentyp zurtck.
Beispiele

Schneidet einen angegebenen Satz von Veranstaltungsnamen auf 20 Zeichen ab und fligt vor den
kirzeren Namen Leerzeichen an:

select lpad(eventname,20) from event
where eventid between 1 and 5 order by 1;

Salome

I1 Trovatore

Boris Godunov

Gotterdammerung

La Cenerentola (Cind
(5 rows)

Schneidet denselben Satz von Veranstaltungsnamen auf 20 Zeichen ab, flgt vor den kirzeren
Namen jedoch an 0123456789.

Zeichenfolgenfunktionen 294

AWS Clean Rooms SQL-Referenz

select rpad(eventname, 20, '0123456789') from event
where eventid between 1 and 5 order by 1;

Boris Godunov@123456
Gotterdammerung@1234
I1 Trovatore@l1l234567
La Cenerentola (Cind
Salome01234567890123
(5 rows)

Die Funktion LTRIM

Kirzt Zeichen ab dem Anfang einer Zeichenfolge. Entfernt die langste Zeichenfolge, die nur
Zeichen aus der Liste der Trimm-Zeichen enthalt. Das Kirzen ist abgeschlossen, wenn in der
Eingabezeichenfolge kein Kiirzungszeichen vorkommt.

Syntax

LTRIM(string [, trim_chars])

Argumente
string

Eine Zeichenfolgenspalte, ein Ausdruck oder ein Zeichenfolgenliteral, die/der/das gekuiirzt werden
soll.

trim_chars

Eine Zeichenfolgenspalte, ein Ausdruck oder ein Zeichenfolgenliteral, die/der/das die Zeichen
darstellt, die ab dem Anfang von string gekirzt werden sollen. Wenn nicht angegeben, wird ein
Leerzeichen als Trimm-Zeichen verwendet.

Ruckgabetyp

Die LTRIM-Funktion gibt eine Zeichenfolge zurlick, die denselben Datentyp wie die
Eingabezeichenfolge (string) hat (CHAR oder VARCHAR).

Zeichenfolgenfunktionen 295

AWS Clean Rooms

SQL-Referenz

Beispiele

Im folgenden Beispiel wird das Jahr aus der 1istime-Spalte gekirzt. Die Trimm-Zeichen im
Zeichenfolgenliteral ' 2008-"' geben die Zeichen an, die von links geklrzt werden sollen. Bei
Verwendung der Trimm-Zeichen '028-"' erzielen Sie dasselbe Ergebnis.

select listid, listtime, ltrim(listtime, '2008-')

from listing
oxder by 1, 2, 3

limit 10;

listid | listtime

_______ oo e e e ————————
1 | 2008-01-24 06:43:29
2 | 2008-03-05 12:25:29
3 | 2008-11-01 07:35:33
4 | 2008-05-24 01:18:37
5 | 2008-05-17 02:29:11
6 | 2008-08-15 02:08:13
7 | 2008-11-15 09:38:15
8 | 2008-11-09 05:07:30
9 | 2008-09-09 08:03:36
10 | 2008-06-17 09:44:54

1-24 06:43:29
3-05 12:25:29
11-01 07:35:33
5-24 01:18:37
5-17 02:29:11
15 02:08:13
11-15 09:38:15
11-09 05:07:30
9-09 08:03:36
6-17 09:44:54

LTRIM entfernt alle Zeichen in trim_chars, wenn sie sich am Anfang von string befinden. Im folgenden
Beispiel werden die Zeichen ,,C“, ,D* und ,G“gekurzt, wenn sie sich am Anfang von VENUENAME
befinden. Dabei handelt es sich um eine VARCHAR-Spalte.

select venueid, venuename, ltrim(venuename, 'CDG')

from venue

where venuename like '%Park’
oxder by 2

limit 7;

venueid venuename

I
+
| ATT Park
109 | Citizens Bank Park
I
I
I
I

102 Comerica Park

9 | Dick's Sporting Goods Park
97 Fenway Park
112 Great American Ball Park

I

+

| ATT Park

| itizens Bank Park
| omerica Park

| ick's Sporting Goods Park
| Fenway Park

| reat American Ball Park

Zeichenfolgenfunktionen

296

AWS Clean Rooms SQL-Referenz

114 | Miller Park | Miller Park
Im folgenden Beispiel wird das Trimm-Zeichen 2 verwendet, das aus dervenueid-Spalte abgerufen
wird.

select ltrim('2008-01-24 06:43:29', venueid)
from venue where venueid=2;

008-01-24 06:43:29

Im folgenden Beispiel werden keine Zeichen gekurzt, da vor dem Trimm-Zeichen 'Q' eine 2
enthalten ist.

select ltrim('2008-01-24 06:43:29', '0');

2008-01-24 06:43:29

Im folgenden Beispiel werden standardmaRige Leerzeichen als Trimm-Zeichen verwendet und die
beiden Leerzeichen zu Beginn der Zeichenfolge werden gekurzt.

select ltrim(' 2008-01-24 06:43:29');

2008-01-24 06:43:29

Die Funktion POSITION
Gibt den Ort der angegebenen Unterzeichenfolge innerhalb einer Zeichenfolge zurtck.

Syntax

POSITION(substring IN string)

Zeichenfolgenfunktionen 297

AWS Clean Rooms SQL-Referenz

Argumente
substring

Die Unterzeichenfolge, die innerhalb der Zeichenfolge gesucht werden soll.

string

Die Zeichenfolge oder Spalte, die durchsucht werden soll.

Ruckgabetyp

Die POSITION-Funktion gibt eine Ganzzahl zurlck, die der Position der Unterzeichenfolge entspricht
(eins-basiert, nicht null-basiert). Die Position basiert auf der Anzahl der Zeichen, nicht der Bytes.
Daher werden Zeichen mit mehreren Bytes als einzelne Zeichen gezanhlt.

Nutzungshinweise
POSITION gibt 0 zurtick, wenn die Unterzeichenfolge nicht innerhalb der Zeichenfolge gefunden wird:
select position('dog' in 'fish');

position

Beispiele
Im folgenden Beispiel wird die Position der Zeichenfolge fish innerhalb des Worts dogfish gezeigt:
select position('fish' in 'dogfish');

position

Im folgenden Beispiel wird die Zahl der Verkaufstransaktionen mit einer COMMISSION von mehr als
999,00 aus der Tabelle SALES zurlickgegeben:

select distinct position('.' in commission), count (position('.' in commission))

Zeichenfolgenfunktionen 298

AWS Clean Rooms SQL-Referenz

from sales where position('.' in commission) > 4 group by position('.' in commission)

order by 1,2;

position | count

Die Funktion REGEXP_COUNT

Durchsucht eine Zeichenfolge nach einem regularen Ausdrucksmuster und gibt eine Ganzzahl
zuruck, die die Haufigkeit angibt, mit der das Muster in der Zeichenfolge auftritt. Wenn keine
Ubereinstimmung gefunden wird, gibt die Funktion 0 zurtick.

Syntax

REGEXP_COUNT (source_string, pattern [, position [, parameters]])

Argumente

source_string

Ein Zeichenfolgenausdruck (beispielsweise ein Spaltenname), der gesucht werden soll.

pattern

Ein Zeichenfolgenliteral, das ein Muster flir regulare Ausdriicke darstellt.

position
Eine positive Ganzzahl, die die Position innerhalb von source_string angibt, an der die Suche
gestartet werden soll. Die Position basiert auf der Anzahl der Zeichen, nicht der Bytes. Daher
werden Zeichen mit mehreren Bytes als einzelne Zeichen gezahlt. Der Standardwert ist 1. Wenn

position kleiner als 1 ist, beginnt die Suche mit dem ersten Zeichen von source_string. Wenn
position grof3er als die Anzahl der Zeichen in source_string ist, ist das Ergebnis 0.

parameters (Parameter

Ein oder mehrere Zeichenfolgenliterale, die angeben, wie die Funktion mit dem Muster
Ubereinstimmt. Die folgenden Werte sind mdglich:

« ¢ - Ubereinstimmung mit Unterscheidung von GroR- und Kleinschreibung durchfiihren. Die
Standardeinstellung ist, beim Abgleich die Grof3- und Kleinschreibung zu beachten.

« i — Ubereinstimmung ohne Unterscheidung von GroR- und Kleinschreibung durchfiihren.

Zeichenfolgenfunktionen 299

AWS Clean Rooms SQL-Referenz

» p — Das Musters mit einem PCRE-Dialekt (Perl Compatible Regular Expression) interpretieren.

Ruckgabetyp
Ganzzahl
Beispiel

Im folgenden Beispiel wird die Haufigkeit gezahlt, mit der eine Folge aus drei Buchstaben auftritt.

SELECT regexp_count('abcdefghijklmnopqrstuvwxyz', '[a-z]1{3}');

regexp_count

Im folgenden Beispiel wird die Haufigkeit gezahlt, mit der der Name der obersten Doméane entweder
org oder edu ist.

SELECT email, regexp_count(email, '@[”.]*\\.(org|edu)')FROM users
ORDER BY userid LIMIT 4;

email | regexp_count
___ N

Etiam.laoreet.libero@sodalesMaurisblandit.edu | 1
Suspendisse.tristiquee@nonnisiAenean.edu | 1
amet.faucibus.ut@econdimentumegetvolutpat.ca | 0
sede@lacusUtnec.ca | 0

Im folgenden Beispiel wird die Anzahl der Vorkommen der Zeichenfolge FOX gezahlt, wobei nicht
zwischen Grol3- und Kleinschreibung unterschieden wird.

SELECT regexp_count('the fox', 'FOX', 1, 'i');

regexp_count

Im folgenden Beispiel wird ein im PCRE-Dialekt geschriebenes Muster verwendet, um Woérter
mit mindestens einer Zahl und einem Kleinbuchstaben zu finden. Hierflr wird der Operator ?=
verwendet, der eine bestimmte Lookahead-Konnotation in PCRE hat. In diesem Beispiel wird

Zeichenfolgenfunktionen 300

AWS Clean Rooms SQL-Referenz

die Anzahl der Vorkommen solcher Worter gezahlt, wobei zwischen Grol3- und Kleinschreibung
unterschieden wird.

SELECT regexp_count('passwd7 plain A1234 al234', '(?=[»]1*[a-z])(?=[~]*[0-91)[~ 1+',
1, 'p');

regexp_count

Im folgenden Beispiel wird ein im PCRE-Dialekt geschriebenes Muster verwendet, um Woérter

mit mindestens einer Zahl und einem Kleinbuchstaben zu finden. Hierfir wird der Operator ?=
verwendet, der eine bestimmte Konnotation in PCRE hat. In diesem Beispiel wird die Anzahl der
Vorkommen solcher Woérter gezahlt. Dies unterscheidet sich insofern vom vorherigen Beispiel, als
dass nicht zwischen Grol3- und Kleinschreibung unterschieden wird.

SELECT regexp_count('passwd7 plain A1234 al234', '(?=[~]1*[a-z])(?=[*]*[0-9])[~ 1+',
1, 'ip');

regexp_count

Die Funktion REGEXP_INSTR

Durchsucht eine Zeichenfolge nach einem regularen Ausdrucksmuster und gibt eine Ganzzahl
zurlck, die die Anfangs- oder Endposition der Ubereinstimmenden Unterzeichenfolge angibt.
Wenn keine Ubereinstimmung gefunden wird, gibt die Funktion 0 zuriick. REGEXP_INSTR ist der
Funktion POSITION &hnlich. Sie kdnnen damit jedoch eine Zeichenfolge nach einem reguléren
Ausdrucksmuster durchsuchen.

Syntax

REGEXP_INSTR (source_string, pattern [, position [, occurrence] [, option
[, parameters 1 1 1])

Argumente

source_string

Ein Zeichenfolgenausdruck (beispielsweise ein Spaltenname), der gesucht werden soll.

Zeichenfolgenfunktionen 301

AWS Clean Rooms SQL-Referenz

pattern

Ein Zeichenfolgenliteral, das ein Muster flr regulare Ausdriicke darstellt.

position

Eine positive Ganzzahl, die die Position innerhalb von source_string angibt, an der die Suche
gestartet werden soll. Die Position basiert auf der Anzahl der Zeichen, nicht der Bytes. Daher
werden Zeichen mit mehreren Bytes als einzelne Zeichen gezahlt. Der Standardwert ist 1. Wenn
position kleiner als 1 ist, beginnt die Suche mit dem ersten Zeichen von source_string. Wenn
position groRer als die Anzahl der Zeichen in source_string ist, ist das Ergebnis 0.

occurrence

Eine positive Ganzzahl, die angibt, welches Vorkommen des Musters verwendet werden soll.
REGEXP_INSTR (iberspringt die erste occurrence -1 Ubereinstimmungen. Der Standardwert ist
1. Wenn occurrence kleiner als 1 oder grofRer als die Anzahl der Zeichen in source_string ist, wird
die Suche ignoriert und das Ergebnis ist 0.

option
Ein Wert, der angibt, ob die Position des ersten Zeichens der Ubereinstimmung (@) oder die

Position des ersten Zeichens nach dem Ende der Ubereinstimmung (1) zuriickgegeben werden
soll. Ein Wert ungleich null entspricht 1. Der Standardwert lautet 0.

parameters (Parameter

Ein oder mehrere Zeichenfolgenliterale, die angeben, wie die Funktion mit dem Muster
Ubereinstimmt. Die folgenden Werte sind mdglich:

« ¢ - Ubereinstimmung mit Unterscheidung von GroR- und Kleinschreibung durchfiihren. Die
Standardeinstellung ist, beim Abgleich die Grof3- und Kleinschreibung zu beachten.

« i — Ubereinstimmung ohne Unterscheidung von GroR- und Kleinschreibung durchfiihren.

» e — Teilzeichenfolge mittels eines Unterausdrucks extrahieren.

Wenn pattern einen Unterausdruck enthalt, sucht REGEXP_INSTR nach einer Teilzeichenfolge,
die mit dem ersten Unterausdruck in pattern tbereinstimmt. REGEXP_INSTR berilcksichtigt
nur den ersten Unterausdruck. Zusatzliche Unterausdricke werden ignoriert. Wenn das Muster
Uber keinen Unterausdruck verfiigt, ignoriert REGEXP_INSTR den Parameter 'e'.

» p — Das Musters mit einem PCRE-Dialekt (Perl Compatible Regular Expression) interpretieren.

Zeichenfolgenfunktionen 302

AWS Clean Rooms SQL-Referenz

Ruckgabetyp
Ganzzahl
Beispiel

Im folgenden Beispiel wird nach dem Zeichen @ gesucht, mit dem Domanennamen beginnen.
AnschlieRend wird die Anfangsposition der ersten Ubereinstimmung zuriickgegeben.

SELECT email, regexp_instr(email, '@[*.]*')
FROM users
ORDER BY userid LIMIT 4;

email | regexp_instr
___ o= =
Etiam.laoreet.liberoeexample.com | 21
Suspendisse.tristique@nonnisiAenean.edu | 22
amet.faucibus.ut@condimentumegetvolutpat.ca | 17
sed@lacusUtnec.ca | 4

Im folgenden Beispiel wird nach Varianten des Worts Center gesucht. Anschlielend wird die
Anfangsposition der ersten Ubereinstimmung zuriickgegeben.

SELECT venuename, regexp_instr(venuename,'[cClent(er|re)$')
FROM venue

WHERE regexp_instr(venuename, '[cClent(er|re)$') > 0

ORDER BY venueid LIMIT 4;

venuename | regexp_instr
_______________________ N
The Home Depot Center | 16
Izod Center | 6
Wachovia Center | 10
Air Canada Centre | 12

Im folgenden Beispiel wird die Anfangsposition des ersten Vorkommens der Zeichenfolge FOX
gefunden, wobei nicht zwischen Grol3- und Kleinschreibung unterschieden wird.

SELECT regexp_instr('the fox', 'FOX', 1, 1, 0, 'i');

regexp_instr

Zeichenfolgenfunktionen 303

AWS Clean Rooms SQL-Referenz

Im folgenden Beispiel wird ein im PCRE-Dialekt geschriebenes Muster verwendet, um Worter
mit mindestens einer Zahl und einem Kleinbuchstaben zu finden. Hierfir wird der Operator ?=
verwendet, der eine bestimmte Lookahead-Konnotation in PCRE hat. In diesem Beispiel wird die
Anfangsposition des zweiten Wortes gefunden.

SELECT regexp_instr('passwd7 plain Al1234 al234', '(?=[~ 1*[a-z])(?=[~ 1*[0-9]1)[~ 1+',
1I 2I 0I 'p');

regexp_instr

Im folgenden Beispiel wird ein im PCRE-Dialekt geschriebenes Muster verwendet, um Woérter
mit mindestens einer Zahl und einem Kleinbuchstaben zu finden. Hierflr wird der Operator ?=
verwendet, der eine bestimmte Lookahead-Konnotation in PCRE hat. In diesem Beispiel wird die
Anfangsposition des zweiten Worts gefunden. Dies unterscheidet sich insofern vom vorherigen
Beispiel, als dass nicht zwischen Grof3- und Kleinschreibung unterschieden wird.

SELECT regexp_instr('passwd7 plain A1234 al234', '(?=[~]1*[a-z])(?=[»]*[0-9])[~ I+',
1I 2I 0’ 'ip');

regexp_instr

Die Funktion REGEXP_REPLACE

Durchsucht eine Zeichenfolge nach einem regularen Ausdrucksmuster und ersetzt jedes Vorkommen
des Musters durch die angegebene Zeichenfolge. REGEXP_REPLACE ist Die Funktion REPLACE
ahnlich. Sie kénnen jedoch eine Zeichenfolge nach einem reguléren Ausdrucksmuster durchsuchen.

REGEXP_REPLACE ist Die Funktion TRANSLATE und Die Funktion REPLACE ahnlich.
TRANSLATE fuhrt jedoch mehrere Einzelzeichenersetzungen durch und REPLACE ersetzt eine
ganze Zeichenfolge durch eine andere Zeichenfolge. Mit REGEXP_REPLACE kénnen Sie dagegen
eine Zeichenfolge nach einem regularen Ausdrucksmuster durchsuchen.

Zeichenfolgenfunktionen 304

AWS Clean Rooms SQL-Referenz

Syntax

REGEXP_REPLACE (source_string, pattern [, replace_string [, position [, parameters

111)

Argumente

source_string

Ein Zeichenfolgenausdruck (beispielsweise ein Spaltenname), der gesucht werden soll.

pattern

Ein Zeichenfolgenliteral, das ein Muster fur regulére Ausdricke darstellt.

replace_string

Ein Zeichenfolgenausdruck (beispielsweise ein Spaltenname), der jedes Vorkommen eines
Musters ersetzt. Der Standardwert ist eine leere Zeichenfolge (™).

position
Eine positive Ganzzahl, die die Position innerhalb von source_string angibt, an der die Suche
gestartet werden soll. Die Position basiert auf der Anzahl der Zeichen, nicht der Bytes. Daher
werden Zeichen mit mehreren Bytes als einzelne Zeichen gezahlt. Der Standardwert ist 1. Wenn

position kleiner als 1 ist, beginnt die Suche mit dem ersten Zeichen von source_string. Wenn
position groRer als die Anzahl der Zeichen in source_string ist, ist das Ergebnis source_string.

parameters (Parameter

Ein oder mehrere Zeichenfolgenliterale, die angeben, wie die Funktion mit dem Muster
Ubereinstimmt. Die folgenden Werte sind mdglich:

« ¢ - Ubereinstimmung mit Unterscheidung von GroR- und Kleinschreibung durchfiihren. Die
Standardeinstellung ist, beim Abgleich die Grof3- und Kleinschreibung zu beachten.

« i — Ubereinstimmung ohne Unterscheidung von GroR- und Kleinschreibung durchfiihren.

* p — Das Musters mit einem PCRE-Dialekt (Perl Compatible Regular Expression) interpretieren.

Ruckgabetyp

VARCHAR

Zeichenfolgenfunktionen 305

AWS Clean Rooms SQL-Referenz

Wenn pattern oder replace_string NULL sind, ist der Rickgabewert NULL.
Beispiel

Im folgenden Beispiel werden @ und der Domanenname aus E-Mail-Adressen geldscht.

SELECT email, regexp_replace(email, '@.*\\.(org|gov|com|edu|ca)$"')
FROM users
ORDER BY userid LIMIT 4;

regexp_replace

Suspendisse.tristiquee@nonnisiAenean.edu
amet.faucibus.ut@condimentumegetvolutpat.ca

Suspendisse.tristique

I

+
Etiam.laoreet.libero@sodalesMaurisblandit.edu | Etiam.laoreet.libero

I

| amet.faucibus.ut

I

sed@lacusUtnec.ca sed

Im folgenden Beispiel werden die Domanennamen von E-Mail-Adressen durch diesen Wert ersetzt:
internal.company.com.

SELECT email, regexp_replace(email, '@.*\\.[[:alpha:]1]1{2,3}’,
'@internal.company.com') FROM users
ORDER BY userid LIMIT 4;

email regexp_replace

Etiam.laoreet.libero@sodalesMaurisblandit.edu |
Etiam.laoreet.libero@internal.company.com

Suspendisse.tristiquee@nonnisiAenean.edu |
Suspendisse.tristique@internal.company.com
amet.faucibus.ut@econdimentumegetvolutpat.ca | amet.faucibus.ut@internal.company.com
sede@lacusUtnec.ca | sede@internal.company.com

Im folgenden Beispiel werden alle Vorkommen der Zeichenfolge FOX innerhalb des Werts quick
brown fox ersetzt, wobei nicht zwischen Grof3- und Kleinschreibung unterschieden wird.

SELECT regexp_replace('the fox', 'FOX', 'quick brown fox',6 1, 'i');

regexp_replace

Zeichenfolgenfunktionen 306

AWS Clean Rooms SQL-Referenz

the quick brown fox

Im folgenden Beispiel wird ein im PCRE-Dialekt geschriebenes Muster verwendet, um Woérter

mit mindestens einer Zahl und einem Kleinbuchstaben zu finden. Hierflr wird der Operator ?=
verwendet, der eine bestimmte Lookahead-Konnotation in PCRE hat. In diesem Beispiel werden alle
Vorkommen eines solchen Worts mit dem Wert ersetzt [hidden].

SELECT regexp_replace('passwd7 plain A1234 al234', '(?=[~]1*[a-z])(?=[~ 1*[0-91)[~ 1+',
'[hidden]', 1, 'p');

regexp_replace

[hidden] plain A1234 [hidden]

Im folgenden Beispiel wird ein im PCRE-Dialekt geschriebenes Muster verwendet, um Woérter

mit mindestens einer Zahl und einem Kleinbuchstaben zu finden. Hierflr wird der Operator ?=
verwendet, der eine bestimmte Lookahead-Konnotation in PCRE hat. In diesem Beispiel werden alle
Vorkommen eines solchen Worts mit dem Wert [hidden] ersetzt. Dies unterscheidet sich insofern
vom vorherigen Beispiel, als dass nicht zwischen Grof3- und Kleinschreibung unterschieden wird.

SELECT regexp_replace('passwd7 plain A1234 al234', '(?=[~]1*[a-z])(?=[~ 1*[0-91)[~ 1+',
'[hidden]', 1, 'ip');

regexp_replace

[hidden] plain [hidden] [hidden]

Die Funktion REGEXP_SUBSTR

Gibt Zeichen aus einer Zeichenfolge zurtick, indem diese nach einem regularen Ausdrucksmuster
durchsucht wird. REGEXP_SUBSTR ist der Funktion Die Funktion SUBSTRING ahnlich. Sie

kénnen jedoch eine Zeichenfolge nach einem regularen Ausdrucksmuster durchsuchen. Wenn die
Funktion den regularen Ausdruck keinem Zeichen in der Zeichenfolge zuordnen kann, wird eine leere
Zeichenfolge zurtickgegeben.

Syntax

REGEXP_SUBSTR (source_string, pattern [, position [, occurrence [, parameters] 1])

Zeichenfolgenfunktionen 307

AWS Clean Rooms SQL-Referenz

Argumente
source_string

Ein Zeichenfolgeausdruck, der durchsucht werden soll.

pattern

Ein Zeichenfolgenliteral, das ein Muster fur regulare Ausdriicke darstellt.

position

Eine positive Ganzzahl, die die Position innerhalb von source_string angibt, an der die Suche
gestartet werden soll. Die Position basiert auf der Anzahl der Zeichen, nicht der Bytes. Daher
werden Zeichen mit mehreren Bytes als einzelne Zeichen gezahlt. Der Standardwert ist 1.
Wenn position kleiner als 1 ist, beginnt die Suche mit dem ersten Zeichen von source_string.
Wenn position gro3er als die Anzahl der Zeichen in source_string ist, ist das Ergebnis eine leere
Zeichenfolge ().

occurrence

Eine positive Ganzzahl, die angibt, welches Vorkommen des Musters verwendet werden soll.
REGEXP_SUBSTR (iberspringt die erste occurrence -1 Ubereinstimmungen. Der Standardwert ist
1. Wenn occurrence kleiner als 1 oder grofer als die Anzahl der Zeichen in source_string ist, wird
die Suche ignoriert und das Ergebnis ist NULL.

parameters (Parameter

Ein oder mehrere Zeichenfolgenliterale, die angeben, wie die Funktion mit dem Muster
Ubereinstimmt. Die folgenden Werte sind mdglich:

« ¢ - Ubereinstimmung mit Unterscheidung von GroR- und Kleinschreibung durchfiihren. Die
Standardeinstellung ist, beim Abgleich die Grof3- und Kleinschreibung zu beachten.

« i — Ubereinstimmung ohne Unterscheidung von GroR- und Kleinschreibung durchfiihren.

» e — Teilzeichenfolge mittels eines Unterausdrucks extrahieren.

Wenn pattern einen Unterausdruck enthalt, sucht REGEXP_SUBSTR nach einer
Teilzeichenfolge, die mit dem ersten Unterausdruck in pattern Ubereinstimmt. Ein
Unterausdruck ist ein Ausdruck innerhalb des Musters, der in Klammern gesetzt ist. Bei dem
Muster 'This is a (\\w+)' beispielsweise wird der erste Ausdruck mit der Zeichenfolge
'"This is a ', gefolgt von einem Wort abgeglichen. Anstatt ein Muster zurlickzugeben, gibt
REGEXP_SUBSTR mit dem Parameter e nur die Zeichenfolge innerhalb des Unterausdrucks
zuruck.

Zeichenfolgenfunktionen 308

AWS Clean Rooms SQL-Referenz

REGEXP_SUBSTR berticksichtigt nur den ersten Unterausdruck. Zusatzliche Unterausdriicke
werden ignoriert. Wenn das Muster Uber keinen Unterausdruck verfluigt, ignoriert
REGEXP_SUBSTR den Parameter 'e'.

» p — Das Musters mit einem PCRE-Dialekt (Perl Compatible Regular Expression) interpretieren.

Ruckgabetyp
VARCHAR
Beispiel

Im folgenden Beispiel wird der E-Mail-Adresse-Abschnitt zwischen dem Zeichen @ und der
Domanenerweiterung zurtickgegeben.

SELECT email, regexp_substr(email, '@[*.]1*")
FROM users
ORDER BY userid LIMIT 4;

email | regexp_substr
___ S

Etiam.laoreet.liberoesodalesMaurisblandit.edu | @sodalesMaurisblandit

Suspendisse.tristique@nonnisiAenean.edu | @nonnisiAenean
amet.faucibus.utecondimentumegetvolutpat.ca | @condimentumegetvolutpat
sed@lacusUtnec.ca | @lacusUtnec

Im folgenden Beispiel wird der Teil der Eingabe zurlickgegeben, der dem ersten Vorkommen der
Zeichenfolge FOX entspricht, wobei nicht zwischen Grol3- und Kleinschreibung unterschieden wird.

SELECT regexp_substr('the fox', 'FOX', 1, 1, 'i');

regexp_substr

Das folgende Beispiel gibt den ersten Teil der Eingabe zuriick, der mit Kleinbuchstaben beginnt. Dies
ist funktionell identisch mit derselben SELECT-Anweisung ohne den c-Parameter.

SELECT regexp_substr('THE SECRET CODE IS THE LOWERCASE PART OF 1931abc@EZ.', '[a-z]+',
1, 1, 'c');

Zeichenfolgenfunktionen 309

AWS Clean Rooms SQL-Referenz

regexp_substr

Im folgenden Beispiel wird ein im PCRE-Dialekt geschriebenes Muster verwendet, um Worter

mit mindestens einer Zahl und einem Kleinbuchstaben zu finden. Hierfir wird der Operator ?=
verwendet, der eine bestimmte Lookahead-Konnotation in PCRE hat. In diesem Beispiel wird der Teil
der Eingabe zurtickgegeben, der dem zweiten Wort entspricht.

SELECT regexp_substr('passwd7 plain A1234 al234', '(?=[~]*[a-z])(?=[~]*[0-91)[~ 1+',
L, 2, "B')7

regexp_substr

Im folgenden Beispiel wird ein im PCRE-Dialekt geschriebenes Muster verwendet, um Worter

mit mindestens einer Zahl und einem Kleinbuchstaben zu finden. Hierflr wird der Operator ?=
verwendet, der eine bestimmte Lookahead-Konnotation in PCRE hat. In diesem Beispiel wird der der
Teil der Eingabe zurickgegeben, der dem zweiten Wort entspricht. Dies unterscheidet sich insofern
vom vorherigen Beispiel, als dass nicht zwischen Grof3- und Kleinschreibung unterschieden wird.

SELECT regexp_substr('passwd?7 plain A1234 al234', '(?=[~]1*[a-z])(?=[~ 1*[0-91)[~ 1+',
1, 2, 'ip');

regexp_substr

Im folgenden Beispiel wird ein Unterausdruck verwendet, um die zweite Zeichenfolge zu finden, die
dem Muster 'this is a (\\w+)' entspricht, wobei nicht zwischen Grof3- und Kleinschreibung
unterschieden wird. Der Unterausdruck in Klammern wird zurlickgegeben.

select regexp_substr(
'This is a cat, this is a dog. This is a mouse.',

'this is a (\\w+)', 1, 2, 'ie');

regexp_substr

Zeichenfolgenfunktionen 310

AWS Clean Rooms SQL-Referenz

Die Funktion REPEAT

Wiederholt eine Zeichenfolge mit der angegebenen Haufigkeit. Wenn der Eingabeparameter
numerisch ist, wird er von REPEAT als Zeichenfolge behandelt.

Syntax

REPEAT(string, integer)

Argumente
string

Der erste Eingabeparameter ist die Zeichenfolge, die wiederholt werden soll.

integer
Der zweite Parameter ist eine Ganzzahl, die die Haufigkeit angibt, mit der die Zeichenfolge
wiederholt werden soll.

Ruckgabetyp

Die REPEAT-Funktion gibt eine Zeichenfolge zurick.

Beispiele

Im folgenden Beispiel wird der Wert der Spalte CATID in der Tabelle CATEGORY dreimal wiederholt:

select catid, repeat(catid,3)
from category
order by 1,2;

O 00 N O Ul A WN P

Zeichenfolgenfunktionen 311

AWS Clean Rooms SQL-Referenz

10 | 101010
11 | 111111
(11 rows)

Die Funktion REPLACE

Ersetzt alle Vorkommen eines Satzes von Zeichen innerhalb einer vorhandenen Zeichenfolge durch
andere angegebene Zeichen.

REPLACE ist Die Funktion TRANSLATE und Die Funktion REGEXP_REPLACE ahnlich.
TRANSLATE fuhrt jedoch mehrere Einzelzeichenersetzungen durch und REPLACE ersetzt eine
ganze Zeichenfolge durch eine andere Zeichenfolge. REPLACE ersetzt dagegen eine ganze

Zeichenfolge durch eine andere Zeichenfolge.

Syntax

REPLACE(stringl, old_chars, new_chars)

Argumente
string

Die CHAR- oder VARCHAR-Zeichenfolge, die durchsucht werden soll.

old_chars

Die CHAR- oder VARCHAR-Zeichenfolge, die ersetzt werden soll.

new_chars

Die neue CHAR- oder VARCHAR-Zeichenfolge, die old_string ersetzt.

Ruckgabetyp

VARCHAR

Wenn old_chars oder new_chars NULL sind, ist der Riickgabewert NULL.
Beispiele

Im folgenden Beispiel wird die Zeichenfolge Shows in Theatre im Feld CATGROUP konvertiert:

select catid, catgroup,

Zeichenfolgenfunktionen 312

AWS Clean Rooms SQL-Referenz

replace(catgroup, 'Shows', 'Theatre')
from category
order by 1,2,3;

catid | catgroup | replace
_______ S E
1 | Sports | Sports
2 | Sports | Sports
3 | Sports | Sports
4 | Sports | Sports
5 | Sports | Sports
6 | Shows | Theatre
7 | Shows | Theatre
8 | Shows | Theatre
9 | Concerts | Concerts
10 | Concerts | Concerts
11 | Concerts | Concerts
(11 rows)

Die Funktion REVERSE

Die REVERSE-Funktion wird fur eine Zeichenfolge ausgefihrt und gibt die Zeichen in umgekehrter
Reihenfolge wieder. Beispielsweise gibt reverse('abcde') edcba zurlick. Diese Funktion kann
auf numerische und Datumsdatentypen sowie Zeichendatentypen angewendet werden. In den
meisten Fallen hat sie jedoch flir Zeichenfolgen mit Zeichen praktischen Nutzen.

Syntax

REVERSE (expression)

Argument
expression

Ein Ausdruck mit einem Zeichen-, Datums-, Zeitstempel- oder numerischen Datentyp, der das Ziel
der Zeichenumkehrung darstellt. Alle Ausdriicke werden implizit in Zeichenfolgen mit variabler
Lange konvertiert. Leerzeichen am Ende von Zeichenfolgen mit fester Breite werden ignoriert.

Rickgabetyp

REVERSE gibt einen VARCHAR zurtck.

Zeichenfolgenfunktionen 313

AWS Clean Rooms SQL-Referenz

Beispiele

Wahlt finf verschiedene Namen von Stadten und die entsprechenden Umkehrungen der Namen aus
der Tabelle USERS aus:

select distinct city as cityname, reverse(cityname)
from users order by city limit 5;

cityname | reverse
_________ e e —
Aberdeen | needrebA
Abilene | enelibA
Ada | adA

Agat | tagA
Agawam | mawagA

(5 rows)

Wabhlen Sie finf Buchstaben IDs und die entsprechende umgekehrte IDs Zeichenkette aus:

select salesid, reverse(salesid)::varchar
from sales order by salesid desc limit 5;

salesid

I
+
172456 | 654271
I
I
I
I

172455 554271
172454 454271
172453 354271
172452 254271
(5 rows)

Die Funktion RTRIM

Die RTRIM-Funktion kurzt einen angegebenen Satz von Zeichen ab dem Ende einer Zeichenfolge.
Entfernt die langste Zeichenfolge, die nur Zeichen aus der Liste der Trimm-Zeichen enthalt. Das
Kirzen ist abgeschlossen, wenn in der Eingabezeichenfolge kein Klrzungszeichen vorkommt.

Syntax

RTRIM(string, trim_chars)

Zeichenfolgenfunktionen 314

AWS Clean Rooms SQL-Referenz

Argumente
string

Eine Zeichenfolgenspalte, ein Ausdruck oder ein Zeichenfolgenliteral, die/der/das gekirzt werden
soll.

trim_chars

Eine Zeichenfolgenspalte, ein Ausdruck oder ein Zeichenfolgenliteral, die/der/das die Zeichen
darstellt, die am Ende von string gekurzt werden sollen. Wenn nicht angegeben, wird ein
Leerzeichen als Trimm-Zeichen verwendet.

Ruckgabetyp

Eine Zeichenfolge mit demselben Datentyp wie das string-Argument.

Beispiel

Im folgenden Beispiel werden Leerzeichen am Anfang und am Ende aus der Zeichenfolge entfernt '
abc ':

select ' abc ' as untrim, rtrim(' abc ') as trim;
untrim | trim
__________ e

abc | abc

Im folgenden Beispiel werden die Zeichenfolgen 'xyz' am Ende der Zeichenfolge
'xyzaxyzbxyzcxyz' entfernt. Die Zeichenfolgen 'xyz' am Ende werden entfernt, entsprechende
Zeichenfolgen innerhalb dieser Zeichenfolge jedoch nicht.

select 'xyzaxyzbxyzcxyz' as untrim,
rtrim('xyzaxyzbxyzcxyz', 'xyz') as trim;

untrim | trim
_________________ B

xyzaxyzbxyzcxyz | xyzaxyzbxyzc

Im folgenden Beispiel werden die Teile am Ende der
Zeichenfolge 'setuphistorycassettes' entfernt, die mit einem der Zeichen in der trim_chars-

Zeichenfolgenfunktionen 315

AWS Clean Rooms SQL-Referenz

Liste 'tes' Ubereinstimmen. Alle t, e oder s am Ende der Eingabezeichenfolge, die vor einem
anderen Zeichen stehen, das nicht in der trim_chars-Liste enthalten ist, werden entfernt.

SELECT rtrim('setuphistorycassettes', 'tes');

setuphistoryca

Im folgenden Beispiel werden die Zeichen ,Park“ ab dem Ende von VENUENAME gekiirzt, wenn
vorhanden:

select venueid, venuename, rtrim(venuename, 'Park')
from venue
oxder by 1, 2, 3

limit 10;

venueid | venuename | rtrim

________ D
1 | Toyota Park | Toyota
2 | Columbus Crew Stadium | Columbus Crew Stadium
3 | RFK Stadium | RFK Stadium
4 | CommunityAmerica Ballpark | CommunityAmerica Ballp
5 | Gillette Stadium | Gillette Stadium
6 | New York Giants Stadium | New York Giants Stadium
7 | BMO Field | BMO Field
8 | The Home Depot Center | The Home Depot Cente
9 | Dick's Sporting Goods Park | Dick's Sporting Goods
10 | Pizza Hut Park | Pizza Hut

Beachten Sie, dass RTRIM alle P, a, r oder k entfernt, wenn sie sich am Ende eines VENUENAME
befinden.

SPLIT-Funktion

Die SPLIT-Funktion ermoglicht es Ihnen, Teilstrings aus einer groReren Zeichenfolge zu extrahieren
und mit ihnen als Array zu arbeiten. Die SPLIT-Funktion ist ntzlich, wenn Sie eine Zeichenfolge
anhand eines bestimmten Trennzeichens oder Musters in einzelne Komponenten aufteilen mussen.

Zeichenfolgenfunktionen 316

AWS Clean Rooms SQL-Referenz

Syntax

split(str, regex, limit)

Argumente
str

Ein Zeichenkettenausdruck, der aufgeteilt werden soll.

regex

Eine Zeichenfolge, die einen regularen Ausdruck darstellt. Die Regex-Zeichenfolge sollte ein
regularer Java-Ausdruck sein.

limit
Ein Integer-Ausdruck, der steuert, wie oft die Regex angewendet wird.

« limit > 0: Die Lange des resultierenden Arrays wird den Grenzwert nicht tiberschreiten,
und der letzte Eintrag des resultierenden Arrays enthalt alle Eingaben, die Uber die letzte
Ubereinstimmende Regex hinausgehen.

« limit <= 0: Regex wird so oft wie mdglich angewendet, und das resultierende Array kann eine
beliebige Grofke haben.

Ruckgabetyp
<STRING>Die SPLIT-Funktion gibt ein ARRAY zuruck.

Fallslimit > @: Die Lange des resultierenden Arrays wird den Grenzwert nicht Giberschreiten,
und der letzte Eintrag des resultierenden Arrays enthalt alle Eingaben, die GUber den letzten
Ubereinstimmenden regularen Ausdruck hinausgehen.

Wennlimit <= 0: Regex wird so oft wie mdglich angewendet, und das resultierende Array kann
eine beliebige GroéfRe haben.

Beispiel

In diesem Beispiel teilt die SPLIT-Funktion die Eingabezeichenfolge 'oneAtwoBthreeC' Uberall
dort auf, wo sie auf die Zeichen 'A' 'B"', oder trifft 'C"' (wie im Muster fur regulare Ausdricke
angegeben). ' [ABC] ' Die resultierende Ausgabe ist ein Array aus vier Elementen:"one",
"two""three", und einer leeren Zeichenfolge"".

Zeichenfolgenfunktionen 317

AWS Clean Rooms SQL-Referenz

SELECT split('oneAtwoBthreeC', '[ABC]');
[Ilonell' "tWO", Ilthreell' Illl]

Die Funktion SPLIT_PART

Teilt eine Zeichenfolge am angegebenen Trennzeichen und gibt den Teil an der angegebenen
Position zurtck.

Syntax

SPLIT_PART(string, delimiter, position)

Argumente
string

Eine Zeichenfolgenspalte, ein Ausdruck oder ein Zeichenfolgenliteral, die/der/das geteilt werden
soll. Die Zeichenfolge kann CHAR oder VARCHAR sein.

delimiter
Die Trennzeichen-Zeichenfolge, die Abschnitte des Eingabe-string angibt.

Wenn delimiter ein Literal ist, schlielen Sie es in einfache Anfuhrungszeichen ein.

position

Position des string-Abschnitts, der zurtickgegeben werden soll (gezahlt ab 1). Es muss

sich um eine Ganzzahl gréf3er als 0 handeln. Wenn position groRer als die Anzahl der
Zeichenfolgenabschnitte ist, gibt SPLIT_PART eine leere Zeichenfolge zurtick. Wenn delimiter
nicht in string gefunden wird, enthalt der zurlickgegebene Wert den Inhalt des angegebenen Teils.
Dabei kann es sich um die gesamte Zeichenfolge oder einen leeren Wert handeln.

Ruckgabetyp
Eine CHAR- oder VARCHAR-Zeichenfolge, identisch mit dem Parameter string.

Beispiele

Im folgenden Beispiel wird ein Zeichenfolgenliteral mithilfe des Trennzeichens $ in Teile aufgeteilt
und der zweite Teil zuriickgegeben.

Zeichenfolgenfunktionen 318

AWS Clean Rooms SQL-Referenz

select split_part('abcdefghi','$',2)

split_part

Im folgenden Beispiel wird ein Zeichenfolgenliteral mithilfe des Trennzeichens $ in Teile aufgeteilt. Es
wird eine leere Zeichenfolge zurlickgegeben, da der Teil 4 nicht gefunden wurde.

select split_part('abcdefghi','$',4)

split_part

Im folgenden Beispiel wird ein Zeichenfolgenliteral mithilfe des Trennzeichens # in Teile aufgeteilt. Da
das Trennzeichen nicht gefunden wurde, wird die gesamte Zeichenfolge zurlickgegeben, wobei es
sich um den ersten Teil handelt.

select split_part('abcdefghi','#',1)

split_part

abcdefghi

Im folgenden Beispiel wird das Zeitstempelfeld LISTTIME in die Komponenten Jahr, Monat und
Datum aufgeteilt.

select listtime, split_part(listtime,'-',1) as year,
split_part(listtime,'-"',2) as month,
split_part(split_part(listtime,'-',3),"' ',1) as day
from listing limit 5;

listtime

I I I
————————————————————— B e
2008-03-05 12:25:29 | 2008 | 03 | 05
I I I
I I I
I I I
I I I

2008-09-09 08:03:36 | 2008 | 09 09
2008-09-26 05:43:12 | 2008 | 09 26
2008-10-04 02:00:30 | 2008 | 10 04
2008-01-06 08:33:11 | 2008 | 01 06

Zeichenfolgenfunktionen 319

AWS Clean Rooms SQL-Referenz

Im folgenden Beispiel wird das Zeitstempelfeld LISTTIME ausgewahlt und am Zeichen ' -' getrennt,
um den Monat zu erhalten (den zweiten Teil der Zeichenfolge LISTTIME). Anschliel3iend wird die Zahl
der Eintrage fur jeden Monat gezahit:

select split_part(listtime,'-"',2) as month, count(*)
from listing

group by split_part(listtime,'-',2)

order by 1, 2;

month | count

_______ Fmm e =
Q1 | 18543
02 | 16620
03 | 17594
04 | 16822
05 | 17618
06 | 17158
07 | 17626
08 | 17881
Q9 | 17378
10 | 17756
11 | 12912
12 | 4589

Die Funktion SUBSTRING

Gibt die Teilmenge einer Zeichenfolge basierend auf der angegebenen Startposition zurtck.

Wenn es sich bei der Eingabe um eine Zeichenfolge handelt, basieren die Startposition und die
Anzahl der extrahierten Zeichen auf Zeichen, nicht auf Bytes. Daher werden Zeichen mit mehreren
Bytes als einzelne Zeichen gezahlt. Wenn es sich bei der Eingabe um einen bindren Ausdruck
handelt, basieren die Startposition und die extrahierte Teilzeichenfolge auf Bytes. Sie kdnnen keine
negative Lange angeben. Sie kdnnen jedoch eine negative Startposition angeben.

Syntax

SUBSTRING(charactestring FROM start_position [FOR numbecharacters])

SUBSTRING(charactestring, start_position, numbecharacters)

Zeichenfolgenfunktionen 320

AWS Clean Rooms SQL-Referenz

SUBSTRING(binary_expression, start_byte, numbebytes)

SUBSTRING(binary_expression, start_byte)

Argumente
Zeichenkette

Die Zeichenfolge, die durchsucht werden soll. Datentypen, die keine Zeichen sind, werden als
Zeichenfolge behandelt.

start_position

Die Position innerhalb der Zeichenfolge, an der die Extrahierung gestartet werden soll, beginnend
mit 1. Die start_position basiert auf der Anzahl der Zeichen, nicht der Bytes. Daher werden
Zeichen mit mehreren Bytes als einzelne Zeichen gezahlt. Diese Zahl kann negativ sein.

Zahl der Zeichen

Die Anzahl der Zeichen, die extrahiert werden soll (die Lange der Unterzeichenfolge). Die Zahl
der Zeichen basiert auf der Anzahl der Zeichen, nicht auf der Anzahl der Byte, sodass Multibyte-
Zeichen als Einzelzeichen gezahlt werden. Diese Zahl darf nicht negativ sein.

start_byte

Die Position innerhalb des Binarausdrucks, an der die Extrahierung gestartet werden soll,
beginnend mit 1. Diese Zahl kann negativ sein.

Anzahl Byte

Die Anzahl der Bytes, die extrahiert werden sollen, also die Lange der Unterzeichenfolge. Diese
Zahl darf nicht negativ sein.

Ruckgabetyp
VARCHAR
Nutzungshinweise fur Zeichenfolgen

Im folgenden Beispiel wird eine Zeichenfolge mit vier Zeichen zurlickgegeben, beginnend mit dem
sechsten Zeichen.

select substring('caterpillar',6,4);

Zeichenfolgenfunktionen 321

AWS Clean Rooms SQL-Referenz

substring

Wenn start_position + numbecharacters die Lange der Zeichenfolge Uberschreitet, gibt SUBSTRING
eine Teilzeichenfolge zurtck, die von der Startposition bis zum Ende der Zeichenfolge beginnt. Zum
Beispiel:

select substring('caterpillar',6,8);
substring

Wenn start_position negativ oder O ist, gibt die Funktion SUBSTRING eine Unterzeichenfolge
ab dem ersten Zeichen der Zeichenfolge mit der Lange start_position + numbecharacters -1
zuruck. Beispiel:

select substring('caterpillar',-2,6);
substring

Wenn start_position + numbecharacters -1 gleich oder kleiner als null ist, gibt SUBSTRING
eine leere Zeichenfolge zurlck. Beispiel:

select substring('caterpillar',-5,4);
substring

Beispiele

Im folgenden Beispiel wird der Monat aus der Zeichenfolge LISTTIME in der Tabelle LISTING
zuruckgegeben:

select listid, listtime,
substring(listtime, 6, 2) as month

Zeichenfolgenfunktionen 322

AWS Clean Rooms

SQL-Referenz

from listing
order by 1, 2, 3

limit 10;
listid | listtime
________ o e e, ——
1 | 2008-01-24 06:
2 | 2008-03-05 12:
3 | 2008-11-01 07:
4 | 2008-05-24 0Q1:
5 | 2008-05-17 02:
6 | 2008-08-15 02:
7 | 2008-11-15 09:
8 | 2008-11-09 05:
9 | 2008-09-09 08:
10 | 2008-06-17 09:
(10 rows)

Im folgenden Beispiel wird das Gleiche wie oben gezeigt, jedoch mit der Option FROM...FOR:

select listid, listtime,

substring(listtime from 6 for

from listing
order by 1, 2, 3

limit 10;
listid | listtime
________ S
1 | 2008-01-24 06:
2 | 2008-03-05 12:
3 | 2008-11-01 07:
4 | 2008-05-24 01:
5 | 2008-05-17 02:
6 | 2008-08-15 02:
7 | 2008-11-15 09:
8 | 2008-11-09 05:
9 | 2008-09-09 08:
10 | 2008-06-17 09:
(10 rows)

2) as month

Sie kdnnen SUBSTRING nicht verwenden, um das Préafix einer Zeichenfolge, die mdglicherweise

Multibyte-Zeichen enthalt, auf vorhersehbare Weise zu extrahieren, da Sie die Lange einer

Multibyte-Zeichenfolge anhand der Anzahl der Bytes und nicht anhand der Anzahl der Zeichen

Zeichenfolgenfunktionen

323

AWS Clean Rooms SQL-Referenz

angeben mussen. Um das Anfangssegment einer Zeichenfolge auf der Basis der Lange in Bytes
zu extrahieren, kénnen Sie die Zeichenfolge in (byte_length) umwandeln, um die Zeichenfolge
abzuschneiden, wobei byte_length die erforderliche Lange ist. Im folgenden Beispiel werden die
ersten 5 Bytes aus der Zeichenfolge extrahiert ' Fourscore and seven'.

select cast('Fourscore and seven' as varchar(5));

varchar

Das folgende Beispiel gibt den Vornamen Ana zurlick, der nach dem letzten Leerzeichen in der
Eingabezeichenfolge Silva, Ana erscheint.

select reverse(substring(reverse('Silva, Ana'), 1, position(' ' IN reverse('Silva,

Ana'))))

reverse

Die Funktion TRANSLATE

Ersetzt flr einen bestimmten Ausdruck alle Vorkommen von angegebenen Zeichen durch
angegebene Ersatzzeichen. Vorhandene Zeichen werden aufgrund lhrer Positionen in den
Argumenten characters_to_replace und characters_to_substitute zu Ersatzzeichen zugeordnet.
Wenn im Argument characters_to_replace mehr Zeichen als im Argument characters_to_substitute
angegeben sind, werden die zusatzlichen Zeichen aus dem Argument characters_to_replace im
Ruckgabewert ausgelassen.

TRANSLATE ist Die Funktion REPLACE und Die Funktion REGEXP_REPLACE ahnlich.
Wahrend REPLACE jedoch eine ganze Zeichenfolge durch eine andere Zeichenfolge ersetzt und
REGEXP_REPLACE eine Zeichenfolge nach einem reguldren Ausdrucksmuster durchsucht, fuhrt
TRANSLATE mehrere Einzelzeichenersetzungen aus.

Wenn ein Argument null ist, ist der Ruckgabewert NULL.

Syntax

TRANSLATE (expression, characters_to_replace, characters_to_substitute)

Zeichenfolgenfunktionen 324

AWS Clean Rooms SQL-Referenz

Argumente

expression

Der Ausdruck, der Ubersetzt werden soll.

characters_to_replace

Eine Zeichenfolge, die die Zeichen enthalt, die ersetzt werden sollen.

characters_to_substitute

Eine Zeichenfolge, die die Zeichen enthalt, die ersetzt werden sollen.

Ruckgabetyp
VARCHAR
Beispiele

Im folgenden Beispiel werden mehrere Zeichen in einer Zeichenfolge ersetzt:

select translate('mint tea', 'inea', 'osin');

translate

most tin

Im folgenden Beispiel wird fur alle Werte in einer Spalte das Zeichen @ durch einen Punkt ersetzt:

select email, translate(email, '@', '.') as obfuscated_email
from users limit 10;

email obfuscated_email
Etiam.laoreet.libero@sodalesMaurisblandit.edu
Etiam.laoreet.libero.sodalesMaurisblandit.edu
amet.faucibus.ut@condimentumegetvolutpat.ca
amet.faucibus.ut.condimentumegetvolutpat.ca

turpis@accumsanlaoreet.org turpis.accumsanlaoreet.org
ullamcorper.nisl@Cras.edu ullamcorper.nisl.Cras.edu
arcu.Curabituresenectusetnetus.com arcu.Curabitur.senectusetnetus.com

Zeichenfolgenfunktionen 325

AWS Clean Rooms

SQL-Referenz

ac@velit.ca

ac.velit.ca

Aliquam.vulputate.ullamcorper@amalesuada.org
Aliquam.vulputate.ullamcorper.amalesuada.ozrg
vel.est@velitegestas.edu
dolor.nonummy@ipsumdolorsit.ca
et@Nunclaoreet.ca

vel.est.velitegestas.edu
dolor.nonummy.ipsumdolorsit.ca
et.Nunclaoreet.ca

Im folgenden Beispiel werden fur alle Werte in einer Spalte Leerzeichen durch Unterstriche ersetzt

und Punkte entfernt:

select city, translate(city,
city like 'Sain%' or city like 'St%'

where
group by city

order by city;

Albans
Cloud
Joseph
Louis
Paul
St. George
St. Marys
St. Petersburg
Stafford
Stamford
Stanton
Starkville
Statesboro

Saint
Saint
Saint
Saint
Saint

Staunton
Steubenville
Stevens Point
Stillwater
Stockton
Sturgis

translate

Saint_Albans
Saint_Cloud
Saint_Joseph
Saint_Louis
Saint_Paul
St_George
St_Marys
St_Petersburg
Stafford
Stamford
Stanton
Starkville
Statesboro
Staunton
Steubenville
Stevens_Point
Stillwater
Stockton
Sturgis

Die Funktion TRIM

, '_'") from users

Kirzt eine Zeichenfolge durch Entfernen von Leerzeichen am Anfang und am Ende oder durch

Entfernen von Zeichen am Anfang und am Ende, die mit einer optionalen angegebenen Zeichenfolge

Ubereinstimmen.

Zeichenfolgenfunktionen

326

AWS Clean Rooms SQL-Referenz

Syntax

TRIM([BOTH] [trim_chars FROM] string

Argumente

trim_chars

(Optional) Die Zeichen, die aus der Zeichenfolge gekirzt werden sollen. Wenn dieser Parameter
ausgelassen wird, werden Leerzeichen ausgeschnitten.

string

Die Zeichenfolge, die gekurzt werden soll.

Ruckgabetyp

Die TRIM-Funktion gibt eine VARCHAR- oder eine CHAR_Zeichenfolge zurtck. Wenn Sie die TRIM-
Funktion mit einem SQL-Befehl verwenden, werden die Ergebnisse implizit in VARCHAR konvertiert.
AWS Clean Rooms Wenn Sie die TRIM-Funktion in der SELECT-Liste fur eine SQL-Funktion
verwenden, werden die Ergebnisse AWS Clean Rooms nicht implizit konvertiert, und Sie missen
mdglicherweise eine explizite Konvertierung durchfiihren, um zu vermeiden, dass ein Datentypkonflikt
auftritt. Informationen zu expliziten Konvertierungen finden Sie in der CAST-Funktion Funktion.

Beispiel

Im folgenden Beispiel werden Leerzeichen am Anfang und am Ende aus der Zeichenfolge entfernt '
abc ':

select ' abc ' as untrim, trim(’' abc ') as trim;
untrim | trim
__________ e

abc | abc

Im folgenden Beispiel werden die doppelten Anflihrungszeichen entfernt, die die Zeichenfolge
umgeben "dog":

select trim('"' FROM '"dog"');

Zeichenfolgenfunktionen 327

AWS Clean Rooms SQL-Referenz

TRIM entfernt alle Zeichen in trim_chars, wenn sie sich am Anfang von string befinden. Im folgenden
Beispiel werden die Zeichen ,C“, ,D* und ,,G“gekurzt, wenn sie sich am Anfang von VENUENAME
befinden. Dabei handelt es sich um eine VARCHAR-Spalte.

select venueid, venuename, trim(venuename, 'CDG')
from venue
where venuename like '%Park'

oxder by 2

limit 7;

venueid venuename btrim
121 ATT Park ATT Park

I
+
I
109 | Citizens Bank Park itizens Bank Park
I
I
I
I
I

—_—— e — —_ — — 4 =

102 Comerica Park omerica Park

9 | Dick's Sporting Goods Park | ick's Sporting Goods Park
97 Fenway Park Fenway Park
112 Great American Ball Park reat American Ball Park
114 Miller Park Miller Park

Die Funktion UPPER

Konvertiert eine Zeichenfolge in Gro3buchstaben. UPPER unterstitzt UTF-8-Multibyte-Zeichen bis zu
einer maximalen Lange von vier Bytes pro Zeichen.

Syntax

UPPER(string)

Argumente
string

Der Eingabeparameter ist eine VARCHAR-Zeichenfolge (oder ein anderer Datentyp wie CHAR,
der implizit in VARCHAR konvertiert werden kann).

Zeichenfolgenfunktionen 328

AWS Clean Rooms SQL-Referenz

Ruckgabetyp

Die UPPER-Funktion gibt eine Zeichenfolge zuriick, die den gleichen Datentyp wie die
Eingabezeichenfolge hat.

Beispiele

Im folgenden Beispiel wird das Feld CATNAME in GroRbuchstaben konvertiert:

select catname, upper(catname) from category order by 1,2;

catname | upper
__________ B
Classical | CLASSICAL
Jazz | JAZZ
MLB | MLB
MLS | MLS
Musicals | MUSICALS
NBA | NBA
NFL | NFL
NHL | NHL
Opera | OPERA
Plays | PLAYS

Pop | POP

(11 rows)

UUID-Funktion

Die UUID-Funktion generiert einen Universally Unique Identifier (UUID).

UUIDs sind global eindeutige Identifikatoren, die Ublicherweise verwendet werden, um eindeutige
|dentifikatoren fur verschiedene Zwecke bereitzustellen, z. B.:
+ Identifizieren von Datenbankeintrdgen oder anderen Dateneinheiten.

* Generierung eindeutiger Namen oder Schlussel fur Dateien, Verzeichnisse oder andere
Ressourcen.

+ Verfolgen und Korrelieren von Daten in verteilten Systemen.

+ Bereitstellung eindeutiger Kennungen fur Netzwerkpakete, Softwarekomponenten oder andere
digitale Ressourcen.

Zeichenfolgenfunktionen 329

AWS Clean Rooms SQL-Referenz

Die UUID-Funktion generiert einen UUID-Wert, der mit sehr hoher Wahrscheinlichkeit einzigartig

ist, selbst in verteilten Systemen und Uber lange Zeitrdume. UUIDs werden in der Regel anhand
einer Kombination aus dem aktuellen Zeitstempel, der Netzwerkadresse des Computers und
anderen zufalligen oder pseudozufalligen Daten generiert, wodurch sichergestellt wird, dass es sehr
unwahrscheinlich ist, dass jede generierte UUID mit einer anderen UUID in Konflikt gerat.

Im Kontext einer SQL-Abfrage kann die UUID-Funktion verwendet werden, um eindeutige Bezeichner
fur neue Datensatze zu generieren, die in eine Datenbank eingefugt werden, oder um eindeutige
Schlussel fur die Datenpartitionierung, Indizierung oder andere Zwecke bereitzustellen, bei denen ein
eindeutiger Bezeichner erforderlich ist.

(® Note

Die UUID-Funktion ist nicht deterministisch.

Syntax

uuid()

Argumente
Die UUID-Funktion bendtigt kein Argument.
Ruckgabetyp

UUID gibt eine UUID-Zeichenfolge (Universally Unique Identifier) zurtck. Der Wert wird als
kanonische UUID-Zeichenfolge mit 36 Zeichen zurlickgegeben.

Beispiel

Im folgenden Beispiel wird ein Universally Unique Identifier (UUID) generiert. Die Ausgabe ist eine
36-stellige Zeichenfolge, die einen Universally Unique Identifier darstellt.

SELECT uuid();
46707d92-02F4-4817-8116-a4c3b23e6266

Funktionen im Zusammenhang mit dem Datenschutz

AWS Clean Rooms stellt Funktionen bereit, die Sie bei der Einhaltung der Datenschutzbestimmungen
fur die folgenden Spezifikationen unterstitzen.

Funktionen im Zusammenhang mit dem Datenschutz 330

AWS Clean Rooms SQL-Referenz

» Global Privacy Platform (GPP) — Eine Spezifikation des Interactive Advertising Bureau (IAB),
die einen globalen, standardisierten Rahmen fiir Online-Datenschutz und Datennutzung
festlegt. Weitere Informationen zu den technischen Spezifikationen des GPP finden Sie in der
Dokumentation der Global Privacy Platform unter. GitHub

» Transparency and Consent Framework (TCF) — Eine Schllisselkomponente des GPP, das
2020 eingefihrt wurde und einen standardisierten technischen Rahmen bietet, der Unternehmen
bei der Einhaltung von Datenschutzbestimmungen wie der Datenschutz-Grundverordnung
(DSGVO) der EU unterstutzt. Das TCF ermdglicht es Kunden, die Zustimmung zur Datenerhebung
und -verarbeitung zu erteilen oder zu verweigern. Weitere Informationen zu den technischen
Spezifikationen von TCF finden Sie in der TCF-Dokumentation unter. GitHub

Themen

» Funktion consent_gpp_v1_decode

* Funktion consent_tcf v2 decode

Funktion consent_gpp_v1_decode

Die consent_gpp_v1_decode Funktion wird verwendet, um Einwilligungsdaten der Global

Privacy Platform (GPP) v1 zu dekodieren. Sie verwendet die kodierte Einwilligungszeichenfolge

als Eingabe und gibt die dekodierten Einwilligungsdaten zuriick, die Informationen Uber die
Datenschutzpraferenzen und Einwilligungsoptionen des Benutzers enthalten. Diese Funktion ist
natzlich, wenn Sie mit Daten arbeiten, die GPP v1-Einwilligungsinformationen enthalten, da Sie damit
auf die Einwilligungsdaten in einem strukturierten Format zugreifen und diese analysieren kénnen.

Syntax

consent_gpp_vl_decode(gpp_string)

Argumente

gpp_string

Die kodierte GPP v1-Zustimmungszeichenfolge.

Ruckgabewert

Das zurtckgegebene Warterbuch enthalt die folgenden Schlussel-Wert-Paare:

Funktionen im Zusammenhang mit dem Datenschutz 331

https://github.com/InteractiveAdvertisingBureau/Global-Privacy-Platform
https://github.com/InteractiveAdvertisingBureau/GDPR-Transparency-and-Consent-Framework/tree/master/TCFv2
https://github.com/InteractiveAdvertisingBureau/GDPR-Transparency-and-Consent-Framework/tree/master/TCFv2

AWS Clean Rooms SQL-Referenz

+ version: Die verwendete Version der GPP-Spezifikation (derzeit 1).

« cmpId: Die ID der Consent Management Platform (CMP), die die Zustimmungszeichenfolge codiert
hat.

+ cmpVersion: Die Version der CMP, die die Zustimmungszeichenfolge codiert hat.

 consentScreen: Die ID des Bildschirms in der CMP-Benutzeroberflache, auf dem der Benutzer
seine Zustimmung gegeben hat.

» consentLanguage: Der Sprachcode der Einwilligungsinformationen.
+ vendorListVersion: Die verwendete Version der Lieferantenliste.
* publisherCountryCode: Die Landesvorwahl des Herausgebers.

* purposeConsent: Eine Liste von ganzen Zahlen, die die Zwecke darstellen, denen der Benutzer
zugestimmt hat.

* purposelegitimatelnterest: Eine Liste von Zwecken, IDs fir die das berechtigte Interesse
des Benutzers transparent mitgeteilt wurde.

* specialFeatureOptIns: Eine Liste von Ganzzahlen, die die speziellen Funktionen darstellen,
fur die sich der Benutzer entschieden hat.

+ vendorConsent: Eine Liste der Anbieter IDs , denen der Benutzer zugestimmt hat.

* vendorLegitimateInterest: Eine Liste von Anbietern, IDs fir die das berechtigte Interesse
des Benutzers transparent mitgeteilt wurde.

Beispiel

Das folgende Beispiel verwendet ein einzelnes Argument, ndmlich die kodierte
Zustimmungszeichenfolge. Es gibt ein Worterbuch zurtick, das die dekodierten Einwilligungsdaten
enthalt, einschlie8lich Informationen Uber die Datenschutzeinstellungen, Einwilligungsoptionen und
andere Metadaten des Benutzers.

SELECT * FROM consent_gpp_vl_decode('ABCDEFGHIJIK'");

Die grundlegende Struktur der zurickgegebenen Einwilligungsdaten umfasst Informationen tber
die Version der Einwilligungszeichenfolge, die CMP-Details (Consent Management Platform), die
Zustimmung des Benutzers und die Optionen seiner berechtigten Interessen fur verschiedene
Zwecke und Anbieter sowie andere Metadaten.

"version": 1,

Funktionen im Zusammenhang mit dem Datenschutz 332

AWS Clean Rooms SQL-Referenz

"cmpId": 12,

"cmpVersion": 34,
"consentScreen": 5,
"consentlLanguage": "en",
"vendorListVersion": 89,
"publisherCountryCode": "US",
"purposeConsent": [1],
"purposelegitimateInterests": [1],
"specialFeatureOptins": [1],
"vendorConsent": [1],
"vendorLegitimateInterests": [1]}

Funktion consent_tcf v2 decode

Die consent_tcf_v2_decode Funktion wird verwendet, um Zustimmungsdaten des

Transparency and Consent Framework (TCF) v2 zu dekodieren. Sie verwendet die kodierte
Einwilligungszeichenfolge als Eingabe und gibt die dekodierten Einwilligungsdaten zurick, die
Informationen Uber die Datenschutzpraferenzen und Einwilligungsoptionen des Benutzers enthalten.
Diese Funktion ist nutzlich, wenn Sie mit Daten arbeiten, die TCF v2-Einwilligungsinformationen
enthalten, da Sie damit auf die Einwilligungsdaten in einem strukturierten Format zugreifen und diese
analysieren kdnnen.

Syntax

consent_tcf_v2_decode(tcf_string)

Argumente
tcf_string

Die kodierte TCF v2-Zustimmungszeichenfolge.

Ruckgabewert

Die consent_tcf_v2_decode Funktion gibt ein Wérterbuch zurlick, das die dekodierten
Zustimmungsdaten aus einer TCF (Transparency and Consent Framework) v2-
Zustimmungszeichenfolge enthalt.

Das zuruckgegebene Warterbuch enthalt die folgenden Schlussel-Wert-Paare:

Funktionen im Zusammenhang mit dem Datenschutz 333

AWS Clean Rooms SQL-Referenz

Kernsegment

+ version: Die verwendete Version der TCF-Spezifikation (derzeit 2).
» created: Datum und Uhrzeit der Erstellung der Zustimmungszeichenfolge.
+ lastUpdated: Datum und Uhrzeit der letzten Aktualisierung der Zustimmungszeichenfolge.

« cmpId: Die ID der Consent Management Platform (CMP), die die Zustimmungszeichenfolge codiert
hat.

« cmpVersion: Die Version der CMP, die die Zustimmungszeichenfolge codiert hat.

* consentScreen: Die ID des Bildschirms in der CMP-Benutzeroberflache, auf dem der Benutzer
seine Zustimmung gegeben hat.

+ consentlLanguage: Der Sprachcode der Einwilligungsinformationen.
 vendorListVersion: Die verwendete Version der Lieferantenliste.

« tcfPolicyVersion: Die Version der TCF-Richtlinie, auf der die Zustimmungszeichenfolge
basiert.

« isServiceSpecific: Ein boolescher Wert, der angibt, ob die Zustimmung fiir einen bestimmten
Dienst spezifisch ist oder fur alle Dienste gilt.

« useNonStandardStacks: Ein boolescher Wert, der angibt, ob Stacks verwendet werden, die
nicht dem Standard entsprechen.

* specialFeatureOptIns: Eine Liste von Ganzzahlen, die die speziellen Funktionen darstellen,
fur die sich der Benutzer entschieden hat.

* purposeConsent: Eine Liste von Ganzzahlen, die die Zwecke darstellen, denen der Benutzer
zugestimmt hat.

* purposesLITransparency: Eine Liste von ganzen Zahlen, die die Zwecke darstellen, fir die der
Benutzer seine berechtigten Interessen transparent gemacht hat.

* purposeOneTreatment: Ein boolescher Wert, der angibt, ob der Benutzer die
.Einzelbehandlung“ angefordert hat (d. h., alle Zwecke werden gleich behandelt).

* publisherCountryCode: Die Landesvorwahl des Herausgebers.
« vendorConsent: Eine Liste der Anbieter IDs , denen der Benutzer zugestimmt hat.

* vendorLegitimateInterest: Eine Liste von Anbietern, IDs fir die das berechtigte Interesse
des Benutzers transparent mitgeteilt wurde.

* pubRestrictionEntry: Eine Liste mit Einschrankungen fur Herausgeber. Dieses Feld enthalt
die Verwendungs-ID, den Einschrankungstyp und die Liste der Anbieter, fur die IDs diese
Verwendungsbeschrankung gilt.

Funktionen im Zusammenhang mit dem Datenschutz 334

AWS Clean Rooms SQL-Referenz

Offengelegtes Lieferantensegment

* disclosedVendors: Eine Liste von ganzen Zahlen, die die Anbieter reprasentieren, die dem
Benutzer bekannt gegeben wurden.

Segment fur Zwecke des Herausgebers

* pubPurposesConsent: Eine Liste von ganzen Zahlen, die die verlagsspezifischen Zwecke
darstellen, fur die der Benutzer seine Zustimmung erteilt hat.

* pubPurposesLITransparency: Eine Liste von ganzen Zahlen, die die verlegerspezifischen
Zwecke darstellen, fur die der Nutzer seine berechtigten Interessen transparent gemacht hat.

» customPurposesConsent: Eine Liste von Ganzzahlen, die die benutzerdefinierten Zwecke
darstellen, fur die der Benutzer seine Zustimmung erteilt hat.

* customPurposesLITransparency: Eine Liste von Ganzzahlen, die die benutzerdefinierten
Zwecke darstellen, fur die der Benutzer seine berechtigten Interessen transparent gemacht hat.

Diese detaillierten Einwilligungsdaten kénnen verwendet werden, um die Datenschutzpraferenzen
des Benutzers bei der Arbeit mit personenbezogenen Daten zu verstehen und zu respektieren.

Beispiel

Das folgende Beispiel verwendet ein einzelnes Argument, namlich die kodierte
Zustimmungszeichenfolge. Es gibt ein Worterbuch zurtick, das die dekodierten Einwilligungsdaten
enthalt, einschliellich Informationen Gber die Datenschutzeinstellungen, Einwilligungsoptionen und
andere Metadaten des Benutzers.

from aws_clean_rooms.functions import consent_tcf_v2_decode

consent_string = "C01234567890@abcdef"
consent_data = consent_tcf_v2_decode(consent_string)

print(consent_data)

Die grundlegende Struktur der zurlickgegebenen Einwilligungsdaten umfasst Informationen Gber
die Version der Einwilligungszeichenfolge, die CMP-Details (Consent Management Platform), die
Zustimmung des Benutzers und die Optionen seiner berechtigten Interessen flr verschiedene
Zwecke und Anbieter sowie andere Metadaten.

Funktionen im Zusammenhang mit dem Datenschutz 335

AWS Clean Rooms

SQL-Referenz

/** core segment **/
version: 2,
created: "2023-10-01T12:00:00Z",
lastUpdated: "2023-10-01T12:00:00Z",
cmpld: 1234,
cmpVersion: 5,
consentScreen: 1,
consentLanguage: "en",
vendorListVersion: 2,
tcfPolicyVersion: 2,
isServiceSpecific: false,
useNonStandardStacks: false,
specialFeatureOptIns: [1, 2, 3],
purposeConsent: [1, 2, 3],
purposesLITransparency: [1, 2, 3],
purposeOneTreatment: true,
publisherCountryCode: "US",
vendorConsent: [1, 2, 3],
vendorLegitimateInterest: [1, 2, 3],
pubRestrictionEntry: [

{ purpose: 1, restrictionType: 2,

restriction" },

I

1,

/** disclosed vendor segment **/
disclosedVendors: [1, 2, 31,

/** publisher purposes segment **/
pubPurposesConsent: [1, 2, 3],
pubPurposesLITransparency: [1, 2, 3],
customPurposesConsent: [1, 2, 3],

restrictionDescription:

customPurposesLITransparency: [1, 2, 3],

Fensterfunktionen

Mit Fensterfunktionen kénnen Sie analytische geschaftliche Abfragen effizienter erstellen.

"Example

Fensterfunktionen werden fur eine Partition bzw. ein ,Fenster” eines Ergebnissatzes ausgeflhrt

und geben fur jede Zeile in diesem Fenster einen Wert zurlck. Funktionen ohne Fenster fihren ihre
Berechnungen dagegen flr alle Zeilen des Ergebnissatzes aus. Im Gegensatz zu Gruppenfunktionen,
die die Ergebniszeilen aggregieren, behalten Fensterfunktionen alle Zeilen im Tabellenausdruck bei.

Fensterfunktionen

336

AWS Clean Rooms SQL-Referenz

Die zurlickgegebenen Werte werden mithilfe von Werten aus den Satzen von Zeilen in diesem
Fenster berechnet. Das Fenster definiert flr jede Zeile in der Tabelle einen Satz von Zeilen,
der fur die Verarbeitung zusatzlicher Attribute verwendet wird. Ein Fenster wird mithilfe einer
Fensterspezifikation (der OVER-Klausel) definiert und basiert auf drei Hauptkonzepten:

» Fensterpartitionierung, die Gruppen von Zeilen bildet (PARTITION-Klausel)

» Fensteranordnung, die eine Reihenfolge oder Sequenz von Zeilen innerhalb der einzelnen
Partitionen definiert (ORDER BY-Klausel)

» Fensterrahmen, die in Bezug auf die einzelnen Zeilen definiert werden, um den Satz von Zeilen
weiter einzuschranken (ROWS-Spezifikation)

Fensterfunktionen sind der letzte Satz von Operationen, die in einer Abfrage ausgefuhrt

werden, abgesehen von der abschlieRenden ORDER BY-Klausel. Alle Joins und alle -, - und -
Klauseln werden abgeschlossen, bevor die Fensterfunktionen verarbeitet werden. Daher kénnen
Fensterfunktionen nur in der Auswabhlliste oder in der ORDER BY-Klausen enthalten sein. Innerhalb
einer einzelnen Abfrage kdnnen mehrere Fensterfunktionen mit unterschiedlichen Rahmenklauseln
verwendet werden. Aulierdem kdnnen Sie Fensterfunktionen in anderen skalaren Ausdriicken
verwenden, beispielsweise CASE.

Ubersicht Gber die Syntax von Fensterfunktionen

Fensterfunktionen folgen einer Standardsyntax, die wie folgt lautet.

function (expression) OVER (
[PARTITION BY expr_list]
[ORDER BY order_list [frame_clause]])

Hier ist function eine der in diesem Abschnitt beschriebenen Funktionen.

Die expr_list lautet wie folgt.
expression | column_name [, expr_list]

Die order_list lautet wie folgt.

expression | column_name [ASC | DESC]
[NULLS FIRST | NULLS LAST]
[, order_list]

Fensterfunktionen 337

AWS Clean Rooms SQL-Referenz

Die frame_clause lautet wie folgt.

ROWS
{ UNBOUNDED PRECEDING | unsigned_value PRECEDING | CURRENT ROW 1} |

{ BETWEEN

{ UNBOUNDED PRECEDING | unsigned_value { PRECEDING | FOLLOWING } | CURRENT ROW}
AND

{ UNBOUNDED FOLLOWING | unsigned_value { PRECEDING | FOLLOWING } | CURRENT ROW }}

Argumente
Funktion

Die Fensterfunktion. Details finden Sie in den Beschreibungen der einzelnen Funktionen.
OVER

Die Klausel, die die Fensterspezifikation definiert. Die OVER-Klausel ist flir Fensterfunktionen
obligatorisch und differenziert Fensterfunktionen von anderen SQL-Funktionen.

PARTITION BY expr_list

(Optional) Die PARTITION-BY-Klausel unterteilt den Ergebnissatz in Partitionen, ahnlich wie die
GROUP-BY-Klausel. Wenn eine Partitionsklausel vorhanden ist, wird die Funktion fur die Zeilen
in den einzelnen Partitionen berechnet. Wenn keine Partitionsklausel angegeben ist, enthalt eine
einzige Partition die gesamte Tabelle und die Funktion wird fir die gesamte Tabelle berechnet.

Die Rangfestlegungsfunktionen DENSE_RANK, NTILE, RANK und ROW_NUMBER erfordern
einen globalen Vergleich aller Zeilen im Ergebnissatz. Wenn eine PARTITION BY-Klausel
verwendet wird, kann die Abfrageoptimierung die einzelnen Aggregationen parallel ausfihren,
indem der Workload entsprechend den Partitionen tber mehrere Slices verteilt wird. Wenn

die PARTITION BY-Klausel nicht vorhanden ist, muss der Aggregationsschritt seriell flir einen
einzelnen Slice ausgefuhrt werden. Dies kann erhebliche negative Auswirkungen auf die Leistung
haben, besonders flr gréRere Cluster.

AWS Clean Roomsunterstitzt keine Zeichenkettenliterale in PARTITION BY-Klauseln.
ORDER BY order _list

(Optional) Die Fensterfunktion wird auf die Zeilen innerhalb der einzelnen Partitionen angewendet,
sortiert entsprechend der Reihenfolgenspezifikation in ORDER BY. Diese ORDER BY-Klausel
unterscheidet sich von der ORDER BY-Klausel in der frame_clauseund ist mit dieser in keiner

Fensterfunktionen 338

AWS Clean Rooms SQL-Referenz

Weise verwandt. Die ORDER BY-Klausel kann ohne die PARTITION BY-Klausel verwendet
werden.

FUr Rangfestlegungsfunktionen identifiziert die ORDER BY-Klausel die Messwerte fur die
Rangfestlegungswerte. Fur Aggregationsfunktionen mussen die partitionierten Zeilen angeordnet
werden, bevor die jeweilige Aggregationsfunktion fur die einzelnen Rahmen berechnet wird.
Weitere Informationen zu den Arten von Windowsfunktionen finden Sie unter Fensterfunktionen.

In der Reihenfolgenliste werden Spaltenbezeichner oder Ausdriicke, die zu Spaltenbezeichnern
ausgewertet werden, bendtigt. Konstanten oder Konstantenausdriicke kdnnen nicht als Ersatz fur
Spaltennamen verwendet werden.

NULL-Werte werden als eigene Gruppe behandelt und entsprechend der Option NULLS FIRST
oder NULLS LAST sortiert und angeordnet. StandardmaRig werden NULL-Werte in einer ASC-
Reihenfolge an letzter Stelle sortiert und aufgefihrt und in einer DESC-Reihenfolge an erster
Stelle sortiert und aufgeflhrt.

AWS Clean Roomsunterstitzt keine Zeichenkettenliterale in ORDER BY-Klauseln.

Wenn die ORDER BY-Klausel ausgelassen wird, ist die Reihenfolge der Zeilen nicht
deterministisch.

(® Note

In jedem parallel SystemAWS Clean Rooms, z. B. wenn eine ORDER BY-Klausel keine
eindeutige und vollstandige Reihenfolge der Daten erzeugt, ist die Reihenfolge der
Zeilen nicht deterministisch. Das heil3t, wenn der ORDER BY-Ausdruck doppelte Werte
erzeugt (eine teilweise Reihenfolge), kann die Reihenfolge der Rickgabe dieser Zeilen
von einem Lauf AWS Clean Rooms zum nachsten variieren. In diesem Fall kdnnen
Fensterfunktionen unerwartete oder inkonsistente Ergebnisse zuriickgeben. Weitere
Informationen finden Sie unter Spezifisches Anordnen von Daten fur Fensterfunktionen.

column_name

Der Name einer Spalte, nach der die Partitionierung oder Anordnung erfolgen soll.

ASC | DESC

Eine Option, die die Sortierreihenfolge fur den Ausdruck wie folgt definiert:

Fensterfunktionen 339

AWS Clean Rooms SQL-Referenz

» ASC: aufsteigend (beispielsweise niedrig nach hoch fir numerische Werte und A bis Z flr
Zeichenfolgen). Wenn keine Option angegeben wird, werden die Daten standardmalig in
aufsteigender Reihenfolge sortiert.

+ DESC: absteigend (beispielsweise hoch nach niedrig fur numerische Werte und Z bis A flr
Zeichenfolgen).

NULLS FIRST | NULLS LAST

Option, die angibt, ob NULL-Werte an erster Stelle vor Nicht-Null-Werten oder an letzter Stelle
nach Nicht-Null-Werten aufgelistet werden sollen. StandardmafRig werden NULL-Werte in einer
ASC-Reihenfolge an letzter Stelle sortiert und aufgefiihrt und in einer DESC-Reihenfolge an erster
Stelle sortiert und aufgefuhrt.

frame_clause

Die Rahmenklausel gibt fir Aggregationsfunktionen den Satz von Zeilen im Fenster einer Funktion
bei Verwendung von ORDER BY noch genauer an. Sie ermdéglicht das Ein- oder Ausschliel3en
von Satzen von Zeilen innerhalb des geordneten Ergebnisses. Die Rahmenklausel besteht aus
dem Schltisselwort ROWS und verknlpften Spezifikatoren.

Die Rahmenklausel kann nicht auf Rangfestlegungsfunktionen angewendet werden. Aul3erdem ist
sie nicht erforderlich, wenn in der ORDER-BY-Klausel fur eine Aggregationsfunktion keine OVER-
Klausel verwendet wird. Wenn eine ORDER BY-Klausel fur eine Aggregationsfunktion verwendet

wird, ist eine explizite Rahmenklausel erforderlich.

Wenn keine ORDER-BY-Klausel angegeben ist, ist der implizierte Rahmen unbegrenzt, dquivalent
zu ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

ROWS

Diese Klausel definiert den Fensterrahmen durch Angabe eines physischen Offsets von der
aktuellen Zeile.

Diese Klausel gibt die Zeilen im aktuellen Fenster oder in der aktuellen Partition an, mit denen
der Wert in der aktuellen Zeile kombiniert werden soll. Sie verwendet Argumente, die die
Zeilenposition angeben. Diese kann sich vor oder nach der aktuellen Zeile befinden. Der
Referenzpunkt fir alle Fensterrahmen ist die aktuelle Zeile. Alle Zeilen werden nacheinander zur
aktuellen Zeile, wahrend der Fensterrahmen in der Partition vorwarts gleitet.

Beim Rahmen kann es sich um einen einfachen Satz von Zeilen bis zur und einschlieBlich der
aktuellen Zeile handeln.

Fensterfunktionen 340

AWS Clean Rooms SQL-Referenz

{UNBOUNDED PRECEDING | offset PRECEDING | CURRENT ROW}

Es kann sich auch um einen Satz von Zeilen zwischen zwei Grenzen handeln.

BETWEEN

{ UNBOUNDED PRECEDING | offset { PRECEDING | FOLLOWING } | CURRENT ROW }
AND

{ UNBOUNDED FOLLOWING | offset { PRECEDING | FOLLOWING } | CURRENT ROW }

UNBOUNDED PRECEDING zeigt an, dass das Fenster an der ersten Zeile der Partition beginnt;
offset PRECEDING zeigt an, dass das Fenster um eine Zahl von Reihen vor der aktuellen Zeile
beginnt, die dem Offset-Wert entspricht. UNBOUNDED PRECEDING ist der Standardwert.

CURRENT ROW zeigt an, dass das Fenster an der aktuellen Zeile beginnt oder endet.

UNBOUNDED FOLLOWING zeigt an, dass das Fenster an der letzten Zeile der Partition endet;
offset FOLLOWING zeigt an, dass das Fenster um eine Zahl von Reihen nach der aktuellen Zeile
endet, die dem Offset-Wert entspricht.

offset bezeichnet eine physische Anzahl von Zeilen vor oder nach der aktuellen Zeile. In diesem
Fall muss offset eine Konstante sein, der zu einem positiven numerischen Wert ausgewertet wird.
Beispielsweise wird bei 5 FOLLOWING der Rahmen flnf Zeilen nach der aktuellen Zeile beendet.

Wenn BETWEEN nicht angegeben ist, wird der Rahmen implizit von der aktuellen Zeile begrenzt.
Beispielsweise ist ROWS 5 PRECEDING gleich ROWS BETWEEN 5 PRECEDING AND CURRENT
ROW. Ebenso ist ROWS UNBOUNDED FOLLOWING gleich ROWS BETWEEN CURRENT ROW AND
UNBOUNDED FOLLOWING.

(® Note

Sie kbnnen keinen Rahmen angeben, in dem die Startgrenze grol3er als die Endgrenze
ist. Sie kdnnen beispielsweise keinen der folgenden Rahmen angeben.

between 5 following and 5 preceding
between current row and 2 preceding
between 3 following and current row

Fensterfunktionen 341

AWS Clean Rooms SQL-Referenz

Spezifisches Anordnen von Daten flr Fensterfunktionen

Wenn eine ORDER-BY-Klausel fir eine Fensterfunktion keine spezifische und globale Anordnung
der Daten generiert, ist die Reihenfolge der Zeilen nicht deterministisch. Wenn der ORDER-BY-
Ausdruck duplizierte Werte generiert (eine partielle Anordnung), kann sich die Rickgabereihenfolge
dieser Zeilen zwischen verschiedenen Ausfuhrungen unterscheiden. In diesem Fall geben
Fensterfunktionen moglicherweise unerwartete oder inkonsistente Ergebnisse zurlck.

Beispielsweise gibt die folgende Abfrage in verschiedenen Ausfiihren unterschiedliche Ergebnisse
zurlick. Diese unterschiedlichen Ergebnisse treten auf, da order by dateid keine spezifische
Reihenfolge der Daten fur die SUM-Fensterfunktion erzeugt.

select dateid, pricepaid,

sum(pricepaid) over(order by dateid rows unbounded preceding) as sumpaid
from sales

group by dateid, pricepaid;

dateid | pricepaid | sumpaid
________ Fmmmr e e e e, ——————
1827 | 1730.00 | 1730.00
1827 | 708.00 | 2438.00
1827 | 234.00 | 2672.00

select dateid, pricepaid,

sum(pricepaid) over(order by dateid rows unbounded preceding) as sumpaid
from sales

group by dateid, pricepaid;

dateid | pricepaid | sumpaid
________ Fmmmr e e e e, ——————
1827 | 234.00 | 234.00
1827 | 472.00 | 706.00
1827 | 347.00 | 1053.00

In diesem Fall kann das Hinzufligen einer zweiten ORDER-BY-Spalte zur Fensterfunktion das
Problem l6sen.

select dateid, pricepaid,
sum(pricepaid) over(order by dateid, pricepaid rows unbounded preceding) as sumpaid
from sales

Fensterfunktionen 342

AWS Clean Rooms SQL-Referenz

group by dateid, pricepaid;

dateid | pricepaid | sumpaid

________ Y
1827 | 234.00 | 234.00
1827 | 337.00 | 571.00
1827 | 347.00 | 918.00

Unterstutzte Funktionen

AWS Clean RoomsSpark SQL unterstitzt zwei Arten von Fensterfunktionen: Aggregat- und
Rangfunktionen.

Die folgenden Aggregationsfunktionen werden unterstitzt:

+ CUME_DIST-Fensterfunktion

* Die Fensterfunktion DENSE_RANK
* Funktion ,ERSTES Fenster*

* Die Fensterfunktion FIRST_VALUE
* Die Fensterfunktion LAG

* Funktion ,LETZTES Fenster*

* Die Fensterfunktion LAST_VALUE
* Die Fensterfunktion LEAD

Die folgenden Rangfestlegungsfunktionen werden unterstitzt:

* Die Fensterfunktion DENSE_RANK

» Die Fensterfunktion PERCENT_RANK
* Die Fensterfunktion RANK

* Die Fensterfunktion ROW_NUMBER

Beispieltabelle mit Beispielen von Fensterfunktionen

Zu jeder Funktionsbeschreibung gehodren spezifische Fensterfunktionsbeispiele. In einigen Beispielen
wird eine Tabelle mit dem Namen WINSALES verwendet, die 11 Zeilen enthalt, wie in der folgenden
Tabelle dargestellt.

Fensterfunktionen 343

AWS Clean Rooms

SQL-Referenz

SALESID

30001

10001

10005

40001

10006

20001

40005

20002

30003

30004

30007

DATEID

8/2/2003

12/24/2003

12/24/2003

1/9/2004

1/18/2004

2/12/2004

2/12/2004

2/16/2004

4/18/2004

4/18/2004

9/7/2004

SELLERID BUYERID QTY
3 B 10
1 C 10
1 A 30
4 A 40
1 C 10
2 B 20
4 A 10
2 C 20
3 B 15
3 B 20
3 C 30

CUME_DIST-Fensterfunktion

QTY_SHIPP
ED

10

10

20
10

20

Berechnet die kumulative Verteilung eines Werts in einem Fenster oder einer Partition. Bei

aufsteigender Anordnung wird die kumulative Verteilung anhand der folgenden Formel festgelegt:

count of rows with values <= x / count of rows in the window or partition

wobei x gleich dem Wert in der aktuellen Zeile der Spalte ist, die in der ORDER BY-Klausel

angegeben wird. Der folgende Datensatz zeigt die Verwendung dieser Formel:

Row# Value

1 2500
2 2600
3 2800
4 2900

Calculation

(1)/(5)
(2)/(5)
(3)/(5)
(4)/(5)

CUME_DIST
0.2
0.4
0.6
0.8

Fensterfunktionen

344

AWS Clean Rooms SQL-Referenz

5 3100 (5)/(5) 1.0

Der Ruckgabewertbereich ist >0 bis 1 (einschlief3lich).

Syntax

CUME_DIST ()

OVER (

[PARTITION BY partition_expression]
[ORDER BY order_list]

)

Argumente
OVER

Eine Klausel, die die Fensterpartitionierung angibt. Die OVER-Klausel darf keine
Fensterrahmenspezifikation enthalten.

PARTITION BY partition_expression

Optional. Ein Ausdruck, der den Datensatzbereich fir die einzelnen Gruppen in der OVER-Klausel
festlegt.

ORDER BY order_list

Der Ausdruck, anhand dessen die kumulative Verteilung berechnet wird. Der Datentyp des
Ausdrucks muss entweder numerisch sein oder implizit in einen solchen konvertierbar sein. Wenn
ORDER BY ausgelassen wird, ist der Ruckgabewert fur alle Zeilen 1.

Wenn ORDER-BY nicht zu einer spezifischen Reihenfolge flhrt, ist die Reihenfolge der Zeilen
nicht deterministisch. Weitere Informationen finden Sie unter Spezifisches Anordnen von Daten fur
Fensterfunktionen.

Ruckgabetyp
FLOATS
Beispiele

Im folgenden Beispiel wird die kumulative Verteilung der Menge fir die einzelnen Verkaufer
berechnet:

Fensterfunktionen 345

AWS Clean Rooms SQL-Referenz

select sellerid, qty, cume_dist()
over (partition by sellerid order by qty)
from winsales;

sellerid qty cume_dist

1 10.00 0.33
1 10.64 0.67
1 30.37 1

3 10.04 0.25
3 15.15 0.5
3 20.75 0.75
3 30.55 1

2 20.09 0.5
2 20.12 1

4 10.12 0.5
4 40.23 1

Eine Beschreibung der Tabelle WINSALES finden Sie unter Beispieltabelle mit Beispielen von
Fensterfunktionen.

Die Fensterfunktion DENSE_RANK

Die Fensterfunktion DENSE_RANK legt den Rang eines Werts in einer Gruppe von Werten fest,
basierend auf dem ORDER BY-Ausdruck in der OVER-Klausel. Wenn die optionale PARTITION
BY-Klausel vorhanden ist, wird die Rangfolge flir jede Gruppe von Zeilen neu festgelegt. Zeilen mit
gleichen Werten in Bezug auf die Rangfestlegungskriterien erhalten den gleichen Rang. Die Funktion
DENSE_RANK unterscheidet sich nur in einer Hinsicht von RANK: Wenn zwei oder mehr Zeilen den
gleichen Rang erhalten, entsteht in der Rangfolge der Werte keine Liicke. Wenn beispielsweise zwei
Zeilen den Rang 1 erhalten, ist der nachste Rang 2.

Sie kénnen in derselben Abfrage Rangfestlegungsfunktionen mit unterschiedlichen PARTITION BY-
und ORDER BY-Klauseln verwenden.

Syntax

DENSE_RANK () OVER

(

[PARTITION BY expr_list]
[ORDER BY order_list]

)

Fensterfunktionen 346

AWS Clean Rooms SQL-Referenz

Argumente

()

Die Funktion verwendet keine Argumente. Es ist jedoch eine leere Klammer erforderlich.
OVER

Die Fensterklauseln fir die Funktion DENSE_RANK.
PARTITION BY expr_list

Optional. Ein oder mehrere Ausdrlicke, der/die das Fenster definiert/definieren.
ORDER BY order_list

Optional. Der Ausdruck, auf dem die Rangfestlegungwerte basieren. Wenn PARTITION BY nicht
angegeben ist, verwendet ORDER BY die gesamte Tabelle. Wenn ORDER BY ausgelassen wird,
ist der Ruckgabewert fur alle Zeilen 1.

Wenn ORDER-BY nicht zu einer spezifischen Reihenfolge fuhrt, ist die Reihenfolge der Zeilen
nicht deterministisch. Weitere Informationen finden Sie unter Spezifisches Anordnen von Daten fur
Fensterfunktionen.

Ruckgabetyp
INTEGER
Beispiele

Im folgenden Beispiel wird die Tabelle nach der verkauften Menge (in absteigender Reihenfolge)
geordnet und jeder Zeile ein DENSE_RANK-Wert und ein regulérer Rang zugewiesen. Die
Ergebnisse werden sortiert, nachdem die Fensterfunktionsergebnisse angewendet wurden.

select salesid, qty,

dense_rank() over(order by gty desc) as d_rnk,
rank() over(order by qty desc) as rnk

from winsales

order by 2,1;

salesid | qty | d_rnk | rnk

--------- B R L
10001 | 10 | 5|1 8
10006 | 10 | 51 8

Fensterfunktionen 347

AWS Clean Rooms

SQL-Referenz

30001
40005
30003
20001
20002
30004
10005
30007
40001

(11 rows)

10
10
15
20
20
20
30
30
40

P NN W W WM~MU WO,

P NN PPN OO

Beachten Sie den Unterschied bei den Rangen, die demselben Satz von Zeilen zugewiesen werden,
wenn die Funktionen DENSE_RANK und RANK zusammen in derselben Umfrage verwendet werden.
Eine Beschreibung der Tabelle WINSALES finden Sie unter Beispieltabelle mit Beispielen von
Fensterfunktionen.

Im folgenden Beispiel wird die Tabelle nach SELLERID partitioniert, die einzelnen Partitionen nach
Menge (in absteigender Reihenfolge) geordnet und jeder Zeile ein DENSE_RANK-Wert zugewiesen.
Die Ergebnisse werden sortiert, nachdem die Fensterfunktionsergebnisse angewendet wurden.

select salesid, sellerid, qty,

dense_rank() over(partition by sellerid order by qty desc) as d_rnk
from winsales
order by 2,3,1;

salesid | sellerid | qty | d_rnk

40001

(11 rows)

A PPN OW W W”DNMNMDNRERPR

P NP NWN PP RPEPDNDN

Eine Beschreibung der Tabelle WINSALES finden Sie unter Beispieltabelle mit Beispielen von

Fensterfunktionen.

Fensterfunktionen

348

AWS Clean Rooms SQL-Referenz

Funktion ,ERSTES Fenster*

Bei einer bestimmten Anzahl von Zeilen gibt FIRST den Wert des angegebenen Ausdrucks in Bezug
auf die erste Zeile im Fensterrahmen zurtck.

Informationen zur Auswahl der letzten Zeile im Rahmen finden Sie unter Funktion ,LETZTES
Fenster*.

Syntax

FIRST(expression)[IGNORE NULLS | RESPECT NULLS]
OVER (

[PARTITION BY expr_list]

[ORDER BY order_list frame_clause]

)

Argumente

expression

Die Zielspalte oder der Ausdruck, fur die/den die Funktion ausgefihrt wird.
IGNORE NULLS

Wenn diese Option mit FIRST verwendet wird, gibt die Funktion den ersten Wert im Frame
zurtck, der nicht NULL ist (oder NULL, wenn alle Werte NULL sind).

RESPECT NULLS

Gibt an, dass Nullwerte bei der Bestimmung der zu verwendenden Zeile beriicksichtigt werden
AWS Clean Rooms sollen. Wenn Sie IGNORE NULLS nicht angeben, wird RESPECT NULLS
standardmafig unterstitzt.

OVER

Fuhrt die Fensterklauseln flir die Funktion ein.
PARTITION BY expr_list

Definiert das Fenster fur die Funktion in Bezug auf mindestens einen Ausdruck.
ORDER BY order_list

Sortiert die Zeilen innerhalb der einzelnen Partitionen. Wenn die PARTITION BY-Klausel nicht
angegeben ist, sortiert ORDER BY die gesamte Tabelle. Wenn Sie eine ORDER BY-Klausel
angeben, mussen Sie auch eine frame_clause angeben.

Fensterfunktionen 349

AWS Clean Rooms SQL-Referenz

Die Ergebnisse der FIRST-Funktion hangen von der Reihenfolge der Daten ab. Die Ergebnisse
sind in den folgenden Fallen nicht deterministisch:

» Wenn keine ORDER BY-Klausel angegeben ist und eine Partition zwei verschiedene Werte flr
einen Ausdruck enthalt

» Wenn der Ausdruck zu verschiedenen Werten ausgewertet wird, die demselben Wert in der
ORDER BY-Liste entsprechen

frame_clause

Wenn eine ORDER BY-Klausel fur eine Aggregationsfunktion verwendet wird, ist eine explizite
Rahmenklausel erforderlich. Die Rahmenklausel gibt den Satz von Zeilen im Fenster einer
Funktion genauer an, einschliel3lich oder ausschliellich Satzen von Zeilen im geordneten
Ergebnis. Die Rahmenklausel besteht aus dem Schllsselwort ROWS und verknlpften
Spezifikatoren. Siehe Ubersicht (iber die Syntax von Fensterfunktionen.

Ruckgabetyp

Diese Funktionen unterstitzen Ausdriicke, die primitive AWS Clean Rooms Datentypen verwenden.
Der Ruckgabetyp ist mit dem Datentyp von expression identisch.

Beispiele

Im folgenden Beispiel wird die Sitzplatzkapazitat fir die einzelnen Veranstaltungsorte in der Tabelle
VENUE zurlickgegeben, wobei die Ergebnisse nach Kapazitat (hoch zu niedrig) geordnet sind. Die
FIRST-Funktion wird verwendet, um den Namen des Veranstaltungsorts auszuwahlen, der der ersten
Reihe im Frame entspricht: in diesem Fall der Zeile mit der héchsten Anzahl von Sitzplatzen. Die
Ergebnisse werden nach Bundesstaat partitioniert. Wenn der Wert fur VENUESTATE geéandert wird,
wird daher ein neuer erster Wert ausgewahlt. Der Fensterrahmen ist unbegrenzt. Daher wird fur jede
Zeile in jeder Partition derselbe erste Wert ausgewahlt.

Im Fall von Kalifornien hat Qualcomm Stadium die gré3te Zahl von Sitzplatzen (70561). Daher ist
dieser Name der erste Wert fur alle Zeilen in der Partition CA.

select venuestate, venueseats, venuename,
first(venuename)

over(partition by venuestate

oxrder by venueseats desc

rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)

oxrder by venuestate;

Fensterfunktionen 350

AWS Clean Rooms

SQL-Referenz

venuestate | venueseats

venuename

Qualcomm Stadium
Monster Park

McAfee Coliseum

Dodger Stadium

Angel Stadium of Anaheim
PETCO Park

AT&T Park

Shoreline Amphitheatre
INVESCO Field

Coors Field

Nationals Park

Dolphin Stadium

Jacksonville Municipal Stadium

Raymond James Stadium

oo e e e e e — e ———————————
CA | 70561 |
CA | 69843 |
CA | 63026 |
CA | 56000 |
CA | 45050 |
CA | L2445 |
CA | 41503 |
CA | 22000 |
co | 76125 |
co | 50445 |
DC | 41888 |
FL | 74916 |
FL | 73800 |
FL | 65647 |
FL | 36048 |

Tropicana Field

Die Fensterfunktion FIRST _VALUE

Qualcomm
Qualcomm
Qualcomm
Qualcomm
Qualcomm
Qualcomm
Qualcomm
Qualcomm
INVESCO
INVESCO
National
Dolphin
Dolphin
Dolphin
Dolphin

first

Stadium
Stadium
Stadium
Stadium
Stadium
Stadium
Stadium
Stadium
Field

Field

s Park

Stadium
Stadium
Stadium
Stadium

Bei einem geordneten Satz von Zeilen gibt FIRST_VALUE den Wert des angegebenen Ausdrucks in
Bezug auf die erste Zeile im Fensterrahmen zurick.

Informationen zur Auswahl der letzten Zeile im Rahmen finden Sie unter Die Fensterfunktion

LAST_VALUE.

Syntax

FIRST_VALUE(expression)[IGNORE NULLS | RESPECT NULLS]

OVER (

[PARTITION BY expr_list]

[ORDER BY order_list frame_clause]

)

Argumente

expression

Die Zielspalte oder der Ausdruck, fur die/den die Funktion ausgefuhrt wird.

Fensterfunktionen

351

AWS Clean Rooms SQL-Referenz

IGNORE NULLS

Bei Verwendung dieser Option fur FIRST_VALUE gibt die Funktion den ersten Wert im Rahmen
zurtck, der nicht NULL ist (oder NULL, wenn alle Werte NULL sind).

RESPECT NULLS

Gibt an, dass bei der Bestimmung der zu verwendenden Zeile Nullwerte berilicksichtigt werden
AWS Clean Rooms sollen. Wenn Sie IGNORE NULLS nicht angeben, wird RESPECT NULLS
standardmafig unterstitzt.

OVER

Fuhrt die Fensterklauseln flir die Funktion ein.

PARTITION BY expr_list

Definiert das Fenster fir die Funktion in Bezug auf mindestens einen Ausdruck.

ORDER BY order _list

Sortiert die Zeilen innerhalb der einzelnen Partitionen. Wenn die PARTITION BY-Klausel nicht
angegeben ist, sortiert ORDER BY die gesamte Tabelle. Wenn Sie eine ORDER BY-Klausel
angeben, mussen Sie auch eine frame_clause angeben.

Die Ergebnisse der Funktion FIRST_VALUE sind von der Anordnung der Daten abhangig. Die
Ergebnisse sind in den folgenden Fallen nicht deterministisch:

» Wenn keine ORDER BY-Klausel angegeben ist und eine Partition zwei verschiedene Werte flr
einen Ausdruck enthalt

» Wenn der Ausdruck zu verschiedenen Werten ausgewertet wird, die demselben Wert in der
ORDER BY-Liste entsprechen

frame_clause

Wenn eine ORDER BY-Klausel fur eine Aggregationsfunktion verwendet wird, ist eine explizite
Rahmenklausel erforderlich. Die Rahmenklausel gibt den Satz von Zeilen im Fenster einer
Funktion genauer an, einschliel3lich oder ausschliellich Satzen von Zeilen im geordneten
Ergebnis. Die Rahmenklausel besteht aus dem Schlisselwort ROWS und verknUpften
Spezifikatoren. Siehe Ubersicht (iber die Syntax von Fensterfunktionen.

Fensterfunktionen 352

AWS Clean Rooms SQL-Referenz

Ruckgabetyp

Diese Funktionen unterstitzen Ausdriicke, die primitive AWS Clean Rooms Datentypen verwenden.
Der Ruckgabetyp ist mit dem Datentyp von expression identisch.

Beispiele

Im folgenden Beispiel wird die Sitzplatzkapazitat fir die einzelnen Veranstaltungsorte in der Tabelle
VENUE zurlckgegeben, wobei die Ergebnisse nach Kapazitat (hoch zu niedrig) geordnet sind. Die
Funktion FIRST_VALUE wird verwendet, um den Namen des Veranstaltungsorts auszuwahlen, der
der ersten Zeile im Rahmen entspricht, in diesem Fall der Zeile mit der gréf3ten Zahl von Sitzplatzen.
Die Ergebnisse werden nach Bundesstaat partitioniert. Wenn der Wert fur VENUESTATE geéndert
wird, wird daher ein neuer erster Wert ausgewahlt. Der Fensterrahmen ist unbegrenzt. Daher wird fur
jede Zeile in jeder Partition derselbe erste Wert ausgewahilt.

Im Fall von Kalifornien hat Qualcomm Stadium die gréf3te Zahl von Sitzplatzen (70561). Daher ist
dieser Name der erste Wert fur alle Zeilen in der Partition CA.

select venuestate, venueseats, venuename,
first_value(venuename)

over(partition by venuestate

oxrder by venueseats desc

rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)

order by venuestate;

venuestate | venueseats | venuename first_value
___________ e
S

CA 70561 Qualcomm Stadium Qualcomm Stadium

CA 69843 Monster Park Qualcomm Stadium

CA 63026 McAfee Coliseum Qualcomm Stadium

CA 56000 Dodger Stadium Qualcomm Stadium

CA 45050 Angel Stadium of Anaheim Qualcomm Stadium

CA 42445 PETCO Park Qualcomm Stadium

I I I
I I I
I I I
I I I
I I I
I I I
CA | 41503 | AT&T Park | Qualcomm Stadium
I I I
I I I
I I I
I I I
I I I
I I I

CA 22000 Shoreline Amphitheatre Qualcomm Stadium
co 76125 INVESCO Field INVESCO Field

co 50445 Coors Field INVESCO Field

DC 41888 Nationals Park Nationals Park
FL 74916 | Dolphin Stadium Dolphin Stadium
FL 73800 Jacksonville Municipal Stadium Dolphin Stadium

Fensterfunktionen 353

AWS Clean Rooms SQL-Referenz

FL | 65647 | Raymond James Stadium | Dolphin Stadium
FL | 36048 | Tropicana Field | Dolphin Stadium

Die Fensterfunktion LAG

Die Fensterfunktion LAG gibt die Werte flr eine Zeile in einem bestimmten Offset oberhalb (vor) der
aktuellen Zeile in der Partition zurlck.

Syntax

LAG (value_expr [, offset])
[IGNORE NULLS | RESPECT NULLS]
OVER ([PARTITION BY window_partition] ORDER BY window_ordering)

Argumente

value_expr

Die Zielspalte oder der Ausdruck, fur die/den die Funktion ausgefuhrt wird.

offset

Ein optionaler Parameter, der die Anzahl der Zeilen vor der aktuellen Zeile angibt, fur die Werte
zurickgegeben werden sollen. Beim Offset kann es sich um eine ganzzahlige Konstante oder
um einen Ausdruck handeln, der zu einer Ganzzahl ausgewertet wird. Wenn Sie keinen Offset
angeben, AWS Clean Rooms verwendet 1 als Standardwert. Ein Offset von @ gibt die aktuelle
Zeile an.

IGNORE NULLS

Eine optionale Angabe, die angibt, dass Nullwerte bei der Bestimmung der zu verwendenden
Zeile Ubersprungen werden AWS Clean Rooms sollen. Wenn IGNORE NULLS nicht angegeben
wird, werden Null-Werte berUcksichtigt.

@ Note

Sie kdnnen einen NVL- oder COALESCE-Ausdruck verwenden, um die Null-Werte durch
einen anderen Wert zu ersetzen.

Fensterfunktionen 354

AWS Clean Rooms SQL-Referenz

RESPECT NULLS

Gibt an, dass Nullwerte bei der Bestimmung der zu verwendenden Zeile berticksichtigt werden
AWS Clean Rooms sollen. Wenn Sie IGNORE NULLS nicht angeben, wird RESPECT NULLS
standardmafig unterstitzt.

OVER

Gibt die Fensterpartitionierung und -anordnung an. Die OVER-Klausel darf keine
Fensterrahmenspezifikation enthalten.

PARTITION BY window_partition

Ein optionales Argument, das den Datensatzbereich flr die einzelnen Gruppen in der OVER-
Klausel festlegt.

ORDER BY window_ordering

Sortiert die Zeilen innerhalb der einzelnen Partitionen.

Die LAG-Fensterfunktion unterstitzt Ausdriicke, die einen der AWS Clean Rooms Datentypen
verwenden. Der Ruckgabetyp ist mit dem Typ von value_expr identisch.

Beispiele

Im folgenden Beispiel wird die Menge der Tickets gezeigt, die an den Kaufer mit der Kaufer-ID 3
verkauft wurden, sowie die Uhrzeit, zu der Kaufer 3 die Tickets gekauft hat. Um jeden Verkauf mit
dem vorherigen Kauf fur Kaufer 3 zu vergleichen, gibt die Abfrage fur jeden Verkauf die vorherige
Menge zurlck, die verkauft wurde. Da vor dem 16.01.2008 kein Kauf stattfand, ist der erste Wert fur
die vorherige verkaufte Menge null:

select buyerid, saletime, qtysold,
lag(qtysold,1) over (order by buyerid, saletime) as prev_qtysold
from sales where buyerid = 3 order by buyerid, saletime;

buyerid | saletime | gtysold | prev_qgtysold

3 | 2008-01-16 01:06:09 |
3 | 2008-01-28 02:10:01 |
3 | 2008-03-12 10:39:53 |
3 | 2008-03-13 02:56:07 |
3 | 2008-03-29 08:21:39 |
3 | 2008-04-27 02:39:01 |

N R R R R

Fensterfunktionen 355

AWS Clean Rooms SQL-Referenz

| 2008-08-16 07:04:37
| 2008-08-22 11:45:26
| 2008-09-12 09:11:25
| 2008-10-01 ©06:22:37
| 2008-10-20 01:55:51
I

2

P NP REPDNDN
NP P NDNBR

2008-10-28 01:30:40
rows)

~N W W W W W W

1

Funktion ,LETZTES Fenster*

Bei einer bestimmten Anzahl von Zeilen gibt die Funktion LAST den Wert des Ausdrucks in Bezug auf
die letzte Zeile im Frame zurlck.

Informationen zur Auswahl der ersten Zeile im Rahmen finden Sie unter Funktion ,ERSTES Fenster”.

Syntax

LAST(expression)[IGNORE NULLS | RESPECT NULLS]
OVER (

[PARTITION BY expr_list]

[ORDER BY order_list frame_clause]

)

Argumente
expression

Die Zielspalte oder der Ausdruck, fur die/den die Funktion ausgefuhrt wird.

IGNORE NULLS

Die Funktion gibt den letzten Wert im Rahmen zurtck, der nicht NULL ist (oder NULL, wenn alle
Werte NULL sind).

RESPECT NULLS

Gibt an, dass bei der Bestimmung der zu verwendenden Zeile Nullwerte bertcksichtigt werden
AWS Clean Rooms sollen. Wenn Sie IGNORE NULLS nicht angeben, wird RESPECT NULLS
standardmafig unterstitzt.

OVER

Fuhrt die Fensterklauseln fir die Funktion ein.

Fensterfunktionen 356

AWS Clean Rooms SQL-Referenz

PARTITION BY expr_list

Definiert das Fenster fir die Funktion in Bezug auf mindestens einen Ausdruck.

ORDER BY order_list

Sortiert die Zeilen innerhalb der einzelnen Partitionen. Wenn die PARTITION BY-Klausel nicht
angegeben ist, sortiert ORDER BY die gesamte Tabelle. Wenn Sie eine ORDER BY-Klausel
angeben, mussen Sie auch eine frame_clause angeben.

Die Ergebnisse sind von der Anordnung der Daten abhangig. Die Ergebnisse sind in den
folgenden Fallen nicht deterministisch:

» Wenn keine ORDER BY-Klausel angegeben ist und eine Partition zwei verschiedene Werte fir
einen Ausdruck enthalt

* Wenn der Ausdruck zu verschiedenen Werten ausgewertet wird, die demselben Wert in der
ORDER BY-Liste entsprechen

frame_clause

Wenn eine ORDER BY-Klausel fir eine Aggregationsfunktion verwendet wird, ist eine explizite
Rahmenklausel erforderlich. Die Rahmenklausel gibt den Satz von Zeilen im Fenster einer
Funktion genauer an, einschlieBBlich oder ausschliel3lich Satzen von Zeilen im geordneten
Ergebnis. Die Rahmenklausel besteht aus dem Schltsselwort ROWS und verknlpften
Spezifikatoren. Siehe Ubersicht tiber die Syntax von Fensterfunktionen.

Ruckgabetyp

Diese Funktionen unterstitzen Ausdriicke, die primitive AWS Clean Rooms Datentypen verwenden.
Der Ruckgabetyp ist mit dem Datentyp von expression identisch.

Beispiele

Im folgenden Beispiel wird die Sitzplatzkapazitat flr die einzelnen Veranstaltungsorte in der Tabelle
VENUE zurlckgegeben, wobei die Ergebnisse nach Kapazitat (hoch zu niedrig) geordnet sind. Die
Funktion LAST wird verwendet, um den Namen des Veranstaltungsorts auszuwahlen, der der letzten
Zeile im Frame entspricht: in diesem Fall der Zeile mit der geringsten Anzahl von Sitzplatzen. Die
Ergebnisse werden nach Bundesstaat partitioniert. Wenn der Wert fur VENUESTATE geandert wird,
wird daher ein neuer letzter Wert ausgewahlt. Der Fensterrahmen ist unbegrenzt. Daher wird fur jede
Zeile in jeder Partition derselbe letzte Wert ausgewahilt.

Fensterfunktionen 357

AWS Clean Rooms SQL-Referenz

Im Fall von Kalifornien wird Shoreline Amphitheatre fir jede Zeile in der Partition
zurlickgegeben, da es die kleinste Zahl von Sitzplatzen hat (22000).

select venuestate, venueseats, venuename,

last(venuename)

over(partition by venuestate

oxrder by venueseats desc

rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)

oxrder by venuestate;

venuestate | venueseats | venuename last
___________ o

o e e e e e, ——————

CA | 70561 | Qualcomm Stadium | Shoreline Amphitheatre
CA | 69843 | Monster Park | Shoreline Amphitheatre
CA | 63026 | McAfee Coliseum | Shoreline Amphitheatre
CA | 56000 | Dodger Stadium | Shoreline Amphitheatre
CA | 45050 | Angel Stadium of Anaheim | Shoreline Amphitheatre
CA | 42445 | PETCO Park | Shoreline Amphitheatre
CA | 41503 | AT&T Park | Shoreline Amphitheatre
CA | 22000 | Shoreline Amphitheatre | Shoreline Amphitheatre
co | 76125 | INVESCO Field | Coors Field

co | 50445 | Coors Field | Coors Field

DC | 41888 | Nationals Park | Nationals Park

FL | 74916 | Dolphin Stadium | Tropicana Field

FL | 73800 | Jacksonville Municipal Stadium | Tropicana Field

FL | 65647 | Raymond James Stadium | Tropicana Field

FL | 36048 | Tropicana Field | Tropicana Field

Die Fensterfunktion LAST_VALUE

Bei einem geordneten Satz von Zeilen gibt die Funktion LAST_VALUE den Wert des Ausdrucks in
Bezug auf die letzte Zeile im Rahmen zurick.

Informationen zur Auswahl der ersten Zeile im Rahmen finden Sie unter Die Fensterfunktion
FIRST_VALUE.

Syntax

LAST_VALUE(expression)[IGNORE NULLS | RESPECT NULLS]

Fensterfunktionen 358

AWS Clean Rooms SQL-Referenz

OVER (

[PARTITION BY expr_list]

[ORDER BY order_list frame_clause]
)

Argumente

expression

Die Zielspalte oder der Ausdruck, fur die/den die Funktion ausgefihrt wird.

IGNORE NULLS

Die Funktion gibt den letzten Wert im Rahmen zurick, der nicht NULL ist (oder NULL, wenn alle
Werte NULL sind).

RESPECT NULLS

Gibt an, dass bei der Bestimmung der zu verwendenden Zeile Nullwerte bertcksichtigt werden
AWS Clean Rooms sollen. Wenn Sie IGNORE NULLS nicht angeben, wird RESPECT NULLS
standardmafig unterstitzt.

OVER

Fuhrt die Fensterklauseln fiir die Funktion ein.

PARTITION BY expr_list

Definiert das Fenster fur die Funktion in Bezug auf mindestens einen Ausdruck.

ORDER BY order _list

Sortiert die Zeilen innerhalb der einzelnen Partitionen. Wenn die PARTITION BY-Klausel nicht
angegeben ist, sortiert ORDER BY die gesamte Tabelle. Wenn Sie eine ORDER BY-Klausel
angeben, mussen Sie auch eine frame_clause angeben.

Die Ergebnisse sind von der Anordnung der Daten abhangig. Die Ergebnisse sind in den
folgenden Fallen nicht deterministisch:

+ Wenn keine ORDER BY-Klausel angegeben ist und eine Partition zwei verschiedene Werte fur
einen Ausdruck enthalt

« Wenn der Ausdruck zu verschiedenen Werten ausgewertet wird, die demselben Wert in der
ORDER BY-Liste entsprechen

Fensterfunktionen 359

AWS Clean Rooms SQL-Referenz

frame_clause

Wenn eine ORDER BY-Klausel fur eine Aggregationsfunktion verwendet wird, ist eine explizite
Rahmenklausel erforderlich. Die Rahmenklausel gibt den Satz von Zeilen im Fenster einer
Funktion genauer an, einschliel3lich oder ausschliellich Satzen von Zeilen im geordneten
Ergebnis. Die Rahmenklausel besteht aus dem Schllsselwort ROWS und verknUpften
Spezifikatoren. Siehe Ubersicht (iber die Syntax von Fensterfunktionen.

Ruckgabetyp

Diese Funktionen unterstitzen Ausdriicke, die primitive AWS Clean Rooms Datentypen verwenden
Der Rickgabetyp ist mit dem Datentyp von expression identisch.

Beispiele

Im folgenden Beispiel wird die Sitzplatzkapazitat fur die einzelnen Veranstaltungsorte in der Tabelle
VENUE zuriickgegeben, wobei die Ergebnisse nach Kapazitat (hoch zu niedrig) geordnet sind.

Die Funktion LAST_VALUE wird verwendet, um den Namen des Veranstaltungsorts auszuwahlen,
der der letzten Zeile im Rahmen entspricht, in diesem Fall der Zeile mit der geringsten Anzahl von

Sitzplatzen. Die Ergebnisse werden nach Bundesstaat partitioniert. Wenn der Wert fir VENUESTATE

geandert wird, wird daher ein neuer letzter Wert ausgewahlt. Der Fensterrahmen ist unbegrenzt.
Daher wird flir jede Zeile in jeder Partition derselbe letzte Wert ausgewahilt.

Im Fall von Kalifornien wird Shoreline Amphitheatre fir jede Zeile in der Partition
zuruckgegeben, da es die kleinste Zahl von Sitzplatzen hat (22000).

select venuestate, venueseats, venuename,
last_value(venuename)

over(partition by venuestate

oxrder by venueseats desc

rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)

oxrder by venuestate;

venuestate | venueseats | venuename last_value
___________ B
D

CA | 70561 | Qualcomm Stadium | Shoreline Amphitheatre
CA | 69843 | Monster Park | Shoreline Amphitheatre
CA | 63026 | McAfee Coliseum | Shoreline Amphitheatre
CA | 56000 | Dodger Stadium | Shoreline Amphitheatre

Fensterfunktionen

360

AWS Clean Rooms SQL-Referenz

CA | 45050 | Angel Stadium of Anaheim | Shoreline Amphitheatre
CA | 42445 | PETCO Park | Shoreline Amphitheatre
CA | 41503 | AT&T Park | Shoreline Amphitheatre
CA | 22000 | Shoreline Amphitheatre | Shoreline Amphitheatre
co | 76125 | INVESCO Field | Coors Field

co | 50445 | Coors Field | Coors Field

DC | 41888 | Nationals Park | Nationals Park

FL | 74916 | Dolphin Stadium | Tropicana Field

FL | 73800 | Jacksonville Municipal Stadium | Tropicana Field

FL | 65647 | Raymond James Stadium | Tropicana Field

FL | 36048 | Tropicana Field | Tropicana Field

Die Fensterfunktion LEAD

Die Fensterfunktion LEAD gibt die Werte flr eine Zeile in einem bestimmten Offset unterhalb (nach)
der aktuellen Zeile in der Partition zuruck.

Syntax

LEAD (value_expr [, offset 1])
[IGNORE NULLS | RESPECT NULLS]
OVER ([PARTITION BY window_partition] ORDER BY window_ordering)

Argumente
value_expr

Die Zielspalte oder der Ausdruck, fur die/den die Funktion ausgefihrt wird.

offset

Ein optionaler Parameter, der die Anzahl der Zeilen unterhalb der aktuellen Zeile angibt, fur die
Werte zuriickgegeben werden sollen. Beim Offset kann es sich um eine ganzzahlige Konstante
oder um einen Ausdruck handeln, der zu einer Ganzzahl ausgewertet wird. Wenn Sie keinen
Offset angeben, AWS Clean Rooms verwendet 1 als Standardwert. Ein Offset von @ gibt die
aktuelle Zeile an.

IGNORE NULLS

Eine optionale Angabe, die angibt, dass Nullwerte bei der Bestimmung der zu verwendenden
Zeile Ubersprungen werden AWS Clean Rooms sollen. Wenn IGNORE NULLS nicht angegeben
wird, werden Null-Werte berucksichtigt.

Fensterfunktionen 361

AWS Clean Rooms SQL-Referenz

® Note

Sie konnen einen NVL- oder COALESCE-Ausdruck verwenden, um die Null-Werte durch
einen anderen Wert zu ersetzen.

RESPECT NULLS

Gibt an, dass Nullwerte bei der Bestimmung der zu verwendenden Zeile beriicksichtigt werden
AWS Clean Rooms sollen. Wenn Sie IGNORE NULLS nicht angeben, wird RESPECT NULLS
standardmafig unterstitzt.

OVER

Gibt die Fensterpartitionierung und -anordnung an. Die OVER-Klausel darf keine
Fensterrahmenspezifikation enthalten.

PARTITION BY window_partition

Ein optionales Argument, das den Datensatzbereich fur die einzelnen Gruppen in der OVER-
Klausel festlegt.

ORDER BY window_ordering

Sortiert die Zeilen innerhalb der einzelnen Partitionen.

Die LEAD-Fensterfunktion unterstttzt Ausdriicke, die einen der AWS Clean Rooms Datentypen
verwenden. Der Riuckgabetyp ist mit dem Typ von value_expr identisch.

Beispiele

Im folgenden Beispiel wird die Provision flr Veranstaltungen in der Tabelle SALES angegeben, fur
die am 1. und 2. Januar 2008 Tickets verkauft wurden, sowie die Provision, die fUr verkaufte Tickets
im anschlieBenden Verkauf gezahlt wurden.

select eventid, commission, saletime,

lead(commission, 1) over (order by saletime) as next_comm

from sales where saletime between '2008-01-01 00:00:00' and '2008-01-02 12:59:59'
order by saletime;

eventid | commission saletime | next_comm

Fensterfunktionen 362

AWS Clean Rooms

SQL-Referenz

————————— B e e e e T I
6213 | 52.05 | 2008-01-01 01:00:19 | 106
7003 | 106.20 | 2008-01-01 ©02:30:52 | 103.
8762 | 103.20 | 2008-01-01 ©03:50:02 | 70.
1150 | 70.80 | 2008-01-01 06:06:57 | 50.
1749 | 50.55 | 2008-01-01 07:05:02 | 125.
8649 | 125.40 | 2008-01-01 07:26:20 | 35
2903 | 35.10 | 2008-01-01 ©09:41:06 | 259.
6605 | 259.50 | 2008-01-01 12:50:55 | 628.
6870 | 628.80 | 2008-01-01 12:59:34 | 74,
6977 | 74.10 | 2008-01-02 01:11:16 | 13.
4650 | 13.50 | 2008-01-02 @1:40:59 | 26.
4515 | 26.55 | 2008-01-02 ©1:52:35 | 22.
5465 | 22.80 | 2008-01-02 ©02:28:01 | 45,
5465 | 45.60 | 2008-01-02 02:28:02 | 53.
7003 | 53.10 | 2008-01-02 ©02:31:12 | 70.
4124 | 70.35 | 2008-01-02 ©03:12:50 | 36.
1673 | 36.15 | 2008-01-02 ©03:15:00 | 1300.
(39 rows)

Die Fensterfunktion PERCENT_RANK

Berechnet den prozentualen Rang einer bestimmten Zeile. Der prozentuale Rang wird anhand der
folgenden Formel festgelegt:

(x -

1) / (the number of rows in the window or partition - 1)

wobei x der Rang der aktuellen Zeile ist. Der folgende Datensatz zeigt die Verwendung dieser

Formel:

Row#
15
20
20
20
30
30
40

N O o AN R

Value Rank Calculation PERCENT_RANK
Q.

N o O NN DN R

(1-1)/(7-1)
(2-1)/(7-1)
(2-1)/(7-1)
(2-1)/(7-1)
(5-1)/(7-1)
(5-1)/(7-1)
(7-1)/(7-1)

0000

0.1666

[l S IS B SR)

.1666
.1666
.6666
.6666
.0000

Der Ruckgabewertbereich ist 0 bis 1 (einschlieBlich). Die erste Zeile in jedem Satz besitzt den
PERCENT_RANK 0.

Fensterfunktionen

363

AWS Clean Rooms SQL-Referenz

Syntax

PERCENT_RANK ()

OVER (

[PARTITION BY partition_expression]
[ORDER BY order_list]

)

Argumente

()

Die Funktion verwendet keine Argumente. Es ist jedoch eine leere Klammer erforderlich.
OVER

Eine Klausel, die die Fensterpartitionierung angibt. Die OVER-Klausel darf keine
Fensterrahmenspezifikation enthalten.

PARTITION BY partition_expression

Optional. Ein Ausdruck, der den Datensatzbereich fir die einzelnen Gruppen in der OVER-Klausel
festlegt.

ORDER BY order_list

Optional. Der Ausdruck, anhand dessen der prozentuale Rang berechnet wird. Der Datentyp des
Ausdrucks muss entweder numerisch sein oder implizit in einen solchen konvertierbar sein. Wenn
ORDER BY ausgelassen wird, ist der Rickgabewert fur alle Zeilen 0.

Wenn ORDER BY nicht zu einer spezifischen Reihenfolge fiihrt, ist die Reihenfolge der Zeilen
nicht deterministisch. Weitere Informationen finden Sie unter Spezifisches Anordnen von Daten flur
Fensterfunktionen.

Rickgabetyp
FLOATS
Beispiele

Im folgenden Beispiel wird der prozentuale Rang der Verkaufsmengen fur die einzelnen Verkaufer
berechnet:

select sellerid, qty, percent_rank()

Fensterfunktionen 364

AWS Clean Rooms SQL-Referenz

over (partition by sellerid order by qty)
from winsales;

sellerid qty percent_rank

A AN DNMNOWWWWREREPRPR
N
S
~
v

P O r O Fr &0 O Fr o0
()]
~N

Eine Beschreibung der Tabelle WINSALES finden Sie unter Beispieltabelle mit Beispielen von
Fensterfunktionen.

Die Fensterfunktion RANK

Die Fensterfunktion RANK legt den Rang eines Werts in einer Gruppe von Werten fest, basierend
auf dem ORDER BY-Ausdruck in der OVER-Klausel. Wenn die optionale PARTITION BY-Klausel
vorhanden ist, wird die Rangfolge fur jede Gruppe von Zeilen neu festgelegt. Zeilen mit gleichen
Werten fur die Rangkriterien erhalten denselben Rang. AWS Clean Roomsaddiert die Anzahl der
gleichwertigen Zeilen zum gleichen Rang, um den nachsten Rang zu berechnen, sodass es sich bei
den Rangen moglicherweise nicht um fortlaufende Zahlen handelt. Wenn beispielsweise zwei Zeilen
den Rang 1 erhalten, ist der nachste Rang 3.

RANK unterscheidet sich in einer Hinsicht von Die Fensterfunktion DENSE_RANK: Wenn zwei oder
mehr Zeilen den gleichen Rang erhalten, entsteht bei DENSE_RANK in der Rangfolge der Werte
keine Licke. Wenn beispielsweise zwei Zeilen den Rang 1 erhalten, ist der nachste Rang 2.

Sie kdnnen in derselben Abfrage Rangfestlegungsfunktionen mit unterschiedlichen PARTITION BY-
und ORDER BY-Klauseln verwenden.

Syntax

RANK () OVER

(
[PARTITION BY expr_list]

Fensterfunktionen 365

AWS Clean Rooms SQL-Referenz

[ORDER BY order_list]
)

Argumente

()

Die Funktion verwendet keine Argumente. Es ist jedoch eine leere Klammer erforderlich.
OVER

Die Fensterklauseln fur die Funktion RANK.
PARTITION BY expr_list

Optional. Ein oder mehrere Ausdruicke, der/die das Fenster definiert/definieren.
ORDER BY order_list

Optional. Definiert die Spalten, auf denen die Rangfestlegungswerte basieren. Wenn PARTITION
BY nicht angegeben ist, verwendet ORDER BY die gesamte Tabelle. Wenn ORDER BY
ausgelassen wird, ist der Rickgabewert fir alle Zeilen 1.

Wenn ORDER BY nicht zu einer spezifischen Reihenfolge fiihrt, ist die Reihenfolge der Zeilen
nicht deterministisch. Weitere Informationen finden Sie unter Spezifisches Anordnen von Daten fur
Fensterfunktionen.

Ruckgabetyp
INTEGER
Beispiele

Im folgenden Beispiel wird die Tabelle nach der verkauften Menge (standardmafig in aufsteigender
Reihenfolge) geordnet und jeder Zeile einen Rang zugewiesen. Der Rangwert 1 ist der Wert mit
dem hdchsten Rang. Die Ergebnisse werden sortiert, nachdem die Fensterfunktionsergebnisse
angewendet wurden:

select salesid, qty,

rank() over (order by qty) as rnk
from winsales

order by 2,1;

salesid | qty | rnk

Fensterfunktionen 366

AWS Clean Rooms SQL-Referenz

________ B B
10001 | 10 | 1
10006 | 10 | 1
30001 | 10 | 1
40005 | 10 | 1
30003 | 15| 5
20001 | 20 | 6
20002 | 20 | 6
30004 | 20 | 6
10005 | 30 | 9
30007 | 30 | 9
40001 | 40 | 11
(11 rows)

Beachten Sie, dass die dulere ORDER BY-Klausel in diesem Beispiel die Spalten 2 und 1 enthalt,
um sicherzustellen, dass bei jeder Ausfihrung dieser Abfrage konsistent sortierte Ergebnisse
AWS Clean Rooms zurtickgegeben werden. Zeilen mit den Umsatzen IDs 10001 und 10006
haben beispielsweise identische QTY- und RNK-Werte. Durch die Anordnung des endgultigen
Ergebnissatzes nach Spalte 1 wird sichergestellt, dass die Zeile 10001 stets vor der Zeile 10006
angeordnet wird. Eine Beschreibung der Tabelle WINSALES finden Sie unter Beispieltabelle mit
Beispielen von Fensterfunktionen.

Im folgenden Beispiel wird die Anordnung fir die Fensterfunktion () umgekehrt. (order by qty
desc). Jetzt wird der hochste Rangwert auf den grofiten QTY-Wert angewendet.

select salesid, qty,
rank() over (order by qty desc) as rank
from winsales

order by 2,1;
salesid | qty | rank
_________ e
10001 | 10 | 8
10006 | 10 | 8
30001 | 10 | 8
40005 | 10 | 8
30003 | 15 | 7
20001 | 20 | 4
20002 | 20 | 4
30004 | 20 | 4
10005 | 30 | 2
30007 | 30 | 2

Fensterfunktionen 367

AWS Clean Rooms SQL-Referenz

40001 | 40 | 1
(11 rows)

Eine Beschreibung der Tabelle WINSALES finden Sie unter Beispieltabelle mit Beispielen von
Fensterfunktionen.

Im folgenden Beispiel wird die Tabelle nach SELLERID partitioniert, die einzelnen Partitionen nach
Menge (in absteigender Reihenfolge) geordnet und jeder Zeile ein Rang zugewiesen. Die Ergebnisse
werden sortiert, nachdem die Fensterfunktionsergebnisse angewendet wurden.

select salesid, sellerid, qty, rank() over
(partition by sellerid

order by gty desc) as rank

from winsales

order by 2,3,1;

salesid | sellerid | qty | rank

———————— R e i
10001 | 1] 10] 2
10006 | 1| 10| 2
10005 | 1] 30| 1
20001 | 2] 20| 1
20002 | 2| 20| 1
30001 | 3] 10| ¢4
30003 | 3|1 15| 3
30004 | 3] 20| 2
30007 | 31 30| 1
40005 | 4|1 10| 2
40001 | 4 40| 1

(11 rows)

Die Fensterfunktion ROW_NUMBER

Legt die Ordnungszahl der aktuellen Zeile innerhalb einer Gruppe von Zeilen fest, ab 1 zahlend,
basierend auf dem ORDER BY-Ausdruck in der OVER-Klausel. Wenn die optionale PARTITION
BY-Klausel vorhanden ist, werden die Ordnungszahlen fur jede Gruppe von Zeilen neu festgelegt.
Zeilen mit gleichen Werten fur die ORDER BY-Ausdricke erhalten auf nicht deterministische Weise
unterschiedliche Zeilenzahlen.

Syntax

ROW_NUMBER () OVER

Fensterfunktionen 368

AWS Clean Rooms SQL-Referenz

(
[PARTITION BY expr_list]

[ORDER BY order_list]
)

Argumente

()

Die Funktion verwendet keine Argumente. Es ist jedoch eine leere Klammer erforderlich.

OVER

Die Fensterklauseln fir die Funktion ROW_NUMBER.
PARTITION BY expr_list

Optional. Ein oder mehrere Ausdrucke, der/die die Funktion ROW_NUMBER definiert/definieren.
ORDER BY order_list

Optional. Der Ausdruck, der die Spalten definiert, auf denen die Zeilennummern basieren. Wenn
PARTITION BY nicht angegeben ist, verwendet ORDER BY die gesamte Tabelle.

Wenn ORDER BY nicht zu einer eindeutigen Reihenfolge flihrt oder ausgelassen wird, ist die
Reihenfolge der Zeilen nicht deterministisch. Weitere Informationen finden Sie unter Spezifisches
Anordnen von Daten fur Fensterfunktionen.

Ruckgabetyp
BIGINT
Beispiele

Im folgenden Beispiel werden die Tabelle nach SELLERID partitioniert und die einzelnen Partitionen
nach QTY angeordnet (in aufsteigender Reihenfolge). AnschlieRend wird jeder Zeile eine
Zeilennummer zugewiesen. Die Ergebnisse werden sortiert, nachdem die Fensterfunktionsergebnisse
angewendet wurden.

select salesid, sellerid, qty,
row_number() over

(partition by sellerid

order by gty asc) as row

Fensterfunktionen 369

AWS Clean Rooms SQL-Referenz

from winsales

order by 2,4;
salesid | sellerid | qty | row
--------- R et et et
10006 | 1] 10 | 1
10001 | 1] 10 | 2
10005 | 1] 30 | 3
20001 | 2| 20 | 1
20002 | 2 | 20 | 2
30001 | 31 10 1
30003 | 3| 15 | 2
30004 | 3] 20 | 3
30007 | 31 30 | 4
40005 | 41 10 1
40001 | 4 | 40 | 2
(11 rows)

Eine Beschreibung der Tabelle WINSALES finden Sie unter Beispieltabelle mit Beispielen von
Fensterfunktionen.

AWS Clean Rooms Spark-SQL-Bedingungen

Bedingungen sind Aussagen aus einem oder mehreren Ausdriicken und logischen Operatoren,
die als Ergebnis ,Wahr®, ,Falsch“ oder ,Unbekannt® ausgewertet werden. Bedingungen werden
manchmal auch als Pradikate bezeichnet.

Syntax

comparison_condition
logical_condition
range_condition
pattern_matching_condition
null_condition
EXISTS_condition
IN_condition

I
I
I
I
I
I
(® Note

Bei Vergleichen von Zeichenfolgen und bei LIKE-Patternmatches wird die Grof3-/
Kleinschreibung berucksichtigt. Zum Beispiel entsprechen sich 'A' und 'a' nicht. Wenn Sie

SQL-Bedingungen 370

AWS Clean Rooms SQL-Referenz

beim Patternmatching die Grof3-/Kleinschreibung nicht berticksichtigen mdchten, werden Sie
statt LIKE das Pradikat ILIKE.

Die folgenden SQL-Bedingungen werden in AWS Clean Rooms Spark SQL unterstutzt.

Themen

» Vergleichsoperatoren

» Logische Bedingungen

« Patternmatching-Bedingungen
« BETWEEN-Bereichsbedingung

» ,Null“-Bedingung
EXISTS-Bedingung
» IN-Bedingung

Vergleichsoperatoren

Vergleichsbedingungen machen eine Aussage bezuglich der logischen Beziehungen zwischen zwei
Werten. Alle Vergleichsbedingungen sind bindre Operatoren mit einem Booleschen Riickgabewert.

AWS Clean Rooms Spark SQL unterstitzt die in der folgenden Tabelle beschriebenen
Vergleichsoperatoren.

Operator Syntax Beschreibung

! lexpression Der logische NOT Operator.
Wird verwendet, um einen
booleschen Ausdruck zu
negieren, was bedeutet, dass
er das Gegenteil des Werts
des Ausdrucks zurlckgibt.

Das! Der Operator kann
auch mit anderen logischen
Operatoren wie AND und
OR kombiniert werden,

Vergleichsoperatoren 371

AWS Clean Rooms

SQL-Referenz

Operator

Syntax

Beschreibung

um komplexere boolesche
Ausdricke zu erzeugen.

Der Vergleichsoperator
~Weniger als“. Wird verwendet
, um zwei Werte zu vergleich
en und festzustellen, ob der
Wert auf der linken Seite
kleiner als der Wert auf der
rechten Seite ist.

Der Vergleichsoperator
,Groler als®. Wird verwendet,
um zwei Werte zu vergleichen
und festzustellen, ob der Wert
auf der linken Seite grof3er als
der Wert auf der rechten Seite
ist.

Der Vergleichsoperator
.Kleiner als“ oder ,gleich®. Wird
verwendet, um zwei Werte zu
vergleichen, und gibt zurlck,
true ob der Wert auf der
linken Seite kleiner oder gleich
dem Wert auf der rechten
Seite ist, und false andernfal
Is.

Der Vergleichsoperator
,Grofler als oder gleich®. Wird
verwendet, um zwei Werte

zu vergleichen und festzuste
llen, ob der Wert auf der linken
Seite groRer oder gleich dem
Wert auf der rechten Seite ist.

Vergleichsoperatoren

372

AWS Clean Rooms

SQL-Referenz

Operator

<> oder =

a <> bodera

= b

Beschreibung

Der Gleichheitsverglei
chsoperator, der zwei Werte
vergleicht und zurtickgibt,
true ob sie gleich sind, und
false andernfalls.

Der Vergleichsoperator
»ungleich®, der zwei Werte
vergleicht und zurickgibt,
true wenn sie nicht gleich

sind, und false andernfalls.

Vergleichsoperatoren

373

AWS Clean Rooms

SQL-Referenz

Operator Syntax

Beispiele

Einige einfache Beispiele flir Vergleichsbedingungen:

o o

Beschreibung

Der Standardoperator flir

den Gleichheitsvergleich, der
zwei Werte vergleicht und
zuruckgibt, true ob sie gleich
sind, und false andernfalls.

(@ Note

Der Operator ==
unterscheidet beim
Vergleich von
Zeichenkettenwerte

n zwischen Grof3-

und Kleinschreibung.
Wenn Sie einen
Vergleich ohne
Berlcksichtigung der
Grof3- und Kleinschr
eibung durchfihr

en mussen, konnen
Sie Funktionen

wie UPPER () oder
LOWER () verwenden,
um die Werte vor dem
Vergleich in dieselbe
Grof3- und Kleinschr
eibung umzuwandeln.

Vergleichsoperatoren

374

AWS Clean Rooms SQL-Referenz

min(x) >= 5
gtysold = any (select qtysold from sales where dateid = 1882

Die folgende Abfrage gibt die ID-Werte fur alle Eichhérnchen zuriick, die derzeit nicht auf Futtersuche
sind.

SELECT id FROM squirrels
WHERE !is_foraging

Die folgende Abfrage gibt Veranstaltungsorte mit mehr als 10.000 Sitzplatzen aus der VENUE-
Tabelle zurtck:

select venueid, venuename, venueseats from venue
where venueseats > 10000
order by venueseats desc;

venueid | venuename | venueseats
_________ S SO
83 | FedExField | 91704

6 | New York Giants Stadium | 80242

79 | Arrowhead Stadium | 79451

78 | INVESCO Field | 76125

69 | Dolphin Stadium | 74916

67 | Ralph Wilson Stadium | 73967

76 | Jacksonville Municipal Stadium | 73800

89 | Bank of America Stadium | 73298

72 | Cleveland Browns Stadium | 73200

86 | Lambeau Field | 72922

(57 rows)

In diesem Beispiel werden diejenigen Benutzer (USERID) aus der Tabelle USERS ausgewahlt, die
Rockmusik schatzen:

select userid from users where likerock = 't' order by 1 limit 5;

userid

Vergleichsoperatoren 375

AWS Clean Rooms SQL-Referenz

13
16
(5 rows)

In diesem Beispiel werden diejenigen Benutzer(USERID) aus der Tabelle USERS ausgewahlt, von
denen nicht bekannt ist, ob sie Rockmusik schatzen:

select firstname, lastname, likerock
from users

where likerock is unknown

order by userid limit 10;

firstname | lastname | likerock
__________ o
Rafael | Taylor |

Vladimir | Humphrey |

Barry | Roy |

Tamekah | Juarez

Mufutau | Watkins |

Naida | Calderon |

Anika | Huff |

Bruce | Beck |

Mallory | Farrell |

Scarlett | Mayer |

(10 rows

Beispiele mit einer TIME-Spalte

Die folgende Beispieltabelle TIME_TEST enthalt eine Spalte TIME_VAL (Typ TIME) mit drei
eingefigten Werten.

select time_val from time_test;

time_val

20:00:00
00:00:00.5550
00:58:00

Im folgenden Beispiel werden die Stunden aus jedem timetz_val extrahiert.

select time_val from time_test where time_val < '3:00';

Vergleichsoperatoren 376

AWS Clean Rooms SQL-Referenz

time_val

00:00:00.5550
00:58:00

Im folgenden Beispiel werden zwei Zeitliterale verglichen.

select time '18:25:33.123456' = time '18:25:33.123456"';
?column?

Beispiele mit einer TIMETZ-Spalte

Die folgende Beispieltabelle TIMETZ_TEST enthalt eine Spalte TIMETZ_VAL (Typ TIMETZ) mit drei
eingefugten Werten.

select timetz_val from timetz_test;

timetz_val

04:00:00+00
00:00:00.5550+00
05:58:00+00

Im folgenden Beispiel werden nur die TIMETZ-Werte ausgewahlt, die kleiner als sind 3:00:00 UTC.
Der Vergleich erfolgt nach der Umwandlung des Wertes in UTC.

select timetz_val from timetz_test where timetz_val < '3:00:00 UTC';
timetz_val

00:00:00.5550+00

Im folgenden Beispiel werden zwei TIMETZ-Literale verglichen. Beim Vergleich wird die Zeitzone
ignoriert.

select time '18:25:33.123456 PST' < time '19:25:33.123456 EST';

?column?

Vergleichsoperatoren 377

AWS Clean Rooms SQL-Referenz

t

Logische Bedingungen

Logische Bedingungen fiihren die Ergebnisse zweier Bedingungen zu einem Ergebnis zusammen.
Alle logischen Bedingungen sind bindre Operatoren mit einem Booleschen Rickgabewert.

Syntax

expression

{ AND | OR }
expression

NOT expression

Bei logischen Bedingungen wird eine dreiwertige Boolesche Logik verwendet, bei der der Wert ,Null*
als ,unbekannt” interpretiert wird. Die folgende Tabelle beschreibt die Ergebnisse von logischen
Bedingungen, wobei E1 und E2 Ausdricke sind:

E1 E2 E1 AND E2 E1ORE2 NOT E2
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE TRUE
TRUE UNKNOWN UNKNOWN TRUE UNKNOWN
FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

FALSE UNKNOWN FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN TRUE

UNKNOWN FALSE FALSE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN

Der Operator NOT wird vor AND ausgewertet, und AND vor OR. Diese Auswertungsreihenfolge kann
durch Klammerung aul3er Kraft gesetzt werden.

Logische Bedingungen 378

AWS Clean Rooms SQL-Referenz

Beispiele

In dem folgenden Beispiel werden USERID und USERNAME aus der Tabelle USERS
zurtckgegeben, die sowohl Las Vegas als auch Sport mégen:

select userid, username from users
where likevegas = 1 and likesports =1
order by userid;

userid | username
________ e e
1 | JSG99FHE

67 | TwUleMzZT

87 | DUF19VXU

92 | HYP36WEQ

109 | FPL38HZK
120 | DMJ24GUZ
123 | QZR22XGQ
130 | ZQC82ALK
133 | LBN45WCH
144 | UCX@4IKN
165 | TEY6SOEB
169 | AYQ83HGO
184 | TVX65AZX

(2128 rows)

In dem nachsten Beispiel werden USERID und USERNAME aus der Tabelle USERS zurlickgegeben,
die Las Vegas oder Sport mogen: Diese Abfrage gibt alle Ergebnisse des vorangehenden Beispiels,
zuzuglich der Benutzer, die Las Vegas mogen, zuziglich der Benutzer, die Sport mogen.

select userid, username from users
where likevegas = 1 or likesports =1
order by userid;

userid | username

JSGO9FHE
PGLOSLII
IFT66TXU
AEB55QTM
NDQ15VBM
MSD36KVR

Logische Bedingungen 379

AWS Clean Rooms SQL-Referenz

10 | WKW41AIW
13 | QTF33MCG
15 | OWU78MTR
16 | ZMG93CDD
22 | RHT62AGI
27 | KOY@2CVE
29 | HUH27PKK

(18968 rows)

In der folgenden Abfrage wird die Bedingung OR in Klammern gesetzt, um alle Veranstaltungen zu
suchen, die in New York oder in Kalifornien stattfinden, und bei denen Macbeth gegeben wird:

select distinct venuename, venuecity

from venue join event on venue.venueid=event.venueid

where (venuestate = 'NY' or venuestate = 'CA') and eventname='Macbeth'
order by 2,1;

venuename | venuecity
__ U
Geffen Playhouse | Los Angeles
Greek Theatre | Los Angeles
Royce Hall | Los Angeles
American Airlines Theatre | New York City
August Wilson Theatre | New York City
Belasco Theatre | New York City
|

Bernard B. Jacobs Theatre New York City

Wenn die Klammerung in dem vorangehenden Beispiel entfernt wird, andert sich die der bei der
Auswertung ermittelte Wert und damit das Ergebnis der Abfrage.

In dem folgenden Beispiel wird der Operator NOT verwendet.

select * from category
where not catid=1

order by 1;

catid | catgroup | catname | catdesc

——————— e e e, R e e e e
2 | Sports | NHL | National Hockey League

3 | Sports | NFL | National Football League

4 | Sports | NBA | National Basketball Association

Logische Bedingungen 380

AWS Clean Rooms SQL-Referenz

5 | Sports | MLS | Major League Soccer

Im folgenden Beispiel wird eine NOT-Bedingung verwendet, gefolgt von einer AND-Bedingung:

select * from category
where (not catid=1) and catgroup='Sports'
order by catid;

catid | catgroup | catname | catdesc

2 | Sports National Hockey League

I I
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association
5 | Sports | MLS | Major League Soccer
(4 rows)

Patternmatching-Bedingungen

Ein Mustervergleichsoperator durchsucht eine Zeichenfolge nach einem im bedingten Ausdruck
angegebenen Muster und gibt je nachdem, ob er eine Ubereinstimmung findet, wahr oder falsch
zurick. AWS Clean Rooms Spark SQL verwendet die folgenden Methoden fur den Mustervergleich:

» LIKE-Ausdricke

Der LIKE-Operator vergleicht einen Zeichenfolgenausdruck (beispielsweise einen Spaltennamen)
mit einem Muster, in dem die Platzhalterzeichen % (Prozentzeichen) und _ (Unterstrich) verwendet
werden kdénnen. Beim LIKE-Patternmatching wird jeweils die gesamte Zeichenfolge durchsucht.
LIKE fiihrt eine Ubereinstimmung unter Beriicksichtigung der GroR-/Kleinschreibung durch.

Themen
+ LIKE
 RLIKE

LIKE

Der LIKE-Operator vergleicht einen Zeichenfolgenausdruck (beispielsweise einen Spaltennamen)
mit einem Muster, in dem die Platzhalterzeichen % (Prozentzeichen) und _ (Unterstrich) verwendet
werden kdonnen. Beim LIKE-Patternmatching wird jeweils die gesamte Zeichenfolge durchsucht. Um

Patternmatching-Bedingungen 381

AWS Clean Rooms SQL-Referenz

fur ein Muster anzugeben, dass es an einer beliebigen Stelle innerhalb der Zeichenfolge auftreten
kann, muss es in Prozentzeichen eingeschlossen werden.

LIKE unterscheidet zwischen Grof3- und Kleinschreibung.

Syntax

expression [NOT] LIKE | pattern [ESCAPE 'escape_char']

Argumente

expression

Ein glltiger UTF8-Zeichenfolgenausdruck (beispielsweise ein Spaltenname).
LIKE

Bei LIKE wird beim Patternmatching die Grof3-/Kleinschreibung berticksichtigt. Zur Durchfihrung
eines Patternmatchingvorgangs ohne Bericksichtigung der Grof3-/Kleinschreibung verwenden Sie
die LOWER-Funktion flr expression und pattern mit einer LIKE-Bedingung.

Im Gegensatz zu Vergleichspradikaten wie = und <> ignorieren LIKE-Pradikate nachfolgende
Leerzeichen nicht implizit. Um nachfolgende Leerzeichen zu ignorieren, verwenden Sie RTRIM,
oder konvertieren Sie eine CHAR-Spalte explizit zu VARCHAR.

Der Operator entspricht LIKE. ~~ Aul’erdem entspricht der ! ~~ Operator NOT LIKE.

pattern

Ein gultiger UTF8-Zeichenfolgenausdruck mit dem Muster fir das Patternmatching.

escape_char

Ein Zeichenfolgenausdruck zur Kennzeichnung von Metazeichen im Muster als Literal. Dies ist
standardmalRig die Zeichenfolge \\ (doppelter umgekehrter Schragstrich).

Wenn das Muster pattern keine Metazeichen enthalt, ist wird das Muster als die Zeichenfolge selbst
interpretiert. In diesem Fall liefert LIKE dasselbe Ergebnis wie der Gleichheitsoperator.

Die Zeichenfolgenausdricke kénnen vom Datentyp CHAR oder VARCHAR sein. Wenn
unterschiedliche Datentypen verwendet werden, konvertiert AWS Clean Rooms pattern in den
Datentyp des Ausdrucks expression.

LIKE unterstitzt die folgenden Metazeichen in Mustern:

Patternmatching-Bedingungen 382

AWS Clean Rooms

SQL-Referenz

Operator

o
i)

Beispiele

In der folgenden Tabelle werden Beispiele fur Patternmatching mit LIKE dargestellt.

Ausdruck

"abc' LIKE
"abc' LIKE
'abc' LIKE
"abc' LIKE

Beschreibung

Entspricht einer Folge von 0 oder mehr Zeichen.

Entspricht einem beliebigen Zeichen.

Ruckgabewert
Wahr

True

False

False

Das folgende Beispiel listet alle Stadte auf, die mit ,E“ beginnen:

select distinct city from users

where city like 'E%' order by city;

city

East Hartford
East Lansing

East Rutherford
East St. Louis

Easthampton

Easton
Eatontown
Eau Claire

Das folgende Beispiel listet alle Benutzer auf, deren Nachname ,ten“ enthalt:

select distinct lastname from users

Patternmatching-Bedingungen

383

AWS Clean Rooms SQL-Referenz

where lastname like '%ten%' order by lastname;
lastname

Christensen

Wooten

Das folgende Beispiel findet Stadte, deren drittes und viertes Zeichen ,ea“ sind . :

select distinct city from users where city like '__EA%' order by city;
city

Brea

Clearwater

Great Falls

Ocean City

Olean

Wheaton

(6 rows)

Im folgenden Beispiel wird die Standard-Escape-Zeichenfolge (\\) verwendet, um nach Zeichenfolgen
zu suchen, die ,start_“ (den Text start gefolgt von einem Unterstrich _) enthalten:

select tablename, "column" from my_table_def

where "column" like '%start_%'
limit 5;

tablename | column
___________________ U
my_s3client | start_time
my_tr_conflict | xact_start_ts
my_undone | undo_start_ts
my_unload_log | start_time
my_vacuum_detail | start_row

(5 rows)

Im folgenden Beispiel wird als Escape-Zeichenfolge * (das Caret-Zeichen) verwendet, und dann wird
nach Zeichenfolgen gesucht, die ,start_“ (den Text start gefolgt von einem Unterstrich _) enthalten:

select tablename, "column" from my_table_def

Patternmatching-Bedingungen 384

AWS Clean Rooms SQL-Referenz

where "column" like '%start”_%' escape '/’
limit 5;

tablename | column

start_time
xact_start_ts

my_s3client |
my_tr_conflict |
my_undone | undo_start_ts
my_unload_log | start_time
my_vacuum_detail | start_row

(5 rows)

RLIKE

Mit dem RLIKE-Operator kdnnen Sie Uberprifen, ob eine Zeichenfolge einem angegebenen Muster
fur regulare Ausdriicke entspricht.

Gibt zurlGcktrue, ob str Ubereinstimmtregexp, oder false nicht.

Syntax

rlike(str, regexp)

Argumente

str

Ein Zeichenkettenausdruck
Regexp
Ein Zeichenkettenausdruck. Die Regex-Zeichenfolge sollte ein regularer Java-Ausdruck sein.

Zeichenkettenliterale (einschliel3lich Regex-Muster) sind in unserem SQL-Parser nicht maskiert.
Um beispielsweise ,\ abc” zu entsprechen, kann ein regularer Ausdruck fiir Regexp ,A\ abc$“
lauten.

Beispiele

Im folgenden Beispiel wird der Wert des Konfigurationsparameters auf festgelegt.
spark.sql.parser.escapedStringlLiterals true Dieser Parameter ist spezifisch fur die
Spark-SQL-Engine. Der spark.sql.parser.escapedStringlLiterals Parameter in Spark

Patternmatching-Bedingungen 385

AWS Clean Rooms SQL-Referenz

SQL steuert, wie der SQL-Parser mit Escape-Zeichenkettenliteralen umgeht. Wenn dieser Wert auf
gesetzt isttrue, interpretiert der Parser Backslash-Zeichen (\) in Zeichenkettenliteralen als Escape-
Zeichen, sodass Sie Sonderzeichen wie Zeilenumbrtiche, Tabulatoren und Anfihrungszeichen in Ihre
Zeichenkettenwerte aufnehmen kénnen.

SET spark.sql.parser.escapedStringlLiterals=true;
spark.sql.parser.escapedStringlLiterals true

Mit spark.sql.parser.escapedStringlLiterals=true kdnnten Sie beispielsweise das
folgende Zeichenkettenliteral in Ihrer SQL-Abfrage verwenden:

SELECT 'Hello, world!\n'

Das Zeilenumbruchzeichen \n wirde in der Ausgabe als wortliches Zeilenumbruchzeichen
interpretiert werden.

Im folgenden Beispiel wird ein Musterabgleich mit regularen Ausdrticken durchgefiihrt. Das erste
Argument wird an den RLIKE-Operator tibergeben. Es ist eine Zeichenfolge, die einen Dateipfad
darstellt, wobei der tatsachliche Benutzername durch das Muster "****' ersetzt wird. Das zweite
Argument ist das Muster fir regulare Ausdriicke, das fur den Abgleich verwendet wird. Die Ausgabe
(true) gibt an, dass die erste Zeichenfolge ('%SystemDrive%\Users**** ') dem regularen
Ausdrucksmuster (' %SystemDrive%\\Users. *') entspricht.

SELECT rlike('%SystemDrive%\Users\John', '%SystemDrive%\Users.*');
true

BETWEEN-Bereichsbedingung

Eine BETWEEN-Bedingung Uberprtift, ob Ausdriicke Elemente aus einem Bereich von Werten
enthalten, der Uber die Schlisselwdrter BETWEEN und AND angegeben wird.

Syntax
expression [NOT] BETWEEN expression AND expression
Der Datentyp der Ausdricke kann ein numerischer, ein Zeichen- oder ein Datum/Uhrzeit-Typ sein,

die Typen mussen jedoch untereinander kompatibel sein. Der angegebene Bereich versteht sich
inklusive der angegebenen Werte.

BETWEEN-Bereichsbedingung 386

AWS Clean Rooms SQL-Referenz

Beispiele
Im ersten Beispiel werden die Transaktionen, bei denen 2, 3, oder 4 Tickets verkauft wurden, gezanhlt:

select count(*) from sales
where qtysold between 2 and 4;

104021
(1 row)

Bei der Bereichsbedingung werden die Anfangs- und Endwerte mitgezahlt (inklusiver Bereich).
select min(dateid), max(dateid) from sales

where dateid between 1900 and 1910;

1900 | 1910

Bei einer Bereichsbedingung muss der erste Wert stets der kleinere und der zweite der groRRere
sein. In dem folgenden Beispiel werden immer 0 Zeilen zurtickgegeben, weil die Werte in dem
Bedingungsausdruck vertauscht wurden:

select count(*) from sales
where qtysold between 4 and 2;

Wenn die Bedingung mit NOT negiert wird, werden nicht 0, sondern alle Zeilen gezahilt:

select count(*) from sales
where qtysold not between 4 and 2;

BETWEEN-Bereichsbedingung 387

AWS Clean Rooms

SQL-Referenz

172456
(1 row)

Die folgende Abfrage gibt eine Liste der Events mit 20.000 bis 50.000 Platzen zurtck:

select venueid, venuename, venueseats from venue
where venueseats between 20000 and 50000
order by venueseats desc;

venueid | venuename | venueseats
_________ S
116 | Busch Stadium | 49660

106 | Rangers BallPark in Arlington | 49115

96 | Oriole Park at Camden Yards | 48876

(22 rows)

Das folgende Beispiel zeigt die Verwendung von BETWEEN fur Datumswerte:

select salesid, qtysold, pricepaid, commission, saletime
from sales
where eventid between 1000 and 2000

and saletime between '2008-01-01' and '2008-01-03'
order by saletime asc;

salesid | qtysold | pricepaid | commission | saletime
———————— R e el ekt il
65082 | 4 | 472 | 70.8 | 1/1/2008 06:06
110917 | 1 | 337 | 50.55 | 1/1/2008 07:05
112103 | 1| 241 | 36.15 | 1/2/2008 03:15
137882 | 3| 1473 | 220.95 | 1/2/2008 05:18
40331 | 2 | 58 | 8.7 | 1/2/2008 05:57
110918 | 3 1011 | 151.65 | 1/2/2008 07:17
96274 | 1| 104 | 15.6 | 1/2/2008 07:18
150499 | 3| 135 | 20.25 | 1/2/2008 07:20
68413 | 2 | 158 | 23.7 | 1/2/2008 08:12

Beachten Sie, dass sich der BETWEEN-Bereich zwar inklusive der angegebenen Werte versteht,
die Datumsangaben jedoch standardmafig einen Zeitwert von 00:00:00 haben. Die einzige gultige
Zeile fur 3. Januar bei der Beispielabfrage ware eine Zeile mit der Saletime (Verkaufszeit) 1/3/2008

00:00:00.

BETWEEN-Bereichsbedingung

388

AWS Clean Rooms SQL-Referenz

,Null“-Bedingung
Das Tool NULL Bedingungstests auf Nullen, wenn ein Wert fehlt oder unbekannt ist.

Syntax

expression IS [NOT] NULL

Argumente
expression

Ein Ausdruck, beispielsweise eine Spalte.
IS NULL

Gibt ,wahr” zurtick, wenn der Wert des Ausdrucks ,Null“ ist, und ,falsch®, wenn der Ausdruck
einen Wert hat.

IS NOT NULL

Gibt ,falsch” zurlick, wenn der Wert des Ausdrucks ,Null“ ist, und ,wahr, wenn der Ausdruck
einen Wert hat.

Beispiel

Dieses Beispiel gibt an, wie oft die Tabelle SALES im Feld QTYSOLD ,Null“ enthalt:

select count(*) from sales
where qtysold is null;
count

EXISTS-Bedingung

Die EXISTS-Bedingung uberprift, ob eine Unterabfrage Zeilen zurtickgibt, und gibt ,wahr” zurlck,
wenn die Unterabfrage mindestens eine Zeile zurlickgibt. Bei Voranstellung von NOT wird gibt die
Bedingung ,wahr® zuriick, wenn die Unterabfrage 0 Zeilen zurlckgibt.

,Null“-Bedingung 389

AWS Clean Rooms SQL-Referenz

Syntax

[NOT] EXISTS (table_subquery)

Argumente

EXISTS

Ist ,wahr®, wenn die Unterabfrage table_subquery wenigstens eine Zeile zurlckgibt.
NOT EXISTS

Ist ,wahr“, wenn die Unterabfrage table_subquery keine Zeilen zurlckgibt.

table_subquery

Eine Unterabfrage, die zu einer Tabelle mit einer oder mehreren Spalten und einer oder mehreren
Zeilen ausgewertet wird.

Beispiel

In diesem Beispiel werden nacheinander die ldentifier flr jedes Datum aufgelistet, an dem ein
Verkauf stattgefunden hat:

select dateid from date

where exists (

select 1 from sales

where date.dateid = sales.dateid

)
order by dateid;

IN-Bedingung

Importieren in &S3; IN Die Bedingung testet einen Wert auf seine Zugehdrigkeit zu einer Gruppe von
Werten oder zu einer Unterabfrage.

IN-Bedingung 390

AWS Clean Rooms SQL-Referenz

Syntax

expression [NOT] IN (expr_list | table_subquery)

Argumente
expression

Ein numerischer, Zeichen- oder Datum/Uhrzeit-Ausdruck, der anhand der Ausdrucksliste expr_list
oder der Unterabfrage table_subquery ausgewertet wird, und der mit dem Datentyp der Liste bzw.
Abfrage kompatibel sein muss.

expr_list
Ein oder mehrere kommagetrennte Ausdriicke oder ein oder mehrere Mengen von
kommagetrennten Ausdricken, als Klammerausdruck.

table_subquery

Eine Unterabfrage, die zu einer Tabelle mit einer oder mehreren Zeilen ausgewertet wird, aber
hochstens eine Spalte in ihrer SELECT-Liste enthalt.

IN | NOT IN

In gibt ,wahr” zurtck, wenn der Ausdruck Element der Ausdrucksliste oder der Abfrage ist. NOT
IN gibt ,wahr® zurtick, wenn der Ausdruck darin nicht enthalten ist. IN und NOT IN geben NULL
und keine Zeilen zurlck, wenn der Ausdruck expression zu ,Null* ausgewertet wird, oder wenn
in der Ausdrucksliste expr_list bzw. der Unterabfrage table_subquery keine Ubereinstimmenden
Werte gefunden wurden und mindestens eine der verglichenen Zeilen als Ergebnis ,Null®
zuruckgegeben hat.

Beispiele
Die folgenden Bedingungen sind nur fir die aufgelisteten Werte wahr:

qtysold in (2, 4, 5)
date.day in ('Mon', 'Tues')
date.month not in ('Oct', 'Nov', 'Dec')

IN-Bedingung 391

AWS Clean Rooms SQL-Referenz

Optimierung bei grofden IN-Listen

Um die Abfrageleistung zu optimieren, werden IN-Listen mit mehr als 10 Werten intern als
Zahlenarray ausgewertet. IN-Listen mit weniger Werten werden als Reihe von OR-Pradikaten
ausgewertet. Diese Optimierung wird fiur die Datentypen SMALLINT, INTEGER, BIGINT, REAL,
DOUBLE PRECISION, BOOLEAN, CHAR, VARCHAR, DATE, TIMESTAMP und TIMESTAMPTZ
unterstutzt.

Den Effekt dieser Optimierung verdeutlicht die Ausgabe, wenn ein EXPLAIN Uber der Abfrage
ausgefuhrt wird. Beispiel:

explain select * from sales

QUERY PLAN

XN Seq Scan on sales (cost=0.00..6035.96 rows=86228 width=53)
Filter: (salesid = ANY ('{1,2,3,4,5,6,7,8,9,10,11}"'::integex[]))
(2 rows)

IN-Bedingung 392

AWS Clean Rooms SQL-Referenz

Verschachtelte Daten abfragen

AWS Clean Rooms bietet SQL-kompatiblen Zugriff auf relationale und verschachtelte Daten.

AWS Clean Rooms verwendet Punktnotation und Array-Index fir die Pfadnavigation beim Zugriff
auf verschachtelte Daten. Es erméglicht auch FROM Klauselelemente, die Gber Arrays iteriert und
fur Operationen ohne Verschachtelung verwendet werden kénnen. Die folgenden Themen enthalten
Beschreibungen der verschiedenen Abfragemuster, die die Verwendung des array/struct/map
Datentyps mit Pfad- und Arraynavigation, Entschachtelung und Verknipfungen kombinieren.

Themen

 Navigation
» Aufheben der Verschachtelung von Abfragen

* Lax-Semantik

» Arten der Introspektion

Navigation

AWS Clean Rooms ermdglicht die Navigation in Arrays und Strukturen unter Verwendung der
[...] Klammern- bzw. Punktnotation. Dariiber hinaus kdnnen Sie die Navigation mithilfe von
Punktschreibweise und Arrays mithilfe der Klammernotation in Strukturen mischen.

Example

In der folgenden Beispielabfrage wird beispielsweise davon ausgegangen, dass es sich bei der
c_orders Array-Datenspalte um ein Array mit einer Struktur handelt und ein Attribut benannt
o_orderkey ist.

SELECT cust.c_orders[@].o_orderkey FROM customer_orders_lineitem AS cust;

Sie kénnen die Punkt- und Klammernotationen in allen Arten von Abfragen verwenden, z. B. Filtern,
Verknupfen und Aggregation. Sie kdnnen diese Notationen in einer Abfrage verwenden, in der
normalerweise Spaltenverweise vorhanden sind.

Example

Im folgenden Beispiel wird eine SELECT-Anweisung verwendet, die Ergebnisse filtert.

Navigation 393

AWS Clean Rooms SQL-Referenz

SELECT count(*) FROM customer_orders_lineitem WHERE c_orders[@].o_orderkey IS NOT NULL;

Example

Im folgenden Beispiel wird die Klammer- und Punktnavigation in den Klauseln GROUP BY und
ORDER BY verwendet.

SELECT c_orders[@].o_orderdate,
c_orders[0@].o_orderstatus,
count(*)

FROM customer_orders_lineitem

WHERE c_orders[@].o_orderkey IS NOT NULL

GROUP BY c_orders[0@].o_orderstatus,

c_orders[0].o_orderdate

ORDER BY c_orders[@].o_orderdate;

Aufheben der Verschachtelung von Abfragen

AWS Clean Rooms Aktiviert die Iteration Uber Arrays, um Abfragen zu entfernen. Dazu navigiert es
im Array mithilfe der FROM-Klausel einer Abfrage.

Example

Das folgende Beispiel nutzt das vorherige Beispiel und iteriert Gber die Attributwerte fir c_orders.

SELECT o FROM customer_orders_lineitem c, c.c_orders o;

Die Unnesting-Syntax ist eine Erweiterung der FROM-Klausel. In Standard-SQL bedeutet die FROM-
Klausel x (AS) vy, dass y Uber jedes Tupel in Beziehung x iteriert. In diesem Fall bezieht sich x auf
eine Beziehung und y bezieht sich auf einen Alias fur Beziehung x. In dhnlicher Weise x (AS) vy
bedeutet die Syntax des Aufhebens von Verschachtelungen mithilfe des FROM-Klauselelements,
dass Uber jeden Wert im y Array-Ausdruck iteriert wird. x In diesem Fall x handelt es sich um einen
Array-Ausdruck und y ist ein Alias fur. x

Der linke Operand kann auch die Punkt- und Klammernotation fir die regulare Navigation verwenden.
Example

Im vorherigen Beispiel:

Aufheben der Verschachtelung von Abfragen 394

AWS Clean Rooms SQL-Referenz

* customer_orders_lineitem cist die Iteration Uber die customer_order_lineitem
Basistabelle

* c.c_orders oist die Iteration Uber c.c_orders array

Um Uber das Attribut o_lineitems zu iterieren, also ein Array innerhalb eines Arrays, fliigen Sie
mehrere Klauseln hinzu.

SELECT o, 1 FROM customer_orders_lineitem c, c.c_orders o, o.o_lineitems 1;

AWS Clean Rooms unterstitzt auch einen Array-Index bei der Iteration Gber das Array mit dem AT
Schlusselwort. Die Klausel x AS y AT z iteriert Uber ein Array x und generiert das Feldz, das den
Array-Index darstellt.

Example

Das folgende Beispiel zeigt die Funktionsweise eines Array-Index.

SELECT c_name,

orders.o_orderkey AS orderkey,

index AS orderkey_index
FROM customer_orders_lineitem c, c.c_orders AS orders AT index
ORDER BY orderkey_index;

Cc_name | orderkey | orderkey_index

___________________ e et e e

Customer#000008251 | 3020007 | 0

Customer#000009452 | 4043971 | @ (2 rows)
Example

Das folgende Beispiel iteriert Uber ein skalares Array.

CREATE TABLE bar AS SELECT json_parse('{"scalar_array": [1, 2.3, 45000000]}') AS data;
SELECT index, element FROM bar AS b, b.data.scalar_array AS element AT index;

index | element
_______ e -
0|1
1] 2.3
2 | 45000000

Aufheben der Verschachtelung von Abfragen 395

AWS Clean Rooms SQL-Referenz

(3 rows)

Example

Im folgenden Beispiel wird tber ein Array mit mehreren Ebenen iteriert. Das Beispiel nutzt
mehrere Klauseln zum Aufheben der Verschachtelung, um in die innersten Arrays zu iterieren. Die
f.multi_level_array AS Ein Array iteriert Gber. multi_level_array Das Array AS Element
ist die Iteration Uber die darin enthaltenen Arrays. multi_level_array

CREATE TABLE foo AS SELECT json_parse('[[1.1, 1.2], [2.1, 2.2], [3.1, 3.2]]1') AS
multi_level_array;

SELECT array, element FROM foo AS f, f.multi_level_array AS array, array AS element;

[3.1,3.2]
(6 rows)

Lax-Semantik

StandardmaRig geben Navigationsoperationen mit verschachtelten Datenwerten Null zurlick, anstatt
einen Fehler zurtickzugeben, wenn die Navigation ungliltig ist. Die Objektnavigation ist ungultig, wenn
der verschachtelte Datenwert kein Objekt ist oder wenn der verschachtelte Datenwert ein Objekt ist,
das aber nicht den in der Abfrage verwendeten Attributnamen enthalt.

Example

Die folgende Abfrage greift beispielsweise auf einen ungultigen Attributnamen in der verschachtelten
Datenspalte zu: c_orders

SELECT c.c_orders.something FROM customer_orders_lineitem c;

Die Array-Navigation gibt Null zurlick, wenn der verschachtelte Datenwert kein Array ist oder der
Array-Index auRerhalb der Grenzen liegt.

Lax-Semantik 396

AWS Clean Rooms SQL-Referenz

Example

Die folgende Abfrage gibt Null zuriick, weil die c_orders[1][1] Grenzwerte Uberschritten wurden.

SELECT c.c_orders[1][1] FROM customer_orders_lineitem c;

Arten der Introspektion

Verschachtelte Datentypspalten unterstitzen Inspektionsfunktionen, die den Typ und andere
Typinformationen tber den Wert zuriickgeben. AWS Clean Rooms unterstlitzt die folgenden
booleschen Funktionen fiir verschachtelte Datenspalten:

+ DECIMAL_PRECISION
+ DECIMAL_SCALE
+ IS_ARRAY

* IS_BIGINT

+ IS_CHAR

+ IS_DECIMAL

« IS_FLOAT

+ IS_INTEGER

« IS_OBJECT

+ IS_SCALAR

* IS_SMALLINT

* IS_VARCHAR

+ JSON_TYPEOF

Alle diese Funktionen geben false zurlick, wenn der Eingabewert null ist. IS_SCALAR, IS_OBJECT
und IS_ARRAY schlieRen sich gegenseitig aus und decken alle méglichen Werte mit Ausnahme
von null ab. Um die Typen abzuleiten, die den Daten entsprechen, AWS Clean Rooms verwendet
die Funktion JSON_TYPEOF, die den Typ (die oberste Ebene) des verschachtelten Datenwerts
zurtickgibt, wie im folgenden Beispiel gezeigt:

SELECT JSON_TYPEOF(r_nations) FROM region_nations;
json_typeof

Arten der Introspektion 397

AWS Clean Rooms SQL-Referenz

array
(1 row)

SELECT JSON_TYPEOF(r_nations[@].n_nationkey) FROM region_nations;
json_typeof

number

Arten der Introspektion 398

AWS Clean Rooms SQL-Referenz

Dokumenthistorie fur die AWS Clean Rooms SQL-Referenz

In der folgenden Tabelle werden die Dokumentationsversionen fur die AWS Clean Rooms SQL-
Referenz beschrieben.

Um Benachrichtigungen Uber Aktualisierungen dieser Dokumentation zu erhalten, kbnnen Sie den
RSS-Feed abonnieren. Um RSS-Updates zu abonnieren, missen Sie ein RSS-Plugin flir den von
Ihnen verwendeten Browser aktiviert haben.

Anderung

Spark SQL unterstutzt Hints

Spark SQL unterstutzt CACHE

TABLE

Spark SQL unterstutzt die
Funktionen FIRST und LAST
Window

Aktualisierungen der

Dokumentation zu den

Funktionen von Spark SQL

Beschreibung

AWS Clean Rooms Spark
SQL unterstutzt Abfragehi
nweise, um die Abfragele
istung zu optimieren und die
Rechenkosten zu senken.

AWS Clean Rooms Spark
SQL unterstitzt den Befehl
CACHE TABLE, der es
Kunden ermdglicht, bestehend
e Tabellen zwischenz
uspeichern oder neue
Tabellen aus Abfrageer
gebnissen zu erstellen und
zwischenzuspeichern, um die
Abfrageleistung zu verbesser
n.

AWS Clean Rooms Spark
SQL unterstitzt die folgenden
Fensterfunktionen: FIRST und
LAST.

Rein dokumentationsbezo
genes Update, um die
unterstitzten Spark-SQL-

Datum

20. Januar 2026

22. Oktober 2025

12. Juni 2025

20. Mai 2025

399

https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-hints-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-cache-table.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-commands-cache-table.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/Window_functions.html#Window_function_supported
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/Window_functions.html#Window_function_supported
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/Window_functions.html#Window_function_supported
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html

AWS Clean Rooms

SQL-Referenz

AWS Clean Rooms Spark
SQL

SQL-Befehle und SQL-Funkt
ionen — Update

Funktionen genau wiederzug
eben. Die Dokumentation fir
25 nicht unterstiutzte Funktione
n, darunter den Operator
<=> SIMILAR TO, LISTAGG
und ARRAY_INSERT, wurde
entfernt. Die Funktions
namen von DATEADD zu
DATE_ADD, DATEDIFF zu
DATE_DIFF, ISNULL zu
IS_NULL und ISNOTNULL
zu IS_NOT_NULL wurden
korrigiert. Ein Tippfehler in
den DATE_PART-Beispielen
wurde behoben.

Kunden kénnen jetzt Abfragen
mit einigen SQL-Bedingungen,
Funktionen, Befehlen und
Konventionen ausfihren, die
von der Spark SQL Analytics-
Engine unterstutzt werden.

Es wurden Beispiele flr die
JOIN-Klausel, den SET-
Operator EXCEPT, den
bedingten Ausdruck CASE
und die folgenden Funktione
n hinzugeflgt: ANY_VALUE
, NVL und COALESCE,
NULLIF, CAST, CONVERT,
CONVERT_TIMEZONE,
EXTRACT, MOD, SIGN,
CONCAT, FIRST_VALUE und
LAST_VALUE.

29. Oktober 2024

28. Februar 2024

400

https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-reference-spark.html

AWS Clean Rooms

SQL-Referenz

SQL-Funktionen - Update

Unterstitzung fur verschach

telte Datentypen

SQL-Namensregeln — Update

Allgemeine Verflgbarkeit

AWS Clean Rooms unterstut
zt jetzt die folgenden SQL-
Funktionen: Array, SUPER
und VARBYTE. Die folgenden
mathematischen Funktione
n werden jetzt unterstit

zt: ACOS, ASIN, ATAN,
COT ATAN2, DEXP, PI,
POW, RADIANS und SIN.
Die folgenden JSON-
Funktionen werden jetzt
unterstitzt: CAN_JSON_
PARSE, JSON_PARSE und
JSON_SERIALIZE.

AWS Clean Rooms unterstitzt
jetzt verschachtelte Datentype
n.

Anderung nur in der
Dokumentation, um reservier
te Spaltennamen zu verdeutli
chen.

Die AWS Clean Rooms SQL-
Referenz ist jetzt allgemein
verfugbar.

06. Oktober 2023

30. August 2023

16. August 2023

31. Juli 2023

401

https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-functions-topic.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/nested-data-type.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/nested-data-type.html
https://docs.aws.amazon.com/clean-rooms/latest/sql-reference/sql-ref-naming.html

AWS Clean Rooms SQL-Referenz

Die vorliegende Ubersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines
Widerspruchs zwischen dieser Ubersetzten Fassung und der englischen Fassung (einschlieRlich
infolge von Verzdgerungen bei der Ubersetzung) ist die englische Fassung maRgeblich.

cdii

	AWS Clean Rooms
	Table of Contents
	Überblick über SQL in AWS Clean Rooms
	Konventionen für die SQL-Referenz
	SQL-Namensregeln
	Namen und Spalten für konfigurierte Tabellenzuordnungen
	Reservierte Wörter

	Datentypunterstützung durch SQL Engine
	Numerische Datentypen
	Boolesche Datentypen
	Datums- und Uhrzeit-Datentypen
	Zeichendatentypen
	Strukturierte Datentypen

	AWS Clean Rooms Spark-SQL
	Literale
	Operator + (Verkettung)
	Syntax
	Argumente
	Beispiel

	Datentypen
	Multibyte-Zeichen
	Numerische Typen
	Ganzzahl-Typen
	Typ DECIMAL oder NUMERIC
	Hinweise zur Verwendung von 128-Bit-DECIMAL- oder -NUMERIC-Spalten

	Gleitkommazahl-Typen
	Berechnungen mit numerischen Werten
	Ausgabetypen für Berechnungen
	Genauigkeit und Dezimalstellen der berechneten DECIMAL-Ergebnisse
	Hinweise für Divisionsoperationen
	Überlaufbedingungen
	Numerische Berechnungen mit den Typen INTEGER und DECIMAL

	Zeichentypen
	CHAR oder CHARACTER
	VARCHAR oder CHARACTER VARYING
	Die Bedeutung von Leerzeichen am Ende

	Datum-/Uhrzeittypen
	DATE
	TIMESTAMP_LTZ
	TIMESTAMP_NTZ
	Beispiele mit Datum-/Uhrzeittypen
	Datumsbeispiele
	Zeit-Beispiele

	Datums-, Zeit- und Zeitstempelliterale
	Datumsangaben
	Times
	Besondere Datums-/Uhrzeitwerte

	Intervallliterale
	Beispiele

	Intervalldatentypen und -literale
	Syntax des Intervalldatentyps
	Syntax des Intervallliterals
	Argumente
	Intervallarithmetik
	Intervallstile
	Beispiele für den Intervalldatentyp
	Beispiele für Intervallliterale
	Beispiele für Intervallliterale ohne Qualifier-Syntax

	Typ BOOLEAN
	Beispiele
	Boolesche Literale
	Syntax
	Beispiel

	Binärer Typ
	Verschachtelter Typ
	Typ ARRAY
	MAP-Typ
	Typ STRUCT
	Beispiele für verschachtelte Datentypen

	Kompatibilität von Typen und Umwandlung zwischen Typen
	Kompatibilität
	Allgemeine Regeln zur Kompatibilität und zur Umwandlung
	Arten von impliziter Umwandlung

	AWS Clean Rooms Spark-SQL-Befehle
	CACHE-TABELLE
	Syntax
	Parameter
	Beispiele
	Erstellen Sie eine gefilterte Tabelle aus Abfrageergebnissen und speichern Sie sie im Cache
	Zwischenspeichern Sie Abfrageergebnisse mit SELECT-Anweisungen in Klammern
	Eine vorhandene Tabelle mit Filterbedingungen zwischenspeichern

	Hinweise
	Syntax
	Unterstützte Hinweistypen
	Hinweise zusammenführen
	ÜBERTRAGUNG
	MERGE
	SHUFFLE_HASH
	SHUFFLE_REPLICATE_NL
	Hinweise zur Fehlerbehebung in Spark SQL

	Hinweise zur Partitionierung
	COALESCE
	VERTEILUNG
	REPARTITION_BY_RANGE
	NEU AUSBALANCIEREN

	Kombinieren mehrerer Hinweise
	Überlegungen und Einschränkungen

	SELECT
	SELECT list
	Syntax
	Parameters

	WITH-Klausel
	Syntax
	Parameters
	Nutzungshinweise
	Beispiele

	FROM-Klausel
	Syntax
	Parameters
	Nutzungshinweise

	JOIN-Klausel
	Syntax
	Parameters
	Beispiel
	JOIN-Typen
	INNER
	LINKS [AUSSEN]
	RECHTS [AUSSEN]
	VOLL [ÄUSSERLICH]
	[LINKS] HALB
	CROSS JOIN
	ANTI-JOIN
	NATURAL

	WHERE-Klausel
	Syntax
	Bedingung
	Nutzungshinweise
	Beispiel

	VALUES-Klausel
	Syntax
	Parameter
	Beispiel

	GROUP BY-Klausel
	Syntax
	Parameter
	Aggregationserweiterungen
	GROUPING SETS
	ROLLUP
	CUBE

	HAVING-Klausel
	Syntax
	Nutzungshinweise
	Beispiele

	Satzoperatoren
	Syntax
	Parameters
	Reihenfolge der Evaluierung für Satzoperatoren
	Nutzungshinweise
	Beispiel für UNION-Abfragen
	Beispiel für die UNION ALL-Abfrage
	Beispiel für INTERSECT-Abfragen
	Beispiel für die EXCEPT-Abfrage

	ORDER BY-Klausel
	Syntax
	Parameters
	Nutzungshinweise
	Beispiele mit ORDER BY

	Beispiele für Unterabfragen
	Unterabfragen in der SELECT-Liste
	Unterabfragen in der WHERE-Klausel
	Unterabfragen in der WITH-Klausel

	Korrelierte Unterabfragen
	Muster für korrelierte Unterabfragen, die nicht unterstützt werden

	AWS Clean Rooms Spark SQL-Funktionen
	Aggregationsfunktionen
	Funktion ANY_VALUE
	Syntax
	Argumente
	Rückgabewert
	Nutzungshinweise
	Beispiele

	APPROX COUNT_DISTINCT-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	Funktion „UNGEFÄHRES PERZENTIL“
	Syntax
	Argumente
	Rückgabewert
	Beispiele

	AVG Funktion
	Syntax
	Argumente
	Datentypen
	Beispiel

	Die Funktion BOOL_AND
	Syntax
	Argumente
	Beispiele

	Die Funktion BOOL_OR
	Syntax
	Argumente
	Beispiele

	CARDINALITY-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	Funktion COLLECT_LIST
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	Funktion COLLECT_SET
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	COUNTund COUNT DISTINCT Funktionen
	Syntax
	Argumente
	Datentypen
	Beispiele

	Die Funktion COUNT
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Funktion MAX
	Syntax
	Argumente
	Datentypen
	Beispiele

	Die Funktion MEDIAN
	Syntax
	Argumente

	Die Funktion MIN
	Syntax
	Argumente
	Datentypen
	Beispiele

	PERZENTILE-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	SKEWNESS-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiele

	Die Funktionen STDDEV_SAMP und STDDEV_POP
	Syntax
	Nutzungshinweise
	Beispiele

	SUMund SUM DISTINCT Funktionen
	Syntax
	Argumente
	Beispiele

	Die Funktionen VAR_SAMP und VAR_POP
	Syntax
	Nutzungshinweise
	Beispiele

	Array-Funktionen
	ARRAY-Funktion
	Syntax
	Argument
	Rückgabetyp
	Beispiel

	Funktion ARRAY_CONTAINS
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	ARRAY_DISTINCT-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	ARRAY_EXCEPT-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Funktion ARRAY_INTERSECT
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	ARRAY_JOIN-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Funktion ARRAY_REMOVE
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	ARRAY_UNION-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	EXPLODE-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Funktion FLATTEN
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Bedingte Ausdrücke
	Der bedingte Ausdruck CASE
	Syntax
	Argumente
	Beispiele

	COALESCEAusdruck
	Syntax
	Beispiele

	GRÖSSTER und KLEINSTER Ausdruck
	Syntax
	Parameter
	Rückgabewert
	Beispiel

	IF-Ausdruck
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	IS_NULL-Ausdruck
	Syntax
	Argumente
	Rückgabewert
	Beispiele

	IS_NOT_NULL-Ausdruck
	Syntax
	Argumente
	Rückgabewert
	Beispiele

	NVL- und COALESCE-Funktionen
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	NVL2 Funktion
	Syntax
	Argumente
	Rückgabetyp
	Nutzungshinweise
	Beispiel

	NULLIF-Funktion
	Syntax
	Argumente
	Beispiele

	Konstruktor-Funktionen
	MAP-Konstruktorfunktion
	Syntax
	Argumente
	Rückgabewert
	Beispiele

	Konstruktorfunktion NAMED_STRUCT
	Syntax
	Argumente
	Rückgabewert
	Beispiele

	STRUCT-Konstruktorfunktion
	Syntax
	Argumente
	Rückgabewert
	Beispiele

	Funktionen für die Datentypformatierung
	BASE64 Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	CAST-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	DECODE-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	ENCODE-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	HEX-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	STR_TO_MAP-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	TO_CHAR
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	TO_DATE-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	TO_NUMBER
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	UNBASE64 Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	UNHEX-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Datum-/Uhrzeit-Formatzeichenfolgen
	Numerische Formatzeichenfolgen

	Datums- und Zeitfunktionen
	Funktion ADD_MONTHS
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Funktion CONVERT_TIMEZONE
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Funktion CURRENT_DATE
	Syntax
	Rückgabetyp
	Beispiel

	CURRENT_TIMESTAMP-Funktion
	Syntax
	Rückgabetyp
	Beispiel

	DATE_ADD-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiele
	Nutzungshinweise

	DATE_DIFF-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiele mit einer DATE-Spalte
	Beispiele mit einer TIME-Spalte
	Beispiele mit einer TIMETZ-Spalte

	Funktion DATE_PART
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Funktion DATE_TRUNC
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	DAY-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiele

	DAYOFMONTH-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	DAYOFWEEK-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiele

	DAYOFYEAR-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiele

	Funktion EXTRACT
	Syntax
	Argumente
	Rückgabetyp
	Beispiele mit TIME

	FROM_UTC_TIMESTAMP-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	HOUR-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	MINUTE-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	MONTH-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	SECOND-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	TIMESTAMP-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	Funktion TO_TIMESTAMP
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	YEAR-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	Datumsteile für Datums- oder Zeitstempelfunktionen
	Abweichungen bei den Ergebnissen mit Sekunden, Millisekunden und Mikrosekunden
	Anmerkungen zu CENTURY, EPOCH, DECADE und MIL

	Verschlüsselungs- und Entschlüsselungsfunktionen
	AES_ENCRYPT-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	AES_DECRYPT-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Hash-Funktionen
	MD5 Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Funktion SHA
	SHA1 Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	SHA2 Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	HASH64 xx-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	Hyperloglog-Funktionen
	HLL_SKETCH_AGG-Funktion
	Syntax
	Argument
	Rückgabetyp
	Beispiele

	Funktion HLL_SKETCH_ESTIMATE
	Syntax
	Argument
	Rückgabetyp
	Beispiele

	HLL_UNION-Funktion
	Syntax
	Argument
	Rückgabetyp
	Beispiele

	HLL_UNION_AGG-Funktion
	Syntax
	Argument
	Rückgabetyp
	Beispiele

	JSON-Funktionen
	Funktion GET_JSON_OBJECT
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	TO_JSON-Funktion
	Syntax
	Argumente
	Rückgabewert
	Beispiele

	Mathematische Funktionen
	Symbole für mathematische Operatoren
	Unterstützte Operatoren
	Beispiele

	Funktion ABS
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Funktion ACOS
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Funktion ASIN
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Funktion ATAN
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	ATAN2 Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Funktion CBRT
	Syntax
	Argument
	Rückgabetyp
	Beispiele

	Die Funktion CEILING (oder CEIL)
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Die Funktion COS
	Syntax
	Argument
	Rückgabetyp
	Beispiele

	Die Funktion COT
	Syntax
	Argument
	Rückgabetyp
	Beispiele

	Die Funktion DEGREES
	Syntax
	Argument
	Rückgabetyp
	Beispiel

	DIV-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Funktion EXP
	Syntax
	Argument
	Rückgabetyp
	Beispiel

	Die Funktion FLOOR
	Syntax
	Argument
	Rückgabetyp
	Beispiel

	Die Funktion LN
	Syntax
	Argument
	Rückgabetyp
	Beispiel

	Die Funktion LOG
	Syntax
	Argument
	Rückgabetyp
	Beispiel

	Die Funktion MOD
	Syntax
	Argumente
	Rückgabetyp
	Nutzungshinweise
	Beispiele

	Die Funktion PI
	Syntax
	Rückgabetyp
	Beispiele

	Die Funktion POWER
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Die Funktion RADIANS
	Syntax
	Argument
	Rückgabetyp
	Beispiel

	RAND-Funktion
	Syntax
	Rückgabetyp
	Beispiel

	Die Funktion RANDOM
	Syntax
	Rückgabetyp
	Beispiele

	Die Funktion ROUND
	Syntax
	Argument
	Rückgabetyp
	Beispiele

	Die Funktion SIGN
	Syntax
	Argument
	Rückgabetyp
	Beispiele

	Die Funktion SIN
	Syntax
	Argument
	Rückgabetyp
	Beispiel

	Die Funktion SQRT
	Syntax
	Argument
	Rückgabetyp
	Beispiele

	Die Funktion TRUNC
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Skalarfunktionen
	SIZE-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Zeichenfolgenfunktionen
	Der Operator || (Verkettung)
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Die Funktion BTRIM
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Funktion CONCAT
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Funktion FORMAT_STRING
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Die Funktionen LEFT und RIGHT
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Die Funktion LENGTH
	Die Funktion LOWER
	Syntax
	Argument
	Rückgabetyp
	Beispiele

	Die Funktionen LPAD und RPAD
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Funktion LTRIM
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Funktion POSITION
	Syntax
	Argumente
	Rückgabetyp
	Nutzungshinweise
	Beispiele

	Die Funktion REGEXP_COUNT
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Die Funktion REGEXP_INSTR
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Die Funktion REGEXP_REPLACE
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Die Funktion REGEXP_SUBSTR
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Die Funktion REPEAT
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Funktion REPLACE
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Funktion REVERSE
	Syntax
	Argument
	Rückgabetyp
	Beispiele

	Die Funktion RTRIM
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	SPLIT-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Die Funktion SPLIT_PART
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Funktion SUBSTRING
	Syntax
	Argumente
	Rückgabetyp
	Nutzungshinweise für Zeichenfolgen
	Beispiele

	Die Funktion TRANSLATE
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Funktion TRIM
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Die Funktion UPPER
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	UUID-Funktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiel

	Funktionen im Zusammenhang mit dem Datenschutz
	Funktion consent_gpp_v1_decode
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	Funktion consent_tcf_v2_decode
	Syntax
	Argumente
	Rückgabewert
	Beispiel

	Fensterfunktionen
	Übersicht über die Syntax von Fensterfunktionen
	Argumente

	Spezifisches Anordnen von Daten für Fensterfunktionen
	Unterstützte Funktionen
	Beispieltabelle mit Beispielen von Fensterfunktionen
	CUME_DIST-Fensterfunktion
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Fensterfunktion DENSE_RANK
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Funktion „ERSTES Fenster“
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Fensterfunktion FIRST_VALUE
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Fensterfunktion LAG
	Syntax
	Argumente
	Beispiele

	Funktion „LETZTES Fenster“
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Fensterfunktion LAST_VALUE
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Fensterfunktion LEAD
	Syntax
	Argumente
	Beispiele

	Die Fensterfunktion PERCENT_RANK
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Fensterfunktion RANK
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	Die Fensterfunktion ROW_NUMBER
	Syntax
	Argumente
	Rückgabetyp
	Beispiele

	AWS Clean Rooms Spark-SQL-Bedingungen
	Vergleichsoperatoren
	Beispiele
	Beispiele mit einer TIME-Spalte
	Beispiele mit einer TIMETZ-Spalte

	Logische Bedingungen
	Syntax
	Beispiele

	Patternmatching-Bedingungen
	LIKE
	Syntax
	Argumente
	Beispiele

	RLIKE
	Syntax
	Argumente
	Beispiele

	BETWEEN-Bereichsbedingung
	Syntax
	Beispiele

	„Null“-Bedingung
	Syntax
	Argumente
	Beispiel

	EXISTS-Bedingung
	Syntax
	Argumente
	Beispiel

	IN-Bedingung
	Syntax
	Argumente
	Beispiele
	Optimierung bei großen IN-Listen

	Verschachtelte Daten abfragen
	Navigation
	Aufheben der Verschachtelung von Abfragen
	Lax-Semantik
	Arten der Introspektion

	Dokumenthistorie für die AWS Clean Rooms SQL-Referenz
	

