Table naming for S3 Storage Lens export to S3 Tables - Amazon Simple Storage Service

Table naming for S3 Storage Lens export to S3 Tables

Overview

When you export S3 Storage Lens metrics to S3 Tables, the tables are organized using Apache Iceberg catalog conventions with specific naming patterns to ensure compatibility and organization.

Table location structure

The complete table location follows this pattern:

s3tablescatalog/aws-s3/<namespace>/<table-name>

Table bucket name

Table Bucket: aws-s3

The S3 Storage Lens export uses the aws-s3 table bucket, which is the designated bucket for AWS S3-related system tables.

Catalog name

Catalog: s3tablescatalog/aws-s3

S3 Storage Lens tables are stored in the S3 catalog because Storage Lens provides insights about three types of S3 resources:

  • Storage metrics

  • Bucket properties

  • API usage metrics

Namespace naming convention

Namespaces organize tables within the catalog. For S3 Storage Lens, the namespace is derived from your Storage Lens configuration ID.

Standard namespace format

For Storage Lens configuration IDs without dots (.):

lens_<configuration-id>_exp

Example: If your configuration ID is my-lens-config, the namespace will be:

lens_my-lens-config_exp

Namespace format with dot character handling

Storage Lens configuration IDs can contain dots (.), but S3 Tables namespaces only support lowercase letters, numbers, hyphens (-), and underscores (_). When your configuration ID contains dots, they are converted to hyphens and a hash suffix is added for uniqueness:

lens_<configuration-id-with-dots-replaced>_exp_<7-char-hash>

Example: If your configuration ID is my.lens.config, the namespace will be:

lens_my-lens-config_exp_a1b2c3d

Where a1b2c3d is the first 7 characters of the SHA-1 hash of the original configuration ID.

Namespace naming rules

  • Length: 1-127 characters

  • Allowed characters: lowercase letters (a-z), numbers (0-9), hyphens (-), underscores (_)

  • Pattern: [a-z0-9_-]{1,127}

  • Must be unique within the table bucket

Storage Lens configuration ID requirements

Your Storage Lens configuration ID must follow these rules:

  • Length: 1-64 characters

  • Allowed characters: letters (a-z, A-Z), numbers (0-9), hyphens (-), underscores (_), dots (.)

  • Pattern: [a-zA-Z0-9\-\_.]+

Complete examples

For a Storage Lens configuration with ID production-metrics:

  • Table Bucket: aws-s3

  • Catalog: s3tablescatalog/aws-s3

  • Namespace: lens_production-metrics_exp

  • Full Path: s3tablescatalog/aws-s3/lens_production-metrics_exp/<table-name>

For a Storage Lens configuration with ID prod.us.east.metrics:

  • Table Bucket: aws-s3

  • Catalog: s3tablescatalog/aws-s3

  • Namespace: lens_prod-us-east-metrics_exp_f8e9a1b (with hash)

  • Full Path: s3tablescatalog/aws-s3/lens_prod-us-east-metrics_exp_f8e9a1b/<table-name>

Table types

The following table shows the different types of tables created for S3 Storage Lens exports:

Bucket name Namespace S3 table name Description
s3tablescatalog/aws-s3 lens_<conf_name>_exp[_<hash>] default_storage_metrics This table contains the storage metrics for your Storage Lens configuration.
s3tablescatalog/aws-s3 lens_<conf_name>_exp[_<hash>] default_activity_metrics This table contains the activity metrics for your Storage Lens configuration.
s3tablescatalog/aws-s3 lens_<conf_name>_exp[_<hash>] expanded_prefixes_storage_metrics This table contains the storage metrics for all the prefixes in your Storage Lens configuration.
s3tablescatalog/aws-s3 lens_<conf_name>_exp[_<hash>] expanded_prefixes_activity_metrics This table contains the activity metrics for all of your prefixes in your Storage Lens configuration.
s3tablescatalog/aws-s3 lens_<conf_name>_exp[_<hash>] bucket_property_metrics This table contains the bucket property metrics for all the buckets in your Storage Lens configuration.
Note

There is no extra charge for export S3 Storage Lens metrics to AWS-managed S3 Tables bucket. You pay the usual charges for table storage and management in table bucket. You can enable or disable export to S3 Tables by using the Amazon S3 console, Amazon S3 API, the AWS CLI, or AWS SDKs.