There are more AWS SDK examples available in the AWS Doc SDK Examples
Use CreatePipeline with an AWS SDK
The following code examples show how to use CreatePipeline.
Action examples are code excerpts from larger programs and must be run in context. You can see this action in context in the following code example:
- .NET
-
- SDK for .NET
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. /// <summary> /// Create a pipeline from a JSON definition, or update it if the pipeline already exists. /// </summary> /// <returns>The Amazon Resource Name (ARN) of the pipeline.</returns> public async Task<string> SetupPipeline(string pipelineJson, string roleArn, string name, string description, string displayName) { try { var updateResponse = await _amazonSageMaker.UpdatePipelineAsync( new UpdatePipelineRequest() { PipelineDefinition = pipelineJson, PipelineDescription = description, PipelineDisplayName = displayName, PipelineName = name, RoleArn = roleArn }); return updateResponse.PipelineArn; } catch (Amazon.SageMaker.Model.ResourceNotFoundException) { var createResponse = await _amazonSageMaker.CreatePipelineAsync( new CreatePipelineRequest() { PipelineDefinition = pipelineJson, PipelineDescription = description, PipelineDisplayName = displayName, PipelineName = name, RoleArn = roleArn }); return createResponse.PipelineArn; } }-
For API details, see CreatePipeline in AWS SDK for .NET API Reference.
-
- Java
-
- SDK for Java 2.x
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. // Create a pipeline from the example pipeline JSON. public static void setupPipeline(SageMakerClient sageMakerClient, String filePath, String roleArn, String functionArn, String pipelineName) { System.out.println("Setting up the pipeline."); JSONParser parser = new JSONParser(); // Read JSON and get pipeline definition. try (FileReader reader = new FileReader(filePath)) { Object obj = parser.parse(reader); JSONObject jsonObject = (JSONObject) obj; JSONArray stepsArray = (JSONArray) jsonObject.get("Steps"); for (Object stepObj : stepsArray) { JSONObject step = (JSONObject) stepObj; if (step.containsKey("FunctionArn")) { step.put("FunctionArn", functionArn); } } System.out.println(jsonObject); // Create the pipeline. CreatePipelineRequest pipelineRequest = CreatePipelineRequest.builder() .pipelineDescription("Java SDK example pipeline") .roleArn(roleArn) .pipelineName(pipelineName) .pipelineDefinition(jsonObject.toString()) .build(); sageMakerClient.createPipeline(pipelineRequest); } catch (IamException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } catch (IOException | ParseException e) { throw new RuntimeException(e); } }-
For API details, see CreatePipeline in AWS SDK for Java 2.x API Reference.
-
- JavaScript
-
- SDK for JavaScript (v3)
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. A function that creates a SageMaker AI pipeline using a locally provided JSON definition.
/** * Create the Amazon SageMaker pipeline using a JSON pipeline definition. The definition * can also be provided as an Amazon S3 object using PipelineDefinitionS3Location. * @param {{roleArn: string, name: string, sagemakerClient: import('@aws-sdk/client-sagemaker').SageMakerClient}} props */ export async function createSagemakerPipeline({ // Assumes an AWS IAM role has been created for this pipeline. roleArn, name, // Assumes an AWS Lambda function has been created for this pipeline. functionArn, sagemakerClient, }) { const pipelineDefinition = readFileSync( // dirnameFromMetaUrl is a local utility function. You can find its implementation // on GitHub. `${dirnameFromMetaUrl( import.meta.url, )}../../../../../scenarios/features/sagemaker_pipelines/resources/GeoSpatialPipeline.json`, ) .toString() .replace(/\*FUNCTION_ARN\*/g, functionArn); let arn = null; const createPipeline = () => sagemakerClient.send( new CreatePipelineCommand({ PipelineName: name, PipelineDefinition: pipelineDefinition, RoleArn: roleArn, }), ); try { const { PipelineArn } = await createPipeline(); arn = PipelineArn; } catch (caught) { if ( caught instanceof Error && caught.name === "ValidationException" && caught.message.includes( "Pipeline names must be unique within an AWS account and region", ) ) { const { PipelineArn } = await sagemakerClient.send( new DescribePipelineCommand({ PipelineName: name }), ); arn = PipelineArn; } else { throw caught; } } return { arn, cleanUp: async () => { await sagemakerClient.send( new DeletePipelineCommand({ PipelineName: name }), ); }, }; }-
For API details, see CreatePipeline in AWS SDK for JavaScript API Reference.
-
- Kotlin
-
- SDK for Kotlin
-
Note
There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository
. // Create a pipeline from the example pipeline JSON. suspend fun setupPipeline(filePath: String?, roleArnVal: String?, functionArnVal: String?, pipelineNameVal: String?) { println("Setting up the pipeline.") val parser = JSONParser() // Read JSON and get pipeline definition. FileReader(filePath).use { reader -> val obj: Any = parser.parse(reader) val jsonObject: JSONObject = obj as JSONObject val stepsArray: JSONArray = jsonObject.get("Steps") as JSONArray for (stepObj in stepsArray) { val step: JSONObject = stepObj as JSONObject if (step.containsKey("FunctionArn")) { step.put("FunctionArn", functionArnVal) } } println(jsonObject) // Create the pipeline. val pipelineRequest = CreatePipelineRequest { pipelineDescription = "Kotlin SDK example pipeline" roleArn = roleArnVal pipelineName = pipelineNameVal pipelineDefinition = jsonObject.toString() } SageMakerClient { region = "us-west-2" }.use { sageMakerClient -> sageMakerClient.createPipeline(pipelineRequest) } } }-
For API details, see CreatePipeline
in AWS SDK for Kotlin API reference.
-