CfnApplicationPropsMixin
- class aws_cdk.mixins_preview.aws_kinesisanalyticsv2.mixins.CfnApplicationPropsMixin(props, *, strategy=None)
Bases:
MixinCreates an Amazon Kinesis Data Analytics application.
For information about creating a Kinesis Data Analytics application, see Creating an Application .
- See:
- CloudformationResource:
AWS::KinesisAnalyticsV2::Application
- Mixin:
true
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview import mixins from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins cfn_application_props_mixin = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin(kinesisanalyticsv2_mixins.CfnApplicationMixinProps( application_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationConfigurationProperty( application_code_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationCodeConfigurationProperty( code_content=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CodeContentProperty( s3_content_location=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.S3ContentLocationProperty( bucket_arn="bucketArn", file_key="fileKey", object_version="objectVersion" ), text_content="textContent", zip_file_content="zipFileContent" ), code_content_type="codeContentType" ), application_encryption_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationEncryptionConfigurationProperty( key_id="keyId", key_type="keyType" ), application_snapshot_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationSnapshotConfigurationProperty( snapshots_enabled=False ), application_system_rollback_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationSystemRollbackConfigurationProperty( rollback_enabled=False ), environment_properties=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.EnvironmentPropertiesProperty( property_groups=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.PropertyGroupProperty( property_group_id="propertyGroupId", property_map={ "property_map_key": "propertyMap" } )] ), flink_application_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.FlinkApplicationConfigurationProperty( checkpoint_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CheckpointConfigurationProperty( checkpointing_enabled=False, checkpoint_interval=123, configuration_type="configurationType", min_pause_between_checkpoints=123 ), monitoring_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MonitoringConfigurationProperty( configuration_type="configurationType", log_level="logLevel", metrics_level="metricsLevel" ), parallelism_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ParallelismConfigurationProperty( auto_scaling_enabled=False, configuration_type="configurationType", parallelism=123, parallelism_per_kpu=123 ) ), sql_application_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.SqlApplicationConfigurationProperty( inputs=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputProperty( input_parallelism=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputParallelismProperty( count=123 ), input_processing_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputProcessingConfigurationProperty( input_lambda_processor=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputLambdaProcessorProperty( resource_arn="resourceArn" ) ), input_schema=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputSchemaProperty( record_columns=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.RecordColumnProperty( mapping="mapping", name="name", sql_type="sqlType" )], record_encoding="recordEncoding", record_format=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.RecordFormatProperty( mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MappingParametersProperty( csv_mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CSVMappingParametersProperty( record_column_delimiter="recordColumnDelimiter", record_row_delimiter="recordRowDelimiter" ), json_mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.JSONMappingParametersProperty( record_row_path="recordRowPath" ) ), record_format_type="recordFormatType" ) ), kinesis_firehose_input=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.KinesisFirehoseInputProperty( resource_arn="resourceArn" ), kinesis_streams_input=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.KinesisStreamsInputProperty( resource_arn="resourceArn" ), name_prefix="namePrefix" )] ), vpc_configurations=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.VpcConfigurationProperty( security_group_ids=["securityGroupIds"], subnet_ids=["subnetIds"] )], zeppelin_application_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ZeppelinApplicationConfigurationProperty( catalog_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CatalogConfigurationProperty( glue_data_catalog_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.GlueDataCatalogConfigurationProperty( database_arn="databaseArn" ) ), custom_artifacts_configuration=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CustomArtifactConfigurationProperty( artifact_type="artifactType", maven_reference=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MavenReferenceProperty( artifact_id="artifactId", group_id="groupId", version="version" ), s3_content_location=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.S3ContentLocationProperty( bucket_arn="bucketArn", file_key="fileKey", object_version="objectVersion" ) )], deploy_as_application_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.DeployAsApplicationConfigurationProperty( s3_content_location=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.S3ContentBaseLocationProperty( base_path="basePath", bucket_arn="bucketArn" ) ), monitoring_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ZeppelinMonitoringConfigurationProperty( log_level="logLevel" ) ) ), application_description="applicationDescription", application_maintenance_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationMaintenanceConfigurationProperty( application_maintenance_window_start_time="applicationMaintenanceWindowStartTime" ), application_mode="applicationMode", application_name="applicationName", run_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.RunConfigurationProperty( application_restore_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationRestoreConfigurationProperty( application_restore_type="applicationRestoreType", snapshot_name="snapshotName" ), flink_run_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.FlinkRunConfigurationProperty( allow_non_restored_state=False ) ), runtime_environment="runtimeEnvironment", service_execution_role="serviceExecutionRole", tags=[CfnTag( key="key", value="value" )] ), strategy=mixins.PropertyMergeStrategy.OVERRIDE )
Create a mixin to apply properties to
AWS::KinesisAnalyticsV2::Application.- Parameters:
props (
Union[CfnApplicationMixinProps,Dict[str,Any]]) – L1 properties to apply.strategy (
Optional[PropertyMergeStrategy]) – (experimental) Strategy for merging nested properties. Default: - PropertyMergeStrategy.MERGE
Methods
- apply_to(construct)
Apply the mixin properties to the construct.
- Parameters:
construct (
IConstruct)- Return type:
- supports(construct)
Check if this mixin supports the given construct.
- Parameters:
construct (
IConstruct)- Return type:
bool
Attributes
- CFN_PROPERTY_KEYS = ['applicationConfiguration', 'applicationDescription', 'applicationMaintenanceConfiguration', 'applicationMode', 'applicationName', 'runConfiguration', 'runtimeEnvironment', 'serviceExecutionRole', 'tags']
Static Methods
- classmethod is_mixin(x)
(experimental) Checks if
xis a Mixin.- Parameters:
x (
Any) – Any object.- Return type:
bool- Returns:
true if
xis an object created from a class which extendsMixin.- Stability:
experimental
ApplicationCodeConfigurationProperty
- class CfnApplicationPropsMixin.ApplicationCodeConfigurationProperty(*, code_content=None, code_content_type=None)
Bases:
objectDescribes code configuration for an application.
- Parameters:
code_content (
Union[IResolvable,CodeContentProperty,Dict[str,Any],None]) – The location and type of the application code.code_content_type (
Optional[str]) – Specifies whether the code content is in text or zip format.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins application_code_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationCodeConfigurationProperty( code_content=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CodeContentProperty( s3_content_location=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.S3ContentLocationProperty( bucket_arn="bucketArn", file_key="fileKey", object_version="objectVersion" ), text_content="textContent", zip_file_content="zipFileContent" ), code_content_type="codeContentType" )
Attributes
- code_content
The location and type of the application code.
- code_content_type
Specifies whether the code content is in text or zip format.
ApplicationConfigurationProperty
- class CfnApplicationPropsMixin.ApplicationConfigurationProperty(*, application_code_configuration=None, application_encryption_configuration=None, application_snapshot_configuration=None, application_system_rollback_configuration=None, environment_properties=None, flink_application_configuration=None, sql_application_configuration=None, vpc_configurations=None, zeppelin_application_configuration=None)
Bases:
objectSpecifies the creation parameters for a Managed Service for Apache Flink application.
- Parameters:
application_code_configuration (
Union[IResolvable,ApplicationCodeConfigurationProperty,Dict[str,Any],None]) – The code location and type parameters for a Managed Service for Apache Flink application.application_encryption_configuration (
Union[IResolvable,ApplicationEncryptionConfigurationProperty,Dict[str,Any],None]) – The configuration to manage encryption at rest.application_snapshot_configuration (
Union[IResolvable,ApplicationSnapshotConfigurationProperty,Dict[str,Any],None]) – Describes whether snapshots are enabled for a Managed Service for Apache Flink application.application_system_rollback_configuration (
Union[IResolvable,ApplicationSystemRollbackConfigurationProperty,Dict[str,Any],None]) – Describes whether system rollbacks are enabled for a Managed Service for Apache Flink application.environment_properties (
Union[IResolvable,EnvironmentPropertiesProperty,Dict[str,Any],None]) – Describes execution properties for a Managed Service for Apache Flink application.flink_application_configuration (
Union[IResolvable,FlinkApplicationConfigurationProperty,Dict[str,Any],None]) – The creation and update parameters for a Managed Service for Apache Flink application.sql_application_configuration (
Union[IResolvable,SqlApplicationConfigurationProperty,Dict[str,Any],None]) – The creation and update parameters for a SQL-based Kinesis Data Analytics application.vpc_configurations (
Union[IResolvable,Sequence[Union[IResolvable,VpcConfigurationProperty,Dict[str,Any]]],None]) – The array of descriptions of VPC configurations available to the application.zeppelin_application_configuration (
Union[IResolvable,ZeppelinApplicationConfigurationProperty,Dict[str,Any],None]) – The configuration parameters for a Kinesis Data Analytics Studio notebook.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins application_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationConfigurationProperty( application_code_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationCodeConfigurationProperty( code_content=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CodeContentProperty( s3_content_location=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.S3ContentLocationProperty( bucket_arn="bucketArn", file_key="fileKey", object_version="objectVersion" ), text_content="textContent", zip_file_content="zipFileContent" ), code_content_type="codeContentType" ), application_encryption_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationEncryptionConfigurationProperty( key_id="keyId", key_type="keyType" ), application_snapshot_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationSnapshotConfigurationProperty( snapshots_enabled=False ), application_system_rollback_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationSystemRollbackConfigurationProperty( rollback_enabled=False ), environment_properties=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.EnvironmentPropertiesProperty( property_groups=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.PropertyGroupProperty( property_group_id="propertyGroupId", property_map={ "property_map_key": "propertyMap" } )] ), flink_application_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.FlinkApplicationConfigurationProperty( checkpoint_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CheckpointConfigurationProperty( checkpointing_enabled=False, checkpoint_interval=123, configuration_type="configurationType", min_pause_between_checkpoints=123 ), monitoring_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MonitoringConfigurationProperty( configuration_type="configurationType", log_level="logLevel", metrics_level="metricsLevel" ), parallelism_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ParallelismConfigurationProperty( auto_scaling_enabled=False, configuration_type="configurationType", parallelism=123, parallelism_per_kpu=123 ) ), sql_application_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.SqlApplicationConfigurationProperty( inputs=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputProperty( input_parallelism=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputParallelismProperty( count=123 ), input_processing_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputProcessingConfigurationProperty( input_lambda_processor=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputLambdaProcessorProperty( resource_arn="resourceArn" ) ), input_schema=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputSchemaProperty( record_columns=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.RecordColumnProperty( mapping="mapping", name="name", sql_type="sqlType" )], record_encoding="recordEncoding", record_format=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.RecordFormatProperty( mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MappingParametersProperty( csv_mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CSVMappingParametersProperty( record_column_delimiter="recordColumnDelimiter", record_row_delimiter="recordRowDelimiter" ), json_mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.JSONMappingParametersProperty( record_row_path="recordRowPath" ) ), record_format_type="recordFormatType" ) ), kinesis_firehose_input=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.KinesisFirehoseInputProperty( resource_arn="resourceArn" ), kinesis_streams_input=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.KinesisStreamsInputProperty( resource_arn="resourceArn" ), name_prefix="namePrefix" )] ), vpc_configurations=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.VpcConfigurationProperty( security_group_ids=["securityGroupIds"], subnet_ids=["subnetIds"] )], zeppelin_application_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ZeppelinApplicationConfigurationProperty( catalog_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CatalogConfigurationProperty( glue_data_catalog_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.GlueDataCatalogConfigurationProperty( database_arn="databaseArn" ) ), custom_artifacts_configuration=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CustomArtifactConfigurationProperty( artifact_type="artifactType", maven_reference=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MavenReferenceProperty( artifact_id="artifactId", group_id="groupId", version="version" ), s3_content_location=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.S3ContentLocationProperty( bucket_arn="bucketArn", file_key="fileKey", object_version="objectVersion" ) )], deploy_as_application_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.DeployAsApplicationConfigurationProperty( s3_content_location=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.S3ContentBaseLocationProperty( base_path="basePath", bucket_arn="bucketArn" ) ), monitoring_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ZeppelinMonitoringConfigurationProperty( log_level="logLevel" ) ) )
Attributes
- application_code_configuration
The code location and type parameters for a Managed Service for Apache Flink application.
- application_encryption_configuration
The configuration to manage encryption at rest.
- application_snapshot_configuration
Describes whether snapshots are enabled for a Managed Service for Apache Flink application.
- application_system_rollback_configuration
Describes whether system rollbacks are enabled for a Managed Service for Apache Flink application.
- environment_properties
Describes execution properties for a Managed Service for Apache Flink application.
- flink_application_configuration
The creation and update parameters for a Managed Service for Apache Flink application.
- sql_application_configuration
The creation and update parameters for a SQL-based Kinesis Data Analytics application.
- vpc_configurations
The array of descriptions of VPC configurations available to the application.
- zeppelin_application_configuration
The configuration parameters for a Kinesis Data Analytics Studio notebook.
ApplicationEncryptionConfigurationProperty
- class CfnApplicationPropsMixin.ApplicationEncryptionConfigurationProperty(*, key_id=None, key_type=None)
Bases:
objectSpecifies the configuration to manage encryption at rest.
- Parameters:
key_id (
Optional[str]) – The key ARN, key ID, alias ARN, or alias name of the KMS key used for encryption at rest.key_type (
Optional[str]) – Specifies the type of key used for encryption at rest.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins application_encryption_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationEncryptionConfigurationProperty( key_id="keyId", key_type="keyType" )
Attributes
- key_id
The key ARN, key ID, alias ARN, or alias name of the KMS key used for encryption at rest.
- key_type
Specifies the type of key used for encryption at rest.
ApplicationMaintenanceConfigurationProperty
- class CfnApplicationPropsMixin.ApplicationMaintenanceConfigurationProperty(*, application_maintenance_window_start_time=None)
Bases:
objectSpecifies the maintenance configuration for a AKAlong .
- Parameters:
application_maintenance_window_start_time (
Optional[str]) – The UTC timestamp of a day from which the eight-hour maintenance window will begin every day of the week. Maintenance of the application happens only during this eight-hour window.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins application_maintenance_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationMaintenanceConfigurationProperty( application_maintenance_window_start_time="applicationMaintenanceWindowStartTime" )
Attributes
- application_maintenance_window_start_time
The UTC timestamp of a day from which the eight-hour maintenance window will begin every day of the week.
Maintenance of the application happens only during this eight-hour window.
ApplicationRestoreConfigurationProperty
- class CfnApplicationPropsMixin.ApplicationRestoreConfigurationProperty(*, application_restore_type=None, snapshot_name=None)
Bases:
objectSpecifies the method and snapshot to use when restarting an application using previously saved application state.
- Parameters:
application_restore_type (
Optional[str]) – Specifies how the application should be restored.snapshot_name (
Optional[str]) – The identifier of an existing snapshot of application state to use to restart an application. The application uses this value ifRESTORE_FROM_CUSTOM_SNAPSHOTis specified for theApplicationRestoreType.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins application_restore_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationRestoreConfigurationProperty( application_restore_type="applicationRestoreType", snapshot_name="snapshotName" )
Attributes
- application_restore_type
Specifies how the application should be restored.
- snapshot_name
The identifier of an existing snapshot of application state to use to restart an application.
The application uses this value if
RESTORE_FROM_CUSTOM_SNAPSHOTis specified for theApplicationRestoreType.
ApplicationSnapshotConfigurationProperty
- class CfnApplicationPropsMixin.ApplicationSnapshotConfigurationProperty(*, snapshots_enabled=None)
Bases:
objectDescribes whether snapshots are enabled for a Managed Service for Apache Flink application.
- Parameters:
snapshots_enabled (
Union[bool,IResolvable,None]) – Describes whether snapshots are enabled for a Managed Service for Apache Flink application.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins application_snapshot_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationSnapshotConfigurationProperty( snapshots_enabled=False )
Attributes
- snapshots_enabled
Describes whether snapshots are enabled for a Managed Service for Apache Flink application.
ApplicationSystemRollbackConfigurationProperty
- class CfnApplicationPropsMixin.ApplicationSystemRollbackConfigurationProperty(*, rollback_enabled=None)
Bases:
objectDescribes the system rollback configuration for a Managed Service for Apache Flink application.
- Parameters:
rollback_enabled (
Union[bool,IResolvable,None]) – Describes whether system rollbacks are enabled for a Managed Service for Apache Flink application.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins application_system_rollback_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationSystemRollbackConfigurationProperty( rollback_enabled=False )
Attributes
- rollback_enabled
Describes whether system rollbacks are enabled for a Managed Service for Apache Flink application.
CSVMappingParametersProperty
- class CfnApplicationPropsMixin.CSVMappingParametersProperty(*, record_column_delimiter=None, record_row_delimiter=None)
Bases:
objectFor a SQL-based Kinesis Data Analytics application, provides additional mapping information when the record format uses delimiters, such as CSV.
For example, the following sample records use CSV format, where the records use the ‘n’ as the row delimiter and a comma (“,”) as the column delimiter:
"name1", "address1""name2", "address2"- Parameters:
record_column_delimiter (
Optional[str]) – The column delimiter. For example, in a CSV format, a comma (“,”) is the typical column delimiter.record_row_delimiter (
Optional[str]) – The row delimiter. For example, in a CSV format, ‘n’ is the typical row delimiter.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins c_sVMapping_parameters_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CSVMappingParametersProperty( record_column_delimiter="recordColumnDelimiter", record_row_delimiter="recordRowDelimiter" )
Attributes
- record_column_delimiter
The column delimiter.
For example, in a CSV format, a comma (“,”) is the typical column delimiter.
- record_row_delimiter
The row delimiter.
For example, in a CSV format, ‘n’ is the typical row delimiter.
CatalogConfigurationProperty
- class CfnApplicationPropsMixin.CatalogConfigurationProperty(*, glue_data_catalog_configuration=None)
Bases:
objectThe configuration parameters for the default Amazon Glue database.
You use this database for SQL queries that you write in a Kinesis Data Analytics Studio notebook.
- Parameters:
glue_data_catalog_configuration (
Union[IResolvable,GlueDataCatalogConfigurationProperty,Dict[str,Any],None]) – The configuration parameters for the default Amazon Glue database. You use this database for Apache Flink SQL queries and table API transforms that you write in a Kinesis Data Analytics Studio notebook.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins catalog_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CatalogConfigurationProperty( glue_data_catalog_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.GlueDataCatalogConfigurationProperty( database_arn="databaseArn" ) )
Attributes
- glue_data_catalog_configuration
The configuration parameters for the default Amazon Glue database.
You use this database for Apache Flink SQL queries and table API transforms that you write in a Kinesis Data Analytics Studio notebook.
CheckpointConfigurationProperty
- class CfnApplicationPropsMixin.CheckpointConfigurationProperty(*, checkpointing_enabled=None, checkpoint_interval=None, configuration_type=None, min_pause_between_checkpoints=None)
Bases:
objectDescribes an application’s checkpointing configuration.
Checkpointing is the process of persisting application state for fault tolerance. For more information, see Checkpoints for Fault Tolerance in the Apache Flink Documentation .
- Parameters:
checkpointing_enabled (
Union[bool,IResolvable,None]) – Describes whether checkpointing is enabled for a Managed Service for Apache Flink application. .. epigraph:: IfCheckpointConfiguration.ConfigurationTypeisDEFAULT, the application will use aCheckpointingEnabledvalue oftrue, even if this value is set to another value using this API or in application code.checkpoint_interval (
Union[int,float,None]) – Describes the interval in milliseconds between checkpoint operations. .. epigraph:: IfCheckpointConfiguration.ConfigurationTypeisDEFAULT, the application will use aCheckpointIntervalvalue of 60000, even if this value is set to another value using this API or in application code.configuration_type (
Optional[str]) – Describes whether the application uses Managed Service for Apache Flink’ default checkpointing behavior. You must set this property toCUSTOMin order to set theCheckpointingEnabled,CheckpointInterval, orMinPauseBetweenCheckpointsparameters. .. epigraph:: If this value is set toDEFAULT, the application will use the following values, even if they are set to other values using APIs or application code: - CheckpointingEnabled: true - CheckpointInterval: 60000 - MinPauseBetweenCheckpoints: 5000min_pause_between_checkpoints (
Union[int,float,None]) –Describes the minimum time in milliseconds after a checkpoint operation completes that a new checkpoint operation can start. If a checkpoint operation takes longer than the
CheckpointInterval, the application otherwise performs continual checkpoint operations. For more information, see Tuning Checkpointing in the Apache Flink Documentation . .. epigraph:: IfCheckpointConfiguration.ConfigurationTypeisDEFAULT, the application will use aMinPauseBetweenCheckpointsvalue of 5000, even if this value is set using this API or in application code.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins checkpoint_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CheckpointConfigurationProperty( checkpointing_enabled=False, checkpoint_interval=123, configuration_type="configurationType", min_pause_between_checkpoints=123 )
Attributes
- checkpoint_interval
Describes the interval in milliseconds between checkpoint operations.
If
CheckpointConfiguration.ConfigurationTypeisDEFAULT, the application will use aCheckpointIntervalvalue of 60000, even if this value is set to another value using this API or in application code.
- checkpointing_enabled
Describes whether checkpointing is enabled for a Managed Service for Apache Flink application.
If
CheckpointConfiguration.ConfigurationTypeisDEFAULT, the application will use aCheckpointingEnabledvalue oftrue, even if this value is set to another value using this API or in application code.
- configuration_type
Describes whether the application uses Managed Service for Apache Flink’ default checkpointing behavior.
You must set this property to
CUSTOMin order to set theCheckpointingEnabled,CheckpointInterval, orMinPauseBetweenCheckpointsparameters. .. epigraph:If this value is set to ``DEFAULT`` , the application will use the following values, even if they are set to other values using APIs or application code: - *CheckpointingEnabled:* true - *CheckpointInterval:* 60000 - *MinPauseBetweenCheckpoints:* 5000
- min_pause_between_checkpoints
Describes the minimum time in milliseconds after a checkpoint operation completes that a new checkpoint operation can start.
If a checkpoint operation takes longer than the
CheckpointInterval, the application otherwise performs continual checkpoint operations. For more information, see Tuning Checkpointing in the Apache Flink Documentation . .. epigraph:If ``CheckpointConfiguration.ConfigurationType`` is ``DEFAULT`` , the application will use a ``MinPauseBetweenCheckpoints`` value of 5000, even if this value is set using this API or in application code.
CodeContentProperty
- class CfnApplicationPropsMixin.CodeContentProperty(*, s3_content_location=None, text_content=None, zip_file_content=None)
Bases:
objectSpecifies either the application code, or the location of the application code, for a Managed Service for Apache Flink application.
- Parameters:
s3_content_location (
Union[IResolvable,S3ContentLocationProperty,Dict[str,Any],None]) – Information about the Amazon S3 bucket that contains the application code.text_content (
Optional[str]) – The text-format code for a Managed Service for Apache Flink application.zip_file_content (
Optional[str]) – The zip-format code for a Managed Service for Apache Flink application.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins code_content_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CodeContentProperty( s3_content_location=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.S3ContentLocationProperty( bucket_arn="bucketArn", file_key="fileKey", object_version="objectVersion" ), text_content="textContent", zip_file_content="zipFileContent" )
Attributes
- s3_content_location
Information about the Amazon S3 bucket that contains the application code.
- text_content
The text-format code for a Managed Service for Apache Flink application.
- zip_file_content
The zip-format code for a Managed Service for Apache Flink application.
CustomArtifactConfigurationProperty
- class CfnApplicationPropsMixin.CustomArtifactConfigurationProperty(*, artifact_type=None, maven_reference=None, s3_content_location=None)
Bases:
objectThe configuration of connectors and user-defined functions.
- Parameters:
artifact_type (
Optional[str]) – Set this to eitherUDForDEPENDENCY_JAR.UDFstands for user-defined functions. This type of artifact must be in an S3 bucket. ADEPENDENCY_JARcan be in either Maven or an S3 bucket.maven_reference (
Union[IResolvable,MavenReferenceProperty,Dict[str,Any],None]) – The parameters required to fully specify a Maven reference.s3_content_location (
Union[IResolvable,S3ContentLocationProperty,Dict[str,Any],None]) – The location of the custom artifacts.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins custom_artifact_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CustomArtifactConfigurationProperty( artifact_type="artifactType", maven_reference=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MavenReferenceProperty( artifact_id="artifactId", group_id="groupId", version="version" ), s3_content_location=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.S3ContentLocationProperty( bucket_arn="bucketArn", file_key="fileKey", object_version="objectVersion" ) )
Attributes
- artifact_type
Set this to either
UDForDEPENDENCY_JAR.UDFstands for user-defined functions. This type of artifact must be in an S3 bucket. ADEPENDENCY_JARcan be in either Maven or an S3 bucket.
- maven_reference
The parameters required to fully specify a Maven reference.
- s3_content_location
The location of the custom artifacts.
DeployAsApplicationConfigurationProperty
- class CfnApplicationPropsMixin.DeployAsApplicationConfigurationProperty(*, s3_content_location=None)
Bases:
objectThe information required to deploy a Kinesis Data Analytics Studio notebook as an application with durable state.
- Parameters:
s3_content_location (
Union[IResolvable,S3ContentBaseLocationProperty,Dict[str,Any],None]) – The description of an Amazon S3 object that contains the Amazon Data Analytics application, including the Amazon Resource Name (ARN) of the S3 bucket, the name of the Amazon S3 object that contains the data, and the version number of the Amazon S3 object that contains the data.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins deploy_as_application_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.DeployAsApplicationConfigurationProperty( s3_content_location=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.S3ContentBaseLocationProperty( base_path="basePath", bucket_arn="bucketArn" ) )
Attributes
- s3_content_location
The description of an Amazon S3 object that contains the Amazon Data Analytics application, including the Amazon Resource Name (ARN) of the S3 bucket, the name of the Amazon S3 object that contains the data, and the version number of the Amazon S3 object that contains the data.
EnvironmentPropertiesProperty
- class CfnApplicationPropsMixin.EnvironmentPropertiesProperty(*, property_groups=None)
Bases:
objectDescribes execution properties for a Managed Service for Apache Flink application.
- Parameters:
property_groups (
Union[IResolvable,Sequence[Union[IResolvable,PropertyGroupProperty,Dict[str,Any]]],None]) – Describes the execution property groups.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins environment_properties_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.EnvironmentPropertiesProperty( property_groups=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.PropertyGroupProperty( property_group_id="propertyGroupId", property_map={ "property_map_key": "propertyMap" } )] )
Attributes
- property_groups
Describes the execution property groups.
FlinkApplicationConfigurationProperty
- class CfnApplicationPropsMixin.FlinkApplicationConfigurationProperty(*, checkpoint_configuration=None, monitoring_configuration=None, parallelism_configuration=None)
Bases:
objectDescribes configuration parameters for a Managed Service for Apache Flink application or a Studio notebook.
- Parameters:
checkpoint_configuration (
Union[IResolvable,CheckpointConfigurationProperty,Dict[str,Any],None]) –Describes an application’s checkpointing configuration. Checkpointing is the process of persisting application state for fault tolerance. For more information, see Checkpoints for Fault Tolerance in the Apache Flink Documentation .
monitoring_configuration (
Union[IResolvable,MonitoringConfigurationProperty,Dict[str,Any],None]) – Describes configuration parameters for Amazon CloudWatch logging for an application.parallelism_configuration (
Union[IResolvable,ParallelismConfigurationProperty,Dict[str,Any],None]) – Describes parameters for how an application executes multiple tasks simultaneously.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins flink_application_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.FlinkApplicationConfigurationProperty( checkpoint_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CheckpointConfigurationProperty( checkpointing_enabled=False, checkpoint_interval=123, configuration_type="configurationType", min_pause_between_checkpoints=123 ), monitoring_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MonitoringConfigurationProperty( configuration_type="configurationType", log_level="logLevel", metrics_level="metricsLevel" ), parallelism_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ParallelismConfigurationProperty( auto_scaling_enabled=False, configuration_type="configurationType", parallelism=123, parallelism_per_kpu=123 ) )
Attributes
- checkpoint_configuration
Describes an application’s checkpointing configuration.
Checkpointing is the process of persisting application state for fault tolerance. For more information, see Checkpoints for Fault Tolerance in the Apache Flink Documentation .
- monitoring_configuration
Describes configuration parameters for Amazon CloudWatch logging for an application.
- parallelism_configuration
Describes parameters for how an application executes multiple tasks simultaneously.
FlinkRunConfigurationProperty
- class CfnApplicationPropsMixin.FlinkRunConfigurationProperty(*, allow_non_restored_state=None)
Bases:
objectDescribes the starting parameters for a Managed Service for Apache Flink application.
- Parameters:
allow_non_restored_state (
Union[bool,IResolvable,None]) –When restoring from a snapshot, specifies whether the runtime is allowed to skip a state that cannot be mapped to the new program. This will happen if the program is updated between snapshots to remove stateful parameters, and state data in the snapshot no longer corresponds to valid application data. For more information, see Allowing Non-Restored State in the Apache Flink documentation . .. epigraph:: This value defaults to
false. If you update your application without specifying this parameter,AllowNonRestoredStatewill be set tofalse, even if it was previously set totrue.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins flink_run_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.FlinkRunConfigurationProperty( allow_non_restored_state=False )
Attributes
- allow_non_restored_state
When restoring from a snapshot, specifies whether the runtime is allowed to skip a state that cannot be mapped to the new program.
This will happen if the program is updated between snapshots to remove stateful parameters, and state data in the snapshot no longer corresponds to valid application data. For more information, see Allowing Non-Restored State in the Apache Flink documentation . .. epigraph:
This value defaults to ``false`` . If you update your application without specifying this parameter, ``AllowNonRestoredState`` will be set to ``false`` , even if it was previously set to ``true`` .
GlueDataCatalogConfigurationProperty
- class CfnApplicationPropsMixin.GlueDataCatalogConfigurationProperty(*, database_arn=None)
Bases:
objectThe configuration of the Glue Data Catalog that you use for Apache Flink SQL queries and table API transforms that you write in an application.
- Parameters:
database_arn (
Optional[str]) – The Amazon Resource Name (ARN) of the database.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins glue_data_catalog_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.GlueDataCatalogConfigurationProperty( database_arn="databaseArn" )
Attributes
- database_arn
The Amazon Resource Name (ARN) of the database.
InputLambdaProcessorProperty
- class CfnApplicationPropsMixin.InputLambdaProcessorProperty(*, resource_arn=None)
Bases:
objectAn object that contains the Amazon Resource Name (ARN) of the Amazon Lambda function that is used to preprocess records in the stream in a SQL-based Kinesis Data Analytics application.
- Parameters:
resource_arn (
Optional[str]) – The ARN of the Amazon Lambda function that operates on records in the stream. .. epigraph:: To specify an earlier version of the Lambda function than the latest, include the Lambda function version in the Lambda function ARN. For more information about Lambda ARNs, see Example ARNs: Amazon Lambda- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins input_lambda_processor_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputLambdaProcessorProperty( resource_arn="resourceArn" )
Attributes
- resource_arn
The ARN of the Amazon Lambda function that operates on records in the stream.
To specify an earlier version of the Lambda function than the latest, include the Lambda function version in the Lambda function ARN. For more information about Lambda ARNs, see Example ARNs: Amazon Lambda
InputParallelismProperty
- class CfnApplicationPropsMixin.InputParallelismProperty(*, count=None)
Bases:
objectFor a SQL-based Kinesis Data Analytics application, describes the number of in-application streams to create for a given streaming source.
- Parameters:
count (
Union[int,float,None]) – The number of in-application streams to create.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins input_parallelism_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputParallelismProperty( count=123 )
Attributes
- count
The number of in-application streams to create.
InputProcessingConfigurationProperty
- class CfnApplicationPropsMixin.InputProcessingConfigurationProperty(*, input_lambda_processor=None)
Bases:
objectFor an SQL-based Amazon Kinesis Data Analytics application, describes a processor that is used to preprocess the records in the stream before being processed by your application code.
Currently, the only input processor available is Amazon Lambda .
- Parameters:
input_lambda_processor (
Union[IResolvable,InputLambdaProcessorProperty,Dict[str,Any],None]) – The InputLambdaProcessor that is used to preprocess the records in the stream before being processed by your application code.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins input_processing_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputProcessingConfigurationProperty( input_lambda_processor=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputLambdaProcessorProperty( resource_arn="resourceArn" ) )
Attributes
- input_lambda_processor
The InputLambdaProcessor that is used to preprocess the records in the stream before being processed by your application code.
InputProperty
- class CfnApplicationPropsMixin.InputProperty(*, input_parallelism=None, input_processing_configuration=None, input_schema=None, kinesis_firehose_input=None, kinesis_streams_input=None, name_prefix=None)
Bases:
objectWhen you configure the application input for a SQL-based Kinesis Data Analytics application, you specify the streaming source, the in-application stream name that is created, and the mapping between the two.
- Parameters:
input_parallelism (
Union[IResolvable,InputParallelismProperty,Dict[str,Any],None]) – Describes the number of in-application streams to create.input_processing_configuration (
Union[IResolvable,InputProcessingConfigurationProperty,Dict[str,Any],None]) –The InputProcessingConfiguration for the input. An input processor transforms records as they are received from the stream, before the application’s SQL code executes. Currently, the only input processing configuration available is InputLambdaProcessor .
input_schema (
Union[IResolvable,InputSchemaProperty,Dict[str,Any],None]) – Describes the format of the data in the streaming source, and how each data element maps to corresponding columns in the in-application stream that is being created. Also used to describe the format of the reference data source.kinesis_firehose_input (
Union[IResolvable,KinesisFirehoseInputProperty,Dict[str,Any],None]) – If the streaming source is an Amazon Kinesis Data Firehose delivery stream, identifies the delivery stream’s ARN.kinesis_streams_input (
Union[IResolvable,KinesisStreamsInputProperty,Dict[str,Any],None]) – If the streaming source is an Amazon Kinesis data stream, identifies the stream’s Amazon Resource Name (ARN).name_prefix (
Optional[str]) – The name prefix to use when creating an in-application stream. Suppose that you specify a prefix “MyInApplicationStream.” Kinesis Data Analytics then creates one or more (as per theInputParallelismcount you specified) in-application streams with the names “MyInApplicationStream_001,” “MyInApplicationStream_002,” and so on.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins input_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputProperty( input_parallelism=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputParallelismProperty( count=123 ), input_processing_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputProcessingConfigurationProperty( input_lambda_processor=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputLambdaProcessorProperty( resource_arn="resourceArn" ) ), input_schema=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputSchemaProperty( record_columns=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.RecordColumnProperty( mapping="mapping", name="name", sql_type="sqlType" )], record_encoding="recordEncoding", record_format=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.RecordFormatProperty( mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MappingParametersProperty( csv_mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CSVMappingParametersProperty( record_column_delimiter="recordColumnDelimiter", record_row_delimiter="recordRowDelimiter" ), json_mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.JSONMappingParametersProperty( record_row_path="recordRowPath" ) ), record_format_type="recordFormatType" ) ), kinesis_firehose_input=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.KinesisFirehoseInputProperty( resource_arn="resourceArn" ), kinesis_streams_input=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.KinesisStreamsInputProperty( resource_arn="resourceArn" ), name_prefix="namePrefix" )
Attributes
- input_parallelism
Describes the number of in-application streams to create.
- input_processing_configuration
The InputProcessingConfiguration for the input. An input processor transforms records as they are received from the stream, before the application’s SQL code executes. Currently, the only input processing configuration available is InputLambdaProcessor .
- input_schema
Describes the format of the data in the streaming source, and how each data element maps to corresponding columns in the in-application stream that is being created.
Also used to describe the format of the reference data source.
- kinesis_firehose_input
If the streaming source is an Amazon Kinesis Data Firehose delivery stream, identifies the delivery stream’s ARN.
- kinesis_streams_input
If the streaming source is an Amazon Kinesis data stream, identifies the stream’s Amazon Resource Name (ARN).
- name_prefix
The name prefix to use when creating an in-application stream.
Suppose that you specify a prefix “
MyInApplicationStream.” Kinesis Data Analytics then creates one or more (as per theInputParallelismcount you specified) in-application streams with the names “MyInApplicationStream_001,” “MyInApplicationStream_002,” and so on.
InputSchemaProperty
- class CfnApplicationPropsMixin.InputSchemaProperty(*, record_columns=None, record_encoding=None, record_format=None)
Bases:
objectFor a SQL-based Kinesis Data Analytics application, describes the format of the data in the streaming source, and how each data element maps to corresponding columns created in the in-application stream.
- Parameters:
record_columns (
Union[IResolvable,Sequence[Union[IResolvable,RecordColumnProperty,Dict[str,Any]]],None]) – A list ofRecordColumnobjects.record_encoding (
Optional[str]) – Specifies the encoding of the records in the streaming source. For example, UTF-8.record_format (
Union[IResolvable,RecordFormatProperty,Dict[str,Any],None]) – Specifies the format of the records on the streaming source.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins input_schema_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputSchemaProperty( record_columns=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.RecordColumnProperty( mapping="mapping", name="name", sql_type="sqlType" )], record_encoding="recordEncoding", record_format=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.RecordFormatProperty( mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MappingParametersProperty( csv_mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CSVMappingParametersProperty( record_column_delimiter="recordColumnDelimiter", record_row_delimiter="recordRowDelimiter" ), json_mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.JSONMappingParametersProperty( record_row_path="recordRowPath" ) ), record_format_type="recordFormatType" ) )
Attributes
- record_columns
A list of
RecordColumnobjects.
- record_encoding
Specifies the encoding of the records in the streaming source.
For example, UTF-8.
- record_format
Specifies the format of the records on the streaming source.
JSONMappingParametersProperty
- class CfnApplicationPropsMixin.JSONMappingParametersProperty(*, record_row_path=None)
Bases:
objectFor a SQL-based Kinesis Data Analytics application, provides additional mapping information when JSON is the record format on the streaming source.
- Parameters:
record_row_path (
Optional[str]) – The path to the top-level parent that contains the records.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins j_sONMapping_parameters_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.JSONMappingParametersProperty( record_row_path="recordRowPath" )
Attributes
- record_row_path
The path to the top-level parent that contains the records.
KinesisFirehoseInputProperty
- class CfnApplicationPropsMixin.KinesisFirehoseInputProperty(*, resource_arn=None)
Bases:
objectFor a SQL-based Kinesis Data Analytics application, identifies a Kinesis Data Firehose delivery stream as the streaming source.
You provide the delivery stream’s Amazon Resource Name (ARN).
- Parameters:
resource_arn (
Optional[str]) – The Amazon Resource Name (ARN) of the delivery stream.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins kinesis_firehose_input_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.KinesisFirehoseInputProperty( resource_arn="resourceArn" )
Attributes
- resource_arn
The Amazon Resource Name (ARN) of the delivery stream.
KinesisStreamsInputProperty
- class CfnApplicationPropsMixin.KinesisStreamsInputProperty(*, resource_arn=None)
Bases:
objectIdentifies a Kinesis data stream as the streaming source.
You provide the stream’s Amazon Resource Name (ARN).
- Parameters:
resource_arn (
Optional[str]) – The ARN of the input Kinesis data stream to read.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins kinesis_streams_input_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.KinesisStreamsInputProperty( resource_arn="resourceArn" )
Attributes
- resource_arn
The ARN of the input Kinesis data stream to read.
MappingParametersProperty
- class CfnApplicationPropsMixin.MappingParametersProperty(*, csv_mapping_parameters=None, json_mapping_parameters=None)
Bases:
objectWhen you configure a SQL-based Kinesis Data Analytics application’s input at the time of creating or updating an application, provides additional mapping information specific to the record format (such as JSON, CSV, or record fields delimited by some delimiter) on the streaming source.
- Parameters:
csv_mapping_parameters (
Union[IResolvable,CSVMappingParametersProperty,Dict[str,Any],None]) – Provides additional mapping information when the record format uses delimiters (for example, CSV).json_mapping_parameters (
Union[IResolvable,JSONMappingParametersProperty,Dict[str,Any],None]) – Provides additional mapping information when JSON is the record format on the streaming source.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins mapping_parameters_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MappingParametersProperty( csv_mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CSVMappingParametersProperty( record_column_delimiter="recordColumnDelimiter", record_row_delimiter="recordRowDelimiter" ), json_mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.JSONMappingParametersProperty( record_row_path="recordRowPath" ) )
Attributes
- csv_mapping_parameters
Provides additional mapping information when the record format uses delimiters (for example, CSV).
- json_mapping_parameters
Provides additional mapping information when JSON is the record format on the streaming source.
MavenReferenceProperty
- class CfnApplicationPropsMixin.MavenReferenceProperty(*, artifact_id=None, group_id=None, version=None)
Bases:
objectThe information required to specify a Maven reference.
You can use Maven references to specify dependency JAR files.
- Parameters:
artifact_id (
Optional[str]) – The artifact ID of the Maven reference.group_id (
Optional[str]) – The group ID of the Maven reference.version (
Optional[str]) – The version of the Maven reference.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins maven_reference_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MavenReferenceProperty( artifact_id="artifactId", group_id="groupId", version="version" )
Attributes
- artifact_id
The artifact ID of the Maven reference.
- group_id
The group ID of the Maven reference.
- version
The version of the Maven reference.
MonitoringConfigurationProperty
- class CfnApplicationPropsMixin.MonitoringConfigurationProperty(*, configuration_type=None, log_level=None, metrics_level=None)
Bases:
objectDescribes configuration parameters for Amazon CloudWatch logging for a Java-based Kinesis Data Analytics application.
For more information about CloudWatch logging, see Monitoring .
- Parameters:
configuration_type (
Optional[str]) – Describes whether to use the default CloudWatch logging configuration for an application. You must set this property toCUSTOMin order to set theLogLevelorMetricsLevelparameters.log_level (
Optional[str]) – Describes the verbosity of the CloudWatch Logs for an application.metrics_level (
Optional[str]) – Describes the granularity of the CloudWatch Logs for an application. TheParallelismlevel is not recommended for applications with a Parallelism over 64 due to excessive costs.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins monitoring_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MonitoringConfigurationProperty( configuration_type="configurationType", log_level="logLevel", metrics_level="metricsLevel" )
Attributes
- configuration_type
Describes whether to use the default CloudWatch logging configuration for an application.
You must set this property to
CUSTOMin order to set theLogLevelorMetricsLevelparameters.
- log_level
Describes the verbosity of the CloudWatch Logs for an application.
- metrics_level
Describes the granularity of the CloudWatch Logs for an application.
The
Parallelismlevel is not recommended for applications with a Parallelism over 64 due to excessive costs.
ParallelismConfigurationProperty
- class CfnApplicationPropsMixin.ParallelismConfigurationProperty(*, auto_scaling_enabled=None, configuration_type=None, parallelism=None, parallelism_per_kpu=None)
Bases:
objectDescribes parameters for how a Flink-based Kinesis Data Analytics application executes multiple tasks simultaneously.
For more information about parallelism, see Parallel Execution in the Apache Flink Documentation .
- Parameters:
auto_scaling_enabled (
Union[bool,IResolvable,None]) – Describes whether the Managed Service for Apache Flink service can increase the parallelism of the application in response to increased throughput.configuration_type (
Optional[str]) – Describes whether the application uses the default parallelism for the Managed Service for Apache Flink service. You must set this property toCUSTOMin order to change your application’sAutoScalingEnabled,Parallelism, orParallelismPerKPUproperties.parallelism (
Union[int,float,None]) – Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can perform. The Kinesis Data Analytics service can increase this number automatically if ParallelismConfiguration:AutoScalingEnabled is set totrue.parallelism_per_kpu (
Union[int,float,None]) – Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform per Kinesis Processing Unit (KPU) used by the application. For more information about KPUs, see Amazon Kinesis Data Analytics Pricing .
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins parallelism_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ParallelismConfigurationProperty( auto_scaling_enabled=False, configuration_type="configurationType", parallelism=123, parallelism_per_kpu=123 )
Attributes
- auto_scaling_enabled
Describes whether the Managed Service for Apache Flink service can increase the parallelism of the application in response to increased throughput.
- configuration_type
Describes whether the application uses the default parallelism for the Managed Service for Apache Flink service.
You must set this property to
CUSTOMin order to change your application’sAutoScalingEnabled,Parallelism, orParallelismPerKPUproperties.
- parallelism
Describes the initial number of parallel tasks that a Java-based Kinesis Data Analytics application can perform.
The Kinesis Data Analytics service can increase this number automatically if ParallelismConfiguration:AutoScalingEnabled is set to
true.
- parallelism_per_kpu
Describes the number of parallel tasks that a Java-based Kinesis Data Analytics application can perform per Kinesis Processing Unit (KPU) used by the application.
For more information about KPUs, see Amazon Kinesis Data Analytics Pricing .
PropertyGroupProperty
- class CfnApplicationPropsMixin.PropertyGroupProperty(*, property_group_id=None, property_map=None)
Bases:
objectProperty key-value pairs passed into an application.
- Parameters:
property_group_id (
Optional[str]) – Describes the key of an application execution property key-value pair.property_map (
Union[Mapping[str,str],IResolvable,None]) – Describes the value of an application execution property key-value pair.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins property_group_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.PropertyGroupProperty( property_group_id="propertyGroupId", property_map={ "property_map_key": "propertyMap" } )
Attributes
- property_group_id
Describes the key of an application execution property key-value pair.
- property_map
Describes the value of an application execution property key-value pair.
RecordColumnProperty
- class CfnApplicationPropsMixin.RecordColumnProperty(*, mapping=None, name=None, sql_type=None)
Bases:
objectFor a SQL-based Kinesis Data Analytics application, describes the mapping of each data element in the streaming source to the corresponding column in the in-application stream.
Also used to describe the format of the reference data source.
- Parameters:
mapping (
Optional[str]) – A reference to the data element in the streaming input or the reference data source.name (
Optional[str]) – The name of the column that is created in the in-application input stream or reference table.sql_type (
Optional[str]) – The type of column created in the in-application input stream or reference table.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins record_column_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.RecordColumnProperty( mapping="mapping", name="name", sql_type="sqlType" )
Attributes
- mapping
A reference to the data element in the streaming input or the reference data source.
- name
The name of the column that is created in the in-application input stream or reference table.
- sql_type
The type of column created in the in-application input stream or reference table.
RecordFormatProperty
- class CfnApplicationPropsMixin.RecordFormatProperty(*, mapping_parameters=None, record_format_type=None)
Bases:
objectFor a SQL-based Kinesis Data Analytics application, describes the record format and relevant mapping information that should be applied to schematize the records on the stream.
- Parameters:
mapping_parameters (
Union[IResolvable,MappingParametersProperty,Dict[str,Any],None]) – When you configure application input at the time of creating or updating an application, provides additional mapping information specific to the record format (such as JSON, CSV, or record fields delimited by some delimiter) on the streaming source.record_format_type (
Optional[str]) – The type of record format.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins record_format_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.RecordFormatProperty( mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MappingParametersProperty( csv_mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CSVMappingParametersProperty( record_column_delimiter="recordColumnDelimiter", record_row_delimiter="recordRowDelimiter" ), json_mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.JSONMappingParametersProperty( record_row_path="recordRowPath" ) ), record_format_type="recordFormatType" )
Attributes
- mapping_parameters
When you configure application input at the time of creating or updating an application, provides additional mapping information specific to the record format (such as JSON, CSV, or record fields delimited by some delimiter) on the streaming source.
- record_format_type
The type of record format.
RunConfigurationProperty
- class CfnApplicationPropsMixin.RunConfigurationProperty(*, application_restore_configuration=None, flink_run_configuration=None)
Bases:
objectDescribes the starting parameters for an Managed Service for Apache Flink application.
- Parameters:
application_restore_configuration (
Union[IResolvable,ApplicationRestoreConfigurationProperty,Dict[str,Any],None]) – Describes the restore behavior of a restarting application.flink_run_configuration (
Union[IResolvable,FlinkRunConfigurationProperty,Dict[str,Any],None]) – Describes the starting parameters for a Managed Service for Apache Flink application.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins run_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.RunConfigurationProperty( application_restore_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ApplicationRestoreConfigurationProperty( application_restore_type="applicationRestoreType", snapshot_name="snapshotName" ), flink_run_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.FlinkRunConfigurationProperty( allow_non_restored_state=False ) )
Attributes
- application_restore_configuration
Describes the restore behavior of a restarting application.
- flink_run_configuration
Describes the starting parameters for a Managed Service for Apache Flink application.
S3ContentBaseLocationProperty
- class CfnApplicationPropsMixin.S3ContentBaseLocationProperty(*, base_path=None, bucket_arn=None)
Bases:
objectThe base location of the Amazon Data Analytics application.
- Parameters:
base_path (
Optional[str]) – The base path for the S3 bucket.bucket_arn (
Optional[str]) – The Amazon Resource Name (ARN) of the S3 bucket.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins s3_content_base_location_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.S3ContentBaseLocationProperty( base_path="basePath", bucket_arn="bucketArn" )
Attributes
- base_path
The base path for the S3 bucket.
- bucket_arn
The Amazon Resource Name (ARN) of the S3 bucket.
S3ContentLocationProperty
- class CfnApplicationPropsMixin.S3ContentLocationProperty(*, bucket_arn=None, file_key=None, object_version=None)
Bases:
objectThe location of an application or a custom artifact.
- Parameters:
bucket_arn (
Optional[str]) – The Amazon Resource Name (ARN) for the S3 bucket containing the application code.file_key (
Optional[str]) – The file key for the object containing the application code.object_version (
Optional[str]) – The version of the object containing the application code.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins s3_content_location_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.S3ContentLocationProperty( bucket_arn="bucketArn", file_key="fileKey", object_version="objectVersion" )
Attributes
- bucket_arn
The Amazon Resource Name (ARN) for the S3 bucket containing the application code.
- file_key
The file key for the object containing the application code.
- object_version
The version of the object containing the application code.
SqlApplicationConfigurationProperty
- class CfnApplicationPropsMixin.SqlApplicationConfigurationProperty(*, inputs=None)
Bases:
objectDescribes the inputs, outputs, and reference data sources for a SQL-based Kinesis Data Analytics application.
- Parameters:
inputs (
Union[IResolvable,Sequence[Union[IResolvable,InputProperty,Dict[str,Any]]],None]) – The array of Input objects describing the input streams used by the application.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins sql_application_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.SqlApplicationConfigurationProperty( inputs=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputProperty( input_parallelism=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputParallelismProperty( count=123 ), input_processing_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputProcessingConfigurationProperty( input_lambda_processor=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputLambdaProcessorProperty( resource_arn="resourceArn" ) ), input_schema=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.InputSchemaProperty( record_columns=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.RecordColumnProperty( mapping="mapping", name="name", sql_type="sqlType" )], record_encoding="recordEncoding", record_format=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.RecordFormatProperty( mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MappingParametersProperty( csv_mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CSVMappingParametersProperty( record_column_delimiter="recordColumnDelimiter", record_row_delimiter="recordRowDelimiter" ), json_mapping_parameters=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.JSONMappingParametersProperty( record_row_path="recordRowPath" ) ), record_format_type="recordFormatType" ) ), kinesis_firehose_input=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.KinesisFirehoseInputProperty( resource_arn="resourceArn" ), kinesis_streams_input=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.KinesisStreamsInputProperty( resource_arn="resourceArn" ), name_prefix="namePrefix" )] )
Attributes
VpcConfigurationProperty
- class CfnApplicationPropsMixin.VpcConfigurationProperty(*, security_group_ids=None, subnet_ids=None)
Bases:
objectDescribes the parameters of a VPC used by the application.
- Parameters:
security_group_ids (
Optional[Sequence[str]]) – The array of SecurityGroup IDs used by the VPC configuration.subnet_ids (
Optional[Sequence[str]]) – The array of Subnet IDs used by the VPC configuration.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins vpc_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.VpcConfigurationProperty( security_group_ids=["securityGroupIds"], subnet_ids=["subnetIds"] )
Attributes
- security_group_ids
The array of SecurityGroup IDs used by the VPC configuration.
ZeppelinApplicationConfigurationProperty
- class CfnApplicationPropsMixin.ZeppelinApplicationConfigurationProperty(*, catalog_configuration=None, custom_artifacts_configuration=None, deploy_as_application_configuration=None, monitoring_configuration=None)
Bases:
objectThe configuration of a Kinesis Data Analytics Studio notebook.
- Parameters:
catalog_configuration (
Union[IResolvable,CatalogConfigurationProperty,Dict[str,Any],None]) – The Amazon Glue Data Catalog that you use in queries in a Kinesis Data Analytics Studio notebook.custom_artifacts_configuration (
Union[IResolvable,Sequence[Union[IResolvable,CustomArtifactConfigurationProperty,Dict[str,Any]]],None]) – A list ofCustomArtifactConfigurationobjects.deploy_as_application_configuration (
Union[IResolvable,DeployAsApplicationConfigurationProperty,Dict[str,Any],None]) – The information required to deploy a Kinesis Data Analytics Studio notebook as an application with durable state.monitoring_configuration (
Union[IResolvable,ZeppelinMonitoringConfigurationProperty,Dict[str,Any],None]) – The monitoring configuration of a Kinesis Data Analytics Studio notebook.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins zeppelin_application_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ZeppelinApplicationConfigurationProperty( catalog_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CatalogConfigurationProperty( glue_data_catalog_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.GlueDataCatalogConfigurationProperty( database_arn="databaseArn" ) ), custom_artifacts_configuration=[kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.CustomArtifactConfigurationProperty( artifact_type="artifactType", maven_reference=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.MavenReferenceProperty( artifact_id="artifactId", group_id="groupId", version="version" ), s3_content_location=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.S3ContentLocationProperty( bucket_arn="bucketArn", file_key="fileKey", object_version="objectVersion" ) )], deploy_as_application_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.DeployAsApplicationConfigurationProperty( s3_content_location=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.S3ContentBaseLocationProperty( base_path="basePath", bucket_arn="bucketArn" ) ), monitoring_configuration=kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ZeppelinMonitoringConfigurationProperty( log_level="logLevel" ) )
Attributes
- catalog_configuration
The Amazon Glue Data Catalog that you use in queries in a Kinesis Data Analytics Studio notebook.
- custom_artifacts_configuration
A list of
CustomArtifactConfigurationobjects.
- deploy_as_application_configuration
The information required to deploy a Kinesis Data Analytics Studio notebook as an application with durable state.
- monitoring_configuration
The monitoring configuration of a Kinesis Data Analytics Studio notebook.
ZeppelinMonitoringConfigurationProperty
- class CfnApplicationPropsMixin.ZeppelinMonitoringConfigurationProperty(*, log_level=None)
Bases:
objectDescribes configuration parameters for Amazon CloudWatch logging for a Kinesis Data Analytics Studio notebook.
For more information about CloudWatch logging, see Monitoring .
- Parameters:
log_level (
Optional[str]) – The verbosity of the CloudWatch Logs for an application. You can set it toINFO,WARN,ERROR, orDEBUG.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_kinesisanalyticsv2 import mixins as kinesisanalyticsv2_mixins zeppelin_monitoring_configuration_property = kinesisanalyticsv2_mixins.CfnApplicationPropsMixin.ZeppelinMonitoringConfigurationProperty( log_level="logLevel" )
Attributes
- log_level
The verbosity of the CloudWatch Logs for an application.
You can set it to
INFO,WARN,ERROR, orDEBUG.