CfnMLTransformPropsMixin
- class aws_cdk.mixins_preview.aws_glue.mixins.CfnMLTransformPropsMixin(props, *, strategy=None)
Bases:
MixinThe AWS::Glue::MLTransform is an AWS Glue resource type that manages machine learning transforms.
- See:
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-glue-mltransform.html
- CloudformationResource:
AWS::Glue::MLTransform
- Mixin:
true
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview import mixins from aws_cdk.mixins_preview.aws_glue import mixins as glue_mixins # tags: Any cfn_mLTransform_props_mixin = glue_mixins.CfnMLTransformPropsMixin(glue_mixins.CfnMLTransformMixinProps( description="description", glue_version="glueVersion", input_record_tables=glue_mixins.CfnMLTransformPropsMixin.InputRecordTablesProperty( glue_tables=[glue_mixins.CfnMLTransformPropsMixin.GlueTablesProperty( catalog_id="catalogId", connection_name="connectionName", database_name="databaseName", table_name="tableName" )] ), max_capacity=123, max_retries=123, name="name", number_of_workers=123, role="role", tags=tags, timeout=123, transform_encryption=glue_mixins.CfnMLTransformPropsMixin.TransformEncryptionProperty( ml_user_data_encryption=glue_mixins.CfnMLTransformPropsMixin.MLUserDataEncryptionProperty( kms_key_id="kmsKeyId", ml_user_data_encryption_mode="mlUserDataEncryptionMode" ), task_run_security_configuration_name="taskRunSecurityConfigurationName" ), transform_parameters=glue_mixins.CfnMLTransformPropsMixin.TransformParametersProperty( find_matches_parameters=glue_mixins.CfnMLTransformPropsMixin.FindMatchesParametersProperty( accuracy_cost_tradeoff=123, enforce_provided_labels=False, precision_recall_tradeoff=123, primary_key_column_name="primaryKeyColumnName" ), transform_type="transformType" ), worker_type="workerType" ), strategy=mixins.PropertyMergeStrategy.OVERRIDE )
Create a mixin to apply properties to
AWS::Glue::MLTransform.- Parameters:
props (
Union[CfnMLTransformMixinProps,Dict[str,Any]]) – L1 properties to apply.strategy (
Optional[PropertyMergeStrategy]) – (experimental) Strategy for merging nested properties. Default: - PropertyMergeStrategy.MERGE
Methods
- apply_to(construct)
Apply the mixin properties to the construct.
- Parameters:
construct (
IConstruct)- Return type:
- supports(construct)
Check if this mixin supports the given construct.
- Parameters:
construct (
IConstruct)- Return type:
bool
Attributes
- CFN_PROPERTY_KEYS = ['description', 'glueVersion', 'inputRecordTables', 'maxCapacity', 'maxRetries', 'name', 'numberOfWorkers', 'role', 'tags', 'timeout', 'transformEncryption', 'transformParameters', 'workerType']
Static Methods
- classmethod is_mixin(x)
(experimental) Checks if
xis a Mixin.- Parameters:
x (
Any) – Any object.- Return type:
bool- Returns:
true if
xis an object created from a class which extendsMixin.- Stability:
experimental
FindMatchesParametersProperty
- class CfnMLTransformPropsMixin.FindMatchesParametersProperty(*, accuracy_cost_tradeoff=None, enforce_provided_labels=None, precision_recall_tradeoff=None, primary_key_column_name=None)
Bases:
objectThe parameters to configure the find matches transform.
- Parameters:
accuracy_cost_tradeoff (
Union[int,float,None]) – The value that is selected when tuning your transform for a balance between accuracy and cost. A value of 0.5 means that the system balances accuracy and cost concerns. A value of 1.0 means a bias purely for accuracy, which typically results in a higher cost, sometimes substantially higher. A value of 0.0 means a bias purely for cost, which results in a less accurateFindMatchestransform, sometimes with unacceptable accuracy. Accuracy measures how well the transform finds true positives and true negatives. Increasing accuracy requires more machine resources and cost. But it also results in increased recall. Cost measures how many compute resources, and thus money, are consumed to run the transform.enforce_provided_labels (
Union[bool,IResolvable,None]) – The value to switch on or off to force the output to match the provided labels from users. If the value isTrue, thefind matchestransform forces the output to match the provided labels. The results override the normal conflation results. If the value isFalse, thefind matchestransform does not ensure all the labels provided are respected, and the results rely on the trained model. Note that setting this value to true may increase the conflation execution time.precision_recall_tradeoff (
Union[int,float,None]) – The value selected when tuning your transform for a balance between precision and recall. A value of 0.5 means no preference; a value of 1.0 means a bias purely for precision, and a value of 0.0 means a bias for recall. Because this is a tradeoff, choosing values close to 1.0 means very low recall, and choosing values close to 0.0 results in very low precision. The precision metric indicates how often your model is correct when it predicts a match. The recall metric indicates that for an actual match, how often your model predicts the match.primary_key_column_name (
Optional[str]) – The name of a column that uniquely identifies rows in the source table. Used to help identify matching records.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_glue import mixins as glue_mixins find_matches_parameters_property = glue_mixins.CfnMLTransformPropsMixin.FindMatchesParametersProperty( accuracy_cost_tradeoff=123, enforce_provided_labels=False, precision_recall_tradeoff=123, primary_key_column_name="primaryKeyColumnName" )
Attributes
- accuracy_cost_tradeoff
The value that is selected when tuning your transform for a balance between accuracy and cost.
A value of 0.5 means that the system balances accuracy and cost concerns. A value of 1.0 means a bias purely for accuracy, which typically results in a higher cost, sometimes substantially higher. A value of 0.0 means a bias purely for cost, which results in a less accurate
FindMatchestransform, sometimes with unacceptable accuracy.Accuracy measures how well the transform finds true positives and true negatives. Increasing accuracy requires more machine resources and cost. But it also results in increased recall.
Cost measures how many compute resources, and thus money, are consumed to run the transform.
- enforce_provided_labels
The value to switch on or off to force the output to match the provided labels from users.
If the value is
True, thefind matchestransform forces the output to match the provided labels. The results override the normal conflation results. If the value isFalse, thefind matchestransform does not ensure all the labels provided are respected, and the results rely on the trained model.Note that setting this value to true may increase the conflation execution time.
- precision_recall_tradeoff
The value selected when tuning your transform for a balance between precision and recall.
A value of 0.5 means no preference; a value of 1.0 means a bias purely for precision, and a value of 0.0 means a bias for recall. Because this is a tradeoff, choosing values close to 1.0 means very low recall, and choosing values close to 0.0 results in very low precision.
The precision metric indicates how often your model is correct when it predicts a match.
The recall metric indicates that for an actual match, how often your model predicts the match.
- primary_key_column_name
The name of a column that uniquely identifies rows in the source table.
Used to help identify matching records.
GlueTablesProperty
- class CfnMLTransformPropsMixin.GlueTablesProperty(*, catalog_id=None, connection_name=None, database_name=None, table_name=None)
Bases:
objectThe database and table in the AWS Glue Data Catalog that is used for input or output data.
- Parameters:
catalog_id (
Optional[str]) – A unique identifier for the AWS Glue Data Catalog .connection_name (
Optional[str]) – The name of the connection to the AWS Glue Data Catalog .database_name (
Optional[str]) – A database name in the AWS Glue Data Catalog .table_name (
Optional[str]) – A table name in the AWS Glue Data Catalog .
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_glue import mixins as glue_mixins glue_tables_property = glue_mixins.CfnMLTransformPropsMixin.GlueTablesProperty( catalog_id="catalogId", connection_name="connectionName", database_name="databaseName", table_name="tableName" )
Attributes
- catalog_id
A unique identifier for the AWS Glue Data Catalog .
- connection_name
The name of the connection to the AWS Glue Data Catalog .
- database_name
A database name in the AWS Glue Data Catalog .
- table_name
A table name in the AWS Glue Data Catalog .
InputRecordTablesProperty
- class CfnMLTransformPropsMixin.InputRecordTablesProperty(*, glue_tables=None)
Bases:
objectA list of AWS Glue table definitions used by the transform.
- Parameters:
glue_tables (
Union[IResolvable,Sequence[Union[IResolvable,GlueTablesProperty,Dict[str,Any]]],None]) – The database and table in the AWS Glue Data Catalog that is used for input or output data.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_glue import mixins as glue_mixins input_record_tables_property = glue_mixins.CfnMLTransformPropsMixin.InputRecordTablesProperty( glue_tables=[glue_mixins.CfnMLTransformPropsMixin.GlueTablesProperty( catalog_id="catalogId", connection_name="connectionName", database_name="databaseName", table_name="tableName" )] )
Attributes
- glue_tables
The database and table in the AWS Glue Data Catalog that is used for input or output data.
MLUserDataEncryptionProperty
- class CfnMLTransformPropsMixin.MLUserDataEncryptionProperty(*, kms_key_id=None, ml_user_data_encryption_mode=None)
Bases:
objectThe encryption-at-rest settings of the transform that apply to accessing user data.
- Parameters:
kms_key_id (
Optional[str]) – The ID for the customer-provided KMS key.ml_user_data_encryption_mode (
Optional[str]) – The encryption mode applied to user data. Valid values are:. - DISABLED: encryption is disabled. - SSEKMS: use of server-side encryption with AWS Key Management Service (SSE-KMS) for user data stored in Amazon S3.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_glue import mixins as glue_mixins m_lUser_data_encryption_property = glue_mixins.CfnMLTransformPropsMixin.MLUserDataEncryptionProperty( kms_key_id="kmsKeyId", ml_user_data_encryption_mode="mlUserDataEncryptionMode" )
Attributes
- kms_key_id
The ID for the customer-provided KMS key.
- ml_user_data_encryption_mode
.
DISABLED: encryption is disabled.
SSEKMS: use of server-side encryption with AWS Key Management Service (SSE-KMS) for user data stored in Amazon S3.
- See:
- Type:
The encryption mode applied to user data. Valid values are
TransformEncryptionProperty
- class CfnMLTransformPropsMixin.TransformEncryptionProperty(*, ml_user_data_encryption=None, task_run_security_configuration_name=None)
Bases:
objectThe encryption-at-rest settings of the transform that apply to accessing user data.
Machine learning transforms can access user data encrypted in Amazon S3 using KMS.
Additionally, imported labels and trained transforms can now be encrypted using a customer provided KMS key.
- Parameters:
ml_user_data_encryption (
Union[IResolvable,MLUserDataEncryptionProperty,Dict[str,Any],None]) – The encryption-at-rest settings of the transform that apply to accessing user data.task_run_security_configuration_name (
Optional[str]) – The name of the security configuration.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_glue import mixins as glue_mixins transform_encryption_property = glue_mixins.CfnMLTransformPropsMixin.TransformEncryptionProperty( ml_user_data_encryption=glue_mixins.CfnMLTransformPropsMixin.MLUserDataEncryptionProperty( kms_key_id="kmsKeyId", ml_user_data_encryption_mode="mlUserDataEncryptionMode" ), task_run_security_configuration_name="taskRunSecurityConfigurationName" )
Attributes
- ml_user_data_encryption
The encryption-at-rest settings of the transform that apply to accessing user data.
- task_run_security_configuration_name
The name of the security configuration.
TransformParametersProperty
- class CfnMLTransformPropsMixin.TransformParametersProperty(*, find_matches_parameters=None, transform_type=None)
Bases:
objectThe algorithm-specific parameters that are associated with the machine learning transform.
- Parameters:
find_matches_parameters (
Union[IResolvable,FindMatchesParametersProperty,Dict[str,Any],None]) – The parameters for the find matches algorithm.transform_type (
Optional[str]) – The type of machine learning transform.FIND_MATCHESis the only option. For information about the types of machine learning transforms, see Working with machine learning transforms .
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_glue import mixins as glue_mixins transform_parameters_property = glue_mixins.CfnMLTransformPropsMixin.TransformParametersProperty( find_matches_parameters=glue_mixins.CfnMLTransformPropsMixin.FindMatchesParametersProperty( accuracy_cost_tradeoff=123, enforce_provided_labels=False, precision_recall_tradeoff=123, primary_key_column_name="primaryKeyColumnName" ), transform_type="transformType" )
Attributes
- find_matches_parameters
The parameters for the find matches algorithm.
- transform_type
The type of machine learning transform.
FIND_MATCHESis the only option.For information about the types of machine learning transforms, see Working with machine learning transforms .