CfnFlywheelPropsMixin
- class aws_cdk.mixins_preview.aws_comprehend.mixins.CfnFlywheelPropsMixin(props, *, strategy=None)
Bases:
MixinA flywheel is an AWS resource that orchestrates the ongoing training of a model for custom classification or custom entity recognition.
You can create a flywheel to start with an existing trained model, or Comprehend can create and train a new model.
When you create the flywheel, Comprehend creates a data lake in your account. The data lake holds the training data and test data for all versions of the model.
To use a flywheel with an existing trained model, you specify the active model version. Comprehend copies the model’s training data and test data into the flywheel’s data lake.
To use the flywheel with a new model, you need to provide a dataset for training data (and optional test data) when you create the flywheel.
For more information about flywheels, see Flywheel overview in the Amazon Comprehend Developer Guide .
- See:
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-comprehend-flywheel.html
- CloudformationResource:
AWS::Comprehend::Flywheel
- Mixin:
true
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview import mixins from aws_cdk.mixins_preview.aws_comprehend import mixins as comprehend_mixins cfn_flywheel_props_mixin = comprehend_mixins.CfnFlywheelPropsMixin(comprehend_mixins.CfnFlywheelMixinProps( active_model_arn="activeModelArn", data_access_role_arn="dataAccessRoleArn", data_lake_s3_uri="dataLakeS3Uri", data_security_config=comprehend_mixins.CfnFlywheelPropsMixin.DataSecurityConfigProperty( data_lake_kms_key_id="dataLakeKmsKeyId", model_kms_key_id="modelKmsKeyId", volume_kms_key_id="volumeKmsKeyId", vpc_config=comprehend_mixins.CfnFlywheelPropsMixin.VpcConfigProperty( security_group_ids=["securityGroupIds"], subnets=["subnets"] ) ), flywheel_name="flywheelName", model_type="modelType", tags=[CfnTag( key="key", value="value" )], task_config=comprehend_mixins.CfnFlywheelPropsMixin.TaskConfigProperty( document_classification_config=comprehend_mixins.CfnFlywheelPropsMixin.DocumentClassificationConfigProperty( labels=["labels"], mode="mode" ), entity_recognition_config=comprehend_mixins.CfnFlywheelPropsMixin.EntityRecognitionConfigProperty( entity_types=[comprehend_mixins.CfnFlywheelPropsMixin.EntityTypesListItemProperty( type="type" )] ), language_code="languageCode" ) ), strategy=mixins.PropertyMergeStrategy.OVERRIDE )
Create a mixin to apply properties to
AWS::Comprehend::Flywheel.- Parameters:
props (
Union[CfnFlywheelMixinProps,Dict[str,Any]]) – L1 properties to apply.strategy (
Optional[PropertyMergeStrategy]) – (experimental) Strategy for merging nested properties. Default: - PropertyMergeStrategy.MERGE
Methods
- apply_to(construct)
Apply the mixin properties to the construct.
- Parameters:
construct (
IConstruct)- Return type:
- supports(construct)
Check if this mixin supports the given construct.
- Parameters:
construct (
IConstruct)- Return type:
bool
Attributes
- CFN_PROPERTY_KEYS = ['activeModelArn', 'dataAccessRoleArn', 'dataLakeS3Uri', 'dataSecurityConfig', 'flywheelName', 'modelType', 'tags', 'taskConfig']
Static Methods
- classmethod is_mixin(x)
(experimental) Checks if
xis a Mixin.- Parameters:
x (
Any) – Any object.- Return type:
bool- Returns:
true if
xis an object created from a class which extendsMixin.- Stability:
experimental
DataSecurityConfigProperty
- class CfnFlywheelPropsMixin.DataSecurityConfigProperty(*, data_lake_kms_key_id=None, model_kms_key_id=None, volume_kms_key_id=None, vpc_config=None)
Bases:
objectData security configuration.
- Parameters:
data_lake_kms_key_id (
Optional[str]) – ID for the AWS key that Amazon Comprehend uses to encrypt the data in the data lake.model_kms_key_id (
Optional[str]) – ID for the AWS key that Amazon Comprehend uses to encrypt trained custom models. The ModelKmsKeyId can be either of the following formats: - KMS Key ID:"1234abcd-12ab-34cd-56ef-1234567890ab"- Amazon Resource Name (ARN) of a KMS Key:"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"volume_kms_key_id (
Optional[str]) – ID for the AWS key that Amazon Comprehend uses to encrypt the volume.vpc_config (
Union[IResolvable,VpcConfigProperty,Dict[str,Any],None]) – Configuration parameters for an optional private Virtual Private Cloud (VPC) containing the resources you are using for the job. For more information, see Amazon VPC .
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_comprehend import mixins as comprehend_mixins data_security_config_property = comprehend_mixins.CfnFlywheelPropsMixin.DataSecurityConfigProperty( data_lake_kms_key_id="dataLakeKmsKeyId", model_kms_key_id="modelKmsKeyId", volume_kms_key_id="volumeKmsKeyId", vpc_config=comprehend_mixins.CfnFlywheelPropsMixin.VpcConfigProperty( security_group_ids=["securityGroupIds"], subnets=["subnets"] ) )
Attributes
- data_lake_kms_key_id
ID for the AWS key that Amazon Comprehend uses to encrypt the data in the data lake.
- model_kms_key_id
ID for the AWS key that Amazon Comprehend uses to encrypt trained custom models.
The ModelKmsKeyId can be either of the following formats:
KMS Key ID:
"1234abcd-12ab-34cd-56ef-1234567890ab"Amazon Resource Name (ARN) of a KMS Key:
"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
- volume_kms_key_id
ID for the AWS key that Amazon Comprehend uses to encrypt the volume.
- vpc_config
Configuration parameters for an optional private Virtual Private Cloud (VPC) containing the resources you are using for the job.
For more information, see Amazon VPC .
DocumentClassificationConfigProperty
- class CfnFlywheelPropsMixin.DocumentClassificationConfigProperty(*, labels=None, mode=None)
Bases:
objectConfiguration required for a document classification model.
- Parameters:
labels (
Optional[Sequence[str]]) – One or more labels to associate with the custom classifier.mode (
Optional[str]) – Classification mode indicates whether the documents areMULTI_CLASSorMULTI_LABEL.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_comprehend import mixins as comprehend_mixins document_classification_config_property = comprehend_mixins.CfnFlywheelPropsMixin.DocumentClassificationConfigProperty( labels=["labels"], mode="mode" )
Attributes
- labels
One or more labels to associate with the custom classifier.
- mode
Classification mode indicates whether the documents are
MULTI_CLASSorMULTI_LABEL.
EntityRecognitionConfigProperty
- class CfnFlywheelPropsMixin.EntityRecognitionConfigProperty(*, entity_types=None)
Bases:
objectConfiguration required for an entity recognition model.
- Parameters:
entity_types (
Union[IResolvable,Sequence[Union[IResolvable,EntityTypesListItemProperty,Dict[str,Any]]],None]) – Up to 25 entity types that the model is trained to recognize.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_comprehend import mixins as comprehend_mixins entity_recognition_config_property = comprehend_mixins.CfnFlywheelPropsMixin.EntityRecognitionConfigProperty( entity_types=[comprehend_mixins.CfnFlywheelPropsMixin.EntityTypesListItemProperty( type="type" )] )
Attributes
- entity_types
Up to 25 entity types that the model is trained to recognize.
EntityTypesListItemProperty
- class CfnFlywheelPropsMixin.EntityTypesListItemProperty(*, type=None)
Bases:
objectAn entity type within a labeled training dataset that Amazon Comprehend uses to train a custom entity recognizer.
- Parameters:
type (
Optional[str]) – An entity type within a labeled training dataset that Amazon Comprehend uses to train a custom entity recognizer. Entity types must not contain the following invalid characters: n (line break), n (escaped line break, r (carriage return), r (escaped carriage return), t (tab), t (escaped tab), and , (comma).- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_comprehend import mixins as comprehend_mixins entity_types_list_item_property = comprehend_mixins.CfnFlywheelPropsMixin.EntityTypesListItemProperty( type="type" )
Attributes
- type
An entity type within a labeled training dataset that Amazon Comprehend uses to train a custom entity recognizer.
Entity types must not contain the following invalid characters: n (line break), n (escaped line break, r (carriage return), r (escaped carriage return), t (tab), t (escaped tab), and , (comma).
TaskConfigProperty
- class CfnFlywheelPropsMixin.TaskConfigProperty(*, document_classification_config=None, entity_recognition_config=None, language_code=None)
Bases:
objectConfiguration about the model associated with a flywheel.
- Parameters:
document_classification_config (
Union[IResolvable,DocumentClassificationConfigProperty,Dict[str,Any],None]) – Configuration required for a document classification model.entity_recognition_config (
Union[IResolvable,EntityRecognitionConfigProperty,Dict[str,Any],None]) – Configuration required for an entity recognition model.language_code (
Optional[str]) – Language code for the language that the model supports.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_comprehend import mixins as comprehend_mixins task_config_property = comprehend_mixins.CfnFlywheelPropsMixin.TaskConfigProperty( document_classification_config=comprehend_mixins.CfnFlywheelPropsMixin.DocumentClassificationConfigProperty( labels=["labels"], mode="mode" ), entity_recognition_config=comprehend_mixins.CfnFlywheelPropsMixin.EntityRecognitionConfigProperty( entity_types=[comprehend_mixins.CfnFlywheelPropsMixin.EntityTypesListItemProperty( type="type" )] ), language_code="languageCode" )
Attributes
- document_classification_config
Configuration required for a document classification model.
- entity_recognition_config
Configuration required for an entity recognition model.
- language_code
Language code for the language that the model supports.
VpcConfigProperty
- class CfnFlywheelPropsMixin.VpcConfigProperty(*, security_group_ids=None, subnets=None)
Bases:
objectConfiguration parameters for an optional private Virtual Private Cloud (VPC) containing the resources you are using for the job.
For more information, see Amazon VPC .
- Parameters:
security_group_ids (
Optional[Sequence[str]]) – The ID number for a security group on an instance of your private VPC. Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by “sg-”, for instance: “sg-03b388029b0a285ea”. For more information, see Security Groups for your VPC .subnets (
Optional[Sequence[str]]) – The ID for each subnet being used in your private VPC. This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s Region. This ID number is preceded by “subnet-”, for instance: “subnet-04ccf456919e69055”. For more information, see VPCs and Subnets .
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_comprehend import mixins as comprehend_mixins vpc_config_property = comprehend_mixins.CfnFlywheelPropsMixin.VpcConfigProperty( security_group_ids=["securityGroupIds"], subnets=["subnets"] )
Attributes
- security_group_ids
The ID number for a security group on an instance of your private VPC.
Security groups on your VPC function serve as a virtual firewall to control inbound and outbound traffic and provides security for the resources that you’ll be accessing on the VPC. This ID number is preceded by “sg-”, for instance: “sg-03b388029b0a285ea”. For more information, see Security Groups for your VPC .
- subnets
The ID for each subnet being used in your private VPC.
This subnet is a subset of the a range of IPv4 addresses used by the VPC and is specific to a given availability zone in the VPC’s Region. This ID number is preceded by “subnet-”, for instance: “subnet-04ccf456919e69055”. For more information, see VPCs and Subnets .