CfnTrainingDatasetPropsMixin
- class aws_cdk.mixins_preview.aws_cleanroomsml.mixins.CfnTrainingDatasetPropsMixin(props, *, strategy=None)
Bases:
MixinDefines the information necessary to create a training dataset.
In Clean Rooms ML, the
TrainingDatasetis metadata that points to a Glue table, which is read only duringAudienceModelcreation.- See:
- CloudformationResource:
AWS::CleanRoomsML::TrainingDataset
- Mixin:
true
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview import mixins from aws_cdk.mixins_preview.aws_cleanroomsml import mixins as cleanroomsml_mixins cfn_training_dataset_props_mixin = cleanroomsml_mixins.CfnTrainingDatasetPropsMixin(cleanroomsml_mixins.CfnTrainingDatasetMixinProps( description="description", name="name", role_arn="roleArn", tags=[CfnTag( key="key", value="value" )], training_data=[cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.DatasetProperty( input_config=cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.DatasetInputConfigProperty( data_source=cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.DataSourceProperty( glue_data_source=cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.GlueDataSourceProperty( catalog_id="catalogId", database_name="databaseName", table_name="tableName" ) ), schema=[cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.ColumnSchemaProperty( column_name="columnName", column_types=["columnTypes"] )] ), type="type" )] ), strategy=mixins.PropertyMergeStrategy.OVERRIDE )
Create a mixin to apply properties to
AWS::CleanRoomsML::TrainingDataset.- Parameters:
props (
Union[CfnTrainingDatasetMixinProps,Dict[str,Any]]) – L1 properties to apply.strategy (
Optional[PropertyMergeStrategy]) – (experimental) Strategy for merging nested properties. Default: - PropertyMergeStrategy.MERGE
Methods
- apply_to(construct)
Apply the mixin properties to the construct.
- Parameters:
construct (
IConstruct)- Return type:
- supports(construct)
Check if this mixin supports the given construct.
- Parameters:
construct (
IConstruct)- Return type:
bool
Attributes
- CFN_PROPERTY_KEYS = ['description', 'name', 'roleArn', 'tags', 'trainingData']
Static Methods
- classmethod is_mixin(x)
(experimental) Checks if
xis a Mixin.- Parameters:
x (
Any) – Any object.- Return type:
bool- Returns:
true if
xis an object created from a class which extendsMixin.- Stability:
experimental
ColumnSchemaProperty
- class CfnTrainingDatasetPropsMixin.ColumnSchemaProperty(*, column_name=None, column_types=None)
Bases:
objectMetadata for a column.
- Parameters:
column_name (
Optional[str]) – The name of a column.column_types (
Optional[Sequence[str]]) – The data type of column.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_cleanroomsml import mixins as cleanroomsml_mixins column_schema_property = cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.ColumnSchemaProperty( column_name="columnName", column_types=["columnTypes"] )
Attributes
- column_name
The name of a column.
DataSourceProperty
- class CfnTrainingDatasetPropsMixin.DataSourceProperty(*, glue_data_source=None)
Bases:
objectDefines information about the Glue data source that contains the training data.
- Parameters:
glue_data_source (
Union[IResolvable,GlueDataSourceProperty,Dict[str,Any],None]) – A GlueDataSource object that defines the catalog ID, database name, and table name for the training data.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_cleanroomsml import mixins as cleanroomsml_mixins data_source_property = cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.DataSourceProperty( glue_data_source=cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.GlueDataSourceProperty( catalog_id="catalogId", database_name="databaseName", table_name="tableName" ) )
Attributes
- glue_data_source
A GlueDataSource object that defines the catalog ID, database name, and table name for the training data.
DatasetInputConfigProperty
- class CfnTrainingDatasetPropsMixin.DatasetInputConfigProperty(*, data_source=None, schema=None)
Bases:
objectDefines the Glue data source and schema mapping information.
- Parameters:
data_source (
Union[IResolvable,DataSourceProperty,Dict[str,Any],None]) – A DataSource object that specifies the Glue data source for the training data.schema (
Union[IResolvable,Sequence[Union[IResolvable,ColumnSchemaProperty,Dict[str,Any]]],None]) – The schema information for the training data.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_cleanroomsml import mixins as cleanroomsml_mixins dataset_input_config_property = cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.DatasetInputConfigProperty( data_source=cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.DataSourceProperty( glue_data_source=cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.GlueDataSourceProperty( catalog_id="catalogId", database_name="databaseName", table_name="tableName" ) ), schema=[cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.ColumnSchemaProperty( column_name="columnName", column_types=["columnTypes"] )] )
Attributes
- data_source
A DataSource object that specifies the Glue data source for the training data.
- schema
The schema information for the training data.
DatasetProperty
- class CfnTrainingDatasetPropsMixin.DatasetProperty(*, input_config=None, type=None)
Bases:
objectDefines where the training dataset is located, what type of data it contains, and how to access the data.
- Parameters:
input_config (
Union[IResolvable,DatasetInputConfigProperty,Dict[str,Any],None]) – A DatasetInputConfig object that defines the data source and schema mapping.type (
Optional[str]) – What type of information is found in the dataset.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_cleanroomsml import mixins as cleanroomsml_mixins dataset_property = cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.DatasetProperty( input_config=cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.DatasetInputConfigProperty( data_source=cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.DataSourceProperty( glue_data_source=cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.GlueDataSourceProperty( catalog_id="catalogId", database_name="databaseName", table_name="tableName" ) ), schema=[cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.ColumnSchemaProperty( column_name="columnName", column_types=["columnTypes"] )] ), type="type" )
Attributes
- input_config
A DatasetInputConfig object that defines the data source and schema mapping.
- type
What type of information is found in the dataset.
GlueDataSourceProperty
- class CfnTrainingDatasetPropsMixin.GlueDataSourceProperty(*, catalog_id=None, database_name=None, table_name=None)
Bases:
objectDefines the Glue data source that contains the training data.
- Parameters:
catalog_id (
Optional[str]) – The Glue catalog that contains the training data.database_name (
Optional[str]) – The Glue database that contains the training data.table_name (
Optional[str]) – The Glue table that contains the training data.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_cleanroomsml import mixins as cleanroomsml_mixins glue_data_source_property = cleanroomsml_mixins.CfnTrainingDatasetPropsMixin.GlueDataSourceProperty( catalog_id="catalogId", database_name="databaseName", table_name="tableName" )
Attributes
- catalog_id
The Glue catalog that contains the training data.
- database_name
The Glue database that contains the training data.
- table_name
The Glue table that contains the training data.