MetricType
- class aws_cdk.aws_lambda.MetricType(*values)
Bases:
Enum- ExampleMetadata:
infused
Example:
import aws_cdk.aws_lambda_event_sources as eventsources import aws_cdk.aws_dynamodb as dynamodb # fn: lambda.Function table = dynamodb.Table(self, "Table", partition_key=dynamodb.Attribute( name="id", type=dynamodb.AttributeType.STRING ), stream=dynamodb.StreamViewType.NEW_IMAGE ) fn.add_event_source(eventsources.DynamoEventSource(table, starting_position=lambda_.StartingPosition.LATEST, metrics_config=lambda.MetricsConfig( metrics=[lambda_.MetricType.EVENT_COUNT] ) ))
Attributes
- ERROR_COUNT
Error Count metrics provide insights into invocation errors and failures in your event source mapping processing.
- EVENT_COUNT
Event Count metrics provide insights into the processing behavior of your event source mapping, including the number of events successfully processed, filtered out, or dropped.
These metrics help you monitor the flow and status of events through your event source mapping.
- KAFKA_METRICS
Kafka-specific metrics provide detailed insights into Kafka consumer behavior, including lag, throughput, and partition-specific metrics.