interface CfnInferenceExperimentMixinProps
| Language | Type name |
|---|---|
.NET | Amazon.CDK.Mixins.Preview.AWS.SageMaker.Mixins.CfnInferenceExperimentMixinProps |
Go | github.com/aws/aws-cdk-go/awscdkmixinspreview/v2/awssagemaker/mixins#CfnInferenceExperimentMixinProps |
Java | software.amazon.awscdk.mixins.preview.services.sagemaker.mixins.CfnInferenceExperimentMixinProps |
Python | aws_cdk.mixins_preview.aws_sagemaker.mixins.CfnInferenceExperimentMixinProps |
TypeScript | @aws-cdk/mixins-preview » aws_sagemaker » mixins » CfnInferenceExperimentMixinProps |
Properties for CfnInferenceExperimentPropsMixin.
Example
// The code below shows an example of how to instantiate this type.
// The values are placeholders you should change.
import { mixins as sagemaker_mixins } from '@aws-cdk/mixins-preview/aws-sagemaker';
const cfnInferenceExperimentMixinProps: sagemaker_mixins.CfnInferenceExperimentMixinProps = {
dataStorageConfig: {
contentType: {
csvContentTypes: ['csvContentTypes'],
jsonContentTypes: ['jsonContentTypes'],
},
destination: 'destination',
kmsKey: 'kmsKey',
},
description: 'description',
desiredState: 'desiredState',
endpointName: 'endpointName',
kmsKey: 'kmsKey',
modelVariants: [{
infrastructureConfig: {
infrastructureType: 'infrastructureType',
realTimeInferenceConfig: {
instanceCount: 123,
instanceType: 'instanceType',
},
},
modelName: 'modelName',
variantName: 'variantName',
}],
name: 'name',
roleArn: 'roleArn',
schedule: {
endTime: 'endTime',
startTime: 'startTime',
},
shadowModeConfig: {
shadowModelVariants: [{
samplingPercentage: 123,
shadowModelVariantName: 'shadowModelVariantName',
}],
sourceModelVariantName: 'sourceModelVariantName',
},
statusReason: 'statusReason',
tags: [{
key: 'key',
value: 'value',
}],
type: 'type',
};
Properties
| Name | Type | Description |
|---|---|---|
| data | IResolvable | Data | The Amazon S3 location and configuration for storing inference request and response data. |
| description? | string | The description of the inference experiment. |
| desired | string | The desired state of the experiment after stopping. The possible states are the following:. |
| endpoint | string | The name of the endpoint. |
| kms | string | The AWS Key Management Service key that Amazon SageMaker uses to encrypt captured data at rest using Amazon S3 server-side encryption. |
| model | IResolvable | (IResolvable | Model)[] | An array of ModelVariantConfigSummary objects. |
| name? | string | The name of the inference experiment. |
| role | string | The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment. |
| schedule? | IResolvable | Inference | The duration for which the inference experiment ran or will run. |
| shadow | IResolvable | Shadow | The configuration of ShadowMode inference experiment type, which shows the production variant that takes all the inference requests, and the shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. |
| status | string | The error message for the inference experiment status result. |
| tags? | Cfn[] | An array of key-value pairs to apply to this resource. |
| type? | string | The type of the inference experiment. |
dataStorageConfig?
Type:
IResolvable | Data
(optional)
The Amazon S3 location and configuration for storing inference request and response data.
description?
Type:
string
(optional)
The description of the inference experiment.
desiredState?
Type:
string
(optional)
The desired state of the experiment after stopping. The possible states are the following:.
Completed: The experiment completed successfullyCancelled: The experiment was canceled
endpointName?
Type:
string
(optional)
The name of the endpoint.
kmsKey?
Type:
string
(optional)
The AWS Key Management Service key that Amazon SageMaker uses to encrypt captured data at rest using Amazon S3 server-side encryption.
modelVariants?
Type:
IResolvable | (IResolvable | Model)[]
(optional)
An array of ModelVariantConfigSummary objects.
There is one for each variant in the inference experiment. Each ModelVariantConfigSummary object in the array describes the infrastructure configuration for deploying the corresponding variant.
name?
Type:
string
(optional)
The name of the inference experiment.
roleArn?
Type:
string
(optional)
The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.
schedule?
Type:
IResolvable | Inference
(optional)
The duration for which the inference experiment ran or will run.
The maximum duration that you can set for an inference experiment is 30 days.
shadowModeConfig?
Type:
IResolvable | Shadow
(optional)
The configuration of ShadowMode inference experiment type, which shows the production variant that takes all the inference requests, and the shadow variant to which Amazon SageMaker replicates a percentage of the inference requests.
For the shadow variant it also shows the percentage of requests that Amazon SageMaker replicates.
statusReason?
Type:
string
(optional)
The error message for the inference experiment status result.
tags?
Type:
Cfn[]
(optional)
An array of key-value pairs to apply to this resource.
For more information, see Tag .
type?
Type:
string
(optional)
The type of the inference experiment.

.NET
Go
Java
Python
TypeScript