interface MLSyntheticDataParametersProperty
| Language | Type name |
|---|---|
.NET | Amazon.CDK.Mixins.Preview.AWS.CleanRooms.Mixins.CfnAnalysisTemplatePropsMixin.MLSyntheticDataParametersProperty |
Go | github.com/aws/aws-cdk-go/awscdkmixinspreview/v2/awscleanrooms/mixins#CfnAnalysisTemplatePropsMixin_MLSyntheticDataParametersProperty |
Java | software.amazon.awscdk.mixins.preview.services.cleanrooms.mixins.CfnAnalysisTemplatePropsMixin.MLSyntheticDataParametersProperty |
Python | aws_cdk.mixins_preview.aws_cleanrooms.mixins.CfnAnalysisTemplatePropsMixin.MLSyntheticDataParametersProperty |
TypeScript | @aws-cdk/mixins-preview » aws_cleanrooms » mixins » CfnAnalysisTemplatePropsMixin » MLSyntheticDataParametersProperty |
Parameters that control the generation of synthetic data for machine learning, including privacy settings and column classification details.
Example
// The code below shows an example of how to instantiate this type.
// The values are placeholders you should change.
import { mixins as cleanrooms_mixins } from '@aws-cdk/mixins-preview/aws-cleanrooms';
const mLSyntheticDataParametersProperty: cleanrooms_mixins.CfnAnalysisTemplatePropsMixin.MLSyntheticDataParametersProperty = {
columnClassification: {
columnMapping: [{
columnName: 'columnName',
columnType: 'columnType',
isPredictiveValue: false,
}],
},
epsilon: 123,
maxMembershipInferenceAttackScore: 123,
};
Properties
| Name | Type | Description |
|---|---|---|
| column | IResolvable | Column | Classification details for data columns that specify how each column should be treated during synthetic data generation. |
| epsilon? | number | The epsilon value for differential privacy when generating synthetic data. |
| max | number | The maximum acceptable score for membership inference attack vulnerability. |
columnClassification?
Type:
IResolvable | Column
(optional)
Classification details for data columns that specify how each column should be treated during synthetic data generation.
epsilon?
Type:
number
(optional)
The epsilon value for differential privacy when generating synthetic data.
Lower values provide stronger privacy guarantees but may reduce data utility.
maxMembershipInferenceAttackScore?
Type:
number
(optional)
The maximum acceptable score for membership inference attack vulnerability.
Synthetic data generation fails if the score for the resulting data exceeds this threshold.

.NET
Go
Java
Python
TypeScript