Use ML with Athena syntax
The USING EXTERNAL FUNCTION clause specifies an ML with Athena function or
multiple functions that can be referenced by a subsequent SELECT statement
in the query. You define the function name, variable names, and data types for the
variables and return values.
Synopsis
The following syntax shows a USING EXTERNAL FUNCTION clause that
specifies an ML with Athena function.
USING EXTERNAL FUNCTION ml_function_name (variable1 data_type[, variable2 data_type][,...])
RETURNS data_type
SAGEMAKER 'sagemaker_endpoint'
SELECT ml_function_name()
Parameters
- USING EXTERNAL FUNCTION
ml_function_name(variable1data_type[,variable2data_type][,...]) -
ml_function_namedefines the function name, which can be used in subsequent query clauses. Eachvariable data_typespecifies a named variable and its corresponding data type that the SageMaker AI model accepts as input. The data type specified must be a supported Athena data type. - RETURNS
data_type -
data_typespecifies the SQL data type thatml_function_namereturns to the query as output from the SageMaker AI model. - SAGEMAKER '
sagemaker_endpoint' -
sagemaker_endpointspecifies the endpoint of the SageMaker AI model. - SELECT [...]
ml_function_name(expression) [...] -
The SELECT query that passes values to function variables and the SageMaker AI model to return a result.
ml_function_namespecifies the function defined earlier in the query, followed by anexpressionthat is evaluated to pass values. Values that are passed and returned must match the corresponding data types specified for the function in theUSING EXTERNAL FUNCTIONclause.
Example
The following example demonstrates a query using ML with Athena.
USING EXTERNAL FUNCTION predict_customer_registration(age INTEGER) RETURNS DOUBLE SAGEMAKER 'xgboost-2019-09-20-04-49-29-303' SELECT predict_customer_registration(age) AS probability_of_enrolling, customer_id FROM "sampledb"."ml_test_dataset" WHERE predict_customer_registration(age) < 0.5;